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Findings of Bayesian Mixed Treatment Comparison 
Meta-Analyses: Comparison and Exploration Using 
Real-World Data and Simulation 
Structured Abstract 
Objectives: The overarching aim of this research was to better understand the performance of 
Bayesian MTC methods. Specific objectives were to examine (1a) how results of Bayesian MTC 
methods compare with several more commonly considered frequentist indirect methods, (1b) 
how Bayesian MTC methods perform for different evidence network patterns, (2) how meta-
regression can be used with Bayesian MTC meta-analysis to explore heterogeneity, and (3) how 
findings of Bayesian MTC meta-analyses compare for different numbers of studies and different 
network pattern assumptions. 
 
Methods: For objectives 1 and 2, we used data from two recent CERs; one examined second-
generation antidepressants (SGAs) and one examined biologic disease modifying antirheumatic 
drugs (DMARDs) for rheumatoid arthritis (RA). For objective 1, we compared results of 
Bayesian MTC methods with those of three frequentist indirect methods: meta-regression, the 
Bucher method, and logistic regression for dichotomous and continuous outcomes. For objective 
2, we conducted two types of meta-regression. One explored subgroup effects with a binary 
covariate to assess whether efficacy of SGAs differs between older adults (≥55 years) and adults 
of any age. The other explored a continuous covariate to assess whether treatment efficacy varies 
by disease duration of RA. For objective 3, we used simulated data to examine the Bayesian 
MTC method’s ability to produce valid results for two data scenarios when varying numbers of 
studies were available for each comparison for various network patterns. 
 
Results: Bayesian MTC methods permitted the calculation of results for more comparisons of 
interest than frequentist meta-regression or the Bucher method (when applied as they would 
typically be used). When comparisons were calculated, the findings generally agreed, but 
differed for a small proportion (less than 10%) of comparisons. Regarding precision, logistic 
regression produced the most precise estimates, followed by the Bayesian MTC method. 

Our meta-regressions found a trend toward lesser efficacy for SGAs in older adults and a 
trend toward greater efficacy of biologic DMARDs for those with greater mean disease duration. 

Our simulations supported the validity of Bayesian MTC methods for star and ladder 
network patterns but raised some concerns about one closed loop (and possibly loop) network 
patterns. Simulations generally found similar results for scenarios when only one study was 
available for each comparison and those when more studies (two, three, five, or ten) were 
available.  
 
Conclusions: Bayesian MTC methods offer several advantages over frequentist indirect 
methods, including the ability to produce results for all comparisons of interest in a single 
analysis. Results of Bayesian MTC methods and those of frequentist indirect methods may differ 
for a small proportion of comparisons, which could lead to differences in conclusions when 
using different methods. Our findings raise some concerns about the validity of the results of 
Bayesian MTC methods for certain network patterns. Further research is needed to explore 
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additional real-world datasets and simulated data to determine if our findings are generalizable 
and to better understand the validity of Bayesian MTC methods for various scenarios.  
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Introduction 
Background 

Comparative effectiveness reviews (CERs) often aim to compare the benefits and harms of 
multiple available approaches for treating a health condition1 with the ultimate goal of informing 
clinical practice and other decisionmaking. To this end, analysts conducting CERs aim to find 
studies conducting direct head-to-head comparisons. However, direct head-to-head evidence on 
competing interventions is often scant. Therefore, several methods to conduct indirect 
comparisons have been proposed.2-7 These include meta-regression, logistic regression, adjusted 
indirect comparisons using a frequentist approach,2-4 and, more recently, Bayesian mixed 
treatment comparison (MTC) meta-analysis.5-7  

MTC meta-analysis is a relatively new methodology.8 Various other terms have been used to 
describe the approach, including multiple treatment comparisons9-11 and network meta-
analysis.12, 13 One of the most compelling reasons to use MTC meta-analysis is that it allows for 
the combination of both direct head-to-head and indirect evidence (e.g., placebo-controlled trials) 
into one modeling framework. The use of all potentially relevant available evidence is an 
appealing feature for analysts, since other methods rely solely on one type of evidence. In 
addition, unlike other indirect analysis methods, MTC meta-analysis allows all relevant 
comparisons to be made through a single analysis, providing the information to calculate an 
effect size for each comparison of interest and to rank treatments based on the probability of 
being the best treatment. 

The history of MTC meta-analysis dates back to 1996 when Higgins and Whitehead first 
described likelihood-based methods for indirect comparisons, focusing on Bayesian methods and 
providing an illustration of the methodology using data from 26 clinical trials that investigated 
the prevention of cirrhosis using beta-blockers and sclerotherapy.14 Lu and Ades subsequently 
published additional information on the theoretical underpinnings of the MTC method,8 but more 
research is needed to better understand how these methods operate in real-world scenarios. As 
investigators conducting systematic reviews use these methods and continue to develop new 
techniques based on these methods, it is important for us to have a better understanding of how 
these methods compare with other indirect methods and how MTC meta-analyses perform in 
various situations.  

Relatively little information on the validity of MTC meta-analysis exists (in comparison with 
other indirect methods or for various types of evidence networks), and further research is 
needed.12, 15 Some analysts have validated frequentist approaches for indirect comparisons using 
artificial/simulated data.3  

One underlying question is whether the extra complexity of Bayesian MTC meta-analyses is 
worth the investment. MTC meta-analysis requires greater statistical expertise and can currently 
only be run using programs (e.g., WinBUGS) that are unfamiliar to many analysts. In contrast, 
several of the frequentist methods for indirect comparisons can be conducted by analysts with 
less statistical expertise and using programs that are more familiar (e.g., STATA). It is important 
to gain a better understanding of the consequences of choosing various analytic approaches. 
Some questions include the following: Do results differ for various analytic approaches?  Do 
certain methods yield more precise estimates? Do the findings and validity of various analytic 
approaches vary depending on the evidence network pattern? 

We used MTC meta-analyses in two recent CERs for the Agency for Healthcare Research 
and Quality (AHRQ)—one on second-generation antidepressants (SGAs)16 and one on 
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treatments for rheumatoid arthritis (RA).17 In this report, we use the real-world literature from 
these two reports to address our objectives and Key Questions (below). 

Evidence Networks 
An evidence network refers to the linkage of treatment comparisons that exists in the 

literature for a given population. It can take on many shapes or patterns.18, 19 The basic premise 
underlying MTC methods is that the network must be a connected one. A network can include 
any of the four patterns below (Figure 1). A network pattern can resemble a star, with one 
common comparator at the center and other treatments connected through this comparator. This 
is a common scenario for pharmacotherapies, as RCTs often include only drug comparisons with 
placebo (and no direct head-to-head comparisons). Another pattern is a loop design, where all 
drugs or treatments are connected to one another through one other treatment. A third common 
pattern is a variation on this loop design, but this network also includes one or more drugs or 
treatments outside of the loop and is referred to as one closed loop. Another network pattern 
resembles a ladder, with no treatment compared to any other treatment more than once. 

Figure 1. Evidence network patterns 
 

 
 
 
 
 
 
 

 
 
 
 
 

Second-Generation Antidepressants 
Our report on SGAs compared the benefits and harms of 13 SGAs approved for use in the 

United States16 (Table 1).  
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Table 1. Second-generation antidepressants approved for use in the United States 

Generic Name U.S. Trade Namea Dosage Forms 
Therapeutic 
Classification 

Bupropionb Wellbutrin®; 
Wellbutrin SR®; 
Wellbutrin XL® 

75, 100 mg tabs; 
100, 150, 200 mg SR tabs 
150, 300 mg XL tabs 

Other 

Citalopramb Celexa® 10, 20, 40 mg tabs; 
2 mg/ml solution 

SSRI 

Desvenlafaxine Pristiq® 50, 100 mg tabs SNRI 
Duloxetine Cymbalta® 20, 30, 60 mg caps SSNRI 
Escitalopram Lexapro®  5, 10, 20 mg tabs 

1 mg/ml solution 
SSRI 

Fluoxetineb Prozac®;  
Prozac Weekly® 

10, 20, 40 mg caps; 4mg/ml solution 
90 mg caps 

SSRI 

Fluvoxamineb Luvox® 25, 50, 100 mg tabs SSRI 
Mirtazapineb Remer on® 

Remer on Sol tab® 
15, 30, 45 mg tabs; 
15, 30, 45 mg orally  
disintegrating tabs 

SNRIc  

Nefazodoneb Serzone®d 50, 100, 150, 200, 250 mg tabs Other 
Paroxetineb Paxil®;  

Paxil CR® 
10, 20, 30, 40 mg tabs;  
2 mg/ml solution;  
12.5, 25, 37.5 mg CR tabs 

SSRI 

Sertralineb Zoloft® 25, 50, 100 mg tabs;  
20 mg/ml solution 

SSRI 

Trazodoneb Desyrel®  50, 100, 150, 300 mg tabs Other 
Venlafaxineb Effexor®;  

Effexor XR® 
25, 37.5, 50, 75, 100 mg tabs; 
37.5, 75, 150 mg XR caps 

SNRI 

aCR, SR, XL, and XR are registered trademarks referring to controlled, sustained, or extended-release dosage forms, respectively. 

bGeneric available for some dosage forms.  

cMirtazapine’s mechanism of action is not clearly an SNRI, but it was grouped in this class owing to similarities. 

dOnly generic nefazodone is available in the United States. 

Abbreviations: caps = capsules; SNRI = serotonin and norepinephrine reuptake inhibitor; SSRI = selective serotonin reuptake 
inhibitor; tabs = tablets  

In our recent CER, we conducted MTC meta-analysis to derive estimates of the comparative 
efficacy among all SGAs for the treatment of major depressive disorder. Our primary efficacy 
outcome was the rate of response on the Hamilton Depression rating scale (HAM-D), defined as 
a 50 percent or greater improvement of scores from baseline. Figure 2 shows the evidence 
network that contributed data to the analysis.  
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Figure 2. Evidence network for mixed treatment comparison meta-analysis of second-generation 
antidepressants for achieving response for adults with depression 

 

Our MTC meta-analysis found that SGAs had similar efficacy. There were some differences 
(based on the 95% credible intervals) for some pairwise comparisons that are likely not clinically 
relevant. 

Biologic Disease Modifying Antirheumatic Drugs for 
Rheumatoid Arthritis 

Our report on treatments for RA compared the benefits and harms of corticosteroids, oral and 
biologic disease modifying antirheumatic drugs (DMARDs) for adults with RA.17 Nine biologic 
DMARDs were included in the CER (Table 2).  
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Table 2. Biologic DMARD treatments for rheumatoid arthritis 

Generic Name 
Manufacturer 
U.S. Trade Name(s)* Injectable Supply Usual Adult Dose 

Abatacept Bristol Myers Squibb  
Orencia® 

250 mg powder in 
single-use vial, 125 
mg/ml solution in a 
prefilled syringe 

IV—Dosed according to body weight (< 60 kg = 
500 mg; 60-100 kg = 750 mg; > 100 kg = 1,000 
mg); dose repeated at 2 weeks and 4 weeks after 
initial dose, and every 4 weeks thereafter 
SQ—After a single IV infusion as a loading dose 
(as per body weight categories above), 125 mg 
should be given within a day, followed by 125 mg 
once a week 

Adalimumab Abbott 
Humira® 

40 mg/0.8 ml pre-filled 
pen or syringe, 20 
mg/0.4 ml prefilled 
syringe 

SQ—40 mg every other week; may increase to 40 
mg every week in patients not taking concomitant 
MTX 

Anakinra Amgen 
Kineret® 

100 mg/0.67 ml syringe SQ—100 mg/day; dose should be decreased to 
100 mg every other day in renal insufficiency or 
end-stage renal disease 

Certolizumab 
Pegol 

UCB 
Cimzia® 

200 mg powder for 
reconstitution, 200 
mg/ml solution in a pre-
filled syringe 

SQ—Initial dose of 400 mg, repeat dose 2 and 4 
weeks after initial dose, followed by 200mg every 
other week; for maintenance dosing, consider 
40omg every 4 weeks 

Etanercept Amgen  
Pfizer 
Immunex  
Enbrel® 

50 mg/ml autoinjector or 
prefilled syringe, or as 
two 25 mg/0.5 mL 
single-use prefilled 
syringes or free-hand 
vials  

SQ— 50 mg once weekly with or without MTX 

Golimumab Centocor Ortho 
Biotech  
Janssen Biotech, Inc. 
Simponi® 

50 mg/0.5 ml pre-filled 
syringe or autoinjector 

SQ—50 mg once a month, in combination with 
methotrexate 

Infliximab Centocor Ortho 
Biotech  
Remicade® 

100 mg lyophilized in a 
20 ml vial 

IV—3 mg/kg in combination with MTX at 0, 2, and 
6 weeks followed by maintenance every 8 weeks 
thereafter; may increase to maximum of 10 mg/kg 
or treat as often as every 4 weeks 

Rituximab Biogen Idec / 
Genentech  
Rituxan® 

100 mg/10 ml and 500 
mg/50 ml vial 

IV— In combination with MTX, two 1,000 mg IV 
infusions separated by 2 weeks (one course) every 
24 weeks or based on clinical evaluation, but not 
sooner than every 16 weeks 

Tocilizumab Genentech / Roche  
Actemra®,  
RoActemra® 

80 mg/4 ml, 200 mg/10 
ml, 400 mg/20 ml vial 

IV—4 mg/kg followed by an increase to 8 mg/kg 
based on clinical response; given every 4 weeks 
with or without MTX 

*Listed trade names are limited to commonly prescribed U.S. products when multiple trade names are available. 

Abbreviations: IV = intravenous; kg = kilogram; mg = milligram; ml, milliliter; MTX = methotrexate; SQ = subcutaneous 

To compare the effectiveness of biologic DMARDs with each other, we conducted MTC 
meta-analyses of trials enrolling methotrexate-resistant patients with active RA. The primary 
efficacy outcome of our MTC meta-analysis was the American College of Rheumatology 50 
percent response (ACR 50). We also conducted analyses using ACR 20 and ACR 70. Figure 3 
shows the evidence network that contributed data to the analysis. The majority of evidence was 
from placebo-controlled trials; only one trial included a direct head-to-head comparison. Due to 
heterogeneity in study design of the included studies for certolizumab, it was excluded from the 
MTC meta-analysis. More information can be found in the full report.17  
  



16 

Figure 3. Evidence network for mixed treatment comparison meta-analysis of biologic DMARDs 
for achieving ACR 50 for adults with rheumatoid arthritis 

 

Our MTC meta-analyses found higher odds of achieving ACR 50 response for etanercept 
compared with most other biologic DMARDs (abatacept, adalimumab, anakinra, infliximab, 
rituximab, tocilizumab) for methotrexate-resistant patients with active rheumatoid arthritis. The 
ACR 50 odds ratio range for etanercept compared with most other biologic DMARDs was 2.4 to 
5.2. The differences were potentially important (based on 95% credible intervals) for etanercept 
compared with abatacept, adalimumab, anakinra, infliximab, rituximab, or tocilizumab, but were 
not when compared with golimumab. Anakinra had the lowest mean response and point 
estimates favored other biologic DMARDs over anakinra, but the differences were only 
potentially important (based on 95% credible intervals) when compared with adalimumab and 
etanercept for ACR 50.  

