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Abstract 
Synthesizing information on test performance metrics, such as sensitivity, 
specificity, predictive values and likelihood ratios, is often an important part of a 
systematic review of a medical test. Because many metrics of test performance 
are of interest, the meta-analysis of medical tests is more complex than the meta-
analysis of interventions or associations. Sometimes, a helpful way to summarize 
medical test studies is to provide a “summary point,” a summary sensitivity and a 
summary specificity. Other times, when the sensitivity or specificity estimates 
vary widely or when the test threshold varies, it is more helpful to synthesize data 
using a “summary line” that describes how the average sensitivity changes with 
the average specificity. The choice of the most helpful summary is subjective, and 
in some cases both summaries provide meaningful and complementary 
information. Because sensitivity and specificity are not independent across 
studies, the meta-analysis of medical tests is fundamentaly a multivariate 
problem, and should be addressed with multivariate methods. More complex 
analyses are needed if studies report results at multiple thresholds for positive 
tests. At the same time, quantitative analyses are used to explore and explain any 
observed dissimilarity (heterogeneity) in the results of the examined studies. This 
can be performed in the context of proper (multivariate) meta-regressions.  

Introduction  
The Methods Guide to Medical Test Reviews (also referred to as the Medical Test Methods 

Guide) highlights common challenges in systematic reviews of medical tests and outlines their 
mitigation, as perceived by researchers partaking in the Agency for Healthcare Research and 
Quality (AHRQ) Effective Healthcare Program.1 Generic by their very nature, these challenges 
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and their discussion apply to the larger set of systematic reviews of medical tests, and are not 
specific to AHRQ’s program. 

This chapter of the Medical Test Methods Guide focuses on choosing strategies for meta-
analysis of test “accuracy,” or more preferably, test performance. Meta-analysis is not required 
for a systematic review, but when appropriate, it should be undertaken with a dual goal: to 
provide summary estimates for key quantities, and to explore and explain any observed 
dissimilarity (heterogeneity) in the results of the examined studies. 

“Summing-up” information on test performance metrics such as sensitivity, specificity, and 
predictive values is rarely the most informative part of a systematic review of a medical test.2–5 
Key clinical questions driving the evidence synthesis (e.g., “Is this test alone or in combination 
with a test-and-treat strategy likely to improve decisionmaking and patient outcomes?”) are only 
indirectly related to test performance per se. Formulating an effective evaluation approach 
requires careful consideration of the context in which the test will be used. These framing issues 
are addressed in other chapters of this Medical Test Methods Guide.6–8 Further, in this chapter we 
assume that medical test performance has been measured against a “gold standard,” that is, a 
reference standard considered adequate to define the presence or absence of the condition of 
interest. Another chapter discusses ways to summarize medical tests when such a reference 
standard does not exist.9  

Syntheses of medical test data often focus on test performance, and much of the attention to 
statistical issues relevant to synthesizing medical test evidence focuses on summarizing test 
performance data; thus their meta-analysis was chosen to be the focus of this paper. We will 
assume that the decision to perform meta-analyses of test performance data is justified and taken, 
and will explore two central challenges; namely, how do we quantitatively summarize medical 
test performance when: (1) the sensitivity and specificity estimates of various studies do not vary 
widely, or (2) the sensitivity and specificity of various studies vary over a large range. 

Briefly, in the first situation, it may be helpful to use a “summary point” (a summary 
sensitivity and summary specificity pair) to obtain summary test performance when sensitivity 
and specificity estimates do not vary widely across studies. This could happen in meta-analyses 
where all studies have the same explicit test positivity threshold (a threshold for categorizing the 
results of testing as positive or negative), since if studies have different explicit thresholds, the 
clinical interpretation of a summary point is less obvious, and perhaps less helpful. However, an 
explicit common threshold is neither sufficient nor necessary for opting to synthesize data with a 
“summary point”; a summary point can be appropriate whenever sensitivity and specificity 
estimates do not vary widely across studies.  

In the second type of situation, when the sensitivity and specificity of various studies vary 
over a large range, rather than using a “summary point” it may be more helpful to describe how 
the average sensitivity and average specificity relate by means of a “summary line.” This oft-
encountered situation can be secondary to explicit or implicit variation in the threshold for a 
“positive” test result; heterogeneity in populations, reference standards, or the index tests; 
variation in study design; chance; or bias. 

