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Abstract

This chapter provides a high-level overview of statistical analysis considerations for observational 
comparative effectiveness research (CER). Descriptive and univariate analyses can be used to assess 
imbalances between treatment groups and to identify covariates associated with exposure and/or the study 
outcome. Traditional strategies to adjust for confounding during the analysis include linear and logistic 
multivariable regression models. The appropriate analytic technique is dictated by the characteristics of 
the study outcome, exposure of interest, study covariates, and the underlying assumptions underlying 
the statistical model. Increasingly common in CER is the use of propensity scores, which assign a 
probability of receiving treatment, conditional on observed covariates. Propensity scores are appropriate 
when adjusting for large numbers of covariates and are particularly favorable in studies having a common 
exposure and rare outcome(s). Disease risk scores estimate the probability or rate of disease occurrence 
as a function of the covariates and are preferred in studies with a common outcome and rare exposure(s). 
Instrumental variables, which are measures that are causally related to exposure but only affect the 
outcome through the treatment, offer an alternative to analytic strategies that have incomplete information 
on potential unmeasured confounders. Missing data in CER studies is not uncommon, and it is important 
to characterize the patterns of missingness in order to account for the missing data in the analysis. In 
addition, time-varying exposures and covariates should be accounted for to avoid bias. The chapter 
concludes with a checklist including guidance and key considerations for developing a statistical analysis 
section of an observational CER protocol.
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Introduction

Comparative effectiveness research utilizing 
observational data requires careful and often 
complex analytic strategies to adjust for 
confounding. These can include standard analytic 
strategies, such as traditional multivariable 
regression techniques, as well as newer, more 
sophisticated methodologies, such as propensity 
score matching and instrumental variable analysis. 
This chapter covers data analysis strategies from 
simple descriptive statistics to more complex 
methodologies. Also covered are important 
considerations such as handling missing data and 
analyzing time-varying exposures and covariates.  

While this chapter provides a high-level summary 
of considerations and issues for statistical analysis 
in observational CER, it is not intended to be a 
comprehensive treatment of considerations and 
approaches. We encourage the reader to explore 

topics more fully by referring to the references 
provided.

Descriptive Statistics/
Unadjusted Analyses

Appropriate descriptive statistics and graphical 
displays for different types of data have been 
presented in numerous textbooks.1 These include 
measures of range, dispersion, and central tendency 
for continuous variables, number and percent for 
categorical variables, and plots for evaluating 
data distributions. For comparative effectiveness 
research (CER), it is important to consider useful 
and informative applications of these descriptive 
statistics. For instance, for a cohort study, describing 
study covariates stratified by exposure levels 
provides a useful means to assess imbalances in 
these measures. For a propensity–matched-pairs 
dataset, summarizing study covariates by exposure 
group aids in detecting residual imbalances.  
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Univariate or unadjusted hypothesis testing, 
such as two-sample t-tests, can be conducted to 
identify covariates associated with the exposure 
and/or the study outcome. Since CER studies will 
need to consider potential confounding from a 
large number of study covariates, the descriptive 
statistics should provide a broad picture of the 
characteristics of the study subjects.  

Adjusted Analyses

Traditional Multivariable Regression

Regression analysis is often used in the estimation 
of treatment effects to control for potential 
confounding variables.2 In general, control is 
made for pretreatment variables that are related 
to both the treatment of interest and the outcome 
of interest. Variables that are potentially on the 
pathway from treatment to outcome are not 
controlled for, as control for such intermediate 
variables could block some of the effect of 
the treatment on the outcome. See chapter 7 
(Covariate Selection) for further discussion. 
Traditional multiple regression, in which one uses 
regression models to directly adjust for potential 
confounders and effect modification, has long been 
used in observational studies and can be applied 
in CER. When applying regression modeling, 
careful attention must be paid to ensure that 
corresponding model assumptions are met.3 For 
example, for linear regression, the assumption that 
the mean of the outcome is a linear function of the 
covariates should be assessed. Whether regression 
techniques or other approaches are preferred also 
depends in part on the characteristics of the data. 
For logistic regression, as long as the number 
of outcome events per covariate included in the 
regression model is sufficient (e.g., a rule of 
thumb is 10 or more) and the exposure of interest 
is not infrequent, traditional multiple regression is 
a reasonable strategy and could be considered for 
the primary analysis.4-5 However, when this is not 
the situation, other options should be considered. 
Regression methods also have the disadvantage 
that they may extrapolate to regions where data are 
not available; other techniques such as propensity 
scores (discussed below) more easily diagnose this 
issue.  

