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Abstract

This chapter provides an overview of study design and analytic assumptions made in observational 
comparative effectiveness research (CER), discusses assumptions that can be varied in a sensitivity 
analysis, and describes ways to implement a sensitivity analysis. All statistical models (and study results) 
are based on assumptions, and the validity of the inferences that can be drawn will often depend on the 
extent to which these assumptions are met. The recognized assumptions on which a study or model rests 
can be modified in order to assess the sensitivity, or consistency in terms of direction and magnitude, of 
an observed result to particular assumptions. In observational research, including much of comparative 
effectiveness research, the assumption that there are no unmeasured confounders is routinely made, and 
violation of this assumption may have the potential to invalidate an observed result. The analyst can also 
verify that study results are not particularly affected by reasonable variations in the definitions of the 
outcome/exposure. Even studies that are not sensitive to unmeasured confounding (such as randomized 
trials) may be sensitive to the proper specification of the statistical model. Analyses are available that 
can be used to estimate a study result in the presence of an hypothesized unmeasured confounder, which 
then can be compared to the original analysis to provide quantitative assessment of the robustness (i.e., 
“how much does the estimate change if we posit the existence of a confounder?”) of the original analysis 
to violations of the assumption of no unmeasured confounders. Finally, an analyst can examine whether 
specific subpopulations should be addressed in the results since the primary results may not generalize 
to all subpopulations if the biologic response or exposure may differ in these subgroups. The chapter 
concludes with a checklist of key considerations for including sensitivity analyses in a CER protocol or 
proposal.
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Introduction

Observational studies and statistical models rely on 
assumptions, which can range from how a variable is 
defined or summarized to how a statistical model is 
chosen and parameterized. Often these assumptions 
are reasonable and, even when violated, may result 
in unchanged effect estimates. When the results 
of analyses are consistent or unchanged by testing 
variations in underlying assumptions, they are said 
to be “robust.” However, violations in assumptions 
that result in meaningful effect estimate changes 
provide insight into the validity of the inferences that 

might be drawn from a study. A study’s underlying 
assumptions can be altered along a number of 
dimensions, including study definitions (modifying 
exposure/outcome/confounder definitions), study 
design (changing or augmenting the data source or 
population under study), and modeling (modifying 
a variable’s functional form or testing normality 
assumptions), to evaluate robustness of results.  

This chapter considers the forms of sensitivity 
analysis that can be included in the analysis of an 
observational comparative effectiveness study, 
provides examples, and offers recommendations 
about the use of sensitivity analyses.  
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Unmeasured Confounding and 
Study Definition Assumptions

Unmeasured Confounding

An underlying assumption of all epidemiological 
studies is that there is no unmeasured 
confounding, as unmeasured confounders cannot 
be accounted for in the analysis and including 
all confounders is a necessary condition for 
an unbiased estimate. Thus, inferences drawn 
from an epidemiologic study depend on this 
assumption. However, it is widely recognized that 
some potential confounding variables may not 
have been measured or available for analysis: the 
unmeasured confounding variable could either 
be a known confounder that is not present in the 
type of data being used (e.g., obesity is commonly 
not available in prescription claims databases) or 
an unknown confounder where the confounding 
relation is unsuspected.  Quantifying the effect 
that an unmeasured confounding variable would 
have on study results provides an assessment of 
the sensitivity of the result to violations of the 
assumption of no unmeasured confounding. The 
robustness of an association to the presence of a 
confounder,1-2 can alter inferences that might be 
drawn from a study, which then might change how 
the study results are used to  influence translation  
into clinical or policy decisionmaking. Methods 
for assessing the potential impact of unmeasured 
confounding on study results, as well as quasi-
experimental methods to account for unmeasured 
confounding, are discussed later in the chapter.

Comparison Groups 	

An important choice in study design is the 
selection of suitable treatment and comparison 
groups. This step can serve to address many 
potential limitations of a study, such as how new 
user cohorts eliminate the survivor bias that 
may be present if current (prevalent) users are 
studied. (Current users would reflect only people 
who could tolerate the treatment and, most likely, 
for whom treatment appeared to be effective).3 

However, this “new user” approach can limit 
the questions that can be asked in a study, as 
excluding prevalent users might omit long-term 

users (which could overlook risks that arise over 
long periods of use). For example, when Rietbrock 
et al. considered the comparative effectiveness of 
warfarin and aspirin in atrial fibrillation4 in the 
General Practice Research Database, they looked 
at current use and past use instead of new use. This 
is a sensible strategy in a general practice setting 
as these medications may be started long before 
the patient is diagnosed with atrial fibrillation. Yet, 
as these medications may be used for decades, 
long-term users are of great interest. In this study, 
the authors used past use to address indication, 
by comparing current users to past users (an 
important step in a “prevalent users” study). 

One approach is to include several different 
comparison groups and use the observed 
differences in potential biases with the different 
comparison groups as a way to assess the 
robustness of the results. For example, when 
studying the association between thiazide diuretics 
and diabetes, one could create reference groups 
including “nonusers,” “recent past users,” “distant 
past users,” and “users of other antihypertensive 
medications.” One would presume that the risk 
of incident diabetes among the “distant past 
users” should resemble that of the “nonusers”; 
if not, there is a possibility that confounding by 
indication is the reason for the difference in risk. 