Scope and Key Questions 
The main objectives of this report are to contribute to the body of literature on MTC meta-

analysis by examining (1a) how results of Bayesian MTC methods compare with several 
frequentist indirect methods for various types of outcome measures, (1b) how Bayesian MTC 
methods perform for different types of evidence network patterns, (2) how study level covariates 
can be incorporated with Bayesian MTC meta-analysis to explore heterogeneity through meta-
regression, and (3) how findings of Bayesian MTC meta-analysis compare for different numbers 
of studies and different network pattern assumptions. We address the Key Questions (KQs) listed 
below.   

Infliximab Golimumab

Placebo

Abatacept

Anakinra

Etanercept Rituximab

Adalimumab

Tocilizumab

1 trial

6 trials 2 trials

3 trials

3 trials

4 trials 2 trials

4 trials

7 trials

Note: The total number of trials does not appear to equal 30 (the total number of studies included in the 
analysis) because some trials have multiple arms that were included.
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KQ 1: How do the results of Bayesian MTC meta-analysis methods compare with those of 
several frequentist indirect methods? Related questions of interest included: For each of 
the common evidence network patterns, how do the Bayesian MTC methods compare 
with frequentist indirect methods? How do Bayesian MTC methods perform (e.g., 
precision, convergence, etc.) for different types of evidence network patterns?  

KQ 2: How can meta-regression be used with Bayesian MTC meta-analysis to explore 
sources of heterogeneity?   

KQ 3: How do findings of Bayesian MTC meta-analysis compare for different numbers of 
studies and network pattern assumptions?   
 

For KQ 1, our choice of frequentist analytic methods to compare with the Bayesian MTC 
approach was based on our judgment regarding the methods most commonly considered by 
analysts conducting CERs. In addition, we selected frequentist methods with some evidence to 
support their validity. These included frequentist meta-regression, the Bucher method (adjusted 
indirect comparisons), and frequentist logistic regression. Of note, the frequentist methods used 
are not the analogue of the Bayesian methods implemented. We did not compare findings with 
the frequentist network meta-analysis method (i.e., Lumley method).20 Our experience indicates 
that it is much more rarely used than the other methods, and comparisons between Bayesian 
MTC methods and frequentist network meta-analysis was not our intention.  

We applied Bayesian MTC methods to a variety of different evidence networks using data 
from recent systematic reviews (of SGAs and biologic DMARDs) and using simulated data. For 
the first two KQs, we use the real-world bodies of literature described above (for SGAs and 
biologic DMARDs). For KQ 3, we use simulated data sets.  

For KQ 2, we focused on clinically important issues to guide the meta-regressions. For the 
SGAs literature, some have questioned whether the medications are equally or less effective in 
older adults.21-24 To address this question, we conducted meta-regression by assessing whether 
efficacy differed in trials that enrolled older adults compared with trials that enrolled adults of 
any age. For biologic DMARDs, some have questioned whether treatment efficacy varies by 
disease duration of RA.25-27 To address this question, we conducted meta-regression using mean 
disease duration of subjects enrolled in each study as a continuous covariate. 
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Methods 
In this chapter, we first describe the data from two real-world bodies of literature that we 

used for our analyses for Key Questions (KQs) 1 and 2. We then describe the methods used for 
each KQ. The focus of this report is on mixed treatment comparison (MTC) meta-analysis 
implemented in a Bayesian framework; for comparison, we performed adjusted indirect 
comparisons using four different approaches with a frequentist framework (each described 
below).  

The National Institute for Health and Clinical Excellence (NICE) Decision Support Unit has 
released several Technical Support Documents (TSDs) detailing use of MTC in a Bayesian 
framework, including several illustrative examples with annotated WinBUGS code. We 
implemented the methods illustrated in TSD 26 and TSD 35 under different scenarios for the 
MTC meta-analyses described below. For both of our recent comparative effectiveness reviews 
(CERs) including MTC meta-analyses, we used WinBUGS Version 1.4.3, a Bayesian software 
package that uses Markov chain Monte Carlo (MCMC) techniques. WinBUGS code used for 
analyses is available in Appendix A. 

Data Included in this Report  

Dataset 1: Second-Generation Antidepressants  
For this report, we extracted one binary and one continuous outcome from the evidence base 

of our CER on second-generation antidepressants (SGAs). Our binary outcome was treatment 
response as measured by at least a 50 percent improvement from baseline on the Hamilton 
Rating Scale for Depression (HAM-D). We recalculated response rates for each study using the 
number of all randomized patients as the denominator to reflect a true ITT analysis. With this 
approach we attempted to correct variations in results of modified ITT analyses encountered in 
individual studies. There were a total of 64 studies with adequate reporting of treatment response 
that were included in subsequent analyses. Eight additional studies were identified in the older 
adult populations (age 55 or older) and used in the meta-regression for KQ 2. Characteristics of 
the included studies and data used in the meta-analyses are listed in Appendix Table B-1. 
Additional description of study populations and other eligibility criteria can be found in the full 
report.16 

Our continuous outcome was mean change from baseline to endpoint on the HAM-D. For 
studies not reporting a variance for mean change from baseline, we calculated one using the 
baseline and endpoint variances and assumed a correlation of 0.5. We chose a value of 0.5 for the 
correlation coefficient as a reasonable assumption for the similarity of baseline and endpoint 
values across patients, since it assumes neither a weak or strong correlation. In lieu of more 
complete reporting, it has been suggested that a value of 0.5 is a reasonable assumption.28, 29 We 
included a total of 40 studies in the analyses for this outcome; data and characteristics of the 
included studies are listed in Appendix Table B-2. 

Dataset 2: Biologic Disease Modifying Antirheumatic Drugs for 
Treatment of Rheumatoid Arthritis  

We extracted one binary and one continuous outcome from the studies included in our CER 
on biologic DMARDs and other treatments for RA. The binary outcome considered was 



20 

treatment response as measured by achievement of ACR50 after 12 weeks of treatment. Again, 
we recalculated response rates for each study using the number of all randomized patients as the 
denominator to reflect a true ITT analysis. With this approach we attempted to correct variations 
in results of modified ITT analyses encountered in individual studies. A total of 31 studies 
covering eight biologic DMARDs with adequate reporting of treatment response were included. 
Characteristics and data of the included studies are shown in Appendix Table B-3 below. 

We also extracted a continuous outcome, mean change from baseline in HAQ-DI (Health 
Assessment Questionnaire Disability Index); however, because few eligible studies reported 
adequate data, we were not able to perform any meaningful MTC meta-analysis on the 
continuous outcome. 

Key Question 1: Comparison of Bayesian MTC Meta-Analysis 
with Frequentist Indirect Methods 

Our objectives for this KQ were to examine how results of Bayesian MTC methods compare 
with commonly used frequentist indirect methods and how Bayesian MTC methods perform for 
different types of evidence network patterns. We chose four analytic methods—Bayesian MTC 
meta-analysis, frequentist meta-regression, the Bucher method (adjusted indirect comparisons), 
and frequentist logistic regression. These methods were chosen because they are among the most 
common approaches considered when conducting CERs. For both of our datasets (SGAs and 
biologic DMARDs), we compared the findings from these four methods—first, for the full 
networks; second, for sub-components of the full networks representing specific evidence 
network patterns (star, loop, one closed loop, and ladder). To compare the four analytic methods, 
we used several measures: (1) the proportion of drug-drug comparisons (out of the total possible 
number of comparisons) for which each method was unable to calculate a result, either because 
of model convergence issues or the lack of a common comparator; (2) the percent agreement, 
with findings considered to agree if both methods produced a non-statistically significant (for 
frequentist methods) or unimportant (for Bayesian methods; based on 95% credible intervals) 
result for the comparison or if both analyses found a statistically significant or important result 
favoring the same treatment; (3) the precision of findings—assessed by comparing the width of 
credible intervals and confidence intervals; and (4) kappa statistics. The kappa statistic is a 
measure of inter-rater agreement30 that attempts to take into account agreement beyond chance. It 
can range between -1 and 1, but usually ranges from zero to 1, since kappa is negative when the 
observed agreement is less than chance. When the observed agreement exceeds chance 
agreement, kappa is positive, with its magnitude reflecting the strength of agreement. Landis and 
Koch propose the following as standards for strength of agreement for the kappa coefficient: 
<0.20=poor, 0.21-0.40=fair, 0.41-0.60=moderate, 0.61–0.80=good, and 0.81-1.00=very good.31 
For each comparison (e.g., Bayesian MTC vs. Frequentist Meta-regression) we calculated kappa 
statistics using SAS version 9.2. We did not calculate kappa statistics for comparisons in which 
either method had less than 2 levels (i.e., when all results for that method found no statistically 
significant or important difference for each drug-drug comparison). 

Finally, we describe measures of model fit for the Bayesian MTC analyses for the full 
networks and for sub-components. For all dichotomous data we used odds ratios, and for all 
continuous data we used weighted mean differences as outcome measures. 
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Bayesian Mixed Treatment Comparison Meta-analysis  
For all Bayesian MTC meta-analyses included in this report, we used the methods developed 

in TSDs 2 and 3, which detail use of the generalized linear modeling (GLM) framework for 
Bayesian MTC and use of meta-regression to explore sources of heterogeneity, respectively. We 
used random effects models in this report because in meta-analyses of randomized controlled 
trials, we assume the study effect is sampled from a distribution of effect sizes.32 Because studies 
will not include exactly the same mix of participants or carry out the interventions in an identical 
way, there may be different underlying effect sizes for different studies. 

GLM theory33 allows for likelihood based statistical inference. It is also a flexible approach 
because it can be constructed to model data arising from a large range of distributions within the 
exponential family, allowing us to model various binary and continuous outcomes that we would 
encounter in conducting CERs. GLM theory can be implemented in both frequentist and 
Bayesian frameworks. Speigelhalter et al., 200434 make the case for a Bayesian framework, 
stating that such an approach is more flexible, efficient, and useful. MTC could in theory be 
implemented in a frequentist framework, but the literature reflects a preference for a Bayesian 
framework, in part due to the availability of WinBUGS code that has been developed for this 
purpose.6, 35 Reasons to use a Bayesian framework (rather than a frequentist approach) include 
inferential superiority and modeling flexibility. Whether Bayesian approaches have inferential 
superiority is a contentious subject and may have little to do with the reason the Bayesian MTC 
methods are used more widely. Modeling flexibility, however, is likely a major reason the 
Bayesian approach is more popular. With WinBUGS, one has simply to specify the likelihood 
and the prior distributions; the estimation is handled by MCMC methods which are now fairly 
robust. With maximum likelihood estimation using a frequentist approach, some of the 
likelihoods can be very challenging to maximize and perhaps amenable to approximate solutions 
only.  

In a Bayesian framework, specification of prior distributions accompanies the specification 
of the likelihoods, in addition to the data. The complete model specification is detailed below. 
For this report, binary outcomes are treatment response measured by the number of people 
achieving a pre-specified level in each arm. We used flat (noninformative) prior distributions 
throughout the report, which allow the data to drive the posterior distributions, in absence of 
more informative priors. This choice follows the recommendations laid out in TSD 26 and in 
absence of rationale for specifying informative priors with these data.  For all analyses, we 
modeled study effect and treatment effect parameters by noninformative (flat) prior distributions 
that were normal (0, 10,000). For the heterogeneity of the random-effects model, we used a 
uniform prior distribution centered at zero with sufficiently large variance. Unless otherwise 
specified, we discarded the first 20,000 simulations to allow for model convergence, and we used 
an additional 100,000 simulations in estimating the posterior probabilities. Satisfactory 
convergence was verified by trace plots and monitoring the Monte Carlo error. If multi-arm 
studies were available, we included the appropriate adjustments to the likelihood to account for 
correlations between the treatment differences. 

Bayesian Mixed Treatment Comparison: Model Specification 
Most of the data used in this report consisted of outcomes that measured the number of 

events, in all cases treatment response, occurring out of the total number of patients. These types 
of data were assumed to arise from a Binomial likelihood. The likelihood was specified as 
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𝑟𝑖,𝑘~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝𝑖 ,𝑘,𝑛𝑖,𝑘) 
 
where 𝑟𝑖𝑘  is the number achieving treatment response out of the total number of patients in each 
arm and 𝑝𝑖𝑘  is the probability of treatment response, and where 𝑖 denotes trial number and 𝑘 
denotes each the arm of the trial. For this likelihood, the logit link function was used to map the 
probability of treatment response onto plus and minus infinity. The logit link was specified as 
 

logit(𝑝𝑖 ,𝑘) = 𝜇𝑖 +  𝛿𝑖,𝑘𝐼(𝑘≠1) 
 
The trial-specific log-odds ratios from a random effect model come from a common distribution, 
𝛿𝑖𝑘~ N(𝑑𝑘 ,𝜎2), where d represents the relative treatment effect and σ is the common variance 
term. 

In all cases, parameters were given vague or noninformative prior distributions. The choice 
of the uniform prior between 0 and 5 reflects a between-study variance that allows for a wide 
range of treatment effects. 
 

Prior specification: 
𝜇𝑖~ Normal (0, 10000) 
𝑑𝑘~ Normal (0, 10000) 
𝜎~ Uniform (0, 5) 

 
For continuous outcomes, the data were assumed to arise from a normal likelihood, and 

under generalized linear modeling theory, the model specified above becomes a normal 
likelihood with the identity link function.  The observed data 𝑦𝑖 ,𝑘 arises from a normal 
distribution with mean 𝜃𝑖,𝑘 and variance 𝑠𝑒𝑖 ,𝑘2 .  

 
𝑦𝑖 ,𝑘  = 𝑁(𝜃𝑖,𝑘 , 𝑠𝑒𝑖 ,𝑘2 ) 

 
For these data, the prior specifications were identical to the ones used with the dichotomous data. 

