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Abstract

This supplement describes how counterfactual theory is used to define causal effects and the conditions 
in which observed data can be used to estimate counterfactual-based causal effects. Basic definitions 
and language used in causal graph theory are then presented. The graphical separation rules linking the 
causal assumptions encoded in a diagram to the statistical relations implied by the causal diagrams are 
then presented. The supplement concludes with a description of how Directed Acyclic Graphs (DAGs) 
can be used to select covariates for statistical adjustment, identify sources of bias, and support causal 
interpretation in comparative effectiveness studies.
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Introduction

Under the rubric of structural equation modeling, 
causal diagrams were historically used to illustrate 
qualitative assumptions in linear equation systems. 
Judea Pearl extended the interpretation of causal 
diagrams to probability models, a development that 
has enabled the use of graph theory in probabilistic 
and counterfactual inference.1 Epidemiologists 
then recognized that these diagrams could be used 
to illustrate sources of bias in epidemiological 
research,2 and for this reason have recommended the 
use of causal graphs to illustrate sources of bias and 
to determine if the effect of interest can be identified 
from available data.3-6 

This supplement begins with a brief overview of 
how counterfactual theory is used to define causal 
effects and of the conditions under which observed 
data can be used to estimate counterfactual-based 
causal effects. We then present the basic definitions 
and language used in causal graph theory. Next we 
describe the construction of causal diagrams and 
the graphical separation rules linking the causal 
assumptions encoded in a diagram to the statistical 
relations implied by the diagram. The supplement 
concludes with a description of how Directed Acyclic 
Graphs (DAGs) can be used to select covariates 
for statistical adjustment, identify sources of bias, 
and support causal interpretation in comparative 
effectiveness studies.

Estimating Causal Effects 

The primary goal of nonexperimental comparative 
effectiveness research is to compare the effect of 
study treatments on the risk of specific outcomes in 
a target population. To determine if a treatment had 
a causal effect on an outcome of interest, we would 
like to compare individual-level outcomes under 
each treatment level. Unfortunately, an individual’s 
outcome can only be observed under one treatment 
condition, which is often referred to as the factual 
outcome. Outcomes under treatment conditions not 
actually observed are referred to as counterfactual or 
potential outcomes.7-8 Using counterfactual theory, 
we would say that a treatment had a causal effect on 
an individual’s outcome if the outcome experienced 
would have been different under an alternative 
treatment level. For example, we would conclude 
that treatment A had a causal effect on the outcome 
Y if, say, an individual died 5 days after taking the 
drug (a=1), but would have remained alive on day 5 
if he had not taken the medication (a=0). Due to the 
missing counterfactual data, causal effect measures 
cannot be directly computed for individual people 
without very strong assumptions. Nevertheless, 
average causal effects can be consistently estimated 
in randomized experiments and nonexperimental 
studies under certain assumptions.7-8
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Assuming that we can simultaneously estimate 
the outcome risk for the entire population under 
different treatment conditions, then an average 
causal effect occurs when the outcome risk is 
not equal across levels of treatment. Using a 
dichotomous treatment (A) and outcome (Y) as 
the example, the causal effect in a population 
is the probability of the outcome occurring 
when the entire population is treated Pr[Ya=1=1] 
minus the probability of the outcome occurring 
when the entire population is untreated 
Pr[Ya=0=1].  Populations, like individuals, 
cannot simultaneously receive different levels 
of treatment. We can, however, use observed 
data to draw inferences about the probability 
distributions or expectations over a population 
of counterfactual variables. One of the important 
assumptions required for using only observed data 
(factual data) to estimate average causal effects is 
exchangeability.  

