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Preface
 
The Agency for Healthcare Research and Quality (AHRQ), through its Evidence-

based Practice Centers (EPCs), sponsors the development of evidence reports and
technology assessments to assist public- and private-sector organizations in their efforts
to improve the quality of health care in the United States. The reports and assessments
provide organizations with comprehensive, science-based information on common, costly
medical conditions and new health care technologies and strategies. The EPCs
systematically review the relevant scientific literature on topics assigned to them by
AHRQ and conduct additional analyses when appropriate prior to developing their reports
and assessments. 

To improve the scientific rigor of these evidence reports, AHRQ supports empiric 
research by the EPCs to help understand or improve complex methodologic issues in
systematic reviews. These methods research projects are intended to contribute to the
research base in and be used to improve the science of systematic reviews. They are not
intended to be guidance to the EPC program, although may be considered by EPCs
along with other scientific research when determining EPC program methods guidance.

AHRQ expects that the EPC evidence reports and technology assessments will
inform individual health plans, providers, and purchasers as well as the health care
system as a whole by providing important information to help improve health care
quality. The reports undergo peer review prior to their release as a final report.

We welcome comments on this Methods Research Project. They may be sent by mail
to the Task Order Officer named below at: Agency for Healthcare Research and Quality,
540 Gaither Road, Rockville, MD 20850, or by e-mail to epc@ahrq.hhs.gov. 

Richard Kronick, Ph.D. Yen-Ping Chiang, Ph.D.
Director Acting Deputy Director, Center for 
Agency for Healthcare Research and Evidence and Practice Improvement
Quality Agency for Healthcare Research and

Quality 

Stephanie Chang, M.D., M.P.H. William Lawrence, M.D., M.S. 
Director, EPC Program Task Order Officer 
Center for Evidence and Practice Center for Evidence and Practice 
Improvement Improvement
Agency for Healthcare Research and Agency for Healthcare Research and
Quality Quality 
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Introduction 
Despite rigorous systematic reviews of efficacy and effectiveness of health care 

interventions, patients, providers and policymakers may remain in doubt about what they should 
do because of uncertainty, tradeoffs, and values. First, residual uncertainty may remain for 
meaningful patient-relevant outcomes from surrogate outcome measures or limited time 
followup or for subgroups from inadequate sample or inclusion/exclusion criteria. Second, 
tradeoffs occur, e.g., the U.S. Preventive Services Task Force (USPSTF) analysis of 
mammography for women in their 40s suggests a statistically significant reduction in breast 
cancer death but also potential harms, namely radiation exposure, overdiagnosis and 
overtreatment.1 Thus, optimal decisionmaking for individuals and populations may depend on 
their values (or preferences) for the outcomes. Lastly, just as the Grading of Recommendations 
Assessment, Development and Evaluation (GRADE) working group considers resource 
utilization in guideline development, the USPSTF has examined modeling to estimate resource 
consumption for its recommendations on cancer screening. This document was designed to 
extend current Evidence-based Practice Center (EPC) guidance on developing methodological 
guidance for decision and simulation modeling. 

We discuss principles and good practice recommendations for decision and simulation 
modeling. We believe this work to apply generally, but for concreteness, we place emphasis on 
models that could accompany systematic reviews produced by the EPC program. Such modeling 
exercises may be used to structure investigators’ thinking, and facilitate the communication of 
assumptions and results; synthesize data from disparate sources; inform decisionmaking; make 
predictions; or infer the impact of manipulations. 

The goals of the guidance are to encourage the use of good modeling and reporting practices, 
while not being too prescriptive about how to develop specific models. We deemphasize issues 
specific to economic modeling, because economic assessments are not a priority of the EPC 
program. 

Scope of the guidance 
A model is a construct that represents salient aspects of reality in a simplified way. Models 

are physical (e.g., a scaled-down airplane wing tested in a wind tunnel) or theoretical constructs 
(e.g., a mathematical description of the flow of air around an airplane wing). Models that could 
be prepared in conjunction with systematic literature reviews are exclusively theoretical in 
nature; for this reason we do not discuss physical models further. The starting point for most 
theoretical models is a conceptual model, a simplified natural language or pictorial 
representation of reality. The analytic frameworks that are used to guide the conduct of 
systematic reviews prepared by the EPC program are conceptual models that often function as 
schematics of an underlying decision problem.2-5 For example, the analytic frameworks used in 
reviews of diagnostic tests, which often resemble decision trees.6 Although conceptual modeling 
is a prerequisite for the development of mathematical (quantitative) models, our current guidance 
focuses exclusively on the latter. Readers interested in the use of conceptual models in 
systematic reviews can consult relevant chapters of the methods guide. 

Mathematical models are a large and diverse group of models that use variables, together 
with mathematical symbols that represent relationships between variables. The most common 
quantitative models encountered in systematic reviews are multivariable regression models (for 
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primary data analysis and meta-analysis). These models and other related techniques (e.g., neural 
networks) that aim to describe how a response (dependent variable) changes conditional on 
covariates (independent variables) are types of behavioral models. They describe how the 
response varies over values of the covariates, without necessarily referring to assumptions about 
the underlying mechanisms.a The literature addressing these models is vast (e.g., in statistics or 
computer science) and not covered in this guidance. Instead, we address structural models, which 
attempt to capture mechanistic relationships among their components. Structural models include 
declarative (e.g., Markov models), functional (e.g., compartmental models), and spatial models 
(e.g., geographic information systems data models). In applied work, elements of these structural 
model subtypes are commonly combined (multi-models). 