 
For KQ2, in order to introduce a dichotomous study-level covariates to the logistic regression 

model above, the model was simply extended to include a covariate 𝑥𝑖. The model specification 
and resulting WinBUGS code were taken from the Decision Support Unit’s Techincal Support 
Document 3.  Again, the subscript 𝑖 denotes trials and the subscript 𝑘 refers to the arms within a 
trial. The full model structure is specified below. 

 
𝑟𝑖,𝑘~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝𝑖 ,𝑘,𝑛𝑖,𝑘) 

logit(𝑝𝑖,𝑘) = 𝜇𝑖 +  𝛿𝑖,𝑘 + (𝛽𝑘 − 𝛽1)𝑥𝑖 
𝛽1 = 0; 𝛿𝑖,1 = 0 

 
Prior specification: 

In addition to the above, now a vague normal prior on the common covariate effect 
 

𝛽𝑘  ~ Normal (0, 10000) 
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Again, the extension to introducing a continuous covariate results in the same model above, 
but to improve the efficiency of estimation, the continuous covariate was centered around its 
mean, as shown below.  All other pieces of the model specification remained the same. Changes 
to the logistic model are shown below. 

 
logit(𝑝𝑖 ,𝑘) = 𝜇𝑖 +  𝛿𝑖,𝑘 + (𝛽𝑘 − 𝛽1)(𝑥𝑖 − 𝑚𝑒𝑎𝑛(𝑥𝑖)) 

 

Model Statistics 
When conducting the Bayesian MTC meta-analyses, we output several statistics to compare 

relative efficacy and assess model fit, as described below. 

Outcome Measures 
We assessed relative efficacy between treatments with odds ratios and 95 percent credible 

intervals for dichotomous data, and with mean differences and 95 percent credible intervals for 
continuous data. We also calculated the probability that each treatment was the best, by ranking 
the drugs on a relative scale. Because we used random effects models, we also output the 
estimate of the between-studies standard deviation in each scenario. 

Model Fit 
We assessed model fit with the Deviance Information Criterion (DIC) and the posterior mean 

of the total residual deviance.36 Deviance measures the fit of the model to the data using the 
likelihood function. A good model fit is indicated by a total residual deviance approximately 
equal to the number of data points available. The DIC is a statistic that measures Bayesian model 
fit and penalizes the deviance by the model complexity. When comparing two DIC values, a 
difference of 5 or more is regarded as a meaningful difference.37  

Frequentist Indirect Comparisons  
We compared the results from Bayesian MTC meta-analyses with three frequentist indirect 

methods for binary data and two frequentist indirect methods for continuous data. We used only 
two for continuous data because logistic regression cannot be used with continuous data. We 
chose these methods because they are among the most common indirect analyses currently used 
in CERs and because they have been validated with data simulation.3 

Frequentist Meta-Regression 
For the frequentist meta-regression approach, we followed a two-step process to indirectly 

estimate the comparative efficacy of two drugs. We first conducted random effects meta-
analyses as proposed by DerSimonian and Laird,4 combining two drugs of interest to estimate an 
overall pooled effect.  We assumed that i of a total of n studies provided an estimate yi of the 
effect (log odds ratio for dichotomous outcomes and weighted mean differences for continuous 
outcomes): 

 
yi = θi + υi + εi .  

      υi ~ N (0, τ2) 
      εi  ~ N (0, σi

2) 
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where τ2 is the between study variance, σi  the standard error of the estimate yi. The model 
assumes that υi and εi are uncorrelated.  We implemented this method using the Stata “metan” 
command with the “random” option. The between-study variance τ2 is estimated by the methods 
of moments:   τ

2 =Q−df
𝐶

 
 
where 
 

𝜏2 =
𝑄 −  𝑑𝑓

𝐶
 

 
df=k-1 
 
where k is the number of studies, and  
 

𝐶 =  �𝑊𝑖 −
∑𝑊𝑖

2

∑𝑊𝑖
 

 
Second, we estimated the comparative treatment effects between two drugs with random 

effects meta-regression. The unit of analysis for meta-regression was a study. The predictor in 
the regression model was a binary variable indicating the presence or absence of each of two 
drugs of interest. Random effects meta-regression extends random effects meta-analysis by 
replacing the mean θi with a linear predictor xiβ. Random effects meta-analysis allows for 
residual heterogeneity by assuming that the true effects follow a normal distribution around the 
linear predictor:38 

 
yi = xiβ + υi + εi .  

      υi ~ N (0, τ2) 
      εi  ~ N (0, σi

2) 
 
We implemented this method using the Stata “metareg” command. Stata version 11 was used 

for all frequentist meta-regression analyses. 

Bucher Method 
For another adjusted indirect comparisons approach, we used methods proposed by Bucher 

and colleagues.2 To derive indirect comparisons of two treatments, the method compares the 
magnitude of treatment effects of two interventions relative to a common comparator. For binary 
data, we calculated the pooled odds ratios for each drug of interest relative to a common 
comparator using random effects meta-analyses (as proposed by DerSimonian and Laird). For 
continuous data we used weighted mean differences.  

As outlined above in the section on meta-regression, for the meta-analyses we assumed that i 
of a total of n studies provided an estimate yi of the effect (log odds ratio for dichotomous 
outcomes and weighted mean differences for continuous outcomes): 

 
yi = θi + υi + εi .  

      υi ~ N (0, τ2) 
      εi  ~ N (0, σi

2) 
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where τ2 is the between study variance, σi  the standard error of the estimate yi. The model 
assumes that υi and εi are uncorrelated.  

The between-study variance τ2 is estimated by the methods of moments, as outlined under 
meta-regression. 
 

For dichotomous outcomes, the difference between two log odds ratios (with a common 
comparator) provides an adjusted estimate for the indirect comparison of agents: 

 
ln (𝑂𝑅𝑖𝑛𝑑) =  ln (𝑂𝑅𝑎𝑐) − ln (𝑂𝑅𝑏𝑐) 

 
Likewise, the sum of the variance of the two meta-analyses is the basis of the confidence 

interval for this calculation. 
 

Var (𝑙𝑛𝑂𝑅𝑖𝑛𝑑) = 𝑉𝑎𝑟(ln𝑂𝑅𝑎𝑐) + 𝑉𝑎𝑟(ln 𝑂𝑅𝑏𝑐) 
 
For continuous outcomes we used the same analytic approach without conversion to a 

logarithmic scale. The effect measure of choice for continuous outcomes was the weighted mean 
difference of the treatments relative to a common comparator. We conducted all analyses with 
Comprehensive MetaAnalysis version 2.2.050 (Biostat, Englewood NJ). 

Logistic Regression Modeling 
For the indirect comparisons using logistic regression, we incorporated the approach outlined 

by Glenny et al. (2005).3 We constructed datasets with the number of participants responding to 
the treatment and the number of participants not responding to the treatment matching those 
reported in each study.  In other words, if a study reported 100 of 300 patients responded to 
treatment A and 150 of 300 patients responded to treatment B, we constructed a dataset with a 
total of 600 patients (100 responders and 200 non-responders receiving treatment A and 150 
responders and 150 non-responders receiving treatment B).  We then estimated logistic 
regression models using PROC GLIMMIX in SAS version 9.2 with a dichotomous outcome of 
response vs. no response to treatment and including treatment as a fixed effect and study as a 
random effect.   

PROC GLIMMIX is used for computing generalized linear mixed effect models and can be 
applied to various types of outcome variables.  The general form of the model is: 

 
𝐸(𝑌|𝛾) = 𝑔−1(𝑋𝛽 + 𝑍𝛾) 

 
where  Y = outcome variable, 
 X = fixed effects, 
 β = fixed effect parameters, 
 γ = random effects, 
 Z = random effect parameters, and 
 g = link function. 
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In this model, E(Y| γ) represents the expected value for the outcome based on the model.  In our 
analyses, the outcome was response to treatment (yes vs. no) with treatment as fixed effect and 
study as a random effect as shown below:  
 
𝐸(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒  𝑡𝑜 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡|𝛾)

= 𝑔−1(𝛽0 + 𝛽1𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡1 … + 𝛽𝑖𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 + 𝛾1𝑆𝑡𝑢𝑑𝑦1 … . +𝛾𝑗𝑆𝑡𝑢𝑑𝑦𝑗) 
where i is the number of treatments and j is the number of studies. 

Because the outcome is dichotomous, we selected a logit link function and when applied to 
the equation, the final model is:  
 

𝐸(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑜 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡|𝛾) =
1

1 + 𝑒−(𝛽0+𝛽0+𝛽1𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡1…+𝛽𝑖𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖+𝛾1𝑆𝑡𝑢𝑑𝑦1….+𝛾𝑗𝑆𝑡𝑢𝑑𝑦𝑗) 

 
A binomial variance function was specified along with an unstructured covariance matrix which 
permits the estimation of all elements of the variance/covariance matrix without constraints.  The 
indirect comparisons were estimated within these models by applying contrast statements to 
compute odds ratios comparing response between two treatments of interest.    

Handling of Multi-Arm Studies in Frequentist Analyses 
None of the frequentist indirect methods used in this report accounted for correlations 

between treatment responses within multi-arm studies. This is an advantage of the Bayesian 
MTC methods when multi-arm studies are included, as the correction to the likelihood is easily 
implemented in the available code. However, in most cases this was not an issue because multi-
arm studies were generally not included when conducting the indirect frequentist analyses. 

Choice of Network Patterns  
As part of KQs 1 and 2, we aimed to investigate how Bayesian MTC methods perform for 

different network patterns. An evidence network’s geometry may be shaped by clinical context, 
regulatory pressure, or other factors. The evidence network may change over time, as new drugs 
are added to the market or different comparators are chosen.18 We chose four simple network 
patterns as the basis for comparisons within this report: star, closed loop, loop plus one, and 
ladder (see Introduction). These four patterns reflect different scenarios that exist in the context 
of real-world data. Within each of the real-world datasets used, we selected a subset of the 
studies for each of the four patterns. Although there were many different subsets of data 
available for each pattern that we could have selected, we selected examples that maximized the 
amount of data available for each sub-network. We selected one of each type of network pattern 
for each of the datasets. Due to limited time and resources, we could not evaluate every possible 
network pattern within each dataset. Appendix C illustrates the network patterns evaluated. Other 
choices could have been made, such as one reflecting the entry of drugs into the market or 
chronologically by publication date, but for the purposes of this report, we believe that an 
approach maximizing the amount of data available is the most useful.   

Key Question 2: Meta-Regression 
Our objective for this KQ was to introduce study level covariates in the models used with 

Bayesian MTC meta-analysis to explore heterogeneity, attempting to answer two clinically 
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important questions—one for each of our datasets. For the SGAs dataset, we conducted meta-
regression by assessing whether efficacy differed in trials that enrolled older adults compared 
with trials that enrolled adults of any age. For the biologic DMARDs dataset, we conducted 
meta-regression using mean disease duration of subjects enrolled in each study as a continuous 
covariate to determine whether treatment efficacy varies by disease duration of RA. The two 
analyses involved exploring two different types of covariates in the meta-regression: one relates 
to exploring subgroup effects with a binary covariate (for SGAs), and the other to exploring 
interaction effects with a continuous covariate (disease duration of RA). 

There is often a need to explore heterogeneity in treatment effects in terms of another 
variable (e.g., an effect modifier), and many software packages facilitate meta-regression for 
pair-wise meta-analysis. But, until recently, there has not been a readily available process for 
Bayesian MTC in WinBUGS. The NICE Decision Support Unit published TSD 35 to illustrate 
the use of different types of meta-regression within Bayesian MTC. Bayesian MTC allows us to 
incorporate all the available evidence into one analysis, which, combined with the ability to 
explore potential effect modifiers, can be a powerful tool when conducting CERs. 

We used the methods developed in TSD 3, which build on the generalized linear modeling 
framework established in TSD 2. For exploring subgroup effects through a meta-regression, a 
trial-level binary indicator was created to indicate study population. This indicator variable was 
added to the random effects logistic regression model used in KQ1. In this way, the interaction 
term describes the effect of the population on the outcome. In the second example, a continuous 
covariate was added to the same random effects logistic regression model, assuming a common 
covariate effect for each treatment. The continuous covariate was centered at its mean value to 
improve model convergence. The magnitude and direction of the interaction term was examined 
in each example, along with its effect on the odds of treatment response in each case. 

Meta-Regression With a Subgroup Indicator Covariate: Efficacy of 
SGAs and Older Adults 

From our report on SGAs, eight trials provided data on efficacy in older adult patients. We 
hypothesized that differences in efficacy may exist between studies enrolling older adults (≥55 
years) and those enrolling adults of any age. We explored this by introducing a covariate to the 
model that indicated the subgroup population. The analysis included 72 trials; 64 trials 
addressing efficacy in the adult population and eight trials conducted in the older adult 
population. The outcome was treatment response as measured by 50 percent or greater 
improvement from baseline on the HAM-D. We intended to test the interaction effect and 
compare the odds ratios for the treatments within each population. One advantage of this type of 
meta-regression is that it allows for the exploration of differences within one model, rather than 
performing multiple analyses separately and comparing results qualitatively. 

Meta-Regression With a Continuous Covariate: Efficacy of Biologic 
DMARDs and Disease Duration of Rheumatoid Arthritis 

Our recent CER on biologic DMARDs included a total of 31 studies in the MTC meta-
analysis (see descriptions above and data of the included studies provided in Appendix Table B-
3). The outcome was response as measured by ACR50 after a minimum treatment period of 12 
weeks. The trials included RA patients who failed methotrexate, a first-line therapy, but were 
naïve to treatment with a biologic DMARD. One trial-level factor hypothesized to have an effect 
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on treatment response is mean disease duration of rheumatoid arthritis. Longer disease durations 
are hypothesized to be associated with higher levels of treatment response. We aimed to test the 
effects of this covariate (mean disease duration) on our findings (with etanercept yielding greater 
treatment response than most other biologic DMARDs: see Introduction).   

Key Question 3: Methods Section for Simulation Study  
Because of inherent limitations when using real-world data, we proposed a simulation study 

to investigate the role of the number of studies available for each comparison on the MTC meta-
analysis model’s ability to detect true relative efficacy under different network patterns. The 
motivation for a simulation study arose from uncertainty about how the number of studies 
available for each comparison affects the ability of the model to produce valid results, and 
whether this varied under different network patterns. In performing Bayesian MTC meta-
analyses for CERs, the question of whether there are enough studies to make valid conclusions 
about comparative efficacy often arises. Many times, only one study is identified that links two 
treatments (or a treatment and placebo) together in a network. We hypothesized that findings 
may vary depending on the underlying data structure (i.e., network pattern). 

