APPENDIXES

Appendix A: Search Strategy

Database: MEDLINE 1996-April Week 4 2007

Search History

- 1 exp Hypertension, Renal/
- 2 exp Renal Artery Obstruction/
- 3 renal arter\$ stenosis.tw.
- 4 renal arter\$ dis\$.tw.
- 5 renovascular dis\$.tw.
- 6 reno vascular dis\$.tw.
- 7 renal vascular dis\$.tw.
- 8 (arvd or "atherosclerotic renovascular dis\$").tw.
- 9 renal steno\$.tw.
- 10 steno\$ kidney.tw.
- 11 renovascular steno\$.tw.
- 12 or/1-11
- 13 limit 12 to humans
- 14 limit 13 to english language

limit 14 to (addresses or bibliography or biography or case reports or congresses or consensus development conference or consensus development conference, nih or dictionary or directory or

- 15 editorial or festschrift or government publications or interview or lectures or legal cases or legislation or letter or news or newspaper article or patient education handout or periodical index or "review of reported cases")
- 16 14 not 15
- 17 [limit to MEDLINE entry dates August 2005 to April 23, 2007]

Appendix B: Excluded Studies

Cianci R, Coen G, Manfredini P et al. Diagnosis and outcome of renal function in patients with renal artery stenosis: which role have color Doppler sonography and magnetic resonance angiography? Minerva Cardioangiologica. 2006;54:139-144. **Diagnosis of RAS only**

Cooper CJ, Murphy TP, Matsumoto A et al. Stent revascularization for the prevention of cardiovascular and renal events among patients with renal artery stenosis and systolic hypertension: rationale and design of the CORAL trial. American Heart Journal. 2006;152:59-66.

Study design only

Edwards MS, Corriere MA, Craven TE et al. Atheroembolism during percutaneous renal artery revascularization. Journal of Vascular Surgery. 2007:46:55-61

N<30 (PTRA study)

Hanzel G, Balon H, Wong O, Soffer D, Lee DT, Safian RD. Prospective evaluation of aggressive medical therapy for atherosclerotic renal artery stenosis, with renal artery stenting reserved for previously injured heart, brain, or kidney. American Journal of Cardiology. 2005:96:1322-1327.

Already included in original CER

Kalra PA, Guo H, Kausz AT et al. Atherosclerotic renovascular disease in United States patients aged 67 years or older: risk factors, revascularization, and prognosis. Kidney International. 2005;68:293-301. **Retrospective (PTRA study)**

Kashyap VS, Sepulveda RN, Bena JF et al. The management of renal artery atherosclerosis for renal salvage: does stenting help? Journal of Vascular Surgery. 2007;45:101-108.

Retrospective (PTRA study)

Kennedy DJ, Burket MW, Khuder SA, Shapiro JI, Topp RV, Cooper CJ. Quality of life improves after renal artery stenting. Biological Research for Nursing. 2006;8:129-137. **Cross-sectional study**

Mitchell JA, Subramanian R, White CJ et al. Predicting blood pressure improvement in hypertensive patients after renal artery stent placement: renal Fractional Flow Reserve. Catheterization & Cardiovascular Interventions. 2007;69:685-689. N<30 (PTRA study)

Muller-Hulsbeck S, Frahm C, Behm C et al. Lowprofile stent placement with the monorail technique for treatment of renal artery stenosis: midterm results of a prospective trial. Journal of Vascular & Interventional Radiology. 2005;16:963-971. N<30 analyzed (PTRA study)

Murphy TP. Cooper CJ. Dworkin LD et al. The Cardiovascular Outcomes with Renal Atherosclerotic Lesions (CORAL) study: rationale and methods. Journal of Vascular & Interventional Radiology. 2005;16:1295-1300. Study design only

Pearce JD, Craven BL, Craven TE et al. Progression of atherosclerotic renovascular disease: A prospective population-based study. Journal of Vascular Surgery. 2006:44:955-962.

No outcomes of interest

Rivolta R, Bazzi C, Stradiotti P, Paparella M. Stenting of renal artery stenosis: is it beneficial in chronic renal failure? Journal of Nephrology. 2005;18:749-754.

Already included in original CER

Rocha-Singh K, Jaff MR, Rosenfield K, Trial I. Evaluation of the safety and effectiveness of renal artery stenting after unsuccessful balloon angioplasty: the ASPIRE-2 study.[see comment]. Journal of the American College of Cardiology. 2005;46:776-783. Already included in original CER

Rocha-Singh KJ, Ahuja RK, Sung CH, Rutherford J. Long-term renal function preservation after renal artery stenting in patients with progressive ischemic nephropathy. Catheterization & Cardiovascular Interventions. 2002;57:135-141.

Retrospective (PTRA study)

Scarpioni R, Michieletti E, Cristinelli L et al. Atherosclerotic renovascular disease: medical therapy versus medical therapy plus renal artery stenting in preventing renal failure progression: the rationale and study design of a prospective, multicenter and randomized trial (NITER). Journal of Nephrology. 2005;18:423-428. Study design only

Appendix C: Peer Reviewers

We gratefully acknowledge the following individuals who reviewed the initial draft of this Report and provided us with constructive feedback. Acknowledgments are made with the explicit statement that this does not constitute endorsement of the report by the peer reviewers.

Scott Gilbert, MD

Assistant Professor of Medicine Director, Kidney and Blood Pressure Center Tufts-New England Medical Center Boston, Massachusetts

Linda Humphrey, MD, MPH

Scientific Resource Center Oregon Health and Science University Portland, Oregon

Timothy Murphy, MD

Professor, Diagnostic Imaging Brown University School of Medicine Medical Director, Vascular Disease Research Center Rhode Island Hospital Providence, Rhode Island

Wayne Powell

Senior Director for Advocacy and Guidelines Society for Cardiovascular Angiography and Interventions (SCAI)

John H. Rundback, MD

Associate Professor of Clinical Radiology College of Physicians and Surgeons of Columbia University New York, NewYork

Stephen C. Textor, M.D.