Goals of modeling in EPC reports 
This document does not provide detailed guidance to help investigators decide whether 

decision or simulation modeling should be undertaken. Issues related to the appropriateness of 
modeling in EPC reports are addressed by existing guidance and are not covered in this 
document.7;8 However, we briefly consider the potential goals of modeling when performed in 
conjunction with systematic reviews.9-18 

•	 To inform decisionmaking under uncertainty: The decisions that can be informed by 
modeling, even in the relatively narrow context of systematic reviews, are extremely 
diverse.9;10 They include decisions about patient-level care, the licensing of drugs or 
devices, healthcare policy decisions for populations, and decisions about the need to 
conduct additional research. 

•	 To structure investigator’s thinking, and facilitate the communication of data, 
assumptions and results: modeling can help investigators organize their knowledge 
about the topic area, formalize the research question, and communicate assumptions and 
results to peers (e.g., topic or methodological experts) and stakeholders (e.g., patients, 
decisionmakers).10 

•	 To synthesize data from disparate sources: evidence on a specific research question 
may be available from multiple sources and a single study may contribute to the 
estimation of more than one model parameter (or functional combinations of parameters). 
Modeling provides the mathematical tools for synthesizing all evidence and facilitating 
assessments of consistency between sources. For example, models can be used to 
combine information from clinical trials of the impact of a treatment on intermediate 
outcomes can be combined with information from long-term cohort studies that assess of 
the association of the intermediate outcome with a clinical outcome of interest. 

•	 To make predictions: predictions can refer to conditions similar to those already 
observed (sometimes referred to as “interpolations”; e.g., prediction of outcomes in a new 
study, similar to an existing one); or the future (forecasts), other populations, or other 
outcomes (sometimes referred to as “extrapolations”; e.g., predicting outcomes at longer-
term followup times based on results of short-term clinical trials). They can also pertain 
to the prioritization and planning of future research.19 These predictions may be useful in 
themselves, even without reference to the anticipated effects of interventions. 

a In some cases behavioral models (e.g., regression) are used to estimate the parameters of structural models. 
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•	 To support causal explanations and infer the impact of interventions: Related to the 
above is prediction of the effects of possible or even hypothetical manipulations.20-22 

When used this way, at least implicitly, models are claimed to encode structural causal 
mechanisms or emulate such mechanisms sufficiently well. 

Conveying assumptions, synthesizing evidence, and informing decisions are probably the 
primary goals of decision and simulation models that would be developed in conjunction with 
systematic reviews. 

Decision and Simulation Modeling Steps 
Because decision and simulation models are used to achieve multiple goals and address 

diverse research questions, the model development and evaluation process is bound to differ 
across specific applications. Nonetheless, the key steps to develop quantitative models that are 
within the scope of this guidance can be identified23-29: 

1.	 Definition of the research question: specify an answerable research question for the 
relevant stakeholder. 

2.	 Model conceptualization: determine which components of a disease or process need to 
be represented in the model to address the research question, and describe their 
relationships. 

3.	 Data collection and processing: identify data sources and process data to inform the 
model. 

4.	 Model implementation and mathematical manipulation: ‘solve’ the model using 
mathematical or numerical analysis methods, or simulation techniques. 

5.	 Model evaluation: detect model shortcomings by examining the model, and by 

comparing its output with data and other similar models.
 

6.	 Reporting and interpretation of results: present the model findings in a way that 
addresses the research question. 

Model development is an iterative and dynamic process.27;30 Multiple iterations are typically 
needed between the phases outlined above because, at each step, the need for changes at earlier 
phases may become apparent. For example, the availability of some data (possibly preliminary or 
incomplete) often provides an incentive for modeling and simulation; as the model is 
conceptualized additional data needs may arise that require further data collection. Similarly, 
deficiencies that are detected at the evaluation phase may require restructuring of the model, 
supplemental data collection, or other modifications of the modeling strategy. 

When is Decision and Simulation Modeling Worth the Effort? 
Developing decision and simulation models, especially models that can be used to inform 

complex decisions or understand complex disease processes, is a demanding task. Similarly, 
choosing between alternative modeling approaches can be difficult because the correct choice is 
not always obvious early in the modeling process. Also, the same research question may be 
amenable to multiple modeling approaches, each with distinct strengths and disadvantages. 

Although this document, and the cited references, can provide guidance on decision and 
simulation modeling methods, it is harder to define with certainty the circumstances under which 
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modeling is worth the investment of time and resources beyond those required for a systematic 
evidence review. In general, modeling is most useful when the research question is complex, 
data sources are multiple (and possibly conflicting), outcomes involve trade-offs, and choices are 
value-laden. The details of the research question, the availability of resources (e.g., analyst time 
and experience with the related methods), and the potential impact of modeling on future 
research, clinical practice and policy decisions, should also be considered when deciding about 
whether modeling efforts are likely to be beneficial. 

