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Findings of Bayesian Mixed Treatment Comparison 
Meta-Analyses: Comparison and Exploration Using 
Real-World Trial Data and Simulation 
Structured Abstract 
Objectives. Specific objectives were to examine the following: (1a) how results of Bayesian 
mixed treatment comparison (MTC) methods compare with several commonly considered 
frequentist indirect methods; (1b) how Bayesian MTC methods perform for different evidence 
network patterns; (2) how meta-regression can be used with Bayesian MTC meta-analysis to 
explore heterogeneity; and (3) how findings of Bayesian MTC meta-analyses compare for 
different numbers of studies and different network pattern assumptions. For objectives 1 and 2, 
we aimed to conduct case studies using data from two recent comparative effectiveness reviews 
(CERs). For objective 3, we aimed to use simulated data. 
 
Methods. For objectives 1 and 2, we used data from CERs that examined second-generation 
antidepressants (SGAs) and biologic disease-modifying antirheumatic drugs (DMARDs) for 
rheumatoid arthritis (RA). For objective 1, we compared results of Bayesian MTC methods with 
those of three frequentist indirect methods: meta-regression, the Bucher method, and logistic 
regression for dichotomous and continuous outcomes. For objective 2, we conducted two types 
of meta-regression. One explored subgroup effects with a binary covariate to assess whether 
efficacy of SGAs differs between older adults (≥55 years) and adults of any age. The other 
explored a continuous covariate to assess whether treatment efficacy varies by disease duration 
of RA. For objective 3, we used simulated data to examine the Bayesian MTC method’s ability 
to produce valid results for two data scenarios when varying numbers of studies were available 
for each comparison for various network patterns. 
 
Results. Bayesian MTC methods permitted the calculation of results for more comparisons of 
interest than frequentist meta-regression or the Bucher method (when applied as they would 
typically be used). When comparisons were calculated, the findings generally agreed but differed 
for a small proportion (less than 10%) of comparisons. Regarding precision, logistic regression 
produced the most precise estimates, followed by the Bayesian MTC method. 
Our meta-regressions found a trend toward lesser efficacy for SGAs in older adults and a trend 
toward greater efficacy of biologic DMARDs for those with greater mean disease duration. 
Our simulations supported the validity of Bayesian MTC methods for star and ladder network 
patterns but raised some concerns about one closed loop (and possibly loop) network patterns. 
Simulations generally found similar probabilities for which drug was the best treatment for 
scenarios when only 1 study was available for each comparison and those when more studies (2, 
3, 5, or 10) were available; precision increased as the number of available studies increased.  
 
Conclusions. Bayesian MTC methods offer several advantages over frequentist indirect 
methods, including the ability to produce results for all comparisons of interest in a single 
analysis. Results of Bayesian MTC methods and those of frequentist indirect methods may differ 
for a small proportion of comparisons, which could lead to differences in conclusions when 
using different methods. Our findings raise some concerns about the validity of the results of 
Bayesian MTC methods for certain network patterns. Further research is needed to explore 
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additional real-world datasets and simulated data to determine if our findings are reproducible or 
generalizable and to better understand the validity of Bayesian MTC methods for various 
scenarios.  
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Introduction 
Background 

Comparative effectiveness reviews (CERs) often aim to compare the benefits and harms of 
multiple available approaches for treating a health condition1 with the ultimate goal of informing 
clinical practice and other decisionmaking. To this end, analysts conducting CERs aim to find 
studies conducting direct head-to-head comparisons. However, direct head-to-head evidence on 
competing interventions is often scant. As a result, several methods to conduct indirect 
comparisons have been proposed.2-7 These include meta-regression, logistic regression, the 
Bucher method,2-4 and, more recently, Bayesian mixed treatment comparison (MTC) meta-
analysis.5-7  

MTC meta-analysis is a relatively new methodology.8 Various other terms have been used to 
describe the approach, including multiple treatment comparisons9-11 and network meta-
analysis.12, 13 Terminology has evolved to where most experts in that field now refer to the broad 
area of comparison of different treatments as network meta-analysis and restrict the use of MTC 
to describe methods that explicitly look at combining direct and indirect evidence.14 One of the 
most compelling reasons to use MTC meta-analysis is that it allows for the combination of both 
direct head-to-head and indirect evidence (e.g., placebo-controlled trials) in one modeling 
framework. The use of all potentially relevant available evidence is an appealing feature for 
analysts, because other methods rely solely on one type of evidence. In addition, unlike other 
indirect analysis methods, MTC meta-analysis allows all relevant comparisons to be made 
through a single analysis, providing the information to calculate an effect size for each 
comparison of interest and to rank treatments based on the probability of being the best 
treatment. 

The history of MTC meta-analysis dates back to 1996 when Higgins and Whitehead first 
described likelihood-based methods for indirect comparisons, focusing on Bayesian methods and 
providing an illustration of the methodology using data from 26 clinical trials that investigated 
the prevention of cirrhosis using beta-blockers and sclerotherapy.15 Lu and Ades subsequently 
published additional information on the theoretical underpinnings of the MTC method,8 as well 
as methods for assessing evidence inconsistency16 (which is not addressed in this report). But 
more research is needed to better understand how these methods operate in real-world scenarios. 
As investigators conducting systematic reviews use these methods and continue to develop new 
techniques based on these methods, it is important for us to have a better understanding of how 
these methods compare with other indirect methods and how MTC meta-analyses perform in 
various situations.  

Relatively little information on the validity of MTC meta-analysis exists (in comparison with 
other indirect methods or for various types of evidence networks), and further research is 
needed.12, 17 Some analysts have validated frequentist approaches for indirect comparisons using 
artificial/simulated data.3  

One underlying question is whether the extra complexity of Bayesian MTC meta-analyses is 
worth the investment. MTC meta-analysis requires greater statistical expertise and, until recently, 
could only be run using programs (e.g., WinBUGS) that are unfamiliar to many analysts. 
(Recently, Higgins et al. published an example of likelihood-based MTC using Stata).18 In 
contrast, several of the frequentist methods for indirect comparisons can be conducted by 
analysts with less statistical expertise and using programs that are more familiar. It is important 
to gain a better understanding of the consequences of choosing various analytic approaches. 
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Some questions include the following: Do results differ for various analytic approaches? Do 
certain methods yield more precise estimates? Do the findings and validity of various analytic 
approaches vary depending on the evidence network pattern? 

We used MTC meta-analyses in two recent CERs for the Agency for Healthcare Research 
and Quality (AHRQ)—one on second-generation antidepressants (SGAs)19 and one on 
treatments for rheumatoid arthritis (RA).20 In this report, we use the real-world literature from 
these two reports to address our objectives and Key Questions (KQs). 

Evidence Networks 
An evidence network refers to the linkage of treatment comparisons that exists in the 

literature for a given population. It can take on many shapes or patterns.21, 22 The basic premise 
underlying MTC methods is that the network must be a connected one. A network can include 
any of the four patterns in Figure 1. A network pattern can resemble a star, with one common 
comparator at the center and other treatments connected through this comparator. This is a 
common scenario for pharmacotherapies, because randomized controlled trials (RCTs) often 
include only drug comparisons with placebo (and no direct head-to-head comparisons). Another 
pattern is a loop design, where all drugs or treatments are connected to one another through one 
other treatment. A third common pattern is a variation on this loop design, but this network also 
includes one or more drugs or treatments outside of the loop and is referred to as one closed 
loop. Another network pattern resembles a ladder, with no treatment compared with any other 
treatment more than once. 

Figure 1. Evidence network patterns 
 

 
 
 
 
 
  
 
 
 
 
 
 

Second-Generation Antidepressants 
Our report on SGAs compared the benefits and harms of 13 SGAs approved for use in the 

United States19 (Table 1).  
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Table 1. Second-generation antidepressants approved for use in the United States 
Generic Name U.S. Trade Namea Dosage Forms Therapeutic 

Classification 

Bupropionb 
Wellbutrin®; 
Wellbutrin SR®; 
Wellbutrin XL® 

75, 100 mg tabs; 
100, 150, 200 mg SR tabs 
150, 300 mg XL tabs 

Other 

Citalopramb Celexa® 10, 20, 40 mg tabs; 
2 mg/ml solution SSRI 

Desvenlafaxine Pristiq® 50, 100 mg tabs SNRI 
Duloxetine Cymbalta® 20, 30, 60 mg caps SSNRI 

Escitalopram Lexapro®  5, 10, 20 mg tabs 
1 mg/ml solution SSRI 

Fluoxetineb Prozac®;  
Prozac Weekly® 

10, 20, 40 mg caps; 4 mg/ml solution 
90 mg caps SSRI 

Fluvoxamineb Luvox® 25, 50, 100 mg tabs SSRI 

Mirtazapinec Remer on® 
Remer on Sol tab® 

15, 30, 45 mg tabs; 
15, 30, 45 mg orally  
Disintegrating tabs 

SNRIc  

Nefazodoneb Serzone®d 50, 100, 150, 200, 250 mg tabs Other 

Paroxetineb Paxil®;  
Paxil CR® 

10, 20, 30, 40 mg tabs;  
2 mg/ml solution;  
12.5, 25, 37.5 mg CR tabs 

SSRI 

Sertralineb Zoloft® 25, 50, 100 mg tabs;  
20 mg/ml solution SSRI 

Trazodoneb Desyrel®  50, 100, 150, 300 mg tabs Other 

Venlafaxineb Effexor®;  
Effexor XR® 

25, 37.5, 50, 75, 100 mg tabs; 
37.5, 75, 150 mg XR caps SNRI 

caps = capsules; mg = milligram; ml = milliliter; SNRI = serotonin and norepinephrine 
reuptake inhibitor; SSRI = selective serotonin reuptake inhibitor; tabs = tablets  
aCR, SR, XL, and XR are registered trademarks referring to controlled, sustained, or extended-
release dosage forms, respectively. 
bGeneric available for some dosage forms. 
cMirtazapine’s mechanism of action is not clearly an SNRI, but it was grouped in this class 
owing to similarities. 
dOnly generic nefazodone is available in the United States.In our recent CER, we conducted 
MTC meta-analysis to derive estimates of the comparative efficacy among all SGAs for the 
treatment of major depressive disorder. Our primary efficacy outcome was the rate of response 
on the Hamilton Depression rating scale (HAM-D), defined as a 50 percent or greater 
improvement of scores from baseline. Figure 2 shows the evidence network that contributed data 
to the analysis.  
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Figure 2. Evidence network for mixed treatment comparison meta-analysis of second-generation 
antidepressants for achieving response for adults with depression 

 
 

Our MTC meta-analysis found that SGAs had similar efficacy. There were some differences 
(based on the 95% credible intervals) for some pairwise comparisons that are likely not clinically 
relevant. 

Biologic Disease-Modifying Antirheumatic Drugs for 
Rheumatoid Arthritis 

Our report on treatments for RA compared the benefits and harms of corticosteroids and oral 
and biologic disease-modifying antirheumatic drugs (DMARDs) for adults with RA.20 Nine 
biologic DMARDs were included in the CER (Table 2).  
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Table 2. Biologic DMARD treatments for rheumatoid arthritis 
Generic 
Name 

Manufacturer 
U.S. Trade 
Name(s)* 

Injectable Supply Usual Adult Dose 

Abatacept 
Bristol Myers 
Squibb  
Orencia® 

250 mg powder in 
single-use vial, 125 
mg/ml solution in a 
prefilled syringe 

IV—Dosed according to body weight (< 60 kg = 
500 mg; 60-100 kg = 750 mg; > 100 kg = 1,000 
mg); dose repeated at 2 weeks and 4 weeks 
after initial dose, and every 4 weeks thereafter 
SQ—After a single IV infusion as a loading dose 
(as per body weight categories above), 125 mg 
should be given within a day, followed by 125 mg 
once a week 

Adalimumab Abbott 
Humira® 

40 mg/0.8 ml prefilled 
pen or syringe, 20 
mg/0.4 ml prefilled 
syringe 

SQ—40 mg every other week; may increase to 
40 mg every week in patients not taking 
concomitant MTX 

Anakinra Amgen 
Kineret® 

100 mg/0.67 ml 
syringe 

SQ—100 mg/day; dose should be decreased to 
100 mg every other day in renal insufficiency or 
end-stage renal disease 

Certolizumab 
Pegol 

UCB 
Cimzia® 

200 mg powder for 
reconstitution, 200 
mg/ml solution in a 
pre-filled syringe 

SQ—Initial dose of 400 mg, repeat dose 2 and 4 
weeks after initial dose, followed by 200 mg 
every other week; for maintenance dosing, 
consider 400 mg every 4 weeks 

Etanercept 

Amgen  
Pfizer 
Immunex  
Enbrel® 

50 mg/ml autoinjector 
or prefilled syringe, or 
as two 25 mg/0.5 mL 
single-use prefilled 
syringes or free-hand 
vials  

SQ— 50 mg once weekly with or without MTX 

Golimumab 

Centocor Ortho 
Biotech  
Janssen Biotech, 
Inc. 
Simponi® 

50 mg/0.5 ml prefilled 
syringe or autoinjector 

SQ—50 mg once a month, in combination with 
MTX 

Infliximab 
Centocor Ortho 
Biotech  
Remicade® 

100 mg lyophilized in 
a 20 ml vial 

IV—3 mg/kg in combination with MTX at 0, 2, 
and 6 weeks followed by maintenance every 8 
weeks thereafter; may increase to maximum of 
10 mg/kg or treat as often as every 4 weeks 

Rituximab 
Biogen 
Idec/Genentech  
Rituxan® 

100 mg/10 ml and 500 
mg/50 ml vial 

IV—In combination with MTX, two 1,000 mg IV 
infusions separated by 2 weeks (one course) 
every 24 weeks or based on clinical evaluation, 
but not sooner than every 16 weeks 

Tocilizumab 
Genentech/Roche  
Actemra®,  
RoActemra® 

80 mg/4 ml, 200 
mg/10 ml, 400 mg/20 
ml vial 

IV—4 mg/kg followed by an increase to 8 mg/kg 
based on clinical response; given every 4 weeks 
with or without MTX 

IV = intravenous; kg = kilogram; mg = milligram; ml = milliliter; MTX = methotrexate; SQ 
= subcutaneous 
*Listed trade names are limited to commonly prescribed U.S. products when multiple trade 
names are available.To compare the effectiveness of biologic DMARDs with each other, we 
conducted MTC meta-analyses of trials enrolling methotrexate-resistant patients with active RA. 
The primary efficacy outcome of our MTC meta-analysis was the American College of 
Rheumatology 50 percent response (ACR 50). We also conducted analyses using ACR 20 and 
ACR 70. Figure 3 shows the evidence network that contributed data to the analysis. The majority 
of evidence was from placebo-controlled trials; only one trial included a direct head-to-head 
comparison. Due to heterogeneity in study design of the included studies for certolizumab, it was 
excluded from the MTC meta-analysis. More information can be found in the full report.20  
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Figure 3. Evidence network for mixed treatment comparison meta-analysis of biologic DMARDs 
for achieving ACR 50 for adults with rheumatoid arthritis 

 
Note: The total number of trials does not appear to equal 30 (the total number of studies included in the analysis) because some 
trials have multiple arms that were included. 

Our MTC meta-analyses found higher odds of achieving ACR 50 response for etanercept 
compared with most other biologic DMARDs (abatacept, adalimumab, anakinra, infliximab, 
rituximab, tocilizumab) for methotrexate-resistant patients with active RA. The ACR 50 odds 
ratio range for etanercept compared with most other biologic DMARDs was 2.4 to 5.2. The 
differences were potentially important (based on 95% credible intervals) for etanercept compared 
with abatacept, adalimumab, anakinra, infliximab, rituximab, or tocilizumab, but were not when 
compared with golimumab. Anakinra had the lowest mean response, and point estimates favored 
other biologic DMARDs over anakinra, but the differences were only potentially important 
(based on 95% credible intervals) when compared with adalimumab and etanercept for ACR 50.  

Scope and Key Questions 
The main objectives of this report are to contribute to the body of literature on MTC meta-

analysis by examining (1a) how results of Bayesian MTC methods compare with several 
frequentist indirect methods for various types of outcome measures, (1b) how Bayesian MTC 
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methods perform for different types of evidence network patterns, (2) how study-level covariates 
can be incorporated with Bayesian MTC meta-analysis to explore heterogeneity through meta-
regression, and (3) how findings of Bayesian MTC meta-analysis compare for different numbers 
of studies and different network pattern assumptions. For objectives 1 and 2, we aimed to 
conduct case studies using data from two recent CERs. For objective 3, we aimed to use 
simulated data. We address the KQs listed below.  

KQ 1. How do the results of Bayesian MTC meta-analysis methods compare with those of 
several frequentist indirect methods? Related questions of interest included the following: For 
each of the common evidence network patterns, how do the Bayesian MTC methods compare 
with frequentist indirect methods? How do Bayesian MTC methods perform (e.g., precision, 
convergence) for different types of evidence network patterns?  

KQ 2. How can meta-regression be used with Bayesian MTC meta-analysis to explore 
sources of heterogeneity?  

KQ 3. How do findings of Bayesian MTC meta-analysis compare for different numbers of 
studies and network pattern assumptions?  

For KQ 1, our choice of frequentist analytic methods to compare with the Bayesian MTC 
approach was based on our judgment regarding the methods most commonly considered by 
analysts conducting CERs. In addition, we selected frequentist methods with some evidence to 
support their validity. These included frequentist meta-regression, the Bucher method, and 
frequentist logistic regression. Of note, the frequentist methods used are not the analogue of the 
Bayesian methods implemented. We did not compare findings with the frequentist network 
meta-analysis method (i.e., the Lumley method).23 Our experience indicates that it is much more 
rarely used than the other methods, and comparisons between Bayesian MTC methods and 
frequentist network meta-analysis were not our intention.  

We applied Bayesian MTC methods to a variety of different evidence networks using data 
from recent systematic reviews (of SGAs and biologic DMARDs) and using simulated data. For 
the first two KQs, we used the real-world bodies of literature described above (for SGAs and 
biologic DMARDs). For KQ 3, we use simulated data sets.  

