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An Empirical Assessment of Bivariate Methods for 
Meta-Analysis of Test Accuracy 
Structured Abstract 
Background. Meta-analyses of sensitivity and specificity pairs reported from diagnostic test 
accuracy studies employ a variety of statistical models for estimating mean performance and 
performance across different test thresholds. The impact of these alternative models on 
conclusions in applied settings has not been studied systematically.  
 
Methods. We constructed a database of PubMed-indexed meta-analyses (1987–2003) from 
which 2×2 tables for each included primary study could be readily extracted. We evaluated the 
following methods for meta-analysis of sensitivity and specificity: fixed and random effects 
univariate meta-analyses using inverse variance methods; univariate random effects meta-
analyses with maximum likelihood (ML; both using a normal approximation and the exact 
binomial likelihood to describe between-study variability); bivariate random effects meta-
analyses (both using a normal approximation and the exact binomial likelihood to describe 
between-study variability). The bivariate model using the exact binomial likelihood was also fit 
using a fully Bayesian approach. We constructed summary receiver operating characteristic 
(SROC) curves using the Moses-Littenberg fixed effects method (weighted and unweighted) and 
the Rutter-Gatsonis hierarchical SROC (HSROC) method. We also obtained alternative SROC 
curves corresponding to different underlying regression models [logit-true positive rate (TPR) 
over logit-false positive rate (FPR); logit-FPR over logit-TPR; difference of the logit-TPR and 
logit-TPR over their sum; and major axis regression of logit-TPR over logit-FPR]. 
 
Results. We reanalyzed 308 meta-analyses of test performance. Fixed effects univariate analyses 
produced estimates with narrower confidence intervals compared to random effects methods. 
Methods using the normal approximation (both univariate and bivariate, inverse variance and 
ML) produced estimates of summary sensitivity and specificity closer to 0.5 and smaller standard 
errors compared to methods using the exact binomial likelihood. Point estimates from univariate 
and bivariate random effects meta-analyses were similar when performing pairwise (univariate 
vs. bivariate) comparisons, regardless of the estimation method (inverse variance, ML with 
normal approximation, or ML with the exact binomial likelihood for estimation). Fitting the 
bivariate model using ML and fully Bayesian methods produced almost identical point estimates 
of summary sensitivity and specificity; however, Bayesian results indicated additional 
uncertainty around summary estimates. The correlation of sensitivity and specificity across 
studies was imprecisely estimated by all bivariate methods. The SROC curves produced by the 
Moses-Littenberg and Rutter-Gatsonis models were similar in most examples. Alternative 
parameterizations of the HSROC regression resulted in markedly different summary lines in a 
third of the meta-analyses; this depends to a large extent on the estimated covariance between 
sensitivity and specificity in the bivariate model. Our results are generally in agreement with 
published simulation studies and the theoretically expected behavior of meta-analytic estimators. 
 
Conclusion. Bivariate models are more theoretically motivated compared to univariate analyses 
and allow estimation of the correlation between sensitivity and specificity. Bayesian methods 
fully quantify uncertainty and their ability to incorporate external evidence may be particularly 
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useful for parameters that are poorly estimated in the bivariate model. Alternative SROC curves 
provide useful global summaries of test performance.
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Introduction 
Medical tests are used every day for guiding diagnosis, predicting the future course of 

disease, and guiding treatment selection. The effects of tests on clinical outcomes are indirect, 
through their influence on physicians’ diagnostic thinking and treatment decisionmaking.1 
Comparative studies of testing versus no testing that can answer the overarching question of test 
effectiveness (clinical utility) are rarely performed. Because of this, assessment of medical tests 
often relies only on the evaluation of test “accuracy,”a or test performance, typically measured by 
sensitivity and specificity (clinical validity of tests). Even when studies of clinical utility are 
available, systematic reviews of test performance are an important component of any 
comprehensive evidence assessment of a medical test.2,3  

In most cases tests are used to classify patients into two mutually exclusive and exhaustive 
groups (“test positive” and “test negative”)—positive test results indicate that patients are more 
likely to have the condition of interest and should be targeted for additional diagnostic 
investigation or considered for therapeutic intervention.b In such cases, test accuracy can be 
expressed as the ability to identify individuals with disease as “test positives” (sensitivity) and 
individuals with no disease as “test negatives” (specificity). Additional accuracy metrics, such as 
the area under the receiver operating characteristic (ROC) curve, the diagnostic odds ratio,4 or 
the Q* statistic (the point on the ROC curve where sensitivity equals specificity), are often 
reported in primary studies.5  

Individual studies of test accuracy tend to be small and are often conducted in diverse 
settings. Systematic reviews of medical test studies offer a natural framework for evidence 
synthesis. When the aim is to increase precision or quantitatively assess the impact of study-level 
characteristics on test sensitivity or specificity, meta-analytic methods can be used to combine 
the results of independent studies into summary estimates of accuracy or to identify modifiers of 
accuracy through meta-regression.6,7  

Meta-analysis of studies of test accuracy presents several challenges to systematic reviewers. 
First, meta-analysis of sensitivity and specificity requires modeling a multivariate outcome 
(sensitivity and specificity reported from each study).5 Second, joint modeling of sensitivity and 
specificity needs to take into account the correlation of these estimates across studies induced by 
threshold effects.8,9 Third, studies often produce heterogeneous results, necessitating the use of 
random effects models when the interest is to generalize beyond the observed data.10,11 Analyses 
that fail to take into account threshold effects or between-study variability may produce 
incompatible estimates of sensitivity and specificity or spuriously precise estimates of test 
accuracy.  

In a previous empirical investigation,12 we found that the most common test performance 
metrics used in meta-analysis were sensitivity and specificity; in the majority of reviews only 
results from univariate analyses were reported. Additionally, many meta-analyses used the 
summary receiver characteristic operating (SROC) curve method proposed by Moses and 
Littenberg8,9 to assess test performance. This method is based on a regression of the difference of 
the logit-transformed sensitivity and specificity (i.e., the diagnostic log-odds ratio) on their sum. 

                                                 
a Here we use the term “test accuracy” to denote “test performance.” We do not refer to the metric “accuracy.” which is the 
proportion of correct test classifications (true positives and true negatives) out of the total sample size in a study.  
b Although some tests produce ordinal classifications (e.g., high-intermediate-low probability of disease) or are used as 
components of more complex testing algorithms, the vast majority of systematic reviews and meta-analyses focus on binary 
classification. 
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Although it allows for a between-study dependency between sensitivity and specificity, it is 
almost always implemented in a fixed effect framework. Furthermore, it ignores the exact 
binomial distributions of the test results among diseased and non-diseased individuals or the 
uncertainty in the measurement of the independent variable (the sum of the logit-sensitivity and 
logit-specificity) in the regression model. Recently, several authors have advocated using 
bivariate models based on hierarchical regression.10,13-15 These methods can be used to estimate 
summary sensitivity and specificity (i.e., a summary point on the ROC plane) or to fit a line 
describing the bivariate distribution of sensitivity and specificity (i.e., a hierarchical SROC 
curve). These meta-analysis models have now been implemented in major statistical 
packages16,17 and are becoming increasingly popular in meta-analytic practice.18 These 
implementations are based on maximization of likelihoods, but Bayesian methods have also been 
proposed.13,19,20 Limited empirical work suggests that these approaches yield similar conclusions 
in applied meta-analysis examples.17 Although theoretical arguments provide support for the use 
of bivariate random effects methods for the typical case of binary tests,c the existing evidence on 
the practical implications of alternative methods is limited to small comparisons (typically based 
on a few meta-analysis examples).10,21,22 Some methodologists have suggested that “hierarchical 
models are necessary,”22 and others have conjectured that “differences between univariate and 
bivariate models […] may not be large.”23  

This report is the second in a series of three on meta-analysis of test accuracy, conducted by 
the Tufts Evidence-based Practice Center under contract with the Agency for Healthcare 
Research and Quality (AHRQ). For the current project we sought to perform a large-scale 
empirical comparison of alternative meta-analysis methods for sensitivity and specificity and for 
constructing SROC curves.d This report addresses the following aims by using a previously 
established database of meta-analytic datasets:  

• Compare univariate (one outcome at a time) and bivariate (joint analysis of two 
outcomes) methods for meta-analysis of sensitivity and specificity. 

• Compare inverse variance (DerSimonian-Laird), maximum likelihood (ML) and 
Bayesian methods for random effects meta-analysis of sensitivity and specificity. 

• Compare methods using a normal approximation versus those using the exact binomial 
likelihood for meta-analysis of sensitivity and specificity. 

• Compare alternative statistical models for constructing meta-analytic SROC curves. 

                                                 
c Similar arguments can be made in support of the use of extensions of these methods to account for multiple thresholds or 
multiple index tests; however, the majority of published meta-analyses are limited to the binary classification case. This report 
exclusively focuses on this most common case.  
d Other reports in this series include a comprehensive survey of methods and reporting in meta-analyses of test accuracy and the 
development of novel methods for the analysis of diagnostic test networks. 
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Methods 
Construction of a Database of Meta-Analysis Datasets 

We used a previously described database of PubMed-indexed English-language meta-
analyses of test accuracy (published between 1987 and 2003) to identify those that reported 
adequate information to reconstruct the 2×2 cross-classification of diagnoses and test results of 
included primary studies.12 This increased the efficiency of the data extraction process by 
avoiding the need to review all the primary papers included in each meta-analysis. The details of 
searches, abstract and full text screening methods, and selection criteria used to generate the 
original database are presented in a previous AHRQ report produced by the Tufts EPC.12A list of 
included studies in provided in Appendix A.   

From each meta-analysis we extracted the first author and year of publication, the number of 
included studies, and the number of index and reference standard tests reviewed. For each 
diagnostic outcome included in meta-analysis and each included study, we extracted the 2×2 
table of true positive, false positive, true negative and false negative results, as defined by the 
original meta-analysis. We used these data to calculate descriptive statistics for the database, 
including descriptive statistics for the number of included studies in each meta-analysis, the 
number of patients in each component study, test sensitivity and specificity, and prevalence of 
the diagnostic outcomes of interest. We then repeated the meta-analyses using alternative 
statistical methods, as described below.  

Statistical Analyses 
Meta-analyses of sensitivity and specificity aim to provide helpful summaries of the findings 

of individual studies. The point of average sensitivity and specificity is a useful summary when 
the results of the studies are relatively similar and the studied tests do not have different explicit 
thresholds for positive results. When studies have different explicit thresholds and their results 
range widely, though, a “summary line” that describes how sensitivity changes with specificity 
across studies may be a more informative description. In many cases, both summaries can be 
reasonably employed as they provide complementary information. Here we do not make any 
effort to choose the most helpful summary. We analyze all examples with all methods.  

Meta-Analysis of Sensitivity and Specificity (Summary Point) 

Univariate Meta-Analysis Methods 
We performed univariate meta-analyses of sensitivity and specificity to synthesize logit-

transformed sensitivity and specificity values separately (i.e., ignoring their correlation) using 
fixed and random effects models weighting studies by the inverse of their sampling variance on 
the logit scale and assuming a normal sampling distribution. Between-study heterogeneity in 
random effects models was estimated using a non-iterative method (the DerSimonian-Laird 
moments-based estimator )24 and with an iterative method (restricted maximum likelihood; 
REML). We used a continuity correction of 0.5 for studies where the observed count was zero 
for any of the cells of the 2×2 table; the correction was applied to all four cells of such studies. 
We also performed univariate random effects analyses with the exact binomial likelihood using 
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random effects logistic regression (a random intercept model). This model was also fit using 
maximum likelihood (ML) maximization.   

Bivariate Meta-Analysis Methods 
We fit bivariate random effects meta-analysis models that allow for correlation of sensitivity 

and specificity at the between-study level. These are hierarchical models that describe the 
observed variability using statistical distributions of data at two levels: a within-study-level and a 
between-study level. We fit two variants of the bivariate model to describe variation at the 
within-study level. The first used a normal approximation for the statistical distribution of 2×2 
cell counts at the within-study level (for the logit-transformed sensitivities and specificities) and 
the second used the binomial distribution (exact likelihood) based on cell counts. 

At the between-study level, both variants assumed that the (true) logit-transformed 
sensitivities and specificities followed a bivariate normal distribution centered at their summary 
estimates and with a covariance matrix that represented the between-studies component of the 
variability of the data. For the normal approximation variant of the model, we estimated the 
covariance matrix (equivalently, the correlation) using the non-iterative the estimator proposed 
by Jacksone  (a multivariate generalization of the DerSimonian-Laird model),25 as well as 
iteratively by REML.15 For the analysis using the exact binomial likelihood we used random 
effects logistic regression fit with ML.10,21 Because the log likelihood for this model has no 
closed form, it was approximated by numerical methods (adaptive Gaussian quadrature).26,27 

The bivariate model with the exact binomial likelihood for within-study variability was also 
fit using a fully Bayesian approach, using non-informative prior distributions for parameters 
unspecified in the model. The model structure used for our analyses is presented in Appendix B. 
For each meta-analysis we ran 20,000 iterations and then assessed convergence by inspecting 
trace plots and calculating the Brooks-Gelman-Rubin statistic. We considered nodes to have 
converged when the Brooks-Gelman-Rubin statistic was less than 1.10. Additional iterations 
were run until convergence was achieved (if convergence was not reached after 20,000). To 
sample from the posterior distribution of parameters of interest we ran the model for an 
additional number of iterations equal to half the number that had been required to achieve 
convergence. From these posterior distributions we obtained the median and 95% central 
credibility intervals for parameters of interest. We assessed robustness to alternative prior 
distributions for the variance components and the between-study correlation of sensitivity and 
specificity (see Appendix B).  