In an ideal randomized experiment, treatment 
assignment is independent of the counterfactual 
outcomes, and therefore the two groups are 
exchangeable.7, 9 This means that the risk of 
experiencing the outcome in the two groups at the 
time of treatment assignment is equal to the risk 
in the full population. The equivalency to the full 
population allows us to use the observed data from 
the treated group to estimate what the treatment 
effect would have been if the entire population was 
treated, and it also allows us to use the observed 
data from the untreated group to estimate the 
effect of no treatment in the full population. 
In addition, because the outcome risks in the 
subpopulations are equivalent at the time treatment 
is assigned, the observed risk difference between 
the treatment groups can be attributed to treatment 
effects.10 In an ideal randomized trial, the outcome 
experience had the entire population been treated 
(Pr[Ya=1=1]) is equal to the probability of the 
outcome occurring in the subset of the population 
who received treatment (Pr[Y=1|A=1]), and the 
same holds for the untreated group. Using the risk 
difference scale, this means that the conditional 
risk difference can be used to estimate the 
marginal causal risk difference (Pr[Y=1|A=1] - 
Pr[Y=1|A=0]) = (Pr[Ya=1=1]- (Pr[Ya=0=1]).

In nonexperimental studies, marginal 
exchangeability can rarely be assumed, since 
patients and providers typically select treatments 
based on their belief about the risk of specific 
outcomes. In this case marginal exchangeability 
does not hold, but exchangeability may hold within 
levels of risk factors pertaining to the outcome. 
Causal inference from nonexperimental data is 
based on the critical assumption that within levels 
of important risk factors, treatment assignment 
is effectively randomized. This assumption is 
also referred to as “conditional exchangeability,” 
“conditional unconfoundedness,” or the 
assumption of “conditionally ignorable treatment 
assignment.”8, 10 When we assume that treatment 
was randomly assigned conditional on a set of 
covariates, causal inference for nonexperimental 
comparative effectiveness studies requires some 
form of covariate adjustment.

The question then concerns the adjustments that 
must be made in order to generate conditional 
exchangeability and avoid bias. DAGs have been 
found to be particularly helpful in diagnosing 
sources of bias and helping investigators select 
a set of covariates that allow the estimation of 
causal effects from observed data. Using DAG 
theory, confounding bias can be characterized as 
an unblocked “backdoor” path from the treatment 
to the outcome. The next section presents 
terminology for DAGs and their utility in selecting 
covariates for statistical adjustment. 

DAG Terminology

DAGs are used to encode researchers’ a priori 
assumptions about the relationships between 
and among variables in causal structures. DAGs 
contain directed edges (arrows), linking nodes 
(variables), and their paths. A path is an unbroken 
sequence of distinct nodes connected by edges; a 
directed path is a path that follows the edges in the 
direction indicated by the arrows, such as the path 
from A to C (A→B→C). An undirected path does 
not follow the direction of the arrows, such as the 
following A to C path (A→B→C). Kinship terms 
are often used to represent relationships within a 
path. If there exists a directed path from A to C, 
then A is an ancestor of C and C is a descendent of 
A. Using the directed path example of A→B→C, 



179

Supplement 2. Use of Directed Acyclic Graphs

A is a direct cause or parent of B, and B is a child 
of A and parent of C, while A is considered an 
indirect cause or ancestor of C. The node B lies 
on the causal pathway between A and C and is 
considered an intermediate or mediator variable on 
the directed path.  DAGs are acyclic since no node 
can have an arrow pointing to itself, and all edges 
must be directed (contain arrows).2 In other words, 
no directed path from any node to itself is allowed. 
These rules enforce the understanding that causes 
must precede their effects. Mutual causation is 
handled in DAGs by including a time component, 
which allows A to cause B at time (t) and B to 
cause A at some later time (t+1).