Guidance Development Process 
Development of this guidance document is the culmination of a multistep process of 

summarizing existing recommendations and soliciting stakeholder input. We first updated and 
expanded two systematic reviews of recommendations for the conduct and reporting of decision 
and simulation models, as described in detail in our companion paper.7;31 This was done with 
input from a multidisciplinary team of clinical, policymaking, and decision analysis experts. The 
results of our systematic review were discussed in-person with a panel of 28 stakeholders 
including patient representatives, providers of care, purchasers of care, payers, policy makers 
(including research funders and professional societies), and principal investigators. Stakeholders 
commented on available recommendations and identified gaps, limitations and areas for 
expansion. The stakeholders reviewed, added to, and prioritized the list of future research 
recommendations. We subsequently reviewed the websites of 126 international agencies and 
institutes conducting health technology assessments for their guidance or standards for how they 
conduct and report decision and simulation modeling, with an emphasis on how systematic 
reviews incorporated modeling. We [are] solicit[ing] input from senior researchers at EPCs and 
AHRQ with experience in the methods of conducting decision and simulation models.] 

Based on the gathered systematic review evidence on modeling recommendations and 
guidance, we developed a list of recommendations to serve as guidance for developing models in 
conjunction with systematic reviews. There are two major types of recommendations: (1) those 
that follow from principles and are not amenable to empirical testing, and (2) those that can be 
tested empirically or through simulation.32 We provide the rationale for each guidance 
recommendation, evidence that the recommendation should be preferred, or best judgment where 
adequate evidence is lacking. We have also categorized the recommendations as proposed by 
Sculpher (2000),33 Philips (2004),31;34 and Kuntz (2013),35;36 by whether they pertain to the 
model structure, model data, or consistency, and reporting. 

Terminology and definitions 
Table 1 defines terms used in the recommendations. 

Principles for best practice 
We begin by outlining general principles for the conduct and reporting of decision and 

simulation modeling studies found consistently in our systematic review (Table 2). We believe 
that these principles represent generally accepted rules for sound practice and have used them to 
guide our more specific recommendations, which are presented in the next section. 
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Modelers should consider (1) the goals of the modeling exercise; (2) the nature of the 
phenomena-to-be-modeled; (3) their own abilities in math and computation; and (4) objective 
constraints in terms of available time, data, or resources. Further, when developing, 
implementing and ‘solving’ models, one makes many methodological decisions. One should 
report them explicitly, justify them, and subject them to appropriate stability and sensitivity 
analyses.37-39 

Table 1. Definition of terms 
Term Explanation and elaboration Comments
Model A simplified	
  representation	
  of reality. We focus on models which

represent	
  reality by means of	
  
mathematical relationships.

Simulation A typical process of “solving” the model, especially
when analytical solutions are cumbersome or
intractable.

Often even analytically tractable
models are ‘solved’ with
simulation methods.

Model component An element of a model. Model components may
include variables (parameters), health states, agents,
processes, and	
  so	
  on.

The descriptor is on purpose
generic, to encompass all model
types.

Stochastic (aleatory)
uncertainty

Statistical uncertainty around the	
  estimates of
model variables that are	
  informed by empirical data.

See below.

Structural Uncertainty secondary to our incomplete In some cases,	
  the distinction
uncertainty understanding of the modeled	
  phenomenon.

Typically it pertains to functional forms of
relationships between model variables.
At a more fundamental	
  level, structural	
  uncertainty
will always exist, because the ‘true’ relationship
between	
  variables in	
  the real world	
  cannot be
uncovered	
  from data.

between	
  stochastic and	
  structural
uncertainty is a matter of
definition	
  Some structural
uncertainty would	
  become
stochastic uncertainty, if
appropriate	
  data	
  were	
  available	
  to
the modeler.

Propagation of
(stochastic)	
  
uncertainty

The process of obtaining the stochastic uncertainty
in model	
  outputs.	
  This derives from the stochastic	
  
uncertainty in	
  model inputs. Propagation	
  of
uncertainty can	
  be done:

• Analytically, exactly, or up to	
  an	
  
approximation (e.g., first order delta	
  
method)

• Numerically, e.g., with forward Monte-­‐Carlo	
  
simulations	
  or equivalently with Markov 
Chain	
  Monte	
  Carlo (MCMC) methods

It is customary to use the term
“probabilistic sensitivity	
  analysis”	
  
(PSA)	
  to refer	
  to numerical
propagation	
  of uncertainty by
means of forward Monte-­‐Carlo	
  
methods.

We do not use this term (PSA) in
this work to avoid confusion.

Sensitivity analysis The process of varying model variables over all
elements of a set of interesting	
  values and examine	
  
impact on results.	
  

Sensitivity analysis has a
‘continuous’	
  aspect.