Table 1 summarizes the methods for meta-analysis of sensitivity and specificity assessed in 
this report. For parsimony, in the remainder of the report we refer to methods for model fitting 
using restricted (REML) or unrestricted maximum likelihood (ML) as “maximum likelihood 
estimation” (MLE) methods.   

                                                 
e We refer to this method as “multivariate DerSimonian-Laird.” 
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Table 1. Methods for meta-analysis of sensitivity and specificity used in this report 
Modeling of Within-

Study Variability 
Meta-Analysis 

Method 

Univariate Meta-Analysis 
(Estimation of 
Heterogeneity) 

Bivariate Meta-Analysis 
(Estimation of 
Heterogeneity) 

Approximate (normal 
for logit-transformed 

sensitivity, 
specificity) 

Inverse variance • Fixed effects  
• Random effects (DL) 

• Random effects 
(multivariate DL)* 

Approximate (normal 
for logit-transformed 

sensitivity, 
specificity) 

Likelihood 
maximization • Random effects (REML) • Random effects (REML) 

Exact (binomial) Likelihood 
maximization • Random effects (ML) 

• Random effects (ML); 
likelihood maximized by 
adaptive Gaussian 
quadrature 

Exact (binomial) 
Bayesian meta-

analysis with non-
informative priors 

Not done • Random effects (MCMC) 

* Jackson generalization of the non-iterative DerSimonian and Laird method. 
DL = DerSimonian-Laird; MCMC = Markov chain Monte Carlo; ML = maximum likelihood; REML = restricted maximum 
likelihood. 

Meta-Analytic SROC Curves (Summary Lines) 
SROC curves depict graphically the relationship between sensitivity and specificity and 

provide a visual summary of overall test performance. These SROC curves summarize the trade-
off between sensitivity and specificity across studies; they are distinct from ROC curves 
obtained in individual studies by varying the threshold over a continuous measurement or a 
predicted probability. The most commonly used method for generating meta-analytic SROC 
curves is that proposed by Moses and Littenberg, based on a regression of the difference of the 
logit-transformed sensitivity and specificity over their sum.8,9 We implemented both unweighted 
and weighted (by inverse of the variance of the diagnostic odds ratio) regressions for this method 
and compared results to the more theoretically motivated hierarchical regression methods (see 
below). 

Hierarchical SROC (HSROC) 
Rutter and Gatsonis proposed HSROC meta-analysis methods to address the limitations of 

the Moses-Littenberg SROC approach.13 As noted by Arends 200828 several alternative 
parameterizations of the HSROC curve, in addition to the Rutter-Gatsonis model, can be 
produced from the bivariate meta-analysis model.13 These models represent alternative ways to 
describe the bivariate distribution of sensitivity and specificity, and can result in curves of 
different shape. We used the output of the bivariate meta-analysis model (fit both using 
maximum likelihood and Bayesian methods) to construct these curves, using methods described 
in the literature.28,29 Briefly, we estimated the intercept and slope of the ROC line (in logit space) 
based on: (a) regression of logit-sensitivity on logit-false positive rate; (b) regression of logit-
false positive rate on logit-sensitivity; (c) regression of the difference of logit-sensitivity and 
logit-false positive rate on their sum); and (d) a major axis regression of logit-sensitivity on logit-
false positive rate (a regression obtained by minimizing the distance between data points and the 
fitted line). Additional details about these models are presented in Appendix C. 
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Comparisons Between Alternative Methods 
We compared summary sensitivity, specificity and the width of the corresponding confidence 

(of credibility) intervalsf

With the exception of fixed effect univariate analyses, all other models used in this report 
assume that the study-specific parameters (sensitivity or specificity) are random effects (i.e., they 
differ by study). Most meta-analyses aim to generalize beyond the observed studies, and thus 
random effects models are appropriate. For this reason, we focus on random effects models in 
this report.  

 with scatter plots and histograms.31 We also graphed the ROC curves 
produced by the various methods and compared their results visually. 

Factors Associated With the Magnitude of Differences Between 
Methods 

We hypothesized that the following meta-analysis level factors might be associated with 
differences in the summary estimates obtained from different methods: (1) the total number of 
included studies; (2) the median number of affected (for sensitivity) or unaffected (for 
specificity) participants (across studies in the meta-analysis); (3) the total number of studies in a 
meta-analysis where a cell of the 2×2 table (true positive or false negative for sensitivity; false 
positive or true negative for specificity) was zero.  

We assessed whether these factors were associated with the magnitude of the difference 
between the following pairs of random effects meta-analyses: (1) univariate meta-analysis using 
REML with the normal within-study likelihood versus univariate meta-analysis using ML with 
the exact binomial likelihood; (2) bivariate meta-analysis using REML with normal within-study 
likelihood versus bivariate meta-analysis using ML with binomial within-study likelihood; (3) 
univariate meta-analysis using ML versus bivariate meta-analysis using ML, both with binomial 
within-study likelihood; (4) bivariate meta-analysis using ML versus bivariate meta-analysis 
using Bayesian methods, both with binomial within-study likelihood. 

All comparisons were made on the logit scale, separately for estimates of sensitivity and 
specificity. The association between the factors of interest and the difference in estimates were 
evaluated using pairwise scatter plots and Spearman correlations (with associated p-values).  

Software 
All non-Bayesian meta-analyses were performed in Stata/IC (version 12; Stata Corp., 

College Station, TX). Bayesian analyses were implemented in WinBugs32 (version 1.4.3; MRC 
Biostatistics Unit, Cambridge, UK), through calls from Stata or R (version 2.13.2; R Foundation 
for Statistical Computing, Vienna, Austria). Graphs were generated in Stata. 

                                                 
f For all bivariate analyses we obtained non-simultaneous confidence intervals for estimates of sensitivity and specificity. One 
could opt to obtain simultaneous confidence intervals30 instead; however this is not common practice in meta-analyses of test 
accuracy and has not been implemented in the existing software routines in common use. Generally, simultaneous confidence 
intervals tend to be wider than non-simultaneous confidence intervals. 
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Results 
Included Studies 

We included 157 systematic reviews reporting 308 meta-analyses (published between 1988 
and 2003) for which complete data to reconstruct 2×2 tables of the individual studies were 
available. The meta-analyses contributing data to this empirical comparison represent 
approximately 59 percent of all test accuracy meta-analyses published during the study period 
and identified through our searches. We treated meta-analyses as independent observations even 
when they had common studies. The small amount of overlap does not introduce appreciable 
bias because overlap in studies is limited (between meta-analyses originating from the same 
systematic review) and uncommon (between systematic reviews). 

The median number of studies in the included meta-analyses was 11 (25th–75th percentile: 8–
18). Included primary studies were generally small (median of the median number of affected 
individuals across meta-analyses = 30; median of the median number of unaffected individuals 
across meta-analyses = 62). Additional characteristics of the included meta-analyses and their 
component studies are presented in Table 2. The data summarized in the table highlight the 
diversity of sensitivity and specificity values encountered in our dataset.  

Table 2. Descriptive characteristics of test accuracy meta-analyses 
Characteristics Median 25th Percentile 75th Percentile Minimum Maximum 
Number of included 
primary studies 11 8 18 6 61 

Median number of affected 
individuals (cases)*  30 17 47 2 468 

Median number of 
unaffected individuals 
(controls)* 

61 29 106 8 9979 

Median ratio of affected 
(cases) to unaffected 
(control) individuals 

0.46 0.21 1.04 0.002 15.14 

Median number of 
“positive” test results 32 19 61 3 549 

Median number of 
“negative” test results 59 30 99 7 9415 

Median ratio of “positive” to 
“negative” test results 0.51 0.30 1 0.01 7.17 

Median true positive count 21 12 35 2 464 
Median false positive count 7 3 19 0 491 
Median false negative 
count 6 2 12 0 157 

Median true negative count 48 24 85 5 9,411 
“Crude” † sensitivity 0.77 0.58 0.88 0.15 0.99 
“Crude”† specificity 0.86 0.77 0.93 0.18 1 

* Based on the reference standard test used in each study. 
† Calculated by summing the numerators and denominators of included studies (this is equivalent to a fixed effects meta-analysis 
using the exact binomial likelihood). 
 

Some investigators have suggested that problems with convergence are a major concern 
when fitting the bivariate models for meta-analysis of test accuracy.23 In total, for 10 of 308 
meta-analyses (3%) we could not obtain estimates from all methods listed in Table 1 and they 
have been excluded from the comparisons presented in the following sections.g 
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Meta-Analysis of Sensitivity and Specificity 

Fixed Versus Random Effects Univariate Inverse Variance Meta-
Analyses 

Figure 1 compares the point estimates (logit-transformed) and confidence interval widths for 
univariate meta-analyses of sensitivity and specificity using fixed versus random effects inverse 
variance models. Overall, point estimates from the two methods are similar; however, the 
estimated uncertainty around each estimate is greater for random effect analyses because they 
incorporate between-study variability. We argue that meta-analysts are (almost) always 
interested in generalizable (to unobserved studies) summary estimates; in such cases random 
effects models are more appropriate, particularly in the presence of between-study heterogeneity 
(which is common in diagnostic test reviews). All subsequent comparisons in this report are 
limited to random effects models.  
 

Figure 1. Comparison of point estimates and standard errors of summary sensitivity and 
specificity (logit scale; univariate DL random effects vs. fixed effect inverse variance) 

 
Scatter plot of estimated logit-transformed sensitivity, specificity and their corresponding confidence interval widths from 
univariate random and fixed effects meta-analyses of sensitivity and specificity. CI = confidence interval; DL = DerSimonian-
Laird.
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Univariate Random Effects Meta-Analysis Methods 
This section compares the results of alternative univariate meta-analysis methods for 

sensitivity and specificity.  

Inverse Variance Versus ML Univariate Random Effects Meta-
Analyses (Normal Approximation) 

Figure 2 compares the point estimates (logit-transformed) and confidence interval widths for 
univariate meta-analyses of sensitivity and specificity using inverse variance versus ML random 
effects models based on the assumption of normal distributions for the logit-transformed 
probabilities. The point estimates from the two methods are very similar. However, the methods 
often produce different standard errors, resulting in different confidence interval widths. Figure 3 
presents a histogram of the differences in estimated sensitivities and specificities (untransformed 
scale) between methods. The absolute differences are rarely greater than 2.5 percent. 
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Figure 2. Comparison of point estimates and standard errors of summary sensitivity and 
specificity (logit scale) from random effects meta-analyses using a normal approximation 
(estimation of heterogeneity with DL vs. MLE) 

 
Scatter plot of estimated logit-transformed sensitivity, specificity and their corresponding confidence interval widths from 
univariate random effects meta-analyses using the DerSimonian-Laird inverse variance method versus MLE. CI = confidence 
interval; DL = DerSimonian-Laird; MLE = maximum likelihood estimation. 
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Figure 3. Histograms of differences in estimated summary sensitivity and specificity from 
univariate random effects meta-analyses (DerSimonian-Laird vs. MLE) 

  
Histograms of differences in estimated summary sensitivity (left panel) and specificity (right panel) comparing univariate random 
effects meta-analyses using the DerSimonian-Laird inverse variance method versus MLE (both using a normal approximation for 
within-study variability). DL = DerSimonian-Laird; MLE = maximum likelihood estimation. 
 

Approximate Normal Versus Exact Binomial Univariate Random-
Effects Meta-Analyses (MLE) 

Figure 4 compares the point estimates (logit-transformed) and confidence interval widths 
from univariate random effect meta-analyses of sensitivity and specificity using a normal 
approximation versus the exact binomial likelihood (both models fit with MLE). The point 
estimates from the two models are often dissimilar, and differences are greater for sensitivity and 
specificity values that are closer to one. This may be explained in part by the need for continuity 
corrections when the normal approximation is used to model within-study variability. The need 
to add 0.5 (or any other constant) to each zero cell biases the estimated proportions towards 
lower values (towards 0.5). An additional reason may be that the estimates and variances are 
correlated;33 the variance is a function of the estimate and the sample size. Indeed, the variance is 
a function of the proportion in such a way that it gets larger as the proportion approaches the 
extremes (zero or one). Thus, proportion estimates near the extremes receive less weight in the 
meta-analysis compared to estimates near 0.5. The net effect is that summary sensitivity or 
specificity is biased towards 0.5. The aforementioned biases are not a problem for meta-analysis 
methods using the exact likelihood. 

Further, in many cases the exact likelihood results in wider confidence intervals, indicating 
that the normal approximation leads to an underestimation of the uncertainty surrounding the 
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summary estimates. (This phenomenon has been described in several simulation analyses that we 
summarize in our Discussion section). Figure 5 presents histograms of differences in estimated 
sensitivities and specificities (untransformed scale) between methods. It is not uncommon to 
have differences in summary sensitivity and specificity of 5 percent or higher. As mentioned, 
summary sensitivity and specificity obtained with the normal approximation tend to be smaller 
than those obtained from exact methods.  