The first step in creating a causal DAG is to 
diagram the investigators’ understanding of the 
relationships and dependencies among variables. 
Construction of DAGs should not be limited to 
measured variables from available data; they 
must be constructed independent of available 
data and of background knowledge of the causal 
network linking treatment to the outcome. The 
most important aspect of constructing a causal 
DAG is to include on the DAG any common 
cause of any other two variables on the DAG. 
Variables that only causally influence one other 
variable (exogenous variables) may be included 
or omitted from the DAG, but common causes 
must be included for the DAG to be considered 
causal. The absence of any path between two 
nodes in a DAG indicates that the variables are 
not causally related (i.e., that manipulation of one 
variable does not cause a change in the value of 
the other variable). Investigators may not agree 
on a single DAG to represent a complex clinical 
question; when this occurs, multiple DAGs may be 
constructed and statistical associations observed 
from available data may be used to evaluate the 
consistency of observed probability distributions 
with the proposed DAGs. Statistical analyses may 
be undertaken as informed by different DAGs, and 
the results can be compared.

Figure S2.1 is a modified DAG illustrating a highly 
simplified hypothetical study, described in chapter 
7, to compare rates of acute liver failure between 
new users of calcium channel blockers (CCBs) and 
diuretics.  

Figure S2.1 Hypothetical DAG illustrating causal 
relationships among formulary policy (C

1
) and treatment 

with a CCB (A) and treatment for eretile dysfunction 
(C

4
). Alcohiol abuse (C

2
) influences impotence (C

3
), 

which influences treatment of erectile dsyfuncuction 
(C

4
) and is a cause of acute liver disease (Y). In this 

example there is no effect of antihypertensive treatment, 
that is, treatment with a CCB (A), on liver disease.

Causal diagrams like Figure S2.1 can be used 
to express causal assumptions and the statistical 
implications of these assumptions.11-12  

Independence Relationships

DAGs can be used to infer dependence and 
conditional independence relationships if the 
causal structure represented by the graph is 
correct. The rules linking the structure of the 
graph to statistical independence are called the 
d-separation criteria and are stated in terms of 
blocked and unblocked paths.2 To discuss blocked 
and unblocked paths, we need one more graphical 
concept, that of a collider. A node is said to be a 
collider on a specific path if it is a common effect 
of two variables on that path (i.e., when both the 
preceding and subsequent nodes have directed 
edges going into the collider node). In Figure S2.1, 
C

4
 is a collider on the path A←C

1
→C

4
 ←C

3
←C

2
→Y. 

Note, however, that whether a variable is a collider 
or not is relative to the path. C

4
 is not a collider on 

the path C
4
←C

3
←C

2
→Y. 

We can now define blocked paths. A path from a 
node A to a node Y is unconditionally blocked if 
there is a collider on the path from A to Y (e.g., 
Figure S2.2). A path from a node A to a node 
Y is said to be blocked conditional (e.g., when 
adjusting) on a set of variables Z if either there 
is a variable in Z on the path that is not a collider 
or if there is a collider on a path such that neither 
the collider nor any of its descendants are in Z. 
Otherwise, the path is said to be unblocked or 
open. Two paths between A and Y exist in Figure 
S2.2. The path A←C

1
→C

4
→C

5
→Y is an open path, 
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while the A←C
1
→C

4
←C

3
←C

2
→Y path is closed 

due to the collider C
4
. Adjustment for C

4
 or C

5
 

will close the A←C
1
→C

4
→C

5
 →Y path but open 

a backdoor path on the A←C
1
→C

4
←C

3
←C

2
→Y 

pathway by inducing an association between C
1
 

and C
2
. Adjustment for C

1
 alone will close the 

open A←C
1
→C

4
→C

5
→Y path and not alter the 

A←C
1
→C

4
←C

3
←C

2
→Y path, which is closed due to 

the collider.

Figure S2.2 Hypothetical DAG used to illustate the 
open backdoor path rule. Adjustment for C

4
 or C

5
 will 

open the A←C
1
→C

4
←C

3
←C

2
→Y path. Adjustment for 

C1 will close the open A←C
1
→C

4
→C

5
→Y path.