For KQ 2, we focused on clinically important issues to guide the meta-regressions. For the 
SGAs literature, some have questioned whether the medications are equally or less effective in 
older adults.24-27 To address this question, we conducted meta-regression by assessing whether 
efficacy differed in trials that enrolled older adults compared with trials that enrolled adults of 
any age. For biologic DMARDs, some have questioned whether treatment efficacy varies by 
disease duration of RA.28-30 To address this question, we conducted meta-regression using mean 
disease duration of subjects enrolled in each study as a continuous covariate. 
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Methods 
In this chapter, we first describe the data from two real-world bodies of trial literature that we 

used for our analyses for Key Questions (KQs) 1 and 2. We then describe the methods used for 
each KQ. The focus of this report is on mixed treatment comparison (MTC) meta-analysis 
implemented in a Bayesian framework; for comparison, we performed adjusted indirect 
comparisons using four different approaches with a frequentist framework (each described 
below).  

The National Institute for Health and Clinical Excellence (NICE) Decision Support Unit has 
released several Technical Support Documents (TSDs) detailing use of MTC in a Bayesian 
framework, including several illustrative examples with annotated WinBUGS code. We 
implemented the methods illustrated in TSD 26 and TSD 35 under different scenarios for the 
MTC meta-analyses described below. For both of our recent comparative effectiveness reviews 
(CERs) including MTC meta-analyses, we used WinBUGS Version 1.4.3, a Bayesian software 
package that uses Markov chain Monte Carlo (MCMC) techniques. WinBUGS code used for 
analyses is available in Appendix A. 

Data Included in This Report  
For this report, as described in the introduction, we used datasets from MTC meta-analyses 

from two recent CERs. An underlying assumption for the validity of MTC meta-analyses is 
transitivity (sometimes referred to as similarity).31 Assessing whether the included studies had 
sufficiently comparable compositions was undertaken in the original CERs rather than for this 
report. Briefly, to assess similarity and to determine whether to combine studies in MTC meta-
analyses for the CERs, we evaluated the populations, interventions, comparators, outcomes, 
timing, and settings of the trials under consideration. 

Dataset 1. Second-Generation Antidepressants  
For this report, we extracted one binary and one continuous outcome from the evidence base 

of our CER on second-generation antidepressants (SGAs). Our binary outcome was treatment 
response as measured by at least a 50 percent improvement from baseline on the Hamilton 
Rating Scale for Depression (HAM-D). We recalculated response rates for each study using the 
number of all randomized patients as the denominator to reflect a true ITT analysis. With this 
approach we attempted to correct variations in results of modified ITT analyses encountered in 
individual studies. A total of 64 studies with adequate reporting of treatment response were 
included in subsequent analyses. Eight additional studies were identified in the older adult 
populations (age 55 or older) and used in the meta-regression for KQ 2. Characteristics of the 
included studies and data used in the meta-analyses are listed in Appendix Table B-1. The 
dataset includes many multi-arm trials (Appendix Table B-1). Additional descriptions of study 
populations and other eligibility criteria can be found in the full report.19 

Our continuous outcome was mean change from baseline to endpoint on the HAM-D. For 
studies not reporting a variance for mean change from baseline, we calculated one using the 
baseline and endpoint variances and assumed a correlation of 0.5. We chose a value of 0.5 for the 
correlation coefficient as a reasonable assumption for the similarity of baseline and endpoint 
values across patients, because it assumes neither a weak nor strong correlation. In lieu of more 
complete reporting, it has been suggested that a value of 0.5 is a reasonable assumption.32, 33 We 
included a total of 40 studies in the analyses for this outcome; data and characteristics of the 
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included studies are listed in Appendix Table B-2. The dataset includes several multi-arm trials 
(Appendix Table B-2). 

Dataset 2. Biologic Disease-Modifying Antirheumatic Drugs for 
Treatment of Rheumatoid Arthritis  

We extracted one binary and one continuous outcome from the studies included in our CER 
on biologic DMARDs and other treatments for RA. The binary outcome considered was 
treatment response as measured by achievement of ACR 50 after 12 weeks of treatment. Again, 
we recalculated response rates for each study using the number of all randomized patients as the 
denominator to reflect a true ITT analysis. With this approach we attempted to correct variations 
in results of modified ITT analyses encountered in individual studies. A total of 31 studies 
covering eight biologic DMARDs with adequate reporting of treatment response were included. 
Characteristics and data of the included studies are shown in Appendix Table B-3 below. The 
dataset includes one multi-arm trial (Appendix Table B-3). 

We also extracted a continuous outcome, mean change from baseline in Health Assessment 
Questionnaire Disability Index (HAQ-DI); however, because few eligible studies reported 
adequate data, we were not able to perform any meaningful MTC meta-analysis on the 
continuous outcome. 

KQ 1. Comparison of Bayesian MTC Meta-Analysis With 
Frequentist Indirect Methods 

Our objectives for this KQ were to examine how results of Bayesian MTC methods compare 
with commonly used frequentist indirect methods and how Bayesian MTC methods perform for 
different types of evidence network patterns. We chose four analytic methods—Bayesian MTC 
meta-analysis, frequentist meta-regression, the Bucher method, and frequentist logistic 
regression. These methods were chosen because they are among the most common approaches 
considered when conducting CERs. For both of our datasets (SGAs and biologic DMARDs), we 
compared the findings from these four methods—first, for the full networks; second, for 
subcomponents of the full networks representing specific evidence network patterns (star, loop, 
one closed loop, and ladder). To compare the four analytic methods, we used several measures: 
(1) the proportion of drug-drug comparisons (out of the total possible number of comparisons) 
for which each method was unable to calculate a result, either because of model convergence 
issues or the lack of a common comparator; (2) the percent agreement, with findings considered 
to agree if both methods produced a non-statistically significant (for frequentist methods) or 
unimportant (for Bayesian methods, based on 95% credible intervals) result for the comparison 
or if both analyses found a statistically significant or important result favoring the same 
treatment; (3) the precision of findings—assessed by comparing the width of credible intervals 
and confidence intervals; and (4) kappa statistics. The kappa statistic is a measure of inter-rater 
agreement34 that attempts to take into account agreement beyond chance. It can range between -1 
and 1, but usually ranges from zero to 1, as kappa is negative when the observed agreement is 
less than chance. When the observed agreement exceeds chance agreement, kappa is positive, 
with its magnitude reflecting the strength of agreement. Landis and Koch propose the following 
as guidelines for strength of agreement for the kappa coefficient: <0.20 = poor, 0.21 to 0.40 = 
fair, 0.41 to 0.60 = moderate, 0.61 to 0.80 = good, and 0.81 to 1.00 = very good.35 For each 
comparison (e.g., Bayesian MTC vs. frequentist meta-regression), we calculated kappa statistics 
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using SAS version 9.2. We did not calculate kappa statistics for comparisons in which either 
method had less than two levels (i.e., when all results for that method found no statistically 
significant or important difference for each drug-drug comparison). 

Finally, we describe measures of model fit for the Bayesian MTC analyses for the full 
networks and for subcomponents. For all dichotomous data, we used odds ratios, and for all 
continuous data, we used weighted mean differences as outcome measures. 

Bayesian Mixed Treatment Comparison Meta-Analysis  
For all Bayesian MTC meta-analyses included in this report, we used the methods developed 

in TSDs 2 and 3, which detail use of the generalized linear modeling (GLM) framework for 
Bayesian MTC and use of meta-regression to explore sources of heterogeneity, respectively. We 
used random effects models in this report because in meta-analyses of randomized controlled 
trials, we assume the study effect is sampled from a distribution of effect sizes.36 Because studies 
will not include exactly the same mix of participants or carry out the interventions in an identical 
way, there may be different underlying effect sizes for different studies. 

GLM theory37 allows for likelihood-based statistical inference. It is also a flexible approach 
because it can be constructed to model data arising from a large range of distributions within the 
exponential family, allowing us to model various binary and continuous outcomes that we would 
encounter in conducting CERs. GLM theory can be implemented in both frequentist and 
Bayesian frameworks. Spiegelhalter et al.38 make the case for a Bayesian framework, stating that 
such an approach is more flexible, efficient, and useful. MTC could in theory be implemented in 
a frequentist framework, but the literature reflects a preference for a Bayesian framework, in part 
because of the availability of WinBUGS code that has been developed for this purpose.6, 39 
Reasons to use a Bayesian framework (rather than a frequentist approach) include inferential 
superiority and modeling flexibility. Whether Bayesian approaches have inferential superiority is 
a contentious subject and may have little to do with the reason the Bayesian MTC methods are 
used more widely. Modeling flexibility, however, is likely a major reason the Bayesian approach 
is more popular. With WinBUGS, one has simply to specify the likelihood and the prior 
distributions; the estimation is handled by MCMC methods that are now fairly robust. With 
maximum likelihood estimation using a frequentist approach, some of the likelihoods can be 
very challenging to maximize and perhaps amenable to approximate solutions only.  

In a Bayesian framework, specification of prior distributions accompanies the specification 
of the likelihoods, in addition to the data. The complete model specification is detailed below. 
For this report, binary outcomes are treatment response measured by the number of people 
achieving a prespecified level in each arm. We used noninformative (flat) prior distributions 
throughout the report, which allow the data to drive the posterior distributions, in absence of 
more informative priors. This choice follows the recommendations laid out in TSD 26 and in 
absence of rationale for specifying informative priors with these data. For all analyses, we 
modeled study effect and treatment effect parameters by noninformative (flat) prior distributions 
that were Normal (0, 10000). For the heterogeneity of the random-effects model, we used a 
uniform prior distribution with sufficiently large variance. Unless otherwise specified, we 
discarded the first 20,000 simulations to allow for model convergence, and we used an additional 
100,000 simulations in estimating the posterior probabilities. Satisfactory convergence was 
verified by trace plots, monitoring the Monte Carlo error, and with Gelman-Rubin diagnostics.40 
If multi-arm studies were available, we included the appropriate adjustments to the likelihood to 
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account for correlations between the treatment differences. We did not use statistical methods to 
assess inconsistency.  

For the initial values to start the Markov chain simulations, we chose values that were 
relatively widely dispersed. We reviewed previous publications and TSDs 2 and 3 to help inform 
our choice of initial values. To help determine whether our choice of initial values influenced 
findings, we conducted some sensitivity analyses for our MTC analyses of the full networks by 
changing the initial values (e.g., for our ACR 50 MTC analysis, we [1] changed the initial values 
from chains of 0 and −3 to chains of 1 and −3 and [2] added chains with a variety of values 
ranging from −5 to 7). The sensitivity analyses did not produce appreciably different results. 

Bayesian Mixed Treatment Comparison: Model Specification 
Most of the data used in this report consisted of outcomes that measured the number of 

events, in all cases treatment response, occurring out of the total number of patients. These types 
of data were assumed to arise from a binomial likelihood. The likelihood was specified as 
 

𝑟𝑖,𝑘~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝𝑖,𝑘,𝑛𝑖,𝑘) 
 
where 𝑟𝑖,𝑘 is the number achieving treatment response out of the total number of patients in each 
arm and 𝑝𝑖,𝑘 is the probability of treatment response, and where 𝑖 denotes trial number and 𝑘 
denotes each arm of the trial. For this likelihood, the logit link function was used to map the 
probability of treatment response onto plus and minus infinity. The logit link was specified as 
follows: 
 

logit(𝑝𝑖,𝑘) = 𝜇𝑖 +  𝛿𝑖,𝑘𝐼(𝑘≠1) 
 
The trial-specific log-odds ratios from a random effect model come from a common distribution, 
𝛿𝑖,𝑘~ N(𝑑𝑘,𝜎2), where d represents the relative treatment effect and σ2 is the common variance 
term. 

In all cases, parameters were given vague or noninformative prior distributions. The choice 
of the uniform prior between 0 and 5 reflects a between-study variability that allows for a wide 
range of treatment effects. 
 

Prior specification: 
𝜇𝑖~ Normal (0, 10000) 
𝑑𝑘~ Normal (0, 10000) 
𝜎~ Uniform (0, 5) 

 
For continuous outcomes, the data were assumed to arise from a normal likelihood, and 

under generalized linear modeling theory, the model specified above becomes a normal 
likelihood with the identity link function. The observed data 𝑦𝑖,𝑘 arise from a normal distribution 
with mean 𝜃𝑖,𝑘 and variance 𝑠𝑒𝑖,𝑘2 .  
 

𝑦𝑖,𝑘 = 𝑁(𝜃𝑖,𝑘, 𝑠𝑒𝑖,𝑘2 ) 
 
For these data, the prior specifications were identical to the ones used with the dichotomous data. 
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For KQ 2, in order to introduce a dichotomous study-level covariate to the logistic regression 
model above, the model was simply extended to include a covariate 𝑥𝑖. The model specification 
and resulting WinBUGS code were taken from the Decision Support Unit’s TSD 3. Again, the 
subscript 𝑖 denotes trials and the subscript 𝑘 refers to the arms within a trial. The full model 
structure is specified below. 
 

𝑟𝑖,𝑘~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝𝑖,𝑘,𝑛𝑖,𝑘) 
logit(𝑝𝑖,𝑘) = 𝜇𝑖 +  𝛿𝑖,𝑘𝐼(𝑘≠1) + (𝛽𝑘 − 𝛽1)𝑥𝑖 

𝛽1 = 0 
 

Prior specification: 
In addition to the above, now a vague normal prior on the common covariate effect 

 
𝛽𝑘 ~ Normal (0, 10000) 

 
Again, the extension to introducing a continuous covariate results in the same model above, 

but to improve the efficiency of estimation, the continuous covariate was centered around its 
mean, as shown below. All other pieces of the model specification remained the same. Changes 
to the logistic model are shown below. 
 

logit(𝑝𝑖,𝑘) = 𝜇𝑖 +  𝛿𝑖,𝑘𝐼(𝑘≠1) + (𝛽𝑘 − 𝛽1)(𝑥𝑖 − 𝑚𝑒𝑎𝑛(𝑥𝑖)) 

Model Statistics 
When conducting the Bayesian MTC meta-analyses, we output several statistics to compare 

relative efficacy and assess model fit, as described below. 

Outcome Measures 
We assessed relative efficacy between treatments with odds ratios and 95 percent credible 

intervals for dichotomous data, and with mean differences and 95 percent credible intervals for 
continuous data. We also calculated the probability that each treatment was the best, by ranking 
the drugs on a relative scale. Because we used random effects models, we also output the 
estimate of the between-studies standard deviation in each scenario. 

Model Fit 
We assessed model fit with the Deviance Information Criterion (DIC) and the posterior mean 

of the total residual deviance.41 Deviance measures the fit of the model to the data using the 
likelihood function. A good model fit is indicated by a total residual deviance approximately 
equal to the number of data points available. The DIC is a statistic that measures Bayesian model 
fit and penalizes the deviance by the model complexity. When comparing two DIC values, a 
difference of 5 or more is regarded as a meaningful difference.42  

Frequentist Indirect Comparisons  
We compared the results from Bayesian MTC meta-analyses with three frequentist indirect 

methods for binary data and two frequentist indirect methods for continuous data. We used only 
two for continuous data because logistic regression cannot be used with continuous data. We 
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chose these methods because they are among the most common indirect analyses currently used 
in CERs and because they have been validated with data simulation.3 

Bucher Method 
For one indirect comparisons approach, we used methods proposed by Bucher and 

colleagues.2 To derive indirect comparisons of two treatments, the method compares the 
magnitude of treatment effects of two interventions relative to a common comparator. For binary 
data, we calculated the pooled odds ratios for each drug of interest relative to a common 
comparator using random effects meta-analyses (as proposed by DerSimonian and Laird). For 
continuous data we used weighted mean differences.  

Specifically, as described by Bucher and colleagues,2 to compare treatment A versus B, we 
first estimated the pooled odds ratios for treatment A versus C and treatment B vs. C with: 
 

𝑂𝑅𝐴𝐶 =  

𝑝𝐴
1 − 𝑝𝐴
𝑝𝐶

1 − 𝑝𝐶
 

 

𝑂𝑅𝐵𝐶 =  

𝑝𝐵
1 − 𝑝𝐵
𝑝𝐶

1 − 𝑝𝐶
 

 
where p is the probability of response to treatment (i.e., pA is the probability of response given 
treatment A). The odds ratios for the indirect comparison of treatments A versus B may then be 
estimated by taking the ratio of the two odds ratios: 
 

𝑂𝑅𝐴𝐵 =  
𝑂𝑅𝐴𝐶
𝑂𝑅𝐵𝐶

 

 
The indirect comparison may be calculated as follows: 

 
ln(𝑂𝑅𝐴𝐵) = ln(𝑂𝑅𝐴𝐶) − ln (𝑂𝑅𝐵𝐶) 

 
Given the odds ratios (ORAC and ORBC) are estimated based on different studies and 

therefore are independent, the variance for this effect is the pooled variance: 
 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(ln(𝑂𝑅𝐴𝐵)) = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(ln(𝑂𝑅𝐴𝐶)) + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(ln (𝑂𝑅𝐵𝐶)) 
 

For continuous outcomes we used the same analytic approach without conversion to a 
logarithmic scale. The effect measure of choice for continuous outcomes was the weighted mean 
difference of the treatments relative to a common comparator. We conducted all analyses with 
Comprehensive MetaAnalysis version 2.2.050 (Biostat, Englewood NJ). 

Frequentist Meta-Regression 
For the frequentist meta-regression approach, we followed a two-step process to indirectly 

estimate the comparative efficacy of two drugs. We first conducted random effects meta-
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analyses as proposed by DerSimonian and Laird,4 combining two drugs of interest to estimate an 
overall pooled effect.  

Second, we estimated the comparative treatment effects between two drugs with random 
effects meta-regression. We implemented this method using the Stata “metareg” command 
(Harbord & Higgins, 2008).43 Stata version 11 was used for all frequentist meta-regression 
analyses. The unit of analysis for meta-regression was a study. The predictor in the regression 
model was a binary variable indicating the presence or absence of the drug of interest. Random 
effects meta-regression extends random effects meta-analysis by replacing the mean with a linear 
predictor. The response to treatment given study i is: 
 

𝑦𝑖 = 𝑥𝑖β + u𝑖 + 𝜀𝑖 
 
where i = study, 
 yi = response to treatment in study i,  

xi = study-level covariate, 
β = fixed effect parameter, 
ui = treatment effect in study i, and 

 𝜀𝑖 = error.  
 