Division of Nephrology Department of Medicine Mayo Clinic, Rochester, Minnesota

Katherine R. Tuttle, MD

Director of Research The Heart Institute of Spokane Spokane, Washington

I. David Weiner, MD

Division of Nephrology, Hypertension and Transplantation University of Florida College of Medicine Chief, Nephrology and Hypertension Section Gainesville, Florida

Christopher J. White, MD, FSCAI

Chairman, Department of Cardiology, Ochsner Heart and Vascular Institute, New Orleans, Louisiana

R. Eugene Zierler, MD

Professor of Surgery Division of Vascular Surgery University of Washington Seattle, Washington

Robert Zwolak, MD, PhD

Division of Vascular Surgery, Dartmouth-Hitchcock Medical Center, New Hampshire

Drs. Gilbert, Rundback, Textor and Tuttle were also members of the EPC's Technical Expert Panel for the original CER Appendix D: Supplemental Tables and Figure

		Mean BP	Mean %	No.	RAS	Mean					Res				
Author, Year		Mean Di	Stenosis	Evaluated	Location	Duration	<u> </u>	TN (%)	and B	٥	Cł	(D (%) a	nd GFR / SCr A	_	Qual
Study Design	Intervention	Mean GFR [SCr]	% Bilateral Stenosis	RAS (ARAS)	Years Enrolled	Range	Cured	Imp	Un∆	Worse	Imp	Un∆	Worse	CVD (%)	Appl
Angioplasty vs Me	dical Treatment, RCT														
	Angioplasty	190/99		12											
Webster, 1998 ¹² SNRASCG	No stent	[2.1]	>50%	(12)	Ostial 46%			∆ = -34	∆ = -24 /-11 (ad up time)	justed for		Final S	Cr Δ = +0.01 Cr Δ = +0.11 failure": ^A 8%	Angio- plasty: ^A CHF 9%	в
RCT	Medicine	190/101	•	16	-									CHF 9% CVA 4%	В
(bilateral disease, see other entries)	2-3 of atenolol, bedrofluazide, CCB^{B}	[1.7]	100%	(16)	nd	(3-54 mo)				NS (net) .02 (net)		al SCr∆	= +0.10 NS (net) = +0.05 NS (net) failure": ^A 7%	MI 4%	
	Angioplasty	189/105		13										Medical: ^A	
RCT	No stent	[1.6]	>50%	(13)	Ostial 52%				Δ =-19/ Δ = -2/-				Cr ∆ = +0.07 Cr ∆ = +0.09	CHF 13%	Mod
	Medicine	182/99	-	14	-	(3-54								MI	INIOU
	2-3 of atenolol, bedrofluazide, CCB ^B	[1.9]	0%	(14)	nd	(0-04 mo)	-		. =-19/-1 ·10/-2 N				= +0.44 NS (net) Δ = 0 NS (net)	(unclear)	
Plouin, 1998 ¹⁵ EMMA	Angioplasty +/-stent ^C	165/98 73	>60%	23 (23)	Ostial 39%	6 mo		BP Δ	= -14/-8	5		Cr	0/23 CI ∆ = +4		В
RCT	Medicine ^D Multiple regimens ^F	165/96 73	0%	25 (25)	1992-1995		BP Δ :	= -7/-1	p=NS/0.	04 (net)		CrCl ∆	1/19 ^E = 0 NS (net)		Low
Angioplasty vs Me	dical Treatment or Dela	ayed Angiopla	sty, RCT												
van Jaarsveld,	Angioplasty	179/104	76%	56									4%		
2000 ^{13,14,16,23} DRASTIC	No stent ^G	67	23%	(56)	nd	1 yr		BPΔ=	= -19/-12	2		Cr	CI ∆ = +3		В
	Medicine ^H (n=28) Multiple regimens ¹ Delayed angioplasty (n=22)	180/103 60	72% 22%	50 (50)	1993-1998		BP	Δ = -1	7/-7 NS	(net)		CrCl Δ	12% = +2 NS (net)		
RCT					Qu	ality of Life:	ang EuroQo MOS sc 3 r	gioplasi I and M ocial fur no: ang	ty than r 10S: Ov nctioning ioplasty	medicine, N erall NS g: better thai	NS n medic	ine (+11	eased more after v 0, p=.06) 20 v -2, p=0.04)		High

Table 2. Direct comparisons of angioplasty or surgery and medical treatment for renal artery stenosis (new results in italics)

Author,		Mean BP	Mean %	No.	RAS	Mean				F	Results				
Year			Stenosis	Evaluated	Location	Duration	H	ITN (%)	and BP	Δ	CKD	(%) and G	FR / SCr 🛆		Qual
Study Design	Intervention	Mean GFR [SCr]	% Bilateral Stenosis	RAS (ARAS)	Years Enrolled	Range	Cured	Imp	Un∆	Worse	Imp	Un∆	Worse	CVD (%)	Appl
Angioplast	y vs Medical Treatment,	Nonrandomize	ed, Controlled 1												
	Angioplasty	166/92		136	Proximal										
Losito, 2005 ²⁴	Few with stent	[1.8]	74%	(136)	79%, Ostial 6%, Distal 15%	54.4 mo		BP ∆ =	-22/-10			SCr∆ = + ESRD = §			В
	Medicine	160/89		54											
Prosp	nd	[1.7]	26%	(54)	1992-2000	nd	BP 🛆	= -11/-	8 P<0.08	ō (net)		= +1.29 F D = 13.0%	P=0.04 (net) 6 NS (net)		Mod
Webster, 1998 ¹²	Angioplasty No stent	196/109 [1.9]	>50%	28 (28)	Ostial 63%	nd	A	Adj BP Δ	. = -13/-1	1	Fir	nal SCr∆	= +0.15		В
NRCT	Medicine	197/103	-	51											
(see other entries)	2-3 of atenolol, bedrofluazide, CCB ^B	[1.6]	nd	(51)	nd	(3-54 mo)	Adj E	3P ∆ = -	12/-6 NS	6 (net)	Final S	SCr ∆ = 0.	05 NS (net)		Low
Taylor	Angioplasty	160/96		5		6.5 mo			nd						
Taylor, 1989 ²²	No stent	nd	>60%	(nd)	nd	1-21 mo		BP Δ :	= -23/-6		1	Δ = -0.5 (in aceiving su	ncluding 7 urgery)		С
	No revascularization	174/100		15		13 mo			20%						
Prosp	nd (0-3 drugs)	nd	nd	(nd)	nd	7-20 mo		BPΔ=	-24/-20		SCr∆	= +1.0 P= P<0.01 (0.08 (base); net)		Low
Englund,	Angioplasty	165/96	nd	21	nd	17 mo	0								С
1991 ²¹	No stent	[3.9]	nu	(?19-21)	nu	nd		BP Δ	= -9/-5			$SCr \Delta = +$	-1.05		C
Retro	Medicine	185/101	nd	17	1981-1988	16 mo	0								Low
	nd	[3.8]		(17)	1901-1900	nd	BP	_	-12 NS	(net)		$\Delta = 0.+69$	NS (net)		LOW
Pizzolo,	Angioplasty	168/95	~88%	63	nd	28 mo	0	57%	4	3%	8	2%	18%		С
2004 ^{17 J}	+/-stent ^K	[1.5]	30%	(63)		20 110									
Retro	Medicine Multiple regimens ^L	159/91 [1.4]	~79% 27%	37 (37)	1996-2002	1-60 mo	mo 0 29% 71% P<0.05			1%	5	2%	48%		Low

Table 2. Direct comparisons of angioplasty or surgery and medical treatment for renal artery stenosis (continued)

