
93

Abstract

This chapter addresses strategies for selecting variables for adjustment in nonexperimental comparative 
effectiveness research (CER), and uses causal graphs to illustrate the causal network relating treatment 
to outcome. While selection approaches should be based on an understanding of the causal network 
representing the common cause pathways between treatment and outcome, the true causal network is 
rarely known. Therefore, more practical variable selection approaches are described, which are based 
on background knowledge when the causal structure is only partially known. These approaches include 
adjustment for all observed pretreatment variables thought to have some connection to the outcome, 
all known risk factors for the outcome, and all direct causes of the treatment or the outcome. Empirical 
approaches, such as forward and backward selection and automatic high-dimensional proxy adjustment, 
are also discussed. As there is a continuum between knowing and not knowing the causal, structural 
relations of variables, a practical approach to variable selection is recommended, which involves a 
combination of background knowledge and empirical selection using the high-dimensional approach. The 
empirical approach could be used to select from a set of a priori variables on the basis of the researcher’s 
knowledge, and to ultimately select those to be included in the analysis. This more limited use of 
empirically derived variables may reduce confounding while simultaneously reducing the risk of including 
variables that could increase bias. 
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Introduction

Nonexperimental studies that compare the 
effectiveness of treatments are often strongly 
affected by confounding. Confounding occurs 
when patients with a higher risk of experiencing the 
outcome are more likely to receive one treatment 
over another. For example, consider two drugs used 
to treat hypertension—calcium channel blockers 
(CCB) and diuretics. Since many clinicians perceive 
CCBs as particularly useful in treating high-risk 
patients with hypertension, patients with a higher 
risk for experiencing cardiovascular events are more 
likely to be channeled into the CCB group, thus 
confounding the relation between antihypertensive 
treatment and the clinical outcomes of 

cardiovascular events.1 The difference in treatment 
groups is a result of the differing baseline risk for 
the outcome and the treatment effects (if any). Any 
attempt to compare the causal effects of CCBs and 
diuretics on cardiovascular events would require 
taking patients’ underlying risk for cardiovascular 
events into account through some form of covariate 
adjustment. The use of statistical methods to make 
the two treatment groups similar with respect to 
measured confounders is sometimes called statistical 
adjustment, control, or conditioning. 

The purpose of this chapter is to address the complex 
issue of selecting variables for adjustment in order 
to compare the causative effects of treatments. 
The reader should note that the recommended 
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variable selection strategies discussed are for 
nonexperimental causal models and not prediction 
or classification models, for which approaches 
may differ. Recommendations for variable 
selection in this chapter focus primarily on fixed 
treatment comparisons when employing the so-
called “incident user design,” which is detailed in 
chapter 2.

This chapter contains three sections. In the 
first section, we explain causal graphs and the 
structural relations of variables. In the second 
section, we discuss proxy, mismeasured, and 
unmeasured variables. The third section presents 
variable selection approaches based on full 
and partial knowledge of the data generating 
process as represented in causal graphs. We also 
discuss approaches to selecting covariates from 
a high-dimensional set of variables on the basis 
of statistical association, and suggest how these 
approaches may be used to complement variable 
selection based on background knowledge. 
Ideally, when information is available, causal 
graph theory would be used to complement any 
variable selection technique. We provide a separate 
supplement (supplement 2) on directed acyclic 
graphs for the more advanced reader. 

Causal Models and the 
Structural Relationship of 
Variables

This section introduces notation to illustrate basic 
concepts. Causal graphs are used to represent 
relationships among variables and to illustrate 
situations that generate bias and confounding.

Treatment Effects

The goal of comparative effectiveness research 
(CER) is to determine if a treatment is more 
effective or safer than another. Treatments should 
be “well defined,” as described in chapter 4, 
and should represent manipulable units; e.g., 
drug treatments, guidelines, and devices. Causal 
graphs are often used to illustrate relationships 
among variables that lead to confounding and 
other types of bias. The simple causal graph in 
Figure 7.1 indicates a randomized trial in which 
no unmeasured or measured variables influence 

treatment assignment where A
0
 is the assigned 

treatment at baseline (time zero) and Y
1
 is the 

outcome after followup (time 1). The arrow 
connecting treatment assignment (A

0
 ) to the 

outcome (Y
1
) indicates that treatment has a causal 

effect on the outcome. Causal graphs are used 
to represent the investigator’s beliefs about the 
mechanisms that generated the data. Knowledge 
of the causal structure that generates the data 
allows the investigator to better interpret statistical 
associations observed in the data. 

Figure 7.1. Causal graph illustrating a randomized trial 
where assigned treatment (A

0
) has a causal effect on the 

outcome (Y
1
).

Risk Factors

We now let C
0
 be one or more baseline covariates 

measured at time zero. Covariates that are 
predictive of the outcome but have no influence on 
treatment status are often referred to as pure risk 
factors, depicted in Figure 7.2. Conditioning on 
such risk factors is unnecessary to remove bias but 
can result in efficiency gains in estimation2-3 and 
does not induce bias in regression or propensity 
score models.4 Researchers need to be careful not 
to include variables affected by the outcome, as 
adjustment for such variables can increase bias.2 
We recommend including risk factors in statistical 
models to increase the efficiency/precision of 
an estimated treatment effect without increasing 
bias.4

Figure 7.2. Causal graph illustrating a baseline risk 
factor (C

0
) for the outcome (Y

1
).

