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Using Propensity Scores Subclassification to Estimate Effects
of Longitudinal Treatments

An Example Using a New Diabetes Medication

Jodi B. Segal, MD, MPH,* Michael Griswold, PhD,† Aristide Achy-Brou, MS,† Robert Herbert, BS,‡
Eric B. Bass, MD, MPH,*‡ Sydney M. Dy, MD,*‡ Anne E. Millman, MS,‡

Albert W. Wu, MD, MPH,*‡ and Constantine E. Frangakis, PhD†

Background: When using observational data to compare the effec-
tiveness of medications, it is essential to account parsimoniously for
patients’ longitudinal characteristics that lead to changes in treat-
ments over time.
Objectives: We developed a method of estimating effects of longi-
tudinal treatments that uses subclassification on a longitudinal pro-
pensity score to compare outcomes between a new drug (exenatide)
and established drugs (insulin and oral medications) assuming
knowledge of the variables influencing the treatment assignment.
Research Design/Subjects: We assembled a retrospective cohort of
patients with diabetes mellitus from among a population of em-
ployed persons and their dependents.
Methods: The data, from i3Innovus, includes claims for utilization
of medications and inpatient and outpatient services. We estimated
a model for the longitudinal propensity score process of receiving a
medication of interest. We used our methods to estimate the effect
of the new versus established drugs on total health care charges and
hospitalization.
Results: We had data from 131,714 patients with diabetes filling
prescriptions from June through December 2005. Within propensity
score quintiles, the explanatory covariates were well-balanced. We
estimated that the total health care charges per month that would
have occurred if all patients had been continually on exenatide
compared with if the same patients had been on insulin were
minimally higher, with a mean monthly difference of $397 �95%
confidence interval (CI), $218–$1054�. The odds of hospitalization
were also comparable (relative odds, 1.02; 95% CI, 0.33–1.98).

Conclusions: We used subclassification of a longitudinal propensity
score for reducing the multidimensionality of observational data,
including treatments changing over time. In our example, evaluating
a new diabetes drug, there were no demonstrable differences in
outcomes relative to existing therapies.
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The relationships between outcomes and treatment are
often unclear when studying the use of a medication

outside the setting of a trial. The prescribing physician’s
decision to use a new medication and the patient’s decision to
fill and to continue to fill the prescription affect the outcomes
of interest. Incomplete adherence complicates the ability to
study outcomes, as outcomes are generally related to adher-
ence as well as the factors that influence adherence. Given
that many factors influence the prescription of and adherence
to a new drug, all of which may impact outcomes, we aimed
to develop methodology to manage these covariates, with a
focus on the issues of multiple treatments and multidimen-
sional covariate histories. Our goal was to develop methods
to use with observational data, which will allow one to
predict a medication’s upper limit of effectiveness, in a
setting outside of a trial.

We explored the usefulness of these methods in our
study of a new drug for treatment of type 2 diabetes mellitus.
Exenatide, manufactured as Byetta by Amylin Pharmaceuti-
cals, (San Diego, CA), was approved by the Food and Drug
Administration in April 2005 for use as an adjunctive therapy
for treatment of type 2 diabetes.1 Exenatide is a peptide that
is a partial analog of glucagon-like peptide-1. It is injected
twice daily to augment the “incretin effect” in which the
pancreas responds with insulin secretion. It is indicated for
patients who have not achieved adequate glycemic control on
metformin, a sulfonylurea, or a combination of metformin
and a sulfonylurea. In prelicensing trials, up to 20% of
patients discontinued therapy due to nausea; however, the
efficacy of the drug was good regarding the glycemic tar-
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gets.2–8 We used observational data from the first 6 months
after approval of this new drug to develop models to predict
patient outcomes, while accounting for patient and physician
factors affecting both initiation and continued use of the
medication.

METHODS

Data Acquisition
This was a retrospective cohort study of employed,

commercially-insured patients and their dependents whose
healthcare utilization data is collected by i3Innovus, an In-
genix company (Eden Prairie, MN). No patient is uniquely
identifiable, and the project received exemption from review
from the Johns Hopkins Institutional Review Board. The data
set is called Ingenix LabRx and contains data from United-
Healthcare, which has beneficiaries in 50 states and the
District of Columbia. LabRx currently includes 24 million
insured lives. LabRx is updated monthly with information on
enrollee age, sex, enrollment dates, and claims for reimburse-
ment for billable health care services. The data includes
patient diagnoses as identified by International Classification
of Diseases, Ninth Revision (ICD-9) codes and medical
procedures using several classification systems. Additionally,
a separate, linkable file is available which includes pharmacy
claims for prescription drugs, including the drug name, pre-
scription fill date, and the number of days supply provided.
Results from laboratory evaluations were available on a
subset of the enrollees depending on the diagnostic testing
site used.