Figure 4. Comparison of point estimates and confidence interval widths of summary sensitivity 
and specificity (logit scale) from univariate random effects meta-analyses using the exact 
binomial likelihood versus using a normal approximation (both models fit using MLE) 

 
Scatter plot of estimated logit-transformed sensitivity, specificity and their corresponding confidence interval widths from 
univariate random effects meta-analyses using the exact binomial likelihood versus using an approximate normal likelihood to 
describe within-study variability. CI = confidence interval width; MLE = maximum likelihood estimation.  
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Figure 5. Histograms of differences in estimated summary sensitivity and specificity (univariate 
random effects meta-analyses using the exact binomial likelihood vs. a normal approximation; 
both models fit with MLE) 

  
Histograms of differences in estimated summary sensitivity (left panel) and specificity (right panel) comparing univariate random 
effects meta-analyses using the exact binomial likelihood versus using a normal approximation for within-study variability (both 
models fit with MLE). MLE = maximum likelihood estimation. 

Factors That Influence the Difference Between Univariate Random 
Effects Meta-Analyses Using the Normal Versus Binomial Likelihood 
(both with MLE) 

Figure 6 presents scatter plots of the differences (logit-transformed) of estimated sensitivity 
and specificity over factors that we hypothesized could affect results with various methods. 
Differences between methods were larger in meta-analyses where a large proportion of the 
available studies required a continuity correction (for the normal approximation) and in meta-
analyses where studies were generally small. The total number of included studies in the meta-
analysis generally had a smaller effect. 
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Figure 6. Differences of estimated sensitivity and specificity (logit scale, univariate random effects 
meta-analyses using the exact binomial likelihood vs. a normal approximation; both models fit 
with MLE) over meta-analysis characteristics 

 
Note: Positive differences indicate that estimates from analyses using the binomial likelihood are larger than those from analyses 
using the normal approximation. Eight meta-analyses with a median number of unaffected individuals >1000 have not been 
plotted (in the middle right panel) to avoid distortion of the graph.
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Summary for Univariate Meta-Analysis Methods 
Figure 7 summarizes the comparisons of univariate analyses of sensitivity and specificity 

discussed in this report [fixed effect inverse variance (normal approximation); random effects 
using the DerSimonian-Laird method (normal approximation); random effects using MLE with a 
normal approximation; random effects using ML with the exact binomial likelihood)]. Fixed and 
random effects methods often produced different point estimates, reflecting the different weights 
assigned to each study by these methods. Among random effects methods, the greatest 
discrepancies were observed between methods using the exact binomial likelihood versus those 
relying on the normal approximation. This could be explained by the need for continuity 
corrections, or the fact that the logit-transformed proportions and their variance are correlated, 
both of which would result in a downward bias for the summary sensitivity and specificity.  
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Figure 7. Summary comparison of sensitivity and specificity estimates (logit scale) from all 
univariate methods considered in this report 

  
Note: Estimates are logit-transformed.  
Binomial = model using the exact binomial likelihood for within-study variability; DL -= DerSimonian-Laird; FE = fixed effect; 
IV = inverse variance; normal = model using a normal approximation for within-study variability; RE = random effects; MLE = 
maximum likelihood estimation.
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Bivariate Meta-Analysis Methods 
This section compares the results of analyses based on alternative bivariate models for the 

joint meta-analysis of sensitivity and specificity.  

Noniterative (Inverse Variance) Versus Iterative (MLE) Estimation of 
Between-Study Variability in Bivariate Random Effects Meta-Analyses 
(Normal Approximation) 

Figure 8 compares the point estimates (logit-transformed) and confidence interval widths 
from bivariate random effects meta-analyses of sensitivity and specificity using a normal 
approximation to model within-study variability. We compare models that use a non-iterative 
estimator of between-study variance (a generalization of the DerSimonian-Laird method) versus 
an iterative estimator obtained with REML.25 Point estimates from the two methods were almost 
identical. However, MLE often (but not always) resulted in greater wider confidence intervals 
compared to the non-iterative method. This possibly reflects the inability of the non-iterative 
method to incorporate the uncertainty in the estimation of between-study heterogeneity. Figure 9 
presents histograms of the differences in estimated sensitivities and specificities (untransformed 
scale) between the two methods. Differences in summary estimates higher than 2.5 percent are 
uncommon.  
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Figure 8. Comparison of point estimates and confidence interval widths of summary sensitivity 
and specificity (logit scale) from bivariate random effects methods using a normal approximation 
(multivariate DerSimonian-Laird inverse variance vs. MLE) 

 
Note: Scatter plot of estimated logit-transformed sensitivity, specificity and their corresponding confidence interval widths from 
bivariate random effects meta-analyses using the multivariate DerSimonian-Laird and MLE methods (both with a normal 
approximation to represent within-study variability).  
CI = confidence interval width; mult. DL = multivariate DerSimonian-Laird; MLE = maximum likelihood estimation. 
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Figure 9. Histograms of differences in estimated summary sensitivity and specificity from 
bivariate random effects meta-analyses with multivariate DerSimonian-Laird inverse variance 
versus MLE (both models using a normal approximation to represent within-study variability) 

 
Note: Histograms of differences in estimated summary sensitivity (left panel) and specificity (right panel) comparing bivariate 
random effects meta-analysis using a normal approximation for 2 estimation methods: multivariate DerSimonian-Laird and MLE. 
Mult. DL = multivariate DerSimonian-Laird; MLE = maximum likelihood estimation.  
 

Approximate Normal Versus Exact Binomial Bivariate Random-Effects 
Meta-Analyses (MLE) 

Figure 10 compares the point estimates (logit-transformed) and confidence interval widths 
for bivariate random effects meta-analyses of sensitivity and specificity using the exact binomial 
likelihood versus using a normal approximation for within-study variability. It is evident that 
point estimates from the two methods are often dissimilar, and that differences are greater toward 
high sensitivity and specificity values (when they approach 1); this most likely follows from the 
need for continuity corrections when the normal approximation is used, which will tend to bias 
the estimated proportion toward 0.5. Further, in many cases the exact likelihood results in wider 
confidence intervals. Figure 11 presents histograms of the differences in estimated sensitivities 
and specificities (untransformed scale) between methods. The results indicate that differences 
higher than 5% are not uncommon and typically suggest underestimation of sensitivity and 
specificity in meta-analyses using a normal approximation (compared to those using the exact 
binomial likelihood). 
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Figure 10. Comparison of point estimates and confidence interval widths of summary sensitivity 
and specificity (logit scale) from bivariate random effects meta-analyses (approximate normal vs. 
exact binomial; both models fit with MLE) 

 
Note: Scatter plot of estimated logit-transformed sensitivity, specificity and their corresponding confidence interval widths from 
bivariate random effects meta-analyses using the exact binomial likelihood versus using an approximate normal likelihood to 
describe within-study variability.  
CI = confidence interval; MLE = maximum likelihood estimation. 
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Figure 11. Histograms of differences in estimated summary sensitivity and specificity from 
bivariate random effects meta-analyses (approximate normal vs. exact binomial; both models fit 
with MLE) 

  
Note: Histograms of differences in estimated summary sensitivity (left panel) and specificity (right panel) comparing bivariate 
random effects meta-analysis using the exact binomial likelihood versus using a normal approximation for within-study 
variability.  
MLE = maximum likelihood estimation. 

Factors Influencing the Difference Between Bivariate Random Effects 
Meta-Analyses Using the Normal Versus Binomial Likelihood (Both 
With MLE) 

Figure 12 presents scatter plots of the differences (logit-transformed) of estimated sensitivity 
and specificity versus factors that we hypothesized could affect estimation. The results 
demonstrate that differences between methods were larger in meta-analyses in which a large 
proportion of the available studies required a continuity correction (for the normal 
approximation) and in meta-analyses where studies were generally small. The total number of 
included studies in the meta-analysis generally had a smaller effect. 
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Figure 12. Differences of estimated sensitivity and specificity (logit scale, bivariate random effects 
meta-analyses using the exact binomial likelihood vs. a normal approximation; both models fit 
with MLE) over meta-analysis characteristics 

 
Note: Positive differences indicate that estimates using the binomial likelihood are larger than those using the normal 
approximation. Eight meta-analyses with a median number of unaffected individuals >1000 have not been plotted (in the middle 
right panel) to avoid distortion of the graph.
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Bayesian Methods Versus MLE for the Binomial Bivariate Random 
Effects Model (Exact Likelihood) 

Figure 13 compares the point estimates (logit-transformed) and confidence or credibility 
interval widths for bivariate random effects meta-analyses of sensitivity and specificity using 
fully Bayesian methods and MLE (both based on the exact binomial likelihood for within-study 
variability). Point estimates from the two methods were almost identical. However, the Bayesian 
model typically resulted in substantially larger credibility interval widths, indicating greater 
uncertainty around the sensitivity and specificity estimates compared to MLE. Figure 14 presents 
histograms of the differences in estimated sensitivities and specificities (untransformed scale) 
between the two methods, confirming that point estimate differences higher than 5 percent were 
very uncommon. 

Figure 13. Comparison of point estimates and confidence/credibility interval widths of summary 
sensitivity and specificity (logit scale) from bivariate random effects meta-analyses (Bayesian 
versus MLE; both models using the exact binomial likelihood to represent within-study variability) 

  
Note: Scatter plot of estimated logit-transformed sensitivity, specificity and their corresponding confidence interval widths from 
bivariate random effects models using fully Bayesian versus MLE estimation (both using the exact binomial likelihood to 
represent within-study variability).  
CI = confidence interval; CrI = credibility interval; MLE = maximum likelihood estimation. 
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Figure 14. Histograms of differences in estimated summary sensitivity and specificity from 
bivariate random effects meta-analyses fit using fully Bayesian versus MLE estimation (using the 
exact binomial likelihood to represent within-study variability) 

 
Note: Histograms of differences in estimated summary sensitivity (left panel) and specificity (right panel) comparing bivariate 
random effects meta-analysis models fit using fully Bayesian versus MLE (both models used the exact binomial likelihood to 
represent within-study variability).  
MLE = maximum likelihood estimation. 

Factors Influencing the Difference Between Bivariate Random Effects 
Meta-Analyses Using the Binomial Likelihood (MLE vs. Bayesian) 

Figure 15 presents scatter plots of the differences (logit-transformed) of estimated sensitivity 
and specificity over factors that we hypothesized could affect estimation. Generally differences 
between methods were small. However, differences were smaller with increasing number of 
included studies and increasing median number of participants per study. Differences were larger 
with increasing proportion of studies requiring a continuity correction, possibly reflecting the 
larger impact of the priors in such cases.  
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Figure 15. Differences of estimated logit sensitivity and specificity between models fit with 
Bayesian methods versus MLE (both from bivariate random effects meta-analyses using the exact 
binomial likelihood) over meta-analysis characteristics 

 
Note: Positive differences indicate that estimates from Bayesian analyses are larger than those from MLE. Three datapoints (1 for 
sensitivity and 2 for specificity) with absolute differences between methods larger than 1 have not been plotted to avoid distortion 
in the graph. An additional eight meta-analyses with a median number of unaffected individuals >1000 have not been plotted (in 
the middle right panel) for the same reason.
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Summary for Bivariate Meta-Analysis Methods 
Figure 16 summarizes the comparisons of bivariate analyses of sensitivity and specificity 

discussed in this report (random effects using a generalization of the DerSimonian-Laird method 
[normal approximation]; random effects using REML [normal approximation]; random effects 
using ML [exact binomial likelihood]; and Bayesian random effects using the exact binomial 
likelihood). The greatest discrepancies in meta-analytic point estimates were observed between 
methods using the exact binomial likelihood versus those relying on the normal approximation. 
This could be explained by the need for continuity corrections, or the fact that the logit-
transformed proportions and their variance are correlated, both of which would result in a 
downward bias for the summary sensitivity and specificity. 
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Figure 16. Summary comparison of sensitivity and specificity estimates (logit scale) from all 
univariate methods considered in this report 

 
Binomial = model using the exact binomial likelihood for within-study variability; mult. DL= multivariate DerSimonian-Laird; 
normal = model using a normal approximation for within-study variability; MLE = maximum likelihood estimation. 
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Estimation of the Between-Study Correlation (Inverse Variance, MLE, 
and Bayesian Bivariate Models) 

The bivariate models, both using a normal approximation and the exact binomial likelihood, 
allow estimation of the correlation of sensitivity and specificity at the between-study level. 
Figure 17 presents scatter plots of the estimated correlation from four bivariate models: the two 
models with a normal approximation (fit using either the multivariate DerSimonian-Laird 
method or REML), and two models using the exact binomial likelihood to describe within-study 
variability (fit using ML or a fully Bayesian approach). It is obvious that these methods produce 
different distributions of correlations, with the maximum likelihood approaches often returning 
estimated correlations equal to -1 (and less frequently, 1). In contrast the Bayesian model rarely 
produces such extreme correlation values. Negative values are more common with all 
approaches, but the estimated correlations from all methods are sometimes positive (Table 3). 
Negative correlation values are consistent with the existence of threshold effects (i.e., the trade-
off between sensitivity and specificity) in meta-analyses of test accuracy. The differences in the 
correlation estimates are highlighted by Figure 18, which is a matrix scatter plot of the results 
from the same 4 methods. Figure 19 presents histograms of the differences in correlation 
estimates between alternative methods.  