Author, Year		Mean BP	Mean %	No.	RAS	Mean					Results				
Year		Mean Dr	Stenosis	Evaluated	Location	Duration	ŀ	ITN (%)	and BP	Δ	CKD	(%) and GI	FR / SCr 🛆		Qual
Study Design	Intervention	Mean GFR [SCr]	% Bilateral Stenosis	RAS (ARAS)	Years Enrolled	Range	Cured	Imp	Un∆	Worse	Imp	Un∆	Worse	CVD (%)	Appl
Angioplasty	or Surgery vs M	edical Treatm	ent, Nonrandor	nized, Control	led Trial										
Pillay,	Procedure			12											_
2002 ¹⁸	Various ^M	nd	>50%	(nd)	nd	2.5 yr		DBP	∆ = -15		SCr∆	= +0.6 P=(Dialysis: 1	0.01 (base) 1/12		С
	Medicine	-		21										[
Prosp	nd		100%	(nd)	1994-1998	>2 yr	DBP Δ = -6 NS (net)		iet)	SC	Cr ∆ = 0 NS Dialysis 0	· /		Low	
Johansson, 1999 ²⁰	Procedure Various ^N	179/91	≥ 50%	105 (~91)	nd	7.1 yr	53% (1 yr)				·			С
Prosp	Medicine nd	61	nd	64 (~56)	1983-1984 & 1988-1994		nc	1							Low
Surgery vs M	Medical Treatme	nt, RCT													
Uzzo,	Surgery			25										Stop	
2002 ¹⁹	Multiple	nd	≥ 75%	(25)	nd	6.2 yr	No diffe			pressure			lialysis-free	point: ⁰ 68%	С
RCT	Medicine nd	nd	nd	27 (27)	nd	up to 7 yr	o 7 yr			survival	or change	in GFR (NS)	67% NS [₽]	Low	

Table 2. Direct comparisons of angioplasty or surgery and medical treatment for renal artery stenosis (continued)

 Δ , change; Adj, adjusted; Appl, applicability rating; ARAS, atherosclerotic renal artery stenosis; BP, blood pressure; CHF, congestive heart failure; CKD, chronic kidney disease; CVA, cerebrovascular event (stroke); CVD, cardiovascular disease; DBP, diastolic blood pressure; GFR, glomerular filtration rate (or creatinine clearance, mL/min or mL/min/1.73 m²); HTN, hypertension; Imp, improved; MI, myocardial infarction; mo, months; nd, no data; NS, nonsignificant; Qual, quality rating; RAS, renal artery stenosis; Rx, prescriptions; SCr, serum creatinine (mg/dL); Un Δ , unchanged (or stable); yr, years.

^A Combined unilateral and bilateral RAS.

^B Or, frusemide, methyldopa, or prazosin. Angiotensin converting enzyme inhibitors were not allowed.

^C 21 angioplasty alone, 2 angioplasty with stent.

^D Intention to treat. 7 of 26 patients randomized to medical therapy received angioplasty within 6 months.

 $E \ge 50\%$ increase in plasma creatinine.

^FGoal diastolic blood pressure (DBP)<95 mm Hg, using, if necessary, atenolol 50 mg, furosemide 40 mg, and/or enalapril 10 mg.

^G Protocol called for no stent, but stents were placed in 2 patients.

^H Intention to treat. 22 of 50 patients randomized to medical therapy at 3 months received angioplasty because of persistent hypertension or deterioration of kidney function.

¹ Randomized to amlodipine 10 mg (+ atenolol 50 mg if age >40 yr) or enalapril 20 mg (+ hydrochlorothiazide 25 mg if age >40 yr), or if could not tolerate either regimen, atenolol 100 mg (+ hydrochlorothiazide 25 mg if age >40 yr).

^J Entry criteria for those receiving angioplasty and those receiving medical therapy were markedly different. Those receiving angioplasty had primary evaluation for resistant hypertension or unexplained azotemia. Those receiving conservative therapy had angiographic evaluation for other causes, primarily lower extremity arteriopathy. Endovascular therapy not considered for this latter group.

^K 21 angioplasty alone; 42 angioplasty with stent.

^L Goal BP≤140/90. Most frequent used classes of drugs were ACE inhibitors (62%), diuretics (62%), calcium antagonists (49%), and beta-blockers (30%).

 ^M Among 12 patients, "9 angioplasties (1 failure) and 1 bilateral stent. 4 kidneys had... surgery."
 ^N 88 angioplasty, 17 reconstructive surgery or nephrectomy.
 ^O DBP>100 on treatment, or kidney function worsening (by GFR, SCr, or dialysis), or atherosclerotic cardiovascular event, or death.
 ^P By Cox proportional hazard survival analysis.

Author Year	N RAS (ARAS)	Intervention	Kidney-related	CVD-related	Thrombosis/ occlusion	Bleeding	30 d mortality	Other
Pizzolo 2004 ¹⁷	122 (122)	Angioplasty (+/- stent) vs Medical (multiple regimens)	Partial kidney infarction 3% (Angioplasty) Periprocedure acute worsening kidney insufficiency 3% (Angioplasty)	Periprocedure MI 1.6% (Angioplasty)	Cholesterol embolism 1.6% (Angioplasty)			3 of the 4 adverse events occurred in the same person. No data on adverse events in medicine arm
Webster 1998 ¹²	55 (55)	Angioplasty (no stent) vs. Medical (atenolol, bedrofluazide, and/or calcium antagonist, or others)		In hospital stroke 5% (Angioplasty) Symptomatic hypotension 2% (Angioplasty)	No dissections, perforation, or renal artery thrombosis	Bleeding at arterial site 20% (Angioplasty)	No deaths	Pain requiring narcotic analgesic 10% (Angioplasty) No data on adverse events in medicine arm
Plouin 1998 ¹⁵	49 (49)	Angioplasty (+/- stent) vs. Medical (multiple regimens)	Renal artery dissection 4% (Angioplasty) 0% (Medical)		No occlusions	Hematoma at puncture site 22% (Angioplasty) 4% (Medical)		
Englund 1991 ²¹	38 (36)	Angioplasty (no stent) vs. Medical (nd)	Rupture of dilated renal artery & nephrectomy 3% (Angioplasty)				3% (Angioplasty) 5% (Medical)	
Van Jaarsveld 2000 ^{13,14,16}	106 (106)	Angioplasty (no stent) vs. Medical (multiple regimens) or delayed angioplasty		Periprocedural angina 0% (Angioplasty) 2% (Medical / Delayed angioplasty) Periprocedural MI 0% (Angioplasty) 2% (Medical / Delayed angioplasty)	Occlusion of affected artery 0% (Angioplasty) 16% (Medical / Delayed angioplasty) Rupture of affected artery 0% (All)	Groin hematoma necessitating transfusion or intervention 4% (Angioplasty) 8% (Medical / Delayed angioplasty)		Embolization of cholesterol crystals 0% (Angioplasty) 14% (Medical / Delayed angioplasty) Symptomatic hypotension at angioplasty 1.8% (Angioplasty) 0% (Medical / Delayed angioplasty)

Table 3. Adverse events associated with medical and angioplasty treatments of renal artery stenosis in direct comparison studies (no new data)

