Foray into Computable Reports

Brown EPC
Duke EPC
Minnesota EPC
Disclosures

• None
The report
The Urinary Incontinence (UI) report

- Brown’s “Nonsurgical Treatments for Urinary Incontinence (UI) in Adult Women” updates a 2012 report by the Minnesota EPC.
- Evidence synthesis for 51 specific interventions (14 intervention categories) for
 - Cure, improvement, satisfaction (n=117 studies)
 - Quality of life (n=84 studies)
 - Adverse events (n=138 studies)
An interactive tool
Level 1

Evidence Graph for specific interventions

A1: oxybutynin
A2: solifenacin
A3: tolterodine
A4: trosprim
A5: fesoterodine
A6: flavoxate
A7: phenylpropanolamine
A8: propantheline
A9: propiverine

B: botox

C1: vaginal estrogen
C2: po estrogen
C3: sc estrogen
C4: transdermal estrogen
C5: raloxifene

D1: duloxetine
D2: mirtazapine

G1: electromupuncture
G2: interstim
G3: magnetic stimulation
G4: TENS

H1: bladder training
H2: education
H3: heat therapy
H4: PFMT
H5: bladder support
H6: biofeedback

I1: polycrystalline
I2: collagen
I3: autologous fat
I4: carbonated beads
I5: polymethylmethacrylate
I6: porcine collagen
I7: dextranomer hyalurionate

J: intravesical pressure release

K: sham/no treatment
Evidence Graph for specific interventions

[Some summary information]

[Amount of evidence]
- n studies
- N people

[Outcomes (studies; people)]
- Cure (75; 13921)
- Improvement (82; 17276)
- Satisfaction (12; 2430)

[Connectivity]
- 80 observed comparisons
- 1275 possible comparisons
- No treatment (K) is the most common comparator
Evidence Graph for specific interventions:

Excluding no treatment (K)

A1: oxybutynin
A2: solifenacin
A3: tolterodine
A4: trospium
A5: fesoterodine
A6: flavoxate
A7: phenylpropanolamine
A8: propiverine
A9: propiverine
B: botox
C1: vaginal estrogen
C2: po estrogen
C3: sc estrogen
C4: transdermal estrogen
C5: raloxifene
D1: duloxetine
D2: midodrine
G1: electroacupuncture
G2: interstim
G3: magnetic stimulation
G4: TENS
H1: bladder training
H2: education
H3: heat therapy
H4: PFMT
H5: bladder support
H6: biofeedback
I1: polycrylamide
I2: collagen
I3: autologous fat
I4: carbonated beads
I5: polymethylsiloxane
I6: porcine collagen
I7: dextranomer hyaluronate
J: intravesical pressure release
K: sham/no treatment
Level 1

Evidence Graph for intervention categories

A: anticholinergic
B: beta
C: hormones
D: alpha agonist
E: neuromodulation
F: behavioral therapy
G: penile bulking
H: intravesical pressure release
I: sham/no treatment
[Some summary information]

[Amount of evidence]
- n studies
- N people

[Outcomes (studies; people)]
- Cure (54; 8664)
- Improvement (62; 13407)
- Satisfaction (8; 1668)

[Connectivity]
- 24 observed comparisons
- 91 possible comparisons
- ...

A: anticholinergic
B: beta
C: hormones
D: alpha agonist
G: neuromodulation
H: behavioral therapy
I: penile vestibular bulking
J: intravesical pressure release
K: sham/no treatment
Level 2

Evidence Graph
for intervention categories:

Cure

A: anticholinergic
B: botox
C: hormones
D: alpha agonist
E: neuromodulation
F: behavioral therapy
G: periurethral bulking
H: intravesical pressure release
I: sham/no treatment
Level 2

Evidence Graph for intervention categories:

Satisfaction
All active treatments appear to be better than sham or no treatment with respect to satisfaction and, with one exception (combination of neuromodulation with behavioral therapy [G+H]), statistically significantly so.
<table>
<thead>
<tr>
<th>Intervention category</th>
<th>Mean Percent (95% CI)</th>
<th>Forecast Percent (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anticholinergic (A)</td>
<td>51.0 (31.6, 70.1)</td>
<td>51.0 (9.9, 90.8)</td>
</tr>
<tr>
<td>Onabotulinum toxin A (B)</td>
<td>75.8 (50.8, 90.5)</td>
<td>75.8 (22.6, 97.1)</td>
</tr>
<tr>
<td>Nonpharmacological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neuromodulation + Behavioral therapy (G+H)</td>
<td>65.9 (19.0, 94.1)</td>
<td>65.9 (9.0, 97.4)</td>
</tr>
<tr>
<td>Behavioral therapy (H)</td>
<td>75.8 (57.0, 88.1)</td>
<td>75.8 (24.5, 96.8)</td>
</tr>
<tr>
<td>Neuromodulation (G)</td>
<td>69.4 (44.2, 86.7)</td>
<td>69.4 (17.8, 96.0)</td>
</tr>
<tr>
<td>Combination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anticholinergic + Behavioral therapy (A+H)</td>
<td>62.9 (40.8, 80.7)</td>
<td>62.9 (14.7, 94.3)</td>
</tr>
<tr>
<td>No treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sham/no treatment (K)</td>
<td>28.7 (15.0, 48.0)</td>
<td>28.7 (4.1, 79.4)</td>
</tr>
</tbody>
</table>

CI=confidence interval.
And so on...

...with various kinds of summaries (e.g., odds ratios, amount of direct and indirect data, RoB assessments, SoE assessments...)

... at different levels of granularity...
Other outcomes

• Analogous Evidence Graphs can serve as “navigation maps” for outcomes that have been synthesized qualitatively.

• For qualitative-only synthesis, the tool will present specifically-crafted summaries

• Two levels of abstraction
 • High level summary
 • More nuanced summary
Evaluation
Duke Health System, Stakeholders

• J. Bae, MD: Associate Chief Medical Officer for Patient Safety and Clinical Quality
• G. Cheely, MD, MBA: Medical Director for Care Redesign
• T. Owens, MD: Chief Medical Officer and Vice President for Medical Affairs
Role of Stakeholders

Stakeholders will inform on

• Tool development: What information is useful
• Pilot implementation: Which needs are met versus not met by the tool
Eliciting Stakeholder input

• Semi-structured interviews
Coordination between EPCs
Brown, Duke, Minnesota EPCs

• Brown will create the prototype tool including evidence graphs, associated summaries, and network meta-analysis results.

• Minnesota will create summaries for qualitatively synthesized results, which will be hooked into the tool by Brown.

• Duke will run the evaluation.
Scalability

• We propose to create a prototype web-based tool
• We will not create a software framework to enable analogous summaries for future EPC reports
• The qualitative-outcomes version of the tool pertains to all EPC reports
Fallback

• A static version of the tool, along the lines of this presentation, can be created at any time.