Blocked paths correspond to independence; 
unblocked paths to association. More formally, 
we say that a node A and a node Y are d-separated 
conditional on Z if all paths from A to Y are 
blocked conditional on Z. If a DAG correctly 
describes the causal structures, then it follows that 
if A and Y are d-separated conditional on Z, then 
A and Y are conditionally independent given Z. 
This is sometimes referred to as the d-separation 
criterion. On the other hand, variables that are 
marginally independent but have a common effect 
become conditionally dependent when statistically 
adjusting the common effect. Adjusting for 
such colliders is said to open up backdoor paths 
and induce conditional associations. A stylized 
example used to illustrate this concept describes 
two ways in which the pavement (X

3
) can be 

wet—the sprinkler system (X
1
) is on or it is raining 

outside (X
2
).11 One assumes that the owners of 

the sprinkler system watered their lawn based 
on a preprogrammed schedule, making use of 
sprinklers unassociated with rain. Suppose you had 
a data table with data on X

1
, X

2
 and X

3
 during the 

past year. If you were to evaluate the association 
between X

1
 and X

2
, you would find that X

1
 does 

not predict X
2
 and X

2
 does not predict X

1
. Now 

suppose you only use data where the concrete is 

wet and reevaluate the association between X
1
 and 

X
2
. By conditioning on the concrete being wet 

(X
3
 =1), dependence is established between the 

sprinklers being on and rain that did not previously 
exist. For example, if we know the concrete is 
wet and we also know the sprinklers are not 
on, then we can predict that it must be raining.  
Conditioning on a collider by either statistical 
adjustment or selection into the study can generate 
unintended consequences and bias the effect 
estimate.

Using DAGs To Select 
Covariates and Diagnose Bias

In a nonexperimental setting, the goal of 
covariate selection is to remove confounding by 
covariate selection. As described in chapter 7, 
intermediate, collider, and instrumental variables 
may behave statistically like confounders. For 
this reason, background knowledge is required to 
distinguish confounders for statistical adjustment. 
The most important result relating conditional 
exchangeability to causal diagrams is Pearl’s 
backdoor path adjustment theorem, which 
provides a simple graphical test that investigators 
can use to determine whether the effect of A on 
Y is confounded. A set of variables, Z, satisfies 
the backdoor criterion relative to the treatment 
A and outcome Y in a DAG if no node in Z is a 
descendant of A and Z blocks every path between 
A and Y that begins with an arrow into A. The 
backdoor path adjustment theorem states that 
if Z satisfies the backdoor path criterion with 
respect to A and Y then the treatment groups are 
exchangeable conditional on Z.1

Using the backdoor path adjustment theorem, we 
can see the close connection between backdoor 
paths and common causes. Figure S2.3 indicates 
that treatment (A) and outcome (Y) have a 
common cause (C

4
). The backdoor path from A 

to Y is open and confounding is present unless 
C

4
 is statistically adjusted. We will represent 

conditioning on a variable by placing a square 
around the node, as illustrated in Figure S2.3.  
Unfortunately, adjustment for C

4
 opens a backdoor 

path from A to Y through C
1
, C

4
, C

3
, and C

2
, 

resulting in bias, unless additional adjustment is 
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made for C
1
, C

2
, or C

3
, or any combination of these. 

The key to ensuring conditional exchangeability 
is to measure and condition on variables needed 
to block all backdoor paths between the treatment 
and outcome (i.e., to condition on a sufficient set 
of confounders). When the effect of A on Y is 
unconfounded given a set of variables Z, we can 
then estimate the average causal effect described 
above using observed conditional probabilities 
(Pr[Y=1|A=1, Z=z] - Pr[Y=1|A=0, Z=z]) = 
(Pr[Ya=1=1|Z=z]- Pr[Ya=0=1|Z=z]).

Figure S2.3 DAG illustrating causal relationships 
among formulary policy (C

1
) and treatment with 

a CCB (A) and treatment for erectile dysfunction 
(C

4
). Alcohol abuse (C

2
) influences impotence (C

3
), 

which influences treatment of erectile dysfunction 
(C

4
) and is a cause of acute liver disease (Y). In 

this example C
4
 is a confounder and collider. 