ARAS, atherosclerotic renal artery stenosis; CVD, cardiovascular disease; d, day; MI, myocardial infarction; N, number evaluated; nd, no data; RAS, renal artery stenosis

Author, Year	Mean BP	Mean % Stenosis	No. Evaluated RAS	Intervention	Mean Followup Duration		Results		Qual
Study Design	Mean GFR [SCr]	% Bilateral Stenosis	(ARAS)	Study Years	(Range)	BP Control	Kidney Function	Cardio- vascular Disease	Appl
Hanzel, 2005 ²⁷	154/77	≥70%	40	Aspirin, statin, and antihypertensive therapy ^a	21 mo	BP Δ	SCr Δ +0.1	Stroke	В
Prosp	61 [1.3]	18%	(40)	nd	(nd)	 P=0.03/0.01	(+7%) <i>P</i> =0.02 GFR ∆ -4 (-6%) <i>P</i> =0.03	1/40 MI 1/40	Mod
Franklin, 1985 ^{28,29}	180/106	>50%	13	Triple-drug regimen cross to enalapril 5-20 mg	7.5 ^D mo	BP Δ –50/-29			С
RCT & Prosp ^B	[1.3] ^C	49% ^c	(nd)	nd	(nd)	P≤0.01			Low
Ogihara, 1991 ³⁰	172/103	nd	10	Delapril 7.5-120 mg	Mostly 12 wk	8/10 BP Δ ≥ -20/-10			С
Prosp	nd	nd	(nd)	nd	>1 yr in some	5/10 BP Δ ≥ -30/-15			Low
Tillman, 1984 ³¹	180/104 ^E	nd	20	Enalapril 10-40 mg	19 mo	ΒΡ Δ -40/-19 ^D	SCr Δ +0.3		С
Prosp	[1.3]	25%	(≤19)	nd	(8-32 mo)	P<0.05	P<0.05	-	Low

Table 4. Medical treatments for blood pressure maintenance of atherosclerotic renal artery stenosis (no new data)

 Δ , change; Appl, applicability rating; ARAS, atherosclerotic renal artery stenosis; BP, blood pressure; GFR, glomerular filtration rate (mL/min or mL/min/1.73 m²); HTN, hypertension; mo, months; nd, no data; Mod, moderate; Prosp, prospective nonrandomized study; Qual, quality rating; RAS, renal artery stenosis; RCT, randomized controlled trial; SCr, serum creatinine (mg/dL); wk, weeks; yr, year.

^A All patients received aspirin 325 mg/day and a statin to achieve LDL cholesterol <100 mg/dl. Antihypertensive therapy was initiated with an ACE inhibitor or ARB, and other agents were added as necessary. Six patients (15%) developed progressive decreases in single-kidney GFR underwent late renal artery stenting. After stenting, patients received ticlopidine 250 mg twice daily or clopidogrel 75 mg/day for more than 30 days.

^B Initially an RCT, then an open-label trial during a "maintenance period."

^C Data was based on the total of 39 patients who were randomized to standard triple therapy group. Of these, in 13 patients therapy was switched from the triple-drug regimen to enalapril during the extension period, and the outcomes were based on these 13 patients.

^D Median

^E Value was estimated from graph.

Author Year	N RAS (ARAS)	Intervention	Kidney-related	CVD-related	Thrombosis/ occlusion	Bleeding	30 d mortality	Other
Franklin 1985 ^{28,29}	75 (57)	Medical (Enalapril vs STT)		Orthostatic hypotension 11% (enalapril) CNS symptoms 18% (STT)				No leucopenia, dysgeusia, rash, or proteinuria
Takabatake 1987 ³²	21	Medical (Captopril)		Hypotension comparable in bilateral and unilateral stenosis (nd on %)				
Tillman 1984 ³¹	20 (≤19)	Medical (Enalapril)		Symptomatic tachycardia 20% Angina 5%				
Jackson 1986 ^{33,34}	16 (16)	Medical (Enalapril)	Increased SCr 25%					No rash, taste disturbance, or neutropenia
Hricik 1983 ³⁵	11 (nd)	Medical (Captopril)	Transient kidney insufficiency 100%					

Table 5. Adverse events associated with the medical treatment of renal artery stenosis (no new data)

ARAS, atherosclerotic renal artery stenosis; CNS, central nervous system; CVD, cardiovascular disease; d, day; GFR, glomerular filtration rate; MI, myocardial infarction; N, number evaluated; nd, no data; RAS, renal artery stenosis; STT, "standard triple therapy"; SCr, serum creatinine.

^A All patients received aspirin 325 mg/day and a statin to achieve LDL cholesterol <100 mg/dl. Antihypertensive therapy was initiated with an ACE inhibitor or ARB, and other agents were added as necessary. Six patients (15%) developed progressive decreases in single-kidney GFR underwent late renal artery stenting. After stenting, patients received ticlopidine 250 mg twice daily or clopidogrel 75 mg/day for more than 30 days.

Author, Year	Mean BP	Mean % Stenosis	No. Evaluated RAS	Intervention	Mean Followup Duration		Results		Qual
Study Design	Mean GFR [SCr]	% Bilateral Stenosis	(ARAS)	Study Years	(Range)	BP Control	Kidney Function	Cardiovascular Disease	Appl
Caps, 1998 ³⁶	163/84 ^A	≥60%	100 ^в	Medical Rx	nd				В
Prosp	[1.6] ^A	nd	(100)	1990-1993	(2-24 mo)		Kidney atrophy: 21% ^C		Mod
Cheung, 2002 ⁴²	167/87	≥50%	26 or 11 ^D	Mostly medical Rx ^E	35 mo		∆GFR: -4.9/yr (n=11)		С
Prosp & Retro	35.5	100%	(nd)	nd	(1-82 mo)		GFR ∆ >20%: 6/11		Low
Conlon 200137	nd	≥50%	362	Various	3.2 y		Only mortality data repo	orted	В
Prosp	[1.2]	17%	(nd)	nd	(6-90 mo)				Low
Fergany, 1994 ³⁸	179/102	nd	20	Medical Rx	43 mo	BP ∆ -39/-17	SCr ∆ +0.2		С
Prosp	[1.2]	65%	(nd)	1970-1990	(4-120 mo)	P=0.03	NS		Low
Houston, 2004 ³⁹	nd	>60%	45	nd	9 yr		SCr ∆ +0.3 ^F		С
Prosp	[~1.8] ^F	nd	(nd)	nd			P=0.004		Mod
Iglesias, 2000 ⁴¹	143/84	>20%	96 or 78 ^G	nd	55 mo		∆SCr: +0.06 / yr (n=78)		С
Retro	[1.2]	20%	(nd)	nd	(nd)				Mod
Pillay, 200218	nd/88 ^F	>50%	52 or 35 ^H	Medical Rx	2 yr	$DBP\Delta$	SCr Δ +0.2 ^F		С
Prosp	[1.2] ^F	0%	(nd)	1994-1998	(2 yr)	-8 ^F P=NS	(n=35) <i>P=0.002</i> Dialysis: 2/52		Low
Uzu, 2002 ⁴⁰	170/77	≥ 75%	20	Medical Rx	nd		•		В
Prosp	[3.2]	59%	(nd)	1996-1998	(3-36 mo)		Dialysis: 8/20	CVD deaths: 8/20	Low

Table 6. Natural history or nonspecified medical treatments of atherosclerotic renal artery stenosis (no new data)

 Δ , change; Appl, applicability rating; ARAS, atherosclerotic renal artery stenosis; BP, blood pressure; CVD, cardiovascular disease; DBP, diastolic blood pressure; GFR, glomerular filtration rate (or creatinine clearance, mL/min or mL/min/1.73 m²); mo, months; Mod, moderate; nd, no data; NS, nonsignificant; Qual, quality rating; RAS, renal artery stenosis; Rx, prescription; SCr, serum creatinine (mg/dL); yr, years.

