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Erratum  
In the original version of this report there was an error in Bucher’s method equation on page 37.  

Text in the original report: “When there are only two sets of trials, say, A vs. B and B vs. C, 
Bucher‘s method is sufficient to provide the indirect estimate of A vs. C as: 
log(ORAC)=log(ORAB)-log(ORBC) and Var(Log(ORAC)) = Var(Log(ORAB)) + Var(Log(ORBC)), 
where OR is the odds ratio.” 

The corrected text: “When there are only two sets of trials, say, A vs. B and C vs. B, Bucher‘s 
method is sufficient to provide the indirect estimate of A vs. C as: log(ORAC)=log(ORAB)-
log(ORCB) and Var(Log(ORAC)) = Var(Log(ORAB)) + Var(Log(ORCB)), where OR is the odds 
ratio.” 

This has been corrected in the report.  
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EHC Program Scientific Resource Center, and the AHRQ Evidence-based Practice Centers have 
developed a Methods Guide for Comparative Effectiveness Reviews. This Guide presents issues 
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The Methods Guide for Comparative Effectiveness Reviews is a living document, and will be 
updated as further empiric evidence develops and our understanding of better methods improves. 
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Order Officer named below at: Agency for Healthcare Research and Quality, 5600 Fishers Lane, 
Rockville, MD 20857, or by email to epc@ahrq.hhs.gov.
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Abstract 
Quantitative synthesis, or meta-analysis, is often essential for Comparative Effective Reviews 
(CERs) to provide scientifically rigorous summary information. Quantitative synthesis should be 
conducted in a transparent and consistent way with methodologies reported explicitly. This guide 
provides practical recommendations on conducting synthesis. The guide is not meant to be a 
textbook on meta-analysis nor is it a comprehensive review of methods, but rather it is intended 
to provide a consistent approach for situations and decisions that are commonly faced by AHRQ 
Evidence-based Practice Centers (EPCs). The goal is to describe choices as explicitly as 
possible, and in the context of EPC requirements, with an appropriate degree of confidence. 

This guide addresses issues in the order that they are usually encountered in a synthesis, though 
we acknowledge that the process is not always linear. We first consider the decision of whether 
or not to combine studies quantitatively. The next chapter addresses how to extract and utilize 
data from individual studies to construct effect sizes, followed by a chapter on statistical model 
choice. The fourth chapter considers quantifying and exploring heterogeneity. The fifth describes 
an indirect evidence technique that has not been included in previous guidance – network meta-
analysis, also known as mixed treatment comparisons. The final section in the report lays out 
future research suggestions. 
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Introduction 

Background 
The purpose of this document is to consolidate and update quantitative synthesis guidance 

provided in three previous methods guides.1-3 We focus primarily on comparative effectiveness 
reviews (CERs), which are systematic reviews that compare the effectiveness and harms of 
alternative clinical options, and aim to help clinicians, policy makers, and patients make 
informed treatment choices. We focus on interventional studies and do not address diagnostic 
studies, individual patient level analysis, or observational studies, which are addressed 
elsewhere.4  

Quantitative synthesis, or meta-analysis, is often essential for CERs to provide scientifically 
rigorous summary information. Quantitative synthesis should be conducted in a transparent and 
consistent way with methodologies reported explicitly. This guide provides practical 
recommendations on conducting synthesis. The guide is not meant to be a textbook on meta-
analysis nor is it a comprehensive review of methods, but rather it is intended to provide a 
consistent approach for situations and decisions that are commonly faced by Evidence-based 
Practice Centers (EPCs). The goal is to describe choices as explicitly as possible and in the 
context of EPC requirements, with an appropriate degree of confidence.  

EPC investigators are encouraged to follow these recommendations but may choose to use 
alternative methods if deemed necessary after discussion with their AHRQ project officer. If 
alternative methods are used, investigators are required to provide a rationale for their choices, 
and if appropriate, to state the strengths and limitations of the chosen methods in order to 
promote consistency, transparency, and learning. In addition, several steps in meta-analysis 
require subjective judgment, such as when combining studies or incorporating indirect 
evidence. For each subjective decision, investigators should fully explain how the decision was 
reached.  

This guide addresses issues in the order that they are usually encountered in a synthesis, 
though we acknowledge that the process is not always linear. We first consider the decision of 
whether or not to combine studies quantitatively. The next chapter addresses how to extract and 
utilize data from individual studies to construct effect sizes, followed by a chapter on statistical 
model choice. The fourth chapter considers quantifying and exploring heterogeneity. The fifth 
describes an indirect evidence technique that has not been included in previous guidance – 
network meta-analysis, also known as mixed treatment comparisons. The final section in the 
report lays out future research suggestions.  

Methods 
This guide was developed by a workgroup comprised of members from across the EPCs, as 

well as from the Scientific Resource Center (SRC) of the AHRQ Effective Healthcare Program. 
Through surveys and discussions among AHRQ, Directors of EPCs, the Scientific Resource 
Center, and the Methods Steering Committee, quantitative synthesis was identified as a high-
priority methods topic and a need was identified to update the original guidance.1, 5 Once 
confirmed as a Methods Workgroup, the SRC solicited EPC workgroup volunteers, particularly 
those with quantitative methods expertise, including statisticians, librarians, thought leaders, and 
methodologists. Charged by AHRQ to update current guidance, the workgroup consisted of 
members from eight of 13 EPCs, the SRC, and AHRQ, and commenced in the fall of 2015. We 
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conducted regular workgroup teleconference calls over the course of 14 months to discuss 
project direction and scope, assign and coordinate tasks, collect and analyze data, and discuss 
and edit draft documents. After constructing a draft table of contents, we surveyed all EPCs to 
ensure no topics of interest were missing. 

The initial teleconference meeting was used to outline the draft, discuss the timeline, and 
agree upon a method for reaching consensus as described below. The larger workgroup then was 
split into subgroups each taking responsibility for a different chapter. The larger group 
participated in biweekly discussions via teleconference and email communication. Subgroups 
communicated separately (in addition to the larger meetings) to coordinate tasks, discuss the 
literature review results, and draft their respective chapters. Later, chapter drafts were combined 
into a larger document for workgroup review and discussion on the bi-weekly calls.  

Literature Search and Review 
A medical research librarian worked with each subgroup to identify a relevant search strategy 

for each chapter, and then combined these strategies into one overall search conducted for all 
chapters combined. The librarian conducted the search on the ARHQ SRC Methods Library, a 
bibliographic database curated by the SRC currently containing more than 16,000 citations of 
methodological works for systematic reviews and comparative effectiveness reviews, using 
descriptor and keyword strategies to identify quantitative synthesis methods research 
publications (descriptor search=all quantitative synthesis descriptors, and the keyword 
search=quantitative synthesis, meta-anal*, metaanal*, meta-regression in [anywhere field]). 
Search results were limited to English language and 2009 and later to capture citations published 
since AHRQ’s previous methods guidance on quantitative synthesis. Additional articles were 
identified from recent systematic reviews, reference lists of reviews and editorials, and through 
the expert review process.  

The search yielded 1,358 titles and abstracts which were reviewed by all workgroup 
members using ABSTRACKR software (available at http://abstrackr.cebm.brown.edu). Each 
subgroup separately identified articles relevant to their own chapter. Abstract review was done 
by single review, investigators included anything that could be potentially relevant. Each 
subgroup decided separately on final inclusion/exclusion based on full text articles.  

Consensus and Recommendations 
Reaching consensus if possible is of great importance for AHRQ methods guidance. The 

workgroup recognized this importance in its first meeting and agreed on a process for informal 
consensus and conflict resolution. Disagreements were thoroughly discussed and if possible, 
consensus was reached. If consensus was not reached, analytic options are discussed in the text. 
We did not employ a formal voting procedure to assess consensus.  

A summary of the workgroup’s key conclusions and recommendations was circulated for 
comment by EPC Directors and AHRQ officers at a biannual EPC Director’s meeting in October 
2016. In addition, a full draft was circulated to EPC Directors and AHRQ officers prior to peer 
review, and the manuscript was made available for public review. All comments have been 
considered by the team in the final preparation of this report. 

http://abstrackr.cebm.brown.edu/
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Chapter 1. Decision to Combine Trials  
 Elizabeth O’Connor, Ph.D., Kristen E. D’Anci, Ph.D., Jonathan M. Snowden Ph.D. 

1.1. Goals of the Meta-analysis 
Meta-analysis is a statistical method for synthesizing (also called combining or pooling) the 

benefits and/or harms of a treatment or intervention across multiple studies. The overarching 
goal of a meta-analysis is generally to provide the best estimate of the effect of an intervention. 
As part of that aspirational goal, results of a meta-analysis may inform a number of related 
questions, such as whether that best estimate represents something other than a null effect (is this 
intervention beneficial?), the range in which the true effect likely lies, whether it is appropriate to 
provide a single best estimate, and what study-level characteristics may influence the effect 
estimate. Before tackling these questions, it is necessary to answer a preliminary but fundamental 
question: Is it appropriate to pool the results of the identified studies?6  

Clinical, methodological, and statistical factors must all be considered when deciding 
whether to combine studies in a meta-analysis. Figure 1.1 depicts a decision tree to help 
investigators think through these important considerations, which are discussed below. 

1.2. Clinical and Methodological Heterogeneity 
Studies must be reasonably similar to be pooled in a meta-analysis.1 Even when the review 

protocol identifies a coherent and fairly narrow body of literature, the actual included studies 
may represent a wide range of population, intervention, and study characteristics. Variations in 
these factors are referred to as clinical heterogeneity and methodological heterogeneity.7, 8 A 
third form of heterogeneity, statistical heterogeneity, will be discussed later.  

The first step in the decision tree is to explore the clinical and methodological heterogeneity 
of the included studies (Step A, Figure 1.1). The goal is to identify groups of trials that are 
similar enough that an average effect would make a sensible summary. There is no objective 
measure or universally accepted standard for deciding whether studies are “similar enough” to 
pool; this decision is inherently a matter of judgment.6 Verbeek and colleagues suggest working 
through key sources of variability in sequence, beginning with the clinical variables of 
intervention/exposure, control condition, and participants, before moving on to methodological 
areas such as study design, outcome, and follow-up time. When there is important variability in 
these areas, investigators should consider whether there are coherent subgroups of trials, rather 
than the full group, that can be pooled.6 
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 Figure 1.1. Pooling decision tree 

 
 
 
 
 
 
 
 

 

A. Identify groups of included studies that 
are clinically and methodological similar 
enough to pool (see section 1.2) 
Are there trials that are similar enough 
for an average effect to be meaningful? 

C. Explore the risk of misleading results if the 
trials are pooled through tables, forest plots, and 
other preliminary analyses (see section 1.4) 
• Are there wide-ranging effect sizes suggesting 

both possible benefit and possible harm? 
• Is there suspicion of reporting bias? 
• Is there evidence of small studies effect? 

Consider not 
pooling 

F(1). Non-negligible statistical 
heterogeneity present? (see section 1.6) 

Explore 
heterogeneity 
(see Chapter 4) 

No further 
exploration of 
heterogeneity 

E. Extra caution is required (see section 1.5). High risk 
situations include: 
• If an outcome is a rare event that the included trials 

are underpowered to detect in sufficient numbers 
for a valid result 

• If the body of evidence is limited to small studies 
• If there are wide-ranging effect sizes with an 

insufficient number of trials for an accurate 
determination of the standard error of the pooled 
estimate, so coverage of the confidence intervals of 
the pooled estimate may substantially differ from 
95% coverage 

High risk Low risk 

Yes, pool Consider not 
pooling 

F(2). Result shows potentially 
important statistical 
heterogeneity (e.g., I2 >50%)? 
(see section 1.6) 

Consider not reporting unless 
special methods were used to 
ensure accuracy of the CI in the 
presence of high statistical 
heterogeneity 

Yes No 

Report 
pooled 
results 

No Do not pool 

Yes 

B. Is evidence best characterized by a small subset 
(e.g., 1-4) of large or best-quality trials? (see 
section 1.3) 

Yes Consider not pooling, or 
pooling only “best 
evidence” trials 

No 

Yes 

No 

D. Pooling a small number of 
studies (e.g., <10)? (see 
sections1.4 – 1.5) 

Yes 

No 

No 

Yes 
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Clinical heterogeneity refers to characteristics related to the participants, interventions, 
types of outcomes, and study setting. Some have suggested that pooling may be acceptable when 
it is plausible that the underlying effects could be similar across subpopulations and variations in 
interventions and outcomes.9 For example, in a review of a lipid-lowering medication, 
researchers might be comfortable combining studies that target younger and middle-aged adults, 
but expect different effects with older adults, who have high rates of comorbidities and other 
medication use. Others suggest that it may be acceptable to combine interventions with likely 
similar mechanisms of action.6 For example, a researcher may combine studies of depression 
interventions that use a range of psychotherapeutic approaches, on the logic that they all aim to 
change a person’s thinking and behavior in order to improve mood, but not want to combine 
them with trials of antidepressants, whose mechanism of action is presumed to be biochemical.  

Methodological heterogeneity refers to variations in study methods (e.g., study design, 
measures, and study conduct). A common question regarding study design, is whether it is 
acceptable to combine studies that randomize individual participants with those that randomize 
clusters (e.g., when clinics, clinicians, or classrooms are randomized and individuals are nested 
within these units). We believe this is generally acceptable, with appropriate adjustment for 
cluster randomization as needed.10 However, closer examination may show that the cluster 
randomized trials also tend to systematically differ on population or intervention characteristics 
from the individually-randomized trials. If so, subgroup analyses may be considered. 

Outcome measures are a common source of methodological heterogeneity. First, trials may 
have a wide array of specific instruments and cut-points for a common outcome. For example, a 
review considering pooling the binary outcome of depression prevalence may find measures that 
range from a depression diagnosis based on a clinical interview to scores above a cut-point on a 
screening instrument. One guiding principle is to consider pooling only when it is plausible that 
the underlying relative effects are consistent across specific definitions of an outcome. In 
addition, investigators should take steps to harmonize outcomes to the extent possible. 

Second, there is also typically substantial variability in the statistics reported across studies 
(e.g., odds ratios, relative risks, hazard ratios, baseline and mean followup scores, change scores 
for each condition, between-group differences at followup, etc.). Methods to calculate or 
estimate missing statistics are available,5 however the investigators must ultimately weigh the 
tradeoff of potentially less accurate results (due to assumptions required to estimate missing 
data) with the potential advantage of pooling a more complete set of studies. If a substantial 
proportion of the studies require calculations that involve assumptions or estimates (rather than 
straightforward calculations) in order to combine them, then it may be preferable to show results 
in a table or forest plot without a pooled estimate 

1.3. Best Evidence Versus All Evidence 
Sometimes the body of evidence comprises a single trial or small number of trials that clearly 

represent the best evidence, along with a number of additional trials that are much smaller or 
with other important limitations (Step B, Figure 1.1). The “best evidence” trials are generally 
very large trials with low risk of bias and with good generalizability to the population of interest. 
In this case, it may be appropriate to focus on the one or few “best” trials rather than combining 
them with the rest of the evidence, particularly when addressing rare events that small studies are 
underpowered to examine.11, 12 For example, an evidence base of one large, multi-center trial of 
an intervention to prevent stroke in patients with heart disease could be preferable to a pooled 
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analysis of 4-5 small trials reporting few events, and combining the small trials with the large 
trial may introduce unnecessary uncertainty to the pooled estimate.  