In order to assess the ability of the Bayesian MTC method to produce valid results under the 
four network patterns, we first created simulated datasets comprising two scenarios for 
comparative efficacy. Simulated datasets will lend flexibility in choosing the number of studies 
available for each comparison, and also allow us to determine the true comparative efficacy a 
priori. The basic process of the simulation is illustrated in Figure 4, below. We restricted the 
simulations to four treatments in each case, and set the sample size within each study to be 100 
patients per treatment arm. Our outcome was a dichotomous measure of treatment response 
(1=response, 0=no response).  

Two master simulated datasets were created to test the method in one case where analyses 
should not find important differences and in another case where analyses should find important 
differences. The first dataset is a scenario of equivalent efficacy of three drugs compared with 
placebo. A dataset of 10,000 ‘studies’ and four treatments was created by sampling from the 
binomial distribution so that placebo had a mean response of 0.10, and drugs 2 through 4 had a 
mean response of 0.50. In this way, drugs 2 through 4 have equivalent efficacy, but all have 
greater efficacy than placebo.  

The second of the two datasets is a scenario of superior efficacy of one drug compared with 
three other drugs. Again, a dataset of 10,000 ‘studies’ and four treatments was created by 
sampling from the binomial distribution so that drugs 1 through 3 had a mean response of 0.20, 
and drug 4 had a mean response of 0.80. In this case, drug 4 is superior to the other drugs in the 
network, which all have equal efficacy compared with each other. 
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Figure 4. Simulation study design 
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Next, to address variations in the number of studies available for each comparison, we 
selected five cases: one, two, three, five, and 10 studies per comparison. That is, the link 
connecting any two drugs is based on one, two, three, etc., studies. We fixed this number so that 
the overall number of studies per link is the same for each drug comparison. We sampled 
successive studies from the two master datasets, without replacement, to produce 1,000 sample 
datasets for each of the four network patterns (star, loop, loop plus one, and ladder) and the five 
cases, resulting in a total of 40,000 simulated datasets. The datasets were then submitted to the 
Bayesian MTC meta-analysis model used in KQ1. In each model run, there was a burn-in of 
5,000 iterations, followed by 15,000 iterations from which we monitored and output the 
probability that each drug was the best (i.e., most efficacious). The output of 1,000 ‘best’ 
statistics for each pattern by case (determined by number of studies for each comparison) formed 
a distribution to allow us to assess the model estimates versus the pre-determined treatment 
efficacy. To estimate bias, we computed the difference between the percentage of times a drug 
was considered most effective based on the models and the expected percentage based on the 
assumptions used to generate the data. The SAS and WinBUGs code used to generate the master 
datasets and Bayesian models can be found in Appendix A. 
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Results 
Key Question 1. Bayesian Mixed Treatment Comparison 
(MTC) Methods Compared With Frequentist Indirect Methods, 
and Performance for Different Types of Evidence Network 
Patterns 

We organized this section in two main parts: (1) comparison of results of Bayesian MTC 
methods with those of various frequentist methods for the full evidence networks and (2) 
comparison of and performance for different types of evidence network patterns. For the second 
part, we divided the results into two sub-sections—one comparing results of Bayesian MTC 
methods with those of various frequentist methods for sub-components (i.e., evidence network 
patterns) of the full networks and one presenting results of Bayesian MTC methods for the full 
networks and those of Bayesian MTC methods for sub-components of the full networks. Within 
each part, we first address results using data from our second-generation antidepressants (SGAs) 
report and then results using data from our report on treatments for rheumatoid arthritis (RA).  

Comparison of Bayesian MTC Results with those of Various 
Frequentist Analyses for the Full Networks 

In this section, we provide results of comparisons between Bayesian MTC methods and three 
frequentist methods for the full networks illustrated in Appendix C. Tables in Appendix D 
provide detailed results for each analysis. Tables in Appendix E provide a comparison of 
precision of findings from the various analyses (determined by width of the 95% credible 
interval or confidence interval), with the darkest shading indicating the most precise result and 
the lightest indicating the least precise for each drug-drug comparison. The Tables in this section 
provide a summary and some comparison of the data in Appendix D and Appendix E.  

Second-generation Antidepressants: Response (Binary Outcome) 
Appendix Table D-1 provides results of our analyses for the full SGA network for each drug-

drug comparison for Bayesian MTC meta-analyses, frequentist meta-regression, the Bucher 
method, and frequentist logistic regression (Appendix D). For 15 out of 78 drug-drug 
comparisons, neither frequentist meta-regression nor the Bucher method produced a result either 
because no studies included a common comparator or because an insufficient number of studies 
included a common comparator for the program to run the analysis.  

Table 3 summarizes the number of comparisons for which each frequentist method was 
unable to produce a result (the Bayesian MTC method produced results for all 78 comparisons), 
the percent agreement and kappa between each frequentist method and the Bayesian MTC 
method, and comparative precision. The three frequentist methods were unable to produce a 
result for 0 percent (0/78), 32 percent (25/78), and 45 percent (35/75) of the drug-drug 
comparisons (for the logistic regression, meta-regression, and Bucher methods, respectively). 
Logistic regression always produced the most precise result and Bayesian MTC was the next 
most precise for all but one drug-drug comparison (Appendix Table E-1). 
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Table 3. Comparison of findings for SGA response between Bayesian MTC meta-analysis findings 
and those of frequentist methods: agreement and kappas 
Outcome Bayesian MTC Meta-Regression Bucher Method Logistic Regression 
No result produceda 0 of 78 

comparisons 
25 of 78 comparisons 35 of 78 

comparisons 
0 of 78 comparisons 

% agreement with Bayesian 
MTCb 

NA 94.3 (50/53) 93.0 (40/43) 100 

Kappac NA NA NA 1.00 
Precision 2nd most precise Least precise 3rd most precise Most precise 
MTC= mixed treatment comparison; NA=not applicable 

aNo result produced indicated the number of drug-drug comparisons for which the method was unable to produce a result either 
due to no studies with a common comparator or an insufficient number of studies with a common comparator. 

bPercent agreement calculated only for drug-drug comparisons that both methods were able to produce a result. For example, 
meta-regression did not produce a result for 25 of 78 drug-drug comparisons. Therefore the percent agreement was calculated 
using the 53 comparisons for which both methods produced a result. Results were considered to agree if both methods produced a 
non-statistically significant (for frequentist methods) or unimportant (for Bayesian MTC) result for the comparison or if both 
analyses found a statistically significant or important result favoring the same treatment. 

cKappa was calculated only for comparisons when both methods were able to produce a result, as with percent agreement. Not 
applicable (NA) indicates that the statistical program was unable to calculate a kappa because of insufficient data. 

For the results of the three drug-drug comparisons that were not in agreement between the 
Bayesian MTC and the meta-regression and Bucher methods (duloxetine vs. escitalopram, 
escitalopram vs. fluoxetine, and fluoxetine vs. venlafaxine), the Bayesian MTC meta-analysis 
found a potentially important difference (based on 95% credible intervals) between treatments, 
whereas the other two methods did not. In addition, the results of the Bayesian MTC had greater 
precision than the other two methods for all three comparisons. Point estimates were very similar 
for the three methods for one of the comparisons (fluoxetine vs. venlafaxine, ORs ranged from 
0.75 to 0.77) but not for the other two comparisons (duloxetine vs. escitalopram: ORs 0.74 vs. 
1.23 vs. 1.19, respectively; escitalopram vs. fluoxetine: ORs 1.44 vs. 0.94 vs. 0.94). 

Second-generation Antidepressants: Mean Change in HAM-D 
(Continuous Outcome) 

Appendix Table D-2 provides results of our analyses for the full SGA network for each drug-
drug comparison for Bayesian MTC meta-analyses, frequentist meta-regression, and the Bucher 
method (Appendix D). There are no results from frequentist logistic regression for this outcome 
because it is a continuous outcome. 

For 33 out of 78 drug-drug comparisons, neither of the frequentist methods produced a result 
either because no studies included a common comparator or because an insufficient number of 
studies included a common comparator for the program to run the analysis. Table 4 summarizes 
the number of comparisons for which each frequentist method was unable to produce a result 
(the Bayesian MTC method produced results for all 78 comparisons) as well as the percent 
agreement between each frequentist method and the Bayesian MTC method. Bayesian MTC 
meta-analysis produced the most precise result for 67 percent of the comparisons; the Bucher 
method was the most precise for 33 percent of the comparisons (Appendix Table E-2). 
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Table 4. Comparison of findings for mean change in HAM-D between Bayesian MTC meta-analysis 
findings and those of frequentist methods: agreement and kappas 
Outcome Bayesian MTC Meta-Regression Bucher Method 
No result produceda 0 of 78 comparisons 46 of 78 comparisons 33 of 78 comparisons 
% agreement with Bayesian MTCb NA 100 (32/32) 84.4 (38/45) 
Kappac NA NA NA 
Precision Most precise Least precise 2nd most precise 
HAM-D=Hamilton Depression rating scale; MTC=mixed treatment comparison; NA=not applicable 

aNo result produced indicated the number of drug-drug comparisons for which the method was unable to produce a result either 
due to no studies with a common comparator or an insufficient number of studies with a common comparator. 

bPercent agreement calculated only for drug-drug comparisons that both methods were able to produce a result. Results were 
considered to agree if both methods produced a non-statistically significant (for frequentist methods) or unimportant (for 
Bayesian MTC) result for the comparison or if both analyses found a statistically significant or important result favoring the same 
treatment. 

cNot applicable (NA) indicates that the statistical program was unable to calculate a kappa because of insufficient data. 

For the results of the seven drug-drug comparisons that were not in agreement between the 
Bayesian MTC and the Bucher methods, the Bucher method found a statistically significant 
difference between treatments, whereas the Bayesian MTC method did not find an important 
difference (based on the 95% credible interval). The seven comparisons were duloxetine versus 
mirtazapine, duloxetine versus venlafaxine, escitalopram versus trazodone, escitalopram versus 
venlafaxine, mirtazapine versus venlafaxine, paroxetine versus venlafaxine, and sertraline versus 
venlafaxine. The Bayesian MTC method usually produced a more precise result (based on 
comparison of credible intervals with confidence intervals), but the point estimates differed in 
magnitude and sometimes in the direction (three of the seven) of effect (i.e., point estimates 
trended in opposite directions, favoring different treatments). 

Biologic Disease Modifying Antirheumatic Drugs for Rheumatoid 
Arthritis:  ACR50 (Binary Outcome) 

Appendix Table D-3 provides results of our analyses for the full biologic DMARDs network 
for each drug-drug comparison for Bayesian MTC meta-analyses, frequentist meta-regression, 
the Bucher method, and frequentist logistic regression (Appendix D). For all 28 drug-drug 
comparisons, all four methods were able to produce results. Table 5 summarizes the percent 
agreement and kappa between each frequentist method and the Bayesian MTC method. Logistic 
regression produced the most precise result for 89 percent of the comparisons; the Bayesian 
MTC meta-analysis produced the third most precise result for 86 percent of the comparisons 
(Appendix Table E-3). 
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Table 5. Comparison of findings for ACR50 between Bayesian MTC meta-analysis findings and 
those of frequentist methods: agreement and kappas 

Outcome Bayesian MTC Meta-Regression Bucher Method 
Logistic 
Regression 

No result produced 0 of 28 
comparisons 

0 of 28 comparisons 0 of 28 comparisons 0 of 28 comparisons 

% agreement with Bayesian 
MTCa 

NA 96.4 (27/28) 92.9 (26/28) 82.1 (23/28) 

Kappa NA 0.90 0.83 0.62 
Precision 3rd most precise Least precise 2nd most precise Most precise 
aResults were considered to agree if both methods produced a non-statistically significant (for frequentist methods) or 
unimportant (for Bayesian MTC) result for the comparison or if both analyses found a statistically significant or important result 
favoring the same treatment. 

Abbreviations: ACR50=American College of Rheumatology 50 percent response; MTC=Mixed treatment comparison; NA=not 
applicable 

For the results of the one drug-drug comparison (adalimumab vs. anakinra) that was not in 
agreement between the Bayesian MTC meta-analysis and meta-regression, the Bayesian MTC 
method found a potentially important result favoring adalimumab over anakinra (OR, 1.88, 95% 
CrI 1.01 to 3.98). Meta-regression found a similar point estimate but with a wider confidence 
interval not reaching statistical significance (OR, 1.95, 95%, CI, 0.82 to 4.61). 

For the results of both drug-drug comparisons (anakinra vs. golimumab and etanercept vs. 
golimumab) that were not in agreement between the Bayesian MTC and the Bucher method, the 
Bucher method found a statistically significant difference between treatments, whereas the 
Bayesian MTC did not find an important difference. Point estimates for both were fairly similar 
and in the same direction, but the confidence intervals were more narrow (reaching statistical 
significance) for the Bucher method. 

For the results of the five drug-drug comparisons that were not in agreement between the 
Bayesian MTC and logistic regression, logistic regression found a statistically significant 
difference between treatments, whereas the Bayesian MTC did not find an important difference. 
The five comparisons were abatacept versus anakinra, anakinra versus golimumab, anakinra 
versus infliximab, anakinra versus rituximab, and anakinra versus tocilizumab. Point estimates 
were fairly similar and were in the same direction for all five for the Bayesian MTC meta-
analysis and logistic regression, but the confidence intervals were more narrow (reaching 
statistical significance) for logistic regression. 

Performance for Different Types of Evidence Network Patterns 

Comparison of Bayesian MTC Results with those of Various 
Frequentist Analyses for Sub-components of the Full Networks 

In this section, we provide results of comparisons between Bayesian MTC methods and three 
frequentist methods for the sub-components of the full networks illustrated in Appendix C. These 
sub-components represent at least one of each of the following network patterns: placebo star, 
loop, one closed loop, and ladder. Tables in Appendix D provide detailed results for each 
analysis, by network pattern. Tables in Appendix E provide a comparison of precision of 
findings from the various analyses (determined by width of the 95% credible interval or 
confidence interval), with the darkest shading indicating the most precise result and the lightest 
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indicating the least precise for each drug-drug comparison. The Tables in this section provide a 
summary and some comparison of the data in Appendix D and Appendix E. 