When there are many covariates, one approach has 
been to develop more parsimonious models using 
methods such as stepwise regression. However, 
this may involve subjective decisions such as 
the type of variable selection procedure to use, 
whether to base selection upon p-values or change 
in exposure parameter estimates, and where to 
set numeric cutoffs (e.g., p=0.05, 0.10, 0.20) for 
variable inclusion and retention in the model. For 
covariates that confer relatively modest increases 
in disease risk, some variable selection procedures, 
such as stepwise regression, may exclude 
important covariates from the final model.  

Furthermore, stepwise regression has limitations 
that can lead to underestimation of standard 
errors for exposure estimates.6 Other analytical 
strategies which have become more common in 
recent years include using summary variables, 
such as propensity scores and disease risk scores, 
which are described below. Propensity scores 
often perform better than logistic regression when 
the outcome is relatively rare (e.g., fewer than 
10 events per covariate as noted above), whereas 
logistic regression tends to perform better than 
propensity score analysis when the outcome is 
common but the exposure is rare.7

Choice of Regression Modeling 
Approach

The forms of the study outcome, exposure of 
interest, and study covariates will determine the 
regression model to be used. For independent, 
non–time-varying exposures and study covariates, 
generalized linear models (GLMs) such as linear 
or logistic regression can be used. If the study 
outcome is binary with fixed followup and is rare, 
Poisson regression with robust standard errors can 
be used to estimate relative risks and get correct 
confidence intervals.8-9 For count data, Poisson 
regression can also be used but is susceptible to 
problems of overdispersion, wherein the variance 
of the outcomes is larger than what is given by the 
Poisson model. Failure to account for this can lead 
to underestimation of standard errors. A negative 
binomial regression model can help address the 
issue of overdispersion.10 If the value 0 occurs 
more frequently than is predicted by the Poisson or 
negative binomial model, the zero-inflated Poisson 
and zero-inflated negative binomial models can be 
used.11 
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In CER studies in which data are correlated, 
regression models should be specified that take this 
correlation into account. Examples of correlated 
data include repeated measures on study subjects 
over time, patients selected within hospitals across 
many hospitals, and matched study designs. There 
are a number of analysis options that can be 
considered, which depend on the study question 
and particulars of the study design. Repeated 
measures per study subject can be collapsed to a 
single summary measure per subject. Generalized 
estimating equations (GEE) are a frequently 
used approach to account for correlated data. 
Random effects models such as generalized linear 
mixed models (GLMM) are another suitable 
analytical approach to handle repeated measures 
data. Approaches for such longitudinal data are 
described in detail in a number of textbooks.12-13 
For matched study designs (e.g., case-controlled 

designs), models such as conditional logistic 
regression may be considered.

Time-to-event data with variable followup and 
censoring of study outcomes are commonly 
investigated in CER studies. Cox proportional 
hazards regression is a common methodology 
for such studies. In particular, this approach can 
easily handle exposures and study covariates whose 
values vary over time as described in detail below. 
When time-varying covariates are affected by 
time-varying treatment, marginal structural models 
(described below) may be required. A number of 
excellent textbooks describe the analysis of time-
to-event data.14-15 

A high-level overview of modeling approaches in 
relation to the nature of the outcome measure and 
followup assessments is shown in Table 10.1.  