Generally, as is evident from the relatively wide confidence intervals, the correlation 
parameter is poorly estimated. As an example, Figure 20 shows the correlation point estimates 
and corresponding 95% confidence intervals from 228 studies for which they could be calculated 
(for studies where the correlation was estimated to be very close to -1 or +1, confidence intervals 
could not be calculated for numerical reasons). The confidence interval excluded negative 
correlation values in 5 of the 74 cases where the point estimate of the correlation was positive; in 
contrast, the confidence interval excluded positive correlation values in 43 of the 154 cases 
where the point estimate of the correlation was negative (Fisher exact p<0.001 for the difference 
in statistical significance). 
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Figure 17. Histograms of the estimated correlation between sensitivity and specificity from the 
three bivariate methods compared in this report 

 
Note: Histograms of the estimated correlation between sensitivity and specificity from bivariate random effects meta-analysis 
models using: (top left) normal approximation with multivariate DerSimonian-Laird method; (top right) normal approximation 
with MLE; (bottom left) exact binomial likelihood with MLE; (bottom right) exact binomial likelihood with Bayesian model.  
Mult. DL = multivariate DerSimonian-Laird; MLE = maximum likelihood estimation. 
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 Table 3. Estimated correlation by different bivariate methods 
Method 
(Model /Approach for Within-Study Variability/ 
Model Fitting Method) 

Estimated Correlation 
<0 
N (%) 

BREMA, normal, mult. DL* 208 (70) 
BREMA, normal, MLE 214 (72) 
BREMA, binomial, MLE 203 (68) 
BREMA, binomial, Bayesian 200 (67) 

* In one meta-analysis the correlation could not be estimated.  
BREMA = bivariate random effects meta-analysis; mult. DL = multivariate DerSimonian-Laird; MLE = maximum likelihood 
estimation. 

Figure 18. Matrix scatter plot of correlation estimates from the four bivariate methods considered 
in this report  

 
Binomial = model using the exact binomial likelihood to describe within-study variability; mult. DL = multivariate DerSimonian-
Laird; normal = model using an approximate normal likelihood to describe within-study variability; MLE = maximum likelihood 
estimation.  
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Figure 19. Histograms of differences in correlation estimates from bivariate random effects meta-
analyses (multivariate DerSimonian-Laird model using a normal approximation; MLE using a 
normal approximation; MLE using the exact binomial likelihood; and fully Bayesian model using 
the exact binomial likelihood) 

 
Note: Histograms of differences in correlation estimates between models: top panel, multivariate DerSimonian-Laird method 
(with a normal approximation) versus MLE (with a normal approximation); middle panel, MLE with the exact binomial 
likelihood versus MLE with a normal approximation; bottom panel, Bayesian model (exact binomial likelihood) versus MLE 
(exact binomial likelihood).  
ρ = correlation; bin. = model using the exact binomial likelihood; MLE = maximum likelihood estimation; norm. = model using a 
normal approximation.  
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Figure 20. Point estimates and 95% confidence intervals for the correlation of sensitivity and 
specificity, as estimated by the bivariate model using the exact binomial likelihood (MLE 
estimation) 

 
Note: Estimates from the bivariate model using the exact binomial likelihood for within-study variability. Point estimates are 
shown as red “x” symbols, extending lines represent 95% confidence intervals.  
MLE = maximum likelihood estimation.  
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Comparison of Univariate and Bivariate Methods 
This section compares the results of univariate and bivariate methods for meta-analysis of 

sensitivity and specificity. We stratify comparisons by estimation method (non-iterative versus 
iterative estimation of heterogeneity) and by use of normal distribution versus the binomial 
likelihood to model within-study variation. 

Univariate Versus Bivariate Random Effects Meta-Analyses Using the 
Normal Approximation and Noniterative Heterogeneity Estimators 
(DerSimonian-Laird and Multivariate DerSimonian-Laird Methods) 

Figure 21 compares the point estimates (logit-transformed) and confidence interval widths 
for meta-analyses of sensitivity and specificity comparing univariate and bivariate random 
effects models (using a normal approximation for within-study variability). The univariate 
analyses used the DerSimonian-Laird method to estimate between-study heterogeneity; the 
bivariate analyses use a multivariate generalization of the same method. Overall, point estimates 
and confidence interval widths from the two methods were similar. Figure 22 presents 
histograms of the differences in estimated sensitivities and specificities (untransformed scale) 
between methods, which emphasizes the general concordance of the point estimates (no 
differences larger than 10% were observed and only occasional differences beyond 5%). 
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Figure 21. Comparison of point estimates and confidence interval widths of summary sensitivity 
and specificity (logit scale, univariate random effects vs. bivariate random effects inverse variance 
methods, both using a normal approximation for within-study variability and a noniterative 
estimator for heterogeneity) 

 
Note: Scatter plot of estimated logit-transformed sensitivity, specificity and their corresponding confidence interval widths from 
univariate random effects meta-analyses over bivariate random effects inverse variance (DerSimonian-Laird and multivariate 
DerSimonian-Laird) meta-analysis (with an approximate normal likelihood to describe within-study variability).  
CI = confidence interval; DL = DerSimonian-Laird; mult. DL = multivariate DerSimonian-Laird. 
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Figure 22. Histograms of differences in estimated summary sensitivity and specificity in univariate 
versus bivariate random effects inverse variance meta-analyses (both using a normal 
approximation for within-study variability) 

  
Note: Histograms of differences in estimated summary sensitivity (left panel) and specificity (right panel) comparing bivariate 
versus univariate random effects inverse variance meta-analyses (Der-Simonian-Laird vs. multivariate DerSimonian-Laird; both 
using a normal approximation for within-study variability).  
DL = DerSimonian-Laird; mult. DL = multivariate DerSimonian-Laird.  

Univariate Versus Bivariate Random Effects Meta-Analyses Using the 
Normal Approximation (Using MLE) 

Figure 23 compares the point estimates (logit-transformed) and confidence interval widths 
for meta-analyses of sensitivity and specificity comparing univariate and bivariate random 
effects models using ML estimation (with a normal approximation for within-study variability). 
Overall, point estimates from the two methods are similar, however the uncertainty around the 
estimates is often different between methods; in many cases the bivariate model produces greater 
confidence interval widths, indicating larger uncertainty around estimates. Figure 24 presents 
histograms of the differences in estimated sensitivities and specificities (untransformed scale) 
between the two models; the graph emphasizes the general concordance of the point estimates of 
the two methods (only occasional differences beyond 2.5%). 
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Figure 23. Comparison of point estimates and standard errors of summary sensitivity and 
specificity (logit scale) from univariate versus bivariate random effects meta-analyses with MLE 
(using a normal approximation for within-study variability) 

 
Note: Scatter plot of estimated logit-transformed sensitivity, specificity and their corresponding confidence interval widths from 
univariate and bivariate random effects meta-analyses fit using MLE (with a normal approximation to represent within-study 
variability).  
CI = confidence interval; MLE = maximum likelihood estimation. 
 

-2
0

2
4

B
iv

ar
ia

te
 (M

LE
, n

or
m

al
)

-2 0 2 4
Univariate (MLE, normal)

Sensitivity estimate

-2
0

2
4

6
B

iv
ar

ia
te

 (M
LE

, n
or

m
al

)

-2 0 2 4 6
Univariate (MLE, normal)

Specificity estimate

0
1

2
3

B
iv

ar
ia

te
 (M

LE
, n

or
m

al
)

0 1 2 3
Univariate (MLE, normal)

Sensitivity CI width

0
1

2
3

B
iv

ar
ia

te
 (M

LE
, n

or
m

al
)

0 1 2 3
Univariate (MLE, normal)

Specificity CI width



37 

Figure 24. Histograms of differences in estimated summary sensitivity and specificity (logit scale) 
from univariate and bivariate random effects meta-analyses with MLE (using a normal 
approximation to represent within-study variability for both models) 

 
Note: Histograms of differences in estimated summary sensitivity (left panel) and specificity (right panel) comparing bivariate 
versus univariate random effects meta-analyses fit with MLE (using a normal approximation to represent within-study 
variability).  
MLE = maximum likelihood estimation. 

  

Univariate Versus Bivariate Random Effects Meta-Analyses Using the 
Exact Binomial Likelihood (MLE) 

Figure 25 compares the point estimates (logit-transformed) and confidence interval widths 
for meta-analyses of sensitivity and specificity comparing univariate and bivariate models (using 
the exact binomial likelihood to represent within-study variability). Overall, point estimates and 
confidence interval widths from the two methods were similar. Figure 26 presents histograms of 
the differences in estimated sensitivities and specificities (untransformed scale) between methods 
and emphasizes the general concordance of the point estimates (only two discrepancies beyond 
5%). 
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Figure 25. Comparison of point estimates and confidence interval widths of summary sensitivity 
and specificity (logit scale) from univariate versus bivariate random effects meta-analyses using 
the exact binomial likelihood (both models fit using MLE) 

 
Note: Scatter plot of estimated logit-transformed sensitivity, specificity and their corresponding confidence interval widths from 
univariate and bivariate random effect meta-analyses fit using MLE (both models using the exact binomial likelihood to represent 
within-study variability).  
CI = confidence interval; MLE = maximum likelihood estimation. 
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Figure 26. Histograms of differences in estimated summary sensitivity and specificity comparing 
univariate versus bivariate random effects meta-analyses fit with MLE (both models using the 
exact binomial likelihood to represent within-study variability) 

 
Note: Histograms of differences in estimated summary sensitivity (left panel) and specificity (right panel) comparing bivariate 
versus univariate random effects models fit using MLE (both models used the exact binomial likelihood to represent within-study 
variability).  
MLE = maximum likelihood estimation. 
 

Factors Influencing the Difference Between Univariate and Bivariate 
Random Effects Meta-Analyses Using the Binomial Likelihood (MLE) 

Figure 27 presents scatter plots of the differences (logit-transformed) of estimated 
sensitivity and specificity over factors that we hypothesized could affect estimation. The results 
demonstrate that differences between methods were generally small and that no meta-analysis 
characteristic had a large effect on the differences between methods.  
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Figure 27. Differences of estimated sensitivity and specificity (logit scale) comparing univariate 
versus bivariate random effects meta-analyses (both using the exact binomial likelihood and fit 
using MLE) over meta-analysis characteristics 

 
Positive differences indicate that estimates from univariate meta-analysis are larger than those from bivariate meta-analysis. Four 
datapoints (2 for sensitivity and 2 for specificity) with absolute differences in estimated values between methods larger than 1 
have not been plotted to avoid distortion of the graph. An additional eight meta-analyses with a median number of unaffected 
individuals >1000 have not been plotted (in the middle right panel) for the same reason.
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Summary for the Comparison of Univariate and Bivariate Methods 
Figures 28 and 29 summarize the comparisons of effect sizes from all non-Bayesian random 

effects methods used in this report (univariate or bivariate; DerSimonian-Laird- or MLE-based; 
using the exact binomial likelihood or a normal approximation). Overall, the greatest 
discrepancies were observed between methods using the exact binomial likelihood versus those 
relying on the normal approximation. The point estimates from univariate and bivariate meta-
analyses were similar both for methods using non-iterative (univariate or multivariate 
DerSimonian-Laird) or iterative (ML or REML) estimators of between-study variance. 

Figure 28. Summary comparison of sensitivity estimates (logit scale) from all methods considered 
in this report  

 
Binomial = model using the exact binomial likelihood; biv = bivariate; mult. DL = multivariate DerSimonian-Laird method; 
DL = DerSimonian-Laird model; normal = model using a normal approximation; MLE = maximum likelihood estimation; univ = 
univariate.  
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Figure 29. Summary comparison of specificity estimates (logit scale) from all methods considered 
in this report  

 
Binomial = model using the exact binomial likelihood; biv = bivariate; mult. DL = multivariate DerSimonian-Laird method; DL 
= DerSimonian-Laird model; normal = model using a normal approximation; MLE = maximum likelihood estimation; univ = 
univariate.  

Meta-Analysis in the Receiver Operating Characteristic 
Space 
 Methods for constructing ROC curves work by transforming a straight line that describes the 
bivariate distribution of logit-transformed sensitivity and specificity to the ROC space. The most 
common method used to obtain estimates of the intercept and slope of the straight line is the 
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(S). Typically this method is implemented in a fixed effects framework (using both weighted and 
unweighted regression) and measurement error in S (the sum of logit-transformed sensitivity and 
specificity) is ignored. Hierarchical regression methods that overcome these limitations have 
been proposed but it is unclear whether they result in substantially different estimates of 
performance. The HSROC approach proposed by Rutter and Gatsonis is the method used in most 
published meta-analyses that employ such hierarchical models.  
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Moses-Littenberg SROC Versus Rutter-Gatsonis HSROC 
Figure 30 compares the slope in the logit space of ROC lines produced by the Moses-

Littenberg (weighted and unweighted) and Rutter-Gatsonis methods. Figure 31 presents the 
SROC curves produced from these 3 methods for 24 randomly selected examples. 

Figure 30. Scatter plot of the slopes of alternative SROC lines (logit space)  

 
Note: Alternative SROC curves based on bivariate meta-analysis (to obtain estimates for the Rutter-Gatsonis HSROC; fit using 
maximum likelihood) or the Moses-Littenberg method. Examples that resulted in extreme slope values (>10 or <-10) are not 
shown to avoid distortion of the graph.  
SROC = summary receiver operating characteristic curve.  
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Figure 31. SROC curves for 24 randomly selected meta-analyses (bivariate random effects model vs. Moses-Littenberg methods) 

 
Note: Meta-analytic ROC curves for 24 randomly selected meta-analyses. The title for each panel contains the first author and year of publication for the corresponding review. 
Estimates for SROC curves were produced by bivariate meta-analysis (red lines; using the Rutter-Gatsonis formulation), and the unweighted (solid black line) and weighted 
(dashed black line) Moses-Littenberg methods.  
HSROC = hierarchical summary receiver operating characteristic curve; SROC = receiver operating characteristic curve.
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Alternative SROC Curves Based on the Bivariate Model 
The Rutter-Gatsonis HSROC curve is only one possible parameterization of the meta-

analytic ROC curve. We followed Arends 200828 to obtain alternative SROC curves based on the 
results of the bivariate random effects meta-analysis model using the exact binomial likelihood 
(fit with MLE). In Appendix C we present the regression lines corresponding to each alternative 
model. Importantly, the Rutter-Gatsonis HSROC curve always has a positive slope (because the 
slope is equal to the ratio of the square root of the variances of the logit-transformed sensitivity 
over the variance of the logit-transformed false positive rate). In contrast, the slopes of other 
HSROC curves are not always positive: the slopes estimated by MAR of η~ξ, regression of η~ξ, 
and of ξ~η will be negative whenever the correlation between logit-sensitivity and logit-
specificity is positive (i.e. when the covariance between logit-transformed true and false positive 
rates is negative); the slope of the regression line corresponding to the “D on S” model may also 
be negative in some cases, but this will depend on the relative values of the variances of logit-
transformed sensitivity and specificity and their covariance.  