Of note, in many applications it may be informative to present syntheses in both ways, as the 
two modes convey complementary information.  

Deciding whether a “summary point” or a “summary line” is more helpful as a synthesis is 
subjective, and no hard-and-fast rules exist. We briefly outline common approaches for meta-
analyzing medical tests, and discuss principles for choosing between them. However, a detailed 
presentation of methods or their practical application is outside the scope of this work. In 
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addition, it is expected that readers are versed in clinical research methodology and familiar with 
methodological issues pertinent to the study of medical tests. We also assume familiarity with 
the common measures of medical test performance (reviewed in the Appendix, and in excellent 
introductory papers10). For example, we do not review challenges posed by methodological or 
reporting shortcomings of test performance studies.11 The Standards for Reporting of Diagnostic 
accuracy (STARD) initiative published a 25-item checklist that aims to improve reporting of 
medical tests studies.11 We refer readers to other papers in this issue12 and to several 
methodological and empirical explorations of bias and heterogeneity in medical test studies.13–15  

Nonindependence of Sensitivity and Specificity Across 
Studies and Why It Matters for Meta-Analysis  

In a typical meta-analysis of test performance, we have estimates of sensitivity and 
specificity for each study, and seek to provide a meaningful summary across all studies. Within 
each study, sensitivity and specificity are independent, because they are estimated from different 
patients (sensitivity from those with the condition of interest, and specificity from those without). 
According to the prevailing reasoning, across studies sensitivity and specificity are likely 
negatively correlated: as one estimate increases the other is expected to decrease. This is perhaps 
more obvious when studies have different explicit thresholds for “positive” tests; and thus the 
term “threshold effect” has been used to describe this negative correlation. For example, the  
D-dimer concentration threshold for diagnosing an acute coronary event can vary from 
approximately 200 to over 600 ng/mL.16 It is expected that higher thresholds would correspond 
to generally lower sensitivity but higher specificity, and the opposite for lower thresholds 
(though in this example it is not clearly evident; see Figure 8–1, especially Figure 8–1a). A 
similar rationale can be invoked to explain between-study variability for tests with more implicit 
or suggestive thresholds, such as imaging or histological tests.  

Negative correlation between sensitivity and specificity across studies may be expected for 
reasons unrelated to thresholds for positive tests. For example, in a meta-analysis evaluating the 
ability of serial creatine kinase-MB (CK-MB) measurements to diagnose acute cardiac ischemia 
in the emergency department,17,18 the time interval from the onset of symptoms to serial CK-MB 
measurements (rather than the actual threshold for CK-MB) could explain the relationship 
between sensitivity and specificity across studies. The larger the time interval, the more CK-MB 
is released into the bloodstream, affecting the estimated sensitivity and specificity. 
Unfortunately, the term “threshold effect” is often used rather loosely to describe the relationship 
between sensitivity and specificity across studies, even when, strictly speaking, there is no direct 
evidence of variability in study thresholds for positive tests. 

Because of the above, the current thinking is that, in general, the study estimates of 
sensitivity and specificity do not vary independently, but jointly, and likely with a negative 
correlation. Summarizing the two correlated quantities is a multivariate problem, and 
multivariate methods should be used to address it, as they are more theoretically motivated.19,20 
At the same time there are situations when a multivariate approach is not practically different 
from separate univariate analyses. We will expand on some of these issues. 
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Figure 8–1a. Typical data on the performance of a medical test (D-dimers for venous 
thromboembolism) 

 
Figure 8–1a depicts studies as markers, labeled by author names and thresholds for a positive test (in ng/mL). Studies listed on 
the left lightly shaded area have a positive likelihood ratio of at least 10. Studies listed on the top lightly shaded area have a 
negative likelihood ratio of at most 0.1. Studies listed at the intersection of the gray areas (darker gray polygon) have both a 
positive likelihood ratio of at least 10 and a negative likelihood ratio of 0.1 or less. 
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Figure 8–1b. Typical data on the performance of a medical test (D-dimers for venous thromboembolism)  

 
Eleven studies on ELISA-based D-dimer assays for the diagnosis of venous thromboembolism.16  
Figure 8–1b shows “paired” forest plots in ascending order of sensitivity (left) along with the corresponding specificity (right). Note how sensitivity increases with decreasing 
specificity, which could be explained by a “threshold effect.”  
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Figure 8–1c. Typical data on the performance of a medical test (D-dimers for venous thromboembolism)  