Table 10.1. Summary of modeling approaches as a function of structure of 
outcome measure and followup assessments

Number of Followup Measures and Time Intervals

Outcome Measure

Single Measure

Repeated Measure, 
Fixed Intervals

Repeated Measure, 
Variable IntervalsNo clustering

Clustering (e.g., multi-
site study)

Dichotomous Logistic regression Multilevel (mixed) 
logistic regression, 
GLMM, GEE, 
conditional logistic 
regression

Repeated measures 
ANOVA (MANOVA), 
GLMM, GEE

GLMM, GEE

Continuous Linear regression Multilevel (mixed) 
linear regression, 
GLMM, GEE

Repeated measures 
ANOVA (MANOVA), 
GLMM, GEE

GLMM, GEE

Time to event Cox proportional 
hazards regression

Variance-adjusted Cox 
model or shared frailty 
model

Time to event 
(aggregate or count 
data)

Poisson regression Multilevel (mixed) 
Poisson regression

ANOVA = analysis of variance; GEE = generalized estimating equation; GLMM = generalized linear mixed models; 
MANOVA = multivariate analysis of variance

Note: This high-level summary provides suggestions for selection of a regression modeling approach based on 
consideration of the outcome measure and nature of the followup measures or assessments. Many of these methods 
allow time-varying exposures and covariates to be incorporated into the model. Time-varying confounding may 
require use of inverse-probability-of-treatment-weighted (IPTW)/marginal structural model techniques.
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Model Assumptions

All analytic techniques, including regression, 
have underlying assumptions. It is important 
to be aware of those assumptions and to assess 
them. Otherwise, there are risks with regards 
to interpretation of study findings. These 
assumptions and diagnostics are specific to the 
regression technique being used and will not 
be listed here. They are covered in numerous 
textbooks, depending on the methods being 
used. For example, if Cox proportional hazards 
regression is used, then the proportional hazards 
assumption should be assessed. If the validity of 
this assumption is questionable, then alternatives 
such as time-dependent covariates may need to be 
considered.

Time-Varying Exposures/Covariates

In most CER studies, it is unrealistic to assume 
that exposures and covariates remain fixed 
throughout followup. Consider, for example, HIV 
patients who may be treated with antiretroviral 
therapy. The use of antiretroviral therapy may 
change over time and decisions about therapy may 
in part be based on CD4 count levels, which also 
vary over time. As another illustration, consider 
a study of whether proton pump inhibitors (PPIs) 
prevent clopidogrel-related gastroduodenal 
bleeding. In this situation,warfarin may be started 
during followup. Should one adjust for this 
important potential confounder? Failure to account 
for the time-varying status of such exposures and 
confounders (i.e., by fixing everyone’s exposure 
status at baseline) may severely bias study 
findings.  

As noted above, for time-to-event study outcomes, 
time-dependent Cox regression models can be 
used to account for time-varying exposures 
and covariates. However, difficult issues arise 
when both treatment and confounding variables 
vary over time. In the HIV example, CD4 count 
may be affected by prior therapy decisions, but 
CD4 count levels may themselves go on to alter 
subsequent therapy decisions and the final survival 
outcome. In examining the effects of time-varying 
treatment, a decision must be made as to whether 
to control for CD4 count. A difficulty arises in 
that CD4 count is both a confounding variable 

(for subsequent therapy and final survival) and 
also an intermediate variable (for the effect of 
prior treatment). Thus, control for CD4 count in 
a time-varying Cox model could potentially lead 
to bias because it is an intermediate variable and 
could thus block some of the effect of treatment; 
but failure to control for CD4 count in the model 
will result in confounding and thus bias for the 
effect of subsequent treatment. Both analyses 
are biased. Such problems arise whenever a 
variable is simultaneously on the pathway from 
prior treatment and also affects both subsequent 
treatment and the final outcome.

These difficulties can be addressed by using 
inverse-probability-of-treatment weighting 
(IPTW),16 rather than regression adjustment, for 
confounding control. These IPTW techniques 
are used to estimate the parameters of what is 
often called a marginal structural model, which 
is a model for expected counterfactual outcomes. 
The marginal-structural-model/IPTW approach 
is essentially a generalization of propensity-
score weighting to the time-varying treatment 
context.  The IPTW technique assumes that at each 
treatment decision, the effect of treatment on the 
outcome is unconfounded given the past covariate 
and treatment history. A similar weighting 
approach can also be used to account for censoring 
as well.16 This marginal-structural-model/IPTW 
approach has been developed for binary and 
continuous outcomes,16 time-to-event outcomes,17 
and repeated measures data.18 