Confounding

The central threat to the validity of 
nonexperimental CER is confounding. Due 
to the ways in which providers and patients 
choose treatments, the treatment groups may not 
have similar underlying risk for the outcome. 
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Confounding is often illustrated as a common 
cause pathway between the treatment and outcome. 
Measured variables that influence treatment 
assignment, are predictive of the outcome, and 
remove confounding when adjusted for are often 
called confounders. Unmeasured variables on 
a common cause pathway between treatment 
and outcome are referred to as unmeasured 
confounders. For example, in Figure 7.3, 
unmeasured variables U1 and U2 are causes of 
treatment assignment and outcome. In general, 
sources of confounding in observational 
comparative effectiveness studies include 
provider actions, patient actions, and social and 
environmental factors. Unmeasured variable U1 
has a measured confounder C

0
 that is a proxy 

for U1, such that conditioning on C
0
 removes 

confounding by U1, while the unmeasured variable 
U2 does not. 

Figure 7.3. A causal graph illustrating confounding 
from the unmeasured variable U2. Conditioning on the 
measured variable (C

0
), as indicated by the box around 

the variable, removes confounding from U1. Measured 
confounders are often proxies for unmeasurable 
constructs. For example, family history of heart disease 
is a measured variable indicating someone’s risk for 
cardiovascular disease (U1).

Provider Actions

Confounding by indication: Confounding by 
indication, also referred to as “channeling bias,” 
is common and often difficult to control in 
comparative effectiveness studies.5-9 Prescribers 
choose treatments for patients who they believe are 
most likely to benefit or least likely to be harmed. 
In a now historic example, Huse et al. surveyed 
United States physicians about their use of various 
classes of antihypertensive medications and found 
that physicians were more likely to prescribe 
CCBs to high-risk patients than for uncomplicated 
hypertension.1 Any attempt to compare the safety 
or effectiveness between CCBs and other classes 
of antihypertensive medication would need to 

adequately account for the selective use of CCBs 
for higher risk patients. If underlying disease 
severity and prognosis are not precisely measured 
and correctly modeled, CCBs would appear more 
harmful or less effective simply because higher risk 
patients are more likely to receive CCBs. Variables 
measuring risk for the outcome being investigated 
need to be adequately measured and modeled to 
address confounding by indication.

Selective treatment and treatment discontinuation 
of preventive therapy in frail and very sick patients: 
Patients who are perceived by a physician to 
be close to death or who face serious medical 
problems may be less likely to receive preventative 
therapies. Similarly, preventative treatment may 
be discontinued when health deteriorates. This 
may explain the substantially decreased mortality 
observed among elderly users of statins and other 
preventive medications compared with apparently 
similar nonusers.10-11 Even though concerns with 
discontinuation of therapy may be addressed using 
time-varying measures of treatment, this type of 
selective discontinuation presents problems when 
analyzing fixed treatments. For example, when 
conducting database studies, data are extracted and 
analyzed on the basis of the specified study period. 
The more frail elderly who discontinued treatment 
prior to the study window would appear to have 
never received treatment.

Patients with certain chronic diseases or patients 
who take many medications may also have a 
lower probability of being prescribed a potentially 
beneficial medication due to concerns regarding 
drug-drug interactions or metabolic problems.8 
For example, patients with end-stage renal 
disease are less likely to receive medications 
for secondary prevention after myocardial 
infarction.12 Additionally, in a study assessing 
the potential for bias in observational studies 
evaluating use of lipid-lowering agents and 
mortality risk, the authors found evidence of bias 
due to an association between noncardiovascular 
comorbidities and the likelihood of treatment.11 
Due to these findings, researchers have 
recommended statin use and other chronic 
therapies as markers for health status in their 
causal models.11, 13
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Patient Actions

Healthy user/adherer bias: Patients who initiate a 
preventive therapy may be more likely than other 
patients to engage in other healthy, prevention-
oriented behaviors. Patients who start a preventive 
medication may have a disposition that makes 
them more likely to seek out preventive health care 
services, exercise regularly, moderate their alcohol 
consumption, and avoid unsafe and unhealthy 
activities.14 Incomplete adjustment for such 
behaviors representative of specific personality 
traits can make preventative medications 
spuriously or more strongly associated with 
reduced risk of a wide range of adverse health 
outcomes. 