Exposure Definitions 	

Establishing a time window that appropriately 
captures exposure during etiologically relevant 
time periods can present a challenge in study 
design when decisions need to be made in the 
presence of uncertainty.5 Uncertainty about the 
most appropriate way to define drug exposure can 
lead to questions about what would have happened 
if the exposure had been defined a different way. 
A substantially different exposure-outcome 
association observed under different definitions of 
exposure (such as different time windows or dose 
[e.g., either daily or cumulative]) might provide 
insight into the biological mechanisms underlying 
the association or provide clues about potential 
confounding or unaddressed bias. As such, varying 
the exposure definition and re-analyzing under 
different definitions serves as a form of sensitivity 
analysis. 
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Outcome Definitions 	

The association between exposure and outcome 
can also be assessed under different definitions of 
the outcome. Often a clinically relevant outcome 
in a data source can be ascertained in several ways 
(e.g., a single diagnosis code, multiple diagnosis 
codes, a combination of diagnosis and procedure 
codes). The analysis can be repeated using these 
different definitions of the outcome, which may 
shed light on the how well the original outcome 
definition truly reflects the condition of interest. 

Beyond varying a single outcome definition, it is 
also possible to evaluate the association between 
the exposure and clinically different outcomes. 
If the association between the exposure and one 
clinical outcome is known from a study with strong 
validity (such as from a clinical trial) and can be 
reproduced in the study, the observed association 
between the exposure of interest and an outcome 
about which external data are not available 
becomes more credible. Since some outcomes 
might not be expected to occur immediately after 
exposure (e.g., cancer), the study could employ 
different lag (induction) periods between exposure 
and the first outcomes to be analyzed in order to 
assess the sensitivity of the result to the definition. 
This result can lead either to insight into potential 
unaddressed bias or confounding, or it could be 
used as a basis for discussion about etiology (e.g., 
does the outcome have a long onset period?). 

Covariate Definitions

Covariate definitions can also be modified to assess 
how well they address confounding in the analysis. 
Although a minimum set of covariates may be used 
to address confounding, there may be an advantage 
to using a staged approach where groups of 
covariates are introduced, leading to progressively 
greater adjustment. If done transparently, 
this approach may provide insight into which 
covariates have relatively greater influences on 
effect estimates, permitting comparison with 
known or expected associations or permitting the 
identification of possible intermediate variables. 

Finally, some covariates are known to be 
misclassified under some approaches. A classic 
example is an “intention to treat” analysis that 
assumes that each participant continues to 

be exposed once they have received an initial 
treatment. Originally used in the analysis of 
randomized trials, this approach has been used in 
observational studies as well.6 It can be worthwhile 
to do a sensitivity analysis on studies that use an 
“intention to treat” approach to see how different 
an “as treated” analysis would be even if intention 
to treat is the main estimate of interest, mostly in 
cases where there is differential adherence in the 
data source between two therapeutic approaches.7  

Summary Variables

Study results can also be affected by the 
summarization of variables. For example, time 
can be summarized, and differences in the time 
window during which exposure is determined 
can lead to changes in study effect estimates. For 
example, the risk of venous thromboembolism 
rises with duration of use for oral contraceptives;8 
an exposure definition that did not consider the 
cumulative exposure to the medication might 
underestimate the difference in risk between 
two different formulations of oral contraceptive. 
Alternately, effect estimates may vary with changes 
in the outcome definition. For example, an outcome 
definition of all cardiovascular events including 
angina could lead to a different effect estimate than 
an outcome definition including only myocardial 
infarction. Sensitivity analyses of the outcome 
definition can allow for a richer understanding of 
the data, even for models based on data from a 
randomized controlled trial. 	

Selection Bias

The assessment of selection bias through 
sensitivity analysis involves assumptions regarding 
inclusion or participation by potential subjects, 
and results can be highly sensitive to assumptions. 
For example, the oversampling of cases exposed 
to one of the drugs under study (or, similarly, an 
undersampling) can lead to substantial changes in 
effect measures over ranges that might plausibly 
be evaluated. Even with external validation data, 
which may work for unmeasured confounders,9 it is 
difficult to account for more than a trivial amount 
of selection bias. Generally, if there is strong 
evidence of selection bias in a particular data set it 
is best to seek out alternative data sources.
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One limited exception may be when the magnitude 
of bias is known to be small.10 This may be true 
for nonrandom loss to followup in a patient cohort. 
Since the baseline characteristics of the cohort 
are known, it is possible to make reasonable 
assumptions about how influential this bias can 
be. But, in the absence of such information, it 
is generally better to focus on identifying and 
eliminating selection bias at the data acquisition or 
study design stage. 