1.4. Assessing the Risk of Misleading Meta-analysis Results 
Next, reviews should explore the risk that the meta-analysis will show results that do not 

accurately capture the true underlying effect (Step C, Figure 1.1). Tables, forest plots (without 
pooling), and some other preliminary statistical tests are useful tools for this stage. Several 
patterns can arise that should lead investigators to be cautious about combining studies. 

Wide-Ranging Effect Sizes 
Sometimes one study may show a large benefit and another study of the same intervention 

may show a small benefit. This may be due to random error, especially when the studies are 
small. However, this situation also raises the possibility that observed effects truly are widely 
variable in different subpopulations or situations. Another look at the population characteristics 
is warranted in this situation to see if the investigators can identify characteristics that are 
correlated with effect size and direction, potentially explaining clinical heterogeneity. 

Even if no characteristic can be identified that explains why the intervention had such widely 
disparate effects, there could be unmeasured features that explain the difference. If the 
intervention really does have widely variable impact in different subpopulations, particularly if it 
is benefiting some patients and harming others, it would be misleading to report a single average 
effect. 

Suspicion of Publication or Reporting Bias 
Sometimes, due to lack of effect, trial results are never published (risking publication bias), 

or are only published in part (risking reporting bias). These missing results can introduce bias 
and reduce the precision of meta-analysis.13 Investigators can explore the risk of reporting bias 
by comparing trials that do and do not report important outcomes to assess whether outcomes 
appear to be missing at random.13 For example, investigators may have 30 trials of weight loss 
interventions with only 10 reporting blood pressure, which is considered an important outcome 
for the review. This pattern of results may indicate reporting bias as trials finding group 
differences in blood pressure were more likely to report blood pressure findings. On the other 
hand, perhaps most of the studies limited to patients with elevated cardiovascular disease (CVD) 
risk factors did report blood pressure. In this case, the investigators may decide to combine the 
studies reporting blood pressure that were conducted in high CVD risk populations. However, 
investigators should be clear about the applicable subpopulation. An examination of the clinical 
and methodological features of the subset of trials where blood pressure was reported is 
necessary to make an informed judgement about whether to conduct a meta-analysis.  

Small Studies Effect 
If small studies show larger effects than large studies, the pooled results may overestimate 

the true effect size, possibly due to publication or reporting bias.14 When investigators have at 
least 10 trials to combine they should examine small studies effects using standard statistical 
tests such as the Egger test.15 If there appears to be a small studies effect, the investigators may 
decide not to report pooled results since they could be misleading. On the other hand, small 
studies effects could be happening for other reasons, such as differences in sample 
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characteristics, attrition, or assessment methods. These factors do not suggest bias, but should be 
explored to the degree possible. See Chapter 4 for more information about exploring 
heterogeneity. 

1.5. Special Considerations When Pooling a Small Number of 
Studies 

When pooling a small number of studies (e.g., <10 studies), a number of considerations arise 
(Step E, Figure 1.1): 

Rare Outcomes 
Meta-analyses of rare binary outcomes are frequently underpowered, and tend to 

overestimate the true effect size, so pooling should be undertaken with caution.11 A small 
difference in absolute numbers of events can result in large relative differences, usually with low 
precision (i.e., wide confidence intervals). This could result in misleading effect estimates if the 
analysis is limited to trials that are underpowered for the rare outcomes.12 One example is all-
cause mortality, which is frequently provided as part of the participant flow results, but may not 
be a primary outcome, may not have adjudication methods described, and typically occurs very 
rarely. Studies are often underpowered to detect differences in mortality if it is not a primary 
outcome. Investigators should consider calculating an optimal information size (OIS) when 
events are rare to see if the combined group of studies has sufficient power to detect group 
differences. This could be a concern even for a relatively large number of studies, if the total 
sample size is not very large.16 See Chapter 3 for more detail on handling rare binary outcomes. 

Small Sample Sizes 
When pooling a relatively small number of studies, pooling should be undertaken with 

caution if the body of evidence is limited only to small studies. Results from small trials are less 
likely to be reliable than results of large trials, even when the risk of bias is low.17 First, in small 
trials it is difficult to balance the proportion of patients in potentially important subgroups across 
interventions, and a difference between interventions of just a few patients in a subgroup can 
result in a large proportional difference between interventions. Characteristics that are rare are 
particularly at risk of being unbalanced in trials with small samples. In such situations there is no 
way to know if trial effects are due to the intervention or to differences in the intervention 
groups. In addition, patients are generally drawn from a narrower geographic range in small 
trials, making replication in other trials more uncertain. Finally, although it is not always the 
case, large trials are more likely to involve a level of scrutiny and standardization to ensure lower 
risk of bias than are small trials. Therefore, when the trials have small sample sizes, pooled 
effects are less likely to reflect the true effects of the intervention. In this case, the required or 
optimal information size can help the investigators determine whether the sample size is 
sufficient to conclude that results are likely to be stable and not due to random heterogeneity 
(i.e., truly significant or truly null results; not a type I or type II error).16, 18An option in this case 
would be to pool the studies and acknowledge imprecision or other limitations when rating the 
strength of evidence. 

What would be considered a “small” trial varies for different fields and outcomes. For 
addressing an outcome that only happens in 10% of the population, a small trial might be 100 to 
200 per intervention arm, whereas a trial addressing a continuous quality of life measure may be 
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small with 20 to 30 per intervention. Looking carefully at what the studies were powered to 
detect and the credibility of the power calculations may help determine what constitutes a 
“small” trial. Investigators should also consider how variable the impact of an intervention may 
be over different settings and subpopulations when determining how to weigh the importance of 
small studies. For example, the effects of a counseling intervention that relies on patients to 
change their behavior in order to reap health benefits may be more strongly influenced by 
characteristics of the patients and setting than a mechanical or chemical agent. 

Wide-Ranging Effect Sizes 
When the number of trials to be pooled is small, there is a heightened risk that statistical 

heterogeneity will be substantially underestimated, resulting in 95% confidence intervals that are 
inappropriately narrow and do not have 95% coverage. This is especially concerning when the 
number of studies being pooled is fewer than five to seven.19-21 

 Accounting for these factors should guide an evaluation of whether it is advisable to pool 
the relatively small group of studies. As with many steps in the multi-stage decision to pool, the 
conclusion that a given investigator arrives at is subjective, although such evaluations should be 
guided by the criteria above. If consideration of these factors reassures investigators that the risk 
of bias associated with pooling is sufficiently low, then pooling can proceed. The next step of 
pooling, whether for a small, moderate, or large body of studies, is to consider statistical 
heterogeneity.  

1.6. Statistical Heterogeneity 
Once clinical and methodological heterogeneity and other factors described above have been 

deemed acceptable for pooling, investigators should next consider statistical heterogeneity (Step 
F, Figure 1.1). We discuss statistical heterogeneity in general in this chapter, and provide a 
deeper methodological discussion in Chapter 4. This initial consideration of statistical 
heterogeneity is accomplished by conducting a preliminary meta-analysis. Next the investigator 
must decide if the results of the meta-analysis are valid and should be presented, rather than 
simply showing tables or forest plots without pooled results. If statistical heterogeneity is very 
high, the investigators may question whether an “average” effect is really meaningful or useful. 
If there is a reasonably large number of trials, the investigators may shift to exploring effect 
modification with high heterogeneity, however this may not be possible if few trials are 
available. While many would likely agree that pooling (or reporting pooled results) should be 
avoided when there are few studies and statistical heterogeneity is high, what constitutes “few” 
studies and “high” heterogeneity is a matter of judgment.  

While there are a variety of methods for characterizing statistical heterogeneity, one common 
method is the I2 statistic, the proportion of total variance in the pooled trials that is due to inter-
study variance, as opposed to random variation.22 The Cochrane manual proposes ranges for 
interpreting I2:10 statistical heterogeneity associated with I2 values of 0-40% might not be 
important, 30-60% may represent moderate heterogeneity, 50-90% may represent substantial 
heterogeneity, and 75-100% is considerable heterogeneity. Ranges overlap to reflect that other 
factors—such as the number and size of the trials and the magnitude and direction of the effect—
must be taken into consideration. Other measures of statistical heterogeneity include Cochrane’s 
Q and τ2, but these heterogeneity statistics do not have intrinsic standardized scales that allow 
specific values to be characterized as “small,” “medium,” or “large” in any meaningful way.23 
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However, τ2 can be interpreted on the scale of the pooled effect, as the variance of the true effect. 
All these measures are discussed in more detail in Chapter 4.  

Although widely used in quantitative synthesis, the I2 statistic has come under criticism in 
recent years. One important issue with I2 is that it can be an inaccurate reflection of statistical 
heterogeneity when there are few studies to pool and high statistical heterogeneity.24, 25 For 
example, in random effects models (but not fixed effects models), calculations demonstrate that 
I2 tends to underestimate true statistical heterogeneity when there are fewer than about 10 studies 
and the I2 is 50% or more.26 In addition, I2 is correlated with the sample size of the included 
studies, generally increasing with larger samples.27 Complicating this, meta-analyses of 
continuous measures tend to have higher heterogeneity than those of binary outcomes, and I2 
tends to increase as the number of studies increases when analyzing continuous outcomes, but 
not binary outcomes.28, 29 This has prompted some authors to suggest that different standards 
may be considered for interpreting I2 for meta-analyses of continuous and binary outcomes, but 
I2 should only be considered reliable when there are a sufficient number of studies.29 
Unfortunately there is not clear consensus regarding what constitutes a sufficient number of 
studies for a given amount of statistical heterogeneity, nor is it possible to be entirely 
prescriptive, given the limits of I2 as a measure of heterogeneity. Thus, I2 is one piece of 
information that should be considered, but generally should not be the primary deciding factor 
for whether to pool. 

1.7. Conclusion 
In the end, the decision to pool boils down to the question: will the results of a meta-analysis 

help you find a scientifically valid answer to a meaningful question? That is, will the meta-
analysis provide something in addition to what can be understood from looking at the studies 
individually? Further, do the clinical, methodological, and statistical features of the body of 
studies permit them to be quantitatively combined and summarized in a valid fashion? Each of 
these decisions can be broken down into specific considerations (outlined in Figure 1.1) There is 
broad guidance to inform investigators in making each of these decisions, but generally the 
choices involved are subjective. The investigators’ scientific goal might factor into the 
evaluation of these considerations: for example, if investigators seek a general summary of the 
combined effect (e.g., direction only) versus an estimated effect size, the consideration of 
whether to pool may be weighed differently. In the end, to provide a meaningful result, the trials 
must be similar enough in content, procedures, and implementation to represent a cohesive group 
that is relevant to real practice/decision-making. 

Recommendations 
• Use Figure 1.1 when deciding whether to pool studies 
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Chapter 2. Optimizing Use of Effect Size Data 
Christopher S. Lee, Ph.D., R.N., Benjamin W. Vandermeer, M.Sc. 

2.1. Introduction 
The employed methods for meta-analysis will depend upon the nature of the outcome data. 

The two most common data types encountered in trials are binary/dichotomous (e.g., dead or 
alive, patient admitted to hospital or not, treatment failure or success, etc.) and continuous (e.g., 
weight, systolic blood pressure, etc.). Some outcomes (e.g., heart rate, counts of common events) 
that are not strictly continuous, are often treated as continuous for the purposes of meta-analysis 
based on assumptions of normality and the belief that statistical methods that are applied to 
normal distributions can be applicable to other distributions (central limit theory). Continuous 
outcomes are also frequently analyzed as binary outcomes when there are clinically meaningful 
cut-points or thresholds (e.g., a patient’s systolic blood pressure may be classified as low or high 
based on whether it is under or over 130mmHG). While this type of dichotomization may be 
more clinically meaningful it reduces statistical information, so investigators should provide their 
rationale for taking this approach.  

Other less common data types that do not fit into either the binary or continuous categories 
include ordinal, categorical, rate, and time to event to data. Meta-analyzing these types of data 
will usually require reporting of the relevant statistics (e.g., hazard ratio, proportional odds ratio, 
incident rate ratio) by the study authors. 

2.2. Nuances of Binary Effect Sizes 

Data Needed for Binary Effect Size Computation 
Under ideal circumstances, the minimal data necessary for the computation of effect sizes of 

binary data would be available in published trial documents or from original sources. 
Specifically, risk difference (RD), relative risk (RR), and odds ratios (OR) can be computed 
when the number of events (technically the number of cases in whom there was an event) and 
sample sizes are known for treatment and control groups. A schematic of one common approach 
to assembling binary data from trials for effect size computation is presented in Table 2.1. This 
approach will facilitate conversion to analysis using commercially-available software such as 
Stata (College Station, TX) or Comprehensive Meta-Analysis (Englewood, NJ).  

Table 2.1. Assembling binary data for effect size computation  
Treatment 
Events in 
Treatment 
Group 

Treatment n Events in 
Control Group 

Control  
n 

Study X 
5 25 6 25 

Study Y 
23 194 21 189 

 
In many instances, a single study (or subset of studies) to be included in the meta-analysis 

provides only one measure of association (an odds ratio, for example), and the sample size and 



11 

event counts are not available. In that case, the meta-analytic effect size will be dictated by the 
available data. However, choosing the appropriate effect size is important for integrity and 
transparency, and every effort should be made to obtain all the data presented in Table 2.1. Note 
that CONSORT guidance requires that published trial data should include the number of events 
and sample sizes for both treatment and control groups.30 And, PRISMA guidance supports 
describing any processes for obtaining and confirming data from investigators31 – a frequently 
required step.  

In the event that data are only available in an effect size from the original reports, it is 
important to extract both the mean effect sizes and the associated 95% confidence intervals. 
Having raw event data available as in Table 2.1 not only facilitates the computation of various 
effect sizes, but also allows for the application of either binomial (preferred) or normal 
likelihood approaches;32 only normal likelihood can be applied to summary statistics (e.g., an 
odds ratio and confidence interval in the primary study report). 

Choosing Among Effect Size Options 
One absolute measure and two relative measures are commonly used in meta-analyses 

involving binary data. The RD (an absolute measure) is a simple metric that is easily understood 
by clinicians, patients, and other stakeholders. The relative measures, RR or OR, are also used 
frequently. All three metrics should be considered additive, just on different scales. That is, RD 
is additive on a raw scale, RR on a log scale, and OR on a logit scale. 