Similar to patients who initiate preventive 
medications, patients who adhere to treatment 
may also engage in more healthful behaviors.14-15 
Strong evidence of this “healthy adherer” effect 
comes from a meta-analysis of randomized 
controlled trials where good adherence to placebo 
was found to be associated with mortality benefits 
and other positive health outcomes.16 The benefit 
can be explained by the healthy behaviors of the 
patients who use the medication as prescribed 
rather than placebo effects. Treatment adherence 
is an intermediate variable between treatment 
assignment and health outcomes. Any attempt to 
evaluate the effectiveness of treatment rather than 
the effect of assigned treatment would require 
time-varying treatment analysis where subjects 
are censored when treatment is discontinued. 
Proper adjustment for predictors of treatment 
discontinuation is required to resolve the selection 
bias that occurs when conditioning on patients who 
adhered to assigned treatment.17-18

Physician assessment that patients are functionally 
impaired (defined as having difficulty performing 
activities of daily living) may also influence 
their treatment assignment and health outcomes. 
Functionally impaired patients may be less able 
to visit a physician or pharmacy; therefore, such 
patients may be less likely to collect prescriptions 
and receive preventive health care services.8 This 
phenomenon could exaggerate the benefit of 
prescription medications, vaccines, and screening 
tests.8 

Environmental and Social Factors

Access to health care: Within large populations 
analyzed in multi-use health care databases, 
patients may vary substantially in their ability to 
access health care. Patients living in rural areas, 
for example, may have to drive long distances 
to receive specialized care.8 Other patients face 
different obstacles to accessing health care, such 
as cultural factors (e.g., trust in the medical 
system), economic factors (e.g., ability to pay), 
and institutional factors (e.g., prior authorization 
programs, restrictive formularies), all of which 
may have some direct or indirect relation to 
treatment and study outcomes.8

Intermediate Variables

An intermediate variable is generally thought 
of as a post-treatment variable influenced by 
treatment that may or may not lie on the causal 
pathway between the treatment and the outcome. 
Figures 7.4 and 7.5 illustrate variables affected 
by treatment. In Figure 7.4, C

0
 is a baseline 

confounder and must be adjusted for, but a 
subsequent measurement of the variable at a 
later time (C

1
) is on the causal pathway between 

treatment and outcome. For example, consider the 
study previously described comparing classes of 
antihypertensive medications (A

0
 ) on the risk for 

cardiovascular events (Y
1
). The baseline measure 

of blood pressure is represented by C
0
. Blood 

pressure measured after treatment is initiated, 
with adequate time for the treatment to reach 
therapeutic effectiveness and before the outcome 
assessment, is considered an intermediate variable 
and is represented by C

1
 in Figure 7.4. When the 

goal of CER is to estimate the total causal effect 
of the treatment on the outcome, adjustment 
for variables on the causal pathway between 
treatment and outcome, such as blood pressure 
after treatment is initiated (C

1
), is unnecessary 

and is likely to induce bias2 toward a relative risk 
of 1.0, though the direction can sometimes be in 
the opposite direction. The magnitude of bias is 
greatest if the primary mechanism of action is 
through the intermediate pathway. Thus, it would 
be incorrect to adjust for blood pressure measured 
after the treatment was initiated (C

1
), because 

most of the medication’s effects on cardiovascular 
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disease are mediated through improvements in 
blood pressure. This kind of overadjustment would 
mask the antihypertensive effect of the treatment 
A

0
. 

Pharmacoepidemiological studies that do not 
restrict analyses to incident episodes of treatments 
are subject to this type of overadjustment. 
Measurement of clinical covariates such as blood 
pressure at the time of registry enrollment rather 
than at the time of treatment initiation in an 
established medication user is such an example. 
For such patients, a true baseline measurement is 
unobtainable. The clinical variables for established 
users at the time of enrollment have already 
been influenced by investigational treatments 
and are considered intermediate variables 
rather than baseline confounders. The ability to 
adequately adjust for baseline confounders and not 
intermediate variables is one reason the new user 
design described in chapter 2 is so highly valued.

Figure 7.4. A causal graph representing an intermediate 
causal pathway. Blood pressure after treatment initiation 
(C

1
) is on the causal pathway between antihypertensive 

treatment (A
0
) and cardiovascular events (Y

1
). Baseline 

blood pressure (C
0
) is a measured confounder of disease 

severity (U1) and the box around the variable represents 
adjustment.

Investigators are sometimes interested in separating 
total causal effects into direct and indirect effects. 
In mediation analysis, the investigator intentionally 
measures and adjusts intermediate variables to 
estimate direct and indirect effects. Mediation 
analysis requires a stronger set of identifiability 
assumptions and is discussed in several 
articles.19-33

When conditioning on an intermediate, biases can 
also arise for “direct effects” if the intermediate 
is a common effect of the exposure and an 
unmeasured variable that influences the outcome 
as in Figure 7.5. The “birth-weight paradox” is 

one of the better known clinical examples of this 
phenomenon.27, 32, 34 Maternal smoking seems 
to have a protective effect on infant mortality in 
infants with the lowest birth weight. The seemingly 
protective effect of maternal smoking is a 
predictable association produced from conditioning 
on an intermediate without adequate control 
for confounding between the low birth weight 
(intermediate) and infant mortality (outcome). 
This is illustrated in Figure 7.5. The problem of 
conditioning on a common effect of two variables 
will be further discussed below in the section on 
colliders.

Figure 7.5. A causal diagram illustrating the problem 
of adjustment for the intermediate variable, low birth 
weight (M

1
), when evaluating the causal effect of 

maternal smoking (A
0
) on infant mortality (Y

1
) after 

adjustment for measured baseline confounders (C
0
) 

between exposure and outcome. Confounding at the 
intermediate and outcome, birth defects (U1), remains 
unmeasured.