For dichotomous outcomes, yi is the log odds ratio and for continuous outcomes, yi is the 
weighted mean difference. 

The treatment effects may vary across studies and assumed to be normally distributed where 
τ2 is the between study variance: 
 

ui ~ N(0, τ2) 
 

Errors are also assumed to be normally distributed: 
 

εi ~ N(0, σ2) 

Logistic Regression Modeling 
The logistic regression modeling approach is similar to the meta-regression approach; 

however, an individual rather than a study is the unit of analysis. For the indirect comparisons 
using logistic regression, we incorporated the approach outlined by Glenny et al. (2005).3 We 
constructed datasets with the number of participants responding to the treatment and the number 
of participants not responding to the treatment matching those reported in each study. In other 
words, if a study reported that 100 of 300 patients responded to treatment A and 150 of 300 
patients responded to treatment B, we constructed a dataset with a total of 600 patients (100 
responders and 200 nonresponders receiving treatment A and 150 responders and 150 
nonresponders receiving treatment B). We then estimated logistic regression models using PROC 
GLIMMIX in SAS version 9.2 with a dichotomous outcome of response versus no response to 
treatment and including treatment as a fixed effect and study as a random effect.  

PROC GLIMMIX is used for computing generalized linear mixed effect models and can be 
applied to various types of outcome variables. The general form of the model is: 
 

𝐸(𝑌|𝛾) = 𝑔−1(𝑋𝛽 + 𝑍𝛾) 
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where Y = outcome variable, 
 X = matrix of fixed effects, 
 β = vector of fixed effect parameters, 
 γ = matrix of random effect parameters, 
 Z = matrix of random effect, and 
 g = link function. 
 

In this model, E(Y| γ) represents the expected value for the outcome based on the model. In 
our analyses, we used a mixed effects model where the outcome (Y) was response to treatment 
(yes vs. no) with treatment as a fixed effect (X) and study as a random effect (Z) as shown 
below:  
 
𝐸(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑜 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡|𝛾)

= 𝑔−1(𝛽0 + 𝛽1𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡1 … + 𝛽𝑗𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑗 + 𝛾1𝑆𝑡𝑢𝑑𝑦1 … . +𝛾𝑖𝑆𝑡𝑢𝑑𝑦𝑖) 
 
where i is the number of studies and j is the number of treatments. 

Because the outcome is dichotomous, we selected a logit link function and when applied to 
the equation, the final model is:  
 

𝐸(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑜 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡|𝛾) =
1

1 + 𝑒−(𝛽0+𝛽0+𝛽1𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡1…+𝛽𝑗𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑗+𝛾1𝑆𝑡𝑢𝑑𝑦1….+𝛾𝑖𝑆𝑡𝑢𝑑𝑦𝑖)
 

 
A binomial variance function was specified along with an unstructured covariance matrix that 
permits the estimation of all elements of the variance/covariance matrix without constraints. The 
indirect comparisons were estimated within these models by applying contrast statements to 
compute odds ratios comparing response between two treatments of interest.   

Handling of Multi-Arm Studies in Frequentist Analyses 
None of the frequentist indirect methods used in this report accounted for correlations 

between treatment responses within multi-arm studies. This is an advantage of the Bayesian 
MTC methods when multi-arm studies are included, as the correction to the likelihood is easily 
implemented in the available code. However, in most cases this was not an issue because multi-
arm studies were generally not included when conducting the indirect frequentist analyses. 

Choice of Network Patterns  
As part of KQs 1 and 2, we aimed to investigate how Bayesian MTC methods perform for 

different network patterns. An evidence network’s geometry may be shaped by clinical context, 
regulatory pressure, or other factors. The evidence network may change over time, as new drugs 
are added to the market or different comparators are chosen.21 We chose four simple network 
patterns as the basis for comparisons within this report: star, loop, one closed loop, and ladder 
(see Introduction). These four patterns reflect different scenarios that exist in the context of real-
world data. Within each of the real-world datasets used, we selected a subset of the studies for 
each of the four patterns. Although many different subsets of data were available for each pattern 
that we could have selected, we selected examples that maximized the amount of data available 
for each sub-network. We selected one of each type of network pattern for each of the datasets. 
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Because of limited time and resources, we could not evaluate every possible network pattern 
within each dataset. Appendix C illustrates the network patterns evaluated. Other choices could 
have been made, such as one reflecting the entry of drugs into the market or chronologically by 
publication date, but for the purposes of this report, we believe that an approach maximizing the 
amount of data available is the most useful.  

KQ 2. Meta-Regression 
Our objective for this KQ was to introduce study-level covariates in the models used with 

Bayesian MTC meta-analysis to explore heterogeneity, attempting to answer two clinically 
important questions—one for each of our datasets. For the SGAs dataset, we conducted meta-
regression by assessing whether efficacy differed in trials that enrolled older adults compared 
with trials that enrolled adults of any age. For the biologic DMARDs dataset, we conducted 
meta-regression using mean disease duration of subjects enrolled in each study as a continuous 
covariate to determine whether treatment efficacy varies by disease duration of RA. The two 
analyses involved exploring two different types of covariates in the meta-regression: one relates 
to exploring subgroup effects with a binary covariate (for SGAs) and the other to exploring 
interaction effects with a continuous covariate (disease duration of RA). 

There is often a need to explore heterogeneity in treatment effects in terms of another 
variable, and many software packages facilitate meta-regression for pair-wise meta-analysis. But, 
until recently, there has not been a readily available process for Bayesian MTC in WinBUGS. 
Incorporation of covariates into network models was first discussed by Cooper et al.,44 
describing three different types of models for covariates. The NICE Decision Support Unit 
published TSD 35 to illustrate the use of different types of meta-regression within Bayesian MTC 
(using the work of Cooper et al. as a template). Bayesian MTC allows us to incorporate all the 
available evidence into one analysis, which, combined with the ability to explore potential effect 
modifiers or confounders, can be a powerful tool when conducting CERs. 

We used the methods described in TSD 3, which build on the generalized linear modeling 
framework established in TSD 2. TSD 3 describes three general approaches to meta-regression 
models in a multiple treatment context: separate and unrelated interaction terms for each 
treatment, exchangeable and related interaction terms, and one single interaction effect for all 
treatments. We used the latter. WinBUGs code and the datasets used are provided in Appendix 
A. For exploring subgroup effects through a meta-regression, a trial-level binary indicator was 
created to indicate study population. This indicator variable was added to the random effects 
logistic regression model used in KQ 1. In this way, the interaction term describes the effect of 
the population on the outcome. In the second example, a continuous covariate was added to the 
same random effects logistic regression model, assuming a common covariate effect for each 
treatment. The continuous covariate was centered at its mean value to improve model 
convergence. The magnitude and direction of the interaction term was examined in each 
example, along with its effect on the odds of treatment response in each case. 

Meta-Regression With a Subgroup Indicator Covariate: Efficacy of 
SGAs and Older Adults 

From our report on SGAs, eight trials provided data on efficacy in older adult patients. We 
hypothesized that differences in efficacy may exist between studies enrolling older adults (≥55 
years) and those enrolling adults of any age. We explored this by introducing a covariate to the 
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model that indicated the subgroup population. The analysis included 72 trials; 64 trials 
addressing efficacy in the adult population and eight trials conducted in the older adult 
population. The outcome was treatment response as measured by 50 percent or greater 
improvement from baseline on the HAM-D. We intended to test the interaction effect and 
compare the odds ratios for the treatments within each population. One advantage of this type of 
meta-regression is that it allows for the exploration of differences within one model, rather than 
performing multiple analyses separately and comparing results qualitatively. 

Meta-Regression With a Continuous Covariate: Efficacy of Biologic 
DMARDs and Disease Duration of Rheumatoid Arthritis 

Our recent CER on biologic DMARDs included a total of 31 studies in the MTC meta-
analysis (see descriptions above and data from the included studies provided in Appendix Table 
B-3). The outcome was response as measured by ACR 50 after a minimum treatment period of 
12 weeks. The trials included RA patients who failed methotrexate, a first-line therapy, but were 
naïve to treatment with a biologic DMARD. One trial-level factor hypothesized to have an effect 
on treatment response is mean disease duration of RA. Longer disease durations are 
hypothesized to be associated with higher levels of treatment response. We aimed to test the 
effects of this covariate (mean disease duration) on our findings (with etanercept yielding greater 
treatment response than most other biologic DMARDs: see Introduction).  

KQ 3. Methods Section for Simulation Study  
Because of inherent limitations when using real-world data, we proposed a simulation study 

to investigate the role of the number of studies available for each comparison on the MTC meta-
analysis model’s ability to detect true relative efficacy under different network patterns. The 
motivation for a simulation study arose from uncertainty about how the number of studies 
available for each comparison affects the ability of the model to produce valid results and 
whether this varied under different network patterns. In performing Bayesian MTC meta-
analyses for CERs, the question of whether there are enough studies to make valid conclusions 
about comparative efficacy often arises. Many times, only one study is identified that links two 
treatments (or a treatment and placebo) together in a network. We hypothesized that findings 
may vary depending on the underlying data structure (i.e., network pattern). 

In order to assess the ability of the Bayesian MTC method to produce valid results under the 
four network patterns, we first created simulated datasets comprising two scenarios for 
comparative efficacy. Simulated datasets will lend flexibility in choosing the number of studies 
available for each comparison and also allow us to determine the true comparative efficacy a 
priori. The basic process of the simulation is illustrated in Figure 4. We restricted the simulations 
to four treatments in each case and set the sample size within each study to be 100 patients per 
treatment arm. Our outcome was a dichotomous measure of treatment response (1 = response, 
0 = no response).  

Two master simulated datasets were created in SAS to test the method in one case where 
analyses should not find important differences and in another case where analyses should find 
important differences. The first dataset is a scenario of equivalent efficacy of three drugs 
compared with placebo. A dataset of 10,000 “studies” and four treatments was created by 
sampling from the binomial distribution so that placebo had a mean response of 0.10, and drugs 
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2 through 4 had a mean response of 0.50. In this way, drugs 2 through 4 have equivalent 
efficacy, but all have greater efficacy than placebo.  

The second of the two datasets is a scenario of superior efficacy of one drug compared with 
three other drugs. Again, a dataset of 10,000 “studies” and four treatments was created by 
sampling from the binomial distribution so that drugs 1 through 3 had a mean response of 0.20, 
and drug 4 had a mean response of 0.80. In this case, drug 4 is superior to the other drugs in the 
network, which all have equal efficacy compared with each other. We did not include any multi-
arm trials in either of the simulated datasets. 

Next, to address variations in the number of studies available for each comparison, we 
selected five cases: 1, 2, 3, 5, and 10 studies per comparison. That is, the link connecting any two 
drugs is based on 1, 2, 3, etc., studies. We fixed this number so that the overall number of studies 
per link is the same for each drug comparison. We sampled successive studies from the two 
master datasets to produce 1,000 sample datasets for each of the four network patterns (star, 
loop, one closed loop, and ladder) and the five cases, resulting in a total of 40,000 simulated 
datasets. The datasets were then submitted to the Bayesian MTC meta-analysis model used in 
KQ 1. In each model run, there was a burn-in of 5,000 iterations, followed by 15,000 iterations 
from which we monitored and output the probability that each drug was the best (i.e., most 
efficacious). Satisfactory convergence was verified by trace plots and by monitoring the Monte 
Carlo error. Convergence was generally achieved quickly (as might be expected with each 
individual dataset being fairly small, with just four drugs). The output of 1,000 “best” statistics 
for each pattern by case (determined by number of studies for each comparison) formed a 
distribution to allow us to assess the model estimates versus the predetermined treatment 
efficacy. To estimate bias, we computed the difference between the percentage of times a drug 
was considered most effective based on the models and the expected percentage based on the 
assumptions used to generate the data. The SAS code and WinBUGs code used to generate the 
master datasets and Bayesian models are provided in Appendix A.  
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Figure 4. Simulation study design 
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Results 
Key Question (KQ) 1. Bayesian Mixed Treatment Comparison 
(MTC) Methods Compared With Frequentist Indirect  
Methods, and Performance for Different Types of Evidence  
Network Patterns 

We organized this section in two main parts: (1) comparison of results of Bayesian mixed 
treatment comparison (MTC) methods with those of various frequentist methods for the full 
evidence networks and (2) comparison of and performance for different types of evidence 
network patterns. For the second part, we divided the results into two subsections—one 
comparing results of Bayesian MTC methods with those of various frequentist methods for 
subcomponents (i.e., evidence network patterns) of the full networks and one presenting results 
of Bayesian MTC methods for the full networks and those of Bayesian MTC methods for 
subcomponents of the full networks. Within each part, we first address results using data from 
our second-generation antidepressants (SGAs) report and then results using data from our report 
on treatments for rheumatoid arthritis (RA).  

Comparison of Bayesian MTC Results With Those of Various 
Frequentist Analyses for the Full Networks 

In this section, we provide results of comparisons between Bayesian MTC methods and three 
frequentist methods for the full networks illustrated in Appendix C. Tables in Appendix D 
provide detailed results for each analysis. Tables in Appendix E provide a comparison of 
precision of findings from the various analyses (determined by width of the 95% credible 
interval or confidence interval), with the darkest shading indicating the most precise result and 
the lightest indicating the least precise for each drug-drug comparison. The tables in this section 
provide a summary and some comparison of the data in Appendix D and Appendix E.  

Second-Generation Antidepressants: Response (Binary Outcome) 
Appendix Table D-1 provides results of our analyses for the full SGA network for each drug-

drug comparison for Bayesian MTC meta-analyses, frequentist meta-regression, the Bucher 
method, and frequentist logistic regression (Appendix D). For 15 out of 78 drug-drug 
comparisons, neither frequentist meta-regression nor the Bucher method produced a result, either 
because no studies included a common comparator or because an insufficient number of studies 
included a common comparator for the program to run the analysis.  

Table 3 summarizes the number of comparisons for which each frequentist method was 
unable to produce a result (the Bayesian MTC method produced results for all 78 comparisons), 
the percent agreement and kappa between each frequentist method and the Bayesian MTC 
method, and comparative precision. The three frequentist methods were unable to produce a 
result for 0 percent (0/78), 32 percent (25/78), and 45 percent (35/75) of the drug-drug 
comparisons (for the logistic regression, meta-regression, and Bucher methods, respectively). 
Logistic regression always produced the most precise result and Bayesian MTC was the next 
most precise for all but one drug-drug comparison (Appendix Table E-1). 
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Table 3. Comparison of findings for SGA response between Bayesian MTC meta-analysis findings 
and those of frequentist methods: agreement and kappas 

Outcome Bayesian MTC Meta-Regression Bucher Method Logistic 
Regression 

No result produceda 0 of 78 
comparisons 

25 of 78 
comparisons 

35 of 78 
comparisons 0 of 78 comparisons 

% agreement with Bayesian 
MTCb NA 94.3 (50/53) 93.0 (40/43) 100 

Kappac NA NA NA 1.00 
Precision 2nd most precise Least precise 3rd most precise Most precise 
MTC = mixed treatment comparison; NA = not applicable; SGA = second-generation antidepressant 
aNo result produced indicated the number of drug-drug comparisons for which the method was unable to produce a result, either 
because no studies had a common comparator or an insufficient number of studies had a common comparator. 
bPercent agreement calculated only for drug-drug comparisons that both methods were able to produce a result. For example, 
meta-regression did not produce a result for 25 of 78 drug-drug comparisons. Therefore, the percent agreement was calculated 
using the 53 comparisons for which both methods produced a result. Results were considered to agree if both methods produced a 
non-statistically significant (for frequentist methods) or unimportant (for Bayesian MTC) result for the comparison or if both 
analyses found a statistically significant or important result favoring the same treatment. 
cKappa was calculated only for comparisons when both methods were able to produce a result, as with percent agreement. Not 
applicable (NA) indicates that the statistical program was unable to calculate a kappa because of insufficient data. 

For the results of the three drug-drug comparisons that were not in agreement between the 
Bayesian MTC and the meta-regression and Bucher methods (duloxetine vs. escitalopram, 
escitalopram vs. fluoxetine, and fluoxetine vs. venlafaxine), the Bayesian MTC meta-analysis 
found a potentially important difference (based on 95% credible intervals) between treatments, 
whereas the other two methods did not. In addition, the results of the Bayesian MTC had greater 
precision than the other two methods for all three comparisons. Point estimates were very similar 
for the three methods for one of the comparisons (fluoxetine vs. venlafaxine, odds rations [ORs] 
ranged from 0.75 to 0.77) but not for the other two comparisons (duloxetine vs. escitalopram: 
ORs 0.74 vs. 1.23 vs. 1.19, respectively; escitalopram vs. fluoxetine: ORs 1.44 vs. 0.94 vs. 0.94). 

Second-Generation Antidepressants: Mean Change in HAM-D 
(Continuous Outcome) 

Appendix Table D-2 provides results of our analyses for the full SGA network for each drug-
drug comparison for Bayesian MTC meta-analyses, frequentist meta-regression, and the Bucher 
method (Appendix D). There are no results from frequentist logistic regression for this outcome 
because it is a continuous outcome. 

For 33 out of 78 drug-drug comparisons, neither of the frequentist methods produced a result 
either because no studies included a common comparator or because an insufficient number of 
studies included a common comparator for the program to run the analysis. Table 4 summarizes 
the number of comparisons for which each frequentist method was unable to produce a result 
(the Bayesian MTC method produced results for all 78 comparisons) as well as the percent 
agreement between each frequentist method and the Bayesian MTC method. Bayesian MTC 
meta-analysis produced the most precise result for 67 percent of the comparisons; the Bucher 
method was the most precise for 33 percent of the comparisons (Appendix Table E-2). 
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Table 4. Comparison of findings for mean change in HAM-D between Bayesian MTC meta-analysis 
findings and those of frequentist methods: agreement and kappas 

Outcome Bayesian MTC Meta-Regression Bucher Method 
No result produceda 0 of 78 comparisons 46 of 78 comparisons 33 of 78 comparisons 
% agreement with Bayesian MTCb NA 100 (32/32) 84.4 (38/45) 
Kappac NA NA NA 
Precision Most precise Least precise 2nd most precise 
HAM-D = Hamilton Depression rating scale; MTC = mixed treatment comparison; NA = not applicable 

aNo result produced indicated the number of drug-drug comparisons for which the method was unable to produce a result, either 
because no studies had a common comparator or an insufficient number of studies had a common comparator. 
bPercent agreement calculated only for drug-drug comparisons that both methods were able to produce a result. Results were 
considered to agree if both methods produced a non-statistically significant (for frequentist methods) or unimportant (for 
Bayesian MTC) result for the comparison or if both analyses found a statistically significant or important result favoring the same 
treatment. 
cNot applicable (NA) indicates that the statistical program was unable to calculate a kappa because of insufficient data. 