 

 
Eleven studies on ELISA-based D-dimer assays for the diagnosis of venous thromboembolism.16  
Figure 8–1c shows the respective negative and positive likelihood ratios.  
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Principles for Addressing the Challenges  
To motivate our suggestions on meta-analyses of medical tests, we invoke two general 

principles:  
• Principle 1: Favor the most informative way to summarize the data. Here we refer mainly 

to choosing between a summary point and a summary line, or choosing to use both.  
• Principle 2: Explore the variability in study results with graphs and suitable analyses, 

rather than relying exclusively on “grand means.”  

Recommended Approaches 

Which Metrics to Meta-Analyze  
For each study, the estimates of sensitivity, specificity, predicitive values, likelihood ratios, 

and prevalence are related through simple formulas (Appendix). However, if one performs a 
meta-analysis for each of these metrics, the summaries across all studies will generally be 
inconsistent: the formulas will not be satisfied for the summary estimates. To avoid this, we 
propose to obtain summaries for sensitivities and specificities via meta-analysis, and to back-
calculate the overall predictive values or likelihood ratios from the formulas in the Appendix, for 
a range of plausible prevalences. Figure 8–2 illustrates this strategy for a meta-analysis of K 
studies. We explain the rationale below. 

Why does it make sense to directly meta-analyze sensitivity and specificity?  
Summarizing studies with respect to sensitivity and specificity aligns well with our 

understanding of the effect of positivity thresholds for diagnostic tests. Further, sensitivity and 
specificity are often considered independent of the prevalence of the condition under study 
(though this is an oversimplification that merits deeper discussion21). The summary sensitivity 
and specificity obtained by a direct meta-analysis will always be between zero and one. Because 
these two metrics do not have as intuitive an interpretation as likelihood ratios or predictive 
values,10 we can use formulas in the Appendix to back-calculate “summary” (overall) predictive 
values and likelihood ratios that correspond to the summary sensitivity and specificity for a range 
of plausible prevalence values.  

Why does it not make sense to directly meta-analyze positive and negative 
predictive values or prevalence? 

Predictive values are dependent on prevalence estimates. Because prevalence is often wide 
ranging, and because many medical test studies have a case-control design (where prevalence 
cannot be estimated), it is rarely meaningful to directly combine these across studies. Instead, 
predictive values can be calculated as mentioned above from the summary sensitivity and 
specificity for a range of plausible prevalence values.  
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Figure 8–2. Obtaining summary (overall) metrics for medical test performance  

 
PLR/NLR = positive (negative) likelihood ratio; PPV/NPV = positive (negative) predictive value; Prev = prevalence;  
Se = Sensitivity; Sp = specificity  
The herein recommended approach is to perform a meta-analysis for sensitivity and specificity across the K studies, and then use 
the summary sensitivity and specificity (Se+ and Sp+; a row of two boxes after the horizontal black line) to back-calculate 
“overall” values for the other metrics (second row of boxes after the horizontal black line). In most cases it is not meaningful to 
synthesize prevalences (see text).  

Why could directly meta-analyzing likelihood ratios be problematic? 
Positive and negative likelihood ratios could also be combined in the absence of threshold 

variation, and in fact, many authors give explicit guidance to that effect.22 However, this practice 
does not guarantee that the summary positive and negative likelihood ratios are internally 
consistent. Specifically, it is possible to get summary likelihood ratios that correspond to 
impossible summary sensitivities or specificities (outside the zero to one interval).23 Back-
calculating the summary likelihood ratios from summary sensitivities and specificities avoids 
this complication. Nevertheless, these aberrant cases are not common,24 and calculations of 
summary likelihood ratios by directly meta-analyzing them or from back calculation of the 
summary sensitivity and specificity rarely results in different conclusions.24  

What should be said about directly meta-analyzing diagnostic  
odds ratios? 

The synthesis of diagnostic odds ratios is straightforward and follows standard meta-analysis 
methods.25,26 The diagnostic odds ratio is closely linked to sensitivity, specificity, and likelihood 
ratios, and it can be easily included in meta-regression models to explore the impact of 
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explanatory variables on between-study heterogeneity. Apart from challenges in interpreting 
diagnostic odds ratios, a disadvantage is that it is impossible to weight the true positive and false 
positive rates separately.  