Risk Difference 
 The RD is easily understood by clinicians and patients alike, and therefore most useful to 

aid decision making. However, the RD tends to be less consistent across studies compared with 
relative measures of effect size (RR and OR). Hence, the RD may be a preferred measure in 
meta-analyses when the proportions of events among control groups are relatively common and 
similar across studies. When events are rare and/or when event rates differ across studies, 
however, the RD is not the preferred effect size to be used in meta-analysis because combined 
estimates based on RD in such instances have more conservative confidence intervals and lower 
statistical power. The calculation of RD and other effect size metrics using binary data from 
clinical trials can be performed considering the following labeling (Table 2.2).  
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Table 2.2. Organizing binary data for effect size computation 
 

Events No Events N 

Treatment  A B n1 

Control C D n2 

Equation Set 2.1. Risk Difference 

RD = �
A
n1
�  − �

C
n2
� 

VRD =  
AB
n13

+  
CD
n23

 

 SERD =  �VRD 
LLRD = RD − 1.96 ∗ SERD 
ULRD = RD + 1.96 ∗ SERD 

Where, 
RD = risk difference 
VRD = variance of the risk difference 
SERD = standard error of the risk difference 
LLRD = lower limit of the 95% confidence interval of the risk difference 
ULRD = upper limit of the 95% confidence interval of the risk difference 

Number Needed To Treat Related to Risk Difference 
The number needed to treat (NNT) represents the number of patients that need to receive the 

treatment for one to benefit.33 Because this is conceptually straightforward, this statistic 
resonates with clinicians and lay stakeholders. The NNT is the inverse of the risk difference, 
calculated as:  

NNT =
1

|RD| 

 
Where,  
NNT = number needed to treat 
RD = risk difference 
 

 In case of a negative RD, the number needed to harm (NNH) or number needed to treat 
for one patient to be harmed is = − 1/RD.  

The Wald method34 is commonly used to calculate confidence intervals for NNT. It is 
reasonably adequate for large samples and probabilities not close to either 0 or 1, however it can 
be less reliable for small samples, probabilities close to either 0 or 1, or unbalanced trial 
designs.35 An adjustment to the Wald method (i.e., adding pseudo-observations) helps mitigate 
concern about its application in small samples,36 but it doesn’t account for other sources of 
limitations to this method. The Wilson method of calculating confidence intervals for NNT, as 
described in detail by Newcome,37 has better coverage properties irrespective of sample size, is 
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free of implausible results, and is argued to be easier to calculate compared with Wald 
confidence intervals.35 Therefore, the Wilson method is preferable to the Wald method for 
calculating confidence intervals for NNT. When considering using NNT as the effect size in 
meta-analysis, see commentary by Lesaffre and Pledger.38 When considering using NNT as the 
effect size in meta-analysis, see commentary on the superior performance of combined NNT on 
the RD scale as opposed to the NNT scale.  

Risk Ratio 
It is important to note that the RR and OR are effectively equivalent for event rates below 

about 10%. In such cases, the RR is chosen over the OR simply for interpretability (an important 
consideration) and not substantive differences. A potential drawback to the use of RR over OR 
(or RD) is that the RR of an event is not the reciprocal of the RR for the non-occurrence of that 
event (e.g., using survival as the outcome instead of death). In contrast, switching between 
events and non-occurrence of events is reciprocal in the metric of OR and only entails a change 
in the sign of OR. If switching between death and survival, for example, is central to the meta-
analysis, then the RR is likely not the binary effect size metric of choice unless all raw data are 
available and re-computation is possible. Moreover, investigators should be particularly attentive 
to the definition of an outcome event when using a RR.  

The calculation of RR using binary data can be performed considering the labeling listed in 
Table 2.2. Of particular note, the metrics of dispersion related to the RR are first computed in a 
natural log metric and then converted to the metric of RR.  

Equation Set 2.2. Risk Ratio 

RR =  
A/n1
C/n2

 

lnRR = ln(RR) 

VlnRR =  
1
A

+ 
1
C
− 

1
n1
− 

1
n2

 

SElnRR =  �VlnRR 

LLlnRR = lnRR − 1.96 ∗ SElnRR 
ULlnRR = lnRR + 1.96 ∗ SElnRR 

RR = exp(lnRR) 
LL of the 95%CI = exp(LLlnRR) 
UL of the 95%CI = exp(ULlnRR) 

Where, 
RR = risk ratio 
lnRR = natural log of the risk ratio 
VlnRR = variance of the natural log of the risk ratio 
SElnRR = standard error of the natural log of the risk ratio 
LLlnRR = lower limit of the 95% confidence interval of the natural log of the risk ratio 
ULlnRR = upper limit of the 95% confidence interval of the natural log of the risk ratio 
LLRR = lower limit of the 95% confidence interval of the risk ratio 
ULRR = upper limit of the 95% confidence interval of the risk ratio 
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Therefore, while the definition of the outcome event needs to be consistent among the 
included studies when using any measure, the investigators should be particularly attentive to the 
definition of an outcome event when using an RR. 

Odds Ratios 
An alternative relative metric for use with binary data is the OR. Given that ORs are 

frequently presented in models with covariates, it is important to note that the OR is ‘non-
collapsible,’ meaning that effect modification varies depending on the covariates for which 
control has been made; this favors the reporting of RR over OR, particularly when outcomes are 
common and covariates are included.39 The calculation of OR using binary data can be 
performed considering the labeling listed in Table 2.2. Similar to the computation of RR, the 
metrics of dispersion related to the OR are first computed in a natural log metric and then 
converted to the metric of OR.  

Equation Set 2.3. Odds ratios 

 

OR =  
AD
BC

 
 

lnOR = ln(OR) 

VlnOR =  
1
A

+  
1
B

+ 
1
C

+  
1
D

 

 SElnOR =  �VlnOR 

LLlnOR = lnOR − 1.96 ∗ SElnOR 
ULLogOR = lnOR + 1.96 ∗ SElnOR 

OR = exp(lnOR) 
LL of the 95%CI = exp(LLlnOR) 
UL of the 95%CI = exp(ULlnOR) 

Where, 
OR = odds ratio 
LnOR = natural log of the odds ratio 
VlnOR = variance of the natural log of the odds ratio 
SElnoR = standard error of the natural log of the odds ratio 
LLlnOR = lower limit of the 95% confidence interval of the natural log of the odds ratio 
ULlnOR = upper limit of the 95% confidence interval of the natural log of the odds ratio 
LLOR = lower limit of the 95% confidence interval of the odds ratio 
ULOR = upper limit of the 95% confidence interval of the odds ratio 

 
A variation on the calculation of OR is the Peto OR that is commonly referred to as the 

assumption-free method of calculating OR. The two key differences between the standard OR 
and the Peto OR is that the latter takes into consideration the expected number of events in the 
treatment group and also incorporates a hypergeometric variance. Because of these difference, 
the Peto OR is preferred for binary studies with rare events, especially when event rates are less 
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than 1%. But in contrast, the Peto OR is biased when treatment effects are large, due to centering 
around the null hypothesis, and in the instance of imbalanced treatment and control groups.40  
 

Equation Set 2.4. Peto odds ratios 

 
ORpeto = exp[{A − E(A)}/v] 

 
where E(A) is the expected number of events in the treatment group calculated as: 
 

E(A) =
n1(A + C)

N
 

 
and v is hypergeometric variance, calculated as: 

 
v = {n1 n2(A + C)(B + D)}/{N2(N − 1)}   

 
There is no perfect effect size of binary data to choose because each has benefits and 

disadvantages. Criteria used to compare and contrast these measures include consistency over a 
set of studies, statistical properties, and interpretability. Key benefits and disadvantages of each 
are presented in Table 2.3. In the table, the term “baseline risk” is the proportion of subjects in 
the control group who experienced the event. The term “control rate” is sometimes used for this 
measure as well.  

Table 2.3. Benefits and disadvantages of binary data effect sizes41 

Effects Size Benefits Disadvantages 
Risk Difference - may be more easily interpretable 

among lay audiences 
- on the familiar percentage scale 
- can be converted to NNT or NNH 
for clinical interpretability 
- can address zero-event studies42 

- not consistent between studies 
with differing baseline risks. 
- not commonly reported in 
individual trials.  
- not preferred when there is 
heterogeneity between studies in 
duration and incident rates43 

Relative Risk - easily interpretable 
- commonly reported in individual 
trials considered in meta-analyses 
- more likely to be consistent even 
with differing baseline risks 

- values of “death” and “survival” are 
not reciprocals of each other as 
would be intuitively expected. 
- dependent on arbitrary definition of 
event versus no event. 

Odds Ratio - more likely to be consistent even 
with differing baseline risks 
- commonly reported in individual 
trials considered in meta-analyses 

- not easily interpretable 
- can be misleading when 
interpreted like relative risks 
- widespread use in meta-analyses 
may be because of convenience 
and history rather than an 
assessment of appropriateness 
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Time-to-Event and Count Outcomes  
For time to event data, the effect size measure is a hazard ratio (HR), which is commonly 

estimated from the Cox proportional hazards model. In the best-case scenario, HR and associated 
95% confidence intervals are available from all studies, the time horizon is similar across studies, 
and there is evidence that the proportional hazards assumption was met in each study to be 
included in a meta-analysis. When these conditions are not met, an HR and associated dispersion 
can still be extracted and meta-analyzed. However, this approach raises concerns about 
reproducibility due to observer variation.44 

Incident rate ratio (IRR) is used for count data and can be estimated from a Poisson or 
negative binomial regression model. The IRR is a relative metric based on counts of events (e.g., 
number of hospitalizations, or days of length of stay) over time (i.e., per person-year) compared 
between trial arms. It is important to consider how IRR estimates were derived in individual 
studies particularly with respect to adjustments for zero-inflation and/or over-dispersion as these 
modeling decisions can be sources of between-study heterogeneity. Moreover, studies that 
include count data may have zero counts in both groups, which may require less common and 
more nuanced approaches to meta-analysis like Poisson regression with random intervention 
effects.45  

2.3. Continuous Outcomes 

Assembling Data Needed for Effect Size Computation 
Meta-analysis of studies presenting continuous data requires both estimated differences 

between the two groups being compared and estimated standard errors of those differences. 
Estimating the between-group difference is easiest when the study provides the mean difference. 
While both a standardized mean difference and ratio of means could be given by the study 
authors, studies more often report means for each group. Thus, a mean difference or ratio of 
means often must be computed. 

If estimates of the standard errors of the mean are not provided studies commonly provide 
confidence intervals, standard deviations, p-values, z-statistics, and/or t-statistics, which make it 
possible to compute the standard error of the mean difference. In the absence of any of these 
statistics, other methods are available to estimate standard error.45 

(Weighted) Mean Difference 
The mean difference (formerly known as weighted mean difference) is the most common 

way of summarizing and pooling a continuous outcome in a meta-analysis. Pooled mean 
differences can be computed when every study in the analysis measures the outcome on the same 
scale or on scales that can be easily converted. For example, total weight can be pooled using 
mean difference even if different studies reported weights in kilograms and pounds; however it is 
not possible to pool quality of life measured in both Self Perceived Quality of Life scale (SPQL) 
and the 36-item Short Form Survey Instrument (SF-36), since these are not readily convertible to 
one format. 

Computation of the mean difference is straightforward and explained elsewhere.5 Most 
software programs will require the mean, standard deviation, and sample size from each 
intervention group and for each study in the meta-analysis, although as mentioned above, other 
pieces of data may also be used. 
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Some studies report values as change from baseline, or alternatively present both baseline 
and final values. In these cases, it is possible to pool differences in final values in some studies 
with differences in change from baseline values in other studies, since they will be estimating the 
same value in a randomized control trial. If baseline values are unbalanced it may be better to 
perform ANCOVA analysis (see below).5 

Standardized Mean Difference 
Sometimes different studies will assess the same outcome using different scales or metrics 

that cannot be readily converted to a common measure. In such instances the most common 
response is to compute a standardized mean difference (SMD) for each study and then pool these 
across all studies in the meta-analysis. By dividing the mean difference by a pooled estimate of 
the standard deviation, we theoretically put all scales in the same unit (standard deviation), and 
are then able to statistically combine all the studies. While the standardized mean difference 
could be used even when studies use the same metric, it is generally preferred to use mean 
difference. Interpretation of results is easier when the final pooled estimate is given in the same 
units as the original studies. 

Several methods can compute SMDs. The most frequently used are Cohen’s d and Hedges’ 
g. 

Cohen’s d 
Cohen’s d is the simplest S. computation; it is defined as the mean difference divided by the 

pooled standard deviation of the treatment and control groups.5 For a given study, Cohen’s d can 
be computed as: 

 
𝑑𝑑 =

𝑚𝑚𝑇𝑇 −𝑚𝑚𝐶𝐶

𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 

Where mT and mC are the treatment and control means and spooled is essentially the square 
root of the weighted average of the treatment and control variances. 

It has been shown that this estimate is biased in estimating the true population SMD, and the 
bias decreases as the sample size increases (small sample bias).46 For this reason, Hedges g is 
more often used. 

Hedges’ g 
 Hedges’ g is a transformation of Cohen’s d that attempts to adjust for small sample bias. 
The transformation involves multiplying Cohen’s d by a function of the total sample size.5 This 
generally results in a slight decrease in value of Hedges’ g compared with Cohen’s d, but the 
reduction lessens as the total sample size increases. The formula is: 

 

𝑑𝑑 �1 −
3

4𝑁𝑁 − 9
� 

Where N is the total trial sample size. 
 
For very large sample sizes the two estimates will be very similar. 
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Back Transformation of Pooled SMD 
 One disadvantages of reporting standardized mean difference is that units of standard 
deviation are difficult to interpret clinically. Guidelines do exist but are often thought to be 
arbitrary and not applicable to all situations.47 An alternative is to back transform the pooled 
SMD into a scale used in the one of the analyses. In theory, by multiplying the SMD (and its 
upper and lower confidence bounds) by the standard deviation of the original scale, one can 
obtain a pooled estimate in that original scale. The difficulty is that the true standard deviation is 
unknown and must be estimated from available data. Alternatives for estimation include using 
the standard deviation from the largest study or using a pooled estimate of the standard 
deviations across studies.5 One should include a sensitivity analysis and be transparent about the 
approach used.  

Ratio of Means 
  Ratio of Means (RoM), also known as response ratio, has been presented as an alternative 

to the SMD when outcomes are reported in different non-convertible scales. As the name implies 
the RoM divides the treatment mean by the control mean rather than taking the difference 
between the two. The ratio can be interpreted as the percentage change in the mean value of the 
treatment group relative to the control group. By meta-analyzing across studies we are making 
the assumption that the relative change will be homogeneous across all studies, regardless of 
which scale was used to measure it. Similar to the risk ratio and odds ratio, the RoM is pooled on 
the log scale; computational formulas are readily available.5 

For the RoM to have any clinical meaning, it is required that in the scale being used, the 
values are always positive (or always negative) and that a value of “zero” truly means zero. For 
example, if the outcome were patient temperature, RoM would be a poor choice since a 
temperature of 0 degrees does not truly represent what we would think of as zero.  

