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Abstract

The feasibility of a study often rests on whether the projected number of accrued patients is adequate 
to address the scientific aims of the study. Accordingly, a rationale for the planned study size should 
be provided in observational comparative effectiveness research (CER) study protocols. This chapter 
provides an overview of study size and power calculations in randomized controlled trials (RCTs), 
specifies considerations for observational comparative effectiveness research (CER) study size 
planning, and highlights study size considerations that differ between RCTs and observational studies of 
comparative effectiveness. The chapter concludes with a checklist of key considerations for study size 
planning for a CER protocol.
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Introduction

An important aspect of the assessment of study 
feasibility is whether the projected number of 
accrued patients is adequate to reasonably address 
the scientific aims of the study. Many journals have 
endorsed reporting standards that ask investigators to 
report the rationale for the study size. For example, 
the Strengthening the Reporting of Observational 
Studies in Epidemiology (STROBE) checklist asks 
investigators to report their rationale, which may 
include a statistical power calculation. However, such 
a rationale is often missing from study protocols. 
This is problematic when investigators interpret 
study findings in terms of the statistical significance 
in relation to the null hypothesis, which implies both 
a prespecified hypothesis and adequate statistical 
power (e.g., ≥80% for detecting a clinically important 
increase in harm). Without the context of a numeric 
rationale for the study size, readers may misinterpret 
the lack of a statistically significant difference in 
effect as false reassurance of lack of harm, or falsely 
conclude that there is no benefit when comparing two 
interventions.

Study Size and Power 
Calculations in RCTs

The study planning needed to achieve various study 
sizes and an understanding of statistical power 
that a given study size can yield are important 
aspects in the design of randomized controlled 
trials (RCTs). Reporting on the rationale underlying 
the size of treatment arms is clearly specified in 
the Consolidated Standards of Reporting Trials 
(CONSORT) and STrengthening the Reporting of 
OBservational studies in Epidemiology (STROBE) 
reporting guidelines, and institutional review boards 
(IRBs) often require such statements in a study 
protocol before data collection can begin.1 The 
rationale for study size in an RCT usually depends 
on calculations of the study size needed to achieve 
a specified level of statistical power for the primary 
hypothesis under study, defined as the probability 
of rejecting the null hypothesis when a specific 
alternative hypothesis (the primary hypothesis 
under study) is true. In the case of a trial comparing 
treatments, this is the probability of finding a 
statistically significant difference between treatments 
in the primary outcome if the treatments do indeed 
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differ by the amount specified. Several software 
packages and online tools exist for performing 
these calculations, such as Stata and Power 
Analysis and Sample Size (PASS).2-3 Textbooks 
give more detail on the calculations for a wide 
variety of data structures and statistical models.4

Calculating statistical power requires specification 
of several investigator choices and assumptions, 
each of which has important implications and must 
be specified with sufficient scientific rationale. 
Most importantly, investigators must specify a 
primary study outcome and a minimum treatment 
effect of interest for that outcome. This quantity, 
often referred to as the clinically meaningful or 
minimum detectable difference, identifies the 
size of the smallest potential treatment effect 
that would be of clinical relevance. Study size is 
calculated assuming that this value represents the 
true treatment effect. If the true treatment effect 
is larger than this quantity, then the power for a 
given study size will be even higher than originally 
calculated. 

In addition to the minimum treatment effect 
of interest, calculating the needed study size 
requires specifying a measure of data variability. 
In trials with a continuous outcome (e.g., 
LDL cholesterol), investigators must make 
assumptions about the standard deviation of the 
outcome in each trial arm; when the outcome 
is the occurrence of an event (e.g., death), then 
an assumed event rate in the control group is 
necessary. If the assumed event rate in the control 
group is combined with the specified treatment 
effect of interest, then one can calculate the 
expected event rate in each group if the minimum 

clinically important treatment effect is achieved. 
The CONSORT statement recommends reporting 
these quantities (the expected results in each group 
under the minimum detectable difference) rather 
than the minimum detectable difference. It is 
recommended that estimates of standard deviations 
and event rates used in study size calculations be 
taken from existing literature or pilot studies when 
available. 

Finally, needed study size depends on the 
chosen Type I error rate (a) and the required 
statistical power. For the majority of studies, the 
conventional cutoff for statistical significance,  
a = 0.05, is used, but this quantity should be 
clearly specified nonetheless. Many studies also 
use a standard required power of 80 percent, 
although other values are often considered. In 
RCTs that have study size constraints, due to 
budget or the pool of available patients, the power 
obtained from the achievable study size should be 
described. Potential reductions in the number of 
recruited patients available for analysis (e.g., due 
to loss to followup) should also be discussed. 