Stability analysis Performing discrete	
  actions and evaluating their
impact on results.	
  Examples include

• Changing the structure of the model, e.g.,
use alternative statistical distributions or
different functional forms for relationships
between	
  variables

• Systematically excluding input data (e.g.,
leave one-­‐study-­‐out in	
  a meta-­‐analysis

Stability analysis involves discrete	
  
actions.
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Table 2. Principles for best practice in decision and simulation modeling 
The research question and model scope should be clearly defined

The model structure and assumptions should be explicated and justified

Model components and the relationships between them should be defined; the chosen relationships
between	
  model components should	
  be justified

The model should be informed by data; data	
  selection, analysis and interpretation should be aligned
with the research question and model scope

The model should incorporate stochastic uncertainty in inputs

Sensitivity and stability analyses to evaluate	
  the	
  impact of modeling decisions should be	
  undertaken
and reported

Models should be evaluated with respect to their ability to address the research question and within
their	
  stated scope

Modeling methods should be transparent; adequate details about the structure, data, and evaluation
methods should be reported	
  so	
  that the modeling process is replicable

The following subsections provide detailed guidance on the conduct of decision and 
simulation modeling in the context of systematic reviews, organized by ‘conceptualization and 
structure’, ‘data’, ‘consistency’, and ‘reporting’.7;31;33;34;36 Briefly, structure and data are what 
constitute the model proper; consistency refers to an assessment of the model against its stated 
goals; and reporting considers issues related to results reporting and presentation. Table 3 
provides operational definitions and examples for these areas of modeling. 

Table 3. Conceptual definitions for the structure, data, consistency, reporting framework 
Recommendation
Areas

Description of what is encompassed Examples

Conceptualization Conceptualization pertains to	
  the decision	
  to	
   Consider a discrete-­‐time Markov model.
and	
  structure use modeling, and	
  the delineation	
  of the

perspective and	
  scope. Structure pertains to	
  
variables, health states and other
components	
  of the model, and how they	
  
relate to each other	
  (i.e., the mathematical
scaffold of the model).

The disease states, variables informing
transition probabilities, the mathematical
relationships among the variables, the time
horizon	
  of the model and	
  so	
  on
characterize the model’s	
  structure.

Data Model inputs. May be obtained through
empirical investigation, systematic elicitation
of opinion, or best judgment/introspection.

Estimates for variables in the model, e.g.,
treatment	
  effects, transition probabilities,
costs, and utility	
  weights.

Consistency Whether the	
  model achieves its stated goals,
and the	
  processes of assessing	
  this.

Determination of whether the model has
logical	
  errors and whether the model	
  
output is consistent with	
  expert opinion,
observed	
  data, or other models.

Reporting Summarizing model output to	
  achieve
modeling (e.g., further one’s understanding
the topic, inform decisionmaking).

Incremental	
  cost effectiveness curves (to
present the results of cost-­‐effectiveness
analyses), risk diagrams (to represent
model-­‐based	
  risk assessments), and	
  
tornado	
  diagrams (to	
  summarize sensitivity
analyses).
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This guidance is provided to facilitate the use of decision and simulation modeling in 
conjunction with systematic reviews, particularly as they are prepared within the AHRQ EPC 
program. The recommendations provide general guidance about conceptualizing, specifying, 
implementing, and evaluating decision and simulation models. It is not possible to provide 
detailed recommendations about which structures to use in which cases, or instructions about the 
(technical) implementation. Interested readers should consult some of the numerous books, 
technical reports available on this topic (several of which are cited below), including the vast 
literature on decision and simulation modeling in areas other than healthcare. Other general 
guidance documents, which were used as sources for the current set of recommendations, should 
also be consulted.7;27;31;33;34;36;40-48 

Recommendations for decision and simulation modeling in 
systematic reviews 

Conceptualization and Structure 

The research question should be explicit. The decision to use modeling for
addressing the research question should be described and justified.

As described earlier, modeling will be useful for many research questions, especially when 
the research questions are not directly answerable by existing empirical data. Defining the 
question at hand and the objective of the analysis may require using literature-based information, 
expert knowledge, and input from Key Informants and Technical Experts.30 

The choice of perspective depends on the research question to be addressed
and the relevant decisionmaker. There is no a priori preferred modeling 
perspective.

The modeling perspective determines the methods for choosing and handling consequences, 
values, and costs in the model; thus is should depend on the research question and the 
decisionmaker.49 For example, when modeling a specific clinical interaction where the 
decisionmaker is an identifiable patient, the appropriate perspective is that of the individual 
patient. In contrast, when the goal is to inform the decisionmaking of a public payer or a federal 
agency, one should prefer a payer or societal perspective.50 

That said, the societal perspective (which considers impact on sectors beyond healthcare and 
includes time costs, opportunity costs, and community preferences) may allow for a more 
complete accounting of benefits and costs.51 For this reason, it has been recommended as the 
appropriate perspective in “base case” analyses.52 Obtaining appropriate data for modeling from 
a societal perspective is challenging and may be difficult to do well.51;53;54 Simplifications have 
been advocated, such as ignoring impact on outside non-healthcare sectors, to represent a ‘partial 
societal perspective’. 

The model’s scope should be described and justified. The model’s scope should
be consistent with the research question and the model’s perspective.

A model represents only some aspects of the phenomena under study. The research question 
defines how elaborate the modeling should be, and what aspects of reality it chooses to represent 
or omit (for parsimony). For example, many research questions in healthcare pertain to length of 
life, and mortality outcomes should be within the scope of models answering these questions. 
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More broadly, the scope of the model includes defining the condition or disease of interest, 
populations, risk factors, diagnostic or therapeutic interventions. For decision models one should 
also define the decision-relevant quantities, the decision (optimality) criteria, and the 
decisionmaking perspective. This is akin to defining a systematic reviews’ eligibility criteria 
(Population, Intervention, Comparator, Outcomes). 