2.4. Special Topics  

Crossover Trials 
A crossover trial is one where all patients receive, in sequence, both the treatment and control 

interventions. This results in the final data having the same group of patients represented with 
both their outcome values while in the treatment and control groups. When computing the 
standard error of the mean difference of a crossover trial, one must consider the correlation 
between the two groups—a result of the two measurements on different within-person 
treatments.5 For most variables, the correlation will be positive, resulting in a smaller standard 
error than would be seen with the same values in a parallel trial. 

To compute the correct pooled standard error requires an estimate of the correlation between 
the two groups. If correlation is available, the pooled standard error can be computed using the 
following formula: 

 

𝑆𝑆𝑆𝑆𝑃𝑃 = �𝑆𝑆𝑆𝑆𝑇𝑇2 + 𝑆𝑆𝑆𝑆𝐶𝐶2 + 2𝑟𝑟𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆𝐶𝐶  

Where r is the within-patient correlation and SEP, SET, and SEC are the pooled, treatment, and 
control standard errors respectively 

Most studies do not give the correlation or enough information to compute it, and thus it 
often has to be estimated based on investigator knowledge or imputed.5 An imputation of 0.5 has 
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been suggested as a good conservative estimate of correlation in the absence of any other 
information.48  

If a cross-over study reports its data by period, investigators have sometimes used first period 
data only when including cross-over trials in their meta-analyses—essentially treating the study 
as if it were a parallel design. This eliminates correlation issues, but has the disadvantage of 
omitting half the data from the trial. 

Cluster Randomized Trials  
Cluster trials occur when patients are randomized to treatment and control in groups (or 

clusters) rather than individually. If the units/subjects within clusters are positively correlated (as 
they usually are), then there is a loss of precision compared to a standard (non-clustered) parallel 
design of the same size. The design effect (DE) of a cluster randomized trial is the multiplicative 
multiplier needed to adjust the standard error computed as if the trial were a standard parallel 
design. Reported results from cluster trials may not reflect the design effect, and thus it will need 
to be computed by the investigator. The formula for computing the design effect is: 

 
𝐷𝐷𝐷𝐷 = 1 + (𝑀𝑀 − 1)𝐼𝐼𝐼𝐼𝐼𝐼 

Where M is the average cluster size and ICC is the intra-class correlation coefficient (see 
below). 

Computation of the design effect involves a quantity known as the intra-class correlation 
coefficient (ICC), which is defined as the proportion of the total variance (i.e., within cluster 
variance plus between cluster variance) that is due to between cluster variance.5 ICC’s are often 
not reported by cluster trials and thus a value must be obtained from external literature or a 
plausible value must be assumed by the investigator. 

Mean Difference and Baseline Imbalance  
Baseline imbalance in trials occurs when an important variable shows clinically important 

differences (by chance) between the intervention and control groups. If one is given both 
baseline and follow up times, there are three possible ways to compute a mean difference 
between groups: 
 

1. Use followup data. 
2. Use change from baseline data. 
3. Use an ANCOVA model that adjusts for the effects of baseline imbalance.49 

 
As long as trials are balanced at baseline, all three methods will give similar unbiased 

estimates of mean difference.5 When baseline imbalance is present, it can be shown that using 
ANCOVA will give the best estimate of the true mean difference; however the parameters 
required to perform this analysis (mean and standard deviations of baseline, follow-up and 
change from baseline values) are usually not provided by the study authors.50 If it is not feasible 
to perform an ANCOVA analysis, the choice of whether to use follow up or change from 
baseline values depends on the amount of correlation between baseline and final values. If the 
correlation is less than or equal to 0.5, then using the follow up values will be less biased (with 
respect to the estimate in the ANCOVA model) than using the change from baseline values. If 
the correlation is greater than 0.5, then change from baseline values will be less biased than using 
the follow up values.51 There is evidence that these correlations are more often greater than 0.5, 
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so the change from baseline means will usually be preferred if estimates of correlation are totally 
unobtainable.52 A recent study51 showed that all approaches were unbiased when there were both 
few trials and small sample sizes within the trials. 

Recommendations  
• For binary outcomes: 

o The analyst should consider carefully which binary measure to analyze. 
o If conversion to NNT or NNH is sought, then the risk difference is the preferred 

measure.  
o The risk ratio and odds ratio are likely to be more consistent than the risk difference 

when the studies differ in baseline risk.  
o The risk difference is not the preferred measure when the event is rare.  
o The risk ratio is not the preferred measure if switching between occurrence and non-

occurrence of the event is important to the meta-analysis.  
o The odds ratio can be misleading.  

• For continuous outcomes: 
o The mean difference is the preferred measure when studies use the same metric.  
o When calculating standardized mean difference, Hedges’ g is preferred over Cohen’s 

d due to the reduction in bias.  
• General: 

o If baseline values are unbalanced, one should perform an ANCOVA analysis. If 
ANCOVA cannot be performed and the correlation is greater than 0.5, change from 
baseline values should be used to compute the mean difference. If the correlation less 
than or equal to 0.5, follow-up values should be used.  

o Data from clustered randomized trials should be adjusted for the design effect.  
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Chapter 3. Choice of Statistical Model for Combining Studies 
Rongwei Fu, Ph.D., Marika Booth, M.S., Dale W. Steele, M.D., M.S. 

3.1. Introduction  
Meta-analysis can be performed using either a fixed or a random effects model to provide a 

combined estimate of effect size. A fixed effects model assumes that there is one single treatment 
effect across studies and any differences between observed effect sizes are due to sampling error. 
Under a random effects model, the treatment effects across studies are assumed to vary from 
study and study and follow a random distribution. The differences between observed effect sizes 
are not only due to sampling error, but also to variation in the true treatment effects. A random 
effects model usually assumes that the treatment effects across studies follow a normal 
distribution, though the validity of this assumption may be difficult to verify, especially when the 
number of studies is small. Alternative distributions53 or distribution free models54, 55 have also 
been proposed. 
 Recent advances in meta-analysis include the development of alternative models to the 
fixed or random effects models. For example, Doi et al. proposed an inverse variance 
heterogeneity model (the IVhet model) for the meta-analysis of heterogeneous clinical trials that 
uses an estimator under the fixed effect model assumption with a quasi-likelihood based variance 
structure.56 Stanley and Doucouliagosb proposed an unrestricted weighted least squares (WLS) 
estimator with multiplicative error for meta-analysis and claimed superiority to both 
conventional fixed and random effects,57 though Mawdsley et al.58 found modest differences 
when compared with the random effects model. These methods have not been fully compared 
with the many estimators developed within the framework of the fixed and random effects 
models and are not readily available in most statistical packages; thus they will not be further 
considered here. 

General Considerations for Model Choice 
 Considerations for model choice include but are not limited to heterogeneity across 

treatment effects, the number and size of included studies, the type of outcomes, and potential 
bias. We recommend against choosing a statistical model based on the significance level of a 
heterogeneity test, for example, picking a fixed effects model when the p-value for the test of 
heterogeneity is more than 0.10 and a random effects model when P < 0.10, since such an 
approach does not take the many factors for model choice into full consideration. 

 In practice, clinical and methodological heterogeneity are always present across a set of 
included studies. Variation among studies is inevitable whether or not the test of heterogeneity 
detects it. Therefore, we recommend random effects models, with special considerations for rare 
binary outcomes (discussed below in the section on combining rare binary outcomes). For a 
binary outcome, when the estimate of between-study heterogeneity is zero, a fixed effects model 
(e.g., the Mantel-Haenszel method, inverse variance method, Peto method (for OR), or fixed 
effects logistic regression) provides an effect estimate similar to that produced by a random 
effects model. The Peto method requires that no substantial imbalance exists between treatment 
and control group sizes within trials and treatment effects are not exceptionally large. 

 When a systematic review includes both small and large studies and the results of small 
studies are systematically different from those of the large ones, publication bias may be present 
and the assumption of a random distribution of effect sizes, in particular, a normal distribution, is 
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not justified. In this case, neither the random effects model nor the fixed effects model provides 
an appropriate estimate and investigators may choose not to combine all studies.10 Investigators 
can choose to combine only the large studies if they are well conducted with good quality and 
are expected to provide unbiased effect estimates. Other potential differences between small and 
large studies should also be examined. 

Choice of Random Effects Model and Estimator 
The most commonly used random effects model for combined effect estimates is based on an 

estimator developed by DerSimonian and Laird (DL) due to its simplicity and ease of 
implementation.59 It is well recognized that the estimator does not adequately reflect the error 
associated with parameter estimation, in particular, when the number of studies is small, and 
between-study heterogeneity is high.40 Refined estimators have been proposed by the original 
authors. 19, 60, 61 Other estimators have also been proposed to improve the DL estimator. Sidik and 
Jonkman (SJ) and Hartung and Knapp (HK) independently proposed a non-iterative variant of 
the DL estimator using the t-distribution and an adjusted confidence interval for the overall 
effect. 62-64 We refer to this as the HKSJ method. Biggerstaff–Tweedie (BT) proposed another 
variant of the DL method by incorporating error in the point estimate of between-study 
heterogeneity into the estimation of the overall effect.65 There are also many other likelihood 
based estimators such as maximum likelihood estimate, restricted maximum likelihood estimate 
and profile likelihood (PL) methods, which better account for the uncertainty in the estimate of 
between-study variance.19  

Several simulation studies have been conducted to compare the performance of different 
estimators for combined effect size.19-21, 66, 67 For example, Brockwell et al. showed the PL 
method provides an estimate with better coverage probability than the DL method.19 Jackson et 
al. showed that with a small number of studies, the DL method did not provide adequate 
coverage probability, in particular, when there was moderate to large heterogeneity.20 However, 
these results supported the usefulness of the DL method for larger samples. In contrast, the PL 
estimates resulted in coverage probability closer to nominal values. IntHout et al. compared the 
performance of the DL and HKSJ methods and showed that the HKSJ method consistently 
resulted in more adequate error rates than did the DL method, especially when the number of 
studies was small, though they did not evaluate coverage probability and power.67 Kontopantelis 
and Reeves conducted the most comprehensive simulation studies to compare the performance of 
nine different methods and evaluated multiple performance measures including coverage 
probability, power, and overall effect estimation (accuracy of point estimates and error  
intervals). 21 When the goal is to obtain an accurate estimate of overall effect size and the 
associated error interval, they recommended using the DL method when heterogeneity is low and 
using the PL method when heterogeneity is high, where the definition of high heterogeneity 
varies by the number of studies. The PL method overestimated coverage probability in the 
absence of between-study heterogeneity. Methods like BT and HKSJ, despite being developed to 
address the limitations of the DL method, were frequently outperformed by the DL method. 
Encouragingly, Kontopantelis and Reeves also showed that regardless of the estimation method, 
results are highly robust against even very severe violations of the assumption of normally 
distributed effect sizes. 

 Recently there has been a call to use alternative random-effects estimators to replace the 
universal use of the Dersimonian-Laird random effects model.68 Based on the results from the 
simulation studies, the PL method appears to generally perform best, and provides best 
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performance across more scenarios than other methods, though it may overestimate the 
confidence intervals in small studies with low heterogeneity.21 It is appropriate to use the DL 
method when the heterogeneity is low. Another disadvantage of the PL method is that it does not 
always converge. In those situations, investigators may choose the DL method with sensitivity 
analyses using other methods, such as the HKSJ method. If non-convergence is due to high 
heterogeneity, investigators should also reevaluate the appropriateness of combining studies. The 
PL method (and the DL method) could be used to combine measures for continuous, count, and 
time to event data, as well as binary data when events are common. Note that the confidence 
interval produced by the PL method may not be symmetric. It is also worth noting that OR, RR, 
HR, and incidence rate ratio statistics should be analyzed on the logarithmic scale when the PL, 
DL, or HKSJ method is used. Finally, a Bayesian approach can also be used since this approach 
takes the variations in all parameters into account (see the section on Bayesian methods, below).  

Role of Generalized Linear Mixed Effects Models  
 The different methods and estimators discussed above are generally used to combine 

effect measures directly (for example, mean difference, SMD, OR, RR, HR, and incidence rate 
ratio). For study-level aggregated binary data and count data, we also recommend the use of the 
generalized linear mixed effects model assuming random treatment effects. For aggregated 
binary data, a combined OR can be generated by assuming the binomial distribution with a logit 
link. It is also possible to generate a combined RR with the binomial distribution and a log link, 
though the model does not always converge. For aggregated count data, a combined rate ratio 
can be generated by assuming the Poisson distribution with a log link. Results from using the 
generalized linear models and directly combining effect measures are similar when the number 
of studies and/or the sample sizes are large.  

3.2. A Special Case: Combining Rare Binary Outcomes 
When combining rare binary outcomes (such as adverse event data), few or zero events often 

occur in one or both arms in some of the studies. In this case, the binomial distribution is not 
well-approximated by the normal approximation and choosing an appropriate model becomes 
complicated. The DL method does not perform well with low-event rate binary data.43, 69 A fixed 
effects model often out performs the DL method even in the presence of  heterogeneity.70 When 
event rates are less than 1 percent, the Peto OR method has been shown to provide the least 
biased, most powerful combined estimates with the best confidence interval coverage,43 if the 
included studies have moderate effect sizes and the treatment and control group are of relatively 
similar sizes. The Peto method does not perform well when either the studies are unbalanced or 
the studies have large ORs (outside the range of 0.2-5).71, 72 Otherwise, when treatment and 
control group sizes are very different, effect sizes are large, or when events become more 
frequent (5 percent to 10 percent), the Mantel-Haenszel method (without a correction factor) or a 
fixed effects logistic regression provide better combined estimates.  

Within the past few years, many methods have been proposed to analyze sparse data from 
simple averaging,73 exact methods,74, 75 Bayesian approaches76, 77 to various parametric models 
(e.g., generalized linear mixed effect models, beta-binomial model, Gamma-Poisson model, 
bivariate Binomial-Normal model etc.). Two dominating opinions are to not use continuity 
corrections, and to include studies with zero events in both arms in the meta-analysis. Great 
efforts have been made to develop methods that can include such studies. 
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Bhaumik et al. proposed the simple (unweighted) average (SA) treatment affect with the 0.5 
continuity correction, and found that the bias of the SA estimate in the presence of even 
significant heterogeneity is minimal compared with the bias of MH estimates (with 0.5 
correction).73 A simple average was also advocated by Shuster.78 However, potential 
confounding remains an issue for an unweighted estimator. Spittal et al. showed that Poisson 
regression works better than the inverse variance method for rare events.79 Kuss et al. conducted 
a comprehensive simulation of eleven methods, and recommended the use of the beta-binomial 
model for the three common effect measures (OR, RR, and RD) as the preferred meta-analysis 
methods for rare binary events with studies of zero events in one or both arms.80 The beta-
binomial model assumes that the observed events follow a binomial distribution and the binomial 
probabilities follow a beta distribution. In Kuss’s simulation, using a generalized linear model 
framework to model the treatment effect, an OR was estimated using a logit link, and an RR, 
using a log link. Instead of using an identity link, RD was estimated based on the estimated event 
probabilities from the logit model. This comprehensive simulation examined methods that could 
incorporate data from studies with zero events from both arms and do not need any continuity 
correction, and only compared the Peto and MH methods as reference methods.  