^A Data were based on all 204 kidneys, including 43 (21 percent) kidneys with normal baseline arteries at baseline.

^B Number of kidneys

^c Cumulative incidence of kidney atrophy (a reduction in kidney length >1 cm during followup compared to the length at baseline examination) over a period of 2 year

^D Only nondialysis and survived patients with baseline renal functional data were analyzed for followup renal function analyses.

^E Very few patients received angioplasty; of which only one received stent.

^F Value was estimated from graph.

^G Patients who died within 180 days excluded from analyses of annual changes SCr. These patients had better survival rate than the whole cohort.

^H Survivors only.

	Mean BP	Mean %	No.	RAS	Mean					Resu				
Author, Year		Stenosis	Evaluated RAS	Location	Duration	<u> </u>	ITN (%)	and BP	Δ	CKD (%) and Gl	R / SCr Δ		Qual
Study Design	Mean GFR [SCr]	% Bilateral Stenosis	(ARAS)	Years Enrolled	Range	Cured	Imp	Un∆	Worse	Imp	Un∆	Worse	% Restenosis	Appl
Kennedy, 2003 ^{60,61 A}	168/82	>60 ^B	261	nd	21 mo								48	В
Prosp	51	38	(253)	1993-2001	1-85			= -19/-6 .0001			CrCl Δ = P <0.0		17 mo	High
Ruchin, 2007 ⁷⁹	162/78	84	89	nd	28 mo								6.2	В
Prosp	50	nd	(87)	1997-2003	6-84			-23/-1.7 001/NS		6	eGFR∆= NS	+2.0	nd	High
van de Ven, 1999 ⁷⁶	186/103	>50	40	Ostial 100%	6 mo	15	43		43	13	65	20	14	В
Prosp	[1.8]	18	(40)	1993-1997	nd									High
Zeller, 2004 ⁶⁹⁻⁷³	102	>70	354 ^ĸ	Ostial 95%	34 mo		46	43	11	10	39	27		В
Prosp	[1.5]	nd	(340)	1996-2002	2-79			∆ = -8 .0001			GFR ∆ = · NS	+3.0	nd	Mod
Rocha-Singh, 2005 ⁶⁵	168/82	>70	208	Ostial 100%	nd								17 ^C	В
Prosp	[1.4]	21	(208)	1997-1999	9-24 mo			= -19/-5).001			SCr∆=+ P<0.04	Ļ	9 mo	Mod
Dangas, 200145 D	170/84	74	131	Ostial 75%	15 mo		47	40	13	18	61	21		В
Prosp	[1.9]	17	(nd)	nd	nd			= -25/-10).001			SCr∆=+ NS	0.1	nd	Mod
White, 199768	173/88	>50	100	Ostial 81%	6 mo								19 ^c	В
Prosp	[2.4]	33	(100)	1992-1994	nd			= -27/-11 0.01					6 mo	Mod
Gill, 2003 ⁵¹	191/98 ^E	>50 ^F	100 ^G	Ostial 78%	25 mo	4	79	17		31	42	31	66 ^H	В
Prosp	[2.7]1	26	(100)	1993-1999	1-66			= -27/-12 0.01		SC	r ∆ = -0.6 NS	mg/dL ^J	11 mo	Mod
lannone, 199659	160/80	67	63	Ostial 78%	10 mo	4	35	54	7	36	46	18	14°	B
Prosp	[1.8]	22	(63)	1992-1993	1-22			= -12 / -1 01/NS			SCr∆=- NS	0.1	11 mo	Mod
Sapoval, 2005 ⁸⁰	172/92	68	52	Ostial 62%	6 mo	5	61		34			3.8	14.3	В
Prosp	[1.2]	nd	(52)	2001-2002	nd			:-20/-7 VS			SCr∆=-(NS).07	6 mo	Mod
Harden, 1997 ⁵⁶	169/95	>50	32	Ostial 75%	17 mo			-		34	34	28	12.5	В
Prosp	nd	34	(32)	1992-1995	nd			= -6 / -8 <0.01					6 mo	Mod

Table 7. Angioplasty with stent placement for treatment of renal artery stenosis (new studies in italics)

	Mean BP	Mean %	No.	RAS	Mean					Resu	lts			
Author, Year		Stenosis	Evaluated	Location	Duration	F	ITN (%)	and BP	Δ	CKD ((%) and G	FR / SCr A		Qual
Study Design	Mean GFR [SCr]	% Bilateral Stenosis	RAS (ARAS)	Years Enrolled	Range	Cured	Imp	Un∆	Worse	Imp	Un∆	Worse	% Restenosis	Appl
Tsao, 2005 ⁸¹	146/78	86	54	Ostial 95%	6 <i>m</i> o					15	79	6	3	В
Prosp	36	22	(53)	2001-2004	nd			=-15/-7 :0.05			SCr∆= ~ NS	-0.1	6 mo	Low
Blum, 1997 ⁴³	MAP 133	>50	68	Ostial 100%	27 mo	11	42	15					12	ļВ
Prosp	[1.2]	9	(68)	1989-1996	3-84			∆ = -20 .0001			SCr Δ= NS	0	3-24 mo	Low
Gross, 199855	163/93	75	30	Ostial 100%	6 mo		69	31					12.5	В
Prosp	[1.4]	23	(30)	nd	nd			=-18/-10 04/0.007					6 mo	Low
Dorros, 200246- 50	168/84	nd	1058	nd	nd								nd	С
Prosp	[1.7]	36	(1058)	1990-1997	1-4 yr			= -21/-6 :0.05			SCr∆= P<0.0			Mod
Lederman, 2001 ⁶²	164/84	62	300	Ostial: 95%	16 mo		70			8	78	14	21	С
Prosp and Retro	[1.5]	41	(293)	1993-1998	6-24		BP Δ =	= -22/ -8			SCrΔ = - P=0.0		17 mo	Mod
Rocha-Singh, 1999 ⁶⁶	110 MAP ^L	>75	150	Ostial 43%	13 mo	6	50		44	23	69	8	12 ^c	С
Prosp	[1.5] ^M	20 ^N	(150)	1993-1995	nd						SCr∆=+ NS	0.04	13 mo	Mod
Tuttle, 1998 ⁶⁷	160/84	>70	129	Ostial 100%	nd	55				15	81		14 ^c	С
Prosp & Retro	40	15	(129)	1991-1996	6-24			= -8/-4° 0.05			CrCl ∆= NS	: 0	8 mo	Mod
Ramos, 200363	160/91	>70	105	Ostial 32%	12.2 mo	18	47						14	C
Prosp	54	43	(105)	nd	3.3-23			= -15/-8 .0001			GFR Δ = P=0.00		12 mo	Mod
Harjai, 1997 ⁵⁷	178/91	>70	66	Ostial 73%	19 mo	66							25	С
Prosp	[1.6]	27	(66)	1992-1995	nd			= -32/-17 nd					9 mo	High