Time-Varying Confounding

The intention-to-treat analogue of a randomized 
trial, where subjects are assigned to the 
treatment they are first exposed to regardless of 
discontinuation or switching treatments, may not 
be the optimal design for all nonexperimental 
CER. Researchers interested in comparing adverse 
effects of medications that are thought to occur 
only in proximity to using the medication may, for 
example, want to censor subjects who discontinue 
treatment. This type of design is described as a 
“per protocol” analysis. An “as treated” analysis 
allows subjects to switch treatment groups on 
the basis of their use of treatment. Both the “as 
treated” and “per protocol” analysis can be used to 
evaluate time-varying treatment. 
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In a nonexperimental setting, time-varying 
treatments are expected to have time-varying 
confounders. For example, if we are interested in 
comparing cardiovascular events between subjects 
who are completely adherent to CCBs versus 
completely adherent to diuretics, then we may 
consider a time-varying treatment design where 
subjects are censored when they discontinue the 
treatment to which they were first assigned (as 
illustrated in Figure 7.6). If joint predictors of 
compliance and the outcome are present, then 
some sort of adjustment for the time-varying 
predictors must be made. Standard adjustment 
methods may not produce unbiased effects when 
the predictors of adherence and the outcome are 
affected by prior adherence, and a newer class 
of causal effect estimators, such as inverse-
probability-of-treatment weights or g-estimation, 
may be warranted.18, 35

Figure 7.6. A simplified causal graph illustrating 
adherence to initial antihypertensive therapy as a time-
varying treatment (A

0
, A

1
), joint predictors of treatment 

adherence and the outcome (C
0
, C

1
). The unmeasured 

variable (U1) indicates this is a nonexperimental study.

Collider Variables

Colliders are the result of two independent causes 
having a common effect. When we include a 
common effect of two independent causes in 
our statistical model, the previously independent 
causes become associated, thus opening a 
backdoor path between the treatment and outcome. 
This phenomenon can be explained intuitively if 
we think of two causes (sprinklers being on or it is 
raining) of a lawn being wet. If we know the lawn 
is wet, and we know the value of one of the other 
variables (it is not raining), then we can predict the 
value of the other variable (the sprinkler must be 
on). Therefore, conditioning on a common effect 
induces an association between two previously 
independent causes, that is, sprinklers being on 
and rain. 

Bias resulting from conditioning on a collider 
when attempting to remove confounding by 
covariate adjustment is referred to as M-collider 
bias.36 Pure pretreatment M-type structures that 
statistically behave like confounders may be rare; 
nevertheless, any time we condition on a variable 
that is not a direct cause of either the treatment or 
outcome but merely associated with the two, we 
have the potential to introduce M-bias.37 

A hypothetical example of how two independent 
variables can become conditionally associated and 
increase bias follows. Consider a highly simplified 
hypothetical study to compare rates of acute liver 
failure between new users of CCB and diuretics 
using administrative data from a distributed 
network of managed care organizations. As 
illustrated in Figure 7.7, if some of the managed 
care organizations had a formulary policy (U1) 
that caused a lower proportion of patients to be 
initiated on a CCB (A

0
 ), and that same policy 

reduced the chance of receiving medical treatment 
for erectile dysfunction (F

0
), and patients with a 

long history of unmeasured alcohol abuse (U2) 
are more likely to receive treatment for erectile 
dysfunction (F

0
), then adjustment for erectile 

dysfunction treatment may introduce bias by 
generating an association and opening a backdoor 
path that did not previously exist between 
formulary policy (U1) and alcohol abuse (U2). 

Figure 7.7. Hypothetical causal diagram illustrating 
M-type collider stratification bias. Formulary policy 
(U1) influences treatment with CCB (A

0
) and treatment 

for erectile dysfunction (F
0
). Unmeasured alcohol use 

(U2) influences impotence and erectile dysfunction 
treatment (F

0
) and acute liver disease (Y

1
). In this 

example there is no effect of antihypertensive treatment 
on liver disease, but antihypertensive treatment and 
liver disease would be associated when adjusting for 
medical treatment of erectile dysfunction. The box 
around F

0
, represents adjustment and the conditional 

relationship is represented by the dotted arrow 
connecting U1 and U2.
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Although conditioning on a common effect of 
two variables can induce an association between 
two otherwise independent variables, we currently 
lack many compelling examples of pure M-bias 
for pretreatment covariates. Such structures do, 
however, arise more commonly in the analysis of 
social network data.38 Compelling examples of 
collider stratification bias (i.e., selection bias) do 
exist when conditioning on variables affected by 
treatment (as illustrated in Figure 7.5). Collider 
stratification bias can give rise to other biases in 
case-control studies and studies with time-varying 
treatments and confounding.39

Instrumental Variables

An instrumental variable is a pretreatment 
variable that is a cause of treatment but has 
no causal association with the outcome other 
than through its effect on treatment such as Z

0
 

in Figure 7.8. When treatment has an effect on 
the outcome, an instrumental variable will be 
associated with treatment and the outcome, and 
can thus statistically appear to be a confounder. 
An instrumental variable will also be associated 
with the outcome even when conditioning on 
the treatment variable whenever there is an 
unmeasured common cause of the treatment on the 
outcome. It has been established that inclusion in 
statistical models of variables strongly associated 
with treatment (A