Given the development of new methods that can handle studies with zero events in both 
arms, we advise that older methods that use continuity corrections be avoided. Investigators 
should use valid methods that include studies with zero events in one or both arms. For studies 
with zero events in one arm, or studies with sparse binary data but no zero events, an estimate 
can be obtained using the Peto method, the Mantel-Haenszel method, or a logistic regression 
approach, without adding a correction factor, when the between-study heterogeneity is small. 
These methods are simple to use and more readily available in standard statistical packages. 
When the between-study heterogeneity is large and/or there are studies with zero events in both 
arms, the more recently developed methods, such as beta-binomial model, could be explored and 
used. However, investigators should note that no method gives completely unbiased estimates 
when events are rare. Statistical methods can never completely solve the issue of sparse data. 
Investigators should always conduct sensitivity analyses81 using alternative methods to check the 
robustness of results to different methods, and acknowledge the inadequacy of data sources when 
presenting the meta-analysis results, in particular, when the proportion of studies with zero 
events in both arms are high. If double-zero studies are to be excluded, they should be 
qualitatively summarized, by providing information on the confidence intervals for the 
proportion of events in each arm. 

A Note on an Exact Method for Sparse Binary Data  
For rare binary events, the normal approximation and asymptotic theory for large sample size 

does not work satisfactorily and exact inference has been developed to overcome these 
limitations. Exact methods do not need continuity corrections. However, simulation analyses do 
not identify a clear advantage of early developed exact methods75, 82 over a logistic regression or 
the Mantel-Haenszel method even in situations where these exact methods would theoretically be 
advantageous.43 Recent developments of exact methods include Tian et al.'s method of 
combining confidence intervals83 and Liu et al.'s method of combining p-value functions.84 Yang 
et al.85 developed a general framework for meta-analysis of rare events by combining confidence 
distributions (CDs), and showed that Tian’s and Liu’s methods could be unified under the CD 
framework. Liu showed that exact methods performed better than the Peto method (except when 
studies are unbalanced) and the Mantel-Haenszel method,84 though the comparative performance 
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of these methods has not been thoroughly evaluated. Investigators may choose to use exact 
methods with considerations for the interpretation of effect measures, but we do not specifically 
recommend exact methods over other models discussed above.  

3.3. Bayesian Methods 
A Bayesian framework provides a unified and comprehensive approach to meta-analysis that 

accommodates a wide variety of outcomes, often, using generalized linear model (GLM) with 
normal, binomial, Poisson and multinomial likelihoods and various link functions.86  

It should be noted that while these GLM models are routinely implemented in the frequentist 
framework, and are not specific to the Bayesian framework, extensions to more complex 
situations are most approachable using the Bayesian framework, for example, allowing for mixed 
treatment comparisons involving repeated measurements of a continuous outcome that varies 
over time.87  

There are several specific advantages inherent to the Bayesian framework. First, the Bayesian 
posterior parameter distributions fully incorporate the uncertainty of all parameters. These 
posterior distributions need not be assumed to be normal.88 In random-effects meta-analysis, 
standard methods use only the most likely value of the between-study variance,59 rather than 
incorporating the full uncertainty of each parameter. Thus, Bayesian credible intervals will tend 
to be wider than confidence intervals produced by some classical random-effects analysis such as 
the DL method.89 However, when the number of studies is small, the between-study variance 
will be poorly estimated by both frequentist and Bayesian methods, and the use of vague priors 
can lead to a marked variation in results,90 particularly when the model is used to predict the 
treatment effect in a future study.91 A natural alternative is to use an informative prior 
distribution, based on observed heterogeneity variances in other, similar meta-analyses.92-94 

Full posterior distributions can provide a more informative summary of the likely value of 
parameters than the frequentist approach. When communicating results of meta-analysis to 
clinicians, the Bayesian framework allows direct probability statements to be made and provides 
the rank probability that a given treatment is best, second best, or worst (see the section on 
interpreting ranking probabilities and clinically important results in Chapter 5 below). Another 
advantage is that posterior distributions of functions of model parameters can be easily obtained 
such as the NNT.86 Finally, the Bayesian approach allows full incorporation of parameter 
uncertainty from meta-analysis into decision analyses.95 

Until recently, Bayesian meta-analysis required specialized software such as WinBUGS,96 
OpenBUGS,97 and JAGS.98, 99 Newer open source software platforms such as Stan100 and 
Nimble101, 102 provide additional functionality and use BUGS-like modeling languages. In 
addition, there are user written commands that allow data processing in a familiar environment 
which then can be passed to WinBUGS, or JAGS for model fitting.103 For example, in R, the 
package bmeta currently generates JAGS code to implement 22 models.104 The R package gemtc 
similarly automates generation of JAGS code and facilitates assessment of model convergence 
and inconsistency.105, 106 On the other hand, Bayesian meta-analysis can be implemented in 
commonly used statistical packages. For example, SAS PROC MCMC can now implement at 
least some Bayesian hierarchical models107 directly, as can Stata, version 14, via the bayesmh 
command.108 

When vague prior distributions are used, Bayesian estimates are usually similar to estimates 
obtained from the above frequentist methods.90 Use of informative priors requires considerations 
to avoid undue influence on the posterior estimates. Investigators should provide adequate 
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justifications for the choice of priors and conduct sensitivity analyses. Bayesian methods 
currently require more work in programming, MCMC simulation and convergence diagnostics.  

A Note on Using a Bayesian Approach for Sparse Binary Data 
It has been suggested that using a Bayesian approach might be a valuable alternative for 

sparse event data since Bayesian inference does not depend on asymptotic theory and takes into 
account all uncertainty in the model parameters.109 The Bayesian fixed effects model provides 
good estimates when events are rare for binary data.70 However, the choice of prior distribution, 
even when non-informative, may impact results, in particular, when a large proportion of studies 
have zero events in one or two arms.80, 90, 110 Nevertheless, other simulation studies found that 
when the overall baseline rate is very small and there is moderate or large heterogeneity, 
Bayesian hierarchical random effect models can provide less biased estimates for the effect 
measures and the heterogeneity parameters.77 To reduce the impact of the prior distributions, 
objective Bayesian methods have been developed76, 111 with special attention paid to the 
coherence between the prior distributions of the study model parameters and the meta-
parameter,76 though the Bayesian model was developed outside the usual hierarchical normal 
random effects framework. Further evaluations of these methods are required before 
recommendations of these objective Bayesian methods might be made. 

3.4 Recommendations 
• The PL method appears to generally perform best. The DL method is also appropriate 

when the between-study heterogeneity is low.  
• For study-level aggregated binary data and count data, the use of a generalized linear 

mixed effects model assuming random treatment effects is also recommended. 
• For rare binary events,  

o Methods that use continuity corrections should be avoided.  
o For studies with zero events in one arm, or studies with sparse binary data but no zero 

events, an estimate can be obtained using the Peto method, the Mantel-Haenszel 
method, or a logistic regression approach, without adding a correction factor, when 
the between-study heterogeneity is low.  

o When the between-study heterogeneity is high, and/or there are studies with zero 
events in both arms, more recently developed methods such as a beta-binomial model 
could be explored and used.  

o Sensitivity analyses should be conducted with acknowledgement of the inadequacy of 
data. 

• If investigators choose Bayesian methods, use of vague priors is supported.  
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Chapter 4. Quantifying, Testing, and Exploring Statistical 
Heterogeneity 
Christopher S. Lee, Ph.D., R.N. 

4.1.  Statistical Heterogeneity in Meta-analysis 
Statistical heterogeneity was explained in general in Chapter 1. In this chapter, we provide a 

deeper discussion from a methodological perspective. Statistical heterogeneity must be expected, 
quantified and sufficiently addressed in meta-analyses.112 We recommend performing graphic 
and quantitative exploration of heterogeneity in combination.113 In this chapter, it is assumed that 
a well-specified research question has been posed, the relevant literature has been reviewed, and 
a set of trials meeting selection criteria have been identified. Even when trial selection criteria 
are aimed toward identifying studies that are adequately homogenous, it is common for trials 
included in a meta-analysis to differ considerably as a function of (clinical and/or 
methodological) heterogeneity that was reviewed in Chapter 1. Even when these sources of 
heterogeneity have been accounted for, statistical heterogeneity often remains. Statistical 
heterogeneity refers to the situation where estimates across studies have greater variability than 
expected from chance variation alone.113, 114  

4.2. Visually Inspecting Heterogeneity 
Although simple histograms, box plots, and other related graphical methods of depicting 

effect estimates across studies may be helpful preliminarily, these approaches do not necessarily 
provide insight into statistical heterogeneity. However, forest and funnel plots can be helpful in 
the interpretation of heterogeneity particularly when examined in combination with quantitative 
results.113, 115 

Forest Plots 
Forest plots can help identify potential sources and the extent of statistical heterogeneity. 

Meta-analyses with limited heterogeneity will produce forest plots with grossly visual overlap of 
study confidence intervals and the summary estimate. In contrast, a crude sign of statistical 
heterogeneity would be poor overlap.115 An important recommendation is to graphically present 
between-study variance on forest plots of random effects meta-analyses using prediction 
intervals, which are on the same scale as the outcome.93 The 95% prediction interval estimates 
where true effects would be expected for 95% of future studies.93 When between-study variance 
is greater than zero, the prediction interval will cover a wider range than the confidence interval 
of the summary effect.116 As proposed by Guddat et al.117 and endorsed by IntHout et al.,116 
including the prediction interval as a rectangle at the bottom of forest plots helps differentiate 
between-study variation from the confidence interval of the summary effect that is commonly 
depicted as a diamond. 

Funnel Plots  
Funnel plots are often thought of as representing bias, but they also can aid in detecting 

sources of heterogeneity. Funnel plots are essentially the plotting of effect sizes observed in each 
study (x-axis) around the summary effect size versus the degree of precision of each study 
(typically by standard error, variance, or precision on the y-axis). A meta-analysis that includes 
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studies that estimate the same underlying effect across a range of precision, and has limited bias 
and heterogeneity would result in a funnel plot that resembles a symmetrical inverted funnel 
shape with increasing dispersion ranging with less precise (i.e., smaller) studies.115 In the event 
of heterogeneity and/or bias, funnel plots will take on an asymmetric pattern around the 
summary effect size and also provide evidence of scatter outside the bounds of the 95% 
confidence limits.115 Asymmetry in funnel plots can be difficult to detect visually,118 and can be 
misleading due to multiple contributing factors.113, 119, 120 Formal tests for funnel plot asymmetry 
(such as Egger’s test15 for continuous outcomes, or the arcsine test proposed by Rucker et al.,27 
for binary data) are available but should not be used with a meta-analysis involving fewer than 
10 studies because of limited power.113 Given the above cautions and considerations, funnel plots 
should only be used to complement other approaches in the preliminary analysis of 
heterogeneity.  

4.3.  Quantifying Heterogeneity 
The null hypothesis of homogeneity in meta-analysis is that all studies are evaluating the 

same effect,22 (i.e., all studies have the same true effect parameter that may or may not be 
equivalent to zero) and the alternative hypothesis is that at least one study has an effect that is 
different from the summary effect. 
 A commonly-used heterogeneity test statistic is Q,59 which is computed as the sum of 
squared deviations of each study's estimate from the summary estimate, with each study's 
contribution weighted in the same manner as in the meta-analysis (commonly via the inverse 
variance method):121  

𝑄𝑄 = �𝑤𝑤𝑖𝑖(𝑥𝑥𝑖𝑖 − 𝑥𝑥�𝑤𝑤)2
𝑘𝑘

𝑖𝑖=1

 

Where Q is the heterogeneity statistic,  
w is the study weight based on inverse variance weighting,  
x is the observed effect size in each trial, and 
𝑥𝑥�𝑊𝑊 is the summary estimate in a fixed-effect meta-analysis.  

 

The Q statistic is assumed to have an approximate χ2 distribution with k – 1 degrees of 
freedom. When Q is in excess over k – 1 and the associated p-value is low (typically, a p-value 
of <0.10 is used as a cut-off), the null hypothesis of homogeneity can be rejected.22, 122 
Interpretation of a Q statistic in isolation is not advisable however, because it has low statistical 
power in meta-analyses involving a limited number of studies123, 124 and may detect unimportant 
heterogeneity when the number of studies included in a meta-analysis is large. Importantly, since 
heterogeneity is expected in meta-analyses even without statistical tests to support that claim, 
non-significant Q statistics must not be interpreted as the absence of heterogeneity. Moreover, 
the interpretation of Q in meta-analyses is more complicated than typically represented, because 
the actual distribution of Q is dependent on the measure of effect125 and only approximately χ2 in 
large samples.122 Even if the null distribution of Q were χ2, universally interpreting all values of 
Q greater than the mean of k – 1 as indicating heterogeneity would be an oversimplification.122 
There are expansions to approximate Q for meta-analyses of standardized mean difference,125 
risk difference,125 and odds ratios126 that should be used as alternatives to Q, particularly when 
sample sizes of studies included in a meta-analysis are small.122 The Q statistic and expansions 



29 

thereof must be interpreted along with other heterogeneity statistics and with full consideration 
of their limitations.  

Graphical Options for Examining Contributions to Q 
Hardy and Thompson proposed using probability plots to investigate the contribution that 

each study makes to Q.127 When each study is labeled, those deviating from the normal 
distribution in a probability plot have the greatest influence on Q.127 Baujat and colleagues 
proposed another graphical method to identify studies that have the greatest impact on Q.128 
Baujat proposed plotting the contribution to the heterogeneity statistic for each study on the 
horizontal axis, and the squared difference between meta-analytic estimates with and without the 
ith study divided by the estimated variance of the meta-analytic estimate without the ith study 
along the vertical axis. Because of the Baujat plot presentation, studies that have the greatest 
influence on Q are located in the upper right corner for easy visual identification. Smaller studies 
have been shown to contribute more to heterogeneity than larger studies,129 which would be 
visually apparent in Baujat plots. We recommend using these graphical approaches only when 
there is significant heterogeneity, and only when it is important to identify specific studies that 
are contributing to heterogeneity.  