Table 7. Angioplasty with stent placement for treatment of renal artery stenosis (continued)

Author,	Mean BP	Mean %		No.	RAS	Mean					Result	s				
Year	wean BP	Stenosis	E١	/aluated	Location	Duration		HTN (%)	and BP	Δ	CKD (%	b) and G	FR / SCr	Δ		Qual
Study Design	lean GFR [SCr]	% Bilateral Stenosis	(RAS ARAS)	Years Enrolled	Range	Cureo	d Imp	Un∆	Worse	Imp	Un∆	Worse	*	Restenosis	Appl
Holden, 2006 ⁷⁸		153/101	nd	63	nd	nd	0	55			CKD 3A: CKD 3B: CKD 4: ³		2 60	0 8 0	8	С
Prosp		76% Stage 3 24% Stage 4	nd	(63)	nd	nd	BP Δ (44 with H	TN) = -3	2/-10		SCr∆=	-0.1			High
Goncalves, 200777		177/98	nd	46	nd	nd										С
Prosp		[2.3]	nd	(46)	1999-2003	7-52 mo		BP ∆ = - P<0.0			S	Cr∆ = -0 P<0).4 mg/dL .001		nd	High
Henry, 200358		169/104	85	56	Ostial 100%	23 mo	18	59	23			18	82	0		С
Prosp ^P		[1.3]	14	(56)	1999-2002	2-47		- = - P<0.			S	Cr∆ = -0 N).1 mg/dL S		nd	Low
Rivolta, 200564		161/86	>70	52	nd	24						15	60	25	10	С
Prosp		[2.9]	37	(52)		9-54		BP Δ = · P<0.0							6 mo	Mod
Gill-Leertouwer, 200	02 ^{52,53}	177/96 ^R	>50	40	nd	1 yr									14	С
Prosp		[1.3] ^s [2.4] [⊤]	nd	(40)	1996-1998	nd	Clinica	al succes	s 85%		Cli	nical su	cess 25%	0	12 mo	Low
Bucek, 200344		nd	>80	40	Ostial 100%	3.3 yr ^u		38	43					25	13-15	С
Prosp & Retro		nd	nd	(40)	1997-2002	0.8-6.3									40 mo	Low
Gray, 2002 ^{54 V}		174/85	>70	39	nd	21 mo		72	15			51	26	23		С
Prosp		[3.2]	46	(39)	1991-1997	1-61									21 mo	Mod

Table 7. Angioplasty with stent placement for treatment of renal artery stenosis (continued)

Δ, change; Appl, applicability rating; ARAS, atherosclerotic renal artery stenosis; BP, blood pressure; CrCl, creatinine clearance; CKD, chronic kidney disease; CVD, cardiovascular disease; eGFR, estimated GFR; GFR, glomerular filtration rate (or creatinine clearance, mL/min or mL/min/1.73 m²); HTN, hypertension; Imp, improved;, mo, months; MAP, mean arterial pressure; Mod, moderate; nd, no data; NS, nonsignificant; Prosp, prospective nonrandomized study; Qual, quality rating; RAS, renal artery stenosis; Retro, retrospective study; SCr, serum creatinine (mg/dL); Un∆, unchanged (or stable); yr, years.

 ¹ Chronic kidney disease stage 3A, baseline GFR 41-59 mL/min
 ² Chronic kidney disease stage 3A, baseline GFR 30-40 mL/min
 ³ Chronic kidney disease stage 3A, baseline GFR 15-29 mL/min

^A CVD outcomes: myocardial infarction 11%; CHF 20%; stroke 7%.

- ^B Diagnosed by digital caliper technique. ^C % restenosis reported according to the arteries evaluated.
- ^D Myocardial infarction 5%.
- ^E Among 48/50 with resistant HTN. ^F N=102/126 > 85% stenosis.

- ^G N analyzed at baseline for BP=48 and CKD=65. ^H Of the arteries evaluated: Neointimal hyperplasia 61%; stent migration 22%, and
- true stent restenosis 17%.
- ^I Among 65/75 with CKD at baseline.
- ^I N analyzed = 18. ^K Evaluated at follow-up n=113. ^L Outcomes evaluated n=127.
- ^M Outcomes evaluated n=132.

- ^N Among those with follow-up (n=127).
 ^O Analyzed at 12 mo (n=41).
 ^P Utilized distal protection device and follow-up data available for maximum
- numbers at 6 month.
- ^Q Significant only for systolic blood pressure. ^R 60% less than 2 yr duration of HTN.
- ^S Baseline value among those with clinical success (n=27). ^T Baseline value among those with clinical failure (n=13).

^U Median.

^V New York Heart Association class Δ =-1.4 P<0.001.

Author Year	N RAS (ARAS)	Intervention	Kidney-related	CVD-related	Thrombosis/ occlusion	Bleeding	30 d mortality	Other
Dorros 2002 ⁴⁶⁻⁵⁰	1058	Angioplasty stent placement	Contrast induced acute kidney failure 13%			Retroperitoneal hemorrhage 1 %	Deaths 0.3%	
Zeller 2004 ⁶⁹⁻⁷³	340 268 (268)	Angioplasty stent placement	Severe deterioration of kidney function 1.5% Local dissection or perforation 4%		False aneurysm 1% Access site occlusion 0.3%	Severe access site bleeding 2%	30 d mortality 0.6% Death after 3 d due to embolic stroke 0.3%	Stent displacement 1%
Lederman 2001 ⁶²	300 (293)	Angioplasty stent placement	Guidewire induced dissection of renal artery branch 0.3%		Intraprocedural thrombosis of the target renal artery 0.3%		Death from MI 0.3%	Acute/flash pulmonary edema 0.3% Stent migration into aorta 0.3% Aspirin hypersensitivity 0.3%
Kennedy 2003 ^{60,61}	261 (253) 127 (127)	Angioplasty stent placement			Total occlusion of stented artery 0.8%	Hematuria due to vessel perforation 0.8%		Access site complications with brachial approach 3% Access site complications with femoral approach 3% Dislodged stent 1.0% Dislodged unexpanded stent 0.8%
Rocha- Singh 2005 ⁶⁵	208 (208)	Angioplasty stent placement		Major vascular event In-hospital 2.4% Out of hospital up to 2 yr 2.9% Cerebrovascular accident 0%	Major embolic event <u>In-hospital</u> 1.4% <u>Out of hospital</u> <u>up to 2 yr</u> 4.8%		Major hemorrhage In-hospital 1% Out of hospital up to 2 yr 0.5%	Access site complications 5%
Rocha- Singh 1999 ⁶⁶	150 (150)	Angioplasty stent placement	Contrast induced nephropathy 5% Kidney parenchymal guidewire perforations 1.3%				Death from tubular necrosis and multiorgan failure 0.7% Death from GI hemorrhage after stent implant while on warfarin 0.7%	Overall major complication rate 3%