We requested data on all patients with an ICD-9 code of
250.xx (diabetes mellitus) or a prescription fill for a drug used
to treat diabetes between June 1, 2004 and December 31,
2005. We chose these dates for our baseline analyses so that
we would have all data from the first 6 months after approval
of exenatide and from a period before approval. Data ele-
ments included all available data from the medical claims file
and the prescription drug file, as well as select laboratory data
�specifically, hemoglobin A1c (HbA1c), fasting glucose, and
lipids� on these patients from June 1, 2003 through December
31, 2005.

Defining the Cohort
For inclusion in the cohort, we required that the patient:

• Have a claim with an ICD-9 code of 250.xx at least
twice9,10

• Have 12 months of continuous coverage before the index
date, which was defined as the date at which the patient first
filled exenatide or October 15, 2005 for those not filling
exenatide

• Be between 18 and 64 years, inclusive
• Not be on dialysis
• Not be in a managed Medicaid health plan
• Have at least 1 visit after June 1, 2005.

Creating Variables
From the claims data, we created variables to describe

our patient populations and to use for adjustment when
evaluating outcomes. These variables fit into the broad cate-

gories of demographics (age, sex, census division of resi-
dence), utilization variables (hospitalizations, outpatient vis-
its, provider specialty, total health care charges, copayments
for prescriptions, medication use), and clinical variables �di-
abetes-associated complications, achievement of Health Em-
ployer Data Information System (HEDIS) indicators of high-
quality care, side-effects, HbA1c, fasting glucose, and Johns
Hopkins University ACG Case-Mix System (version 8.0
beta) for description of case-mix�. For variables that were
time-varying, a unique variable was created for each month
from June 2004 through December 2005. For example, total
health care charges vary by month, so we created 19 variables
for each patient representing total health care charges for each
of the 19 months. Other variables, such as an ICD-9 code for
obesity, were considered to always be present after the month
in which they were first coded. The medication use indicator
variables were constructed so that if a patient filled a 30-day
prescription for an oral hypoglycemic medication, the month
in which he or she filled it would have an indicator variable
demonstrating this. If it was a 90-day supply, the patient
would have an indicator signifying that he or she had the
medication in the subsequent 2 months as well.

We created variables to indicate usage of exenatide and
of insulin as follows: (1) we identified 2-month intervals
(May–June 2005, July–August 2005, and September–October
2005); and (2) if the patient had sufficient drug-on-hand for
more than 50% of the days within the 2-month interval, he or
she was considered to have been on this drug for that interval.
An indicator variable was made to indicate whether during
the 2-month interval the patient was on (a) no injectable
medications (ie, was on oral medications or no medications),
(b) insulin, (c) exenatide, or (d) both. We combined patients
using oral medication with patients using no medication
for diabetes because these patients would most likely be
similar in terms of duration of disease and complications
from diabetes.

Outcome Variables
For the purpose of developing our models, we chose to

explore 2 outcomes that impact drug coverage decisions:
hospitalization rates and total health care charges.

Statistical Framework
We developed methodology to compare a new medi-

cation relative to established therapies, using existing, obser-
vational data. The 3 components of this approach are as
follows: a framework for setting the goal, assumptions for
estimability of the goal, and estimation methods for parsimo-
niously using the patient histories. These components are
briefly explained below.

Potential Outcomes and Goal
The times where a treatment can change are denoted by

t � 1, 2, . . . T. At each time, let zt � 1, 2, . . . K indicate the
levels of the treatment (eg, 1 for exenatide). If patient i would
have taken some longitudinal treatment of interest, z � (z1,
z2, . . . zT), we let Yi(z) � Yi(z1, z2, . . . zT) be the potential
outcome that will be observed at the evaluation time period.11–13

Note that the treatment regimen of interest, z, may be differ-
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ent from the treatment regimen actually observed for given
patients. For example, the treatment regimen of interest may
be the cumulative effect of 3 periods of treatment on a new
drug, (z � 1,1,1). In the potential outcomes framework, we
may ask the question, “What would we expect to see if all
patients (regardless of their actual treatments) had instead
received 3 periods of the new drug (z � 1,1,1)?”