Second-generation Antidepressants: Response (Binary Outcome) 
Appendix Tables D-4 through D-7 provide results of our analyses for each of the network 

patterns (sub-components of the full network) selected, including a placebo star, loop, one closed 
loop, and ladder for each drug-drug comparison for Bayesian MTC meta-analyses, frequentist 
meta-regression, the Bucher method, and frequentist logistic regression (Appendix D). Table 6 
summarizes the number of comparisons for which each frequentist method was unable to 
produce a result as well as the percent agreement and kappa between each frequentist method 
and the Bayesian MTC method, by network pattern. On average, logistic regression produced the 
most precise results for the star, one closed loop, and ladder, whereas the Bayesian MTC meta-
analysis produced the most precise results for the loop (Appendix Tables E-4 through E-7). 

Table 6. Comparison of findings for SGA response between Bayesian MTC meta-analysis findings 
and those of frequentist methods for various network patterns 
Network 
Pattern Outcome Bayesian MTC 

Meta-
Regression 

Bucher 
Method 

Logistic 
Regression 

Star No result produceda 0 of 45 
comparisons 

3 of 45 
comparisons 

2 of 45 
comparisons 

0 of 45 
comparisons 

 % agreement with Bayesian 
MTCb 

NA 100 100 100 

 Kappac NA NA NA NA 
 Precision 3rd most precise Least precise 2nd most 

precise 
Most precise 

Loop No result produceda 0 of 3 0 of 3 0 of 3 0 of 3 
 % agreement with Bayesian 

MTCb 
NA 66.7 (2/3) 66.7 (2/3) 66.7 (2/3) 

 Kappac NA NA NA NA 
 Precision Most precise Least precise 3rd most precise 2nd most precise 
One closed 
loop 

No result produceda 0 of 32 25 of 32 25 of 32 0 of 32 

 % agreement with Bayesian 
MTCb 

NA 85.7 85.7 93.8 

 Kappac NA NA NA 0.6364 
 Precision 2nd most precise Least precise 3rd most precise Most precise 
Ladder No result produceda 0 of 55 39 of 55 36 of 55 0 of 55 
 % agreement with Bayesian 

MTCb 
NA 100 100 96.4 

 Kappac NA NA NA 0.6474 
 Precision 3rd most precise Least precise 2nd most 

precise 
Most precise 

aNo result produced indicated the number of drug-drug comparisons for which the method was unable to produce a result either 
due to no studies with a common comparator or an insufficient number of studies with a common comparator. 

bPercent agreement calculated only for drug-drug comparisons that both methods were able to produce a result. Results were 
considered to agree if both methods produced a non-statistically significant (for frequentist methods) or unimportant (for 
Bayesian MTC) result for the comparison or if both analyses found a statistically significant or important result favoring the same 
treatment. 

cKappa was calculated only for comparisons when both methods were able to produce a result, as with percent agreement. Not 
applicable (NA) indicates that the statistical program was unable to calculate a kappa because of insufficient data (because there 
were less than 2 levels). 

Abbreviations: MTC=mixed treatment comparison; NA=not applicable; SGA=second-generation antidepressant 
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Second-Generation Antidepressants: Mean Change in HAM-D 
(Continuous Outcome) 

Appendix Tables D-8 through D-11 provide results of our analyses for each of the network 
patterns (sub-components of the full network) selected, including a placebo star, loop, one closed 
loop, and ladder for each drug-drug comparison for Bayesian MTC meta-analyses, frequentist 
meta-regression, and the Bucher method (Appendix D). There are no results from frequentist 
logistic regression for this outcome because it is a continuous outcome. 

Table 7 summarizes the number of comparisons for which each frequentist method was 
unable to produce a result (the Bayesian MTC method produced results for all comparisons) as 
well as the percent agreement and kappa between each frequentist method and the Bayesian 
MTC method, by network pattern. On average, logistic regression produced the most precise 
results for the star and ladder, the Bayesian MTC meta-analysis produced the most precise 
results for the loop, and meta-regression produced the least precise results for all network 
patterns (Appendix Tables E-8 through E-11). 

Table 7. Comparison of findings for mean change in HAM-D between Bayesian MTC meta-analysis 
findings and those of frequentist methods for various network patterns 
Network 
Pattern Outcome Bayesian MTC Meta-Regression Bucher Method 
Star No result produceda 0 of 21 

comparisons 
1 of 21 comparisons 0 of 21 comparisons 

 % agreement with Bayesian MTCb NA 100 (20/20) 81 (17/21) 
 Kappac NA NA NA 
 Precision 2nd most precise Least precise Most precise 
Loop No result produceda 0 of 3 comparisons 2 of 3 comparisons 0 of 3 comparisons 
 % agreement with Bayesian MTCb NA 100 (1/1) 100 (3/3) 
 Kappac NA NA NA 
 Precision Most precise Least precise 2nd most precise 
One closed 
loop 

No result produceda 0 of 21 
comparisons 

 17 of 21 comparisons 14 of 21 
comparisons 

 % agreement with Bayesian MTCb NA 100 (4/4) 85.7 (6/7) 
 Kappac NA NA NA 
 Precision Most precised Least precise Most precised 

Ladder No result produceda 0 of 28 
comparisons 

25 of 28 comparisons 23 of 28 
comparisons 

 % agreement with Bayesian MTCb NA 100 (3/3) 100 (5/5) 
 Kappac NA NA NA 
 Precision 2nd most precise Least precise Most precise 
aNo result produced indicated the number of drug-drug comparisons for which the method was unable to produce a result either 
due to no studies with a common comparator or an insufficient number of studies with a common comparator. 

bPercent agreement calculated only for drug-drug comparisons that both methods were able to produce a result. Results were 
considered to agree if both methods produced a non-statistically significant (for frequentist methods) or unimportant (for 
Bayesian MTC) result for the comparison or if both analyses found a statistically significant or important result favoring the same 
treatment. 

cKappa was calculated only for comparisons when both methods were able to produce a result. Not applicable (NA) indicates that 
the statistical program was unable to calculate a kappa because of insufficient data (because there were less than 2 levels). 

dNeither the Bayesian MTC method or the Bucher method were clearly more precise than the other. Each of them reported the 
most precise results for about half of the drug-drug comparisons. 

Abbreviations: MTC=mixed treatment comparison; NA=not applicable 
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Biologic Disease Modifying Antirheumatic Drugs for Rheumatoid 
Arthritis: ACR50 (Binary Outcome) 

Appendix Tables D-12 through D-16 provide results of our analyses for each of the network 
patterns (sub-components of the full network) selected, including a placebo star, loop, one closed 
loop, and ladder for each drug-drug comparison for Bayesian MTC meta-analyses, frequentist 
meta-regression, the Bucher method, and frequentist logistic regression (Appendix D). Table 8 
summarizes the number of comparisons for which each method was unable to produce a result as 
well as the percent agreement and kappa between each frequentist method and the Bayesian 
MTC method, by network pattern. On average, logistic regression produced the most precise 
results for all of the network patterns; the Bayesian MTC meta-analysis produced the third most 
precise or the least precise results, depending on the network pattern (Appendix Tables E-12 
through E-16). 

Table 8. Comparison of findings for ACR50 response between Bayesian MTC meta-analysis 
findings and those of frequentist methods for various network patterns 
Network 
Pattern Outcome Bayesian MTC Meta-Regression Bucher Method 

Logistic 
Regression 

Star No result produceda 0 of 28 
comparisons 

0 of 28 
comparisons 

0 of 28 
comparisons 

0 of 28 
comparisons 

 % agreement with 
Bayesian MTCb 

NA 100 (28/28) 89.3 (25/28) 78.6 (22/28) 

 Kappac NA 1.000 0.7308 0.5333 
 Precision 3rd most precise Least precise 2nd most precise Most precise 
Loop No result produceda 0 comparisons 0 of 1 comparisons 0 of 1 

comparisons 
0 of 1 
comparisons 

 % agreement with 
Bayesian MTCb 

NA 100 (1/1) 100 (1/1) 100 (1/1) 

 Kappac NA NA NA NA 
 Precision 3rd most precise Least precise 2nd most precise Most precise 
One closed 
loop with 
adalimumab 

No result produceda 0 of 3 
comparisons 

0 of 3 comparisons 0 of 3 
comparisons 

0 of 3 
comparisons 

 % agreement with 
Bayesian MTCb 

NA 100 (3/3) 100 (3/3) 100 (3/3) 

 Kappac NA NA NA NA 
 Precision Least precise 3rd most precise 2nd most precise Most precise 
One closed 
loop with 
etanercept 

No result produceda 0 of 3 
comparisons 

0 of 3 comparisons 0 of 3 
comparisons 

0 of 3 
comparisons 

 % agreement with 
Bayesian MTCb 

NA 100 (3/3) 100 (3/3) 100 (3/3) 

 Kappac NA 1.000 1.000 1.000 
 Precision 3rd most precise Least precise 2nd most precise Most precise 
Ladder No result produceda 0 of 3 

comparisons 
1 of 3 comparisons 1 of 3 

comparisons 
0 of 3 
comparisons 

 % agreement with 
Bayesian MTCb 

NA 100 (2/2) 100 (2/2) 66.7 (2/32) 

 Kappac NA 1.000 NA NA 
 Precision Least precise 3rd most precise 2nd most precise Most precise 
aNo result produced indicated the number of drug-drug comparisons for which the method was unable to produce a result either 
due to no studies with a common comparator or an insufficient number of studies with a common comparator. 

bPercent agreement calculated only for drug-drug comparisons that both methods were able to produce a result. Results were 
considered to agree if both methods produced a non-statistically significant (for frequentist methods) or unimportant (for 
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Bayesian MTC) result for the comparison or if both analyses found a statistically significant or important result favoring the same 
treatment. 

cKappa was calculated only for comparisons when both methods were able to produce a result. Not applicable (NA) indicates that 
the statistical program was unable to calculate a kappa because of insufficient data (because there were less than 2 levels). 

Comparison of Bayesian MTC Results for the Full Networks with 
Bayesian MTC Results for Sub-components 

In this section, we present findings of the Bayesian MTC meta-analyses for each dataset for 
the full network and for sub-components of the network. Because the data differ for each 
scenario, the measures are not intended to be directly comparable for the full network and for the 
various sub-components of the network, but are presented here to show model fit under each 
scenario. The findings for the full network represent those for the complete literature on each set 
of medications (at the time of our CERs on each topic).16, 17 Those for the sub-components 
examined hypothetical scenarios that would occur if the bodies of evidence were more limited. 

Second-Generation Antidepressants: Binary Outcome 
We ran MTC meta-analyses for the binary outcome of response to SGAs under five different 

network scenarios, the full network and four sub-component network patterns: star, loop, one 
closed loop, and ladder (as described in the Methods chapter). Network figures in Appendix C 
detail the geometry of these sub-components. 

Measures of model fit are reported in Table 9. Estimates of between-study heterogeneity (tau 
squared) ranged from 0.12 to 0.44. Deviance information criterion (DIC) values varied across 
scenarios. When examining the total residual deviance for each scenario, all of them reasonably 
approximate the number of data points available, suggesting good model fit. The ladder and star 
pattern models most closely approximated the number of data points available. 

Table 9. Measures of model fit for second-generation antidepressants for response 
Statistic Full Network Star Loop One Closed Loop Ladder 
Total residual deviance (total 
number of datapoints available) 

135.3 (140) 35.96 (36) 25.64 (30) 37.67 (42) 39.36 (40) 

Deviance Information Criterion 259.45 246.67 188.42 271.67 270.31 
Between-study heterogeneity 0.2571 0.4427 0.1172 0.1196 0.3019 
 

One feature of the Bayesian framework for MTC is the ability to directly calculate the 
probability that each drug is the best treatment. Table 10 shows the results of this statistic for the 
five scenarios. Since not every treatment was available in each network pattern, some 
comparisons were not applicable for every network pattern.   
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Table 10. Probability of best treatment for second-generation antidepressants for response 
Statistic Full Network Star Loop One Closed Loop Ladder 
Bupropion  0.005 NA NA 0.057 0.034 
Citalopram 0.366 NA NA 0.218 0.268 
Desvenlafaxine 0.023 0.019 NA NA NA 
Duloxetine 0.000 0.005 NA NA 0.002 
Escitalopram 0.090 NA NA 0.056 0.110 
Fluoxetine 0.000 0.185 0.019 0.003 0.004 
Fluvoxamine 0.280 0.255 NA 0.202 0.262 
Mirtazapine 0.158 NA NA 0.077 0.061 
Nefazodone 0.038 0.077 NA NA NA 
Paroxetine 0.003 0.210 0.182 0.070 0.021 
Sertraline 0.003 0.007 0.798 0.317 0.069 
Trazodone 0.008 NA NA 0.001 0.002 
Venlafaxine 0.028 0.243 NA NA 0.168 
Abbreviations: NA=Not applicable. 

For the full network, citalopram had the greatest probability of being the best treatment for 
achieving response (36.6%), followed by fluvoxamine. However, none of the treatments was 
particularly dominant to where we would have high confidence in that treatment truly having 
greater efficacy—as we might suggest if one reached a probability of 90 percent or more, for 
example. For the star network pattern, fluvoxamine had the greatest probability, followed by 
venlafaxine. But, again, none of the treatments was particularly dominant. The medication with 
the greatest probability of being the best treatment varied for each of the five scenarios. Only the 
closed loop had a fairly dominant medication—as sertraline had a probability of almost 80 
percent for being the best treatment. 

Given that not all of the comparisons were available in each scenario, we focused on the 
three drugs that were represented in each pattern: fluoxetine, paroxetine, and sertraline. Figure 5 
shows the odds ratios and 95 percent credible intervals for the relative response of the 
antidepressants for each scenario. The full set of all pairwise comparisons is reported in 
Appendix D (Appendix Tables D-1, D-4, D-5, D-6, and D-7). Generally, the results show that 
the three drugs are not significantly different in odds of response. The two models with the least 
amount of connected data (star and ladder) also had the greatest heterogeneity and thus wider 
credible intervals around the mean. The response profiles for the loop and one closed loop 
mirrored the full network (with very similar point estimates), but found a significant difference 
between fluoxetine and sertraline, in part due to the lower between-studies heterogeneity of these 
reduced datasets.  
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Figure 5. Results of Bayesian MTC meta-analysis for five scenarios: odds ratio (95% credible 
interval) comparing fluoxetine, paroxetine, and sertraline for achieving response 

 

Second-Generation Antidepressants: Continuous Outcome 
For the second illustration with the antidepressant data, response is now represented on a 

continuous scale by using mean change from baseline in HAM-D in each treatment arm. We ran 
MTC meta-analyses using a normal likelihood and identify link function for each of the five 
different network scenarios. Network figures in Appendix C detail the geometry of these 
scenarios. 
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Out of the 78 pairwise comparisons available in the full network, there were 21 available in 
the star pattern, 3 in the loop, 21 in the one closed loop, and 28 in the ladder. The full results are 
reported in Appendix D (Tables D-2, D-8, D-9, D-10, and D-11). Although the point estimates 
vary across the patterns, likely due to the availability of direct head-to-head studies, the 
confidence intervals cross the line of no difference in all but one of the comparisons. As in the 
case of the binary outcome (response), there is little evidence from these data to support any 
important differences in the efficacy of the 13 antidepressants.  