Data Source, Subpopulations, 
and Analytic Methods

The first section of this chapter covered traditional 
sensitivity analysis to test basic assumptions such 
as variable definitions and to consider the impact 
of an unmeasured confounder. These issues should 
be considered in every observational study of 
comparative effectiveness research. However, there 
are some additional sensitivity analyses that should 
be considered, depending on the nature of the 
epidemiological question and the data available. 
Not every analysis can (or should) consider these 
factors, but they can be as important as the more 
traditional sensitivity analysis approaches. 

Data Source  

For many comparative effectiveness studies, the 
data used for the analysis were not specifically 
collected for the purpose of the research question. 
Instead, the data may have been obtained as part of 
routine care or for administrative purposes such as 
medical billing. In such cases, it may be possible to 
acquire multiple data sources for a single analysis 
(and use the additional data sources as a sensitivity 
analysis). Where this is not feasible, it may be 
possible to consider differences between study 
results and results obtained from other papers that 
use different data sources. 

While all data sources have inherent limitations 
in terms of the data that are captured by the 
database, these limitations can be accentuated 
when the data were not prospectively collected 
for the specific research purpose.11 For example, 
secondary use of data increases the chances 
that a known but unmeasured confounder may 
explain part or all of an observed association. 
A straightforward example of the differences in 
data capture can be seen by comparing data from 

Medicare (i.e., U.S. medical claims data) and the 
General Practice Research Database (i.e., British 
electronic medical records collected as part of 
routine care).11 Historically, Medicare data have 
lacked the results of routine laboratory testing 
and measurement (quantities like height, weight, 
blood pressure, and glucose measures), but include 
detailed reporting on hospitalizations (which are 
billed and thus well recorded in a claims database). 
In a similar sense, historically, the General Practice 
Research Database has had weaker reporting on 
hospitalizations (since this information is captured 
only as reports given back to the General Practice, 
that usually are less detailed), but better recording 
than Medicare data for routine measurements 
(such as blood pressure) that are done as part of a 
standard medical visit. 

Issues with measurement error can also emerge 
because of the process by which data are collected. 
For example, “myocardial infarction” coded 
for the purposes of billing may vary slightly or 
substantially from a clinically verified outcome 
of myocardial infarction. As such, there will be 
an inevitable introduction of misclassification 
into the associations. Replicating associations in 
different data sources (e.g., comparing a report to 
a general practitioner [GP] with a hospital ICD-9 
code) can provide an idea of how changes to the 
operational definition of an outcome can alter the 
estimates. Replication of a study using different 
data sources is more important for less objectively 
clear outcomes (such as depression) than it is for 
more objectively clear outcomes (such as all-cause 
mortality). 

An analysis conducted in a single data source 
may be vulnerable to bias due to systematic 
measurement error or the omission of a key 
confounding variable. Associations that can be 
replicated in a variety of data sources, each of 
which may have used different definitions for 
recording information and which have different 
covariates available, provide reassurance that the 
results are not simply due to the unavailability of 
an important confounding variable in a specific 
data set. Furthermore, when estimating the 
possible effect of an unmeasured confounder on 
study results, data sets that measure the confounder 
may provide good estimates of the confounder’s 
association with exposure and outcome (and 
provide context for results in data sources without 
the same confounder information).  
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An alternative to looking at completely separate 
datasets is to consider supplementing the available 
data with additional information from external 
data sources. An example of a study that took the 
approach of supplementing data was conducted by 
Huybrechts et al.12 They looked at the comparative 
safety of typical and atypical antipsychotics among 
nursing home residents. The main analysis used 
prescription claims (Medicare and Medicaid data) 
and found, using high-dimensional propensity 
score adjustment, that conventional antipsychotics 
were associated with an increase in 180-day 
mortality risk  (a risk difference of 7.0 per 100 
persons [95% CI: 5.8, 8.2]). The authors then 
included data from MDS (Minimum Data Set) 
and OSCAR (Online Survey, Certification and 
Reporting), which contains clinical covariates 
and nursing home characteristics.12 The result 
of including these variables was an essentially 
identical estimate of 7.1 per 100 people (95% CI: 
5.9, 8.2).12 This showed that these differences 
were robust to the addition of these additional 
covariates. It did not rule out other potential biases, 
but it did demonstrate that simply adding MDS 
and OSCAR data would not change statistical 
inference. 

While replicating results across data sources 
provides numerous benefits in terms of 
understanding the robustness of the association 
and reducing the likelihood of a chance finding, it 
is often a luxury that is not available for a research 
question, and inferences may need to be drawn 
from the data source at hand. 

Key Subpopulations

Therapies are often tested on an ideal population 
(e.g., uncomplicated patients thought to be likely 
to adhere to medication) in clinical trials. Once 
the benefit is clearly established in trials, the 
therapy is approved for use and becomes available 
to all patients. However, there are several cases 
where it is possible that the effectiveness of 
specific therapies can be subject to effect measure 
modification. While a key subpopulation may 
be independently specified as a population of 
interest, showing that results are homogeneous 
across important subpopulations can build 
confidence in applying the results uniformly to 
all subpopulations. Alternatively, it may highlight 
the presence of effect measure modification and 

the need to comment on population heterogeneity 
in the interpretation of results. As part of the 
analysis plan, it is important to state whether 
measures of effect will be estimated within these 
or other subpopulations present in the research 
sample in order to assess possible effect measure 
modification:

Pediatric populations. Children may respond 
differently to therapy from adults, and dosing may 
be more complicated. Looking at children as a 
separate and important sub-group may make sense 
if a therapy is likely to be used in children. 