The mathematical structure of the model and its implementation (computation)
should correspond to the research question, the model’s scope, and the
decisionmaking perspective. The rationale for the choice of a mathematical
structure should be provided, and structural assumptions should be explicated
and justified.

The preferred model structure depends on the research question and the model scope. The 
model structure should reflect the current understanding of the topic being modeled (e.g., disease 
prognosis and treatment effects, diagnostic test application, public health interventions) Disease 
states and transitions, or functional relationships should reflect understanding of the course of the 
disease. Detailed guidance on choosing among alternative mathematical structures (and 
computational implementations) is beyond the scope of this work. Readers are referred to the 
extensive technical literature available in healthcare and other fields.16;25;26;40;48;55-73 Of note, 
relatively simple models (e.g., decision trees, time-homogeneous Markov chain-based models) 
may be appropriate for use in the setting of most EPC evidence reports, particularly when the 
goal of modeling is to contextualize the evidence and extend review findings. 

The model should allow for comparisons among all interventions that are
relevant to the research question, model scope, and decisionmaking context.

In many cases the goal of modeling is to inform decisionmaking about the implementation of 
an intervention (e.g., a specific treatment or policy) or to assess the impact of modifying the 
levels of risk factor or an exposure (e.g., reducing cholesterol, or eradicating a disease agent 
from the environment). In such cases, the model should allow the inclusion of all relevant and 
feasible interventions (or exposures). In general, feasible options should not be excluded from 
the model; in the rare case that such exclusions are deemed necessary, they should be carefully 
justified. 

The time horizon should be long enough to allow all meaningful outcomes to be
evaluated fully.

When comparing alternative interventions, the time horizon should be long enough to allow 
the manifestation of differences in important outcomes. In some cases, a short time horizon may 
be adequate to compare interventions (e.g., when modeling the effectiveness of interventions for 
alleviating symptoms of the common cold); in many cases a life-time horizon is needed, 
particularly when modeling the effects of long-term treatment of chronic disease. Choice of long-
term time-horizons has implications for the data used to populate models (e.g., life-time horizons 
almost always require the extrapolation of treatment effects well beyond the followup duration of 
available clinical trials). 

When deciding how to handle time, space, interagent interactions, and health
states, one should consider the “nature” of the modeled phenomena, and the 
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convenience of, and calculation errors associated with, alternative modeling
choices. 

For example, when deciding how to deal with time, we have three options: (1) do not model 
it explicitly (integrate it out, as for example in decision trees); (2) model it as a continuous 
quantity (as in differential-equation-based dynamic systems); (3) model it as a discrete quantity 
(as in discrete-time Markov processes). Whether time is modeled as continuous or discrete 
should be guided by the specifics of the system being modeled and the process for making 
decisions (e.g., whether decisions are made in a continuous fashion or only at specific 
timepoints).74 In some cases where discrete modeling may be appropriate (e.g., modeling the 
occurrence of an outcome when measurement is possible only at specific intervals), continuous 
time models may offer convenient mathematical approximations. The converse may be the case 
in problems of a continuous nature that can be approximated by more tractable discrete-time 
models (e.g., models describing the development of epidemics). For discrete-time models, the 
cycle length should match the speed of changes in the system being modeled (e.g., the natural 
history of the disease, or the anticipated temporal evolution of a system). 

Analogous considerations pertain to modeling vs not modeling spatial location; inter-agent 
interactions (interactions between people); and modeling health states in various degrees of 
granularity (e.g., disease severity). 

The targeted level of complexity (or parsimony) should be determined by the
research question and the model’s scope.

Models should be complex enough to capture all pertinent aspects of the system being 
modeled but not more (‘rule of reason’).75 At the same time, models should be as simple as 
possible to facilitate timely development, error checking, and validation. Simple models are also 
generally more accessible to nontechnical stakeholders of the modeling process, and their results 
can be communicated more easily. The tradeoff between simplicity and complexity should be 
driven by considerations related to the research question and the context in which model results 
will be used. 

Data 

Methods for identifying, and analyzing data should be described. Data choices 
should be driven by the research question and the model’s scope and structure.
All data sources should be reported clearly and appropriate references should be
provided.

To enhance transparency and face validity, the source of each data element should be 
identified fully. Particularly for data that is not derived from systematic review and meta-
analysis, the rationale for why the given value was chosen. This applies both to the base case 
data and, for each data element, the range of values to be tested in sensitivity analyses. 

Estimates for influential variables should be obtained from systematic processes
(systematic review).