0
 ) but not independently 

associated with the outcome (Y
1
) will increase 

the standard error and decrease the precision of 
the treatment effect.2, 4, 40-41 It is less well known, 
however, that the inclusion of such instrumental 
variables into statistical models intended to 
remove confounding can increase the bias of an 
estimated treatment effect. The bias produced 
by the inclusion of such variables has been 
termed “Z-bias,” as Z is often used to denote an 
instrumental variable.8

Z-bias arises when the variable set is insufficient 
to remove all confounding, and for this reason 
Z-bias has been described as bias-amplification.42-43 
Figure 7.8 illustrates a data-generating process 
where unmeasured confounding exists along with 
an instrumental variable. In this situation, the 
variation in treatment (A

0
 ) can be partitioned into 

three components: the variation explained by the 
instrument (Z

0
), the variation explained by U1, 

and the unexplained variation. The magnitude of 

unmeasured confounding is determined by the 
proportion of variation explained by U1, along 
with the association between U1 and Y

1
. When Z

0
 

is statistically adjusted, one source of variation in 
A

0
  is removed making the variation explained by 

U1 a larger proportion of the remaining variation. 
This is what amplifies the residual confounding 
bias.44 

Figure 7.8. Bias is amplified (Z-bias) when an 
instrumental variable (Z

0
) is added to a model with 

unmeasured confounders (U1).

Any plausible instrumental variable can potentially 
introduce Z-bias in the presence of uncontrolled 
confounding. Indication for treatment was found to 
be a strong instrument45 and provider and ecologic 
causes of variation in treatment choice have been 
proposed as potential instrumental variables that 
may amplify bias in nonexperimental CER.8

A simulation study evaluating the impact of 
adjusting instruments of varying strength when 
in the presence of uncontrolled confounding 
demonstrated that the impact of adjusting 
instrumental variables was small in certain 
situations, a result which led the authors to 
suggest that over-adjustment is less of a concern 
than under-adjustment. Analytic formulae, 
on the other hand, indicate that this bias may 
be quite large, especially when dealing with 
multiple instruments.42 We have discussed bias 
amplification due to adjusting for instrumental 
variables. The use of instrumental variables, 
however, can be employed as an alternative 
strategy to deal with unmeasured confounding.46 
This strategy is discussed in detail in chapter 10. 

We have presented multiple types of variable 
structures, with a focus on variables that either 
remove or increase bias when adjusted. The 
dilemma is that many of these variable types 
statistically behave like confounders, which are the 
only structural type needing adjustment to estimate 
the average causal effect of treatment.47-48 For this 
reason, researchers should be hesitant to rely on 
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statistical associations alone to select variables 
for adjustment. The variable structure must be 
considered when attempting to remove bias 
through statistical adjustment. 

Proxy, Mismeasured, and 
Unmeasured Confounders

It is not uncommon for a researcher to be aware of 
an important confounding variable and to lack data 
on that variable. A measured proxy can sometimes 
stand in for an unmeasured confounder. For 
example, use of oxygen canisters could be a proxy 
for failing health and functional impairment; 
use of preventive services, such as flu shot, is 
sometime thought to serve as a proxy for healthy 
behavior and treatment adherence. Likewise, 
important confounders sometimes are measured 
with error. For example, self-reported body mass 
index will often be subject to underreporting. 

Researchers routinely adjust analyses using proxy 
confounders and mismeasured confounders. 
Adjusting for a proxy or mismeasured confounder 
will reduce bias relative to the unadjusted 
estimate, provided the effect of the confounder on 
the treatment and the outcome are “monotonic.”48 
In other words, any increase in the confounder 
should on average always affect treatment in 
the same direction, and should always affect 
the outcome in the same direction for both the 
treated and untreated groups. If an increase in 
the confounder increased the outcome for the 
treated group and decreased the outcome for the 
untreated group, then adjustment for the proxy or 
mismeasured confounder can potentially increase 
bias. Unfortunately, there are cases, even when 
the measurement error of the confounder is 
nondifferential (i.e., does not depend on treatment 
or outcome), where adjustment for proxy or 
mismeasured confounders can increase, rather than 
decrease, bias.49

Another common problem in trying to 
estimate causal effects is that of unmeasured 
confounding. Sensitivity analysis techniques 
have been developed to address misclassified and 
unmeasured confounding. The reader is referred 
to chapter 11 for further discussion of sensitivity 
analyses.

Selection of Variables To 
Control Confounding 

We present two general approaches to selecting 
variables in order to control confounding in 
nonexperimental CER. The first approach 
selects variables on the basis of background 
knowledge about the relationship of the variable 
to treatment and outcome. The second approach 
relies primarily on statistical associations to 
select variables for control of confounding, 
using what can be described as high-dimensional 
automatic variable selection techniques. The use 
of background knowledge and causal graph theory 
is strongly recommended when there is sufficient 
knowledge of the causal structure of the variables. 
Sufficient knowledge, however, is likely rare when 
conducting studies across a wide geography and 
many providers and institutions. For this reason, 
we also present practical approaches to variable 
selection that empirically select variables on the 
basis of statistical associations.