Genetic variability. The issue of genetic variability 
is often handled only by looking at different 
ethnic or racial groups (who are presumed to have 
different allele frequencies). Some medications 
may be less effective in some populations due 
to the different polymorphisms that are present 
in these persons, though indicators of race and 
ethnicity are only surrogates for genetic variation. 

Complex patients. These are patients who suffer 
from multiple disease states at once. These 
disease states (or the treatment[s] for these disease 
states) may interfere with each other, resulting 
in a different optimal treatment strategy in these 
patients. A classic example is the treatment of 
cardiovascular disease in HIV-infected patients. 
The drug therapy used to treat the HIV infection 
may interfere with medication intended to treat 
cardiovascular disease. Treatment of these complex 
patients is of great concern to clinicians, and these 
patients should be considered separately where 
sample size considerations allow for this.

Older adults. Older adults are another population 
that may have more drug side effects and worse 
outcomes from surgeries and devices. Furthermore, 
older adults are inherently more likely to be subject 
to polypharmacy and thus have a much higher risk 
of drug-drug interactions.  

Most studies lack the power to look at all of these 
different populations, nor are they all likely to be 
present in a single data source. However, when 
it is feasible to do so, it can be useful to explore 
these subpopulations to determine if the overall 
associations persist or if the best choice of therapy 
is population dependent. These can be important 
clues in determining how stable associations 
are likely to be across key subpopulations. 
In particular, the researcher should identify 
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segments of the population for which there are 
concerns about generalizing results. For example, 
randomized trials of heart failure often exclude 
large portions of the patient population due to 
the complexity of the underlying disease state.13 

It is critical to try to include inferences to these 
complex subpopulations when doing comparative 
effectiveness research with heart failure as the 
study outcome, as that is precisely where the 
evidence gap is the greatest. 

Cohort Definition and Statistical 
Approaches

If it is possible to do so, it can also be extremely 
useful to consider the use of more than one cohort 
definition or statistical approach to ensure that the 
effect estimate is robust to the assumptions behind 
these approaches. There are several options to 
consider as alternative analysis approaches. 

Samy Suissa illustrated how the choice of cohort 
definition can affect effect estimates in his 
paper on immortal time bias.14 He considered 
five different approaches to defining a cohort, 
with person time incorrectly allocated (causing 
immortal time bias) and then repeated these 
analyses with person time correctly allocated 
(giving correct estimates). Even in this 
straightforward example, the corrected hazard 
ratios varied from 0.91 to 1.13 depending 
on the cohort definition. There were five 
cohort definitions used to analyze the use of 
antithrombotic medication and the time to death 
from lung cancer: time-based cohort, event-based 
cohort, exposure-based cohort, multiple-event–
based cohort, and event-exposure–based cohort. 
These cohorts produce hazard ratios of 1.13, 
1.02, 1.05, 0.91, and 0.95, respectively. While 
this may not seem like an extreme difference in 
results, it does illustrate the value of using varying 
assumptions to hone in on an understanding of 
the stability of the associations under study with 
different analytical approaches, as in this example 
where point estimates varied by about +/- 10% 
depending in how the cohort was defined. 

One can also consider the method of covariate 
adjustment to see if it might result in changes in 
the effect estimates. One option to consider as an 
adjunct analysis is the use of a high-dimensional 
propensity score,15 as this approach is typically 
applicable to the same data upon which a 

conventional regression analysis is performed. The 
high-dimensional propensity score is well suited 
to handling situations in which there are multiple 
weak confounding variables. This is a common 
situation in many claims database contexts, 
where numerous variables can be found that are 
associated (perhaps weakly) with drug exposure, 
and these same variables may be markers for 
(i.e., associated with) unmeasured confounders. 
Each variable may represent a weak marker for 
an unmeasured confounder, but collectively (such 
as through the high-dimensional propensity score 
approach) their inclusion can reduce confounding 
from this source. This kind of propensity score 
approach is a good method for validating the 
results of conventional regression models. 

Another option that can be used, when the data 
permit it, is an instrumental variable (IV) analysis 
to assess the extent of bias due to unmeasured 
confounding (see chapter 10 for a detailed 
discussion of IV analysis).16 While there have 
been criticisms that use of instruments such as 
physician or institutional preference may have 
assumptions that are difficult to verify and may 
increase the variance of the estimates,17 an 
instrumental variable analysis has the potential 
to account for unmeasured confounding factors 
(which is a key advantage), and traditional 
approaches also have unverifiable assumptions. 
Also, estimators resulting from the IV analysis 
may differ from main analysis estimators (see 
Supplement, “Improving Characterization of Study 
Populations: The Identification Problem”), and 
investigators should ensure correct interpretation 
of results using this approach. 