For the results of the seven drug-drug comparisons that were not in agreement between the 
Bayesian MTC and the Bucher methods, the Bucher method found a statistically significant 
difference between treatments, whereas the Bayesian MTC method did not find an important 
difference (based on the 95% credible interval). The seven comparisons were duloxetine versus 
mirtazapine, duloxetine versus venlafaxine, escitalopram versus trazodone, escitalopram versus 
venlafaxine, mirtazapine versus venlafaxine, paroxetine versus venlafaxine, and sertraline versus 
venlafaxine. The Bayesian MTC method usually produced a more precise result (based on 
comparison of credible intervals with confidence intervals), but the point estimates differed in 
magnitude and sometimes in the direction (three of the seven) of effect (i.e., point estimates 
trended in opposite directions, favoring different treatments). 

Biologic Disease-Modifying Antirheumatic Drugs for Rheumatoid 
Arthritis: ACR 50 (Binary Outcome) 

Appendix Table D-3 provides results of our analyses for the full biologic DMARDs network 
for each drug-drug comparison for Bayesian MTC meta-analyses, frequentist meta-regression, 
the Bucher method, and frequentist logistic regression (Appendix D). For all 28 drug-drug 
comparisons, all four methods were able to produce results. Table 5 summarizes the percent 
agreement and kappa between each frequentist method and the Bayesian MTC method. Logistic 
regression produced the most precise result for 89 percent of the comparisons; the Bayesian 
MTC meta-analysis produced the third most precise result for 86 percent of the comparisons 
(Appendix Table E-3). 

Table 5. Comparison of findings for ACR 50 between Bayesian MTC meta-analysis findings and 
those of frequentist methods: agreement and kappas 

Outcome Bayesian MTC Meta-Regression Bucher Method Logistic 
Regression 

No result produced 0 of 28 
comparisons 

0 of 28 
comparisons 

0 of 28 
comparisons 

0 of 28 
comparisons 

% agreement with Bayesian 
MTCa NA 96.4 (27/28) 92.9 (26/28) 82.1 (23/28) 

Kappa NA 0.90 0.83 0.62 
Precision 3rd most precise Least precise 2nd most precise Most precise 
ACR 50 = American College of Rheumatology 50 percent response; MT C= mixed treatment comparison; NA = not applicable 

aResults were considered to agree if both methods produced a non-statistically significant (for frequentist methods) or 
unimportant (for Bayesian MTC) result for the comparison or if both analyses found a statistically significant or important result 
favoring the same treatment. 
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For the results of the one drug-drug comparison (adalimumab vs. anakinra) that was not in 
agreement between the Bayesian MTC meta-analysis and meta-regression, the Bayesian MTC 
method found a potentially important result favoring adalimumab over anakinra (OR, 1.88, 95% 
CrI 1.01 to 3.98). Meta-regression found a similar point estimate but with a wider confidence 
interval not reaching statistical significance (OR, 1.95, 95%, CI, 0.82 to 4.61). 

For the results of both drug-drug comparisons (anakinra vs. golimumab and etanercept vs. 
golimumab) that were not in agreement between the Bayesian MTC and the Bucher method, the 
Bucher method found a statistically significant difference between treatments, whereas the 
Bayesian MTC did not find an important difference. Point estimates for both were fairly similar 
and in the same direction, but the confidence intervals were more narrow (reaching statistical 
significance) for the Bucher method. 

For the results of the five drug-drug comparisons that were not in agreement between the 
Bayesian MTC and logistic regression, logistic regression found a statistically significant 
difference between treatments, whereas the Bayesian MTC did not find an important difference. 
The five comparisons were abatacept versus anakinra, anakinra versus golimumab, anakinra 
versus infliximab, anakinra versus rituximab, and anakinra versus tocilizumab. Point estimates 
were fairly similar and were in the same direction for all five for the Bayesian MTC meta-
analysis and logistic regression, but the confidence intervals were more narrow (reaching 
statistical significance) for logistic regression. 

Performance for Different Types of Evidence Network Patterns 

Comparison of Bayesian MTC Results With Those of Various 
Frequentist Analyses for Subcomponents of the Full Networks 

In this section, we provide results of comparisons between Bayesian MTC methods and three 
frequentist methods for the subcomponents of the full networks illustrated in Appendix C. These 
subcomponents represent at least one of each of the following network patterns: placebo star, 
loop, one closed loop, and ladder. Tables in Appendix D provide detailed results for each 
analysis by network pattern. Tables in Appendix E provide a comparison of precision of findings 
from the various analyses (determined by width of the 95% credible interval or confidence 
interval), with the darkest shading indicating the most precise result and the lightest indicating 
the least precise for each drug-drug comparison. The tables in this section provide a summary 
and some comparison of the data in Appendix D and Appendix E. 

Second-Generation Antidepressants: Response (Binary Outcome) 
Appendix Tables D-4 through D-7 provide results of our analyses for each of the network 

patterns (sub-components of the full network) selected, including a placebo star, loop, one closed 
loop, and ladder for each drug-drug comparison for Bayesian MTC meta-analyses, frequentist 
meta-regression, the Bucher method, and frequentist logistic regression (Appendix D). Table 6 
summarizes the number of comparisons for which each frequentist method was unable to 
produce a result as well as the percent agreement and kappa between each frequentist method 
and the Bayesian MTC method by network pattern. On average, logistic regression produced the 
most precise results for the star, one closed loop, and ladder, whereas the Bayesian MTC meta-
analysis produced the most precise results for the loop (Appendix Tables E-4 through E-7). 
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Table 6. Comparison of findings for SGA response between Bayesian MTC meta-analysis findings 
and those of frequentist methods for various network patterns 
Network 
Pattern Outcome Bayesian MTC Meta-

Regression 
Bucher 
Method 

Logistic 
Regression 

Star 

No result produceda 0 of 45 
comparisons 

3 of 45 
comparisons 

2 of 45 
comparisons 

0 of 45 
comparisons 

% agreement with 
Bayesian MTCb NA 100 100 100 

Kappac NA NA NA NA 

Precision 3rd most precise Least precise 2nd most 
precise Most precise 

Loop 

No result produceda 0 of 3 0 of 3 0 of 3 0 of 3 
% agreement with 
Bayesian MTCb NA 66.7 (2/3) 66.7 (2/3) 66.7 (2/3) 

Kappac NA NA NA NA 

Precision Most precise Least precise 3rd most 
precise 2nd most precise 

One 
closed 
loop 

No result produceda 0 of 32 25 of 32 25 of 32 0 of 32 
% agreement with 
Bayesian MTCb NA 85.7 85.7 93.8 

Kappac NA NA NA 0.6364 

Precision 2nd most precise Least precise 3rd most 
precise Most precise 

Ladder 

No result produceda 0 of 55 39 of 55 36 of 55 0 of 55 
% agreement with 
Bayesian MTCb NA 100 100 96.4 

Kappac NA NA NA 0.6474 

Precision 3rd most precise Least precise 2nd most 
precise Most precise 

MTC = mixed treatment comparison; NA = not applicable; SGA = second-generation antidepressant 
aNo result produced indicated the number of drug-drug comparisons for which the method was unable to produce a result, either 
because no studies had a common comparator or an insufficient number of studies had a common comparator. 
bPercent agreement calculated only for drug-drug comparisons that both methods were able to produce a result. Results were 
considered to agree if both methods produced a non-statistically significant (for frequentist methods) or unimportant (for 
Bayesian MTC) result for the comparison or if both analyses found a statistically significant or important result favoring the same 
treatment. 
cKappa was calculated only for comparisons when both methods were able to produce a result, as with percent agreement. Not 
applicable (NA) indicates that the statistical program was unable to calculate a kappa because of insufficient data (because there 
were fewer than two levels).  

Second-Generation Antidepressants: Mean Change in HAM-D 
(Continuous Outcome) 

Appendix Tables D-8 through D-11 provide results of our analyses for each of the network 
patterns (sub-components of the full network) selected, including a placebo star, loop, one closed 
loop, and ladder for each drug-drug comparison for Bayesian MTC meta-analyses, frequentist 
meta-regression, and the Bucher method (Appendix D). There are no results from frequentist 
logistic regression for this outcome because it is a continuous outcome. 

Table 7 summarizes the number of comparisons for which each frequentist method was 
unable to produce a result (the Bayesian MTC method produced results for all comparisons) as 
well as the percent agreement and kappa between each frequentist method and the Bayesian 
MTC method, by network pattern. For the one closed loop and ladder patterns, the frequentist 
methods did not produce a result for the majority of drug-drug comparisons. On average, logistic 
regression produced the most precise results for the star and ladder, the Bayesian MTC meta-
analysis produced the most precise results for the loop, and meta-regression produced the least 
precise results for all network patterns (Appendix Tables E-8 through E-11). 
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Table 7. Comparison of findings for mean change in HAM-D between Bayesian MTC meta-analysis 
findings and those of frequentist methods for various network patterns 

Network 
Pattern Outcome Bayesian MTC Meta-Regression Bucher Method 

Star 

No result produceda 0 of 21 
comparisons 1 of 21 comparisons 0 of 21 

comparisons 
% agreement with Bayesian 
MTCb NA 100 (20/20) 81 (17/21) 

Kappac NA NA NA 
Precision 2nd most precise Least precise Most precise 

Loop 

No result produceda 0 of 3 
comparisons 2 of 3 comparisons 0 of 3 

comparisons 
% agreement with Bayesian 
MTCb NA 100 (1/1) 100 (3/3) 

Kappac NA NA NA 
Precision Most precise Least precise 2nd most precise 

One closed 
loop 

No result produceda 0 of 21 
comparisons 

 17 of 21 
comparisons 

14 of 21 
comparisons 

% agreement with Bayesian 
MTCb NA 100 (4/4) 85.7 (6/7) 

Kappac NA NA NA 
Precision Most precised Least precise Most precised 

Ladder 

No result produceda 0 of 28 
comparisons 25 of 28 comparisons 23 of 28 

comparisons 
% agreement with Bayesian 
MTCb NA 100 (3/3) 100 (5/5) 

Kappac NA NA NA 
Precision 2nd most precise Least precise Most precise 

HAM-D = Hamilton Depression rating scale; MTC = mixed treatment comparison; NA = not applicable 

aNo result produced indicated the number of drug-drug comparisons for which the method was unable to produce a result, either 
because no studies had a common comparator or an insufficient number of studies had a common comparator. 
bPercent agreement calculated only for drug-drug comparisons that both methods were able to produce a result. Results were 
considered to agree if both methods produced a non-statistically significant (for frequentist methods) or unimportant (for 
Bayesian MTC) result for the comparison or if both analyses found a statistically significant or important result favoring the same 
treatment. 
cKappa was calculated only for comparisons when both methods were able to produce a result. Not applicable (NA) indicates that 
the statistical program was unable to calculate a kappa because of insufficient data (because there were fewer than two levels). 
dNeither the Bayesian MTC method nor the Bucher method was clearly more precise than the other. Each of them reported the 
most precise results for about half of the drug-drug comparisons. 

Biologic Disease-Modifying Antirheumatic Drugs for Rheumatoid 
Arthritis: ACR 50 (Binary Outcome) 

Appendix Tables D-12 through D-16 provide results of our analyses for each of the network 
patterns (subcomponents of the full network) selected, including a placebo star, loop, one closed 
loop, and ladder for each drug-drug comparison for Bayesian MTC meta-analyses, frequentist 
meta-regression, the Bucher method, and frequentist logistic regression (Appendix D). Table 8 
summarizes the number of comparisons for which each method was unable to produce a result, 
as well as the percent agreement and kappa between each frequentist method and the Bayesian 
MTC method by network pattern. On average, logistic regression produced the most precise 
results for all of the network patterns; the Bayesian MTC meta-analysis produced the third most 
precise or the least precise results, depending on the network pattern (Appendix Tables E-12 
through E-16). 
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Table 8. Comparison of findings for ACR 50 response between Bayesian MTC meta-analysis 
findings and those of frequentist methods for various network patterns 

Network 
Pattern Outcome Bayesian 

MTC 
Meta-

Regression 
Bucher 
Method 

Logistic 
Regression 

Star 

No result produceda 0 of 28 
comparisons 

0 of 28 
comparisons 

0 of 28 
comparisons 

0 of 28 
comparisons 

% agreement with 
Bayesian MTCb NA 100 (28/28) 89.3 (25/28) 78.6 (22/28) 

Kappac NA 1.000 0.7308 0.5333 

Precision 3rd most 
precise Least precise 2nd most 

precise Most precise 

Loop 

No result produceda 0 comparisons 0 of 1 
comparisons 

0 of 1 
comparisons 

0 of 1 
comparisons 

% agreement with 
Bayesian MTCb NA 100 (1/1) 100 (1/1) 100 (1/1) 

Kappac NA NA NA NA 

Precision 3rd most 
precise Least precise 2nd most 

precise Most precise 

One closed 
loop with 
adalimumab 

No result produceda 0 of 3 
comparisons 

0 of 3 
comparisons 

0 of 3 
comparisons 

0 of 3 
comparisons 

% agreement with 
Bayesian MTCb NA 100 (3/3) 100 (3/3) 100 (3/3) 

Kappac NA NA NA NA 

Precision Least precise 3rd most precise 2nd most 
precise Most precise 

One closed 
loop with 
etanercept 

No result produceda 0 of 3 
comparisons 

0 of 3 
comparisons 

0 of 3 
comparisons 

0 of 3 
comparisons 

% agreement with 
Bayesian MTCb NA 100 (3/3) 100 (3/3) 100 (3/3) 

Kappac NA 1.000 1.000 1.000 

Precision 3rd most 
precise Least precise 2nd most 

precise Most precise 

Ladder 

No result produceda 0 of 3 
comparisons 

1 of 3 
comparisons 

1 of 3 
comparisons 

0 of 3 
comparisons 

% agreement with 
Bayesian MTCb NA 100 (2/2) 100 (2/2) 66.7 (2/32) 

Kappac NA 1.000 NA NA 

Precision Least precise 3rd most precise 2nd most 
precise Most precise 

ACR 50 = American College of Rheumatology 50 percent response; MTC= mixed treatment comparison; NA = not applicable 

aNo result produced indicated the number of drug-drug comparisons for which the method was unable to produce a result, either 
because no studies had a common comparator or an insufficient number of studies had a common comparator. 
bPercent agreement calculated only for drug-drug comparisons that both methods were able to produce a result. Results were 
considered to agree if both methods produced a non-statistically significant (for frequentist methods) or unimportant (for 
Bayesian MTC) result for the comparison or if both analyses found a statistically significant or important result favoring the same 
treatment. 
cKappa was calculated only for comparisons when both methods were able to produce a result. Not applicable (NA) indicates that 
the statistical program was unable to calculate a kappa because of insufficient data (because there were fewer than two levels). 

Comparison of Bayesian MTC Results for the Full Networks With 
Bayesian MTC Results for Subcomponents 

In this section, we present findings of the Bayesian MTC meta-analyses for each dataset for 
the full network and for subcomponents of the network. Because the data differ for each 
scenario, the measures are not intended to be directly comparable for the full network and for the 
various subcomponents of the network but are presented here to show model fit under each 
scenario. For example, the deviance information criterion should not be used to compare the fit 
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of models using different datasets. The findings for the full network represent those for the 
complete literature on each set of medications (at the time of our CERs on each topic).19, 20 Those 
for the subcomponents examined hypothetical scenarios that would occur if the bodies of 
evidence were more limited. 

Second-Generation Antidepressants: Binary Outcome 
We ran MTC meta-analyses for the binary outcome of response to SGAs under five different 

network scenarios, the full network and four subcomponent network patterns: star, loop, one 
closed loop, and ladder (as described in the Methods chapter). Network figures in Appendix C 
detail the geometry of these subcomponents. 

Measures of model fit are reported in Table 9. Estimates of between-study heterogeneity (tau 
squared) ranged from 0.12 to 0.44. When examining the total residual deviance for each 
scenario, all of them reasonably approximate the number of data points available, suggesting 
good model fit. The ladder and star pattern models most closely approximated the number of 
data points available. 

Table 9. Measures of model fit for second-generation antidepressants for response 
Statistic Full Network Star Loop One Closed Loop Ladder 

Total residual deviance (total 
number of data points 
available) 

135.3 (140) 35.96 (36) 25.64 
(30) 37.67 (42) 39.36 (40) 

Deviance information criterion 259.45 246.67 188.42 271.67 270.31 
Between-study heterogeneity 0.2571 0.4427 0.1172 0.1196 0.3019 

 
One feature of the Bayesian framework for MTC is the ability to directly calculate the 

probability that each drug is the best treatment. Table 10 shows the results of this statistic for the 
five scenarios. Because not every treatment was available in each network pattern, some 
comparisons were not applicable for every network pattern.  

Table 10. Probability of best treatment for second-generation antidepressants for response 
Statistic Full Network Star Loop One Closed Loop Ladder 

Bupropion  0.005 NA NA 0.057 0.034 
Citalopram 0.366 NA NA 0.218 0.268 
Desvenlafaxine 0.023 0.019 NA NA NA 
Duloxetine 0.000 0.005 NA NA 0.002 
Escitalopram 0.090 NA NA 0.056 0.110 
Fluoxetine 0.000 0.185 0.019 0.003 0.004 
Fluvoxamine 0.280 0.255 NA 0.202 0.262 
Mirtazapine 0.158 NA NA 0.077 0.061 
Nefazodone 0.038 0.077 NA NA NA 
Paroxetine 0.003 0.210 0.182 0.070 0.021 
Sertraline 0.003 0.007 0.798 0.317 0.069 
Trazodone 0.008 NA NA 0.001 0.002 
Venlafaxine 0.028 0.243 NA NA 0.168 
NA = not applicable 

For the full network, citalopram had the greatest probability of being the best treatment for 
achieving response (36.6%), followed by fluvoxamine. However, none of the treatments were 
particularly dominant to where we would have high confidence in that treatment truly having 
greater efficacy—as we might suggest if one reached a probability of 90 percent or more, for 
example. For the star network pattern, fluvoxamine had the greatest probability, followed by 
venlafaxine. But, again, none of the treatments were particularly dominant. The medication with 
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the greatest probability of being the best treatment varied for each of the five scenarios. Only the 
one closed loop had a fairly dominant medication: sertraline had a probability of almost 80 
percent for being the best treatment. 