Table 9.1 shows an example of an adequate 
consideration of study size under several potential 
scenarios that clearly specify assumptions about 
the baseline risk of the primary outcome under 
study, the minimum clinically relevant treatment 
effect, and the required power. In this table, 
all of the necessary quantities are reported for 
determining the adequacy of the chosen study size; 
and investigators, funding agencies, and ethics 
review boards can make informed decisions about 
the potential utility of the planned study.

Table 9.1. Example study size table for an RCT comparing the risk of death for 
two alternative therapies* 

Scenario
Effect of 
Interest

Therapy 1 
Risk

Therapy 2 
Risk

Desired 
Power

Needed 
Study Size

Needed 
Recruitment

1 0.75 0.020 0.015 80% 10,795 13,494

2 0.75 0.100 0.075 80% 2,005 2,507

3 0.50 0.100 0.050 80% 435 544

4 0.50 0.100 0.050 90% 592 728*

All calculations assume a Type I error rate of 0.05. The effect of interest is specified as a risk ratio. Study size is 
reported per treatment arm, and a 20% dropout rate is assumed for calculating the needed recruitment.
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These considerations in sample size and power 
in the context of RCTs are also relevant for 
nonrandomized studies, but their application in 
nonrandomized studies may differ. The following 
section is for additional consideration, particularly 
for nonrandomized studies.

Considerations for 
Observational CER Study Size 
Planning

Bland has commented that funding agencies 
and journals put investigators in an inconsistent 
position: Funding agencies ask for statistical power 
calculations to test one hypothesis for the primary 
outcome, yet journals ask for confidence intervals.5 
In his commentary, Bland proposed that we 
resolve that inconsistency by asking investigators 
to base their study size on the expected precision 
of all relevant comparisons. Goodman and Berlin 
recommended a similar idea in 1994 (page 204 of 
their article):6

	 In our experience, expressing the implications 
of sample size calculations in the same 
language as is used in a published paper, 
instead of the language of power and detectable 
differences, helps researchers to understand the 
implications more clearly and take them more 
seriously. This in turn can produce meaningful 
discussions about the aims of the study, which 
power considerations rarely seem to inspire. 

Basing the study size on the expected width of 
confidence intervals offers another advantage: 
Investigators no longer need to commit to a 
primary outcome and a primary comparison (e.g., 
among alternative interventions).

Many funding agencies, however, rely on the 
conventional power calculations advocated by 
most trialists. Therefore, this section primarily 
focuses on power calculations and adapts 
trialists’ conventional advice to nonrandomized 
or observational studies because they introduce 
complexities that randomized trials do not need 
to consider. For example, investigators may 
not be able to estimate the power or precision 
of their proposed comparisons until they have 
generated the propensity score and constructed 
matched cohorts, which may exclude patients 
and interventions that appeared eligible when the 
cohort was assembled. 

Case Studies

Schneeweiss and colleagues published one of the 
first Developing Evidence to Inform Decisions 
about Effectiveness (DEcIDE) Program studies 
on comparative effectiveness; they compared the 
short-term risk of mortality in elderly patients 
who started a conventional versus an atypical 
antipsychotic medication regimen,7 reproducing an 
earlier study by Wang and colleagues.8 Consistent 
with most nonexperimental studies, especially in 
the pre-STROBE era, their methods section does 
not offer a rationale for the cohort study’s size. 
Based on their patient counts for each class of 
antipsychotic medication and the number of deaths 
observed during the first 180 days after starting 
medication, we calculated the statistical power for 
their study question: Do conventional antipsychotic 
medications pose a higher risk than atypical 
antipsychotic medications as measured by all-cause 
mortality?

We considered an inferiority hypothesis by using 
the crude mortality risk observed in the control 
cohort of atypical medication patients (9.58 
percent), and then assigning the conventional 
medication cohort a 10-percent higher risk (10.54 
percent), a clinically important excess risk. Based 
on the numbers of patients and deaths noted above, 
Stata’s sample size command, sampsi, reported 
statistical power of 0.83. Their subgroup analyses 
would have had lower power, but the main study 
was appropriately powered for its primary outcome 
and comparison.