For decision and simulation models prepared jointly with a systematic review of studies of 
interventions, the summary estimates of treatment effects and related parameters should provide 
the data to inform the relevant model parameters. In particular, model parameters likely to have a 
large influence on model results should be identified through a systematic and replicable process 
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that aims to minimize bias.76-80 In most cases this will mean conducting systematic literature 
reviews to inform influential parameters. However, in many cases only part of the evidence 
retrieved by the systematic review will be appropriate for use in the model. The research 
question, decisional context, and goals of modeling should inform the choice of which studies to 
be included and the choice of synthesis methods.80-87 

Decision and simulation models typically require data on multiple parameters that are not 
collected in systematic reviews, such as prevalence, incidence, costs, and utilities. Appropriate 
sources of such data can include registries and other large observational studies, studies found 
through a nonsystematic approach, stakeholder panel opinions, and domain expert judgment. 
When retrieving and processing data, modelers make a large number of methodological 
decisions that can appreciably impact results. Thus, all such decisions should be reported and 
justified. Supplementary material describing detailed methods and data sources can be made 
available electronically. 

Obtaining estimates for model variables should follow epidemiological and
statistical principles.

All major assumptions and methodological choices should be reported and justified. Several 
excellent sources provide detailed guidance on data management and manipulation, exploratory 
data analysis, inference, estimation, and related computational techniques. When multiple studies 
contribute information on a parameter of interest (e.g., treatment effectiveness, prevalence of 
disease, accuracy of a diagnostic test) evidence should be synthesized across studies using 
appropriate meta-analytic methods.77;78 Detailed guidance on the conduct of quantitative 
synthesis for different types of data structures is beyond the scope of this document; interested 
readers should refer to the relevant EPC guidance, and the many sources on meta-analysis and 
evidence synthesis.82;88-113 

A “best evidence approach” should be used when selecting data sources for
model parameters.

Data from randomized trials cannot be used to inform all model parameters because (1) some 
parameters are best estimated from alternative study designs (e.g., the prevalence of a risk factor 
is best estimated from a sampling survey of a representative population; the test performance of a 
diagnostic test is best estimated from a cohort study); (2) available randomized trials may not be 
sufficiently applicable to the population to be modeled (e.g., trials may enroll highly selected 
populations, provide inadequate information for subgroups of interest, or have short followup 
duration); and (3) trials may not be available. In all these cases, evidence from other study 
designs will have to be included in the model. Researchers contemplating decision and 
simulation modeling in the context of systematic reviews will have to select and appraise 
appropriate study types for each model parameter.114 General guidance on “best evidence” 
strategies in systematic reviews is provided by a recent EPC Methods Research report.115 

The risk of bias of the available data should be assessed and accounted for when 
obtaining estimates for model parameters.

One should avoid using unadjusted, incompletely adjusted, or inappropriately adjusted results 
that are potentially biased simply because no other information is available.116;117 Instead, 
modelers should consider using methods that allow the adjustment of study results to account for 
all sources of bias and related uncertainty (i.e., multiple bias adjustment, possibly in the setting 
of sensitivity analysis).118;119 
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The factors that contribute to a study’s risk of bias depend on the specific modeling context 
and the study designs considered (e.g., sources of bias for surveys are distinct for those of 
randomized and non-randomized studies). These factors should be assessed for each study. For 
modeling, it is generally not adequate to assess the risk of bias of individual studies (or entire 
bodies of evidence). Because models typically are specified with respect to “true” parameters, it 
is desirable that model inputs be ‘corrected’ (adjusted) for biases. 

The direction and magnitude of the bias associated with each item, the uncertainty around 
their effect, and the relationship between bias items (e.g., whether bias effects are additive or 
nonadditive effects), should be incorporated in the analyses. In most cases, the effect of bias 
items (also known as “bias parameters”) cannot be identified from study data; thus, one should 
use methods that incorporate external information (empirical or judgmental). Extensive literature 
exists on the assessment of specific risk of bias items for individual studies, as well as methods 
for multiple bias modeling (i.e., bias adjustment and risk analysis).116;118;120-132 

Formal elicitation methods should be used to quantify expert opinion and the
associated uncertainty.

When no empirical evidence is available for parameters of interest, modelers will have to 
rely on expert opinion. Current EPC processes for Key Informant and Technical Expert 
engagement (during the development, refinement and conduct of systematic reviews), or similar 
processes, can be leveraged to incorporate formal opinion elicitation methods. Modelers should 
be aware that elicitation methods (e.g., the framing of questions) can influence the information 
that is obtained, particularly when the subjects of the elicitation process have labile values for the 
parameters of interest.133 Interested readers should consult the extensive literature on elicitation 
methods for different types of parameters.134-143 

Assumptions required for extrapolating from existing data should be reported
and justified. They should also be subjected to stability and sensitivity analyses.

A particular challenge arises when there is need to extrapolate beyond the observed data 
(e.g., to longer followup periods, or to other populations). Such extrapolations are based on 
assumptions about unobserved data. These assumptions should be reported and justified; they 
should also be subjected to sensitivity analyses (e.g., assessing a range of values for the 
parameters of the chosen survival distributions) and stability analyses (e.g., using alternative 
survival distributions when extrapolating survival times).144 

The assumptions required for transporting information across studies to a
common (new) setting should be described, justified and subjected to stability
and sensitivity analyses.