Given that not all of the comparisons were available in each scenario, we focused on the 
three drugs that were represented in each pattern: fluoxetine, paroxetine, and sertraline. Figure 5 
shows the odds ratios and 95% credible intervals for the relative response of the antidepressants 
for each scenario. The full set of all pairwise comparisons is reported in Appendix D (Appendix 
Tables D-1, D-4, D-5, D-6, and D-7). Generally, the results show that the three drugs are not 
significantly different in odds of response. The two models with the least amount of connected 
data (star and ladder) also had the greatest heterogeneity and thus wider credible intervals around 
the mean. The response profiles for the loop and one closed loop mirrored the full network (with 
very similar point estimates) but found a significant difference between fluoxetine and sertraline, 
in part because of the lower between-studies heterogeneity of these reduced datasets.  
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Figure 5. Results of Bayesian MTC meta-analysis for five scenarios: odds ratio (95% credible 
interval) comparing fluoxetine, paroxetine, and sertraline for achieving response 

CrI = credible interval; OR = odds ratio; vs. = versus 

Second-Generation Antidepressants: Continuous Outcome 
For the second illustration with the antidepressant data, response is now represented on a 

continuous scale by using mean change from baseline in HAM-D in each treatment arm. We ran 
MTC meta-analyses using a normal likelihood and identify link function for each of the five 
different network scenarios. Network figures in Appendix C detail the geometry of these 
scenarios. 

Out of the 78 pairwise comparisons available in the full network, 21 were available in the 
star pattern, 3 in the loop, 21 in the one closed loop, and 28 in the ladder. The full results are 
reported in Appendix D (Tables D-2, D-8, D-9, D-10, and D-11). Although the point estimates 
vary across the patterns, likely because of the availability of direct head-to-head studies, the 
confidence intervals cross the line of no difference in all but one of the comparisons. As in the 
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case of the binary outcome (response), there is little evidence from these data to support any 
important differences in the efficacy of the 13 antidepressants.  

Measures of model fit are reported in Table 11. Estimates of between-study heterogeneity 
(tau squared) ranged from 0.86 to 1.97. For the total residual deviance for each scenario, the star, 
loop, and ladder most closely approximated the number of data points available, but fairly close 
approximations were found for all scenarios, suggesting good model fit. 

Table 11. Measures of model fit for second-generation antidepressants for mean change from 
baseline in HAM-D 

Statistic Full Network Star Loop One Closed Loop Ladder 
Total residual deviance (total 
number of data points 
available) 

86.93 (80) 41.27 (40) 18.81 
(18) 39.64 (38) 26.71 (26) 

Deviance information criterion 254.08 120.76 59.866 122.637 75.126 
Between-study heterogeneity 0.8564 0.8637 1.974 1.683 1.192 
 

As in the example with a binary outcome, we looked closer at three pairwise comparisons 
available under each scenario (Figure 6). Generally, the results show that the three drugs are not 
significantly different in mean change from baseline in HAM-D. 
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Figure 6. Results of Bayesian MTC meta-analysis for five scenarios: weighted mean difference 
(95% credible interval) comparing escitalopram, fluoxetine, and venlafaxine for mean change from 
baseline in HAM-D 

 
CrI = credible interval; vs. = versus; WMD = weighted means difference 

Biologic DMARDs for Rheumatoid Arthritis: Binary Outcome 
For the RA dataset, the majority of the trials were placebo-controlled; only one trial included 

a head-to-head comparison, between adalimumab and infliximab. Therefore, the choice of 
subcomponent network patterns was more limited than for the SGA dataset. We ran MTC meta-
analyses on the binary outcome of ACR 50 response for five different network scenarios; the full 
network; and four sub-network patterns: star, loop, one closed loop, and ladder (as described in 
the Methods chapter). Network figures in Appendix C detail the geometry of these scenarios. 
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Measures of model fit are reported in Table 12. Estimates of between-study heterogeneity 
(tau squared) were very similar across scenarios (range 0.27 to 0.33). Total residual deviance 
data show that the full network and the loop most closely approximated the number of data 
points available, suggesting good model fit. The other scenarios had more sizeable differences 
between total residual deviance and the number of data points. 

Table 12. Measures of model fit for biologic DMARDs for rheumatoid arthritis for achieving ACR 50 
Statistic Full Network Star Loop One Closed Loop Ladder 

Total residual deviance (total 
number of data points 
available) 

65.54 (62) 62.29 (40) 17.01 
(18) 22.87 (38) 16.03 (26) 

Deviance information criterion 394.56 374.04 110.95 149.89 101.45 
Between-study heterogeneity 0.3006 0.3193 0.3315 0.2668 0.3899 
ACR 50 = American College of Rheumatology 50 percent response; DMARDs = disease-modifying antirheumatic drugs 

Table 13 shows the probability that each drug is the best treatment for achieving ACR 50 
response for each of the five scenarios. Because not every treatment was available in each 
network pattern, the probabilities for some treatments were not reported (i.e., not applicable) for 
some network patterns. For all five scenarios, etanercept had the greatest probability of being the 
best treatment for achieving ACR 50 response, with probabilities of 94.9 percent or higher.  

Table 13. Probability of best treatment for biologic DMARDs for rheumatoid arthritis for achieving 
ACR 50 

Statistic Full Network Star Loop One Closed Loop (ETA) Ladder 
Abatacept 0.000 0.001 0.4526 0.001 0.000 
Adalimumab 0.003 0.003 NA NA NA 
Anakinra 0.000 0.000 NA NA NA 
Etanercept 0.953 0.949 NA 0.999 0.993 
Golimumab 0.040 0.041 NA NA NA 
Infliximab 0.000 0.001 0.5473 0.001 0.007 
Rituximab 0.003 0.004 NA NA NA 
Tocilizumab 0.000 0.000 NA NA NA 
DMARDs = disease-modifying antirheumatic drugs; ETA = etanercept; NA = not applicable 

Given that not all of the comparisons were available in each scenario, we focused on the two 
drugs that are represented in each pattern. Figure 7 shows the odds ratios and 95 percent credible 
intervals for the relative response for each scenario. The full set of all pairwise comparisons is 
reported in Appendix D (Appendix Tables D-3, D-12, D-13, D-14, D-15, and D-16). Generally, 
the results show that the two drugs in Figure 7 are not significantly different in odds of ACR 50 
response for four of the scenarios; the ladder found greater response for infliximab than for 
abatacept.  
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Figure 7. Results of Bayesian MTC meta-analysis for five scenarios: odds ratio (95% credible 
interval) comparing abatacept and infliximab for treatment response (ACR 50) 

 
CrI = credible interval; OR = odds ratio; vs. = versus 
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This KQ aims to illustrate the use of meta-regression as a technique for exploring sources of 

heterogeneity of treatment effects in CERs. We examine two types of meta-regression in this 
KQ: one relates to exploring subgroup effects with a binary covariate and the other to exploring 
interaction effects with a continuous covariate. Our purpose here is to use meta-regression with 
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Bayesian MTC meta-analysis within the context of two real-world scenarios from recent CERs 
and to examine two clinically important questions. 

Meta-Regression With a Subgroup Indicator Covariate 
We hypothesized that differences in efficacy of SGAs may exist between older adults (≥55 

years) and adults of any age. We used 72 trials of SGAs; 64 trials addressed efficacy in the 
general adult population and eight trials conducted exclusively in the older adult population. The 
outcome was treatment response as measured by 50 percent or greater improvement from 
baseline on the HAM-D. Figure 8 shows the evidence network for the 72 trials.  

Figure 8. Evidence network for subgroup meta-regression to assess whether efficacy of second-
generation antidepressants differs for older adults 

 
 
For this analysis, we used a random effects logistic regression model, including the 

appropriate adjustment for correlations within multi-arm trials. Convergence was checked via 
trace plots, and posterior means were calculated after 100,000 iterations following a burn-in of 
20,000 iterations. We used a common (single) interaction term. Figure 9 shows the odds ratios of 
treatment response for each of the SGAs, relative to placebo, within each age subgroup. 
  



35 

Figure 9. Odds ratios (95% credible interval) of treatment response for second-generation 
antidepressants, by patient population 
              OR   (95% CrI) 

  
CrI = credible interval; OR = odds ratio; vs. = versus 

Within the general adult population, efficacy was supported for all antidepressants with the 
exception of trazodone. When estimating these effects for the older adult population within the 
same meta-regression model, the efficacy for each drug appears to be diminished with only 
escitalopram and venlafaxine maintaining statistical superiority compared with placebo. This 
trend is supported by the interaction effect estimate of -0.34 (95% CrI, -0.696 to 0.006). This 
represents, on average, a -0.34 reduction in the log odds of response (not for the odds ratio 
scale). While approaching marginal statistical significance, the interaction estimate indicates a 
trend toward lower response rates in the older adult population. We compared the meta-
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regression model of 72 studies with the main adult analysis including 64 studies. The estimates 
for between-study heterogeneity were similar, although slightly reduced in the model containing 
the additional older adult studies (Table 14). Both model estimates of total residual deviance 
were appropriate when compared with the number of data points available in each analysis, 
suggesting a good model fit in each case. 

Table 14. Measures of model fit for main analysis and meta-regression 
Statistic Main Adult Analysis (n=64) Meta-Regression Including 

Older Adults (n=72) 
Total residual deviance (total 
number of datapoints available) 135.3 (140) 153.8 (158) 

DIC 928.73 933.38 
Between-study heterogeneity 0.2571 0.2506 
DIC = Deviance Information Criterion 

Meta-Regression With a Continuous Covariate 
We hypothesized that differences in efficacy of treatments for RA may exist for patients with 

varying durations of disease. Longer disease durations were hypothesized to be associated with 
higher levels of treatment response. We aimed to test the effects of this covariate (mean disease 
duration) on the findings from our recent CER—with our Bayesian MTC meta-analysis finding 
that etanercept resulted in greater treatment response than most other biologic DMARDs. 

Twenty-eight of the 31 trials included in our Bayesian MTC meta-analysis reported data on 
mean disease duration (in years). Both trials that did not report data on mean disease duration 
compared etanercept with placebo. If disease duration was presented as only an arm-level mean, 
the average of the arms was taken for the trial-level mean. All eight biologic DMARDs were 
represented in the 28 trials (Figure 10). The mean trial-level disease duration ranged from 3.9 to 
13 years.  

Figure 10. Evidence network for continuous covariate meta-regression to assess whether efficacy 
of biologic DMARDs differs for patients with longer disease duration 
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A random effects logistic regression model was used, including the appropriate adjustment 
for correlations within multi-arm trials. The model was fitted assuming a common interaction 
effect for all treatments. Convergence was checked via trace plots, and posterior means were 
taken after 100,000 iterations following a burn-in of 20,000 iterations.  

Table 15 shows the probability of best treatment with and without the meta-regression 
covariate. The interaction effect was found to be statistically important and supported the 
hypothesis of increased treatment response with increased disease duration. When including the 
effect of mean disease duration, the probability that etanercept was the best treatment dropped 
from 0.961 to 0.678, indicating that treatments with higher reported response rates, including 
etanercept, may have appeared to be more efficacious due to the inclusion of studies enrolling 
patient populations with longer disease durations.  

Table 15. Interaction effect and probability of best treatment  
Probability of Best Treatment No Covariate  With Disease Duration Covariate 

Interaction Effect NA 0.093 (95% CrI: 0.005 to 0.182) 
Abatacept 0.001 0.001 
Adalimumab 0.003 0.007 
Anakinra 0.000 0.000 
Etanercept 0.961 0.678 
Golimumab 0.033 0.286 
Infliximab 0.000 0.002 
Rituximab 0.003 0.015 
Tocilizumab 0.001 0.010 
CrI = credible interval; NA = not applicable 

Figure 11 presents odds ratios for etanercept response compared with other biologic 
DMARDs from the model with and without the covariate. When examining the relative effects 
of etanercept compared with the other biologic DMARDs, we see that when controlling for years 
of disease severity, the relative efficacy of etanercept is reduced. While trending in the direction 
of greater efficacy compared with all of the other biologic DMARDs, statistical significance was 
only reached for the comparison with anakinra. However, even with the muted effect of 
etanercept in the model controlling for disease duration level, when looking at the probability of 
best treatment it appears the only other biologic with competing efficacy is golimumab. When 
predicting the estimated odds ratios for different disease durations, we found that odds ratios for 
etanercept compared with placebo ranged from 7.35 with one year of RA to 14.99 with 10 years 
of the disease.  
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Figure 11. Odds ratios (95% credible interval) of treatment response for Etanercept compared with 
other biologic DMARDs, with and without disease duration covariate 
           OR   (95% CrI) 

 
CrI = credible interval; OR = odds ratio; vs. = versus 
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Equivalent Efficacy Scenario 
Table 16 shows the mean, standard deviation, and standard error of the probability that each 

drug was the best in the MTC meta-analysis runs for the 1,000 sample datasets for each network 
pattern and each available number of studies for the equivalent efficacy scenario. In the 
equivalent efficacy scenario, the pre-determined mean response (standard deviation) of drug one 
(placebo) was 0.10 (0.03); the pre-determined mean response (standard deviation) for each of 
drugs two, three, and four was 0.50 (0.05). 

Table 16. Simulation results: Probability of best treatment under equivalent efficacy scenario 

Network 
Pattern 

Number of 
Studies for 
Each Drug-

Drug 
Comparison 

Drug 1 (placebo) 
Mean (SD, SE) 

Drug 2 
Mean (SD, SE) 

Drug 3 
Mean (SD, SE) 

Drug 4 
Mean (SD, SE) 

Star 

1 0.01 (0.004, 0.004) 0.34 (0.045, 0.045) 0.33 (0.045, 0.045) 0.32 (0.048, 0.048) 
2 2 x 10-3 (2 x 10-4, 1 x 10-4) 0.34 (0.115, 0.081) 0.34 (0.112, 0.079) 0.33 (0.116, 0.082) 
3 1 x 10-6 (1 x 10-5, 6 x 10-6) 0.33 (0.131, 0.076) 0.33 (0.133, 0.077) 0.34 (0.136, 0.079) 
5 0.00 (0.000, 0.000) 0.33 (0.144, 0.064) 0.34 (0.141, 0.063) 0.33 (0.139, 0.062) 

10 0.00 (0.000, 0.000) 0.33 (0.153, 0.048) 0.34 (0.150, 0.047) 0.33 (0.150, 0.047) 

Loop 

1 0.03 (0.009, 0.009) 0.24 (0.054, 0.054) 0.34 (0.049, 0.049) 0.38 (0.040, 0.040) 
2 5 x 10-4 (5 x 10-4, 4 x 10-4) 0.27 (0.152, 0.107) 0.33 (0.140, 0.099) 0.40 (0.116, 0.082) 
3 3 x 10-6 (2 x 10-5, 1 x 10-5) 0.27 (0.174, 0.100) 0.33 (0.168, 0.097) 0.40 (0.132, 0.076) 
5 0.00 (0.000, 0.000) 0.27 (0.190, 0.085) 0.33 (0.180, 0.080) 0.40 (0.139, 0.062) 

10 0.00 (0.000, 0.000) 0.27 (0.201, 0.064) 0.33 (0.190, 0.060) 0.40 (0.150, 0.047) 

One 
Closed 
Loop 

1 0.01 (0.004, 0.004) 0.25 (0.077, 0.077) 0.25 (0.077, 0.077) 0.49 (0.004, 0.004) 
2 1 x 10-4 (2 x 10-4, 1 x 10-4) 0.26 (0.126, 0.089) 0.25 (0.126, 0.089) 0.49 (0.005, 0.004) 
3 7 x 10-7 (1 x 10-5, 6 x 10-6) 0.25 (0.137, 0.079) 0.26 (0.137, 0.079) 0.49 (0.005, 0.003) 
5 0.00 (0.000, 0.000) 0.25 (0.146, 0.065) 0.26 (0.146, 0.065) 0.49 (0.006, 0.003) 

10 0.00 (0.000, 0.000) 0.25 (0.148, 0.047) 0.26 (0.148, 0.047) 0.49 (0.006, 0.002) 

Ladder 

1 0.11 (0.019, 0.019) 0.30 (0.054, 0.054) 0.24 (0.062, 0.062) 0.35 (0.053, 0.053) 
2 0.003 (0.002, 0.001) 0.37 (0.169, 0.120) 0.28 (0.186, 0.132) 0.36 (0.168, 0.119) 
3 4 x 10-5 (1 x 10-4, 6 x 10-5) 0.37 (0.195, 0.113) 0.28 (0.218, 0.126) 0.35 (0.195, 0.113) 
5 0.00 (0.000, 0.000) 0.36 (0.209, 0.093) 0.29 (0.234, 0.105) 0.35 (0.203, 0.091) 

10 0.00 (0.000, 0.000) 0.36 (0.225, 0.071) 0.30 (0.246, 0.078) 0.34 (0.215, 0.068) 
SD = standard deviation; SE = standard error 

In the equivalent efficacy scenario, we would expect to find that there are no differences 
between drugs two, three, and four, while drug one (placebo) should clearly be found the least 
efficacious. Table 17 shows the bias of the simulation results, which is the difference between 
observed and expected probabilities. For this data scenario, the bias ranged from 0.00 to 0.16, the 
latter being mainly in the one closed loop pattern. In the following bullets, we summarize our 
findings: 

• For the star and ladder network patterns the correct conclusion was generally supported 
for each scenario (with varying numbers of studies for each drug-drug comparison). Even 
in cases where one drug had a slightly higher probability than expected, the difference 
was not sufficiently large to lead to the wrong conclusion (that one drug was superior to 
other drugs). 