Figure 32 presents the alternative SROC curves discussed above for 24 randomly selected 
meta-analyses: the Rutter-Gatsonis slopes are always positive, whereas in some examples the 
slopes from the D~S, MAR of η ~ ξ, η~ξ, and ξ~η models, are negative. The latter three models 
“track together” (i.e. either all have positive slopes or all have negative slopes). In contrast there 
are some examples where the D~S model has a positive slope when the MAR, η~ξ, and ξ~η 
models have negative slopes.  

Figure 33 presents the study-level data and fitted HSROC curves for one of the datasets we 
analyzed34 (fourth dataset on the top row of Figure 32. This was a case where all regression 
methods (except the Rutter-Gatsonis model) resulted in a negative slope. The data points from 
the studies in this meta-analysis were clustered in the top left corner of the ROC space, many 
studies had sensitivities and specificities near 1, and the estimated correlation between sensitivity 
and specificity was positive. Note also that the differences between the fitted lines are less 
pronounced within the observed region of data.   

Table 4 shows that the regression of η~ξ, regression of ξ~η, and MAR of η ~ ξ result in 
negative slopes in 32 percent of the meta-analyses we performed; the D~S model results in 
negative slopes in 13 percent. By design, the Rutter-Gatsonis model always produces a positive 
slope. Figure 34 presents a matrix scatter plot of the slope values produced the different 
parameterizations of the HSROC curve, as well as those from the Moses-Litenberg method 
(weighted and unweighted). 

Appendix D presents a worked meta-analysis example applying all methods used in this 
report.  
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Figure 32. HSROC curves for 24 randomly selected meta-analyses (alternative parameterizations of the HSROC curve) 

  
 

Note: Alternative ROC curves based bivariate meta-analysis (fit using maximum likelihood) for 24 randomly selected meta-analyses. The title for each panel contains the first 
author and year of publication for the corresponding review. Results are shown for the Rutter-Gatsonis (red lines), η~ξ (green lines), ξ~η (blue lines), D~S (purple lines), and MAR 
of η~ξ (black lines) parameterizations. See text and Appendix C for additional details.  
D = logit(sensitivity) – logit(1 – specificity); S = logit(sensitivity) + logit(1 – specificity); MAR = major axis regression of η on ξ; η = logit(sensitivity); ξ = logit(1-specificity).  
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Figure 33. Study results and fitted HSROC curves for an example dataset  

  
Note: Alternative SROC curves for the meta-analysis by van Gelder, 200334 (first dataset on the top row of Figure 32). Results 
are shown for the Rutter-Gatsonis (red lines), η~ξ (green lines), ξ~η (blue lines), D~S (purple lines), and MAR of η~ξ (black 
lines) parameterizations, in the ROC space (left panel) and the logit-transformed ROC space (right panel). All models were 
estimated using MLE. See text and Appendix C for additional details. For the logit space graph, in studies where the estimated 
false positive rate was 0 we used a value of 0.01 (because the logit of zero is undefined); this was done for illustration purposes 
only and does not affect the results of our analyses.  
D = logit(sensitivity) – logit(1 – specificity); HSROC = hierarchical receiver operating characteristic; S = logit(sensitivity) + 
logit(1 – specificity); MAR = major axis regression of η on ξ; MLE = maximum likelihood estimation; η = logit(sensitivity); ξ = 
logit(1 – specificity).  
 
 

Table 4. Slope of ROC line in the logit-space 

Method 
Meta-Analyses With 
Positive Slope  
N (%) 

Meta-Analyses With 
Negative Slope  
N (%) 

R & G 298 (100) 0 (0) 
η ~ ξ 203 (68) 95 (32) 
ξ ~ η 203 (68) 95 (32) 
D ~ S 259 (87) 39 (13) 
MAR 203 (68) 95 (32) 

 
D = logit(sensitivity) – logit(1 – specificity); S = logit(sensitivity) + logit(1 – specificity); MAR = major axis regression of 
logit(sensitivity) on logit(specificity); R & G = Rutter-Gatsonis model; η = logit-transformed sensitivity; ξ = logit-transformed 
specificity.  
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Figure 34. Scatter plot of the slopes of alternative SROC lines (logit space) 

 
D = logit(sensitivity) – logit(1 – specificity); MAR = major axis regression; S = logit(sensitivity) +  logit(1 – specificity); 
HSROC = hierarchical summary receiver operating characteristic curve; η = logit(sensitivity); ξ = logit(1 – specificity). 
Examples that resulted in extreme slope values (>10 or <-10) are not show to avoid distortion of the graph. 
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Discussion 
Key Findings 

We present a comprehensive empirical comparison of meta-analytic methods for studies of 
test accuracy, both in terms of number of meta-analyses included and in terms of the scope of the 
meta-analytic methods considered. Univariate and bivariate meta-analyses most often resulted in 
similar point estimates, regardless of the estimation method (inverse variance or MLE) or the 
distribution used to model within-study variability (normal or exact binomial). Use of a normal 
approximation (both in univariate and bivariate meta-analyses) resulted in summary estimates 
with lower values and led to narrower confidence intervals, compared to methods that used the 
exact binomial likelihood. Although some of the differences between estimates were numerically 
large, their clinical importance is entirely context-specific. As expected, differences were larger 
in meta-analyses of small studies where continuity corrections (for the normal approximation) 
were needed for a large proportion of analyzed studies. Bivariate models fit using Bayesian and 
maximum likelihood methods produced almost identical summary estimates of sensitivity and 
specificity. The methods gave practically identical results in meta-analyses with moderate to 
large numbers of studies and when included studies had large sample sizes. The credibility 
intervals produced by Bayesian bivariate meta-analysis methods were substantially wider 
compared to the confidence intervals of maximum likelihood methods (using the exact binomial 
likelihood to describe within-study variability for both models). Although often not well 
estimated, the between-study correlation (of sensitivity and specificity) was frequently far from 
zero. This indicates that ignoring it is generally inappropriate for meta-analyses. Alternative 
meta-analytic methods to obtain SROC curves resulted in substantially different curves; 
differences were substantial between alternative parameterizations of the HSROC curves 
(particularly when the correlation between sensitivity and specificity was estimated to be 
positive).  

Meta-Analysis of Sensitivity and Specificity 
Our findings substantially extend previous comparisons between methods for meta-analysis 

of test accuracy. Table 5 summarizes selected empirical comparisons of meta-analytic methods 
for test accuracy, where at least one of the methods allowed for correlation of sensitivity and 
specificity at the between-study level. Generally, previous reports have assessed only few 
applied meta-analysis examples (ranging from 1 to 50 meta-analyses), whereas we analyzed a 
much larger database using a wide array of analytic approaches. 

Previous theoretical and simulation studies have suggested that the binomial distribution may 
be preferable to the normal approximation for modeling within-study variability. We believe that 
our observations are in concordance with this position. Not unexpectedly, the differences 
between the two methods were more pronounced in studies of small sample size and meta-
analyses where tests had high sensitivity and specificity. In such cases the normal distribution 
will be a poor approximation to the binomial. Furthermore, in studies where some of the counts 
are zero, analysis using the normal likelihood will require the use of a continuity correction (so 
that the variance and point estimate of the study-level logit-sensitivity or logit-specificity can be 
calculated). The continuity correction will bias the point estimate of individual studies; this is 
why the difference in the summary estimates between methods that rely on the normal 
approximation versus those that do not is greater when the summary sensitivity or specificity are 
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closer to one35. An additional reason for the systematically smaller summary sensitivity or 
specificity with normal approximation methods may be that in the meta-analysis, the estimate 
(logit-transformed sensitivity or specificity) and its variance are correlated, in that the variance is 
a function of the estimate and the sample size. This correlation is positive for proportions larger 
than 0.5, and thus estimates near one have larger variance (and receive less weight in the meta-
analysis) compared to estimates near 0.5. The net effect is that summary sensitivity or specificity 
are biased towards 0.5.28,33 Such a bias is not a problem for meta-analysis methods using the 
exact likelihood, and is not observed when variance-stabilizing transformations are used for 
meta-analysis of proportions (such as the arcsine transformation).  

We found that univariate and bivariate meta-analysis methods produced generally similar 
summary estimates and marginal confidence intervals for sensitivity and specificity. Differences 
are likely to be more pronounced when evaluating linear combinations of the estimates (e.g., the 
sum of sensitivity and specificity) particularly in problems of higher dimensionality (e.g., 
multiple index tests applied to the same patients and compared against a common reference 
standard). This issue is addressed in detail in a separate report of diagnostic tests in preparation 
by the EPC. 

Few studies have compared the results of bivariate meta-analysis using maximum likelihood 
versus fully Bayesian methods for the meta-analysis of sensitivity and specificity and those that 
did used models that were not directly comparable).17,19,20 Many investigators have commented 
that Bayesian methods are less accessible to meta-analysts than the corresponding maximum 
likelihood methods. We provide the BUGS code we used to fit the bivariate model for the model 
in Appendix B. We found that convergence problems were not common when fitting the 
bivariate model; when present they were mostly due to numerical instability in cases where the 
number of studies was small, sensitivity and specificity were close to 1, or the between-study 
variance was very low. For Bayesian analyses, we were able to obtain model convergence in 
most datasets by slightly modifying the non-informative prior distributions used. Bayesian 
analyses resulted in summary estimates of sensitivity and specificity that were very close to those 
obtained from the maximum likelihood estimation. However, there were substantial differences 
in the width of the credibility and confidence intervals produced by Bayesian and maximum 
likelihood analyses, respectively. 

Bivariate methods provide estimates of the correlation between sensitivity and specificity at 
the between-study level. Alternative models (normal approximation for within-study variability 
versus exact binomial distribution) and estimation methods (non-iterative versus MLE; 
frequentist versus Bayes) can yield quite different correlation estimates. This may be another 
symptom of the fact that the correlation parameter is generally poorly estimated. A telling 
observation is the following: frequentist approaches (maximum likelihood and inverse variance 
methods) often estimated the correlation parameter in the extremes of its domain, namely -1 (and 
sometimes +1). Riley 2007 made a similar observation in a simulation study.36 In contrast, 
Bayesian methods rarely produced extreme correlation values, due to shrinkage toward the mean 
of the prior distribution (the mean is zero for the uniform (-1,1) prior distribution that we used). 
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Table 5. Summary of selected previous empirical comparisons of meta-analysis methods, including simulation studies 

Author, 
Year 

Number of 
MAs 

Methods Compared and  
Model Fitting 

Software Key Findings Authors’ Recommendations/ 
Conclusions 

Macaskill17, 
2004 

1 (3 index 
tests) 

HSROC [ML vs. fully 
Bayesian] vs. SROC 
(unweighted) 

SAS Estimates from ML analyses agree with Bayesian 
analyses; CIs from ML analysis were narrower than those 
from Bayesian analysis; the ROC curves for all analyses 
were similar for each index test. 

ML formulation of HSROC model may be 
more accessible; Bayesian methods allow 
greater modeling flexibility; model checks 
are required for distributional 
assumptions of RE. 

Reitsma10, 
2005  

1 (3 index 
tests) 

SROC vs. BREMA 
normal 

SAS Summary values of sensitivity and specificity at the Q-
point for one of the index tests were very different from 
the pooled estimate produced by the bivariate model. 

The bivariate model is an “improvement 
and extension” of the “traditional” SROC 
approach. Explanatory variables with 
separate effects on sensitivity and 
specificity can be added in the bivariate 
model.  

Chu & 
Cole21, 
2006  

1 BREMA normal vs. 
binomial 

SAS Results of the two methods were similar in the applied 
example; in a limited simulation study the exact binomial 
likelihood gave unbiased results whereas the normal 
likelihood produced biased results for Se, Sp and ρ, when 
Se and Sp are close to 1. 

In sparse datasets the exact likelihood 
may be preferable. 

Harbord14, 
2007 

1 Bivariate binomial vs. 
HSROC 

SAS Parameter estimates of each model can be used to 
calculate those of the other; results are nearly identical. In 
the single example, the correlation between sensitivity 
and specificity was positive. 