Decision and simulation models often use data obtained from diverse sources.15 In fact, 
modeling is often used with the explicit goal of synthesizing information from diverse domains 
(e.g., treatment effect estimates from trials of selected populations may be combined with natural 
history information from large observational cohorts). In such cases, the validity of modeling 
results depends on the validity of assumptions about the transportability of effects across 
domains. These assumptions should be identified explicitly and justified based on theoretical 
considerations and the understanding of the underlying mechanisms.145;146 Consideration should 
be given to formal (causal) methods for assessing the transportability of results across 
domains.147-152 
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Analyses should take into account heterogeneity (nonrandom variation) in all
parameters.

As a general principle, decision and simulation models should account for clinical 
heterogeneity, defined as nonrandom (systematic) variation in parameters of interest.153;154 

Attempts should be made to explain heterogeneity via appropriate statistical methods (e.g. 
subgroup or regression analyses) by incorporating information on determinants of variability. 
Because our current understanding of any topic is likely to be incomplete (e.g., important 
modifiers of effect may be unknown) and because data unavailability may limit our ability to 
explore heterogeneity (e.g., well-known modifiers may not be measured or reported in published 
studies), models should also allow for residual (unexplained) variation. 

Unexplained heterogeneity arises very often in meta-analyses of treatment effects using 
published (group level) level data. In such cases efforts to explain heterogeneity rely primarily 
on meta-regression methods and residual heterogeneity is accounted for using random effects 
models.87;155-158 Modelers should be aware that random effects models can “average over” and 
obscure, important data patterns and – contrary to popular belief – are not always more 
conservative that fixed effect models.159;160 Person-level data can allow decision and simulation 
models to meaningfully incorporate heterogeneity;161-168 however, their use is very uncommon in 
systematic reviews prepared by EPCs or meta-analyses published in peer-reviewed journals.169 

Models should propagate the uncertainty in inputs to outputs.
Data analysis should allow unbiased parameter estimation and appropriately account for 

parameter uncertainty from model inputs to model outputs.27;153;154;170-179 Sometimes this can be 
done analytically, either exactly, or approximating up to an order of error, such as with the delta 
method. In most cases it is computationally convenient to propagate uncertainty with numerical 
methods, typically with a forward-Monte-Carlo approach. It is customary to use the term 
“probabilistic sensitivity analysis” (PSA) to refer to numerical propagation of uncertainty by 
means of forward Monte-Carlo methods. We do not use this term in this work. 

Detailed guidance on the conduct of probabilistic analyses is available elsewhere.153;154;173;180-

186 Of note, probabilistic methods for incorporating and propagating uncertainty in models do not 
eliminate the need for stability and sensitivity analyses. For example, the use of a specific 
probability distribution to represent uncertainty around a model input does not eliminate the need 
to assess the impact of using alternative probability distributions (stability analysis) or the need 
to assess the impact of evaluating permutations of the distributional parameters (sensitivity 
analysis). 

Depending on the goal of the model, in rare cases it may not be desirable, or necessary, to 
perform analyses that propagate uncertainty. For example, for decisional problems where 
optimality is judged with minimax or maximin criteria, an analysis of bounds (extreme values) 
may suffice. Furthermore, if substantial uncertainty exists about the appropriate distributional 
form for estimates of model inputs, it may be futile to insist on probabilistic analyses, and may 
be appropriate to set more modest and attainable goals for the modeling exercise (e.g., use 
models to gain insights or to communicate implications). When such cases arise, analysts should 
provide the rationale for not using probabilistic analyses. 
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Consistency: Anticipating and correcting errors, model verification 

After implementing the model, attempts should be made to detect errors in its
logic and implementation.

Errors are unavoidable in any nontrivial model.187 Mistakes in the research question 
formulation, the model structure, incorporation of data, or software implementation can become 
apparent during any phase of model development, and may require revising the structure, or 
collecting additional data.188;189 Errors in implementation can be challenging to detect, and can 
also have important consequences. The risk of mistakes in question formulation and model 
structure can be reduced by adhering to some of the principles outlined earlier in this document 
(e.g., consulting with topic experts, using a conceptual model to guide the mathematical model 
implementation), together with transparent reporting of methods and results and the use of teams 
with sufficient expertise. Several checking techniques have been advocated for healthcare-related 
models (e.g., sensitivity analysis, extreme value analysis).187 In addition, software production 
techniques such as unit testing, code review (review of one programmer’s work by another team 
member), paired programming (i.e., one programmer’s coding is monitored by another in real 
time) can be considered. Duplicate implementation of the same model by an independent team 
can also be used to identify errors in coding. Because these strategies can substantially increase 
the costs of model development, their use should be balanced against the modeling goals, model 
complexity, and anticipated frequency and impact of errors. 

Consistency: Face validity, conceptual model validation 

Topic experts should be invited to review the model structure and outputs and to
judge whether they appear consistent with their expectations. Counterintuitive
model results should be described and explained.

An evaluation of the model and its results by a group of topic expects can alert modelers to 
the presence of deficiencies in model structure or data.188 Counterintuitive model results 
(“paradoxical findings”) may indicate errors. If an error has been ruled out, they should be 
described and explained, with reference to model structure, available data, and current 
understanding of the modeled phenomena. 

Consistency: Operational model validation, confronting models with 
data 

The consistency between model outputs and the data on which the model was
based should be evaluated. 