Adjustment of C
4
 is additional to adjustment for at 

least one other variable on the open C
1-3

 pathways.

Using DAGs To Diagnose 
Selection Bias

The previous section described the use of DAGs 
to remove confounding, thereby enabling the 
estimation of average causal effects using observed 
patient responses to treatment. This section 
describes the use of DAGs to diagnose bias that 
results from selection into a study. Selection 
bias results when the estimated causal effect is 
different in the subset of the population being 
evaluated, when the goal is to make an inference 
to the full population. Selection bias occurs when 
the risk for the outcome in the population being 
studied is different from the risk in the target 
population, a situation that can happen when study 
participants are not representative of the target 
population. Various causes of selection bias have 
been described as healthy-worker bias, volunteer 
bias, selection of controls into case-control studies, 
differential loss-to-followup, and nonresponse.  

In the previous section, we described a type of 
selection bias that occurs when conditioning on a 
collider variable. We called this situation collider 
stratification bias. This bias occurs from estimating 
the average causal effect within “selected” stratum, 
then averaging across strata. It turns out that 
the basic structure of selection bias is the same 
as collider stratification bias, which has been 
described as conditioning on a common effect 
of two other variables.6 In the following section, 
we provide an example of how conditioning on 
a common effect can result from differential loss 
to followup. Please review the paper by Hernán 
and colleagues titled “A Structural Approach to 
Selection Bias” for a more complete discussion of 
other forms of selection bias.6  

Selection bias is a result of conditioning on a 
common effect of two variables. To simplify, 
consider a randomized trial of antihypertensive 
treatments (CCB or other) and the outcome of 
acute liver disease (Y). The DAG in Figure S2.4 
indicates that A is not causally associated with 
Y, but we would expect an association between A 
and Y conditional on S (selection) even though A 
does not cause Y. Assume that patients initiated on 
CCB have a higher rate of experiencing adverse 
drug effects and are more likely to drop out of the 
study (S=1) as represented from the arrow from 
A to S. Further assume that patients who abuse 
alcohol (C=1) are more likely to drop out as well. 
The square around S indicates that the analysis is 
restricted to individuals who did not drop out of the 
study.

Due to the random assignment of A, the variables 
A and C are marginally independent, but become 
conditionally dependent when selecting only 
subjects who remained in the study (i.e., those who 
did not drop out). Knowing that a study subject 
was an alcohol abuser but remained in the study 
suggests that she did not experience adverse effects 
of therapy. Restricting this analysis to subjects who 
did not drop out will result in patients treated with 
CCB having a lower proportion of alcohol abuse, 
thus making CCBs appear to be protective against 
acute liver failure when no causal association 
exists. This conditional dependence opens a 
pathway from A to Y through C thus biasing the 
observed risk difference from the counterfactual 
risk difference and resulting in selection bias.
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Figure S2.4. DAG illustrating selection bias. Treatment 
(A) is randomized. Subjects randomized to CCBs 
(A=1) are more likely to drop out due to adverse 
drug effects. Subjects with alcohol abuse (C=1) are 
more likely to drop out of the study and they are also 
more likely to experience acute liver failure (Y=1). 
Conditioning on selection (retention in study) (S=1) 
induces as association between A and C, which results 
in an open biasing pathway between A and Y.

There are situations where the causal risk 
estimate can be recovered from a design 
affected by selection bias. A technique called 
inverse probability weighting that generates a 
pseudopopulation where all subjects remained 
in the study can, under certain assumptions, 
be used to estimate the average causal effect in 
the entire target population. Inverse probability 
weighting is based on assigning a weight to 
each selected subject so that she accounts in the 
analysis not only for herself but also for those 
with similar characteristics (i.e., those with the 
same values of C and A) in subjects who were 
not selected.6 The effect measure based on the 
pseudopopulation, in contrast to that based on the 
selected population, is unaffected by selection 
bias provided that the outcome of the uncensored 
subjects truly represents the unobserved outcomes 
of the censored subjects. This provision will 
be satisfied if the probability of selection is 
calculated conditional on A and all other factors 
that independently predict both selection and 
the outcome. However, this is an untestable 
assumption and one must carefully consider 
influences of discontinuation and the outcome 
when attempting to statistically address selection 
bias.