For a particular longitudinal treatment, we are inter-
ested in estimating outcome quantities such as E{Yi(z)},
which is the expectation we would observe if all patients
received a particular longitudinal treatment. We wish to
compare outcomes among such possible longitudinal treat-
ments, for example, with z � 1, 1, 1 versus with z � 0, 0, 0.
Note that this comparison is not the same as the compar-
ison between the observed distribution of the 111 group
versus its observed “control” (everyone other than 111), or
the comparison of the observed distribution of 000 to its
observed “control,” or even the comparison between these
2 comparisons.

Assumption
Given that only 1 treatment assignment is actually

made for each patient at each time point, and that the
treatment assignment, or adherence to original treatment
assignment, can change over the observation period, this
contrast of interest is not directly observable. Therefore, we
need 2 assumptions to make it estimable. The first assumption
is that the patients are a random sample drawn from the
appropriate reference population. The second assumption,
already implicit in the notation Yi(z) above, is that the treat-
ment assignment for 1 patient does not affect the outcome of
a different patient (stable unit treatment values—SUTVA).13

The third assumption is that all variables related to treatment
assignment have been measured, in the sense that conditional
on the observed variables up to a particular time, the assign-
ment to the treatment at the next time is random (sequential
ignorability).13,14 Previous work has established the theoret-
ical ability to compare treatments under these assumptions in
large samples,9,11,12 and any of several methods could be used.

Estimation Methods
With longitudinal treatments there is the need to control

the growing dimension of history variables that need to be
modeled. Such parsimony can be achieved by use of propen-
sity scores.15 However, the use of propensity scores for
longitudinal treatments has been essentially limited to using
them as weights (eg, marginal structural models).16 As dis-
cussed in the Appendix, and as also suggested by the results
of simulation studies for single time points,17 methods that
use propensity scores as stratifying variables in outcome
models (possibly with the help of weights) are superior to
models that do not use propensity scores as stratifying vari-
ables in outcome models. The question we address here,
therefore, is how we can use propensity scores as stratifiers
with longitudinal treatments. Below, we give the essential
notation and steps of the methods.

For the ith patient, let X i,t
obs be the vector of variables

observed after the patient received a specific treatment at time

t � 1 but before taking a specific treatment at time t. Let the
actual treatment received be denoted by Zi,t, and let Zi be the
vector of these treatment assignments. Let the patient history,
Hi,t, be the cumulative information observed before the pa-
tient received treatment at time t, that is:

Hi,t � {(X i,1
obs, Zi,1), . . .(Xi,t�1

obs , Zi,t�1), X i,t
obs}.

Let Yi
obs denote the observed outcome at the end of the last

period, which, based on the potential outcomes notation, is
equal to Yi(Zi). Finally, let the conditional probability for the
ith subject at time point t to receive treatment k, Zi,t � z, given
the history Hi,t, be denoted by:

ei,t,z � Pr(Zi,t � z | Hi,t),

which is the propensity score.18 An evaluation of E{Y(z)}
may be done by averaging the distribution of observed
outcomes over a longitudinal subclassification of the patients
by their propensity scores. Below we outline the estimation
algorithm with application to the exenatide data.

Statistical Estimation
We had data for 3 time periods (July–August 2005,

September–October 2005, and November–December 2005).
Estimands of interest were specified as the expected out-
comes for subjects had they received consistent treatment
across the 3 time periods: (Exenatide-Exenatide-Exenatide �
EEE), (Insulin-Insulin-Insulin � III), (Both-Both-Both �
BBB), or (Other-Other-Other � OOO), where “both” refers
to receiving both exenatide and insulin, and “other” refers to
any oral diabetes medications. The 6-step algorithm for
estimating contrasts in outcomes, between these treatment
regimes, is as follows:

1. Estimate propensity models.

At each time point, construct a multinomial propensity
score model for all treatments as a function of prior histories.
For example, the multinomial generalized logit model,

logit{Pr(Zi,t � k | Hi,t � h) / Pr(Zi,t � 1 | Hi,t � h)} � f,t(k | h),

where f,t(k h) is a function linear in the model parameters.

2. Choose a treatment group, construct a propensity score for
each subject, and categorize subjects into strata.

From the models in step 1, extract the propensity score
contrasting the chosen treatment (here, exenatide) against all
others for each time point.

et (h) � Pr(Zi,t � 1 | Hi,t � h) � Pr(Zt � Exenatide | Hi,t � h);

1�et (h) � Pr(Zi,t � 0 | Hi,t � h)