Measures of model fit are reported in Table 11. Estimates of between-study heterogeneity 
(tau squared) ranged from 0.86 to 1.97. For the total residual deviance for each scenario, the star, 
loop, and ladder most closely approximated the number of data points available, but fairly close 
approximations were found for all scenarios, suggesting good model fit. 

Table 11. Measures of model fit for second-generation antidepressants for mean change from 
baseline in HAM-D 
Statistic Full Network Star Loop One Closed Loop Ladder 
Total residual deviance (total 
number of datapoints available) 

86.93 (80) 41.27 (40) 18.81 (18) 39.64 (38) 26.71 (26) 

Deviance Information Criterion 254.08 120.76 59.866 122.637 75.126 
Between-study heterogeneity 0.8564 0.8637 1.974 1.683 1.192 
 

As in the example with a binary outcome, we looked closer at three pairwise comparisons 
available under each scenario (Figure 6). Generally, the results show that the three drugs are not 
significantly different in mean change from baseline in HAM-D. 
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Figure 6. Results of Bayesian MTC meta-analysis for five scenarios: weighted mean difference 
(95% credible interval) comparing escitalopram, fluoxetine, and venlafaxine for mean change from 
baseline in HAM-D 

 

Biologic DMARDs for Rheumatoid Arthritis: Binary Outcome 
For the rheumatoid arthritis dataset, the majority of the trials were placebo-controlled; only 

one trial included a head-to-head comparison, between adalimumab and infliximab. Therefore, 
the choice of sub-component network patterns was more limited than for the SGA dataset. We 
ran MTC meta-analyses on the binary outcome of ACR50 response for five different network 
scenarios, the full network and four sub-network patterns: star, loop, one closed loop, and ladder 
(as described in the Methods chapter). Network figures in Appendix C detail the geometry of 
these scenarios. 
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Measures of model fit are reported in Table 12. Estimates of between-study heterogeneity 
(tau squared) were very similar across scenarios (range 0.27 to 0.33). Total residual deviance 
data show that the full network and the loop most closely approximated the number of data 
points available, suggesting good model fit. The other scenarios had more sizeable differences 
between total residual deviance and the number of data points. 

Table 12. Measures of model fit for biologic DMARDs for rheumatoid arthritis for achieving ACR50 
Statistic Full Network Star Loop One Closed Loop Ladder 
Total residual deviance (total 
number of datapoints available) 

65.54 (62) 62.29 (40) 17.01 (18) 22.87 (38) 16.03 (26) 

Deviance Information Criterion 394.56 374.04 110.95 149.89 101.45 
Between-study heterogeneity 0.3006 0.3193 0.3315 0.2668 0.3899 
 

Table 13 shows the probability that each drug is the best treatment for achieving ACR 50 
response for each of the five scenarios. Since not every treatment was available in each network 
pattern, the probabilities for some treatments were not reported (i.e., not applicable) for some 
network patterns. For all five scenarios, etanercept had the greatest probability of being the best 
treatment for achieving ACR50 response, with probabilities of 94.9 percent or higher.  

Table 13. Probability of best treatment for biologic DMARDs for rheumatoid arthritis for achieving 
ACR50 
Statistic Full Network Star Loop One Closed Loop (ETA) Ladder 
Abatacept 0.000 0.001 0.4526 0.001 0.000 
Adalimumab 0.003 0.003 NA NA NA 
Anakinra 0.000 0.000 NA NA NA 
Etanercept 0.953 0.949 NA 0.999 0.993 
Golimumab 0.040 0.041 NA NA NA 
Infliximab 0.000 0.001 0.5473 0.001 0.007 
Rituximab 0.003 0.004 NA NA NA 
Tocilizumab 0.000 0.000 NA NA NA 
Abbreviations: NA=Not applicable; ETA=Etanercept. 

Given that not all of the comparisons were available in each scenario, we focused on the two 
drugs that are represented in each pattern. Figure 7 shows the odds ratios and 95 percent credible 
intervals for the relative response for each scenario. The full set of all pairwise comparisons is 
reported in Appendix D (Appendix Tables D-3, D-12, D-13, D-14, D-15 and D-16). Generally, 
the results show that the two drugs in Figure 7 are not significantly different in odds of ACR50 
response for four of the scenarios; the ladder found greater response for infliximab than for 
abatacept.  
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Figure 7. Results of Bayesian MTC meta-analysis for five scenarios: odds ratio (95% credible 
interval) comparing abatacept and infliximab for treatment response (ACR50) 

 

Key Question 2. Meta-Regression with Bayesian MTC Meta-
Analysis 

This key question aims to illustrate the use of meta-regression as a technique for exploring 
sources of heterogeneity of treatment effects in CERs. There is often a need to explore 
heterogeneity in treatment effects in terms of another variable (e.g., an effect modifier), and 
many software packages facilitate meta-regression for pairwise meta-analysis. But, until 
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recently, there has not been a readily available and straightforward process for conducting meta-
regression with Bayesian MTC in WinBUGS. The NICE Decision Support Unit recently 
published Technical Support Document 3 (TSD 3)5 to illustrate the use of different types of 
meta-regression within Bayesian MTC. Bayesian MTC allows us to incorporate all of the 
available evidence into one analysis, which, combined with the ability to explore potential effect 
modifiers, can be an important analytic tool when conducting CERs. 

We examine two types of meta-regression in this key question: one relates to exploring 
subgroup effects with a binary covariate and the other to exploring interaction effects with a 
continuous covariate. Our purpose here is to use meta-regression with Bayesian MTC meta-
analysis within the context of two real-world scenarios from recent CERs and to examine two 
clinically important questions. 

Meta-Regression with a Subgroup Indicator Covariate 
We hypothesized that differences in efficacy of SGAs may exist between older adults (≥55 

years) and adults of any age. We used 72 trials of SGAs; 64 trials addressed efficacy in the 
general adult population and eight trials conducted exclusively in the older adult population. The 
outcome was treatment response as measured by 50 percent or greater improvement from 
baseline on the HAM-D. Figure 8 shows the evidence network for the 72 trials. We intended to 
test the interaction effect and compare the odds ratios for the treatments within each population.  

Figure 8. Evidence network for subgroup meta-regression to assess whether efficacy of second-
generation antidepressants differs for older adults 
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For this analysis, we used a random effects logistic regression model, including the 
appropriate adjustment for correlations within multi-arm trials. Convergence was checked via 
trace plots, and posterior means were calculated after 100,000 iterations following a burn-in of 
20,000 iterations. We used a common (single) interaction term. Figure 9 shows the odds ratios of 
treatment response for each of the SGAs, relative to placebo, within each age subgroup. 

Figure 9. Odds ratios (95% credible interval) of treatment response for second-generation 
antidepressants, by patient population 

  

Within the general adult population, efficacy was supported for all antidepressants with the 
exception of trazodone. When estimating these effects for the older adult population within the 
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same meta-regression model, the efficacy for each drug appears to be diminished with only 
escitalopram and venlafaxine maintaining statistical superiority compared with placebo. This 
trend is supported by the interaction effect estimate of -0.34 (95% CrI, -0.696 to 0.006). This 
represents, on average, a -0.34 reduction in the log odds of response (not for the odds ratio 
scale). While approaching marginal statistical significance, the interaction estimate indicates a 
trend toward lower response rates in the older adult population. We compared the meta-
regression model of 72 studies with the main adult analysis including 64 studies. The estimates 
for between-study heterogeneity were similar, although slightly reduced in the model containing 
the additional older adult studies (Table 14). The Deviance Information Criterion (DIC) 
increased slightly from 928.73 to 933.38. Both model estimates of total residual deviance were 
appropriate when compared with the number of data points available in each analysis, suggesting 
a good model fit in each case. 

Table 14. Measures of model fit between main analysis and meta-regression 
Statistic Main Adult Analysis (n=64) Meta-regression including 

Older Adults (n=72) 
Total residual deviance (total 
number of datapoints available) 

135.3 (140) 153.8 (158) 

DIC 928.73 933.38 
Between-study heterogeneity 0.2571 0.2506 
DIC=Deviance Information Criterion. 

Meta-regression with a Continuous Covariate 
We hypothesized that differences in efficacy of treatments for RA may exist for patients with 

varying durations of disease. Longer disease durations were hypothesized to be associated with 
higher levels of treatment response. We aimed to test the effects of this covariate (mean disease 
duration) on the findings from our recent CER—with our Bayesian MTC meta-analysis finding 
that etanercept resulted in greater treatment response than most other biologic DMARDs. 

Twenty-eight of the 31 trials included in our Bayesian MTC meta-analysis reported data on 
mean disease duration (in years). Both trials that did not report data on mean disease duration 
compared etanercept with placebo. If disease duration was presented as only an arm-level mean, 
the average of the arms was taken for the trial-level mean. All eight biologic DMARDs were 
represented in the 28 trials (Figure 10). The mean trial-level disease duration ranged from 3.9 to 
13 years.  

Figure 10. Evidence network for continuous covariate meta-regression to assess whether efficacy 
of biologic DMARDs differs for patients with longer disease duration 
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A random effects logistic regression model was used, including the appropriate adjustment 
for correlations within multi-arm trials. The model was fitted assuming a common interaction 
effect for all treatments. Convergence was checked via trace plots, and posterior means were 
taken after 100,000 iterations following a burn-in of 20,000 iterations.  

Table 15 shows the probability of best treatment with and without the meta-regression 
covariate. The interaction effect was found to be statistically important and supported the 
hypothesis of increased treatment response with increased disease duration. When including the 
effect of mean disease duration, the probability that etanercept was the best treatment dropped 
from 0.961 to 0.678, indicating that treatments with higher reported response rates, including 
etanercept, may have appeared to be more efficacious due to the inclusion of studies enrolling 
patient populations with longer disease durations.  

Table 15. Interaction effect and probability of best treatment  
Probability of Best Treatment No Covariate  With Disease Duration Covariate 
Interaction Effect NA 0.093 (95% CrI: 0.005 to 0.182) 
Abatacept 0.001 0.001 
Adalimumab 0.003 0.007 
Anakinra 0.000 0.000 
Etanercept 0.961 0.678 
Golimumab 0.033 0.286 
Infliximab 0.000 0.002 
Rituximab 0.003 0.015 
Tocilizumab 0.001 0.010 
Abbreviations: CrI = credible interval; NA = Not applicable. 

Figure 11 presents odds ratios for etanercept response compared with other biologic 
DMARDs from the model with and without the covariate. When examining the relative effects 
of etanercept compared with the other biologic DMARDs, we see that when controlling for years 
of disease severity, the relative efficacy of etanercept is reduced. While trending in the direction 
of greater efficacy compared with all of the other biologic DMARDs, statistical significance was 
only reached for the comparison with anakinra. However, even with the muted effect of 
etanercept in the model controlling for disease duration level, when looking at the probability of 
best treatment it appears the only other biologic with competing efficacy is golimumab. When 
predicting the estimated odds ratios for different disease durations, we found that odds ratios for 
etanercept compared with placebo ranged from 7.35 with one year of RA to 14.99 with 10 years 
of the disease.  
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Figure 11. Odds ratios (95% credible interval) of treatment response for Etanercept compared with 
other biologic DMARDs, with and without disease duration covariate 
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dataset. 
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Equivalent Efficacy Scenario 
Table 16 shows the mean and standard deviation of the probability that each drug was the 

best in the 1,000 model runs for each network pattern and each available number of studies for 
the equivalent efficacy scenario. In the equivalent efficacy scenario, the pre-determined mean 
response (standard deviation) of drug one (placebo) was 0.10 (0.03); the pre-determined mean 
response (standard deviation) for each of drugs two, three, and four was 0.50 (0.05). 

Table 16. Simulation results: Probability of best treatment under equivalent efficacy scenario 

Network pattern 

Number of Studies for 
Each Drug-Drug 
Comparison 

Drug 1 (placebo) 
Mean (SD) 

Drug 2 
Mean (SD) 

Drug 3 
Mean (SD) 

Drug 4 
Mean (SD) 

Star 1 0.01 (0.004) 0.34 (0.045) 0.33 (0.045) 0.32 (0.048) 
 2 2 x 10-3 (2 x 10-4) 0.34 (0.115) 0.34 (0.112) 0.33 (0.116) 
 3 1 x 10-6 (1 x 10-5) 0.33 (0.131) 0.33 (0.133) 0.34 (0.136) 
 5 0.00 (0.000) 0.33 (0.144) 0.34 (0.141) 0.33 (0.139) 
 10 0.00 (0.000) 0.33 (0.153) 0.34 (0.150) 0.33(0.150) 
Loop 1 0.03 (0.009) 0.24 (0.054) 0.34 (0.049) 0.38 (0.040) 
 2 5 x 10-4 (5 x 10-4) 0.27 (0.152) 0.33 (0.140) 0.40 (0.116) 
 3 3 x 10-6 (2 x 10-5) 0.27 (0.174) 0.33 (0.168) 0.40 (0.132) 
 5 0.00 (0.000) 0.27 (0.190) 0.33 (0.180) 0.40 (0.139) 
 10 0.00 (0.000) 0.27 (0.201) 0.33 (0.190) 0.40 (0.150) 
One Closed Loop 1 0.01 (0.004) 0.25 (0.077) 0.25 (0.077) 0.49 (0.004) 
 2 1 x 10-4 (2 x 10-4) 0.26 (0.126) 0.25 (0.126) 0.49 (0.005) 
 3 7 x 10-7 (1 x 10-5) 0.25 (0.137) 0.26 (0.137) 0.49 (0.005) 
 5 0.00 (0.000) 0.25 (0.146) 0.26 (0.146) 0.49 (0.006) 
 10 0.00 (0.000) 0.25 (0.148) 0.26 (0.148) 0.49 (0.006) 
Ladder 1 0.11 (0.019) 0.30 (0.054) 0.24 (0.062) 0.35 (0.053) 
 2 0.003 (0.002) 0.37 (0.169) 0.28 (0.186) 0.36 (0.168) 
 3 4 x 10-5 (1 x 10-4) 0.37 (0.195) 0.28 (0.218) 0.35 (0.195) 
 5 0.00 (0.000) 0.36 (0.209) 0.29 (0.234) 0.35 (0.203) 
 10 0.00 (0.000) 0.36 (0.225) 0.30 (0.246) 0.34 (0.215) 
Abbreviations: SD = standard deviation 

In the equivalent efficacy scenario, we would expect to find that there are no differences 
between drugs two, three, and four, while drug one (placebo) should clearly be found the least 
efficacious. Table 17 shows the bias of the simulation results, which is the difference between 
observed and expected probabilities. For this data scenario, the bias ranged from 0.00 to 0.16, the 
latter being mainly in the one closed loop pattern. In the following bullets, we summarize our 
findings: 

 
• For the star and ladder network patterns the correct conclusion was generally supported 

for each scenario (with varying numbers of studies for each drug-drug comparison). Even 
in cases where one drug had a slightly higher probability than expected, the difference 
was not sufficiently large to lead to the wrong conclusion (that one drug was superior to 
other drugs). 