Between-Study Variance 
DerSimonian and Laird proposed a non-iterative method-of-moments parameter of between-

study variance (τ2)60 (described by Higgins et al. as “among-study variance”)22 that remains 
widely used in meta-analyses: 

𝜏̂𝜏𝐷𝐷𝐷𝐷2 =
𝑄𝑄 − (𝑘𝑘 − 1)

∑𝑤𝑤𝑖𝑖 −
∑𝑤𝑤𝑖𝑖

2

∑𝑤𝑤𝑖𝑖

 

Where τ2 is the parameter of between-study variance of the true effects, 
DL is the DerSimonian and Laird approach to τ2, 
Q is the heterogeneity statistic (as above), 
k -1 is the degrees of freedom, and  
w is the weight applied to each study based on inverse variance weighting.  

 
Since variance cannot be less than zero, a τ2 less than zero is set to zero. The value of τ2 is 

integrated into the weights of random-effects meta-analysis as presented in Chapter 3. Since the 
DerSimonian and Laird approach to τ2 is derived in part from Q, the problems with Q described 
above apply to the τ2 parameter.122 There are many alternatives to DerSimonian and Laird when 
estimating between-study variance. In a recent simulation, Veroniki and colleagues121 compared 
16 estimators of between-study variance; they argued that the Paule and Mandel130 method of 
estimating between-study variance is a better alternative to the DerSimonian and Laird parameter 
for continuous and binary data because it less biased (i.e., yields larger estimates) when between-
study variance is moderate-to-large.121 At the time of this guidance, the Paule and Mandel 
method of estimating between-study variance is only provisionally recommended as an 
alternative to DerSimonian and Laird.129, 131 Moreover, Veroniki and colleagues provided 
evidence that the restrictive maximum likelihood estimator132 is a better alternative to the 
DerSimonian and Laird parameter of between-study variance for continuous data because it 
yields similar values for low-to-moderate between-study variance and larger estimates in 
conditions of high between-study variance.121  
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Inconsistency Across Studies 
Another statistic that should be generated and interpreted even when Q is not statistically 

significant is the proportion of variability in effect sizes across studies that is explained by 
heterogeneity vs. random error or I2 that is related to Q.22, 133  

𝐼𝐼2 =  
𝑄𝑄 − (𝑘𝑘 − 1)

𝑄𝑄
∗  100 

Where Q is the estimate of between-study variance, and 
k -1 is the degrees of freedom. 

 
For random-effects models, Higgins and Thompson25 proposed estimating I2 as:  

𝐼𝐼2 =  
𝜏𝜏2

𝜏𝜏2 + 𝜎𝜎2
 

Where τ2 is the parameter of between-study variance, and 
σ2 is the within-study variance.  

I2 is a metric of how much heterogeneity is influencing the meta-analysis. With a range from 0% 
(indicating no heterogeneity) to 100% (indicating that all of the observed variance is attributable 
to heterogeneity), the I2 statistic has several advantages over other heterogeneity statistics 
including its relative simplicity as a signal-to-noise ratio, and focus on how heterogeneity may be 
influencing interpretation of the meta-analysis.59 It is important to note that I2 increases with 
increasing study precision and hence is dependent on sample size.27 By various means, 
confidence/uncertainty intervals can be estimated for I2 including Higgins’ test-based method.22, 

23 the assumptions involved in the construction of 95% confidence intervals cannot be justified in 
all cases, but I2 confidence intervals based on frequentist assumptions generally provide 
sufficient coverage of uncertainty in meta-analyses.133 In small meta-analyses, it has even been 
proposed that confidence intervals supplement or replace biased point estimates of I2.26 It is 
important to note that since I2 is based on Q or τ2, any problems that influence Q or τ2 (most 
notably the number of trials included in the meta-analysis) will also indirectly interfere with the 
computation of I2. It is also important to consider that I2 also is dependent on which between-
study variance estimator is used. For example, there is a high level of agreement comparing I2 
derived from DerSimonian and Laird vs. Paul and Mandel methods of estimating between-study 
variance.131 In contrast, I2 derived from other methods of estimating between-study variance 
have low levels of agreement.131 

Based primarily on the observed distributions of I2 across meta-analyses, there are ranges that 
are commonly used to further categorize heterogeneity. That is, I2 values of 25%, 50%, and 75% 
have been proposed as working definitions of what could be considered low, moderate, and high 
proportions, respectively, of variability in effect sizes across studies that is explained by 
heterogeneity.59 Currently, the Cochrane manual also includes ranges for interpreting I2 (0%-40% 
might not be important, 30%-60% may represent moderate heterogeneity, 50-90% may represent 
substantial heterogeneity and 75-100% may represent considerable heterogeneity).10 Irrespective 
of which categorization of I2 is used, this statistic must be interpreted with the understanding of 
several nuances, including issues related to a small number of studies (i.e., fewer than 10),24-26 
and inherent differences in I2 comparing binary and continuous effect sizes.28, 29 Moreover, I2 of 
zero is often misinterpreted in published reports as being synonymous with the absence of 
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heterogeneity despite upper confidence interval limits that most often would exceed 33% when 
calculated.134 Finally, a high I2 does not necessarily mean that dispersion occurs across a wide 
range of effect sizes, and a low I2 does not necessarily mean that dispersion occurs across a 
narrow range of effect sizes; the I2 is a signal-to-noise metric, not a statistic about the magnitude 
of heterogeneity.  

4.4.  Exploring Heterogeneity 

Meta-regression 
Meta-regression is a common approach employed to examine the degree to which study-level 

factors explain statistical heterogeneity.135 Random effects meta-regression, as compared with 
fixed effect meta-regression, allows for residual heterogeneity (i.e., between-study variance that 
is not explained by study-level factors) to incorporated into the model.136Because of this feature, 
among other benefits described below and in Chapter 3, random effects meta-regression is 
recommended over fixed effect meta-regression.137 It is the default of several statistical packages 
to use a modified estimator of variance in random effects meta-regression that employs a t 
distribution in lieu of a standard normal distribution when calculating p-values and confidence 
intervals (i.e., the Knapp-Hartung modification).138 This approach is recommended to help 
mitigate false-positive rates that are common in meta-regression.137 Since the earliest papers on 
random effects meta-regression, there has been general caution about the inherent low statistical 
power in analyses when there are fewer than 10 studies for each study-level factor 
modelled.136Currently, the Cochrane manual recommends that there be at least 10 studies per 
characteristic modelled in meta-regression10 over the enduring concern about inflated false-
positive rates with too few studies.137 Another consideration that is reasonable to endorse is 
adjusting the level of statistical significance to account for making multiple comparisons in cases 
where more than one characteristic is being investigated in meta-regression.  

Beyond statistical considerations important in meta-regression, there are also several 
important conceptual considerations. First, study-level characteristics to be considered in meta-
regression should be pre-specified, scientifically defensible and based on hypotheses.8, 10 This 
first consideration will allow investigators to focus on factors that are believed to modify the 
effect of intervention as opposed to clinically meaningless study-level characteristics. Arguably, 
it may not be possible to identify all study-level characteristics that may modify intervention 
effects. The focus of meta-regression should be on factors that are plausible. Second, meta-
regression should be carried out under full consideration of ecological bias (i.e., the inherent 
problems associated with aggregating individual-level data).139 As classic examples, the mean 
study age or the proportion of study participants who were female may result in different 
conclusions in meta-regression as opposed to how these modifying relationships functioned in 
each trial.135  

Multiple Meta-regression 
It may be desirable to examine the influence of more than one study-level factor on the 

heterogeneity observed in meta-analyses. Recalling general cautions and specific 
recommendations about the inherent low statistical power in analyses wherein there are fewer 
than 10 studies for each study-level factors modelled,10, 136, 137 multiple meta-regression (that is, a 
meta-regression model with more than one study-level factor included) should only be 
considered when study-level characteristics are pre-specified, scientifically defensible, and based 
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on hypotheses, and when there are 10 or more studies for each study-level factor included in 
meta-regression.  

Subgroup Analysis 
Subgroup analysis is another common approach employed to examine the degree to which 

study-level factors explain statistical heterogeneity. Since subgroup analysis is a type of meta-
regression that incorporates a categorical study-level factor as opposed to a continuous study-
level factor, it is similarly important that the grouping of studies to be considered in subgroup 
analysis be pre-specified, scientifically defensible and based on hypotheses.8, 10 Like other forms 
of meta-regression, subgroup analyses have a high false-positive rate.137 and may be misleading 
when few studies are included. There are two general approaches to handling subgroups in meta-
analysis. First, a common use is to perform meta-analyses within subgroups without any 
statistical between-group comparisons. A central problem with this approach is the tendency to 
misinterpret results from within separate groups as being comparative. That is, identification of 
groups wherein there is a significant summary effect and/or limited heterogeneity and others 
wherein there is no significant summary effect and/or substantive heterogeneity does not 
necessarily indicate that the subgroup factor explains overall heterogeneity.10 Second, it is 
recommended to incorporate the subgrouping factor into a meta-regression framework.140 Doing 
so allows for quantification of both within and among subgroup heterogeneity as well as well as 
formal statistical testing that informs whether the summary estimates are different across 
subgroups. Moreover, subgroup analysis in a meta-regression framework will allow for formal 
testing of residual heterogeneity in a similar fashion to meta-regression using a continuous study-
level factor.  

Detecting Outlying Studies 
Under consideration that removal of one or more studies from a meta-analysis may interject 

bias in the results,10 identification of outlier studies may help build the evidence necessary to 
justify removal. Visual examination of forest, funnel, normal probability and Baujat plots 
(described in detail earlier in this chapter) alone may be helpful in identifying studies with 
inherent outlying characteristics. Additional procedures that may be helpful in interpreting the 
influence of single studies are quantifying the summary effect without each study (often called 
one study removed), and performing cumulative meta-analyses. One study removed procedures 
simply involve sequentially estimating the summary effect without each study to determine if 
single studies are having a large influence on model results. Using cumulative meta-analysis, 141 
it is possible to graph the accumulation of evidence of trials reporting at treatment effect. Simply 
put, this approach integrates all information up to and including each trial into summary 
estimates. By looking at the graphical output (from Stata’s metacum command or the R metafor 
cumul() function), one can examine large shifts in the summary effect that may serve as evidence 
for study removal. Another benefit of cumulative meta-analysis is detecting shifts in practice 
(e.g., guideline changes, new treatment approval or discontinuation) that would foster subgroup 
analysis.  

Viechtbauer and Chung proposed other methods that should be considered to help identify 
outliers. One option is to examine extensions of linear regression residual diagnostics by using 
studentized deleted residuals.142 Other options are to examine the difference between the 
predicted average effect with and without each study (indicating by how many standard 
deviations the average effect changes) or to examine what effect the deletion of each study has 
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on the fitted values of all studies simultaneously (in a metric similar to Cook’s distance).142 
Particularly in combination, there methods serve as diagnostics that are more formal than visual 
inspection and both one study removed and cumulative meta-analysis procedures.  

4.5. Special Topics 

Baseline Risk (Control-Rate) Meta-regression  
For studies with binary outcomes, the “control rate” refers to the proportion of subjects in the 

control group who experienced the event. The control rate can be viewed as a surrogate for 
covariate differences between studies because it is influenced by illness severity, concomitant 
treatment, duration of follow-up, and/or other factors that may differ across studies.143, 144 Groups 
of patients with higher underlying risk for poor outcomes may experience different benefits 
and/or harms from treatment compared with groups of patients who have lower underlying 
risk.145 Hence, the control-rate can be used to test for interactions between underlying population 
risk at baseline and treatment benefit.  

To examine for an interaction between underlying population risk and treatment benefit, we 
recommend a simplified approach. First, generate a scatter plot of treatment effect against 
control rate to visually assess whether there may be a relation between the two. Since the RD 
tends to be highly correlated with the control rate,144 we recommend using an RR or OR when 
examining a treatment effect against the control rate in all steps. The purpose of generating a 
scatterplot is simply to give preliminary insight into how differences in baseline risk (control 
rate) may influence the amount of observed variability in effect sizes across studies. Second, use 
hierarchical meta-regression144 or Bayesian meta-regression146 models to formally test the 
interaction between underlying population risk and treatment benefit. Although a weighted 
regression has been proposed as an intermediary step between developing a scatter plot and 
meta-regression, this approach identifies a significant relation between control rate and treatment 
effect twice as often compared with more suitable approaches (above),144, 146 and a negative 
finding would likely need to be replicated using meta-regression. Hence, the simplified two-step 
approach may help streamline the process.  

Multivariate Meta-analysis  
There are both inherent benefits and disadvantages of using meta-analysis to examine 

multiple outcomes simultaneously (that is, “multivariate meta-analysis”), and much 
methodological work has been done in both frequentist and Bayesian frameworks in recent 
years.147-156. Some of these methods are readily available in statistical packages (for example, 
Stata mvmeta).  

One of the advantages of multivariate meta-analysis is being able to incorporate multiple 
outcomes into one model as opposed to the conduct of multiple univariate meta-analyses wherein 
the outcomes are handled as being independent.150 Another advantage of multivariate meta-
analysis is being able to gain insight into relationships among study outcomes.150, 157 An 
additional advantage of multivariate meta-analysis is that different clinical conclusions may be 
made;150 it may be considered easier to present results from a single multivariate meta-analysis 
than from several univariate analyses that may make different assumptions. Further, multivariate 
methods may have the potential to reduce the impact of outcome reporting bias.150, 158, 159 

Some of the major potential issues involved with the joint modeling of multiple outcomes in 
meta-analysis (reviewed by Jackson and colleagues)150 include: 
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i. the disconnect between how outcomes are handled within each trial (typically in a 
univariate fashion) compared with a multivariate meta-analysis;  

ii. estimation difficulties particularly around correlations between outcomes (seldom 
reported; see Bland160 for additional commentary);  

iii. overcoming assumptions of normally-distributed random effects with joint outcomes 
(difficult to justify with joint distributions);  

iv. marginal model improvement in the multivariate vs. univariate case (often not sufficient 
trade off in effort); and  

v. amplification of publication bias (e.g., secondary outcomes are not published as 
frequently).150  

New methods not requiring within-study correlations are being developed to overcome the 
second limitation.161, 162  

Another potential challenge is the appropriate quantification of heterogeneity in multivariate 
meta-analysis; but, there are newer alternatives that seem to make this less of a concern. These 
methods include but are not limited to the multivariate H2 statistic (the ratio of a generalization 
of Q and its degrees of freedom, with an accompanying generalization of I2 (𝐼𝐼𝐻𝐻2)).163 Finally, 
limitations to existing software for broad implementation and access to multivariate meta-
analysis has been a long-standing barrier to this approach. With currently available add-on or 
base statistical packages, however, multivariate meta-analysis can be more readily performed,150 
and emerging approaches to multivariate meta-analyses are available to be integrated into 
standard statistical output.153 However, the gain in precision of parameter estimates is often 
modest, and the conclusions from the multivariate meta-analysis are often the same as those from 
the univariate meta-analysis for individual outcomes,164 which may not justify the increased 
complexity and difficulty.  