Considerations That Differ for 
Nonrandomized Studies

Power calculations may require additional 
considerations for application to nonrandomized 
studies. For a well planned and conducted 
RCT, the Type I and Type II errors (i.e., false 
positive or false negative) rank higher as possible 
explanations for a finding of “no statistically 
significant difference” because randomization has 
overcome the potential confounding, the protocol 
has reduced measurement error, et cetera. But for 
nonrandomized studies, Type I and Type II errors 
rank lower on the list of possible explanations 
for such a negative result. Confounding bias, 
measurement error, and other biases should 
concern investigators more than the expected 
precision when they consider the feasibility of a 
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comparative effectiveness study. For example, the 
new user design trades precision for a reduction 
in confounding bias by restricting the study to 
incident users of the interventions under study. 
(See chapter 2 for a discussion of new user 
design.)9 As retrospective database studies become 
larger through distributed networks, insufficient 
statistical power of comparative effectiveness 
estimates will diminish in importance as a 
competing explanation for negative results—at 
least for the primary comparison of common 
interventions—and readers will need to consider 
whether small observed clinical differences matter 
for decisionmaking. For example, database studies 
may identify small excess risks of about 5 percent 
that would fall below the minimum clinically 
important difference specified in a prospective 
study. 

In some cases, controlling for confounding can 
also reduce the precision of estimated effects. The 
reduction in precision is perhaps most clearly seen 
in studies that use propensity score matching. With 
propensity score matching and strong preferential 
prescribing in relation to patient characteristics 
(i.e., less overlap in propensity score distributions 
across cohorts), many patients will drop out of the 
analysis.10 For example, Solomon and colleagues 
identified a cohort of 23,647 patients who were 
eligible for a comparative effectiveness study, but 
only 12,840 (54 percent) contributed to the final 
analysis after matching on the propensity score.11 
Inconveniently, the development of the propensity 
score occurs after the study protocol has been 
written, and the investigators have invested 
considerable time and effort toward completion of 
the comparative effectiveness study. Consequently, 
investigators should consider incorporating 
sensitivity analyses when calculating the expected 

precision of effects and study size estimates. 
For example, they might ask, “If 25 percent of 
the cohort were to drop out of the analysis after 
incorporating the propensity score, how would that 
reduced study size impact the expected precision?”

Because retrospective studies lack a protocol 
for data collection, they often suffer a higher 
frequency of missing data, especially for clinical 
examination values (e.g., blood pressure, body 
mass index, and laboratory results). Investigators 
who undertake a completed-cases analysis, which 
excludes patients with any missing data for 
key variables, may suffer from a smaller study 
size than they anticipated when they wrote the 
study protocol.12 Depending on the nature of the 
missingness, it may be possible for investigators 
to impute certain values and retain patients in the 
final analysis. But as with the development of 
propensity scores, multiple imputation is labor 
intensive, and its success in retaining patients will 
only be known after the protocol has been written.

Conclusion

In order to ensure adequate study size, 
investigators should provide a rationale for study 
size during the planning stages of an observational 
CER study. All definitions and assumptions 
should be specified, including the primary study 
outcome, clinically important minimum effect 
size, variability measure, and Type I and Type 
II error rates. Investigators should also consider 
other factors that may reduce the effective sample 
size, such as loss to followup, reductions due to 
statistical methods to control confounding, and 
missing data, when making their initial assessment 
as to whether the sample size necessary to detect a 
clinically meaningful difference can be achieved.
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Checklist: Guidance and key considerations for study size planning in 
observational CER protocols 

Guidance Key Considerations Check

Describe all relevant assumptions and 
decisions.

Describe: 
-  The primary outcome on which the study size  
   or power estimate is based. 
-  The clinically important minimum effect size  
   (e.g., hazard ratio ≥1.20). 
-  The Type I error level. 
-  The statistical power or Type II error level (for  
   study size calculations) or the assumed sample  
   size (for power calculations). 
-  The details of the sample size formulas and  
   calculations, including correction for loss to  
   followup, treatment discontinuation, and other  
   forms of censoring, and the expected absolute  
   risk or rate for the reference or control cohort,  
   including the expected number of events.

o

Specify the type of hypothesis, the 
minimum clinically important excess/
difference, and the level of confidence 
for the interval (e.g., 95%).

-  Types of hypotheses include equivalence,  
   noninferiority, inferiority. o

Specify the statistical software and 
command, or the formula to calculate 
the expected confidence interval.

-  Examples include Stata, Confidence Interval  
   Analysis, Power Analysis and Sample Size  
   (PASS).

o
Specify the expected precision (or 
statistical power) for any planned 
subgroup analyses.

o
Specify the expected precision (or 
statistical power) in alternative special 
situations, as in sensitivity analyses.

Special situations include: 
-  The investigators anticipate that strong  
   confounding that will eliminate many patients  
   from the analysis (e.g., when matching or  
   trimming on propensity scores). 
-  The investigators anticipate a high frequency of  
   missing data that cannot (or will not) be  
   imputed, which would eliminate many patients  
   from the analysis.

o
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