• The closed loop and one closed loop patterns had higher predicted means for the fourth 
drug in the network, even though drug four is not more efficacious than drugs two or 
three. The closed loop pattern found drug four to be the best drug in almost half of the 
iterations.  
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Table 17. Bias of Simulation Results: Difference between observed and expected probability of 
best treatment under equivalent efficacy scenario 
Expected Value  0.00 0.33 0.33 0.33 
Network pattern Number of Studies for 

Each Drug-Drug 
Comparison 

Drug 1 (placebo) 
Bias 

Drug 2 
Bias 

Drug 3 
Bias 

Drug 4 
Bias 

Star 1 0.01 0.01 0.00 0.01 
 2 0.00 0.01 0.01 0.00 
 3 0.00 0.00 0.00 0.01 
 5 0.00 0.00 0.01 0.00 
 10 0.00 0.00 0.01 0.00 
Loop 1 0.03 0.09 0.01 0.05 
 2 0.00 0.06 0.00 0.07 
 3 0.00 0.06 0.00 0.07 
 5 0.00 0.06 0.00 0.07 
 10 0.00 0.06 0.00 0.07 
One Closed Loop 1 0.01 0.08 0.08 0.16 
 2 0.00 0.07 0.08 0.16 
 3 0.00 0.08 0.07 0.16 
 5 0.00 0.08 0.07 0.16 
 10 0.00 0.08 0.07 0.16 
Ladder 1 0.11 0.03 0.09 0.02 
 2 0.00 0.04 0.05 0.02 
 3 0.00 0.04 0.05 0.02 
 5 0.00 0.03 0.04 0.02 
 10 0.00 0.03 0.03 0.01 

• Findings of analyses when one study was available for each comparison were generally 
very similar to findings when more studies (two, three, five, or ten) were available. 
Differences between results with one study available and those with ten studies available 
were often 0.01 or less and were never greater than 0.06 (for drugs two and three in the 
ladder pattern). 

Superior Efficacy Scenario 
Table 18 shows the mean and standard deviation of the probability that each drug was the 

best in the 1,000 model runs for each network pattern and each available number of studies for 
the superior efficacy scenario. In the superior efficacy scenario, the pre-determined mean 
response (standard deviation) for each of drugs one, two, and three was 0.20 (0.04); the pre-
determined mean response (standard deviation) of drug four was 0.80 (0.04). 
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Table 18. Simulation results: Probability of best treatment under superior efficacy scenario 

Network pattern 

Number of Studies 
for Each Drug-
Drug Comparison 

Drug 1 
Mean (SD) 

Drug 2 
Mean (SD) 

Drug 3 
Mean (SD) 

Drug 4 
Mean (SD) 

Star 1 0.03 (0.009) 0.13 (0.016) 0.13 (0.017) 0.71 (0.023) 
 2 8 x 10-4 (8 x 10-3) 0.01 (0.006) 0.010 (0.006) 0.98 (0.012) 
 3 2 x 10-5 (5 x 10-4) 2 x 10-4 (5x10-4) 0.0002 (0.0005) 0.9995 (0.001) 
 5 0.00 (0.000) 4 x 10-7 (7x10-6) 9 x 10-7 (9x10-6) 0.9999 (0.00001) 
 10 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 1.00 (0.00) 
Loop 1 0.05 (0.011) 0.08 (0.016) 0.16 (0.020) 0.71 (0.025) 
 2 0.001 (0.001) 0.004 (0.004) 0.01 (0.010) 0.98 (0.014) 
 3 2 x 10-5 (7 x 10-5) 0.0001 (0.0003) 0.0005 (0.001) 0.999 (0.001) 
 5 0.00 (0.000) 0.00 (0.000) 1.4 x 10-6 (1x10-5) 0.99999 (1x10-5) 
 10 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 1.00 (0.00) 
One Closed Loop 1 0.17 (0.076) 0.17 (0.079) 0.17 (0.077) 0.49 (0.003) 
 2 0.17 (0.118) 0.17 (0.119) 0.17 (0.120) 0.50 (0.005) 
 3 0.16 (0.129) 0.17 (0.131) 0.17 (0.129) 0.50 (0.005) 
 5 0.16 (0.132) 0.17 (0.133) 0.16 (0.131) 0.50 (0.005) 
 10 0.17 (0.143) 0.17 (0.137) 0.16 (0.136) 0.50 (0.007) 
Ladder 1 0.17 (0.023) 0.09 (0.018) 0.05 (0.11) 0.69 (0.030) 
 2 0.01 (0.009) 0.004 (0.004) 0.001 (0.001) 0.98 (0.013) 
 3 6 x 10-4 (0.001) 1 x 10-4 (0.0003) 2 x 10-5 (7 x 10-5) 0.999 (0.001) 
 5 1 x 10-6 (1 x 10-5) 1 x 10-7 (3 x10-6) 0.00 (0.000) 1.0 (0.00) 
 10 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 1.0 (0.00) 
Abbreviations: SD = standard deviation. 

In the superior data scenario, we would expect to find no differences between drugs one, two, 
and three, while drug four should clearly be found to be the best treatment. Table 19 shows the 
bias of the simulation results for this data scenario. The differences between observed and 
expected probabilities ranged from 0.00 to 0.51, again with the bias in the one closed loop 
pattern being the most pronounced. In the following bullets, we summarize our findings: 

 
• For each scenario (with varying numbers of studies and network patterns), the correct 

conclusion was generally supported, with one notable exception. In the one closed loop 
pattern, the model failed to definitively find drug four to be the most efficacious. 

• Generally, there were no significant differences between the estimates generated with 
two, three, five, or ten studies available for each comparison.  

• For the scenarios with one study available per comparison, although probabilities of best 
treatment differed numerically compared with those scenarios with more studies 
available, the findings were still indicative of superior efficacy of drug four. For drug 
four, differences between estimates (of the probability of being the best treatment) from 
analyses with one study available per comparison and those from analyses with two 
studies available per comparison ranged up to 0.29.  

 
The estimates from Tables 16 and 18 are also presented graphically, as histograms in Appendix 
F. 
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Table 19. Bias of simulation results: Difference between observed and expected probability of 
best treatment under superior efficacy scenario 
Expected Value  0.00 0.00 0.00 1.00 
Network pattern Number of Studies for 

Each Drug-Drug 
Comparison 

Drug 1 (placebo) 
Bias 

Drug 2 
Bias 

Drug 3 
Bias 

Drug 4 
Bias 

Star 1 0.03 0.13 0.13 0.29 
 2 0.00 0.01 0.01 0.02 
 3 0.00 0.00 0.00 0.00 
 5 0.00 0.00 0.00 0.00 
 10 0.00 0.00 0.00 0.00 
Loop 1 0.05 0.08 0.16 0.29 
 2 0.00 0.00 0.01 0.02 
 3 0.00 0.00 0.00 0.00 
 5 0.00 0.00 0.00 0.00 
 10 0.00 0.00 0.00 0.00 
One Closed Loop 1 0.17 0.17 0.17 0.51 
 2 0.17 0.17 0.17 0.50 
 3 0.16 0.17 0.17 0.50 
 5 0.16 0.17 0.16 0.50 
 10 0.17 0.17 0.16 0.50 
Ladder 1 0.17 0.09 0.05 0.31 
 2 0.01 0.00 0.00 0.02 
 3 0.00 0.00 0.00 0.00 
 5 0.00 0.00 0.00 0.00 
 10 0.00 0.00 0.00 0.00 
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Discussion 
Main Findings by Key Question 

In this report, we addressed three Key Questions (KQs) using real-world bodies of literature 
(for KQs 1 and 2) from recent comparative effectiveness reviews (CERs) of second-generation 
antidepressants (SGAs) and treatments for rheumatoid arthritis (RA) and using simulated data 
(for KQ 3). Below, we summarize the main findings by KQ. We then address the implications, 
limitations, research gaps, and conclusions.  

Key Question 1: Bayesian Mixed Treatment Comparison (MTC) 
Methods Compared With Several Frequentist Indirect Methods, 
and Performance for Different Types of Evidence Network Patterns 

We compared the results of the Bayesian MTC approach with results of several frequentist 
analytic methods—specifically, frequentist meta-regression, the Bucher method (adjusted 
indirect comparisons), and frequentist logistic regression. Of note, the frequentist methods used 
are not the analogues of the Bayesian methods implemented; i.e., we did not compare findings 
with a frequentist approach to MTC. Our choice of methods to compare, and our manner of 
conducting the analyses, was based on our judgment regarding the methods most commonly used 
by analysts conducting CERs. Our results for these comparisons, such as those related to 
precision, are not necessarily generalizable to other datasets (e.g., comparative effectiveness of 
other medication classes). 

We found one of the main differences between Bayesian MTC meta-analysis and the 
typically-applied approach for frequentist meta-regression and the Bucher method to be that the 
Bayesian MTC approach was able to calculate a result for all drug-drug comparisons of interest 
whereas the other methods were unable to produce a result for many comparisons of interest. 
This was not surprising; it is because Bayesian MTC meta-analysis is able to produce a result for 
all comparisons in a connected network, whereas we only calculated results for these other 
frequentist indirect methods when there was a common comparator. Our results showed that 
some frequentist methods were unable to compute results for substantial proportions of the drug-
drug comparisons of interest for some of the datasets. Despite that, our results may actually 
underestimate the proportion that one might determine for inability to calculate a result if 
running these analyses for a real-world CER because some guidance for certain methods would 
suggest not even attempting some of the analyses without a certain minimum number of studies. 
For example, we conducted meta-regression for all comparisons with a direct common 
comparator for which the statistical program was able to calculate a result; however, some 
research indicates that a certain minimal number of studies is needed for the meta-regression to 
produce a reliable result.29, 39 In other words, although technically we could produce results for 
meta-regression and the Bucher method for all of the comparisons for which we reported results, 
many of those, perhaps, should not be calculated if conducting a CER for the purpose of 
informing decisionmaking. 

We were able to calculate results for all methods (Bayesian MTC and the three frequentist 
methods) for the RA dataset, but not for the SGA dataset. This is not surprising given the 
geometry of the two networks. The RA network is largely a star pattern with all treatments 
connected via placebo and with only one head-to-head study. The data is thus set up to allow any 
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of the methods to determine results for each drug-drug comparison of interest (because of the 
common placebo comparator for each drug-drug comparison of interest). The SGA network, 
however, is a much more complex network. In this complex network, there were often too few 
studies with a common comparator to allow some frequentist methods to calculate results for 
many comparisons of interest.  

Regarding various network patterns, the frequentist meta-regression and the Bucher method 
(in the manner we applied them) were least likely to be able to compute results for comparisons 
of interest for ladder patterns and most likely to be able to compute results for star patterns. The 
geometry of ladder patterns, by definition, does not include common comparators for most 
comparisons of interest, as each treatment will be linked to two other treatments at most.  

In the cases of comparisons for which we were able to produce results, the majority of these 
results were in general agreement (i.e., they all found no statistically significant difference [for 
frequentist analyses] or no important difference [for Bayesian analyses] or they found a 
significant or important difference favoring the same drug).  However, for each of the full 
networks, and for each outcome of interest, there were instances when some of the frequentist 
methods produced results that did not agree with those of the Bayesian MTC analysis. In each 
case, we do not know for certain which of the results represents the truth; instead, we just know 
that the findings do not agree. One might presume that the Bayesian MTC analysis is more likely 
to approximate the truth because it is able to incorporate more information from the full dataset; 
however, this assumption has not been proven. Validating such a conclusion would require a 
large number of real-world examples or data simulations using numerous situations and 
assumptions. 

When considering precision, we speculated whether the Bayesian MTC method might 
generally produce more precise results because of its ability to incorporate all data (from both 
direct head-to-head trials and placebo-controlled trials). Our results did not find this to be the 
case. Across all the different network patterns (including the full networks), the logistic 
regression method produced the most precise result for a greater number of drug-drug 
comparisons than any of the other methods, followed by the Bayesian MTC method, and then the 
Bucher method. The meta-regression method fairly consistently produced the least precise result. 
The differences in precision between the various analyses were sometimes very small (on the 
order of hundredths), but were larger in some cases (e.g., on the order of 2 to 5 points different 
for an odds ratio), and very large in rare cases (e.g., a difference of 20 to 50). 

For some specific networks (five of the 16 networks or sub-component networks that we 
analyzed), the Bayesian MTC results were the most precise. From our findings, we are unable to 
determine if any particular network geometry makes the Bayesian MTC method more or less 
likely to produce the most precise results.  

Key Question 2: Meta-Regression with Bayesian MTC Meta-
Analysis 

When we began this project, we were unaware of any available guidance on conducting 
meta-regression (i.e., adding study level covariates) with Bayesian MTC meta-analysis. We 
hoped to explore how this could be done and to write WinBUGS code to conduct such analyses 
for two scenarios. Subsequently, the NICE Decision Support Unit released a Technical Support 
Document (TSD) detailing use of the use of different types of meta-regression with Bayesian 
MTC meta-analysis.5 Therefore, we followed their published guidance to conduct two meta-
regressions—one to explore subgroup effects with a binary covariate and the other to explore 
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interaction effects with a continuous covariate.  In each case, covariates were added to the 
existing logistic regression models used in KQ1.  

For the first meta-regression, we hypothesized that differences in efficacy of SGAs may exist 
for older adults (≥55 years) than for younger adults. We explored this hypothesis through a 
subgroup meta-regression. We found a trend toward lack of efficacy or lesser efficacy for all of 
the SGAs in older adults. However, this finding could be due to case mix, as studies of older 
adults may enroll subjects with less severe depression at baseline. 