Another consideration for time-varying exposures 
is accounting for exposure effect (e.g., the effect of 
medication use) after the subject stopped receiving 
that exposure. One approach is to create another 
exposure level that is a carryover of a biologically 
plausible number of days after exposure use 
has ended and incorporate it as a time-varying 
exposure level in the analysis. Another approach is 
an intent-to-treat analysis in which exposure status 
(e.g., treatment initiation) is assumed throughout 
followup. Cadarette and colleagues (2008) used 
this approach in a study of fracture risk.19 The 
motivation was that treatment adherence may be 
low and accounting for on-treatment status may 
result in information bias.  
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Propensity Scores

Propensity scores are an increasingly common 
analytic strategy for adjusting for large numbers 
of covariates in CER. The use of the propensity 
score for confounding control was proposed by 
Rosenbaum and Rubin.20 The propensity score is 
defined as the probability of receiving treatment (or 
exposure) conditional on observed covariates, and 
it is typically estimated from regression models, 
such as a logistic regression of the treatment 
conditional on the covariates. Rosenbaum and 
Rubin showed that if adjustment for the original set 
of covariates suffices to control for confounding, 
then adjustment for just the propensity score also 
would suffice as well. This strategy is particularly 
favorable in studies having a common exposure 
and rare outcome or possibly multiple outcomes.7 
Propensity scores can be used in subclassification 
or stratification,21 matching,22 and weighting,23 and 
further adjustment can be done using regression 
adjustment.24 Stürmer and colleagues provide a 
review of the application of propensity scores.25  

If adjustment using the propensity score is used, 
balance in study covariates between exposure 
groups should be carefully assessed. This can 
include, but is not limited to, testing for differences 
in study covariates by exposure group after 
adjusting for propensity score. Another common 
assessment of the propensity score is to visually 
examine the propensity score distributions across 
exposure groups. It has been demonstrated that if 
there is poor overlap in these distributions, there is 
a risk of biased exposure estimates when adjusting 
for the propensity score in a regression model.26 
One remedy for this is to restrict the cohort to 
subjects whose propensity score overlaps across all 
exposure groups.27-28 

When feasible, matching on the propensity score 
offers several advantages. Matching subjects 
across exposure groups on propensity score 
ensures, through restriction, that there will be 
good overlap in the propensity score distributions. 
In addition, the presentation of a summary of 
subject characteristics by exposure groups in a 
propensity-matched design allows a reader to 
assess the balance in study covariates achieved by 
matchingin a similar manner to the comparison of 
randomized treatment groups from a randomzed 
clinical trial. This can be done graphically or 

by comparing standardized differences across 
groups. However, in a propensity-matched design, 
one can only ensure that measured covariates are 
being balanced. The consequences of unmeasured 
confounding will need to be assessed using 
sensitivity analysis. See chapter 11 for further 
details. Matching techniques for causal effects are 
described in detail in Rubin29 and best practices for 
constructing a matched control group are provided 
by Stuart and Rubin.30 Care must be taken when 
estimating standard errors for causal effects when 
using matching,31-32 though software is now 
available that makes this task easier.33

A tradeoff between using regression adjustment on 
the full cohort and a propensity-matched design is 
that in the former there may still be imbalances in 
study covariates, and in the latter sample size may 
be reduced to the extent that some of the subjects 
cannot be matched. Connors and colleagues34 
used both analytic strategies in a cohort study of 
the effectiveness of right heart catheterization 
and reported similar findings from both analyses. 
Use of multiple analytic strategies as a form of 
sensitivity analysis may serve as a useful approach, 
drawing from the strengths of both strategies.

Brookhart and colleagues35 investigated variable 
selection approaches and recommend that the 
covariates to be included in the propensity score 
model either be true confounders or at least related 
to the outcome; including covariates related only 
to the exposure has been shown to increase the 
variance of the exposure estimate.