Examples of Sensitivity Analysis of Analytic 
Methods

Sensitivity analysis approaches to varying analytic 
methods have been used to build confidence in 
results. One example is a study by Schneeweiss 
et al.18 of the effectiveness of aminocaproic 
acid compared with aprotinin for the reduction 
of surgical mortality during coronary-artery 
bypass grafting (CABG). In this study, the 
authors demonstrated that three separate analytic 
approaches (traditional regression, propensity 
score, and physician preference instrumental 
variable analyses) all showed an excess risk of 
death among the patients treated with aprotinin 
(estimates ranged from a relative risk of 1.32 
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[propensity score] to a relative risk of 1.64 
[traditional regression analysis]). Showing that 
different approaches, each of which used different 
assumptions, all demonstrated concordant results 
was further evidence that this association was 
robust. 

Sometimes a sensitivity analysis can reveal 
a key weakness in a particular approach to a 
statistical problem. Delaney et al.19 looked at 
the use of case-crossover designs to estimate the 
association between warfarin use and bleeding 
in the General Practice Research Database. 
They compared the case-crossover results to the 
case-time-control design, the nested case control 
design, and to the results of a meta-analysis 
of randomized controlled trials. The case-
crossover approach, where individuals serve as 
their own controls, showed results that differed 
from other analytic approaches. For example, 
the case-crossover design with a lagged control 
window (a control window that is placed back 
one year) estimated a rate ratio of 1.3 (95% CI: 
1.0, 1.7) compared with a rate ratios of 1.9 for 
the nested case-control design, 1.7 for the case-
time-control design and 2.2 for a meta-analysis 
of clinical trials.18 Furthermore, the results 
showed a strong dependence on the length of the 
exposure window (ranging from a rate ratio of 1.0 
to 3.6), regardless of overall time on treatment. 
These results provided evidence that results 
from a case-crossover approach in this particular 

situation needed a cautious interpretation, as 
different approaches were estimating incompatible 
magnitudes of association, were not compatible 
with the estimates from trials, and likely violated 
an assumption of the case-crossover approach 
(transient exposure). Unlike the Schneeweiss et al. 
example,18 for which the results were consistent 
across analytic approaches, divergent results 
require careful consideration of which approach is 
the most appropriate (given the assumptions made) 
for drawing inferences, and investigators should 
provide a justification for the determination in the 
discussion. 

Sometimes the reasons for differential findings 
with differences in approach can be obvious (e.g., 
concerns over the appropriateness of the case-
crossover approach, in the Delaney et al. example 
above).19  In other cases, differences can be small 
and the focus can be on the overall direction 
of the inference (like in the Suissa example 
above).14 Finally, there can be cases where two 
different approaches (e.g., an IV approach and a 
conventional analysis) yield different inferences 
and it can be unclear which one is correct. In 
such a case, it is important to highlight these 
differences, and to try to determine which set of 
assumptions makes sense in the structure of the 
specific problem.  
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Table 11.1. Study aspects that can be evaluated through sensitivity analysis

Aspect
Evaluable Through 
Sensitivity Analysis Further Requirements

Confounding I: Unmeasured Maybe Assumptions involving prevalence, 
strength, and direction of 
unmeasured confounder

Confounding II: Residual Maybe Knowledge/assumption of which 
variables are not fully measured

Selection Bias Not Present No. (Maybe; Generally not testable 
for most forms of selection bias, but 
some exceptions [e.g., nonrandom 
loss to followup] may be testable 
with assumptions)

Assumption or external information 
on source of selection bias

Missing Data No Assumption or external information 
on mechanism for missing data

Data Source Yes Access to additional data sources

Sub-populations Yes Identifier of subpopulation

Statistical Method Yes None

Misclassification I: Covariate 
Definitions

Yes None

Misclassification II: Differential 
misclassification

Maybe Assumption or external 
information about mechanism of 
misclassification

Functional Form Yes None

Statistical Assumptions
The guidance in this section focuses primarily 
on studies with a continuous outcome, 
exposure, or confounding factor variable. Many 
pharmacoepidemiological studies are conducted 
within a claims database environment where the 
number of continuous variables is limited (often 
only age is available), and these assumptions do 
not apply in these settings. However, studies set in 
electronic medical records or in prospective cohort 
studies may have a wider range of continuous 
variables, and it is important to ensure that they are 
modeled correctly. 

Covariate and Outcome Distributions

It is common to enter continuous parameters as 
linear covariates in a final model (whether that 
model is linear, logistic, or survival). However, 
there are many variables where the association 
with the outcome may be better represented as a 
transformation of the original variable.   

A good example of such a variable is net personal 
income, a variable that is bounded at zero but for 
which there may be a large number of plausible 
values. The marginal effect of a dollar of income 
may not be linear across the entire range of 
observed incomes (an increase of $5,000 may mean 
more to individuals with a base income of $10,000 
than those with a base income of $100,000). As a 
result, it can make sense to look at transformations 
of the data into a more meaningful scale. 