With the exception of diagnostic testing meta-analysis (which provides a natural situation to 
meta-analyze sensitivity and specificity simultaneously, but which is out of scope for this report) 
and network meta-analysis (a special case of multivariate meta-analysis with unique challenges, 
see Chapter 5), multivariate meta-analysis has not been widely used in practice. However, we are 
likely to see multivariate meta-analysis approaches become more accessible to stakeholders 
involved with systematic reviews.160 In the interim, however, we do not recommend this 
approach be used routinely.  

Dose-Response Meta-analysis 
 Considering different exposure or treatment levels has been a longstanding consideration 

in meta-analyses involving binary outcomes.165, 166 and new methods have been developed to 
extend this approach to differences in means.167 Meta-regression is commonly employed to test 
the relationship between exposure or treatment level and the intervention effect (i.e., dose-
response). The best-case scenario for testing dose-response using meta-regression is when there 
are several trials that compared the dose level versus control for each dosing level. That way, 
subgroup analysis can be performed to provide evidence of effect similarity within groups of 
study-by-dose in addition to a gradient of treatment effects across groups.10 Although 
incorporating study-level average dose can be considered, it should only be conducted in 
circumstances where there was limited-to-no variation in dosing within intervention arms of the 
studies included. In many instances, exposure needs to be grouped for effective comparison (e.g., 
ever vs. never exposed), but doing so raises the issues of non-independence and covariance 
between estimates.168 Hamling et al., developed a method of deriving relative effect and 
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precision estimates for such alternative comparisons in meta-analysis that are more reasonable 
compared with methods that ignore interdependence of estimates by level.168 In the case of trials 
involving differences in means, dose-response models are estimated within each study in a first 
stage and an overall curve is obtained by pooling study-specific dose-response coefficients in a 
second stage.167 A key benefit to this emerging approach to differences in means is modeling 
non-linear dose-response curves in unspecified shapes (including the cubic spline described in 
the derivation study).167 Considering the inherent low statistical power associated with meta-
regression in general, results of dose-response meta-regression should generally not be used to 
indicate that a dose response does not exist.10  

Recommendations  
• Statistical heterogeneity should be expected, visually inspected and quantified, and 

sufficiently addressed in all meta-analyses. 
• Prediction intervals should be included in all forest plots.  
• Investigators should be consider evaluating multiple metrics of heterogeneity, between-

study variance, and inconsistency (i.e., Q, τ2 and I2 along with their respective confidence 
intervals when possible). 

• A non-significant Q should not be interpreted as the absence of heterogeneity, and there 
are nuances to the interpretation of Q that carry over to the interpretation of τ2 and I2. 

• Random effects is the preferred method for meta-regression that should be used under 
consideration of low power associated with limited studies (i.e., <10 studies per study-
level factor) and the potential for ecological bias. 

• We recommend a simplified two-step approach to control-rate meta-regression that 
involves scatter plotting and then hierarchical or Bayesian meta-regression.  

• Routine use of multivariate meta-analysis is not recommended.  
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Chapter 5. Network Meta-Analysis (Mixed Treatment 
Comparisons/Indirect Comparisons) 
M. Hassan Murad, M.D., M.P.H., Gerald Gartlehner, M.D., M.P.H., Rongwei Fu, Ph.D., 
Zhen Wang, Ph.D. 

5.1. Rationale and Definition 
Decision makers, whether patients, providers or policymakers generally want head-to-head 

estimates of the comparative effectiveness of the different interventions from which they have to 
choose. However, head-to-head trials are relatively uncommon. The majority of trials compare 
active agents with placebo, which has left patients and clinicians unable to compare across 
treatment options with sufficient certainty. 

Therefore, an approach has emerged to compare agents indirectly. If we know that 
intervention A is better than B by a certain amount, and we know how B compares with C; we 
can indirectly infer the magnitude of effect comparing A with C. Occasionally, a very limited 
number of head-to-head trials are available (i.e., there may be a small number of trials directly 
comparing A with C). Such trials will likely produce imprecise estimates due to the small sample 
size and number of events. In this case, the indirect comparisons of A with C can be pooled with 
the direct comparisons, to produce what is commonly called a network meta-analysis estimate 
(NMA). The rationale for producing such an aggregate estimate is to increase precision, and to 
utilize all the available evidence for decision making. 

Frequently, more than two active interventions are available and stakeholders want to 
compare (rank) many interventions, creating a network of interventions with comparisons 
accounting for all the permutations of pairings within the network. The following guidance 
focuses on NMA of randomized controlled trials. NMA of nonrandomized studies is statistically 
possible; however, without randomization, NMA assumptions would likely not be satisfied and 
the results would not be reliable. 

5.2. Assumptions 
There are three key assumptions required for network meta-analysis to be valid: 
I. Homogeneity of direct evidence 
When important heterogeneity (unexplained differences in treatment effect) across trials is 

noted, confidence in a pooled estimate decreases.169 This is true for any meta-analysis. In an 
NMA, direct evidence (within each pairwise comparison) should be sufficiently homogeneous. 
This can be evaluated using the standard methods for evaluating heterogeneity (I2 statistic, τ2, 
Cochran Q test, and visual inspection of forest plots for consistency of point estimates from 
individual trials and overlap of confidence intervals). 

II. Transitivity, similarity or exchangeability 
Patients enrolled in trials of different comparisons in a network need to be sufficiently similar 

in terms of the distribution of effect modifiers. In other words, patients should be similar to the 
extent that it is plausible that they were equally likely to have received any of the treatments in 
the network.170 Similarly, active and placebo controlled interventions across trials need to be 
sufficiently similar in order to attribute the observed change in effect size to the change in 
interventions. 

Transitivity cannot be assessed quantitatively. However, it can be evaluated conceptually. 
Researchers need to identify important effect modifiers in the network and assess whether 
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differences reported by studies are large enough to affect the validity of the transitivity 
assumption. 

III. Consistency (Between Direct and Indirect Evidence)
Comparing direct and indirect estimates in closed loops in a network demonstrates whether

the network is consistent (previously called coherent). Important differences between direct and 
indirect evidence may invalidate combining them in a pooled NMA estimate.  

Consistency refers to the agreement between indirect and direct comparison for the same 
treatment comparison. If a pooled effect size for a direct comparison is similar to the pooled 
effect size from indirect comparison, we say the network is consistent; otherwise, the network is 
inconsistent or incoherent.171, 172 Multiple causes have been proposed for inconsistency, such as 
differences in patients, treatments, settings, timing, and other factors. 

Statistical models have been developed to assume consistency in the network (consistency 
models) or account for inconsistency between direct and indirect comparison (inconsistency 
models). Consistency is a key assumption/prerequisite for a valid network meta-analysis and 
should always be evaluated. If there is substantial inconsistency between direct and indirect 
evidence, a network meta-analysis should not be performed. Fortunately, inconsistency can be 
evaluated statistically.  

5.3. Statistical Approaches 

Overview  
The simplest indirect comparison approach is to qualitatively compare the point estimates 

and the overlap of confidence intervals from two direct comparisons that use a common 
comparator. Two treatments are likely to have comparable effectiveness if their direct effects 
relative to a common comparator (e.g., placebo) have the same direction and magnitude, and if 
there is considerable overlap in their confidence intervals. However, such qualitative 
comparisons have to be interpreted cautiously because the degree to which confidence intervals 
overlap is not a reliable substitute for formal hypothesis testing. Formal testing methods adjust 
the comparison of the interventions by the results of their direct comparison with a common 
control group and at least partially preserve the advantages of randomization of the component 
trials.173  

Many statistical models for network meta-analysis have been developed and applied in the 
literature. These models range from simple indirect comparisons to more complex mixed effects 
and hierarchical models, developed in both Bayesian and frequentist frameworks, and using both 
contrast level and arm level data.  

Simple Indirect Comparisons 
Simple indirect comparisons apply when there is no closed loop in the evidence network. A 

closed loop means that each comparison in a particular loop has both direct and indirect 
evidence. At least three statistical methods are available to conduct simple indirect comparisons: 
(1) the adjusted indirect comparison method proposed by Bucher et al,174 (2) logistic regression, 
and (3) random effects meta-regression.

When there are only two sets of trials, say, A vs. B and C vs. B, Bucher‘s method is 
sufficient to provide the indirect estimate of A vs. C as: log(ORAC)=log(ORAB)-log(ORCB) and 

Var(Log(ORAC)) = Var(Log(ORAB)) + Var(Log(ORCB)), where OR is the odds ratio. Bucher’s 
method is valid only under a normality assumption on the log scale. 
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 Logistic regression uses arm-level dichotomous outcomes data and is limited to odds 
ratios as the measure of effect. By contrast, meta-regression and adjusted indirect comparisons 
typically use contrast-level data and can be extended to risk ratios, risk differences, mean 
difference and any other effect measures. Under ideal circumstances (i.e., no differences in 
prognostic factors exist among included studies), all three methods result in unbiased estimates 
of direct effects.175 Meta-regression (as implemented in Stata, metareg) and adjusted indirect 
comparisons are the most convenient approaches for comparing trials with two treatment arms. A 
simulation study supports the use of random effects for either of these approaches.175 

Mixed Effects and Hierarchical Models  
More complex statistical models are required for more complex networks with closed loops 

where a treatment effect could be informed by both direct and indirect evidence. These models 
typically assume random treatment effects and take the complex data structure into account, and 
may be broadly categorized as mixed effects, or hierarchical models.  

Frequentist Approach  
Lumley proposed the term “network meta-analysis” and the first network meta-analysis 

model in the frequentist framework, and constructed a random-effects inconsistency model by 
incorporating sampling variability, heterogeneity, and inconsistency.176 The inconsistency 
follows a common random-effects distribution with mean of 0. It can use arm-level and contrast-
level data and can be easily implemented in statistical software, including R’s lme package. 
However, studies included in the meta-analysis cannot have more than two arms.  

Further development of network meta-analysis models in the frequentist framework 
addressed how to handle multi-armed trials as well as new methods of assessing 
inconsistency.171, 177-179 Salanti et al. provided a general network meta-analysis formulation with 
either contrast-based data or arm-based data, and defined the inconsistency in a standard way as 
the difference between ‘direct’ evidence and ‘indirect’ evidence.177 In contrast, White et al. and 
Higgins et al. proposed to use a treatment-by-design interaction to evaluate inconsistency of 
evidence, and developed consistency and inconsistency models based on contrast-based 
multivariate random effects meta-regression.171, 178 These models can be implemented using 
network, a suite of commands in Stata with input data being either arm-level or contrast level.  

Bayesian Approach  
Lu and Ades proposed the first Bayesian network meta-analysis model for multi-arm studies 

that included both direct and indirect evidence.180 The treatment effects are represented by basic 
parameters and functional parameters. Basic parameters are effect parameters that are directly 
compared to the baseline treatment, and functional parameters are represented as functions of 
basic parameters. Evidence inconsistency is defined as a function of a functional parameter and 
at least two basic parameters. The Bayesian model has been extended to incorporate study-level 
covariates in an attempt to explain between-study heterogeneity and reduce inconsistency,181 to 
allow for repeated measurements of a continuous endpoint that varies over time,87 or to appraise 
novelty effects.182 A Bayesian multinomial network meta-analysis model was also developed for 
unordered (nominal) categorical outcomes allowing for partially observed data in which exact 
event counts may not be known for each category.183 Additionally, Dias et al. set out a 
generalized linear model framework for the synthesis of data from randomized controlled trials, 
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which could be applied to binary outcomes, continuous outcomes, rate models, competing risks, 
or ordered category outcomes.86  

Commonly, a vague (flat) prior is chosen for the treatment effect and heterogeneity 
parameters in Bayesian network meta-analysis. A vague prior distribution for heterogeneity 
however may not be appropriate when the number of studies is small.184 An informative prior for 
heterogeneity can be obtained from the empirically derived predictive distributions for the degree 
of heterogeneity as expected in various settings (depending on the outcomes assessed and 
comparisons made).185 In the NMA framework, frequentist and Bayesian approaches often 
provide similar results; particularly because of the common practice to use non-informative 
priors in the Bayesian analysis.186-188 Frequentist approaches, when implemented in a statistical 
package, are easily applied in real-life data analysis. Bayesian approaches are highly adaptable to 
complex evidence structures and provide a very flexible modeling framework, but need a better 
understanding of the model specification and specialized programing skills. 

Arm-Based Versus Contrast-Based Models  
It is important to differentiate arm-based/contrast-based models from arm-level/contrast-level 

data. Arm-level and contrast-level data describe how outcomes are reported in the original 
studies. Arm-level data represent raw data per study arm (e.g., the number of events from a trial 
per group); while contrast-level data show the difference in outcomes between arms in the form 
of absolute or relative effect size (e.g., mean difference or the odds ratio of events).  

Contrast-based models resemble the traditional approaches used in meta-analysis of direct 
comparisons. Absolute or relative effect sizes and associated variances are first estimated (per 
study) and then pooled to produce an estimate of the treatment comparison. Contrast-based 
models preserve randomization and, largely, alleviate risk of observed and unobserved 
imbalance between arms within a study. They use effect sizes relative to the comparison group 
and reduce the variability of outcomes across studies. Contrast-based models are the dominant 
approach used in direct meta-analysis and network meta-analysis in current practice. 

Arm-based models depend on directly combining the observed absolute effect size in 
individual arms across studies; thereby producing a pooled rate or mean of the outcome per arm. 
Estimates can be compared among arms to produce a comparative effect size. Arm-based models 
break randomization; therefore, the comparative estimate will likely be at an increased risk of 
bias. Following this approach, nonrandomized studies or even noncomparative studies can be 
included in the analysis. Multiple models have been proposed for the arm-based approach, 
especially in the Bayesian framework.177, 189-192 However, the validity of arm-based methods is 
under debate. 178, 193, 194  

Assessing Consistency  
Network meta-analysis generates results for all pairwise comparisons; however, consistency 

can only be evaluated when at least one closed loop exists in the network. In other words, the 
network must have at least one treatment comparison with direct evidence. Many statistical 
methods are available to assess consistency.173, 174, 176, 195-200 

These methods can generally be categorized into two types: (1) an overall consistency 
measure for the whole network; and (2) a loop-based approach in which direct and indirect 
estimates are compared. In the following section, we will focus on a few widely used methods in 
the literature.  
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i. Single Measure for Network Consistency: These approaches use a single measure that 
represents consistency for the whole network. Lumley assumes that, for each treatment 
comparison (with or without direct evidence), there is a different inconsistency factor; 
and the inconsistency factor varies for all treatment comparisons and follows a common 
random-effects distribution. The variance of the differences, ω , also called incoherence, 
measures the overall inconsistency of the network.176 A ω  value above 0.25 suggests 
substantial inconsistency and in this case, network meta-analysis may be considered 
inappropriate.201 
 

ii. Global Wald Test: Another approach is to use global Wald test, which tests an 
inconsistency factor that follows a Χ2 distribution under the null consistency 
assumption.178 A p-value less than 0.10 can be used to determine statistical significance. 
Rejection of the null is evidence that the model is not consistent.  
 

iii. Loop-based approach: This approach involves comparing direct and indirect estimates for 
each comparison. This approach is preferred over a global test (i.e., a single measure for 
the whole network). Although a single inconsistency measure is easy to calculate and 
interpret, it conceals important sources of inconsistency (if multiple loops exist) in the 
network. Comparing direct and indirect estimates can be done in various ways: 

 
a. Z-test: A simple z-test can be used to compare the difference of the pooled effect 

sizes between direct and indirect comparisons.174 Benefits of this approach 
include simplicity, ease of application, and the ability to identify specific loops 
with large inconsistency. Limitations include the need for multiple correlated 
tests. 
 

b. Side-splitting: A “node” is a treatment and a “side” (or edge) is a comparison. 
Dias et al. suggests that each comparison can be assessed by comparing the 
difference of the pooled estimate from direct evidence to the pooled estimate 
without direct evidence.196 Side-splitting (sometimes referred to as node-splitting) 
can be implemented using the Stata network sidesplit command or R gemtc 
package.  
 