For the second meta-regression, we hypothesized that treatment response may differ for 
patients with longer disease duration. We speculated that longer disease duration was related to 
more severe RA (and potentially more room for improvement). We explored this hypothesis 
through a continuous covariate meta-regression with mean disease duration as the continuous 
covariate. We focused on the response to etanercept to determine whether controlling for this 
covariate might alter findings because our MTC meta-analysis showed etanercept yielding a 
greater treatment response than most other biologic DMARDs. We found a trend toward greater 
efficacy for those with greater mean disease duration. In addition, we found that the superior 
relative efficacy of etanercept compared with other biologic DMARDs was reduced; 
furthermore, it was no longer significantly greater (based on the 95% credible intervals) than 
most of the other biologic DMARDs (with the exception of anakinra). However, reporting bias 
might underlie this finding because the only two trials (out of 31) that were not included in the 
analysis (because they did not report mean disease duration) compared etanercept and placebo. 

Key Question 3: Stability of the Bayesian MTC Analyses for 
Different Numbers of Studies and Network Pattern Assumptions 

Our simulations for KQ 3 revealed several important findings. First, the simulations validated 
the ability of the Bayesian MTC meta-analyses to produce results that would yield conclusions 
that reflect the truth for two scenarios—one with three medications of equivalent efficacy and a 
placebo arm and one with one medication of superior efficacy. The analyses were generally able 
to produce findings reflecting the underlying truth with only one study per comparison. 

Second, for the equivalent efficacy scenario, results changed very little based on the number 
of studies available for each comparison. For the superior efficacy scenario, however, we found 
larger differences between scenarios with one available study for each comparison and scenarios 
with two studies for each comparison, and similar results with little variation between two and 10 
studies per comparison. 

Third, networks with a one closed loop pattern did not perform as expected and often 
produced results that might yield inaccurate conclusions. These networks produced results for 
the equivalent efficacy scenario that might lead investigators to conclude one of the drugs (drug 
four) to have the greatest likelihood of efficacy, regardless of the number of studies available for 
each comparison (i.e., the accuracy of results did not improve even with 10 studies per 
comparison). In contrast, for the superior efficacy scenario, the one closed loop found the correct 
drug to have the greatest likelihood of efficacy, but with much lower probability compared with 
the other network patterns (approximately 50% vs. well over 90%), regardless of the number of 
studies per comparison. We are uncertain as to why this occurred. 
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Implications for Comparative Effectiveness Reviews 
Investigators have a number of analytic strategies from which to choose when conducting 

indirect comparisons (Bayesian MTC meta-analysis, frequentist meta-regression, the Bucher 
method, logistic regression, and others). Our findings indicate that the choice of method can have 
an important impact on the results. Although the various methods we compared using our two 
real-world datasets found results that generally agreed for the majority of drug-drug 
comparisons, we also found some instances where results differed for the same comparison. 
Even though we do not know with certainty which method is correct from these real-world 
comparisons, our findings identified several advantages of the Bayesian MTC approach (Table 
20). 

Table 20. Advantages and disadvantages of the Bayesian MTC approach 
Advantages Disadvantages 
Able to incorporate both direct evidence (from head-to-
head trials) and indirect evidence (e.g., placebo-controlled 
trials) into a single analysis 

Less accessible to many investigators because the 
analyses require software that is unfamiliar or less 
familiar to many of them (usually run using WinBUGS) 

Able to produce results for all comparisons of interest 
within a connected network (even for ladder network 
patterns or complex networks that limit the ability of other 
methods to get any results for some comparisons of 
interest) 

Requires greater statistical expertise than some other 
methods 

Able to directly calculate the probability that each drug is 
the best treatment 

Further research is needed to evaluate performance in 
specific scenariosa  

Able to adjust for correlations within multi-arm trials Might not produce accurate results for one closed loop 
networks 

Able to incorporate meta-regression to assess 
heterogeneity (e.g., for subgroups or to control for 
covariates), all within one model 

Possibly sensitive to the prior probabilities chosen 
(therefore recommended to generally use flat priors)40 

Appears to produce valid, accurate results for star and 
ladder network patterns 

 

aSuch as those with various numbers of studies available per comparison, various sample sizes of studies, and complex network 
patterns. 

Our simulations (KQ 3) supported the validity of the 
Bayesian MTC method for star and ladder network 
patterns. However, they raised some concerns about the 
validity of the Bayesian MTC method for one closed loop 
networks and possibly for loop patterns (albeit lesser 
concerns), as results did not converge on the pre-
determined truth. These findings demonstrate the need for 
additional exploration of more hypothetical scenarios, and 
analysts should be cognizant of the fact that Bayesian 
MTC methods may not produce accurate results for one 
closed loop networks such as the one used in our 
simulation (Figure 12). We are uncertain as to why the 
results did not converge on the truth; we wonder whether a 
“dangling” treatment (where 1 treatment is peripheral to 
the rest of the network, like drug 4 in the figure below) might reduce accuracy. 

Surprisingly, our simulations did not find much difference between scenarios when one study 
was available for each comparison and those when more studies (two, three, five, or ten) were 
available. We initially expected that results from analyses with one study available for each 

Figure 12. One closed loop 
network pattern used in simulation 

 

Drug 1Drug 

Drug 3Drug 

Drug 4Drug 

Drug 2Drug 
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comparison would be much less likely to approximate the underlying truth, but found that this 
was not the case. We previously wondered whether Bayesian MTC meta-analyses should not be 
attempted when there is only one study per comparison, hypothesizing that results would be 
much less accurate. However, this hypothesis was not supported by our simulations.  

Limitations 
Our findings from KQs 1 and 2 are not necessarily generalizable to treatment networks for 

other medications or diseases. Some of the findings may be a consequence of the underlying 
body of evidence (e.g., the number of studies for each comparison, the variation of findings in 
studies making the same comparison) and all of its inherent biases (e.g., selective outcome 
reporting, publication bias) rather than the network pattern, per se.  

In addition, our selection of various sub-component network patterns was based on 
maximizing the amount of data available for each sub-network. Due to limited time and 
resources, we could not evaluate every possible network pattern within each dataset. Other 
approaches to choosing network patterns could also have been informative (e.g., based on entry 
of drugs into the market, or chronologically by publication date). But, for the purposes of this 
report we felt that an approach based on maximizing the amount of data available was 
reasonable. Due to the nature of the sub-component network patterns (i.e., that they include only 
some of the available evidence from a body of literature), the findings for comparisons of sub-
components of the full networks are for exploration of the various types of analyses only and 
should not be used to inform clinical decisions. 

In KQ 1, we reported several measures to compare the findings of the Bayesian MTC method 
with various frequentist methods. The measures have some limitations. For example, regarding 
the number of comparisons for which each frequentist method was unable to produce a result, 
our results likely underestimate the numbers that some analysts might determine if running these 
analyses for a CER—because some guidance would suggest not even attempting some analyses 
without a certain minimum number of studies. For example, we conducted meta-regression for 
all comparisons that the statistical program was able to calculate a result, but it has been 
suggested that a certain minimal number of studies per covariate is needed for the meta-
regression to produce a reliable result.29, 39 In other words, the gap would actually be larger 
between the Bayesian MTC and meta-regression for the number of comparisons the method was 
unable to produce a result.  

Another measure we used was the percent agreement between results of the Bayesian MTC 
method and those of each frequentist method. We considered results to agree if both methods 
produced a non-statistically significant (for frequentist analyses) or an unimportant (for Bayesian 
analyses) result for the comparison or if both analyses found a statistically significant or 
important result favoring the same treatment. This is an oversimplification of how results would 
be interpreted in a CER. For example, we did not determine whether the ultimate conclusions 
about comparative effectiveness or the strength of evidence grades would agree.  

Our choice of analytic methods to compare was based on our judgment regarding the 
methods most commonly considered by analysts conducting CERs. In addition, we selected 
frequentist methods with some evidence to support their validity. However, we did not compare 
findings with the frequentist network meta-analysis method (i.e., Lumley method).20 Our 
experience indicates that it is much more rarely used than the other methods, and it is generally 
felt that the Bayesian MTC approach has several advantages over frequentist network meta-
analysis. 
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For Bayesian MTC analyses, we did not explore sensitivity analyses with informative priors. 
However, we do not believe that the current state of the literature would support using 
informative priors. In addition, we did not include inconsistency models to test model 
assumptions, or explore other methods in checking model convergence, such as the Gelman-
Rubin statistic. 

For KQ 2, both of our meta-regressions rely on averages taken over patients in the trials. As 
such, ecological bias is a potential limitation.  

Our simulations for KQ 3 were limited by the assumptions that we made to develop the 
scenarios. Our simulations did not examine many scenarios observed in real-world networks. For 
example, we set each scenario to include an equal number of studies for each drug-drug 
comparison and we set the sample size at 100 subjects for each study. In addition, we used a non-
random network structure, and we did not simulate incoherence. Findings might differ if one 
investigated network patterns with varying numbers of studies for different comparisons or with 
larger or smaller (or varying sample sizes), or if one incorporated additional complexity in the 
simulations. 

For our simulations in KQ 3, we chose to output the probability that each drug was the best 
(i.e., most efficacious) for ease of presentation and to use an outcome recognizable to analysts 
familiar with Bayesian MTC. Being able to produce probability rankings is an advantage of the 
Bayesian MTC approach. However, one could argue that using mean treatment response would 
have been more appropriate, because it would have allowed outputs that were directly 
comparable with the underlying truths that we specified. 

Finally, data were too sparse to include some analyses we had aimed to include at the outset. 
We wanted to run analyses for a continuous outcome from the RA dataset (mean change in 
Health Assessment Questionnaire score), as we had done for the SGA dataset, but too few 
studies reported sufficient data. 

Future Research 
We identified several issues that future research could address (Table 21). Many of these 

issues are related to further exploring the findings and limitations mentioned above. In addition 
to these, future research could focus on writing programs to conduct Bayesian MTC meta-
analyses for programs that are more familiar to a greater number of investigators. 

Conclusions 
Bayesian MTC methods allow investigators to calculate results for many more comparisons 

of interest for some network patterns, including ladders and complex networks, than frequentist 
meta-regression or the Bucher method, in the manner that they are typically applied. When 
Bayesian MTC methods and various frequentist methods are each able to calculate results (as 
typically applied), the findings are usually in general agreement. However, findings differ for a 
small proportion (less than 10%) of comparisons, which could lead to differences in conclusions. 
Regarding precision, logistic regression produced the most precise result for more drug-drug 
comparisons than any of the other methods, followed by the Bayesian MTC method.  

Our simulations support the validity of Bayesian MTC methods for star and ladder network 
patterns, but raise some concerns about one closed loop network patterns, and possibly about 
loop patterns (but less concern). Simulations generally found similar results for scenarios when 
one study was available for each comparison and those when more studies (two, three, five, or 
ten) were available. 
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Table 21. Possible targets for future research, by Key Question (KQ) 
KQ Potential Future Research 
1 Our findings were based on just two real-world datasets. To determine how well our findings hold up for 

various real-world situations, it will be important to conduct similar analyses for other existing networks. Many 
(perhaps 50) publications have used Bayesian MTC meta-analyses; those could be explored. 

1 For all of our Bayesian MTC meta-analyses, we ran a certain number of simulations (20,000) that were 
discarded and then used an additional 100,000 simulations in estimating the posterior probabilities. The 
impact of varying the number of simulations on the resulting findings is uncertain. Future research could 
address this impact to inform the most appropriate number of simulations.  

1 There were numerous options of various network patterns we could have selected. Future research could use 
an approach similar to cumulative meta-analysis and explore how the evidence evolved over time thus, 
choosing network patterns based on the chronology of study publication. 

1 Our analyses compared the results of various analytic approaches for both continuous and dichotomous 
outcomes, but we did not explore competing risk outcomes.41 Future research could include competing risk 
outcomes. 

2 We found a trend toward lack of efficacy or less efficacy for all of the SGAs in older adults. However, this 
finding could possibly be due to case mix, as studies of older adults may enroll subjects with less severe 
depression at baseline. Future analyses could explore this. 

2 We found a trend toward greater efficacy for those with greater mean disease duration. However, this finding 
could possibly be due to case mix, or other factors that we did not consider. Future analyses could explore 
this further. 

2 For our meta-regression models exploring (1) subgroup effects with a binary covariate and (2) interaction 
effects with a continuous covariate, we used models with the same interaction effect for all treatments. Other 
models have been described with independent, treatment-specific interactions and exchangeable, related 
treatment-specific interactions.5 Future research could explore whether these other models would significantly 
alter findings. 

3 For our simulations, we assumed a sample size of 100 subjects per study. Findings might differ if one 
investigated network patterns with larger or smaller (or varying sample sizes). 

3 For our simulations, we assumed that each network had an equal number of studies available for each 
comparison of interest. Findings might differ if one investigated network patterns with varying numbers of 
studies for different comparisons. 

3 For our simulations, we used four network patterns (star, loop, one closed loop, and ladder). Many additional 
variations of these patterns could be assessed to determine if findings differ. In addition, complex networks 
that resemble real-world datasets could be developed to attempt to validate Bayesian MTC methods for 
specific treatments.a 

3 Our results raised some concerns about the validity of the Bayesian MTC method for one closed loop 
networks, and possibly for loop patterns (but less concern). Future simulations could include additional 
variation of the underlying data and complexity of network patterns to determine whether these findings are 
consistent. 

3 Our findings for one closed loop networks raise questions about the impact of a single “dangling” treatment 
on the results. Future simulation studies could explore this further to determine whether such “dangling” 
treatments should or should not be routinely included in Bayesian MTC meta-analyses. 

3 For our simulations, we chose to output the probability that each drug was the best. Future research could 
explore whether using different outputs (e.g. mean treatment response) would either alter conclusions or 
uncover additional findings. 

aFor example, we could develop a simulated dataset that resemble the second-generation antidepressants or the biologic 
DMARDs real-world data—including setting the pre-determined truth to match our real-world findings and setting the number 
and sample sizes of included studies to match the real-world data. Then, we could run thousands of simulations to determine the 
validity of Bayesian MTC methods for a simulation that very closely matches a real-world dataset for a particular treatment and 
health condition. 

Abbreviations: SGAs = second-generation antidepressants 

Further research is needed to explore additional real-world datasets and simulated data to 
determine if these findings are generalizable and to better understand the accuracy and validity of 
Bayesian MTC methods for various scenarios. We hope this research will inform Evidence-
based Practice Centers and others conducting CERs about Bayesian MTC methods and help to 
inform additional research and guidance for the use of these methods. 
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