Disease Risk Scores

The disease risk score (DRS) is an alternative 
to the propensity score.36-37 Like the propensity 
score, it is a summary measure derived from the 
observed values of the covariates. However, the 
DRS estimates the probability or rate of disease 
occurrence as a function of the covariates. The 
DRS may be estimated in two ways. First, it can 
be calculated as a “full-cohort” DRS, which 
is the multivariate confounder score originally 
proposed by Miettinen in 1976.38 This score was 
constructed from a regression model relating the 
study outcome to the exposure of interest and the 
covariates for the entire study population. The 
score was then computed as the fitted value from 
that regression model for each study subject, 
setting the exposure status to nonexposure. The 
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subjects were then grouped into strata according to 
the score and a stratified estimate of the exposure 
effect was calculated. The DRS may also be 
estimated as an “unexposed-only” DRS, from 
a regression model fit only for the unexposed 
population, with the fitted values then computed 
for the entire cohort.

The DRS is particularly favorable in studies having 
a common outcome and rare exposure or possibly 
multiple exposures. It is useful for summarizing 
disease risk and assessing effect modification 
by disease risk. Ray and colleagues39 reported 
effect modification by cardiovascular disease risk, 
derived and summarized using DRS, in a study 
of antipsychotics and sudden cardiac death. Also, 
in the presence of a multilevel exposure in which 
some of the levels are infrequent, the DRS may be 
a good alternative to propensity scores.

Instrumental Variables

A limitation of study designs and analytic 
strategies in CER studies, including the use of 
traditional multiple regression, propensity scores, 
and disease risk scores, is incomplete information 
on potential unmeasured confounders. An 
alternative approach to estimate causal effects, 
other than confounding/covariate control, is the 
use of instrumental variables.40 An “instrument” 
is a measure that is causally related to exposure 
but only affects the outcome through the 
treatment and is also unrelated to the confounders 
of the treatment-outcome relationship. With 
an instrument, even if there is unmeasured 
confounding of the treatment-outcome 
relationship, the effect of the instrument on the 
treatment, and the effect of the instrument on the 
outcome can together be used to essentially back 
out the effect of the treatment on the outcome. A 
difficulty of this approach is identifying a high-
quality instrument.

An instrument must be unrelated to the 
confounders of the treatment and the outcome; 
otherwise, instrumental variable analyses can 
result in biases. An instrument also must not 
affect the outcome except through the treatment. 
This assumption is generally referred to as the 
“exclusion restriction.” Violations of this exclusion 
restriction can likewise result in biases. Finally, 

the instrument must be related to the treatment of 
interest. If the association between the instrument 
and the treatment is weak, the instrument is 
referred to as a “weak instrument.” Finite-sample 
properties of estimators using weak instruments 
are often poor, and weak instruments moreover 
tend to amplify any other biases that may be 
present.41-44 If a variable is found that satisfies 
these properties, then it may be used to estimate 
the causal effect of treatment on the outcome. 
However, such a variable may be difficult or 
impossible to identify in some settings. Moreover, 
the assumptions required for a variable to be an 
instrument cannot be fully verified empirically. 

Two-stage least squares techniques are often 
employed when using instrumental variables, 
though with a binary treatment, ratio estimators 
are also common.40 For estimates to be causally 
interpretable, often a monotonicity assumption 
must also be imposed; that is, that the effect 
of instrument on the treatment only operates 
in one direction (e.g., that it is causative or 
neutral for all individuals). Assumptions of 
homogeneous treatment effects across individuals 
also are commonly employed to obtain causally 
interpretable estimates. When homogeneity 
assumptions are not employed, the resulting 
causal effect estimate is generally only applicable 
for certain subpopulations consisting of those 
individuals for whom the instrument is able to 
change the treatment status.40 Such effects are 
sometimes referred to as “local average treatment 
effects.” When the treatment is not binary, 
interpretation of the relevant subpopulation 
becomes more complex.45 Moreover, when 
two-stage least squares procedures are applied 
to binary rather than continuous outcomes, other 
statistical biases can arise.46