The bivariate and HSROC models are 
closely related and in common situations 
identical. The HSROC model generally 
allows additional modeling flexibility. 
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Table 5. Summary of selected previous empirical comparisons of meta-analysis methods, including simulation studies (continued) 

Author, 
Year 

Number of 
MAs 

Methods Compared and  
Model Fitting 

Software Key Findings Authors’ Recommendations/ 
Conclusions 

Riley36, 
2007 

1 Bivariate normal vs. 
univariate normal; 
univariate binomial vs. 
bivariate binomial (the 
latter failed to converge) 

SAS Univariate and bivariate analyses with a normal 
approximation produced similar point estimates; the 
correlation was estimated as -1, leading to slightly larger 
between-study variances in the bivariate analyses. The 
univariate analysis using the exact binomial likelihood 
produced slightly higher estimates of sensitivity and 
specificity; the corresponding bivariate analysis failed to 
converge. Simulation results indicated that the between-
study correlation is often estimated to be -1 (or, less 
commonly, +1) when the number of studies is small or the 
within-study variance is large (compared to the between-
study variance); this leads to an upward bias in the 
estimates of between-study variance in the bivariate case. 
In simulated bivariate meta-analyses of 10 studies the 
model using the binomial likelihood failed to converge in 
397/1000 iterations. Multivariate meta-analysis methods 
allow borrowing strength across outcomes, particularly 
when data on some outcomes are missing at random. 

The BREMA using a normal likelihood is 
preferable to two normal UREMAs. For 
meta-analyses of proportions (e.g., 
sensitivity and specificity) the exact 
binomial likelihood is preferable 
compared to the BREMA using a normal 
likelihood or two separate UREMAs using 
the exact likelihood. The bivariate model 
with the exact likelihood may occasionally 
fail to converge, often due to difficulties in 
estimating the correlation between 
sensitivity and specificity. 

Arends28, 
2008 

2 BREMA normal vs. 
binomial; alternative 
SROC curves derived 
from the bivariate model 
vs. the SROC method 
(Moses-Littenberg) 

SAS Results using the approximate normal likelihood were 
similar to those using the exact binomial likelihood in one 
example (however the exact likelihood produced higher 
values of sensitivity and specificity). The alternative 
SROC curves generated by the bivariate model differ 
substantially between them and may differ from the 
Moses-Littenberg SROC. 

Multiple HSROC curves can be derived 
from the bivariate model. BREMA 
extends the SROC approach and 
provides a unifying framework for other 
approaches to the meta-analysis of 
diagnostic tests.  

Hamza35, 
2008 

1 UREMA, normal vs. 
binomial  

SAS In separate UREMA, estimates from the approximate 
normal method were lower compared to those produced 
from the exact binomial method, both for sensitivity and 
specificity. In simulation, the exact likelihood always 
performed better than the approximate approach and 
gave unbiased estimates; the approximate method had 
large bias and poor coverage. 

The exact binomial likelihood is the 
method of preference and should be used 
whenever feasible. 

Hamza37, 
2008 

1 Random intercept SROC 
vs. BREMA (normal and 
binomial) 

SAS In the data example, the parameter estimates from the 
three methods differed substantially and resulted in 
substantially different SROC curves. In simulations, the 
BREMA with the exact binomial likelihood gave unbiased 
estimates of the intercept and slope parameter of the 
SROC; coverage was also acceptable except when the 
number of studies was low. The random intercept SROC 

The BREMA with exact binomial 
likelihood for the within-study model 
performed better than other methods. 
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Table 5. Summary of selected previous empirical comparisons of meta-analysis methods, including simulation studies (continued) 

Author, 
Year 

Number of 
MAs 

Methods Compared and  
Model Fitting 

Software Key Findings Authors’ Recommendations/ 
Conclusions 

method and the BREMA with a normal approximation 
produced biased results and had poor coverage 
probabilities. Bivariate methods may fail to converge 
when the correlation of sensitivity and specificity is close 
to -1 or +1. 

Harbord22, 
2008 

8 Pooling vs. univariate RE 
MA vs. separate MA of 
LRs (not considered 
here) vs. SROC 
(weighted and 
unweighted) vs. 
BREMA/HSROC 

SAS In 6/8 examples, all methods gave similar point estimates; 
in 2/8 cases pooling gave different point estimates; CIs 
from pooling were “too narrow”. In 5/8 examples, SROC 
curves from all methods (pooling not assessed) were 
similar; in 1 example the SROC results (weighted and 
unweighted) differed from other methods; in 1 example 
BREMA/HSROC, weighted SROC and separate RE MA 
produced different results from the unweighted SROC; in 
1 example all methods produced similar results within the 
range of data but diverged outside that range.  

HSROC or BREMA methods should be 
used as the standard; simple pooling 
should not be used to derive summary 
values of sensitivity and specificity; 
univariate RE MA may be used to give a 
valid estimate of the summary point 
alone; HSROC/BREMA appears to be the 
only way to obtain a valid SROC curve. 

Chappell29, 
2009 

4 examples of 
an algorithm 
for deciding 
the optimal 
analysis 
method 

Alternative SROC curves 
from the bivariate model; 
univariate vs. bivariate 
methods (fixed and 
random effects). BREMA 
estimates obtained from 
ML methods; interval 
estimates from the 
posterior distribution with 
seemingly non-
informative priors for the 
hyperparameters through 
MCMC. 

R Multiple HSROC curves can be derived from the bivariate 
meta-analysis model; these curves can have substantially 
different shapes. Application of a proposed algorithm to 
guide the selection of the optimal meta-analysis model 
(bivariate versus univariate; fixed versus random) resulted 
in different choices (i.e. univariate meta-analyses were 
considered appropriate in some examples; bivariate in 
others). Parameters of the bivariate model were 
sometimes poorly estimated (particularly the between-
study variances and the correlation of logit-sensitivity and 
specificity). 

A zero or positive correlation between 
sensitivity and specificity “does not 
invalidate the bivariate model, as such,” 
but means that “the data should not be 
summarized by an SROC curve”. In some 
situations the SROC model may be 
inappropriate or there may not be enough 
data to estimate model parameters 
reliably. The authors propose an 
algorithm for the determination of the 
optimal analysis method for diagnostic 
test data. 

Simel23, 
2009 

2 (one with 3 
index tests) 
“selected for 
highlighting 
the merits” of 
BREMA + 5 
unselected 

BREMA normal vs. 
BREMA binomial vs. 
univariate analysis (fixed 
effects and RE) 

SAS; 
Meta-
Disc and 
CMA 

In analyses selected for highlighting the merits” of 
BREMA: among pairwise comparisons between all 
methods the median difference was 1.5% (25th-75th 
perc.=1.0-2.2%, maximum=6.0%); in 5 unselected 
analyses differences in sensitivity were 0-6%; differences 
in specificity were 0-2%; across all 7 examples the 
median difference in posterior probability (assuming a 
prior probability of 0.5) between methods was 2.5% (25th-
75th perc.=2.2–3.2%, maximum=11%). 

The two approaches lead to relatively 
small differences in posterior 
probabilities; premature to insist that 
BREMA is the only way to get clinically 
useful results; more work needs to be 
done to solve the problem of non-
convergence. 
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Table 5. Summary of selected previous empirical comparisons of meta-analysis methods, including simulation studies (continued) 

Author, 
Year 

Number of 
MAs 

Methods Compared and  
Model Fitting 

Software Key Findings Authors’ Recommendations/ 
Conclusions 

Paul19, 
2010 

1 BREMA binomial [ML vs. 
Bayesian MCMC vs. 
Bayesian INLA vs. 
empirical Bayes INLA 

R In the applied example, point estimates and intervals 
around sensitivity, specificity and their variances were 
similar across methods. Bayesian methods and INLA with 
Empirical Bayes modeling produced similar point 
estimates and intervals around the correlation of 
sensitivity and specificity; the ML approach produced a 
different estimate of the correlation (-1) with very wide 
confidence intervals (-1 to 1). In a simulation study, INLA 
and ML methods produced similar results in terms of bias 
and mean squared error. INLA had better coverage; ML 
modeling underestimated the variance parameters 
whereas INLA produced less downwardly biased variance 
estimates and more, reliable estimates of the correlation. 

INLA is more stable and gives generally 
better coverage probabilities for the 
pooled estimates and less biased 
estimates of variance parameters 
compared to ML modeling. INLA may be 
more user-friendly compared to full 
MCMC Bayesian modeling.  

Menke38, 
2010 
19936437 

50 BREMA binomial vs. 
HSROC, both fixed and 
random effects 

SAS Estimates of BREMA and HSROC analyses were nearly 
identical; correlations between point estimates or SEs 
produced by the two methods were >0.99. Comparisons 
were not reported between random end fixed effects 
method; convergence was fast (1.4 seconds per MA). 

Generalized linear random effects models 
are an alternative to the HSROC 
approach. 

Verde20, 
2010 

2 BREMA binomial using 
different specifications of 
the random effects 
distribution (binomial-
normal vs. binomial-
normal based on scale 
mixtures vs. binomial-t 
based on scale mixtures) 
and link functions (logit 
vs. c-log-log). 
Comparisons with the 
exact binomial BREMA 
model (from Chu & Cole 
2006); the Rutter-
Gatsonis HSROC model; 
and a Bayesian model 
accounting for disease 
prevalence were also 
reported for 1 of the 
examples.  

R; 
Winbugs 

The logit and c-log-log link functions produced similar 
results and comparable model fit. The binomial-normal 
and binomial-t (based on scale mixture of normals) 
models produced different results for the summary 
sensitivity and specificity (wider intervals for the bivariate-
normal model) and their respective predictive distributions 
(wider intervals for the bivariate-t model with scale 
mixtures). The Bayesian bivariate-normal model produced 
similar results to the ML modeling. The Bayesian 
bivariate-t model with scale mixtures may offer better fit 
compared to the Bayesian bivariate-normal model with 
scale mixtures or the Bayesian bivariate-normal model.  

Inference regarding random effects 
should be based on distributions more 
flexible than the normal. The predictive 
distribution of meta-analysis results 
reflects their future use. Model checking 
for meta-analysis results should not be 
ignored.  



55 

Note: Unless otherwise stated analyses used ML methods. The studies by Macaskill 17 2004; Reitsma10 2005; Chu & Cole21 2006; Harbord 14 2007; Chappell 200929; Simel 23 
2009; and Verde 2010 20, considered a common meta-analysis example, based on a systematic review by Scheidler 1997 39.   
BREMA = bivariate random effects meta-analysis; CI = confidence interval; CMA = comprehensive meta-analysis; HSROC = hierarchical SROC; INLA = integrated nested 
Laplace approximations; LR = likelihood ratio; MA = meta-analysis; MCMC = Markov Chain Monte Carlo; ML = maximum likelihood; perc. = percentile; RE = random effect; 
Se = sensitivity; Sp = specificity; SROC = summary receiver operating characteristic curve; UREMA = univariate random effects meta-analyses.
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Constructing Meta-Analytic ROC Curves 
Arguably, ROC curves provide additional information compared to meta-analytic estimates 

of sensitivity and specificity, because they illustrate the relationship between sensitivity and 
specificity. Based on our previous survey the most commonly used method for constructing 
SROC curves is the approach proposed by Moses and Littenberg.12 Despite its popularity this 
model has several shortcomings, including its failure to account for underlying binomial 
distribution of data, between-study heterogeneity, and measurement error on its independent 
variable. These shortcomings of the Moses-Littenberg SROC model are overcome by the 
hierarchical modeling approaches, including the increasingly used model proposed by Rutter and 
Gatsonis.13 It can been shown that the Rutter-Gatsonis HSROC model is equivalent to the 
bivariate meta-analysis of sensitivity and specificity, in the absence of covariates in the 
regression.14,28 Thus, the parameters of the HSROC model can be “back-calculated” using 
estimates from the bivariate meta-analysis model (an approach we followed in this report).  

The Rutter-Gatsonis HSROC model is one of several possible parameterization of the 
HSROC curve. Arends 200828 discuss alternative parameterizations, which we implemented for 
all meta-analyses we performed (plots available from the authors upon request). These 
parameterizations often result in substantially different curves compared to the one produced by 
the Rutter-Gatsonis HSROC model.13,29 Importantly, in some cases the slope of the ROC curve is 
not always positive (in contrast to the Rutter-Gatsonis method) and, therefore, the relationship 
between sensitivity and specificity cannot be explained by threshold effects across studies. Based 
on this, Chappell et al. determine that SROC curves are not always a helpful summary of the 
data, and propose a stepwise algorithm for determining the most appropriate approach to 
summarize accuracy studies.29 

Limitations 
Some limitations need to be considered when interpreting our results. Because of the way we 

constructed the database of systematic reviews of test accuracy, all included meta-analyses were 
conducted prior to 2003 and were published in English-language journals. Although this may 
limit the clinical applicability of their actual findings, it does not substantially affect the 
conclusions of our empirical comparison of methods because the datasets included are very 
diverse in terms of number of included studies, sample size, and reported test accuracy (Table 1). 
In a recent comprehensive review of reporting and design characteristics of systematic reviews 
of test accuracy that gave quantitative synthesis results (covering meta-analyses published up to 
2010), we found no substantial change over time in the number of included studies or the number 
of meta-analyses conducted per review article.12  

Another limitation of our work is that many systematic reviews contributed multiple datasets 
to the empirical comparison (approximately two datasets per review, on average). We believe 
that the effect of this clustering is probably minor because in most cases when multiple meta-
analyses are presented in the same systematic review, they typically address different index or 
reference standard tests (often based on nonoverlapping sets of primary studies). Unfortunately, 
data to explore the potential effect of such clustering are typically not available in meta-analyses 
or primary diagnostic test studies. Nonetheless, our approach can be considered representative of 
current practice in applied meta-analyses, where pairs of tests and diagnostic outcomes are 
almost always evaluated one at a time.  
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Finally we have focused on meta-analysis of sensitivity, specificity and meta-analytic ROC 
curves, but did not consider other metrics such as likelihood ratios, odds ratios or areas under the 
ROC curve. We note that these metrics can be derived from the methods we assess (for example, 
likelihood ratios can be estimated from the output of the bivariate model) and are generally less 
commonly used in the diagnostic literature.  
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Conclusions 
This work represents the most comprehensive empirical comparison of meta-analytic 

methods for studies of test accuracy, both in terms of the included number of meta-analyses and 
the scope of the meta-analytic methods considered. Based on our empirical observations and a 
review of the relevant literature, we summarize key findings relevant to meta-analytic practice in 
Box 1.  
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Box 1. Summary of findings relevant to meta-analytic practice 
Bivariate versus univariate analyses 
 In our empirical comparison, bivariate meta-analyses produced point estimates that were largely similar to those 
of separate univariate analyses (also observed elsewhere37). Because bivariate methods account for the correlation 
between the sensitivity and specificity across studies, the confidence region around the summary point is different 
from the univariate analyses, and the same is true for predictive distributions for future studies. Our findings suggest 
that this correlation is generally poorly estimated; however, bivariate models have stronger theoretical motivation 
for most common diagnostic test meta-analysis scenarios.  
 