• The loop and one closed loop patterns had higher predicted means for the fourth drug in 
the network, even though drug four is not more efficacious than drugs two or three. The 
one closed loop pattern found drug four to be the best drug in almost half of the 
iterations.  
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• Findings of analyses when one study was available for each comparison were generally 
very similar to findings when more studies (two, three, five, or ten) were available. 
Differences between results with one study available and those with ten studies available 
were often 0.01 or less and were never greater than 0.06 (for drugs two and three in the 
ladder pattern). 

Table 17. Bias of simulation results: Difference between observed and expected probability of 
best treatment under equivalent efficacy scenario 

Expected Value 0.00 0.33 0.33 0.33 

Network pattern 
Number of Studies 
for Each Drug-Drug 

Comparison 

Drug 1 (placebo) 
Bias 

Drug 2 
Bias 

Drug 3 
Bias 

Drug 4 
Bias 

Star 

1 0.01 0.01 0.00 0.01 
2 0.00 0.01 0.01 0.00 
3 0.00 0.00 0.00 0.01 
5 0.00 0.00 0.01 0.00 

10 0.00 0.00 0.01 0.00 

Loop 

1 0.03 0.09 0.01 0.05 
2 0.00 0.06 0.00 0.07 
3 0.00 0.06 0.00 0.07 
5 0.00 0.06 0.00 0.07 

10 0.00 0.06 0.00 0.07 

One Closed 
Loop 

1 0.01 0.08 0.08 0.16 
2 0.00 0.07 0.08 0.16 
3 0.00 0.08 0.07 0.16 
5 0.00 0.08 0.07 0.16 

10 0.00 0.08 0.07 0.16 

Ladder 

1 0.11 0.03 0.09 0.02 
2 0.00 0.04 0.05 0.02 
3 0.00 0.04 0.05 0.02 
5 0.00 0.03 0.04 0.02 

10 0.00 0.03 0.03 0.01 

Superior Efficacy Scenario 
Table 18 shows the mean, standard deviation, and standard error of the probability that each 

drug was the best in the MTC meta-analysis runs for the 1,000 sample datasets for each network 
pattern and each available number of studies for the superior efficacy scenario. In the superior 
efficacy scenario, the pre-determined mean response (standard deviation) for each of drugs one, 
two, and three was 0.20 (0.04); the predetermined mean response (standard deviation) of drug 
four was 0.80 (0.04). 
  



41 

Table 18. Simulation results: Probability of best treatment under superior efficacy scenario 

Network 
Pattern 

Number of 
Studies for 
Each Drug-

Drug 
Comparison 

Drug 1 
Mean (SD, SE) 

Drug 2 
Mean (SD, SE) 

Drug 3 
Mean (SD, SE) 

Drug 4 
Mean (SD, SE) 

Star 

1 0.03 (0.009, 0.009) 0.13 (0.016, 0.016) 0.13 (0.017, 0.017) 0.71 (0.023, 
0.023) 

2 8 x 10-4 (0.008, 
0.006) 0.01 (0.006, 0.004) 0.010 (0.006, 0.004) 0.98 (0.012, 

0.008) 

3 2 x 10-5 (5x10-4, 
3x10-4) 

2 x 10-4 (5x10-4, 
3x10-4) 

0.0002 (0.0005, 
0.0002) 

0.9995 (0.001, 
6x10-4) 

5 0.00 (0.000, 0.000) 4 x 10-7 (7x10-6, 
3x10-6) 9 x 10-7 (9x10-6, 4x10-6) 0.9999 (1x10-5, 

5x10-6) 
10 0.00 (0.000, 0.000) 0.00 (0.000, 0.000) 0.00 (0.000, 0.000) 1.00 (0.00, 0.00) 

Loop 

1 0.05 (0.011, 0.011) 0.08 (0.016, 0.016) 0.16 (0.020, 0.020) 0.71 (0.025, 
0.025) 

2 0.001 (0.001, 7x10-

4) 0.004 (0.004, 0.003) 0.01 (0.010, 0.007) 0.98 (0.014, 
0.10) 

3 2 x 10-5 (7x10-5, 
4x10-5) 

0.0001 (0.0003, 
0.0002) 0.0005 (0.001, 6x10-4) 0.999 (0.001, 

6x10-4) 

5 0.00 (0.000, 0.000) 0.00 (0.000, 0.000) 1.4 x 10-6 (1x10-5, 
5x10-6) 

0.99999 (1x10-5, 
5x10-6) 

10 0.00 (0.000, 0.000) 0.00 (0.000, 0.000) 0.00 (0.000, 0.000) 1.00 (0.00, 0.00) 

One 
Closed 
Loop 

1 0.17 (0.076, 0.076) 0.17 (0.079, 0.079) 0.17 (0.077, 0.077) 0.49 (0.003, 
0.003) 

2 0.17 (0.118, 0.083) 0.17 (0.119, 0.084) 0.17 (0.120, 0.085) 0.50 (0.005, 
0.004) 

3 0.16 (0.129, 0.074) 0.17 (0.131, 0.076) 0.17 (0.129, 0.074) 0.50 (0.005, 
0.003) 

5 0.16 (0.132, 0.059) 0.17 (0.133, 0.059) 0.16 (0.131, 0.059) 0.50 (0.005, 
0.002) 

10 0.17 (0.143, 0.045) 0.17 (0.137, 0.043) 0.16 (0.136, 0.043) 0.50 (0.007, 
0.002) 

Ladder 

1 0.17 (0.023, 0.023) 0.09 (0.018, 0.018) 0.05 (0.011, 0.011) 0.69 (0.030, 
0.030) 

2 0.01 (0.009, 0.006) 0.004 (0.004, 0.003) 0.001 (0.001, 7x10-4) 0.98 (0.013, 
0.009) 

3 6 x 10-4 (0.001, 
6x10-4) 

1 x 10-4 (0.0003, 
0.0002) 

2 x 10-5 (7x10-5, 4x10-

5) 
0.999 (0.001, 
6x10-4) 

5 1 x 10-6 (1x10-5, 
5x10-6) 

1 x 10-7 (3 x10-6, 
1x10-6) 0.00 (0.000, 0.000) 1.0 (0.00, 0.00) 

10 0.00 (0.000, 0.000) 0.00 (0.000, 0.000) 0.00 (0.000, 0.000) 1.0 (0.00, 0.00) 
SD = standard deviation; SE = standard error 

In the superior data scenario, we would expect to find no differences between drugs one, two, 
and three, while drug four should clearly be found to be the best treatment. Table 19 shows the 
bias of the simulation results for this data scenario. The differences between observed and 
expected probabilities ranged from 0.00 to 0.51, again with the bias in the one closed loop 
pattern being the most pronounced. In the following bullets, we summarize our findings: 

• For each scenario (with varying numbers of studies and network patterns), the correct 
conclusion was generally supported, with one notable exception. In the one closed loop 
pattern, the model failed to definitively find drug four to be the most efficacious. 

• Generally, there were no significant differences between the estimates generated with 2, 
3, 5, or 10 studies available for each comparison.  

• For the scenarios with one study available per comparison, although probabilities of best 
treatment differed numerically compared with those scenarios with more studies 
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available, the findings were still indicative of superior efficacy of drug four. For drug 
four, differences between estimates (of the probability of being the best treatment) from 
analyses with one study available per comparison and those from analyses with two 
studies available per comparison ranged up to 0.29.  

The estimates from tables 16 and 18 are also presented graphically, as histograms in 
Appendix F. 

Table 19. Bias of simulation results: Difference between observed and expected probability of 
best treatment under superior efficacy scenario 

Expected Value 0.00 0.00 0.00 1.00 

Network Pattern 
Number of Studies 
for Each Drug-Drug 

Comparison 
Drug 1 (placebo) 

Bias 
Drug 2 
Bias 

Drug 3 
Bias 

Drug 4 
Bias 

Star 

1 0.03 0.13 0.13 0.29 
2 0.00 0.01 0.01 0.02 
3 0.00 0.00 0.00 0.00 
5 0.00 0.00 0.00 0.00 

10 0.00 0.00 0.00 0.00 

Loop 

1 0.05 0.08 0.16 0.29 
2 0.00 0.00 0.01 0.02 
3 0.00 0.00 0.00 0.00 
5 0.00 0.00 0.00 0.00 

10 0.00 0.00 0.00 0.00 

One Closed 
Loop 

1 0.17 0.17 0.17 0.51 
2 0.17 0.17 0.17 0.50 
3 0.16 0.17 0.17 0.50 
5 0.16 0.17 0.16 0.50 

10 0.17 0.17 0.16 0.50 

Ladder 

1 0.17 0.09 0.05 0.31 
2 0.01 0.00 0.00 0.02 
3 0.00 0.00 0.00 0.00 
5 0.00 0.00 0.00 0.00 

10 0.00 0.00 0.00 0.00 
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Discussion 
Main Findings by Key Question (KQ) 

In this report, we addressed three KQs using real-world bodies of trial literature (for KQs 1 
and 2) from recent comparative effectiveness reviews (CERs) of second-generation 
antidepressants (SGAs) and treatments for rheumatoid arthritis (RA) and using simulated data 
(for KQ 3). Below, we summarize the main findings by KQ. We then address the implications, 
limitations, research gaps, and conclusions.  

KQ 1. Bayesian Mixed Treatment Comparison (MTC) Methods 
Compared With Several Frequentist Indirect Methods, and 
Performance for Different Types of Evidence Network Patterns 

We compared the results of the Bayesian MTC approach with results of several frequentist 
analytic methods—specifically, frequentist meta-regression, the Bucher method (adjusted 
indirect comparisons), and frequentist logistic regression. Of note, the frequentist methods used 
are not the analogues of the Bayesian methods implemented; i.e., we did not compare findings 
with a frequentist approach to MTC. Our choice of methods to compare, and our manner of 
conducting the analyses, was based on our judgment regarding the methods most commonly used 
by analysts conducting CERs. Our results for these comparisons, such as those related to 
precision, are not necessarily generalizable to other datasets (e.g., comparative effectiveness of 
other medication classes). 

We found one of the main differences between Bayesian MTC meta-analysis and the 
typically-applied approach for frequentist meta-regression and the Bucher method to be that the 
Bayesian MTC approach was able to calculate a result for all drug-drug comparisons of interest 
whereas the other methods were unable to produce a result for many comparisons of interest. 
This was not surprising; it is because Bayesian MTC meta-analysis is able to produce a result for 
all comparisons in a connected network, whereas we only calculated results for these other 
frequentist indirect methods when there was a common comparator. Our results showed that 
some frequentist methods were unable to compute results for substantial proportions of the drug-
drug comparisons of interest for some of the datasets. Despite that, our results may actually 
underestimate the proportion that one might determine for inability to calculate a result if 
running these analyses for a real-world CER because some guidance for certain methods would 
suggest not even attempting some of the analyses without a certain minimum number of studies. 
For example, we conducted meta-regression for all comparisons with a direct common 
comparator for which the statistical program was able to calculate a result; however, some 
research indicates that a certain minimal number of studies is needed for the meta-regression to 
produce a reliable result.33, 45 In other words, although technically we could produce results for 
meta-regression and the Bucher method for all of the comparisons for which we reported results, 
many of those, perhaps, should not be calculated if conducting a CER for the purpose of 
informing decisionmaking. 

We were able to calculate results for all methods (Bayesian MTC and the three frequentist 
methods) for the RA dataset, but not for the SGA dataset. This is not surprising given the 
geometry of the two networks. The RA network is largely a star pattern with all treatments 
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connected via placebo and with only one head-to-head study. The data is thus set up to allow any 
of the methods to determine results for each drug-drug comparison of interest (because of the 
common placebo comparator for each drug-drug comparison of interest). The SGA network, 
however, is a much more complex network. In this complex network, there were often too few 
studies with a common comparator to allow some frequentist methods to calculate results for 
many comparisons of interest.  

Regarding various network patterns, the frequentist meta-regression and the Bucher method 
(in the manner we applied them) were least likely to be able to compute results for comparisons 
of interest for ladder patterns and most likely to be able to compute results for star patterns. The 
geometry of ladder patterns, by definition, does not include common comparators for most 
comparisons of interest, as each treatment will be linked to two other treatments at most.  

In the cases of comparisons for which we were able to produce results, the majority of these 
results were in general agreement (i.e., they all found no statistically significant difference [for 
frequentist analyses] or no important difference [for Bayesian analyses] or they found a 
significant or important difference favoring the same drug). However, for each of the full 
networks, and for each outcome of interest, there were instances when some of the frequentist 
methods produced results that did not agree with those of the Bayesian MTC analysis. In each 
case, we do not know for certain which of the results represents the truth; instead, we just know 
that the findings do not agree. One might presume that the Bayesian MTC analysis is more likely 
to approximate the truth because it is able to incorporate more information from the full dataset; 
however, this assumption has not been proven. Validating such a conclusion would require a 
large number of real-world examples or data simulations using numerous situations and 
assumptions. 

When considering precision, we speculated whether the Bayesian MTC method might 
generally produce more precise results because of its ability to incorporate all data (from both 
direct head-to-head trials and placebo-controlled trials). Our results did not find this to be the 
case. Across all the different network patterns (including the full networks), the logistic 
regression method produced the most precise result for a greater number of drug-drug 
comparisons than any of the other methods, followed by the Bayesian MTC method, and then the 
Bucher method. The meta-regression method fairly consistently produced the least precise result. 
The differences in precision between the various analyses were sometimes very small (on the 
order of hundredths), but were larger in some cases (e.g., on the order of 2 to 5 points different 
for an odds ratio), and very large in rare cases (e.g., a difference of 20 to 50). 

For some specific networks (5 of the 16 networks or subcomponent networks that we 
analyzed), the Bayesian MTC results were the most precise. From our findings, we are unable to 
determine if any particular network geometry makes the Bayesian MTC method more or less 
likely to produce the most precise results. However, we should note that greater precision is only 
a good thing if the treatment effect estimated by the method is reflective of the truth (which is 
not something that we can confirm for these KQ 1 analyses as they are based on actual data 
rather than simulations).  

KQ 2. Meta-Regression With Bayesian MTC Meta-Analysis 
For the first meta-regression, we hypothesized that differences in efficacy of SGAs may exist 

for older adults (≥55 years) than for younger adults. We explored this hypothesis through a 
subgroup meta-regression. We found a trend toward lack of efficacy or lesser efficacy for all of 
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the SGAs in older adults. However, this finding could be due to case mix, as studies of older 
adults may enroll subjects with less severe depression at baseline. 

For the second meta-regression, we hypothesized that treatment response may differ for 
patients with longer disease duration. We speculated that longer disease duration was related to 
more severe RA (and potentially more room for improvement). We explored this hypothesis 
through a continuous covariate meta-regression with mean disease duration as the continuous 
covariate. We focused on the response to etanercept to determine whether controlling for this 
covariate might alter findings because our MTC meta-analysis showed etanercept yielding a 
greater treatment response than most other biologic DMARDs. We found a trend toward greater 
efficacy for those with greater mean disease duration. In addition, we found that the superior 
relative efficacy of etanercept compared with other biologic DMARDs was reduced; 
furthermore, it was no longer significantly greater (based on the 95% credible intervals) than 
most of the other biologic DMARDs (with the exception of anakinra). However, reporting bias 
might underlie this finding because the only 2 trials (out of 31) that were not included in the 
analysis (because they did not report mean disease duration) compared etanercept and placebo. 

KQ 3. Stability of the Bayesian MTC Analyses for Different 
Numbers of Studies and Network Pattern Assumptions 

Our simulations for KQ 3 revealed several important findings. We note that the differences 
hypothesized between drugs and placebo (for the equivalent efficacy scenario) and between drug 
4 and drugs 1 through 3 (for the superior efficacy scenario) were relatively large, and our 
findings do not necessarily apply to other scenarios (e.g., smaller differences between 
treatments). First, the simulations validated the ability of the Bayesian MTC meta-analyses to 
produce results that would yield conclusions that reflect the truth for two scenarios—one with 
three medications of equivalent efficacy and a placebo arm and one with one medication of 
superior efficacy. The analyses were generally able to produce findings reflecting the underlying 
truth with only one study per comparison. 

Second, for the equivalent efficacy scenario, results changed very little based on the number 
of studies available for each comparison. For the superior efficacy scenario, however, we found 
larger differences between scenarios with one available study for each comparison and scenarios 
with two studies for each comparison, and similar results with little variation between two and 10 
studies per comparison. 

Third, networks with a one closed loop pattern did not perform as expected and often 
produced results that might yield inaccurate conclusions. These networks produced results for 
the equivalent efficacy scenario that might lead investigators to conclude one of the drugs (drug 
four) to have the greatest likelihood of efficacy, regardless of the number of studies available for 
each comparison (i.e., the accuracy of results did not improve even with 10 studies per 
comparison). In contrast, for the superior efficacy scenario, the one closed loop found the correct 
drug to have the greatest likelihood of efficacy, but with much lower probability compared with 
the other network patterns (approximately 50% vs. well over 90%), regardless of the number of 
studies per comparison. We are uncertain as to why this occurred and it was an unexpected 
finding. Perhaps it could be related to the position of the superior drug within the network (it was 
the “dangling” treatment in our simulations, and thus the least connected with the rest of the 
network; see the following section). A drug could have three potentially different positions, even 
in our relatively simple one closed loop network. The superior drug could be the “dangling” 
treatment (as in our simulation), it could be connected to everything else (like drug 3 in the 
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figure in the following section), or it could be connected to two of the other three drugs. 
Regardless, future research should attempt to explore this further and to reproduce the findings 
using different simulated data. 

Implications for Comparative Effectiveness Reviews 
Investigators have a number of analytic strategies from which to choose when conducting 

indirect comparisons (Bayesian MTC meta-analysis, frequentist meta-regression, the Bucher 
method, logistic regression, and others). Our findings indicate that the choice of method can have 
an important impact on the results. Although the various methods we compared using our two 
real-world datasets found results that generally agreed for the majority of drug-drug 
comparisons, we also found some instances where results differed for the same comparison. 
Even though we do not know with certainty which method is correct from these real-world 
comparisons, our findings identified several advantages of the Bayesian MTC approach (Table 
20). 