A combination of graphical and statistical methods should be used to compare model outputs 
with expected results.190-195 For parameters that are identifiable using available data, model 
validation is essentially an assessment of model fit. As such, comparisons of observed versus 
expected values (graphical or statistical) can be used to identify potential areas of improvement 
in model structure and assumptions. 
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Data should not be withheld from model development with the sole purpose of 
assessing model validity.

Generally, data should not be withheld during model development for the purpose of using 
the data for model validation. Using all available data during model development (for parameter 
estimation) is more efficient (because all information is incorporated), allows appropriate 
handling of correlated inputs, and permits the assessment of consistency across available sources 
of evidence.196 Resampling-style methods to compare the “fit” of the model to available data and 
the detection of outlying or influential observations can be used. Additional model validation 
methods are available under a Bayesian framework. Even when parameters are not identifiable 
by available data (e.g., parameters related to the rate of tumor growth in cancer microsimulation 
models) holding out data on identifiable parameters (or on functional combinations of 
identifiable and nonidentifiable parameters) is, in general, less efficient than joint modeling. 

If multiple models addressing the same research question are available their
results should be compared and any discrepancies explained.

Results from independently developed models addressing the same research question can be 
available by design (comparative modeling) or happenstance (e.g., multiple teams working on 
the same research question simultaneously).197 If such independent models are known about or 
identified through literature review, then outputs from different models should be compared as 
part of cross-model validation and any discrepancies need to be explained, with reference to the 
model structure and data inputs of each model. 

Consistency: Predictive model validation 

The appropriateness of using future observations to evaluate a model depends
on the research question and the intended use of the model.

A comparison of model output with future empirical results (unavailable at the time model 
development) is not an appropriate method of evaluation for some models.33 In general, models 
used to guide decisionmaking or to contextualize and synthesize evidence at a specific point in 
time should generally not be evaluated with respect to their ability to predict the results of future 
empirical research.18;33;198 The majority of models developed in conjunction with systematic 
evidence reviews are likely to belong to this category. However, for models intended as 
predictive or forecasting tools, predictive validation is an important component of model 
assessment. 

Models should be updated as understanding of disease improves, and as new
interventions and empirical data become available.

Models should be updated as our understanding of disease mechanisms (causal agents, 
natural history), potential interventions (e.g., new treatments or variations of existing treatments) 
and their associated benefits and costs evolve. The model structure and its software 
implementation need to be flexible enough to accommodate this updating process. 

Reporting and interpreting results 

The model structure, data used to populate it, and results should be transparent.
Information about the model structure and data used to populate it should meet the standards 

of reproducible research.43;46;47;188;199 This is particularly important for models that are supported 

18

http:models.33


 

  

 
 

 

          
 

  

 

 

 

          
  

  
 

  

 

           
          

  
 

 

 
 

by public funds (e.g., models that can be created in conjunction with EPC evidence reports) or 
models used to inform decisions that affect public policy. Transparent reporting will generally 
involve a detailed technical description of the model structure, an implementation of the model 
in computer code (or equivalent formats, such as spreadsheet files), a detailed tabular 
presentation of model inputs (e.g., probability distributions and their parameters) together with 
the data sources used to estimate these parameters.188 This level of transparency allows rigorous 
external peer review of the model, increases public trust in the modeling enterprise, and 
facilitates future research in the content area (e.g., extensions of the model to incorporate new 
data or to make it transferable to new settings) and in modeling methodology (e.g., cross-model 
type comparisons or technical extensions of the model).200;201 

Reported results and their interpretation should convey uncertainty in model
outputs.

Results should be reported in a way that conveys uncertainty in model output.171;172 This may 
include the use of graphical and statistical summaries that convey the degree of uncertainty in 
model results (e.g., confidence bands, credible intervals, scatterplots of multiple model runs), 
together with summaries of sensitivity and stability analyses. Given the large number of 
methodological choices made at every step of model development, and the inherent subjectivity 
of drawing conclusions from complex research activities, we believe that general purpose 
algorithmic approaches cannot be developed or recommended for summarizing model results. 
Instead, we recommend complete reporting of model structure and data, coupled with 
transparency in presenting the modelers’ rationale for their decisions. 

Results should be reported in a way that addresses user needs.
Because models have many different functions, reporting of results should be tailored to the 

goals of the modeling effort, while remaining faithful to the model structure and assumptions, 
and conveying all uncertainty in the results.33 Every effort should be made to report the model 
findings and analyses in a manner that will be most useful to the stakeholders who would be 
expected to use the report.202 It is impossible to provide specific guidance to address all possible 
model types and uses of modeling in this document. Interested readers are referred to the many 
available texts on healthcare modeling, the reporting of statistical and simulation analyses, and 
graphing quantitative information.110;113;203-208 

All individuals who provided input to, developed and analyzed the model and
interpreted its results should fully disclose any perceived conflicts of interest.

As with any research, all investigators should provide full disclosures of any interests that 
can reasonably be perceived as a conflict. Both financial and nonfinancial conflicts of interest 
should be provided.209-213 For models produced for the AHRQ EPC program and many other 
HTA groups, it is necessary that conflicts of interest be avoided. Modelers should adhere to 
established guidance for managing conflicts of interest for EPC products (e.g., Institute of 
Medicine recommendations; existing EPC guidance).214;215 
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