Approximate normal versus exact binomial distribution for modeling within-study variability 
 Based on large sample theory, the normal approximation is inadequate when the sample size of included studies 
is small and the sensitivity or specificity of tests is extreme (very high or very low). We found that continuity 
corrections (required for the normal approximation) introduced bias in meta-analytic estimates. This is consistent 
with simulation studies suggesting that meta-analysis using the exact binomial likelihood outperforms methods 
relying on the normal approximation.35 The normal approximation could be reserved for cases where the model 
using the exact likelihood cannot be fit (e.g., inability to converge), or there is no access to statistical software able 
to fit generalized linear mixed models.  
 
Maximum likelihood versus Bayesian methods 
 Bayesian methods are theoretically appealing and allow for more flexible modeling, particularly when complex 
data structures arise. Further, they allow use of external information in the form of informative prior distributions. In 
our empirical assessment point estimates of sensitivity and specificity produced by the two methods were very 
similar; however, Bayesian methods often resulted in credibility intervals that were wider compared to the 
confidence intervals of maximum likelihood methods. This reflects the Bayesian models’ ability to model the 
uncertainty in the estimation of variance parameters more completely. 
 
Bivariate and HSROC models (summary point versus summary line to synthesize data)  
 Meta-analyses of sensitivity and specificity aim to provide helpful summaries of the findings of individual 
studies. Sometimes a helpful way to summarize individual studies is to provide one “summary point” of combined 
sensitivity and specificity. For example, a summary point is helpful when the results of the studies are relatively 
similar, and when the studied tests do not have different explicit thresholds for positive results. Other times, it is 
more helpful to synthesize data using a “summary line” that describes how sensitivity changes with specificity. For 
example, a summary line may be a more helpful way to synthesize data when studies have different explicit 
thresholds and their results range widely. Choosing the most helpful summary is subjective and case dependent, and 
both summaries can be reasonably employed as they provide complementary information. 
 
Choosing between alternative SROC curves 
 We found that alternative parameterizations of the SROC curve derived from the bivariate model can 
occasionally result in curves of different shape. Specifically, some parameterizations can result in negative estimated 
slopes when the correlation between sensitivity and specificity is positive (i.e., when the correlation between 
sensitivity and false positive rate is negative).28,29 In such cases the relationship between sensitivity and specificity 
cannot be explained by varying thresholds for positive test results across studies. Some authors argue that such 
SROC curves are not a helpful summary of the data.37  
 
Standard models are not always appropriate 
 The standard bivariate/HSROC models will not be appropriate for all diagnostic settings, for example when test 
results are reported for multiple thresholds within each study or when the classification problem is not binary. In 
such cases more complex modeling approaches are necessary to obtain correct estimates of test accuracy.40-42 
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Abbreviations 
AHRQ  Agency for Healthcare Research and Quality 
BREMA bivariate random effects meta-analysis 
EPC  Evidence-based Practice Center 
FPR  false positive rate 
HSROC hierarchical summary receiver operating characteristic 
MAR  major axis regression 
ML  maximum likelihood 
MLE  maximum likelihood estimation 
REML  restricted maximum likelihood 
ROC  receiver operating characteristic 
SROC  summary receiver operating characteristic 
TPR  true positive rate 
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Appendix B. Bayesian Model for Bivariate Meta-
Analysis of Sensitivity and Specificity 

For each study we used the 2×2 table of test results (positive or negative) and true 
disease status (Table B-1). 

Table B-1. 2×2 table of test results 
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This model was used both for the maximum likelihood and the Bayesian bivariate 

ߩ 

meta-analyses. The key difference between the two approaches is that in the latter, the 
model parameters (e.g., the average true and false positive rates and the covariance 
matrix) are treated as random variables and prior distributions need to be specified for 
them (hyper-priors). For the average logit-transformed true and false positive rates we 
used vague normal priors N(0,100); for the between-study variance we assumed that its 
square root (i.e., the standard deviation) followed a uniform prior distribution U(0.01,5). 
Finally, we assumed that the within study correlation had a uniform prior distribution 

̂
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U(−1,1). We used alternative prior distributions both for the variances and the 
correlation. One set of analyses used a normal prior N0,25 for the Fisher-transformed 
correlation coefficient across studies (as suggested in Paul et al, Statistics in Medicine, 
2010). Another set of analyses used a Wishart prior for the covariance matrix (as 
suggested in Verde et al., Statistics in Medicine 2010).  
 
BUGS language Bayesian model for bivariate meta-analysis of sensitivity and false 
positive rate 
#BUGS model: bivariate meta-analysis of test accuracy 
#exact binomial likelihood for within-study variability 
 
model { 
for( i in 1 : n_studies ) { 
tp[i] ~ dbin(tpr[i], n1[i]) 
fp[i] ~ dbin(fpr[i], n2[i]) 
logit(tpr[i]) <- m[i,1] 
logit(fpr[i]) <- m[i,2] 
m[i,1:2] ~ dmnorm(mu0[1:2], sigma.inv[1:2, 1:2]) 
} 
# Priors for means 
mu0[1] ~ dnorm(0, 0.01)  
mu0[2] ~ dnorm(0, 0.01)  
 
#priors for the elements of the covariance matrix 
sigma.inv[1:2, 1:2] <- inverse(sigma[1:2,1:2]) 
sigma[1,1] <- sigma1*sigma1 
sigma[1,2] <- sigma1*sigma2*rho 
sigma[2,1] <- sigma1*sigma2*rho 
sigma[2,2] <- sigma2*sigma2 
sigma1 ~ dunif(0.01,5) 
sigma2 ~ dunif(0.01,5) 
rho ~ dunif(-1, 1) 
 
# Pooled summaries 
x.pool <- mu0[1] 
y.pool <- mu0[2] 
poolse <- exp(x.pool) / ( 1 + exp(x.pool) ) 
poolsp <- 1 - exp(y.pool) / ( 1 + exp(y.pool) ) 
 
# Variance-covariance matrix for random-effects 
sigmaSens <- sigma[1,1] 
sigmaSpec <- sigma[2,2] 
} 
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Appendix C. Alternative Parameterizations of the 
Hierarchical Summary Receiver Operating 

Characteristic Curve 
We followed Arends 2008 [25] in constructing alternative hierarchical summary receiver 

operating (HSROC) curves based on the bivariate random effects meta-analysis model. Here,  
is the summary logit-transformed true positive r
positive rate (1 – specificity),  and 
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 are the variances of the logit-transformed 
 is their covariance.  

After fitting the bivariate model, we obtained the HSROC lines, as shown in Table C-1. 
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Table C-1. Alternative HSROC lines 
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D = logit(sensitivity) – logit(1-specificity) 
S = logit(sensitivity) + logit(1-specificity) 
MAR = major axis regression 
η = logit(sensitivity) 
ξ = logit(1-specificity). 
“Intercept” and “slope” refer to the estimated intercept and slope of the hsROC in the logit space. They describe a line that can be 
transformed to the HSROC curve. For each model, the corresponding hsROC curve is represented by the following function: 
sensitivity = invlogit(intercept + slope * logit(specificity)). Estimates of the intercept and slope can be derived from the output of 
the bivariate regression model in all major statistical packages.  
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Appendix D. Worked Meta-Analysis Example 
 

Here we present a worked meta-analysis example using several of the methods we employed 
in the report. In addition to the results presented in the main text of the report, we present 
additional model diagnostics for maximum likelihood and Bayesian methods. Our data were 
derived from Table 1 of Arends et al. (Med Decis Making, 2008) and pertain to the test 
performance of aspiration cytologic examination of the breast for the detection of cancer. The 
original source of the data is Giard and Hermans (Cancer, 1992). We reproduce the data in Table 
D-1. 

Table D-1. Example meta-analysis data 
TP FP FN TN 
979 70 89 939 
51 3 22 163 

1569 55 152 894 
35 25 15 259 
59 4 12 121 
56 18 4 216 
329 602 39 3117 
125 10 17 213 
211 88 63 499 
49 0 1 31 
336 26 178 643 
210 147 42 746 
16 5 3 25 
258 16 53 356 
56 9 18 107 
162 16 28 112 
116 6 13 112 
65 99 12 145 
94 5 10 78 
26 0 4 70 

1318 28 249 136 
569 55 120 539 
46 1 16 287 
64 13 6 76 
39 1 4 104 
132 16 20 426 
470 17 22 161 
28 25 4 200 
42 43 3 22 

  
We used Stata version IC/12 (Stata Corp., College Station, TX) to implement all non-

Bayesian analyses presented in the report; nonetheless, code should be easy to translate into 
other statistical packages that provide maximum likelihood implementations for general and 
generalized linear models. To run our code users will need a version of Stata that includes 
packages for mixed effects generalized linear models (version 10 or later), as well as the user-
contributed packages metan, metandi, metareg, and mvmeta. Our data is saved in a file named 
example.dta. 
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/* enter the data */ 
use example.dta , clear 
 
/* some data transformations */ 
/* logit sensitivity, with continuity correction */ 
generate b1 = logit(TP/(TP + FN)) 
replace b1 = logit((TP+0.5)/(TP+FN+2*0.5)) if TN == 0 | FP == 0 | TP == 0 | FN == 0  
generate V11 = 1/TP + 1/FN if TP != 0 & FN != 0 
replace V11 = 1/(TP+0.5) + 1/(FN+0.5) if TN == 0 | FP == 0 | TP == 0 | FN == 0  
generate se_b1 = sqrt(V11) 
 
/* logit specificity, with continuity correction */ 
generate b2 = logit(TN/(TN+FP))  
replace b2 = logit((TN+0.5)/(TN+FP+2*0.5)) if TN == 0 | FP == 0 | TP == 0 | FN == 0  
generate V22 = 1/TN + 1/FP 
replace V22 = 1/(TN + 0.5) + 1/(FP + 0.5) if TN == 0 | FP == 0 | TP == 0 | FN == 0  
generate se_b2 = sqrt(V22) 
 
/***********************************************************/ 
/* univariate meta-analyses of sensitivity and specificity */ 
/***********************************************************/ 
/* normal within-study likelihood */ 
/* FE inverse variance */ 
metan b1 se_b1 , fixedi nograph z /* summary logit sensitivity */ 
metan b2 se_b2 , fixedi nograph z /* summary logit specificity */ 
 
/* normal within-study likelihood */ 
/* DerSimonian-Laird method for RE*/ 
metan b1 se_b1 , randomi nograph z /* summary logit sensitivity */ 
metan b2 se_b2 , randomi nograph z /* summary logit specificity */ 
 
/* normal within-study likelihood */ 
/* REML estimation for RE */ 
metareg b1 , wsse(se_b1) reml z /* summary logit sensitivity */ 
metareg b2 , wsse(se_b2) reml z /* summary logit specificity */ 
 
/* exact within study likelihood */ 
/* ML for random effects */ 
generate id = _n /* study id */ 
generate disease = TP + FN /* total individuals with disease */ 
xtmelogit TP || id: , binomial(disease) intp(5) /* intercept only model */ 
 
/* exact within study likelihood */ 
/* ML for random effects */ 
generate healthy = FP + TN /* total individuals without disease */ 
xtmelogit TN || id: , binomial(healthy)  intp(5) /* intercept only model */ 
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/***********************************************************/ 
/* bivariate meta-analyses of sensitivity and specificity */ 
/***********************************************************/ 
/* normal within-study likelihood */ 
/* generalized DerSimonian-Laird method for RE*/ 
mvmeta b V, corr(0) mm /* the within-study correlation is set to zero */ 
 
/* normal within-study likelihood */ 
/* REML estimation for RE */ 
mvmeta b V, corr(0) reml /* the within-study correlation is set to zero */ 
 
/* exact within study likelihood */ 
/* ML for random effects */ 
metandi TP FP FN TN  
 
 
 
/**************/ 
/* ROC curves */ 
/**************/ 
 
/* sROC unweighted */ 
generate D = b1 - (1 - b2) /* logit sensitivity minus FPR */ 
generate S = b1 + (1 - b2) /* logit sensitivity plus FPR */ 
regress D S /*unweighted Moses-Littenberg model*/ 
 
/*save estimates to obtain the graph*/ 
matrix estimates = e(b) 
 local beta_sroc_unweighted = estimates[1,1] 
 local alpha_sroc_unweighted = estimates[1,2] 
 local a_un = `alpha_sroc_unweighted'/(1 - `beta_sroc_unweighted') 
 local b_un = (1 + `beta_sroc_unweighted') / (1 - `beta_sroc_unweighted') 
 
/* sROC weighted */ 
/* obtain the weights, with continuity correction if needed */ 
generate se = sqrt(1/TP + 1/FP + 1/FN + 1/TN) 
replace se = sqrt(1/(TP+0.5) + 1/(FP+0.5) + 1/(FN+0.5) + 1/(TN+0.5)) if se == . 
vwls D S, sd(se) /*weighted Moses-Littenberg model*/ 
  
matrix estimates = e(b) 
 local beta_sroc_weighted = estimates[1,1] 
 local alpha_sroc_weighted = estimates[1,2]  
 local a_w = `alpha_sroc_weighted'/(1 - `beta_sroc_weighted') 
 local b_w = (1 + `beta_sroc_weighted') / (1 - `beta_sroc_weighted') 
 
/* joint graph for comparison */ 
graph two ( function y = invlogit(`a_un' + `b_un' * logit(x)) , ///  
    lcol(black) lpat(dash) n(1000) range(0 1) ) /// 
          ( function y = invlogit(`a_w' + `b_w' * logit(x)) , ///  
   lcol(black) n(1000) range(0 1) ) /// 
          ||, ylabel(0 0.2 0.4 0.6 0.8 1.0) /// 
   aspectratio(1) scheme(s1mono) /// 
   plotregion(style(none)) /// 
   xtitle("1 - specificity") /// 
   ytitle("sensitivity") /// 
   legend(off) 
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After the last command, we obtain Figure D-1.  