Several graphical tools have been developed to describe inconsistency. One is the 
inconsistency plot developed by Chaimani et al.197 Similar to a forest plot, the inconsistency plot 
graphically presents an inconsistency factor (the absolute difference between the direct and 
indirect estimates) and related confidence interval for each of the triangular and quadratic loops 
in the network. The Stata ifplot command can be used for this purpose. 

It is important to understand the limitations of these methods. Lack of statistical significance 
of an inconsistency test does not prove consistency in the network. Similar to Cochran's Q test of 
heterogeneity testing in traditional meta-analysis (which is often underpowered), statistical tests 
for inconsistency in NMA are also commonly underpowered due to the limited number of studies 
in direct comparisons.  

When a network exhibits important inconsistency, the options are:  
• Abandon NMA and only perform traditional meta-analysis; 



41 

• Present the results from inconsistency models (that incorporate inconsistency) and 
acknowledge the limited trustworthiness of the NMA estimates;  

• Split the network to eliminate the inconsistent nodes;  
• Attempt to explain the causes of inconsistency by conducting network meta-regression to 

test for possible covariates causing the inconsistency: and  
• Use only direct estimates for the pairwise NMA comparisons that show inconsistency 

(i.e., use direct estimates for inconsistent comparisons and use NMA estimates for 
consistent comparisons).  

There is no preferred strategy, and investigators need to choose the approach that fits the 
situation best. 

5.4. Considerations of Model Choice and Software 

Consideration of Indirect Evidence 
Empirical explorations suggest that direct and indirect comparisons often agree,174-176, 202-204 

but with notable exceptions.205 In principle, the validity of combining direct and indirect 
evidence relies on the transitivity assumption. However, in practice, trials can vary in numerous 
ways including population characteristics, interventions, and cointerventions, length of follow-
up, loss to follow-up, study quality, etc. Given the limited information in many publications and 
the inclusion of multiple treatments, the validity of combining direct and indirect evidence is 
often unverifiable. The statistical methods to evaluate inconsistency generally have low power, 
and are confounded by the presence of statistical heterogeneity. They often fail to detect 
inconsistency in the evidence network.  

Moreover, network meta-analysis, like all other meta-analytic approaches, constitutes an 
observational study, and residual confounding can always be present. Systematic differences in 
characteristics among trials in a network can bias network meta-analysis results. In addition, all 
other considerations for meta-analyses, such as the choice of effect measures or heterogeneity, 
also apply to network meta-analysis. Therefore, in general, investigators should compare 
competing interventions based on direct evidence from head-to-head RCTs whenever possible. 
When head-to-head RCT data are sparse or unavailable but indirect evidence is sufficient, 
investigators may consider incorporating indirect evidence and network meta-analysis as an 
additional analytical tool. If the investigators choose to ignore indirect evidence, they should 
explain why. 

Choice of Method 
Although the development of network meta-analysis models has exploded in the last 10 

years, there has been no systematic evaluation of their comparative performance, and the validity 
of the model assumptions in practice is generally hard to verify.  

Investigators may choose a frequentist or Bayesian mode of inference based on the research 
team expertise, the complexity of the evidence network, and/or the research question. If 
investigators believe that the use of prior information is needed and that the data are insufficient 
to capture all the information available, then they should use a Bayesian model. On the other 
hand, a frequentist model is appropriate if one wants inferences to be based only on the data that 
can be incorporated into a likelihood. 

Whichever method the investigators choose, they should assess the consistency of the direct 
and indirect evidence, and the invariance of treatment effects across studies and the 
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appropriateness of the chosen method on a case-by-case basis, paying special attention to 
comparability across different sets of trials. Investigators should explicitly state assumptions 
underlying indirect comparisons and conduct sensitivity analysis to check those assumptions. If 
the results are not robust, findings from indirect comparisons should be considered inconclusive. 
Interpretation of findings should explicitly address these limitations. Investigators should also 
note that simple adjusted indirect comparisons are generally underpowered, needing four times 
as many equally sized studies to achieve the same power as direct comparisons, and frequently 
lead to indeterminate results with wide confidence intervals.174, 175 

When the evidence of a network of interventions is consistent, investigators can combine 
direct and indirect evidence using network meta-analysis models. Conversely, they should 
refrain from combining multiple sources of evidence from an inconsistent (i.e., incoherent) 
network where there are substantial differences between direct and indirect evidence that cannot 
be resolved by conditioning on the known covariates. Investigators should make efforts to 
explain the differences between direct and indirect evidence based upon study characteristics, 
though little guidance and consensus exists on how to interpret the results.  

Lastly, the network geometry (Figure 5.1) can also affect the choice of analysis method as 
demonstrated in Table 5.1. 

Figure 5.1. Common network geometry (simple indirect comparison, star, network with at least 
one closed loop) 

 

Table 5.1. Impact of network geometry on choice of analysis method 
Methods Simple indirect comparison Star network* Network with at least one 

closed loop† 

Qualitative assessment X 
  

Adjusted Indirect comparison, 
random-effects meta 
regression, logistic regression 

X X 
 

Lumley’s mixed-effects linear 
regression176 

  
X 

Mixed effects and hierarchical 
models  
 171, 178 

 
X X 

X = Appropriate method for the network geometry 
*In a star network, all interventions (A, B, D, E) connect to a common comparator (C). There is no other direct comparison.  
†Network with at least one closed loop is an extension of a star network. Besides a common comparator (C) in the network, there 
is at least one direct comparison between other interventions (closed loop). In this example, A, B, and C form a closed loop.  
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Commonly Used Software 
Many statistical packages are available to implement NMA. BUGS software (Bayesian 

inference Using Gibbs Sampling, WINBUGS, OPENBUGS) is a popular choice for conducting 
Bayesian NMA206 that offers flexible model specification including NMA meta-regression. 
JAGS and STAN are alternative choices for Bayesian NMA. Stata provides user-written routines 
(http://www.mtm.uoi.gr/index.php/stata-routines-for-network-meta-analysis) that can be used to 
conduct frequentist NMA. In particular, the Stata command network is a suite of programs for 
importing data for network meta-analysis, running a contrast-based network meta-analysis, 
assessing inconsistency, and graphing the data and results. Further, in the R environment, three 
packages, gemtc (http://cran.r-project.org/web/packages/gemtc/index.html), pcnetmeta 
(http://cran.r-project.org/web/packages/pcnetmeta/index.html), and netmeta (http://cran.r-
project.org/web/packages/netmeta/index.html), have been developed for Bayesian (gemtc, 
pcnetmeta) or frequestist (netmeta) NMA. The packages also include methods to assess 
heterogeneity and inconsistency, and data visualizations, and allow users to perform NMA with 
minimal programming.207  

5.5. Inference From Network Meta-analysis 
Stakeholders (users of evidence) require a rating of the strength of a body of evidence. The 

strength of evidence demonstrates how much certainty we should have in the estimates.  
The general framework for assessing the strength of evidence used by the EPC program is 

described elsewhere. However; for NMA, guidance is evolving and may require some additional 
computations; therefore, we briefly discuss the possible approaches to rating the strength of 
evidence. We also discuss inference from rankings and probabilities commonly presented with a 
network meta-analysis.  

Approaches for Rating the Strength of Evidence 
The original EPC and GRADE guidance was simple and involved rating down all evidence 

derived from indirect comparisons (or NMA with mostly indirect evidence) for indirectness. 
Therefore, following this original GRADE guidance, evidence derived from most NMAs would 
be rated to have moderate strength at best.208 Subsequently, Salanti et al. evaluated the 
transitivity assumption and network inconsistency under the indirectness and inconsistency 
domains of GRADE respectively. They judged the risk of bias based on a ‘contribution matrix’ 
which gives the percentage contribution of each direct estimate to each network meta-analysis 
estimate.209 A final global judgment of the strength of evidence is made for the overall rankings 
in a network.  

More recently, GRADE published a new approach that is based on evaluating the strength of 
evidence for each comparison separately rather than making a judgment on the whole network.210 
The rationale for not making such an overarching judgment is that the strength of evidence 
(certainty in the estimates) is expected to be different for different comparisons. The approach 
requires presenting the three estimates for each comparison (direct, indirect, and network 
estimates), then rating the strength of evidence separately for each one. 

In summary, researchers conducting NMA should present their best judgment on the strength 
of evidence to facilitate decision-making. Innovations and newer methodology are constantly 
evolving in this area.  

http://www.mtm.uoi.gr/index.php/stata-routines-for-network-meta-analysis
http://cran.r-project.org/web/packages/gemtc/index.html
http://cran.r-project.org/web/packages/pcnetmeta/index.html
http://cran.r-project.org/web/packages/netmeta/index.html
http://cran.r-project.org/web/packages/netmeta/index.html
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Interpreting Ranking Probabilities and Clinical Importance of Results 
Network meta-analysis results are commonly presented as probabilities of being most 

effective and as rankings of treatments. Results are also presented as the surface under the 
cumulative ranking curve (SUCRA). SUCRA is a simple transformation of the mean rank that is 
used to provide a hierarchy of the treatments accounting both for the location and the variance of 
all relative treatment effects. SUCRA would be 1 when a treatment is certain to be the best and 0 
when a treatment is certain to be the worst.211 Such presentations should be interpreted with 
caution since they can be quite misleading. 

Whether results were presented as probabilities, rankings or SUCRA, three concerns should 
be recognized: 
 

i. Such estimates are usually very imprecise. An empirical evaluation of 58 NMAs showed 
that the median width of the 95% CIs of SUCRA estimates was 65% (the first quartile 
was 38%; the third quartile was 80%). In 28% of networks, there was a 50% or greater 
probability that the best-ranked treatment was actually not the best. No evidence showed 
a difference between the best-ranked intervention and the second or third best-ranked 
interventions in 90% and 71% of comparisons, respectively. 

ii. When rankings suggest superiority of an agent over others, the absolute difference 
between this intervention and other active agents could be trivial. Converting the relative 
effect to an absolute effect is often needed to present results that are meaningful to 
clinical practice and relevant to decision making.212 Such results can be presented for 
patient groups with varying baseline risks. The source of baseline risk can be obtained 
from observational studies judged to be most representative of the population of interest, 
from the average baseline risk of the control arms of the randomized trials included in 
meta-analysis, or from a risk stratification tool if one is known and commonly used in 
practice.213 

iii. Rankings hide the fact that each comparison may have its own risk of bias, limitations, 
and strength of evidence.  

5.6. Presentation and Reporting 
Methodological evaluation of published network meta-analyses demonstrate great 

heterogeneity in reporting and numerous deficiencies. Commonly, network meta-analyses 
demonstrate an unclear understanding of underlying assumptions, inappropriate search and 
selection of relevant trials, use of inappropriate or flawed methods, lack of objective and 
validated methods to assess or improve trial similarity, and inadequate comparison or 
inappropriate combination of direct and indirect evidence.214-216 Such deficiencies necessitated 
the extension of the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-
analyses) statement that attempted to improve the reporting of systematic reviews incorporating 
network meta-analyses.217 We advise the following information be presented so that the 
adequacy of the NMA can be assessed: 

• Rationale for conducting an NMA, the mode of inference (e.g., Bayesian, Frequentist), 
and the model choice (random effects vs. fixed effects; consistency vs inconsistency 
model, common heterogeneity assumption, etc.); 

• Software and syntax/commands used; 
• Choice of priors for any Bayesian analyses; 
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• Graphical presentation of the network structure and geometry; 
• Pairwise effect sizes to allow comparative effectiveness inference; and 
• Assessment of the extent of consistency between the direct and indirect estimates.  

Recommendations 
• A network meta-analysis should always be based on a rigorous a rigorous systematic 

review. 
• Conducting network meta-analysis requires that three assumptions be met: 

o Homogeneity of direct evidence 
o Transitivity, similarity, or exchangeability 
o Consistency (between direct and indirect evidence) 

• Investigators may choose a frequentist or Bayesian mode of inference based on the 
research team’s expertise, the complexity of the evidence network, and the research 
question. 

• Evaluating inconsistency is a major and mandatory component of network meta-analysis. 
• Evaluating inconsistency should not be only based on a conducting a global test. A loop-

based approach can identify the comparisons that cause inconsistency.  
• Inference based on the rankings and probabilities of treatments being most effective 

should be used cautiously.  Rankings and probabilities can be misleading and should be 
interpreted based on the magnitude of pairwise effect sizes. Differences across 
interventions may not be clinically important despite such rankings. 
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Future Research Suggestions 
The following are suggestions for directions in future research for each of the topics by 

chapter.  

Chapter 1. Decision To Combine Trials 
• Guidance regarding the minimum number of trials one can validly pool at given levels of 

statistical heterogeneity 

Chapter 2. Optimizing Use of Effect Size Data  
• Research on ratio of means—both clinical interpretability and mathematical consistency 

across studies compared with standardized mean difference 
• Research on use of ANCOVA models for adjusting baseline imbalance 
• Software packages that more easily enable use of different information 
• Methods to handle zeros in the computation of binary outcomes 
• Evidence on which metrics, and language used to describe these metrics, are most helpful 

in conveying meta-analysis results to multiple stakeholders 

Chapter 3. Choice of Statistical Model for Combining Studies 
• Evaluate newly developed statistical models for combining typical effect measures (e.g., 

mean difference, OR, RR, and/or RD) and compare with current methods  

Chapter 4. Quantifying, Testing, and Exploring Statistical 
Heterogeneity 

• Heterogeneity statistics for meta-analyses involving a small number of studies  
• Guidance on specification of hypotheses in meta-regression  
• Guidance on reporting of relationships among study outcomes to facilitate multivariate 

meta-analysis 

Chapter 5. Network Meta-analysis (Mixed Treatment 
Comparisons/Indirect Comparisons) 

• Methods for combining individual patient data with aggregated data 
• Methods for integrating evidence from RCTs and observational studies 
• Models for time-to-event data 
• User friendly software similar to that available for traditional meta-analysis 
• Evidence to support model choice 
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