� Pr(Zi,t � “Not Exenatide” | Hi,t � h),

so that “0” treatment means “Not Exenatide.” For each time
point, construct K strata (usually quintiles, K � 5) of the
propensity score, et(Hi,t) separately for patients with observed
Zt � 1, and Zt � 0 as performed in standard subclassification
propensity score techniques.12 Remove subjects in the non-
overlaping regions of the propensity score distributions to
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reduce extrapolation. Denote by Kit � 1. . .K, the stratum to
which et(Hi,t) belongs for that subject at that time, and let
Ki � (Ki1. . .KiT). Check that the distributions of the covari-
ates between the treatment groups, within quintiles of the
propensity score, are similar.12

3. Estimate the transitional probabilities of the longitudinal
propensity score strata.

I. p(k1) � Pr(Ki,1 � k1)

II. p(k2 | k1, z1) � Pr(Ki,2 � k2 | Ki,1 � k1 Zi,1 � z1)

III. p(k3 | k1, z1, k2, z2)

� Pr(Ki,3 � k3 | Ki,1 � k1 Zi,1 � z1 Ki,2 � k2, Zi,2 � z2)

For the application, we fit a series of transitional pro-
portional odds logistic regression models to estimate the
parameters of the propensity score strata transitions, an ex-
tension to logistic regression models for ordinal data with K
categories. Although interaction terms may be included, we
opted for 2 models with only the main effects:

logit(Pr(K2 � k� | K1, Z1) � �0k� � �1Z1 � �k ��2k � 1(K1 � k)�

logit(Pr(K3 � k� | K1, Z1, K2, Z2) � �0k� � �1Z1

� �2Z2 � �k ��3k � 1(K1 � k) � �4k � 1(K2 � k)�

where k� � 1, 2, . . . 4.

When we applied these models to our data, we
calculated the following distribution of propensity score
strata:

p(k1, k2, k3; z1, z2) � p(k3 | k1, z1, k2, z2) � p(k2 | k1, z1) � p(k1)

Note that this distribution is not the joint probability
of being in the strata k1, k2, k3 given treatments z1, z2
because in each of the 3 conditional probabilities on the
right hand side of this equation, the conditioning on
treatment arms (Z) differs.

4. Estimate expected outcomes in observed longitudinal
treatment groups of interest.

One possibility for E(Yobs K, Z) is to use the sample
mean responses within the observed strata of K and Z. This
choice can lead to unstable estimates due to small sample
sizes, especially for skewed data such as economic out-
comes. It is better to use a series of generalized linear
models to estimate the parameters of the outcome proba-
bility models, and calculate expected values, based on
these parameters. For example, the resource utilization
outcome (total health care charges) can be estimated with
a regression model:

E(Yobs | K, Z) � �0 � �t{�tZ,t��k ��t,k�1(K,t � k)�}

Although we show here the main effects model for dem-
onstration, interactions may also be included. When ap-
propriate, this allows one to borrow information across

TABLE 1. Median and Interquartile Range for Continuous Variables for Entire Cohort, N � 206,345

Variable Mean
Standard
Deviation Median

25th
Percentile

75th
Percentile

Number of diabetes-associated complications in
preceding year (range 0–8)

1.34 1.09 1 1 2

JHH-ACG score predicting high costs in
subsequent year

0.16 0.24 0.04 0.01 0.21

Mean hemoglobin A1c in 1 year preceding index
date (%) (n � 20,897)

7.3 1.8 6.9 6.1 8.0

Mean fasting glucose in 1 year preceding index
date (mg/dL) (n � 24,225)

145 63 127 104 165

Monthly total health care charges per person in 1
year preceding index date ($)

1299 3534 348 133 1044

Monthly prescription copays per person in 1 year
preceding index date ($)

59 51 47 22 82

Monthly total number of prescriptions per person
filled in 1 year preceding index date

3.7 2.9 3.2 1.6 5.3

Monthly copay for exenatide per person using
exenatide ($)

35 21 33 20 50

No. outpatient visits per person, total, in year
preceding index date

12.8 11.7 9 5 16

No. outpatient visits per person to internist in
year preceding index data

2.2 3.4 0 0 4

No. outpatient visits per person to endocrinologist
in year preceding index data

0.4 1.3 0 0 0

No. outpatient visits per person to family
physician in year preceding index date

2.6 3.6 1 0 4

HEDIS indicates Health Employer Data Information System; ICD-9-CM, International Classification of Disease, Ninth Revision—Clinical
Modification; JHH-ACG, Johns Hopkins Hospital ACG Predictive Model (version 8 beta).
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strata and across time points to better estimate the neces-
sary expectations for constructing the evaluation. For ex-
ample, the average total health care charges for a patient
continuously on exenatide who fell in the highest propen-
sity score strata at each time point would be:

E{Yobs | K � (5, 5, 5), Z � (1, 1, 1)} �

�0 � �1 � �15 � �2 � �25 � �3 � �35

5. Estimate the average, over all patients, of the potential
outcome for a longitudinal treatment group of interest.

The expected outcome for a particular longitudinal treat-
ment can be calculated as an average of the values E(Yobs k, z)
over the longitudinal propensity subclasses, where the average is
taken over the distribution p(k1, k2, k3; z1, z2):

E{Y(z1, z2, z3)} � �
k1, k2, k3

E{Yobs | K � (k1, k2, k3), Z �

(z1, z2, z3)} � p (k1, k2, k3; z1, z2)

The format of this formula is the same as the format for
the identification formula given by Robins14 for the full
multidimensional histories, but here the multidimensional
covariate histories are replaced by the subclasses of the
propensity scores. As an example, the expected potential
outcome under the currently chosen treatment regimen from
step 2 of Exenatide-Exenatide-Exenatide (Z � EEE) is:

E{Y(EEE)} � �
k1, k2, k3

E{Yobs | K � (k1, k2, k3), Z �

(1, 1, 1)} � p (k1, k2, k3; 1, 1)

6. Iterate through steps 2–5 to estimate causal effects.

Having obtained an estimate of E{Y(EEE)}, return to
step 2. Choose an alternate treatment group, say Insulin-
Insulin-Insulin, and perform the same series of steps to obtain
an estimate of E{Y(III)}. Construct estimates of treatment
effects such as absolute E{Y(EEE)} � E{Y(III)}or relative
E{Y(EEE)}/E{Y(III)}differences, and obtain uncertainty es-
timates (standard errors, confidence intervals, etc) using a
bootstrap algorithm. Repeat this process for all longitudinal
treatment regimes of interest.

RESULTS

Description of Cohort
We received data on 1,234,540 individuals meeting the

initial criteria specified in our data request (patients with
ICD-9 250.xx or on a medication for diabetes). After apply-
ing the exclusion criteria, 206,345 individuals remained for
study. In Table 1, we present the means and medians of the
relevant continuous variables for the analytic sample. The
patients ranged in age from 18 to 64 years with a mean age of
51.3 years; 54% of the population was male. The population
was generally healthy with a mean of only 1.3 diabetes-
associated complications, out of a possible 8. The predicted
probability of high cost care in the following year, from the
Johns Hopkins Hospital ACG Predictive Model (JHH-ACG)
scoring system, had a mean of 0.16; however, the median was
only 0.04 and the 75th percentile was only 0.21, indicating
that most of this population had few comorbid conditions
which would be expected to be costly in the next year.

Use of Exenatide
Among these 206,345 individuals, 3225 patients filled a

prescription for exenatide. The first prescription for exenatide
was filled in June 2005, slightly more than 1 month after the

TABLE 2. Drug Regimens by Treatment Interval

July–August 2005 September–October 2005

November–December 2005

TotalOther Insulin Exenatide Both

Other Other 115,470 1424 677 5 117,576

Insulin 800 1425 19 11 2255

Exenatide 102 6 356 5 469

Both 1 0 1 8 10

Insulin Other 1082 885 26 15 2008

Insulin 1268 7674 39 103 9084

Exenatide 9 4 29 9 51

Both 4 14 12 57 87

Exenatide Other 21 3 4 0 28

Insulin 1 3 0 0 4

Exenatide 19 1 79 2 101

Both 0 1 0 5 6

Both Other 2 1 0 0 3

Insulin 0 2 0 0 2

Exenatide 1 0 4 2 7

Both 2 3 4 14 23

Total 118,782 11,446 1250 236 131,714
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drug was approved. The median date for first filling a pre-
scription for this drug was mid-October 2005.

We investigated adherence to this medication. We had
data on 6753 prescription fills (for the 3225 patients); 3528
were refills of the medication. There were 1379 patients
(42%) who filled 1 prescription and never filled another,
although 687 (50%) of these were in December, the last
month from which we have data. The majority of refills (2416
or 68%) could be considered to be “on-time,” with the
median time to filling a next prescription of 33 days (mean
was 35 days). Among the 1112 prescriptions (31% of
refills) which were filled late (defined as 7 days past the
expected fill date), the median fill time was 47 days after
the previous fill (mean was 52 days after). Patients who
filled only 1 prescription were not included in that calcu-
lation. Twelve percent of the prescription refills were filled

more than 30 days late by patients who subsequently
refilled the medication.

Longitudinal Outcomes
For these analyses, we excluded patients who were not

on any medications for diabetes, leaving 131,714 patients. In
Table 2, we show the counts of the patients by their use of
medications in the 3 time periods of interest.