Figure D-1. SROC curves for the example in Table D-1 

 
 
The dashed curve is derived from the unweighted analysis. The solid line is derived from the 
weighted analysis. 
 
/* use mixed effects logistic regression to fit the bivariate model */ 
/* then use the estimates to fit different curves as in Arends et al. 2008*/ 
 
use example.dta , clear 
 
generate persons = _n 
generate n1 = TP + FN 
generate n0 = TN + FP 
generate detect1 = TP 
generate detect0 = TN 
reshape long n detect, i(persons) j(d1) 
generate d0 = -(1 - d1 ) /* data transformation to replicate analyses in Arends et al. 2008 */ 
 
/* fit the bivariate model */  
xtmelogit detect d1 d0 , nocons  || persons: d1 d0, /// 
 nocons covariance(un) /// 
 binomial(n) diff intp(10) refineopts(iterate(3)) 
 matrix estimates = e(b) 
 matrix variances = e(V) 
    
 local mean_se = estimates[1,1] 
 local mean_sp = estimates[1,2]  
    
nlcom exp(2 * [lns1_1_1]_b[_cons])  
 matrix var_mean_se = r(b)  
 local var_mean_se = var_mean_se[1,1] 
 nlcom exp(2 * [lns1_1_2]_b[_cons])  
 matrix var_mean_sp = r(b)  
 local var_mean_sp = var_mean_sp[1,1] 
 
nlcom exp([lns1_1_1]_b[_cons]) * exp([lns1_1_2]_b[_cons]) * tanh([atr1_1_1_2]_b[_cons]) 
 matrix estimates = r(b)  
 local cov_se_sp = estimates[1,1] 
 
 
/* now obtain and store estimates for the 5 ROC curves */ 
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/* eta on ksi */ 
nlcom  (exp([lns1_1_1]_b[_cons]) * exp([lns1_1_2]_b[_cons]) * tanh([atr1_1_1_2]_b[_cons])) / 
exp(2 * [lns1_1_2]_b[_cons])  
 matrix estimate = r(b)  
 local beta_eta_on_ksi = estimate[1,1]  
nlcom   _b[d1] - exp([lns1_1_1]_b[_cons]) * exp([lns1_1_2]_b[_cons])  * 
tanh([atr1_1_1_2]_b[_cons]) / exp(2 * [lns1_1_2]_b[_cons])  * _b[d0] 
 matrix estimate = r(b)  
 local alpha_eta_on_ksi = estimate[1,1]  
 
/*ksi on eta*/ 
nlcom  exp(2 * [lns1_1_1]_b[_cons]) / ((exp([lns1_1_1]_b[_cons]) * exp([lns1_1_2]_b[_cons])  * 
tanh([atr1_1_1_2]_b[_cons]))  ) 
 matrix estimate = r(b)  
 local beta_ksi_on_eta = estimate[1,1]  
nlcom   _b[d1] - exp(2 * [lns1_1_1]_b[_cons])  / (exp([lns1_1_1]_b[_cons]) * 
exp([lns1_1_2]_b[_cons])  * tanh([atr1_1_1_2]_b[_cons])) * _b[d0] 
 matrix estimate = r(b)  
 local alpha_ksi_on_eta = estimate[1,1]  
  
/* D on S */ 
nlcom (exp(2 * [lns1_1_1]_b[_cons]) + (exp([lns1_1_1]_b[_cons]) * 
exp([lns1_1_2]_b[_cons])*tanh([atr1_1_1_2]_b[_cons])) ) / (exp(2 * [lns1_1_2]_b[_cons])  + 
(exp([lns1_1_1]_b[_cons]) * exp([lns1_1_2]_b[_cons]) * tanh([atr1_1_1_2]_b[_cons]))) 
 matrix estimate = r(b)  
 local beta_d_on_s = estimate[1,1] 
nlcom  _b[d1]  - (exp(2 * [lns1_1_1]_b[_cons]) + (exp([lns1_1_1]_b[_cons]) * 
exp([lns1_1_2]_b[_cons])  * tanh([atr1_1_1_2]_b[_cons])) ) / ( exp(2 * [lns1_1_2]_b[_cons])  + 
(exp([lns1_1_1]_b[_cons]) * exp([lns1_1_2]_b[_cons])  * tanh([atr1_1_1_2]_b[_cons])))* _b[d0] 
 matrix estimate = r(b)  
 local alpha_d_on_s = estimate[1,1] 
 
/* R & G */  
nlcom sqrt(exp(2 * [lns1_1_1]_b[_cons]))/sqrt(exp(2 * [lns1_1_2]_b[_cons]) ) 
 matrix estimate = r(b)  
 local beta_r_g = estimate[1,1] 
nlcom _b[d1] - sqrt(exp(2 * [lns1_1_1]_b[_cons]))/sqrt(exp(2 * [lns1_1_2]_b[_cons]))* _b[d0] 
 matrix estimate = r(b)  
 local alpha_r_g = estimate[1,1] 
 
/* MAR */  
nlcom  ( exp(2 * [lns1_1_1]_b[_cons])  - exp(2 * [lns1_1_2]_b[_cons])  + sqrt( (exp(2 * 
[lns1_1_1]_b[_cons]) - exp(2 * [lns1_1_2]_b[_cons]) )^2 + 4*(exp([lns1_1_1]_b[_cons]) * 
exp([lns1_1_2]_b[_cons]) * tanh([atr1_1_1_2]_b[_cons]))^2 ))/( 2*exp([lns1_1_1]_b[_cons]) * 
exp([lns1_1_2]_b[_cons]) * tanh([atr1_1_1_2]_b[_cons]) ) 
 matrix estimate = r(b)  
 local beta_mar = estimate[1,1] 
  
nlcom _b[d1] - _b[d0]*((exp(2*[lns1_1_1]_b[_cons])-
exp(2*[lns1_1_2]_b[_cons])+sqrt((exp(2*[lns1_1_1]_b[_cons])-exp(2*[lns1_1_2]_b[_cons]))^2 + 
4*(exp([lns1_1_1]_b[_cons])*exp([lns1_1_2]_b[_cons])*tanh([atr1_1_1_2]_b[_cons]))^2)) / 
(2*exp([lns1_1_1]_b[_cons]) * exp([lns1_1_2]_b[_cons])  * tanh([atr1_1_1_2]_b[_cons]))) 
 matrix estimate = r(b)  
 local alpha_mar = estimate[1,1] 
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/* plot the curves */ 
/* ROC space */  
graph two (function y = invlogit(`alpha_eta_on_ksi' + `beta_eta_on_ksi'*logit(x)) /// 
, lcol(green) range(0 1) n(1000)  )  /// 
  (function y = invlogit(`alpha_ksi_on_eta' + `beta_ksi_on_eta'*logit(x)) , lcol(red) range(0 1) 
n(1000))  /// 
  (function y = invlogit(`alpha_d_on_s' + `beta_d_on_s'*logit(x)), lcol(blue) range(0 1) n(1000)  
)  /// 
  (function y = invlogit(`alpha_r_g' + `beta_r_g'*logit(x)), lcol(orange) range(0 1) n(1000)  )  
/// 
  (function y = invlogit(`alpha_mar' + `beta_mar'*logit(x)), lcol(purple) range(0 1) n(1000)  )  
/// 
  ||, scheme(s1mono) plotregion(style(none))  /// 
 aspectratio(1) /// 
 xtitle(" " "1 - Specificity" , size(*0.7)) ytitle(" " "Sensitivity" , size(*0.7)) ///   
 xlabel(0 "0" 0.2 "0.2" 0.4 "0.4" 0.6 "0.6" 0.8 "0.8" 1 "1.0" , labsize(*0.7)) /// 
 ylabel(0 "0" 0.2 "0.2" 0.4 "0.4" 0.6 "0.6" 0.8 "0.8" 1 "1.0" , angle(0) labsize(*0.7)) /// 
 legend( lab(1 " {&eta}~{&xi}") lab(2 "{&xi}~{&eta}") lab(3 "D~S") lab(4 "R & G") lab(5 
"MAR"))    

 
After the last command, we obtain Figure D-2. 
 

Figure D-2. Alternative HSROC curves for the example in Table D-1 
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/* logit space */  
graph two (function y = (`alpha_eta_on_ksi' + `beta_eta_on_ksi'*(x)) , lcol(green) range(-6 1) 
n(1000)  )  /// 
  (function y = (`alpha_ksi_on_eta' + `beta_ksi_on_eta'*(x)) , lcol(red) range(-6 1) n(1000)  )  /// 
  (function y = (`alpha_d_on_s' + `beta_d_on_s'*(x)) , lcol(blue) range(-6 1) n(1000)  )  /// 
  (function y = (`alpha_r_g' + `beta_r_g'*(x)) , lcol(orange) range(-6 1) n(1000)  )  /// 
  (function y = (`alpha_mar' + `beta_mar'*(x)) , lcol(purple) range(-6 1) n(1000)  )  /// 
  ||, scheme(s1mono) plotregion(style(none))  /// 
      xtitle(" " "logit(1 - specificity)" , size(*0.7)) ytitle(" " "logit(sensitivity)" , size(*0.7)) ///     
      legend( lab(1 " {&eta}~{&xi}") lab(2 "{&xi}~{&eta}") lab(3 "D~S") lab(4 "R & G") lab(5 
"MAR") ) /// 
      aspectratio(1) 
 
After the last command, we obtain Figure D-3. 

Figure D-3. Alternative HSROC curves for the example in Table D-1 (logit space) 
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For Bayesian analyses, users should use the model presented in Appendix B. In this specific 
example, for the last 10,000 iterations (of the 20,000 run as burn-in) for three chains initialized 
using different starting values, we obtained the following trace plots for logit-sensitivity, logit-
specificity, and the between-study correlation (Figure D-4; of course other parameters need to be 
monitored as well). 

Figure D-4. Trace plots for summary sensitivity, specificity, and correlation 

 
Dashed lines indicate the medians of the posterior distributions. 
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Convergence was also assessed with the Gelman-Rubin diagnostic. In this example, after 
20,000 iterations, the final median values for the statistic were 0.99< R <1.01, for logit-
sensitivity, logit-specificity, the between-study correlation, and the between-study variances of 
sensitivity and specificity, indicating that the model had converged. After convergence, we run 
the model for an additional 10,000 iterations and used the results to obtain density plots and 
summary statistics for the parameters of interest. For example, we obtained the following density 
plots for the posterior distributions of the summary sensitivity, specificity, and their correlation 
(Figure D-5). 

Figure D-5. Posterior densities for sensitivity, specificity, and correlation 

 
Red lines are kernel densities. 
 

For comparison, summary results from all meta-analysis methods for this example are 
summarized in Table D-2.  

Table D-2. Summary results from all meta-analysis methods (for the example in Table D1) 
Model Estimation (within-study 

likelihood) 
Logit-sensitivity 

(95 CI or CrI*) 
Logit-specificity 
(95% CI or CrI*) 

Univariate, FE IV (normal) 1.708 (1.646, 1.770) 1.855 (1.797, 1.912) 
Univariate, RE DL (normal) 1.803 (1.561, 2.044) 2.354 (2.049, 2.659) 
Univariate, RE REML (normal) 1.799 (1.569, 2.029) 2.422 (2.017, 2.828) 
Univariate, RE ML (binomial) 1.840 (1.607, 2.074) 2.556 (2.110, 3.002) 
Bivariate, RE multivariate DL (normal) 1.805 (1.564, 2.047) 2.352 (2.048, 2.657) 
Bivariate, RE REML (normal) 1.801 (1.569, 2.033) 2.416 (2.005, 2.827) 
Bivariate, RE ML (binomial) 1.839 (1.605, 2.072) 2.547 (2.104, 2.990) 
Bivariate, RE Fully Bayesian 1.840 (1.589, 2.105) 2.558 (2.080, 3.076) 

 
CI = confidence interval; CrI = credibility interval; DL = DerSimonian-Laird; FE = fixed effect; IV = inverse variance; ML = 
maximum likelihood; RE = random effects; REML = restricted maximum likelihood;  
*Credibility intervals are presented for Bayesian analyses.  
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