Brookhart and colleagues47 applied this approach 
in a study of COX-2 inhibitors with nonselective, 
nonsteroidal anti-inflammatory drugs (NSAIDs) 
on gastrointestinal complications.  Their 
instrument was the prescribing physician’s 
preference for a COX-2 inhibitor relative to an 
NSAID. The results of the instrumental variable 
analysis were statistically similar to results from 
two clinical trials, and contrary to the traditional 
multiple regression analysis that was also 
conducted.
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Schneeweiss and colleagues48 examined the use of 
aprotinin during coronary-artery bypass grafting 
and risk of death. Their primary analysis was a 
traditional multiple regression.  In addition to the 
primary analysis, they also conducted a propensity 
score matched-pairs analysis as well as an 
instrumental variable analysis. All three analyses 
had similar findings.  This methodology of 
employing more than one analytical approach may 
be worth consideration, since the propensity score 
matching does not rely on the exclusion restriction 
and other instrumental variable assumptions, 
whereas instrumental variable analysis circumvents 
the biases introduced by unmeasured confounders, 
provided a good instrument is identified. When 
results differ, careful attention needs to be given to 
what set of assumptions is more plausible.

Missing Data Considerations

It is not uncommon in CER to have missing 
data. The extent of missingness and its potential 
impact on the analysis needs to be considered. 
Before proceeding with the primary analyses, 
it is important to characterize the patterns of 
missingness using exploratory data analyses. This 
step  can provide insights into how to handle the 
missing data in the primary analysis.

For the primary analysis, a common analytical 
approach is to analyze just those subjects who have 
no missing data—called a complete-case analysis. 
However, an initial limitation of this approach 
is that sample size is reduced, which affects 

efficiency even if data are missing completely 
at random. If subjects with missing data differ 
from subjects with complete data, then exposure 
estimates may be biased. For example, suppose 
blood pressure is a potential confounder, and it is 
missing in very ill subjects. Then, excluding these 
subjects can bias the exposure estimate.

Little and Rubin’s textbook describes several 
analytic approaches for handling missing data.49 
One common approach to filling in missing data 
when they are “missing completely at random” 
or “missing at random” is imputation, which the 
book describes in detail. In chapter 3 of Harrell’s 
textbook, he describes missing data and imputation 
and also provides some guidelines for handling 
such data.50 Inverse-probability-weighting 
techniques, described below, can also be employed 
to address issues of missing data.

Conclusion

This chapter has provided a brief overview 
of statistical methods, as well as suggestions 
and recommendations to address the complex 
challenges of analyzing data from observational 
CER studies. Both traditional approaches 
such as multivariable regression and novel but 
established methods such as propensity scores 
and instrumental variable approaches may be 
suitable to address specific data structures, under 
certain assumptions. Thoughtful application of 
these approaches can help the investigator improve 
causal inference.   
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Checklist: Guidance and key considerations for developing a statistical analysis 
section of an observational CER protocol

Guidance Key Considerations Check

Describe the key variables of interest 
with regard to factors that determine 
appropriate statistical analysis.

 – Should discuss independent variables (when they are 
measured, whether they are fixed or time-varying; e.g., 
exposures, confounders, effect modifiers).

 – Should discuss dependent variables or outcomes 
(continuous or categorical, single or repeated measure, 
time to event).

 – Should state if there will be a “multilevel” analysis 
(e.g., an analysis of effects of both practice-level and 
patient-level characteristics on outcome).

o

Propose descriptive analysis or 
graph according to treatment group.

 – Should include the available numbers per group, 
number missing for all key covariates, distributions or 
graphs that are needed to decide if transformation of 
data is needed or to determine an accurate functional 
form of the final model.

 – Should include all potential confounders and effect 
modifiers to assess initial covariate balance by study 
group.

o

Propose the model that will be used 
for primary and secondary analysis 
objectives.

 – Should take into account the design (independent 
vs. dependent observations, matched, repeated 
measurement, clustered), objectives, functional form of 
model, fixed/time-varying followup period, fixed and 
time-varying exposure and other covariates, assessment 
of effect modification/heterogeneity, type of outcome 
variables (categorical, ordinal, or continuous), censored 
data, and the degree of rarity of outcome and exposure.

 – Should propose a suitable approach for adjusting 
for confounding (e.g., multiple regression model, 
propensity scores, instrumental variable [as secondary 
or main analysis]).

o
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