Using the algorithm described in the methods, we
estimated propensity scores for each treatment regimen by
entering into the model 4 time-invariant covariates and 18
time-varying covariates. For each of the 4 treatment regimes,
we created quintiles of the propensity scores at each of the
treatment periods and populated this matrix with a probability
for each patient to be in each of these 15 cells. Few patients
needed to be excluded due to nonoverlapping propensity

TABLE 3. Balance of Covariates between Patients Filling Exenatide and Patients Filling
Insulin after Subclassification into Propensity Score Quintiles (May–June 2005)

Before Subclassification After Subclassification

F-Statistic P F-Statistic P

Endocrine visit June 2005 456 0.00 34 0

Charge May 2005 159 0.00 6.34 0.01

Hospital length of stay May 2005 14 0.00 3.05 0.08

Endocrine visit May 2005 326 0.00 1.97 0.16

Charge June 2005 360 0.00 1.25 0.26

Sulfonylurea May 2005 1360 0.00 0.75 0.39

Probability of high costs 5642 0.00 0.63 0.43

No. drugs May 2005 14,052 0.00 0.46 0.45

Emergency room visit June 2005 36 0.00 0.47 0.49

No. drugs June 2005 14,178 0.00 0.47 0.49

Any outpatient visit June 2005 2694 0.00 0.44 0.51

Hospital admission May 2005 22 0.00 0.41 0.52

Sulfonylurea June 2005 1384 0.00 0.39 0.53

Prescription copay May 2005 7231 0.00 0.34 0.56

Any outpatient visit May 2005 2368 0.00 0.2 0.66

Other medication May 2005 119,743 0.00 0.17 0.68

Obesity June 2005 883 0.00 0.09 0.77

Family practice visit June 2005 826 0.00 0.06 0.81

Metformin May 2005 2664 0.00 0.04 0.83

Metformin June 2005 2815 0.00 0.04 0.84

Obesity May 2005 832 0.00 0.04 0.84

Internal medicine visit June 2005 886 0.00 0.02 0.89

Other medication June 2005 155,505 0.00 0.01 0.91

Thiazolidinedione May 2005 1903 0.00 0.01 0.92

Comorbidities May 2005 10,512 0.00 0.01 0.92

Family practice visit May 2005 724 0.00 0.01 0.93

Prescription copay June 2005 6687 0.00 0.01 0.93

Emergency room visit May 2005 34 0.00 0.01 0.93

Age 171,298 0.00 0.00 0.95

Internal medicine visit May 2005 758 0.00 0.00 0.95

Thiazolidinedione June 2005 1885 0.00 0.00 0.96

Gender 41,507 0.00 0.00 0.96

No. patients on exenatide 412 0.00 0.00 0.98

Comorbidities June 2005 10,973 0.00 0.00 0.99

Side effects May 2005 31 0.00 0.00 1.00
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scores across treatment groups. As hoped, the explanatory
covariates were well balanced between treatment groups after
adjusting for quintile, as shown in Table 3.

We estimated the transition probabilities, that is, the
probability of transitioning to a different propensity score
quintile between treatment periods. Patients whose covariate
profile at the second time period suggested that they were
unlikely to fill a second prescription for exenatide (eg, they
had side effects, had a high copay for this drug, or did not see
an endocrinologist) would have a high probability of transi-
tioning from exenatide to another group.

In Table 4, we show select components for calculating
expected outcomes, for the outcome of total health care
charges. As described in the algorithm, the expected outcome
(charges) for each strata was estimated by linear regression
using data from the entire cohort (as shown in the last
column). Using the first formula of step 5 where the weights
(ie, the probabilities of being in each strata) are defined as in
step 3, the expected total health care charges per month for
patients consistently taking exenatide across the 3 time peri-
ods was calculated as a weighted average of the expected
charges across all strata. This is $1488 with a 95% confidence

TABLE 4. Key Components for Constructing the Estimated Outcomes

PS Strata(t) Transitional Pr(PS Strata(t) H(t)) � E(Yobs Z, k)

k1 k2 k3 Pr(k1) (�1) Pr(k2 k1, z1) (�2) Pr(k3 k1, z1, k2, z2) (�3) � � �1�2�3 E{Y(Z � 111, k)}