The most common option for transforming a 
continuous variable is to create categories (e.g., 
quintiles derived from the data set or specific 
cut points). This approach has the advantages 
of simplicity and transparency, as well as being 
relatively nonparametric. However, unless the 
cut points have clinical meaning, they can make 
studies difficult to compare with one another 
(as each study may have different cut points). 
Furthermore, transforming a continuous variable 
into a discrete form always results in loss of 
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information that is better to avoid if possible. 
Another option is to consider transforming the 
variable to see if this influences the final results. 
The precise choice of transformation requires 
knowledge of the distribution of the covariate. 
For confounding factors, it can be helpful to test 
several transformations and to see the impact of 
the reduction in skewness, and to decide whether a 
linear approximation remains appropriate.

Functional Form

The “functional form” is the assumed 
mathematical association between variables in a 
statistical model. There are numerous potential 
variations in functional form that can be the 
subject of a sensitivity analysis. Examples include 
the degree of polynomial expressions, splines, or 
additive rather than multiplicative joint effects of 
covariates in the prediction of both exposures and 
outcomes. In all of these cases, the “functional 
form” is the assumed mathematical association 
between variables, and sensitivity analyses can 
be employed to evaluate the effect of different 
assumptions. In cases where nonlinearity is 
suspected (i.e., a nonlinear relationship between a 
dependent and independent variable in a model), 
it can be useful to test the addition of a square 
term to the model (i.e., the pair of covariates age 
+ age2 as the functional form of the independent 
variable age). If this check does not influence the 
estimate of the association, then it is unlikely that 
there is any important degree of nonlinearity. If 
there is an impact on the estimates for this sort of 
transformation, it can make sense to try a more 
appropriate model for the nonlinear variable (such 
as a spline or a generalized additive model). 

Transformations should be used with caution when 
looking at the primary exposure, as they can be 
susceptible to overfit. Overfit occurs when you are 
fitting a model to random variations in the data 
(i.e., noise) rather than to the underlying relation; 
polynomial-based models are susceptible to this 
sort of problem. However, if one is assessing the 
association between a drug and an outcome, this 
can be a useful way to handle parameters (like 
age) that will not be directly used for inference but 
that one wishes to balance between two exposure 
groups. These transformations should also be 
considered as possibilities in the creation of a 
probability of treatment model (for a propensity 

score analysis). If overfit of a key parameter that is 
to be used for inference is of serious concern, then 
there are analytic approaches (like dividing the 
data into a training and validation data set) that can 
be used to reduce the amount of overfit. However, 
these data mining techniques are beyond the scope 
of this chapter.  

Special Cases

Another modeling challenge for epidemiologic 
analysis and interpretation is when there is a 
mixture of informative null values (zeroes) and 
a distribution. This occurs with variables like 
coronary artery calcium (CAC), which can have 
values of zero or a number of Agatston units.20   
These distributions are best modeled as two parts: 
(1) as a dichotomous variable to determine the 
presence or absence of CAC; and (2) using a 
model to determine the severity of CAC among 
those with CAC>0. In the specific case of CAC, 
the severity model is typically log-transformed due 
to extreme skew.20 These sorts of distributions are 
rare, but one should still consider the distribution 
and functional form of key continuous variables 
when they are available. 

Implementation Approaches

There are a number of approaches to conducting 
sensitivity analyses. This section describes two 
widely used approaches, spreadsheet-based and 
code-based analyses. It is not intended to be a 
comprehensive guide to implementing sensitivity 
analyses. Other approaches to conducting 
sensitivity analysis exist and may be more useful 
for specific problems.2  

Spreadsheet-Based Analysis

The robustness of a study result to an unmeasured 
confounding variable can be assessed 
quantitatively using a standard spreadsheet.21 
The observed result and ranges of assumptions 
about an unmeasured confounder (prevalence, 
strength of association with exposure, and strength 
of association with outcome) are entered into 
the spreadsheet, and are used to provide the 
departure from the observed result to be expected 
if the unmeasured confounding variable could 
be accounted for using standard formulae for 
confounding.22 Two approaches are available 
within the spreadsheet: (1) an “array” approach; 
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and (2) a “rule-out” approach. In the array 
approach, an array of values (representing the 
ranges of assumed values for the unmeasured 
variable) is the input for the spreadsheet. The 
resulting output is a three-dimensional plot that 
illustrates, through a graphed response surface, the 
observed result for a constellation of assumptions 
(within the input ranges) about the unmeasured 
confounder. 

In the rule-out approach, the observed association 
and characteristics of the unmeasured confounder 
(prevalence and strength of association with 
both exposure and outcome) are entered into 
the spreadsheet. The resulting output is a two-
dimensional graph that plots, given the observed 
association, the ranges of unmeasured confounder 
characteristics that would result in a null finding. 
In simpler terms, the rule-out approach quantifies, 
given assumptions, how strong a measured 
confounder would need to be to result in a finding 
of no association and “rules out” whether an 
unmeasured confounder can explain the observed 
association.