Variable Selection Based on 
Background Knowledge

Causal Graph Theory

Assuming that a well-defined fixed treatment 
employing an intention-to-treat paradigm and no 
set of covariates predicts treatment assignment 
with 100 percent accuracy, control of confounding 
is all that is needed to estimate causal effects 
with nonexperimental data.47-48 The problem, as 
described above, is that colliders, intermediate 
variables, and instruments can all statistically 
behave like confounders. For this reason, an 
understanding of the causal structure of variables 
is required to separate confounders from other 
potential bias-inducing variables. This dilemma 
has led many influential epidemiologists to 
take a strong position for selecting variables for 
control on the basis of background knowledge 
of the causal structure connecting treatment to 
outcome.50-54

When sufficient knowledge is available to 
construct a causal graph, a graphical analysis of 
the structural basis for evaluating confounding is 
the most robust approach to selecting variables 
for adjustment. The goal is to use the graph to 
identify a sufficient set of variables to achieve 
unconfoundedness, sometimes also called 
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conditional exchangeability.24, 55 The researchers 
specify background causal assumptions using 
causal graph criteria (see supplement 2 of this 
User’s Guide). If the graph is correct, it can be 
used to identify a sufficient set of covariates (C) 
for estimating an effect of treatment (A

0
 ) on 

the outcome (Y
1
). A sufficient set C is observed 

when no variable in C is a descendant of A
0
 and 

C blocks every open path between A
0
 and Y

1
 that 

contains an arrow into A
0
. Control of confounding 

using graphical criteria is usually described as 
control through the “back-door” criteria, the 
idea being that variables that influence treatment 
assignment—that is, variables that have arrows 
pointing to treatment assignment—provide back-
door paths between the A

0
 and Y

1
. It is the open 

back-door pathways that generate dependencies 
between A

0
 and Y

1
 and can produce spurious 

associations when no causal effect of A
0
 on Y

1
 

is present, and that alter the magnitude of the 
association when A

0
 causally affects Y

1
.

Although it is quite technical, causal graph 
theory has formalized the theoretical justification 
for variable selection, added precision to 
our understanding of bias due to under- and 
over-adjustment, and unveiled problems with 
historical notions of statistical confounding. The 
main limitation of causal graph theory is that 
it presumes that the causal network is known 
and that the only unknown is the magnitude 
of the causal contrast between A

0
 and Y

1
 being 

examined. In practice, where observational studies 
include large multi-use databases spanning vast 
geographic regions, such complete knowledge of 
causal networks is unlikely.56-57

Since we rarely know the true causal network 
that represents all common-cause pathways 
between treatment and outcome, investigators 
have proposed more practical variable selection 
approaches based on background knowledge 
when the causal structure is only partially known. 
These strategies include adjusting for all observed 
pretreatment variables thought to have some 
connection to the outcome,58 all known risk 
factors for the outcome,4, 44, 59 and all direct causes 
of the treatment or the outcome.57 The benefits 
and limitations to each approach to removing 
confounding are briefly discussed.

Adjustment for All Observed Pretreatment 
Covariates

Emphasis is often placed on the treatment 
assignment mechanism and on trying to 
reconstruct the hypothetical broken randomized 
experiment that led to the observational data.58 
Propensity score methods are often employed 
for this purpose and are discussed in chapter 10; 
they can be used in health care epidemiology to 
statistically control large numbers of variables 
when outcomes are infrequent.60, 61 Propensity 
scores are the probability of receiving treatment 
given the set of observed covariates. The 
probability of treatment is estimated conditional 
on a set of covariates and the predicted probability 
is then used as a balancing score or matching 
variable across treatment groups to estimate the 
treatment effect. 

The greatest importance is often placed 
on balancing all pretreatment covariates. 
However, when attempts are made to balance 
all pretreatment covariates, regardless of their 
structural form, biases, for example from 
including strong instruments and colliders, can 
result,37, 57, 62 though, as noted above, in practice, 
pretreatment colliders are likely rarer than 
ordinary confounding variables.

Adjustment for All Possible Risk Factors for the 
Outcome

Confounding pathways require common cause 
structures between the outcome and treatment. 
A common strategy for removing confounding 
without incidentally including strong instruments 
and colliders is to include in propensity score 
models only variables thought to be direct causes 
of the outcome, that is, risk factors.4, 59, 63 This 
approach requires only background knowledge 
of causes of the outcome, and it does not require 
an understanding of the treatment assignment 
mechanism or how variables that influence 
treatment are related to risk factors for the 
outcome. This strategy, however, may fail to 
include measured variables that predict treatment 
assignment but have an unmeasured ancestor that 
is an outcome risk factor (A

0
←C

0
←U1→Y

1
) as 

illustrated in Figure 3.57
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Disjunctive Cause Criterion

The main practical use of causal graphs is to 
ensure adjustment for confounders and avoid 
adjusting for known colliders.51 In practice, one 
only needs to partly know the causal structure of 
variables relating treatment to the outcome. The 
disjunctive cause criterion is a formal statement of 
the conditions in which variable selection based 
on partial knowledge of the causal structure can 
remove confounding.57 It states that all observed 
variables that are a cause of treatment, a cause of 
outcome, or a cause of both should be included for 
statistical adjustment. It can be shown that when 
any subset of observed variables is sufficient to 
control confounding, the set obtained by applying 
the disjunctive cause criteria will also constitute 
a sufficient set.57 This approach requires more 
knowledge of the variables’ relationship to the 
treatment and outcome using all pretreatment 
covariates, or all risk factors, but less knowledge 
than the back-door path criterion.