Conclusion

This supplement described the use of DAGs 
to identify sources of bias in nonexperimental 
comparative effectiveness research. The goal 
of covariate selection is to generate conditional 
exchangeability, thereby allowing unbiased 

causal effect estimates within strata of covariates 
that are then pooled in some manner to generate 
unbiased average causal effects. The challenge 
of nonexperimental research is choosing a set of 
covariates that removes confounding bias and does 
not inadvertently generate other sources of bias. 
A confounder is typically considered a common 
cause of treatment and outcome, and DAG theory 
conceptualizes confounding as an open pathway 
between treatment and outcome. Confounders, 
unfortunately, cannot be selected based on 
statistical associations alone because some types 
of bias-inducing variables behave statistically like 
confounders. A common effect of two variables 
on a backdoor pathway is considered a collider. 
Colliders behave statistically like confounders, 
but pathways that include colliders are considered 
closed and do not bias the targeted effect estimate.  
Adjustment for colliders opens up additional 
pathways that can generate bias if necessary 
variables on the newly opened pathway are not 
appropriately adjusted.

Conditioning on the common effect of two 
variables (i.e., colliders) turns out to be the 
structural explanation for all types of selection 
bias. Selection bias occurs when participation in 
the study though volunteerism, design, adherence 
to treatment, or followup is influenced by the 
treatment and either the outcome or risk factors 
for the outcome. Some forms of selection bias, 
such as differential loss to followup, can be 
corrected by statistical techniques that analyze a 
pseudopopulation based on the subpopulation that 
was not lost to followup.  

The use of DAGs can help researchers clarify 
and discuss their beliefs about the underlying 
data generating process, which can in turn aid 
the interpretation of the statistical associations 
observed in the data. Developing DAGs is not 
always easy and may require a heuristic approach, 
where assumptions are tested by observed 
statistical association and revised. A disciplined 
approach to developing DAGs may be useful for 
communicating findings and providing rationale 
for covariate selection. As discussed in chapter 
7, there are often situations where a complete 
understanding of the causal network linking 
treatment to outcome is unknown. Empirical 
variable selection techniques may be employed to 
identify potential confounders for consideration. 
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In addition, we described methods for selecting 
covariates based on incomplete knowledge of the 
causal structure. In this case, simplifying rules, 
such as selecting all direct causes of treatment and/
or outcome may, in certain circumstances, be a 
good technique for removing confounding when 
the full causal structure is unknown.13 Familiarity 

with DAG theory will improve the investigators’ 
understanding of the logic and principles behind 
covariate selection for nonexperimental CER. 
Furthermore, use of DAGs standardizes the 
language for covariate selection, thus improving 
communication and clarity within the field and 
among investigators.

Checklist: Guidance and key considerations for DAG development and use in 
CER protocols

Guidance Key Considerations Check

Develop a simplified DAG to illustrate 
concerns about bias.

–– Use a DAG to illustrate and communicate known 
sources of bias, such as important well known 
confounders and causes of selection bias.

o

Develop complete DAG(s) to identify a 
minimal set of covariates.

–– Construction of DAGs should not be limited to 
measured variables from available data; they must 
be constructed independent of available data.

–– The most important aspect of constructing 
a causal DAG is to include on the DAG any 
common cause of any other two variables on the 
DAG.

–– Variables that only causally influence one other 
variable (exogenous variables) may be included or 
omitted from the DAG, but common causes must 
be included for the DAG to be considered causal.

–– Identify a minimal set of covariates that blocks all 
backdoor paths and does not inadvertently open 
closed pathways by conditioning on colliders or 
descendants.

o
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