Table 8. Adverse events associated with angioplasty with stent placement treatment of renal artery stenosis (new studies in italics)

Author Year	N RAS (ARAS)	Intervention	Kidney-related	CVD- related	Thrombosis/ occlusion	Bleeding	30 d mortality	Other
Dangas 200145	131 (nd)	Angioplasty stent placement	Kidney failure 6%		Femoral artery pseudoaneurysms 1.5%		Death 0.8%	
Tuttle 1998 ⁶⁷	129 (129)	Angioplasty stent placement	Contrast induced acute kidney failure 12%		Atheroembolic disease 0.7% Arterial thrombosis 0.4%	Groin hematoma 7% Perirenal hematoma 0.4%	Death 3%	Stent migration 0.7%
Zeller 2005 ⁸²	143 (125)	Angioplasty stent placement	Transient SCr rise 1%		False aneurysm 5%	Large hematoma 2%	PE death 1%	
Gill 2003 ⁵¹	100 (100)	Angioplasty stent placement	Transient SCr rise 1%		Transient lobar branch renal artery occlusion 2% Femoral artery false aneurysm 2% Femoral artery trauma 2% Non flow limiting intimal dissection 1%	Groin hematoma 6%	Death after lower limb cholesterol embolization 1% Death after thrombosis of aortofemoral prosthetic graft 1%	Migrating stent 1%
White 1997 ⁶⁸	100 (100)	Angioplasty stent placement	Transient contrast nephropathy 2% No perforations		Femoral artery pseudoaneurysm 1% Brachial artery occlusion 1% Subacute stent thrombosis after 3 d 1%	Groin hematoma 5%	Ischemic cardiac death after 2 d 1%	
Ruchin, 2007 ⁷⁹	89 (87)	Angioplasty stent placement			Renal and peripheral thromboemboli 1%	Major bleeding 2%		Puncture site infection 1%
Blum 1997 ⁴³	68 (68)	Angioplasty stent placement				Local hematomas at puncture site 4%		No major complications
Harjai 1997 ⁵⁷	66 (nd)	Angioplasty stent placement	Temporary rise in SCr 5%			Minor bleeding from vascular access site 5%		
Holden,	63	Angioplasty	Acute kidney injury					
2006 ⁷⁸]	(63)	stent placement	2%					
lannone 1996 ⁵⁹	63 (61)	Angioplasty stent placement	Acute kidney failure 13% Renal artery perforation 5%		Psuedoaneurysm at insertion site 1.6%	Minor groin hematoma 10% Bleeding requiring transfusion including peripheral embolus requiring thrombolysis 16%	Death after perirenal bleeding 1.6%	
Henry 2003 ⁵⁸	56 (56)	Angioplasty stent placement			Arterial spasm at site of protection device 4%		Death on d 3 from MI 1.8%	No device related complications

Table 8. Adverse events associated with angioplasty with stent placement treatment of renal artery stenosis (continued)

Author Year	N RAS (ARAS)	Intervention	Kidney-related	CVD- related	Thrombosis/ occlusion	Bleeding	30 d mortality	Other
Sapoval, 2005 ⁸⁰	52 (52)	Angioplasty stent placement	Renal artery dissection 8%			Hematoma at puncture site 2%		
Goncalves, 2007 77	46 (44)	Angioplasty stent placement	Renal artery dissection 2%					
van de Ven 1999 ⁷⁶	40 (40)	Angioplasty stent placement	Transient decrease in kidney function due to radiography contrast agent 21% Kidney failure induced by cholesterol embolism 10% Renal artery injury 7%		Renal artery occlusion 2% Acute thrombosis 2% Femoral artery aneurysm or arteriovenous fistula 7%	Bleeding 19%		Technical failure 7%
Harden 1997 ⁵⁶	32 (32)	Angioplasty stent placement			Femoral artery pseudoaneurysm 9%	Hemorrhage 9%	Death from circulatory collapse after stent placement 3%	
Gross 199855	30 (30)	Angioplasty stent placement	Dissection after predilatation 10%		No vessel had early or subacute thrombotic occlusion			No guidewire perforation detected.

Table 8. Adverse events associated with angioplasty with stent placement treatment of renal artery stenosis (continued)

ARAS, atherosclerotic renal artery stenosis; CKD, chronic kidney disease; CVD, cardiovascular disease; d, days; GI, gastrointestinal; MI, myocardial infarction; N, number of subjects; nd, no data; PTRA, percutaneous renal angioplasty; RAS, renal artery stenosis; SCr, serum creatinine.

[Tables 9 and 10 of original report not included here]

	Mean BP	Mean %	No.	RAS Location	Mean Duration	Results								
Author, Year		Stenosis	Evaluated			<u>н</u>	TN (%)	and BP	Δ	CKD (%) and Gl	FR / SCr A		Qual Appl
Study Design	Mean GFR [SCr]	% Bilateral Stenosis	RAS (ARAS)	Years Enrolled	Range	Cured	Imp	Un∆	Worse	Imp	Un∆	Worse	CVD (%)	
Cherr, 2002 ⁸⁵⁻⁸⁹ Retro	200/104 41	≥ 80% 59%	500 (500)	Ostial: nd 1987-1999	4.7 yr 1-159 mo	12% 73% 15% BP Δ = -53/-23 P<0.0001 (base)			Ξ		10% 0001 (base) sis dependent	74% of late deaths 2°to CVD; nonfatal events 28% (angina, MI, PTCA, CABG)	C	
Galaria, 2005 ⁸⁴	171/82	≥ 50%	100	Ostial: nd	3.5 yr	68% (59% (• /							С
Retro	51	44%	(100)	1984-2004	0-17 yr	,	CKD event ^A = 20% (26% (5 yr)							Low
Alhadad, 200483	180/100	nd	106	Ostial: nd%	nd									С
Retro	nd	nd	(86)	1987-1996	0-12 yr		(Only mo	rtality data	reported (after 6 mo)	. See mortality	figure	Low
Marone, 200490	nd	Both cohorts $\geq 75\%$	Cohort 1: 139 (139)	Ostial: nd	48 mo	Only mortality data reported (after 6 mo). See mortality figure Cohort 1: kidney function improved or unchanged in 76% Cohort 2: kidney function improved or unchanged in 72% Dialysis free survival at 5 years was 55% (both cohorts?)								
Retro	Cohort 1: [>2]Cohort 2: [≥1.5]	nd	Cohort 2: 96 (96)	Cohort 1: 1980-1990 Cohort 2: 1990-2001	6 wk to 12.6 yr									

Table 11. Surgical renal artery revascularization for the treatment of renal artery stenosis (no new data)

 Δ , change; Appl, applicability rating; ARAS, atherosclerotic renal artery stenosis; BP, blood pressure; CABG, coronary artery bypass graft; CKD, chronic kidney disease; CVD, cardiovascular disease; GFR, glomerular filtration rate (or creatinine clearance, mL/min or mL/min/1.73 m²); HTN, hypertension; Imp, improved; MI, myocardial infarction; mo, months; nd, no data; PTCA, percutaneous transluminal coronary angioplasty; Qual, quality rating; RAS, renal artery stenosis; SCr, serum creatinine (mg/dL); Un Δ , unchanged (or stable); wk, weeks; yr, years.