Whenever there exists some set of observed 
variables that block all back-door paths (even if 
the researcher does not know which subset this 
is), the disjunctive cause criterion when applied 
correctly by the investigators will identify a set 
of variables that also blocks all back-door paths. 
The other variable selection criteria based on 
all pretreatment covariates and risk factors do 
not have this property.57 The approach performs 
well when the measured variables include some 
sufficient set, but presents problems when 
unmeasured confounding remains. In this case, 
conditioning on an instrument can amplify the 
bias due to unmeasured confounding. Thus, in 
practice, known instruments should be excluded 
before applying the criterion. The best approach to 
variable selection is less clear when unmeasured 
confounding may remain after statistical 
adjustment for measured variables, which is often 
expected in nonexperimental CER. In this case, 
every variable selection approach will result in 
bias. The focus would then be on minimizing 
bias, which requires thoughtful consideration of 
the tradeoff between over- and underadjustment. 
Strong arguments exist for error on the side of 
overadjustment (adjusting for instruments and 
colliders) rather than failing to adjust for measured 
confounders (underadjustment).36, 44 Nevertheless, 

adjustments for instrumental variables have been 
found to amplify bias in practice.45

Empirical Variable Selection 
Approaches 

Historically, data for nonexperimental studies was 
primarily collected prospectively, and thoughtful 
planning was needed to ensure complete 
measurement of all important study variables. 
We now live in an era where every interaction 
between the patient and the health care system 
produces hundreds, if not thousands, of data points 
that are recorded for clinical and administrative 
purposes.64 These large multi-use data sources 
are highly dimensional in that every disease, 
medication, laboratory result, and procedure code, 
along with any electronically accessible narrative 
statements, can be treated as variables. 

The new challenge to the researcher is to select 
a set of variables from this high-dimensional 
space that characterizes the patient’s baseline 
status at the time of treatment selection to enable 
identification of causal effects, or that at least 
produces the least biased estimates. Advances in 
computer performance and the availability of high-
dimensional data have provided unprecedented 
opportunities to use data empirically to “learn” 
associational relationships. Empiric variable 
selection techniques include identifying a subset 
of variables of statistical associations with the 
treatment and/or outcome from the original set 
on the basis of background knowledge of the 
relationship with treatment and/or outcome, 
as well as methods that are considered fully 
automated, where all variables are initially selected 
on the basis of statistical associations. 

Forward and Backward Selection Procedures

When using traditional regression it is not 
uncommon to use, for the purposes of covariate 
selection, what are sometimes called forward and 
backward selection procedures. Forward selection 
procedures begin with an empty set of covariates 
and then consider whether for each covariate, 
the covariate is associated with the outcome 
conditional on treatment (usually using a p-value 
cutoff in a regression model of 0.05 or 0.10). 
The variable that is most strongly associated with 
outcome (based on having the smallest p-value 
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below the cutoff) is then added to the collection of 
variables for which control will be made. Then the 
process begins again, and one considers whether 
each covariate is associated with the outcome 
conditional on the treatment and the covariate 
already selected; the next covariate that is most 
strongly associated is again added to the list. The 
process repeats until all remaining covariates 
are independent of the outcome conditional on 
the treatment and the covariates that have been 
previously selected for control. 

Backward selection begins with all covariates in 
the model; then the investigator considers whether, 
for each covariate, that covariate is independent 
of the outcome conditional on the treatment and 
all other covariates (generally using a p-value 
cutoff in a regression model of 0.05 or 0.10). 
The covariate with the largest p-value above the 
cutoff is then discarded from the list of covariates 
for which control is made. The process begins 
again, and the investigator considers whether, 
for each covariate, that covariate is independent 
of the outcome, conditional on the treatment and 
the other covariates not yet discarded; the next 
covariate with the weakest association with the 
outcome based on p-value is again discarded. The 
process repeats itself until all variables still in the 
list are associated with the outcome conditional on 
the treatment and the other covariates that have not 
been discarded.

Provided that the original set of covariates with 
which one begins suffices for unconfoundedness 
of treatment effects estimates, then if the backward 
selection process correctly discards variables that 
are independent of the outcome conditional on 
the treatment and other covariates, the final set 
of covariates selected by the backwards selection 
procedure will also yield a set of covariates 
that suffices for conditional exchangeability.57 
Likewise, under an additional assumption of 
“faithfulness,”57 the forward selection procedure 
will identify a set of covariates that suffices for 
unconfoundedness provided that the original set 
of covariates with which one begins suffices to 
achieve unconfoundedness and that the forward 
selection process correctly identifies the variables 
that are and are not independent of the outcome 
conditional on the treatment and other covariates. 
The forward and backward procedures can thus 

be useful for covariate reduction, but both of them 
suffer from the need to specify a set of covariates 
to begin with that suffice for unconfoundedness. 
Thus, even if an investigator intends to employ 
forward or backward selection procedures for 
covariate reduction, other approaches will be 
needed to decide on what set of covariates these 
forward and backward procedures should begin 
with. Moreover, when the initial set of covariates 
does not suffice for unconfoundedness, it is 
not clear how forward and backward selection 
procedures will perform. Variable selection 
procedures also suffer from the fact that estimates 
about treatment effects are made after having 
already used the data to decide on covariates.