1 1 1 0.2 2.63 E-06 3.52 E-07 1.85 E-13 $2005

1 1 2 0.2 2.63 E-06 8.00 E-07 4.22 E-13 $1242

1 1 3 0.2 2.63 E-06 2.04 E-06 1.08 E-12 $1194

1 1 4 0.2 2.63 E-06 7.56 E-06 3.99 E-12 $1190

1 1 5 0.2 2.63 E-06 9.99 E-01 5.27 E-07 $1330

1 2 1 0.2 5.49 E-06 1.90 E-07 2.09 E-13 $1765

1 2 2 0.2 5.49 E-06 4.32 E-07 4.75 E-13 $1001

1 2 3 0.2 5.49 E-06 1.10 E-06 1.21 E-12 $ 954

1 2 4 0.2 5.49 E-06 4.08 E-06 4.49 E-12 $ 950

1 2 5 0.2 5.49 E-06 9.99 E-01 1.09 E-06 $1090

: : : : : : : :

5 5 5 0.2 0.999 0.999 1.99 E-01 $1720

The first 3 columns indicate 1 of the 5 propensity score quintiles at each of the 3 time periods (k1, k2, k3). For example, the first row is patients
who have the lowest propensity, based on their covariates, to receive exenatide at each of the 3 time periods. The next 3 columns are the
transitional probabilities, ie, the probabilities for patients to transition from one quintile to another quintile at the next time period. As described
in step 3), the transitional probabilities in columns 5 and 6 were estimated by proportional odds logistic regression using data from the entire
cohort. Overall, the probability of belonging to the listed strata (row) is the product of the probability of being in the listed quintile at the first
time period times the transitional probabilities to be in the listed quintile at the next 2 time periods. This is � in column 7. As described in step
4), the expected outcome (in this case, charges) for each strata was estimated by linear regression using data from the entire cohort (in
column 8).

PS indicates propensity score; Transitional PR, probability of transitioning between quintiles conditional on previous quintiles and
previous treatments; �, product of transitional probabilities; E(Yobs Z, k) � expected outcomes from generalized linear models.

TABLE 5. Average Monthly Total Health Care Charges and Absolute Differences in Charges in a
Longitudinal Causal Framework

Medication in Each Time Period

Average Monthly
Total Health

Care Charges ($)
95% Confidence

Interval Difference
95% Confidence

Interval

Insulin-Insulin-Insulin 1091 1035–1158 Reference Reference

Other-Other-Other 978 963–993 �113 �184 to �49

Exenatide-Exenatide-Exenatide 1488 880–2127 397 �219 to 1054

TABLE 6. Average Monthly Hospitalization Frequency and Relative Risk of Hospitalization a
Longitudinal Causal Framework

Medication in Each Time Period

Average Monthly
Hospitalization

Frequency
95% Confidence

Interval Effect
95% Confidence

Interval

Insulin-Insulin-Insulin 0.012 0.011–0.014 1 Reference

Other-Other-Other 0.010 0.010–0.011 0.82 0.75–0.91

Exenatide-Exenatide-Exenatide 0.013 0.004–0.024 1.02 0.33–1.98
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interval from �$219 to $1054. A negative value can be
interpreted as the patient receiving credit for past charges.

In Table 5, we show the expected total health care
charges per month for the comparison groups of interest;
patients consistently filling exenatide, patients consistently
filling insulin, and patients consistently filling only oral
medications for diabetes. The patients taking oral medica-
tions had significantly lower total health care charges than
patients consistently taking insulin and patients consistently
taking exenatide. The total charges for exenatide users and
insulin users were similar. These results suggest that if
patients consistently took oral medications for 6 months,
exenatide for 6 months, or insulin for 6 months, the monthly
total health care charges of those in the oral medication group
would be lowest by a small amount. Similarly, in Table 6, we
show the average rates of hospitalization and the relative risk
of hospitalization projected for patients consistently on the
listed medications, which were again similar. The odds for a
hospitalization in any month would be a nonsignificant 2%
higher for patients taking exenatide throughout the observa-
tion period relative to patients taking insulin throughout the
period.

DISCUSSION
Our goal was to explore new methodology for the

analysis of observational data to estimate treatment effective-
ness when a patient’s treatment changes over time. This
methodology advances the management of: (1) treatments
which change over time due to varying adherence or treat-
ment choices; (2) covariates, associated with medication
assignment, that change over time; and (3) limited follow-up
time or a small treatment group. We demonstrated the use of
this methodology with our analyses of the effect of a new
drug for treating diabetes, exenatide.

This methodology has particular value for the study of
new drugs. Because the drug was only recently approved, we
had limited follow-up time. However, with this methodology,
we were able to “borrow power” from the other observed
individuals to make predictions as to the expected outcomes
from its use. Additionally, when studying a new drug, it is
even less clear what are the predictors of use of the drug and
predictors of adherence, compared with more established
medications. With this methodology, use of the drug and
adherence are modeled using all available potentially influ-
ential covariates, without the need to know definitively before
hand which the strongest predictors are. In this instance, the
outcomes of total monthly health care charges and hospital-
izations differed little among users of exenatide and users of
other medications for diabetes control.