Desired Characteristics of Meta-Analysis Methods  
Over several decades many methods have been used for meta-analyzing medical test 

performance data. Based on the above considerations, methods should be motivated by (1) 
respecting the multivariate nature of test performance metrics (i.e., sensitivity and specificity); 
(2) allowing for the nonindependence between sensitivity and specificity across studies 
(“threshold effect”) and (3) allowing for between-study heterogeneity. Table 8–1 lists commonly 
used methods for meta-analysis of medical tests. The most theoretically motivated meta-analysis 
approaches are based on multivariate methods (hierarchical modeling).  

Table 8–1. Commonly used methods for meta-analysis of medical test performance 
Method Description or Comment Does it have Desired Characteristics? 

Summary Point 
Independent meta-
analysis of sensitivity 
and specificity 

• Entails separate meta-analyses 
per metric. 

• Within-study variability is 
preferably modeled by the 
binomial distribution.46  

• Ignores correlation between sensitivity 
and specificity. 

• Yields underestimates of summary 
sensitivity and specificity and incorrect 
confidence intervals.27  

Joint (multivariate) meta-
analysis of sensitivity 
and specificity based on 
hierarchical modeling 

• Based on multivariate (joint) 
modeling of sensitivity and 
specificity. 

• Two families of models27;31 (see 
text), are equivalent when there 
are no covariates.19  

• Modeling should preferably use 
binomial likelihood rather than 
normal approximations.31,38,47,48 

• The generally preferred method 

Summary Line 
Moses and Littenberg 
model  

• Summary line based on a simple 
regression of the difference of 
logit-transformed true and false 
positive rates versus their 
average.33-35  

• Ignores unexplained variation between 
studies (fixed effects). 

• Does not account for correlation 
between sensitivity and specificity.  

• Does not account for variability in the 
independent variable. 

• Unable to weight studies optimally—
yields wrong inferences when 
covariates are used.  

Random intercept 
augmentation of the 
Moses-Littenberg model 

• Regression of the difference of 
logit-transformed true and false 
positive rates versus their 
average with random effects to 
allow for variability across 
studies.36–37  

• Does not account for correlation 
between sensitivity and specificity.  

• Does not account for variability in the 
independent variable. 

Summary ROC based 
on hierarchical modeling  

• Same as for multivariate meta-
analysis to obtain a summary 
point – hierarchical modeling.27,31  

• Many ways to obtain a 
(hierarchical) summary ROC : 
o Rutter-Gatsonis (most 

common)31  
o Several alternative curves38,39 

• Most theoretically motivated method  
• Rutter-Gatsonis HSROC recommended 

in the Cochrane handbook,48 as it is the 
method with which there is most 
experience. 

HSROC = hierarchical summary ROC; ROC = receiver operating characteristic  
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We will focus on the case where each study reports a single pair of sensitivity and specificity 
at a given threshold (although thresholds can differ across studies). Another, more complex 
situation arises when multiple sensitivity and specificity pairs (at different thresholds) are 
reported in each study. Statistical models for the latter case exist, but there is less empirical 
evidence on their use. These will be described briefly, as a special case.  

Preferred Methods for Obtaining a “Summary Point” (Summary 
Sensitivity and Specificity): Two Families of Hierarchical Models  

When a “summary point” is deemed a helpful summary of a collection of studies, one should 
ideally perform a multivariate meta-analysis of sensitivity and specificity, i.e., a joint analysis of 
both quantities, rather than separate univariate meta-analyses. This is not only theoretically 
motivated,27–29 but also corroborated by simulation analyses as well.2,28,30  

Multivariate meta-analyses require advanced hierarchical modeling. We can group the 
commonly used hierarchical models in two families: The so-called “bivariate model”27 and the 
“hierarchical summary receiver operating characteristic ” (HSROC) model.31 Both use two levels 
to model the statistical distributions of data. At the first level, they model the counts of the 2×2 
table within each study, which accounts for within-study variability. At the second level, they 
model the between-study variability (heterogeneity), allowing for the theoretically expected 
nonindependence of sensitivity and specificity across studies. The two families differ in their 
parameterization at this second level: the bivariate model uses parameters that are 
transformations of the average sensitivity and specificity, while the HSROC model uses a scale 
parameter and an accuracy parameter, which are functions of sensitivity and specificity and 
define an underlying hierarchical summary ROC (receiver operating characteristic) curve.  