Table 20. Advantages and disadvantages of the Bayesian MTC approach 
Advantages Disadvantages 

Able to incorporate both direct evidence (from head-to-
head trials) and indirect evidence (e.g., placebo-
controlled trials) into a single analysis 

Less accessible to many investigators because the 
analyses are usually run using software that is 
unfamiliar or less familiar to many of them (usually run 
using WinBUGS) 

Able to produce results for all comparisons of interest 
within a connected network (even for ladder network 
patterns or complex networks that limit the ability of other 
methods to get any results for some comparisons of 
interest) 

Requires greater statistical expertise than some other 
methods 

Able to directly calculate the probability that each drug is 
the best treatment 

Further research is needed to evaluate performance in 
specific scenariosa  

Able to adjust for correlations within multi-arm trials Might not produce accurate results for one closed loop 
networks 

Able to incorporate meta-regression to assess 
heterogeneity (e.g., for subgroups or to control for 
covariates), all within one model 

Possibly sensitive to the prior probabilities chosen 
(therefore recommended to generally use flat priors)46 

Appears to produce valid, accurate results for star and 
ladder network patterns  
aSuch as those with various numbers of studies available per comparison, various sample sizes of studies, and complex network 
patterns. 

Our simulations (KQ 3) supported the validity of the Bayesian MTC method for star and 
ladder network patterns. However, they raised some concerns about the validity of the Bayesian 
MTC method for one closed loop networks and possibly for loop patterns (albeit lesser 
concerns), as results did not converge on the pre-determined truth. These findings demonstrate 
the need for additional exploration of more hypothetical scenarios, and analysts should be 
cognizant of the fact that Bayesian MTC methods may not produce accurate results for one 
closed loop networks such as the one used in our simulation (Figure 12). We are uncertain as to 
why the results did not converge on the truth; we wonder whether a “dangling” treatment (where 
1 treatment is peripheral to the rest of the network, like drug 4 in the figure) might reduce 
accuracy. 
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Figure 12. One closed loop network pattern used in simulation 
 
 
 
 
 
 
 
 
 
 
 
 
 
Surprisingly, our simulations did not find much difference between scenarios when one study 

was available for each comparison and those when more studies (2, 3, 5, or 10) were available. 
We initially expected that results from analyses with one study available for each comparison 
would be much less likely to approximate the underlying truth, but found that this was not the 
case. We previously wondered whether Bayesian MTC meta-analyses should not be attempted 
when there is only one study per comparison, hypothesizing that results would be much less 
accurate. However, this hypothesis was not supported by our simulations. It is possible that our 
choice of relatively large differences between drugs and placebo (for the equivalent efficacy 
scenario) and between drug 4 and drugs 1 through 3 (for the superior efficacy scenario) 
influenced this finding. In other words, if differences were smaller, analyses with one study 
available for each comparison could be less likely to approximate the underlying truth. 

Limitations 
Our findings from KQs 1 and 2 are not necessarily generalizable to treatment networks for 

other medications or diseases. Some of the findings may be a consequence of the underlying 
body of evidence (e.g., the number of studies for each comparison, the variation of findings in 
studies making the same comparison) and all of its inherent biases (e.g., selective outcome 
reporting, publication bias) rather than the network pattern, per se.  

In addition, our selection of various sub-component network patterns was based on 
maximizing the amount of data available for each sub-network. Due to limited time and 
resources, we could not evaluate every possible network pattern within each dataset. Other 
approaches to choosing network patterns could also have been informative (e.g., based on entry 
of drugs into the market, or chronologically by publication date). But, for the purposes of this 
report we felt that an approach based on maximizing the amount of data available was 
reasonable. Due to the nature of the sub-component network patterns (i.e., that they include only 
some of the available evidence from a body of literature), the findings for comparisons of sub-
components of the full networks are for exploration of the various types of analyses only and 
should not be used to inform clinical decisions. 

In KQ 1, we reported several measures to compare the findings of the Bayesian MTC method 
with various frequentist methods. The measures have some limitations. For example, regarding 
the number of comparisons for which each frequentist method was unable to produce a result, 
our results likely underestimate the numbers that some analysts might determine if running these 
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analyses for a CER—because some guidance would suggest not even attempting some analyses 
without a certain minimum number of studies. For example, we conducted meta-regression for 
all comparisons that the statistical program was able to calculate a result, but it has been 
suggested that a certain minimal number of studies per covariate is needed for the meta-
regression to produce a reliable result.33, 45 In other words, the gap would actually be larger 
between the Bayesian MTC and meta-regression for the number of comparisons the method was 
unable to produce a result.  

Another measure we used was the percent agreement between results of the Bayesian MTC 
method and those of each frequentist method. We considered results to agree if both methods 
produced a non-statistically significant (for frequentist analyses) or an unimportant (for Bayesian 
analyses) result for the comparison or if both analyses found a statistically significant or 
important result favoring the same treatment. This is an oversimplification of how results would 
be interpreted in a CER. For example, we did not determine whether the ultimate conclusions 
about comparative effectiveness or the strength of evidence grades would agree.  

Our choice of analytic methods to compare was based on our judgment regarding the 
methods most commonly considered by analysts conducting CERs. In addition, we selected 
frequentist methods with some evidence to support their validity. However, we did not compare 
findings with the frequentist network meta-analysis method (i.e., Lumley method).23 Our 
experience indicates that it is much more rarely used than the other methods, and it is generally 
felt that the Bayesian MTC approach has several advantages over frequentist network meta-
analysis. 

For Bayesian MTC analyses, we did not explore sensitivity analyses with various 
uninformative priors or with informative priors. However, we do not believe that the current state 
of the literature (i.e., the literature on SGAs and biologic DMARDs for RA) would support using 
informative priors. In addition, we did not include inconsistency models to test model 
assumptions. 

For KQ 2, both of our meta-regressions rely on averages taken over patients in the trials. As 
such, ecological bias is a potential limitation.  

Our simulations for KQ 3 were limited by the assumptions that we made to develop the 
scenarios. Our simulations did not examine many scenarios observed in real-world networks. For 
example, we set each scenario to include an equal number of studies for each drug-drug 
comparison, we set the sample size at 100 subjects for each study, and we did not include any 
multi-arm studies. In addition, we used a non-random network structure, and we did not simulate 
incoherence. Findings might differ if one investigated network patterns with varying numbers of 
studies for different comparisons or with larger or smaller (or varying) sample sizes, or if one 
incorporated additional complexity in the simulations. 

For our simulations in KQ 3, we chose to output the probability that each drug was the best 
(i.e., most efficacious) for ease of presentation and to use an outcome recognizable to analysts 
familiar with Bayesian MTC. Being able to produce probability rankings is an advantage of the 
Bayesian MTC approach. However, one could argue that using mean treatment response would 
have been more appropriate, because it would have allowed outputs that were directly 
comparable with the underlying truths that we specified. 

Finally, data were too sparse to include some analyses we had aimed to include at the outset. 
We wanted to run analyses for a continuous outcome from the RA dataset (mean change in 
Health Assessment Questionnaire score), as we had done for the SGA dataset, but too few 
studies reported sufficient data. 
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Future Research 
We identified several issues that future research could address (Table 21). Many of these 

issues are related to further exploring the findings and limitations mentioned above. 

Table 21. Possible targets for future research, by Key Question (KQ) 
KQ Potential Future Research 

1 
Our findings were based on just two real-world datasets. To determine how well our findings hold up for 
various real-world situations, it will be important to conduct similar analyses for other existing networks. 
Many (perhaps 50) publications have used Bayesian MTC meta-analyses; those could be explored. 

1 

For all of our Bayesian MTC meta-analyses, we ran a certain number of simulations (20,000) that were 
discarded and then used an additional 100,000 simulations in estimating the posterior probabilities. The 
impact of varying the number of simulations on the resulting findings is uncertain. Future research could 
address this impact to inform the most appropriate number of simulations.  

1 
There were numerous options of various network patterns we could have selected. Future research could 
use an approach similar to cumulative meta-analysis and explore how the evidence evolved over time thus, 
choosing network patterns based on the chronology of study publication. 

1 
Our analyses compared the results of various analytic approaches for both continuous and dichotomous 
outcomes, but we did not explore competing risk outcomes.47 Future research could include competing risk 
outcomes. 

2 
We found a trend toward lack of efficacy or less efficacy for all of the SGAs in older adults. However, this 
finding could possibly be due to case mix, as studies of older adults may enroll subjects with less severe 
depression at baseline. Future analyses could explore this. 

2 
We found a trend toward greater efficacy for those with greater mean disease duration. However, this 
finding could possibly be due to case mix, or other factors that we did not consider. Future analyses could 
explore this further. 

2 

For our meta-regression models exploring (1) subgroup effects with a binary covariate and (2) interaction 
effects with a continuous covariate, we used models with the same interaction effect for all treatments. 
Other models have been described with independent, treatment-specific interactions and exchangeable, 
related treatment-specific interactions.5 Future research could explore whether these other models would 
significantly alter findings. 

3 For our simulations, we assumed a sample size of 100 subjects per study. Findings might differ if one 
investigated network patterns with larger or smaller (or varying) sample sizes. 

3 
For our simulations, we assumed that each network had an equal number of studies available for each 
comparison of interest. Findings might differ if one investigated network patterns with varying numbers of 
studies for different comparisons. 

3 

For our simulations, we used four network patterns (star, loop, one closed loop, and ladder). Many 
additional variations of these patterns could be assessed to determine if findings differ. In addition, complex 
networks that resemble real-world datasets could be developed to attempt to validate Bayesian MTC 
methods for specific treatments.a 

3 

Our results raised some concerns about the validity of the Bayesian MTC method for one closed loop 
networks, and possibly for loop patterns (but less concern). Future simulations could include additional 
variation of the underlying data and complexity of network patterns to determine whether these findings are 
consistent. 

3 

Our findings for one closed loop networks raise questions about the impact of a single “dangling” treatment 
on the results. Future simulation studies could explore this further to determine whether such “dangling” 
treatments should or should not be routinely included in Bayesian MTC meta-analyses. For our superior 
efficacy scenario, the more efficacious drug was the “dangling” treatment and future simulations could 
explore whether its position in the network would alter the findings. 

3 
For our simulations, we chose to output the probability that each drug was the best. Future research could 
explore whether using different outputs (e.g. mean treatment response) would either alter conclusions or 
uncover additional findings. 

SGAs = second-generation antidepressants 

aFor example, we could develop a simulated dataset that resemble the second-generation antidepressants or the biologic 
DMARDs real-world data—including setting the pre-determined truth to match our real-world findings and setting the number 
and sample sizes of included studies to match the real-world data. Then, we could run thousands of simulations to determine the 
validity of Bayesian MTC methods for a simulation that very closely matches a real-world dataset for a particular treatment and 
health condition. 
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Conclusions 
Bayesian MTC methods allow investigators to calculate results for many more comparisons 

of interest for some network patterns, including ladders and complex networks, than frequentist 
meta-regression or the Bucher method, in the manner that they are typically applied. When 
Bayesian MTC methods and various frequentist methods are each able to calculate results (as 
typically applied), the findings are usually in general agreement. However, findings differ for a 
small proportion (less than 10%) of comparisons, which could lead to differences in conclusions.  

Our simulations support the validity of Bayesian MTC methods for star and ladder network 
patterns, but raise some concerns about one closed loop network patterns, and possibly about 
loop patterns (but less concern). Simulations generally found similar results for scenarios when 1 
study was available for each comparison and those when more studies (2, 3, 5, or 10) were 
available. 

Further research is needed to explore additional real-world datasets and simulated data to 
determine if these findings are reproducible or generalizable and to better understand the 
accuracy and validity of Bayesian MTC methods for various scenarios. We hope this research 
will inform Evidence-based Practice Centers and others conducting CERs about Bayesian MTC 
methods and help to inform additional research and guidance for the use of these methods.

 
  



51 

References 
 

1.  Agency for Healthcare Research and 
Quality. What Is Comparative Effectiveness 
Research. Rockville, MD. 
http://www.effectivehealthcare.ahrq.gov/ind
ex.cfm/what-is-comparative-effectiveness-
research1/. Accessed May 3, 2012. 

2.  Bucher HC, Guyatt GH, Griffith LE, et al. 
The results of direct and indirect treatment 
comparisons in meta-analysis of randomized 
controlled trials. J Clin Epidemiol. 1997 
Jun;50(6):683-91. PMID: 9250266. 

3.  Glenny AM, Altman DG, Song F, et al. 
Indirect comparisons of competing 
interventions. Health Technol Assess. 2005 
Jul;9(26):1-134, iii-iv. PMID: 16014203. 

4.  DerSimonian R, Laird N. Meta-analysis in 
clinical trials. Control Clin Trials. 1986 
Sep;7(3):177-88. PMID: 3802833. 

5.  Dias S, Sutton AJ, Welton NJ, et al. NICE 
DSU Technical Support Document 3: 
Heterogeneity: subgroups, meta-regression, 
bias and bias-adjustment. Report by the 
Decision Support Unit. 2011. 
http://www.nicedsu.org.uk/TSD3%20Hetero
geneity_final%20report_docx.pdf. Accessed 
May 4, 2012. 

6.  Dias S, Welton NJ, Sutton AJ, et al. A 
Generalised Linear Modelling Framework 
for Pairwise and Network Meta-analysis of 
Randomised Controlled Trials. Report by 
the Decision Support Unit. Updated August 
2011. 
http://www.nicedsu.org.uk/TSD2%20ES%2
0-
%2005_05_11_FINAL_updated%20Aug201
1.pdf. Accessed May 4, 2012. 

7.  Jansen JP, Crawford B, Bergman G, et al. 
Bayesian meta-analysis of multiple 
treatment comparisons: an introduction to 
mixed treatment comparisons. Value Health. 
2008 Sep-Oct;11(5):956-64. PMID: 
18489499. 

8.  Lu G, Ades AE. Combination of direct and 
indirect evidence in mixed treatment 
comparisons. Stat Med. 2004 Oct 
30;23(20):3105-24. PMID: 15449338. 

 

 

9.  Cooper NJ, Peters J, Lai MC, et al. How 
valuable are multiple treatment comparison 
methods in evidence-based health-care 
evaluation? Value Health. 2011 Mar-
Apr;14(2):371-80. PMID: 21296599. 

10.  Mills EJ, Bansback N, Ghement I, et al. 
Multiple treatment comparison meta-
analyses: a step forward into complexity. 
Clin Epidemiol. 2011;3:193-202. PMID: 
21750628. 

11.  Cipriani A, Furukawa TA, Salanti G, et al. 
Comparative efficacy and acceptability of 
12 new-generation antidepressants: a 
multiple-treatments meta-analysis. Lancet. 
2009 Feb 28;373(9665):746-58. PMID: 
19185342. 

12.  Li T, Puhan MA, Vedula SS, et al. Network 
meta-analysis-highly attractive but more 
methodological research is needed. BMC 
Med. 2011;9:79. 

13.  Padwal R, Klarenbach S, Wiebe N, et al. 
Bariatric surgery: a systematic review and 
network meta-analysis of randomized trials. 
Obes Rev. 2011 Aug;12(8):602-21. PMID: 
21438991. 

14.   Jansen JP, Fleurence R, Devine B, et al. 
Interpreting indirect treatment comparisons 
and network meta-analysis for health-care 
decision making: report of the ISPOR Task 
Force on indirect  treatment comparisons  
good research practices: part 1. Value 
Health. 2011:417-28. 

15.  Higgins JP, Whitehead A. Borrowing 
strength from external trials in a meta-
analysis. Stat Med. 1996 Dec 
30;15(24):2733-49. PMID: 8981683. 

16.  Lu G, Ades AE. Assessing evidence 
inconsistency in mixed treatment 
comparisons. Journal of the American 
Statistical Association. 2006;101(474):447-
59. 

17.  Hoaglin DC, Hawkins N, Jansen JP, et al. 
Conducting indirect-treatment-comparison 
and network-meta-analysis studies: report of 
the ISPOR Task Force on indirect treatment 
comparisons good research practices: part 2. 
Value Health. 2011 Jun;14(4):429-37. 
PMID: 21669367. 



52 

18.  Higgins JPT, Jackson D, Barrett JK, et al. 
Consistency and inconsistency in network 
meta-analysis: concepts and models for 
multi-arm studies. Research Synthesis 
Methods. 2012;3(2):98-110. 

19.  Gartlehner G, Hansen RA, Morgan LC, et 
al. Second-Generation Antidepressants in 
the Pharmacologic Treatment of Adult 
Depression: An Update of the 2007 
Comparative Effectiveness Review. 
(Prepared by the RTI International–
University of North Carolina Evidence-
based Practice Center, Contract No. 290-
2007-10056-I.) AHRQ Publication No. 12-
EHC012-EF Agency for Healthcare 
Research and Quality. Rockville, MD: 
December 2011. 
www.effectivehealthcare.ahrq.gov/reports/fi
nal.cfm 

20.  Donahue KE, Jonas DE, Hansen RA, et al. 
Drug Therapy for Rheumatoid Arthritis in 
Adults: An Update. Comparative 
Effectiveness Review No. 55. (Prepared by 
RTI-UNC Evidence-based Practice Center 
under Contract No. 290-02-0016-I.) AHRQ 
Publication No. 12-EHC025-EF. Rockville, 
MD: Agency for Healthcare Research and 
Quality; April 2012. 
www.effectivehealthcare.ahrq.gov/reports/fi
nal.cfm 

21.  Salanti G, Kavvoura FK, Ioannidis JP. 
Exploring the geometry of treatment 
networks. Ann Intern Med. 2008 Apr 
1;148(7):544-53. PMID: 18378949. 

22.  Canadian Agency for Drugs and 
Technologies in Health (CADTH). 
Biological response modifier agents for 
adults with rheumatoid arthritis. Ottawa, 
ON; July 2010. 
http://cadth.ca/media/pdf/Biologics_for_RA
_TRP_Final_Recommendations_e.pdf. 
Accessed  May 4, 2012. 

23.  Lumley T. Network meta-analysis for 
indirect treatment comparisons. Stat Med. 
2002 Aug 30;21(16):2313-24. PMID: 
12210616. 

24.  Kasper S, de Swart H, Friis Andersen H. 
Escitalopram in the treatment of depressed 
elderly patients. Am J Geriatr Psychiatry. 
2005 Oct;13(10):884-91. PMID: 16223967. 

25.  Roose SP, Sackeim HA, Krishnan KR, et al. 
Antidepressant pharmacotherapy in the 
treatment of depression in the very old: a 
randomized, placebo-controlled trial. Am J 
Psychiatry. 2004 Nov;161(11):2050-9. 
PMID: 15514406. 