^A Dialysis, CKD-related mortality, or SCr>1.5 mg/dL.

Author Year	N RAS (ARAS)	Intervention	Kidney-related	CVD-related	Thrombosis/ occlusion	Bleeding	30 d mortality	Other
Cherr 2002 ⁸⁵⁻⁸⁹	500 (500)	Surgery		Perioperative: MI 3% Stroke 1% Significant arrhythmia 5% Nonfatal CVD 28%			Death: 5%	Perioperative morbidity 17% Including pneumonia 8%
Marone 2004 ⁹⁰	325 (325)	Surgery					Perioperative mortality 6%, mostly secondary to coronary and cerebrovascular events	
Galaria 2005 ⁸⁴	247 (247)	Angioplasty-Surgery	Perioperative kidney morbidity: 0% (Angioplasty) 6% (Surgery)	Perioperative minor cardiac morbidity <1% (Angioplasty) 14% (Surgery)			Deaths <0.1% (Angioplasty) (all due to cardiac events) Deaths 0.1% (Surgery) 6/10 due to cardiac complications, 3/10 pulmonary, 1/10 sepsis Major morbidity: 4% (Angioplasty) 4% (Surgery)	Technical complication rate: 18% (Angioplasty) 0% (Surgery) Pulmonary adverse events: 0% (Angioplasty) 9% (Surgery) Systemic infection: 0% (Angioplasty) 8% (Surgery) Other wound related events: 0% (Angioplasty) 6% (Surgery)
Alhadad 2004 ⁸³	106 (86)	Angioplasty-Surgery					2% (Angioplasty) 9% (Surgical)	Multiorgan failure 0% (Angioplasty) 2% (Surgery) Sepsis 0% (Angioplasty) 1% (Surgery)

Table 12. Adverse events associated with the surgical treatment of renal artery stenosis (no new data)

ARAS, atherosclerotic renal artery stenosis; CVD, cardiovascular disease; d, day; MI, myocardial infarction; mo, months; N, number evaluated; RAS, renal artery stenosis; SCr, serum creatinine.

Study	N		n 6Bila	MAF at C	SFR	Years		1	Cun 2		tive 3	Mor	tality 4	(%) 6 m 5	o - 10 y 6	r of Fol 7	low-up 8	9	0 10	Qua	l Appl
NATURAL HIS Conlon.2001	171	RY - 50-75 75-95 >95	6 27 27		[1.2]	<00							30 33 52							в	L
Iglesias.2000 Cheung.2002	96 26	>20 >50	297 2	104 114	[1.2] 36	<99 <01	23							[44] 61						c c	ML
MEDICAL TRE A Webster.1998 B Pillay.2002 C Johansson.1999	2A 11 81 73 64	VEN >50 >50	27 27 27	132	[1.7] 61	<97 94-98 83-84	12	18 3	2(5	3	2]	36		18					20	B C C	M M L
Hanzel.2005 D†Pizzolo.2004 Tillman.1984	40 37 20	>70 >50	7 15 13	133	[<2.0] [1.5] [1.3] [3.0]	96-02 <83		5	0 [5] 8		19		22	34						B B C B	M L
Uzu.2002		>75	2			96-98) 45) 11		81 33											L
Dorros.2002 Zeller.2003 Lederman.2001 Kennedy.2003	1058 340 300 261	>70 62 > 60	18 27 21 20	102 111 111	[1.7] [1.5] [1.5] 51	93-01			[10] [28]		[13]		26							C B C B	M M H
Rocha-Singh.2005 Baumgartner.2000 Rocha-Singh.1999 Dangas.2001	208 188 154 131	62 >60 >75 74	10 19 27 6	110	[1.4] [2.0] [1.5] [1.9]	97-99 94-98 93-95 <00		0.5] 5]* [2 [] 10]											B C B	M L M M
Radermacher.2001 Tuttle.1998 White.1997	131 120 100 100	70 >70 >50 >50	27 4 16 14	109	59 40 [2.4]	94-99 91-96 92-94 93-99	2	- [15]		[10]		28							B B B	M L M M
Gill.2003 Ruchin.2007 van de Ven.1999 Bucek.2003	89 84 82	>50 84 76	5 10 27	103 131	[1.6]	93-99 97-03 93-97 97-02	20 1	23		10		[11]	28							B B C	H H L
Blum.1997 lannone.1996 D†Pizzolo.2004	68 63 63	>50 67 >50	26 11 15	107 118	[1.2] [1.8] [1.5]	89-96 92-93 96-02	l	[14] 1	2 [4	[4] 1	5		6	10						B B B C	L M M
Henry.2003 A Webster.1998 Sapoval.2005 Goncalves.2007	56 54 52 46	85 >50 68 >70	3 23 8 27	135	[1.3] [1.9] [1.2]	99-02 <97 01-02 99-03	12 0	18	20 [2	30		36								B B C	L M M H
Gill-Leertouwer.2002 Gray.2002 Harden.1997 Gross.1998	41 39 32 30	>50 >50 75	27 22 17 12	115 120 116	[1.4]	96-98 91-97 92-95 <98	3	2 21	[23] [53]											C C B B	M M L
SURGERY Cherr.2002 Alhadad.2004 Galaria.2005	500 106 100	>80 >60	27 19 25	136 127	[2.6] [1.4] 46	87-99 87-96 84-04			 22 16	6	20		33 22	31 26	44 30		48		66 55	C C C	L L L
Marone.2004 ANGIOPLAST C Johansson.1999 B Pillay.2002	96 Y or 105 12	>75 SUF >50	27 GE 27 34	RY	 61	90-01 83-84 94-98	••••	10 1	15 3		26 31		36	⁴¹ 12		63	• • • • • •		28	с с с	L L L
,							0.5	1	2	•	3		4 Year	5 s of Follo	6 w-up	7	8	9	10	-	-

Appendix Figure. Mortality study details

* Excluded patients who died within first 6 months † Markedly different eligibility criteria for angioplasty and medicine treatment cohorts. See summary table.