In the absence of covariates, the two families of hierarchical models are mathematically 
equivalent; one can use simple formulas to relate the fitted parameters of the bivariate model to 
the HSROC model and vice versa, rendering choices between the two approaches moot.19 The 
importance of choosing between the two families becomes evident in meta-regression analyses, 
when covariates are used to explore between-study heterogeneity. The differences in design and 
conduct of the included diagnostic accuracy studies may affect the choice of the model.19 For 
example, “spectrum effects,” where the subjects included in a study are not representative of the 
patients who will receive the test in practice,32 “might be expected to impact test accuracy rather 
than the threshold, and might therefore be most appropriately investigated using the HSROC 
approach. Conversely, between-study variation in disease severity will (likely) affect sensitivity 
but not specificity, leading to a preference for the bivariate approach.”19 When there are 
covariates in the model, the HSROC model allows direct evaluation of the difference in accuracy 
or threshold parameters or both. The accuracy parameter affects how much higher the summary 
line is from the diagonal (the line of no diagnostic information), and the threshold parameter 
affects the degree of asymmetry of the HSROC curve.19 Bivariate models, on the other hand, 
allow for direct evaluation of covariates on sensitivity or specificity or both. Systematic 
reviewers are encouraged to look at study characteristics and think through how study 
characteristics could affect the diagnostic accuracy, which in turn might affect the choice of the 
meta-regression model.  
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Preferred Methods for Obtaining a “Summary Line”  
When a summary line is deemed more helpful in summarizing the available studies, we 

recommend summary lines obtained from hierarchical modeling, instead of several simpler 
approaches (8–1).33–37 As mentioned above, when there are no covariates, the parameters of 
hierarchical summary lines can be calculated from the parameters of the bivariate random effects 
models using formulas.19,31,38 In fact, a whole range of HSROC lines can be constructed using 
parameters from the fitted bivariate model;38,39 one proposed by Rutter and Gatsonis31 is an 
example. The various HSROC curves represent alternative characterizations of the bivariate 
distribution of sensitivity and specificity, and can thus have different shapes. Briefly, apart from 
the commonly used Rutter-Gatsonis HSROC curve, alternative curves include those obtained 
from a regression of logit-transformed true positive rate on logit-transformed false positive rate; 
logit false positive rate on logit true positive rate; or the major axis regression between logit true 
and false positive rates.38,39  

When the estimated correlation between sensitivity and specificity is positive (as opposed to 
the typical negative correlation), the latter three alternative models can generate curves that 
follow a downward slope from left to right. This is not as rare as once thought38—a downward 
slope (from left to right) was observed in approximately one out of three meta-analyses in a large 
empirical exploration of 308 meta-analyses.40 Chappell et al. argued that in meta-analyses with 
evidence of positive estimated correlation between sensitivity and specificity (e.g., based on the 
correlation estimate and confidence interval or its posterior distribution) it is meaningless to use 
an HSROC line to summarize the studies,39 as a “threshold effect” explanation is not possible. 
Yet, even if the estimated correlation between sensitivity and specificity is positive (i.e., not in 
the “expected” direction), an HSROC still represents how the summary sensitivity changes with 
the summary specificity. The difference is that the explanation for the pattern of the studies 
cannot involve a “threshold effect”; rather, it is likely that an important covariate has not been 
included in the analysis (see the proposed algorithm below).39  

A Special Case: Joint Analysis of Sensitivity and Specificity When 
Studies Report Multiple Thresholds 

It is not uncommon for some studies to report multiple sensitivity and specificity pairs at 
several thresholds for positive tests. One option is to decide on a single threshold from each 
study and apply the aforementioned methods. To some extent, the setting in which the test is 
used can guide the selection of the threshold. For example, in some cases, the threshold which 
gives the highest sensitivity may be appropriate in medical tests to rule out disease. Another 
option is to use all available thresholds per study. Specifically, Dukic and Gatsonis extended the 
HSROC model to analyze sensitivity and specificity data reported at more than one threshold.41 
This model represents an extension of the HSROC model discussed above. Further, if each study 
reports enough data on sensitivity and specificity to construct a ROC curve, Kester and Buntinx42 
proposed a little-used method to combine whole ROC curves.  