Statistical Software–Based Analysis

For some of the approaches discussed, the 
software is available online. For example, 
the high-dimensional propensity score and 
related documentation is available at http://
www.hdpharmacoepi.org/download/. For other 
approaches, like the case-crossover design,18 the 
technique is well known and widely available. 
Finally, many of the most important forms of 
sensitivity analysis require data management tasks 
(such as recoding the length of an exposure time 
window) that are straightforward though time 
consuming. 

This section provides a few examples of how 
slightly more complex functional forms of 
covariates (where the association is not well 
described by a line or by the log transformation 
of a line) can be handled. The first example 
introduces a spline into a model where the 
analyst suspects that there might be a nonlinear 
association with age (and where there is a broad 
age range in the cohort that makes a linearity 
assumption suspect). The second example looks at 
how to model CAC, which is an outcome variable 
with a complex form. 

Example of Functional Form Analysis 

This SAS code is an example of a mixed model 
that is being used to model the trajectory of a 
biomarker over time (variable=years), conditional 
on a number of covariates. The example 
estimates the association between different 
statin medications with this biomarker. Like in 
many prescription claims databases, most of the 
covariates are dichotomous. However, there is a 
concern that age may not be linearly associated 
with outcome, so a version of the analysis is tried 
in which a spline is used in place of a standard age 
variable. 

Original Analysis (SAS 9.2):

proc glimmix data=MY_DATA_SET;

class patientid;

model biomarker_value =age female years statinA 
statinB diabetes hypertension / s cl;

random intercept years/subject=patientid;

run;

Sensitivity Analysis:

proc glimmix data=MY_DATA_SET;

class patientid;

effect spl = spline(age);

model biomarker_value =spl female years statinA 
statinB diabetes hypertension / s cl;

random intercept years/subject=patientid;

run;

While the spline version of the age variable needs 
to be graphically interpreted, it should handle 
any nonlinear association between age and the 
biomarker of interest. 

Example of Two-Stage Models for Coronary 
Artery Calcium (CAC) 

CAC is an example of a continuous variable with 
an extremely complex form. The examples of two-
stage CAC modeling (below) use variables from 
the Multi-Ethnic Study of Atherosclerosis. Here, 
the example is testing whether different forms of 
nonsteroidal anti-inflammatory drugs (below as 
asa1c, nsaid1c, cox21c) are associated with more 
or less calcification of the arteries. The model 
needs to be done in two stages, as it is thought 
that the covariates that predict the initiation of 
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calcification may differ from those that predict how 
quickly calcification progresses once the process 
has begun.20 

First, a model is developed for the relative risk of 
having a CAC score greater than zero (i.e., that 
there is at least some evidence of plaques in a CT 
scan of the participant’s coronary arteries). The 
variable for CAC is cac (1=CAC present, 0=CAC 
not present). The repeated statement is used to 
invoke robust confidence intervals (as there is only 
one subject for each unique participant ID number, 
designated as the variable idno). 

SAS 9.2 code example:

proc genmod data = b descending;

 class idno race1;

 model cac=age1c male bmi1c race1

     male  diabetes smoker ex_smoker  sbp1c dbp1c

   hdl1 ldl1 TRIG1STTN1C  asa1c nsaid1c cox21c

   / dist = poisson link = log; 

 repeated subject = idno/ type =ind;

estimate ‘asa1c’ asa1c 1 -1/ exp;

estimate ‘nsaid1c’ nsaid1c 1 -1/ exp;

estimate ‘cox21c’ cox21c 1 -1/ exp;;

run;

Among those participants with CAC (as measured 
by an Agatston score, agatpm1c), greater than 
zero, the amount present is then modeled. As this 
variable is highly skewed, the amount of CAC 
present is transformed using a log transformation. 

SAS 9.2 code example:

proc genmod data = b descending;

class idno race1;

where  agatpm1c ne 0; 

model  log_transformed_CAC=age1c male bmi1c 
race1

     male  diabetes smoker ex_smoker  sbp1c dbp1c

   hdl1 ldl1 TRIG1STTN1C asa1c nsaid1c cox21c;

 repeated subject = idno/ type = unstr;

run; 

The modeling of CAC is a good example of one 
of the more complicated continuous variables that 
can be encountered in CER.20 To properly model 
this association, two models were needed (and 
the second model required transformation of the 
exposure). Most comparative effectiveness projects 
will involve much simpler outcome variables, 
and the analyst should be careful to include more 
complex models only where there is an important 
scientific rationale. 

Presentation

Often sensitivity analyses conducted for a specific 
CER study can simply be summarized in the text 
of the paper, especially if the number of scenarios 
is small.17 In other cases, where a broad range of 
scenarios are tested,2 it may be more informative to 
display analyses in tabular or graphical form. 

Tabular Presentation

The classic approach to presenting sensitivity 
analysis results is a table. There, the author can 
look at the results of different assumptions and/or 
population subgroups. Tables are usually preferred 
in cases where there is minimal information 
being presented, as they allow the reader to very 
precisely determine the influence of changes in 
assumptions on the reported associations. This is 
the approach used by Suissa14 to show differences 
in results based on different approaches to 
analyzing a cohort of lung cancer patients. 