When evaluating the efficacy of a medication, a ran-
domized controlled trial is considered the gold standard, as
covariates are balanced between groups and differences can
be attributed to the medication assignment. When clinical
trials are not practical, or precluded by the need for a very
large sample to detect an outcome, observational data must be
used to make estimates about a drug’s efficacy or effective-
ness, with the inherent difficulties posed by lack of random
assignment to therapy.

In this article, we advance the methods for analyzing
observational data by extending use of subclassification using
the propensity scores in longitudinal treatments. With longitu-
dinal treatments, there is the need to control the growing dimen-
sion of history variables that need to be modeled in the outcome
distribution.10 The longer the observation period, the greater an
issue this becomes. We demonstrate that when the history
contained in the covariates is reduced to the history of the
propensity scores, these propensity scores can be used as strat-
ifying variables to estimate longitudinal treatment effects.

Our analyses have limitations. We did not include
laboratory data in the propensity models because laboratory
data were only available on a small subset of the population,
due to the source of this data. We applied our methods to this
subset having laboratory data, and included Hba1c and glu-
cose in the propensity score models. Very few people with
laboratory data were using exenatide, so the analyses were
limited to patients using insulin or other medications. The
outcome estimates were qualitatively similar to the results pre-
sented in the article. In future work we will further investigate
whether the inclusion of laboratory data improves the fit of the
propensity score models and/or changes the estimated outcomes.
If we demonstrate definitively that the laboratory data is not
essential when studying drugs for treatment of diabetes, this will
have broad implications as most observational datasets do not
have laboratory data. Another limitation is the constraint that we
predict outcomes for patients whom we assume to be invariantly
on the assigned medication across the treatment period. These
models do not allow us to predict what outcomes would be for
patients who start and stop therapy. However, estimates from
our methodology should approximate the upper limit of effec-
tiveness of a medication, in which there is complete adherence to
the assigned treatment.

We anticipate that these methods will increase the
usefulness of large observational databases in future studies
of the comparative effectiveness of new drugs and other
treatments. Our methodology advances the use of a causal
inference framework by generating potential outcomes using
propensity scores generated from the covariates at multiple
time points, with the predicted outcomes generated by regres-
sion models using the whole cohort of diabetic subjects. In
this way, we have avoided an important bias associated with
observational data, confounding of outcomes by observed
covariates associated with treatment assignment. These meth-
ods have also let us make stable inferences about outcomes
for a small treatment group; the actual number of patients on
exenatide across all 3 time periods was small, but with our
ability to “borrow power” from other subjects, we made
predictions about their outcomes.
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APPENDIX
We summarize here the theoretical justification for

the use of the propensity score as a stratifier, depending on

whether the model for outcomes is assumed to be correctly
specified or not.

If the outcome model given the propensity score is
correctly specified, then, it is a result of the Complete Class
Theorem of decision theory (Fergusson 1967) that an estima-
tor that depends on the propensity score, in ways other than
through the model’s sufficient statistics (eg, as does an
estimator that uses the score as a weight), is inadmissible. It
is always inferior to some estimator that depends on the score
only through the sufficient statistics.

If the outcome model, given the propensity score, is
allowed to be incorrectly specified, then theoretical argu-
ments19 and simulation evidence17 suggest that in order for an
estimator to be admissible, it should still use, at least in part,
a possibly incorrect model of the outcome on treatment and
the covariates. In this case it is important to note that the
estimator’s precision (not bias) generally deteriorates with
increasing distance of the incorrect outcome model from the
truth. Because this distance is expected to be large when
trying to model too many covariates through an incorrect
model, it becomes important that, even in this case, one
makes use (eg, in the outcome component of the doubly
robust estimator) of an outcome model given the propensity
score as the single covariate per time point, as opposed to an
outcome model given all covariates, when the latter can be
mis-specified.

Of course, estimators relevant to the second case, that
combine the propensity scores as weights together with out-
come models that use covariates (eg, doubly robust), are
different than usual ones. But the point is that if one wishes
to use such combinations, it is important to use, for the
second component of such combination, the outcome model
given the propensity scores—not given the original covari-
ates—as subclasses, particularly when the latter can be mis-
specified. To do this, it is essential to know how to construct
such a model, when, as in this article, interest lies in the
effects of longitudinal treatments.
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