Both models are theoretically motivated. The Dukic and Gatsonis model is more elaborate 
and more technical in its implementation than the Kester and Buntinx variant. There is no 
empirical evidence on the performance of either model in a large number of applied examples. 
Therefore, we refrain from providing a strong recommendation to always perform such analyses. 
Systematic reviewers are mildly encouraged to perform explorations, including analyses with 
these models. Should they opt to do so, they should provide adequate description of the 
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employed models and their assumptions, as well as a clear intuitive interpretation of the 
parameters of interest in the models. At a minimum, we suggest that systematic reviewers 
perform explorations in a qualitative, graphical depiction of the data in the ROC space (see the 
Algorithm section). This will provide a qualitative summary and will highlight similarities and 
differences among the studies. An example of such a graph is Figure 8–3, which illustrates the 
diagnostic performance of early measurements of total serum bilirubin (TSB) to identify post-
discharge TSB above the 95th hour-specific percentile in newborns.43  

Figure 8–3. Graphical presentation of studies reporting data at multiple thresholds 

 
Ability of early total serum bilirubin measurements to identify postdischarge total serum bilirubin above the 95th hour-specific 
percentile. Sensitivity and 100 percent minus specificity pairs from the same study (obtained with different cut-offs for the early 
total serum bilirubin measurement) are connected with lines. These lines are reconstructed based on the reported cut-offs, and are 
not perfect representations of the actual ROC curves in each study (they show only a few thresholds that could be extracted from 
the study). Studies listed on the left lightly shaded area have a positive likelihood ratio of at least 10. Studies listed on the top 
lightly shaded area have a negative likelihood ratio of at most 0.1. Studies listed at the intersection of the gray areas (darker gray 
polygon) have both a positive likelihood ratio of at least 10 and a negative likelihood ratio of 0.1 or less.43  

A Workable Algorithm  
We propose using the following three-step algorithm for meta-analyzing studies of medical 

test performance when there is a “gold standard.” This algorithm should assist meta-analysts in 
deciding whether a summary point, a summary line, or both are helpful syntheses of the data. 
When reviewing the three step algorithm, keep these points in mind:  
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• A summary point may be less helpful or interpretable when the studies have different 
explicit thresholds for positive tests, and when the estimates of sensitivity vary widely 
along different specificities. In such cases, a summary line may be more informative. 

• A summary line may not be well estimated when the sensitivities and specificities of the 
various studies show little variability or when their estimated correlation across studies is 
small. Further, if there is evidence that the estimated correlation of sensitivity and 
specificity across studies is positive (rather than negative, which would be more typical), 
a “threshold effect” is not a plausible explanation for the observed pattern across studies. 
Rather, it is likely that an important covariate has not been taken into account.  

• In many applications, a reasonable case can be made for summarizing studies with both a 
summary point and a summary line, as these provide alternative perspectives.  

Step 1: Start by considering sensitivity and specificity 
independently.  

This step is probably self-explanatory; it encourages reviewers to familiarize themselves with 
the pattern of study-level sensitivities and specificities. It is very instructive to create side-by-
side forest plots of sensitivity and specificity in which studies are ordered by either sensitivity or 
specificity. The point of this graphical assessment is to obtain a visual impression of the 
variability of sensitivity and specificity across studies, as well as an impression of any 
relationship between sensitivity and specificity across studies, particularly if such a relationship 
is prominent (Figure 8–1 and illustrative examples).  

If a summary point is deemed a helpful summary of the data, it is reasonable first to perform 
separate meta-analyses of sensitivity and specificity. The differences in the point estimates of 
summary sensitivity and specificity with univariate (separate) versus bivariate (joint) meta-
analyses is often small. In an empirical exploration of 308 meta-analyses, differences in the 
estimates of summary sensitivity and specificity were rarely larger than 5 percent.40 The width of 
the confidence intervals for the summary sensitivity and specificity is also similar between 
univariate and bivariate analyses. This suggests that, practically, univariate and multivariate 
analyses may yield comparable results. However, our recommendation is to prefer reporting the 
results from the hierarchical (multivariate) meta-analysis methods because of their better 
theoretical motivation and because of their natural symmetry with the multivariate methods that 
yield summary lines.  

Step 2: Perform multivariate meta-analysis (when each study 
reports a single threshold). 

To obtain a summary point, meta-analysts should perform bivariate meta-analyses 
(preferably using the exact binomial likelihood).  