Graphical Presentation

One reason to use graphical methods is that the 
variable being modeled is itself a continuous 
variable, and presenting the full plot is more 
informative than forcing a categorization scheme 
on the data. One example, from Robyn McClelland 
and colleagues (Figure 11.1),23  is a sensitivity 
analysis to see if the form in which alcohol is 
consumed changes its association with levels of 
CAC. The analyst, therefore, plots the association 
with total alcohol consumed overall and by type 
of alcohol (beer, wine, hard alcohol). Here, both 
the exposure and the outcome are continuous 
variables, and so it is much easier to present the 
results of the sensitivity analysis as a series of 
plots. 
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Figure 11.1. Smoothed plot of alcohol consumption versus annualized 
progression of CAC with 95% CIs

 See McClelland RL, Bild DE, Burke GL, et al. Alcohol and coronary artery calcium prevalence, incidence, and 
progression: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr 2008 Dec;88(6):1593-
601. This figure is copyrighted by the American Society for Nutrition and reprinted with permission.

Another reason for a graphical display is to present 
the conditions that a confounder would need to 
meet in order to be able to explain an association. 
As discussed, the strength of a confounder depends 
on its association with the exposure, the outcome, 
and its prevalence in the population. Using the 
standard spreadsheet discussed earlier,20 these 
conditions can be represented as a plot. For 
example, Figure 11.2 presents a plot based on data 
from Psaty et al.1, 24 

Figure 11.2 plots the combination of the odds ratio 
between the exposure and the confounder (OREC) 
and the relative risk between the confounder and 
the outcome (RRCD) that would be required 
to explain an observed association between the 
exposure and the outcome by confounding alone. 
There are two levels of association considered 

(ARR=1.57 and ARR=1.3) and a separate line 
plotted for each. These sorts of displays can help 
illustrate the strength of unmeasured confounding 
that is required to explain observed associations, 
which can make the process of identifying 
possible candidate confounders easier (as one can 
reference other studies from other populations 
in order to assess the plausibility of the assumed 
strength of association). Spreadsheets that 
facilitate the conduct of these sensitivity analyses 
are available. (http://www.drugepi.org/dope-
downloads/#Sensitivity Analysis)

Other tools for sensitivity analysis are available, 
such as the one from Lash et al. (http://sites.google.
com/site/biasanalysis/).10
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Figure 11.2. Plot to assess the strength of unmeasured confounding 
necessary to explain an observed association

Conclusion

While sensitivity analyses are important, it is 
necessary to balance the concise reporting of study 
results with the benefits of including of the results 
of numerous sensitivity analyses. In general, one 
should highlight sensitivity analyses that result in 
important changes or that show that an analysis is 
robust to changes in assumptions. Furthermore, 
one should ensure that the number of analyses 
presented is appropriate for illustrating how the 
model responds to these changes. For example, if 
looking at the sensitivity of results to changes in 
the exposure time window, consider looking at 30, 
60, and 90 days instead of 15, 30, 45, 60, 75, 90, 
105, and 120 days, unless the latter list directly 
illustrates an important property of the statistical 
model. The decision as to what are the most 
important sensitivity analyses to run will always 
be inherently specific to the problem under study. 

For example, a comparative effectiveness study of 
two devices might not be amenable to variations 
in exposure window definitions, but might be a 
perfect case for a physician preference instrumental 
variable. This chapter highlights the most common 
elements for consideration in sensitivity analysis, 
but some degree of judgment as to the prioritization 
of these analyses for presentation is required. Still 
as a general guideline, the analyst should be able to 
answer three questions:

•	 Is the association robust to changes in exposure 
definition, outcome definition, and the 
functional form of these variables? 

•	 How strong would an unmeasured confounder 
have to be to explain the magnitude of the 
difference between two treatments?

•	 Does the choice of statistical method influence 
the directionality or strength of the association?  
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A plan for including some key sensitivity analysis 
in developing study protocols and analysis plans 
should be formed with a clear awareness of 
the limitations of the data and the nature of the 
problem. The plan should be able to answer these 
three basic questions and should be a key feature 
of any comparative effectiveness analysis. The use 

of sensitivity analysis to examine the underlying 
assumptions in the analysis process will build 
confidence as to the robustness of associations 
to assumptions and be a crucial component of 
grading the strength of evidence provided by a 
study. 

 

Checklist: Guidance and key considerations for sensitivity analyses in an  
observational CER protocol

Guidance Key Considerations Check

Propose and describe planned 
sensitivity analyses.

-  Consider the effect of changing exposure, outcome,  
   confounder, or covariate definitions or  
   classifications. 
-  Assess expected impact of unmeasured confounders  
   on key measures of association.

o

Describe important 
subpopulations in which measures 
of effect will be assessed for 
homogeneity.

-  Consider pediatric, racial/ethnic subgroups, patients  
   with complex disease states. 
-  Consider inclusion of AHRQ Priority Populations  
   (http://www.ahrq.gov/populations/).

o

State modeling assumptions and 
how they will be tested. o

Indicate whether the study will be 
replicated in other databases, if 
available and feasible.

o
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