Similar but more sophisticated approaches using 
machine learning algorithms such as boosting, 
random forest, and other ensemble methods have 
become increasingly common, as have sparsity-
based methods such as LASSO, in dealing with 
high-dimensional data.65 All of these empirically 
driven methods are limited, however, in that they 
are in general unable to distinguish between 
instruments, colliders, and intermediates on the 
one hand and genuine confounders on the other. 
Such differentiation needs to be made a priori on 
substantive grounds.

Automatic High-Dimensional “Proxy” 
Adjustment

In an attempt to capture important proxies for 
unmeasured confounders, Schneeweiss and 
colleagues proposed an algorithm that creates a 
very large set of empirically defined variables 
from health care utilization data.56 The created 
variables capture the frequency of codes for 
procedures, diagnoses, and medication fills during 
a pre-exposure period. The variables created by 
the algorithm are required to have a minimum 
prevalence in the source population and to have 
some marginal association with both treatment 
and outcome. After they are defined, the variables 
can be entered into a propensity score model. 
In several example studies where the true effect 
of a treatment was approximately known from 
randomized controlled trials, the algorithm 
appeared to perform as well as or better than 
approaches based on simply adjusting for an a 
priori set of variables.45, 66 By defining variables 
prior to treatment, propensity score methods will 
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not “over-adjust” by including causal intermediates. 
Using statistical associations to select potential 
confounders can result in selection and adjustment 
of colliders and instruments. Therefore, the analyst 
should attempt to remove such variables from the 
set of identified variables. For example, variables 
that are strong predictors of treatment but have 
no obvious relation to the outcome should be 
considered potential sources of Z-bias.

A Practical Approach Combining Causal 
Analysis With Empirical Selection

There is a continuum between knowing and not 
knowing the causal, structural relations of variables. 
We suggest that a practical approach to variable 
selection may involve a combination of (1) a 
priori variable selection based on the researcher’s 
knowledge of causal relationships together with 
(2) empirical selection using the high-dimensional 
approach described above.8  The empirical 
approach could be used to select from a set of a 
priori variables on the basis of the researcher’s 
knowledge, and to ultimately select those to be 
included in the analysis. This more limited use 
of empirically derived variables may reduce 
confounding while simultaneously reducing the risk 
of including variables that could increase bias.

Conclusion

In practice, the particular approach that one adopts 
for observational research will depend on the 
researcher’s knowledge, the data quality, and the 
number of covariates. A deep understanding of 
the specific clinical and public health risks and 
opportunities that lie behind the research question 
often drives these decisions.

Regardless of the strategy employed, researchers 
should clearly describe how variables are measured 
and provide a rationale for a priori selection of 
potential confounders, ideally in the form of a 
causal graph. If the researchers decide to further 
eliminate variables using an empiric variable 
selection technique, then they should present both 
models and describe what criteria were used to 
determine inclusion and exclusion. Researchers 
should consider whether or not they believe 
adequate measurement is available in the dataset 
when employing a specific variable selection 
strategy. In addition, all variables included for 
adjustment should be listed in the manuscript or 
final report. When empirical selection procedures 
are newly developed or modified, researchers 
are encouraged to make the protocol and code 
publicly available to improve transparency and 
reproducibility.

Even when researchers use the methods we describe 
in this chapter, confounding can persist. Sensitivity 
analysis techniques are useful for assessing residual 
confounding resulting from unmeasured and 
imperfectly measured variables.67-75 Sensitivity 
analysis techniques assess the extent to which an 
unmeasured variable would have to be related to 
the treatment and outcome of interest in order to 
substantially change the conclusions drawn about 
causal effects. We refer the reader to chapter 11 for 
discussion of sensitivity analysis techniques. 
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Checklist: Guidance and key considerations for covariate selection in CER 
protocols 

Guidance Key Considerations Check

Describe the data source(s) 
that will be used to identify 
important covariates.

–– Provide information about the source(s) of data for key 
covariates, acknowledging the strengths and weaknesses of the 
data source (e.g., administrative claims, EMRs, chart review, 
patient self-report) for measuring each type of covariate. 

o

Discuss the potential for 
unmeasured confounding and 
misclassification.

–– Discuss the potential impact of unmeasured confounders and 
misclassification or measurement error.

–– Propose specific formal sensitivity analysis of the impact of 
unmeasured confounders or misclassified variables.

o

Describe the approach to be 
used to select covariates for 
statistical models.

–– Discuss approaches based on background knowledge (e.g., 
selection of all hypothesized common causes, disjunctive cause 
criterion, directed acyclic graphs, or selection of all variables 
thought to be risk factors for the outcome.

–– Describe model reduction techniques to be used (e.g., forward or 
backward selection).

–– Describe empirical variable selection techniques and how 
variables were removed from consideration when they were 
thought to be bias-inducing rather than bias-reducing variables.

o
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