Meta-analysts should obtain summary lines based on multivariate meta-analysis models. The 
interpretation of the summary line should not automatically be that there are “threshold effects.” 
This is most obvious when performing meta-analyses with evidence of a positive correlation 
between sensitivity and specificity, which cannot be attributed to a “threshold effect,” as 
mentioned above.  

If more than one threshold is reported per study and there is no strong a priori rationale to 
review only results for a specific threshold, meta-analysts should consider incorporating 
alternative thresholds into the appropriate analyses discussed previously. Tentatively, we 
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encourage both qualitative analysis via graphs and quantitative analyses via one of the 
multivariate methods mentioned above. 

Step 3. Explore between-study heterogeneity.  
Other than accounting for the presence of a “threshold effect,” the HSROC and bivariate 

models provide flexible ways to test and explore between-study heterogeneity. The HSROC 
model allows one to examine whether any covariates (study characteristics) explain the observed 
heterogeneity in the accuracy and threshold parameters. One can use the same set of covariates 
for both parameters, but this is not mandatory, and should be judged for the application at hand. 
On the other hand, bivariate models allow one to use covariates to explain heterogeneity in 
sensitivity or specificity or both; and again, covariates for each measure can be different. 
Covariates that reduce the unexplained variability across studies (heterogeneity) may represent 
important characteristics that should be taken into account when summarizing the studies, or they 
may represent spurious associations.We refer to other texts for a discussion of the premises and 
pitfalls of metaregressions.25,44 Factors reflecting differences in patient populations and methods 
of patient selection, methods of verification and interpretation of results, clinical setting, and 
disease severity are common sources of heterogeneity. Investigators are encouraged to use 
multivariate models to explore heterogeneity, especially when they have chosen these methods 
for combining studies.  

Illustrations  
We briefly demonstrate the above with two applied examples. The first example on D-dimer 

assays for the diagnosis of venous thromboembolism16 shows heterogeneity which could be 
attributed to a “threshold effect” as discussed by Lijmer et al.45 The second example is from an 
evidence report on the use of serial creatine kinase-MB measurements for the diagnosis of acute 
cardiac ischemia,17;18 and shows heterogeneity for another reason.  

First Example: D-dimers for Diagnosis of Venous 
Thromboembolism 

D-dimers are fragments specific for fibrin degradation in plasma, and can be used to 
diagnose venous thromboembolism. Figure 8–1 presents forest plots of the sensitivity and 
specificity and the likelihood ratios for the D-dimer example.45 Sensitivity and specificity appear 
more heterogeneous than the likelihood ratios. (This is verified by formal testing for 
heterogeneity). This may be due to threshold variation in these studies (from 120 to 550 ng/mL, 
when stated; Figure 8–1), or due to other reasons.45 

Because of the explicit variation in the thresholds for studies of D-dimers, it is probably more 
helpful to summarize the performance of the test using a HSROC, rather than to provide 
summary sensitivities and specificities (Figure 8–4a). (For simplicity, we select the highest 
threshold from two studies that report multiple ELISA [enzyme-linked immunosorbent assay] 
thresholds.) This test has very good diagnostic ability, and it appropriately focuses on 
minimizing false negative diagnoses. It is also informative to estimate “summary” negative (or 
positive) predictive values for this test. As described previously, we can calulate them based on 
the summary sensitivity and specificity estimates and over a range of plausible values for the 
prevalence. Figure 8–4b shows such an example using the summary sensitivity and specificity of 
the 11 studies of Figure 8–4a.  



8-15 

Figure 8–4. HSROC for the ELISA-based D-dimer tests  

 
 
(a) Hierarchical summary receiver-operator curve (HSROC) of the studies plotted in Figure 8–1a.  
(b) Calculated negative predictive value for the ELISA-based D-dimer test if the sensitivity and specificity are fixed at 80% and 
97%, respectively, and prevalence of venous thromboembolism varies from 5 to 50 percent.  

Second Example: Serial Creatine Kinase-MB Measurements for 
Diagnosing Acute Cardiac Ischemia 

An evidence report examined the ability of serial creatine kinase-MB (CK-MB) 
measurements to diagnose acute cardiac ischemia in the emergency department.17,18 Figure 8–5 
shows the 14 eligible studies along with how many hours after symptom onset the last 
measurement was taken. It is evident that there is between-study heterogeneity in the 
sensitivities, and that sensitivity increases with longer time from symptom onset. 

For illustrative purposes, we compare the summary sensitivity and specificity of studies 
where the last measurement was performed within 3 hours of symptom onset versus greater than 
3 hours from symptom onset (Table 8–2 and Figure 8–5). We use a bivariate multilevel model 
with exact binomial likelihood. In the fixed effects part of the model, we include a variable that 
codes whether the last measurement was earlier than 3 hours from symptom onset or not. We 
allow this variable to have different effects on the summary sensitivity and on the summary 
specificity. This is essentially a bivariate meta-regression.  

Note that properly specified bivariate meta-regressions (or HSROC-based meta-regressions) 
can be used to compare two or more medical tests. The specification of the meta-regression 
models will be different when the comparison is indirect (when different medical tests are 
examined in independent studies) or direct (when the different medical tests are applied in the 
same patients in each study).  

 
 
 
 



8-16 

Figure 8–5. Sensitivity 1–specificity plot for studies of serial CK-MB measurements  

 
 
The left panel shows the sensitivity and specificity of 14 studies according to the timing of the last serial CK-MB measurement 
for diagnosis of acute cardiac ischemia. The numbers next to each study point are the actual length of the time interval from 
symptom onset to last serial CK-MB measurement. Filled circles: at most 3 hours; “x” marks: longer than 3 hours.  
The right panel plots the summary points and the 95% confidence regions for the aforementioned subgroups of studies (at most 3 
hours: blue filled circles; longer than 3 hours – red “x”s). Estimates are based on a bivariate meta-regression using the time 
interval as a predictor. The predictor has distinct effects for sensitivity and specificity. This is the same analysis as in Table 8–2.  

Table 8–2. Meta-regression-based comparison of diagnostic performance*  

Meta-Analysis Metric ≤3 Hours >3 Hours 
p-Value for the 

Comparison Across 
Subgroups 

Summary sensitivity (percent) 80 (64 to 90) 96 (85 to 99) 0.036 
Summary specificity (percent) 97 (94 to 98) 97 (95 to 99) 0.56 
*Results based on a bivariate meta-regression that effectively compared the summary sensitivity and summary specificity 
according to the timing of the last serial CK-MB measurement for diagnosis of acute cardiac ischemia. The meta-regression is on 
a variable that takes the value 1 if the time from the onset of symptoms to testing was 3 hours or less, and the value 0, when the 
respective time interval was more than 3 hours. The bivariate meta-regression model allows for different effects of timing on 
sensitivity and specificity. To facilitate interpretation, we present the summary sensitivity and specificity in each subgroup, 
calculated from the parameters of the meta-regression model, which also gave the p-values for the effect of timing on test 
performance.  

Overall Recommendations 
We summarize:  
• Consider presenting a “summary point” when sensitivity and specificity do not vary 

widely across studies and studies use the same explicit or “implicit threshold.”  
o To obtain a summary sensitivity and specificity use the theoretically motivated 

bivariate meta-analysis models.  
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o Back-calculate overall positive and negative predictive values from summary 
estimates of sensitivity and specificity, and for a plausible range of prevalence 
values rather than meta-analyzing them directly.  

o Back-calculate overall positive and negative likelihood ratios from summary 
estimates of sensitivity and specificity, rather than meta-analyzing them directly.  

• If the sensitivity and specificity vary over a large range, it may be more helpful to use a 
summary line, which best describes the relationship of the average sensitivity and 
specificity. The summary line approach is also most helpful when different explicit 
thresholds are used across studies. To obtain a summary line use multivariate meta-
analysis methods such as the HSROC model.  

o Several SROC lines can be obtained based on multivariate meta-analysis models, 
and they can have different shapes.  

o If there is evidence of a positive correlation, the variability in the studies cannot 
be secondary to a “threshold effect”; explore for missing important covariates. 
Arguably, the summary line is a valid description of how average sensitivity 
relates to average specificity. 

• If more than one threshold is reported per study, this has to be taken into account in the 
quantitative analyses. We encourage both qualitative analysis via graphs and quantitative 
analyses via proper methods. 

• One should explore the impact of study characteristics on summary results in the context 
of the primary methodology used to summarize studies using meta-regression-based 
analyses or subgroup analyses.  
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