26.  Schneider LS, Nelson JC, Clary CM, et al. 
An 8-week multicenter, parallel-group, 
double-blind, placebo-controlled study of 
sertraline in elderly outpatients with major 
depression. Am J Psychiatry. 2003 
Jul;160(7):1277-85. PMID: 12832242. 

27.  Tollefson GD, Bosomworth JC, 
Heiligenstein JH, et al. A double-blind, 
placebo-controlled clinical trial of fluoxetine 
in geriatric patients with major depression. 
The Fluoxetine Collaborative Study Group. 
Int Psychogeriatr. 1995 Spring;7(1):89-104. 
PMID: 7579025. 

28.  Aletaha D, Strand V, Smolen JS, et al. 
Treatment-related improvement in physical 
function varies with duration of rheumatoid 
arthritis: a pooled analysis of clinical trial 
results. Ann Rheum Dis. 2008 
Feb;67(2):238-43. PMID: 17644550. 

29.  Aletaha D, Ward MM. Duration of 
rheumatoid arthritis influences the degree of 
functional improvement in clinical trials. 
Ann Rheum Dis. 2006 Feb;65(2):227-33. 
PMID: 15975967. 

30.  Anderson JJ, Wells G, Verhoeven AC, et al. 
Factors predicting response to treatment in 
rheumatoid arthritis: the importance of 
disease duration. Arthritis Rheum. 2000 
Jan;43(1):22-9. PMID: 10643696. 

31.  Salanti G. Indirect and mixed-treatment 
comparison, network, or multiple-treatments 
meta-analysis: many names, many benefits, 
many concerns for the next generation 
evidence synthesis tool. Research Synthesis 
Methods. 2012;3(2):80-97. 

32.  Follmann D, Elliott P, Suh I, et al. Variance 
imputation for overviews of clinical trials 
with continuous response. J Clin Epidemiol. 
1992 Jul;45(7):769-73. PMID: 1619456. 

33.  Higgins JPT, Green S, eds. Cochrane 
Handbook for Systematic Reviews of 
Interventions Version 5.1.0 [updated March 
2011]: The Cochrane Collaboration; 2011. 



53 

34.  Cohen J. A coefficient of agreement for 
nominal scales. Educ Psychol Meas. 
1960;20(1):37-46. 

35.  Landis JR, Koch GG. The measurement of 
observer agreement for categorical data. 
Biometrics. 1977;33(1):159-74. 

36.  Borenstein M, Hedges LV, Higgins JPT, et 
al. Introduction to Meta-Analysis. 
Cambridge, UK:  Wiley; 2009. 

37.  McCullagh P, Nelder JA. Generalized 
Linear Models, volume 37 of (Monographs 
on Statistics and Applied Probability. 2nd 
ed. London: Chapman & Hall; 1989. 

38.  Spiegelhalter DJ, Abrams KR, Myles J. 
Bayesian Approaches to Clinical Trials and 
Health-Care Evaluation. Chichester: Wiley; 
2004. 

39.  Parmigiani G. Modeling in medical decision 
making: A Bayesian approach. Chichester: 
Wiley; 2002. 

40.  Gelman A, Rubin DB. Inference from 
iterative simulation using multiple 
sequences. Statistical Science. 
1992;7(4):457-511. 

41.  Spiegelhalter DJ, Best NG, Carlin BP, et al. 
Bayesian measures of model complexity and 
fit. J Royal Statistical Society. 
2002;64(4):583-639. 

42.  Carlin BP, Louis TA. Bayesian Methods for 
Data Analysis. 3rd ed. Boca Raton: 
Chapman & Hall; 2008. 

43.  Harbord RM, Higgins JPT. Meta-regression 
in Stata. Stata J. 2008;8(4):493-519. 

44.  Cooper NJ, Sutton AJ, Morris D, et al. 
Addressing between-study heterogeneity 
and inconsistency in mixed treatment 
comparisons: Application to stroke 
prevention treatments in individuals with 
non-rheumatic atrial fibrillation. Stat Med. 
2009;28(14):1861-81. 

45.  Morton SC, Adams JL, Suttorp MJ, et al. 
Meta-regression Approaches: What, Why, 
When, and How? Technical Review 8 
(Prepared by Southern California–RAND 
Evidence-based Practice Center, under 
Contract No 290-97-0001). AHRQ 
Publication No. 04-0033. Rockville, MD: 
Agency for Healthcare Research and 
Quality; March 2004.  

46.  Dias S, Welton NJ, Sutton AJ, et al. NICE 
DSU Technical Support Document 2: A 
Generalised Linear Modelling Framework 
for Pairwise and Network Meta-Analysis of 
Randomised Controlled Trials. last updated 
August 2011; 2011. 
http://www.nicedsu.org.uk. Accessed May 
4, 2012. 

47.  Ades AE, Mavranezouli I, Dias S, et al. 
Network meta-analysis with competing risk 
outcomes. Value in Health. 2010;13(8).

  



A-1 

Appendix A. WinBUGS Code Used in Bayesian Mixed 
Treatment Comparisons Meta-Analysis 

The WinBUGS code used to conduct Bayesian MTC meta-analyses is given below. WinBUGS 
Version 1.4.3 was used for all analyses. The code was adapted from code developed for the 
NICE Evidence Synthesis Technical Series Documents 2 and 3.1, 2 

 
KQ1: Random Effects Model for Dichotomous Data  
 
# Binomial likelihood, logit link 
# Random effects model for multi-arm trials 
 
model{                               # *** PROGRAM STARTS 
 
for(i in 1:ns){                      # LOOP THROUGH STUDIES 
    w[i,1] <- 0    # adjustment for multi-arm trials is zero for control arm 
    delta[i,1] <- 0             # treatment effect is zero for control arm 
    mu[i] ~ dnorm(0,.0001)           # vague priors for all trial baselines 
    for (k in 1:na[i]) {             # LOOP THROUGH ARMS 
        r[i,k] ~ dbin(p[i,k],n[i,k]) # binomial likelihood 
        logit(p[i,k]) <- mu[i] + delta[i,k]  # model for linear predictor 
        rhat[i,k] <- p[i,k] * n[i,k] # expected value of the numerators  
 
#Deviance contribution 
        dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))   
            +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k])))         } 
 
#  summed residual deviance contribution for this trial 
    resdev[i] <- sum(dev[i,1:na[i]])        
    for (k in 2:na[i]) {             # LOOP THROUGH ARMS 
# trial-specific LOR distributions 
        delta[i,k] ~ dnorm(md[i,k],taud[i,k]) 
# mean of LOR distributions (with multi-arm trial correction) 
        md[i,k] <-  d[t[i,k]] - d[t[i,1]] + sw[i,k] 
# precision of LOR distributions (with multi-arm trial correction) 
        taud[i,k] <- tau *2*(k-1)/k 
# adjustment for multi-arm RCTs 
        w[i,k] <- (delta[i,k] - d[t[i,k]] + d[t[i,1]]) 
# cumulative adjustment for multi-arm trials 
        sw[i,k] <- sum(w[i,1:k-1])/(k-1) 
      } 
  } 
totresdev <- sum(resdev[])           # Total Residual Deviance 
d[1]<-0       # treatment effect is zero for reference treatment 
# vague priors for treatment effects 
for (k in 2:nt){  d[k] ~ dnorm(0,.0001) } 
sd ~ dunif(0,5)     # vague prior for between-trial SD 
tau <- pow(sd,-2)   # between-trial precision = (1/between-trial variance) 
 
# pairwise ORs and LORs for all possible pair-wise comparisons, if nt>2 
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for (c in 1:(nt-1)) { 
for (k in (c+1):nt) { 
or[c,k] <- exp(d[k] - d[c]) 
lor[c,k] <- (d[k]-d[c]) 
} 
} 
# ranking on relative scale 
for (k in 1:nt) { 
rk[k] <- nt+1-rank(d[],k) # assumes events are “good” 
# rk[k] <- rank(d[],k) # assumes events are “bad” 
best[k] <- equals(rk[k],1) #calculate probability that treat k is best 
} 
} 

# *** PROGRAM ENDS   
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KQ 1: WinBUGS Dataset for SGA Dichotomous 
#Full Network (star, closed loop, loop plus one, and ladder are subsets) 

#Description of data inputs 

#ns = Number of studies 

#nt = Number of treatments (including placebo) 

#t[,x] = Treatment indicator 

#r[,x] = Number achieving response on HAM-D (50% improvement of scores from 
baseline)  

#n[,x]= Number of all randomized patients (ITT)  

#na[] = Number of arms in study 

 
list(ns=64, nt=14)    
 
t[,1] t[,2] t[,3] r[,1] r[,2] r[,3] n[,1] n[,2] n[,3] na[]  
1   2   7   73   76   83   152   150   154   3 
1   2   12   66   78   66   124   122   118   3 
1   2   12   55   77   79   121   120   119   3 
1   4   NA   40   205   NA   161   324   NA   2 
1   4   NA   39   52   NA   122   125   NA   2 
1   4   NA   48   142   NA   126   249   NA   2 
1   4   NA   36   46   NA   121   123   NA   2 
1   4   5   61   132   74   164   315   159   3 
1   5   NA   54   55   NA   141   141   NA   2 
1   5   NA   49   64   NA   139   128   NA   2 
1   5   NA   26   54   NA   122   123   NA   2 
1   5   6   44   117   112   137   273   274   3 
1   5   7   24   32   15   70   70   33   3 
1   5   11   51   129   59   99   196   97   3 
1   5   11   41   126   63   93   188   86   3 
1   7   NA   18   132   NA   78   285   NA   2 
1   7   11   10   31   32   19   54   55   3 
1   7   14   37   45   51   102   104   102   3 
1   7   14   41   52   54   98   103   100   3 
1   8   NA   5   9   NA   18   18   NA   2 
1   10   NA   15   25   NA   42   39   NA   2 
1   10   NA   14   41   NA   45   90   NA   2 
1   11   NA   12   24   NA   56   55   NA   2 
1   12   NA   45   70   NA   129   129   NA   2 
1   12   NA   16   19   NA   49   49   NA   2 
1   12   NA   49   77   NA   150   149   NA   2 
1   12   NA   43   65   NA   129   132   NA   2 
1   12   NA   13   26   NA   116   111   NA   2 
1   14   NA   29   53   NA   102   95   NA   2 
2   7   NA   37   35   NA   61   62   NA   2 
2   12   NA   81   93   NA   122   126   NA   2 
2   13   NA   33   21   NA   63   61   NA   2 
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3   6   NA   87   83   NA   120   120   NA   2 
3   8   NA   33   31   NA   108   109   NA   2 
5   6   NA   66   83   NA   138   140   NA   2 
5   6   NA   81   94   NA   151   144   NA   2 
5   11   NA   144   157   NA   238   240   NA   2 
6   7   NA   94   89   NA   123   117   NA   2 
6   11   NA   175   146   NA   232   227   NA   2 
6   12   NA   75   74   NA   107   108   NA   2 
6   14   NA   59   47   NA   98   100   NA   2 
7   9   NA   30   35   NA   66   66   NA   2 
7   10   NA   27   29   NA   61   64   NA   2 
7   11   NA   67   67   NA   101   102   NA   2 
7   11   NA   27   30   NA   45   45   NA   2 
7   11   NA   26   25   NA   50   50   NA   2 
7   11   12   57   64   70   92   96   96   3 
7   12   NA   35   48   NA   120   118   NA   2 
7   12   NA   63   73   NA   144   142   NA   2 
7   14   NA   31   36   NA   54   55   NA   2 
7   14   NA   35   35   NA   47   40   NA   2 
7   14   NA   98   81   NA   170   171   NA   2 
7   14   NA   153   170   NA   186   196   NA   2 
7   14   NA   95   107   NA   161   153   NA   2 
7   14   NA   34   48   NA   73   73   NA   2 
9   11   NA   74   66   NA   139   136   NA   2 
9   13   NA   61   51   NA   100   100   NA   2 
10   11   NA   11   16   NA   20   20   NA   2 
10   12   NA   42   41   NA   78   82   NA   2 
11   13   NA   48   48   NA   53   55   NA   2 
12   13   NA   37   46   NA   60   62   NA   2 
12   14   NA   41   49   NA   72   75   NA   2 
12   14   NA   56   56   NA   79   84   NA   2 
12   14   NA   45   49   NA   82   78   NA   2 
END 
 
#Set Initial Values 
#chain 1 
list(d=c( NA, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), sd=1,  
mu=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  
           0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  
           0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  
           0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  
           0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  
           0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  
           0, 0, 0, 0)) 
#chain 2 
list(d=c( NA, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1), sd=4,  
mu=c(-3, -3, -3, -3, -3, -3, -3, -3, -3, -3, 
           -3, -3, -3, -3, -3, -3, -3, -3, -3, -3,  
           -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, 
           -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, 
           -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, 
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           -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, 
            -3, -3, -3, -3)) 
#chain 3 
list(d=c( NA, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2), sd=2,  
mu=c(-3, 5, -1, -3, 7, -3, -4, -3, -3, 0,  
           -3, -3, 0, 3, 5, -3, -3, -1, -3, -7,  
           -3, -3, 5, -1, 7, 0, 1,-4, 5, 0,  
           -3, 5, -1, -3, 7, -3, -4, -3, -3, 0,  
           -3, -3, 0, 3, 5, -3, -3, -1, -3, -7,  
           -3, -3, 5, -1, 7, 0, 1,-4, 5, 0,  
           1, -1, 5, -4)) 
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KQ1: WinBUGS Dataset for RA Dichotomous  
#Full Network (star, closed loop, loop plus one, and ladder are subsets) 

#Description of data inputs 

#ns = Number of studies 

#nt = Number of treatments (including placebo) 

#t[,x] = Treatment indicator 

#r[,x] = Number achieving response on ACR50   

#n[,x]= Number of all randomized patients (ITT)  

#na[] = Number of arms in study 

 
list(ns=31, nt=9)    
 
t[,1] t[,2] t[,3] r[,1] r[,2] r[,3] n[,1] n[,2] n[,3] na[]  
1   2   NA   36   169   NA   219   433   NA   2 
1   2   NA   14   42   NA   119   115   NA   2 
1   2   7   22   63   61   110   156   165   3 
1   3   NA   9   84   NA   110   328   NA   2 
1   3   NA   1   36   NA   70   142   NA   2 
1   3   NA   5   37   NA   62   67   NA   2 
1   3   NA   2   12   NA   12   35   NA   2 
1   3   NA   36   92   NA   318   318   NA   2 
1   3   NA   9   28   NA   63   65   NA   2 
1   3   NA   19   166   NA   200   419   NA   2 
1   4   NA   9   33   NA   121   232   NA   2 
1   4   NA   2   22   NA   48   105   NA   2 
1   4   NA   20   43   NA   253   253   NA   2 
1   4   NA   0   16   NA   12   42   NA   2 
1   5   NA   1   23   NA   30   59   NA   2 
1   5   NA   3   25   NA   44   44   NA   2 
1   5   NA   3   19   NA   29   29   NA   2 
1   5   NA   4   31   NA   80   78   NA   2 
1   6   NA   13   31   NA   133   89   NA   2 
1   6   NA   2   13   NA   35   35   NA   2 
1   7   NA   4   33   NA   47   100   NA   2 
1   7   NA   33   229   NA   363   721   NA   2 
1   7   NA   22   38   NA   86   87   NA   2 
1   7   NA   1   3   NA   7   14   NA   2 
1   7   NA   4   94   NA   88   340   NA   2 
1   8   NA   5   17   NA   40   40   NA   2 
1   8   NA   16   88   NA   172   340   NA   2 
1   9   NA   14   45   NA   49   99   NA   2 
1   9   NA   37   302   NA   415   805   NA   2 
1   9   NA   22   157   NA   204   419   NA   2 
1   9   NA   38   228   NA   394   802   NA   2 
END 
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#Initial Values  
#chain 1 
list(d=c( NA, 0, 0, 0, 0, 0, 0, 0, 0), sd=1, mu=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)) 
#chain 2 
list(d=c( NA, -1, -1, -1, -1, -1, -1, -1, -1), sd=4, mu=c(-3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -
3, -3, -3, -3, -3, -3, -3, -3, -3 , -3, -3, -3 , -3, -3, -3 , -3, -3, -3)) 
#chain 3 

list(d=c( NA, 2, 2, 2, 2, 2, 2, 2, 2), sd=2, mu=c(-3, 5, -1, -3, 7, -3, -4, -3, -3, 0, -3, -3,0, 3, 5, -3, -3, 
-1, -3, -7, -3, -3, 5, -1,7, 0, 1,-4, 5, 0, -1)) 
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KQ1: Random Effects Model for Continuous Data  
# Normal likelihood, identity link 
# Random effects model for multi-arm trials 
 
model{                               # *** PROGRAM STARTS 
 
for(i in 1:ns){                      #   LOOP THROUGH STUDIES 
    w[i,1] <- 0    # adjustment for multi-arm trials is zero for control arm 
    delta[i,1] <- 0             # treatment effect is zero for control arm 
    mu[i] ~ dnorm(0,.0001)           # vague priors for all trial baselines 
    for (k in 1:na[i]) {             #  LOOP THROUGH ARMS 
        var[i,k] <- pow(se[i,k],2)   # calculate variances 
        prec[i,k] <- 1/var[i,k]      # set precisions 
        y[i,k] ~ dnorm(theta[i,k],prec[i,k]) # binomial likelihood 
        theta[i,k] <- mu[i] + delta[i,k]  # model for linear predictor 
#Deviance contribution 
        dev[i,k] <- (y[i,k]-theta[i,k])*(y[i,k]-theta[i,k])*prec[i,k] 
      } 
#  summed residual deviance contribution for this trial 
    resdev[i] <- sum(dev[i,1:na[i]])        
    for (k in 2:na[i]) {             # LOOP THROUGH ARMS 
# trial-specific LOR distributions 
        delta[i,k] ~ dnorm(md[i,k],taud[i,k]) 
# mean of LOR distributions, with multi-arm trial correction 
        md[i,k] <-  d[t[i,k]] - d[t[i,1]] + sw[i,k] 
# precision of LOR distributions (with multi-arm trial correction) 
        taud[i,k] <- tau *2*(k-1)/k 
# adjustment, multi-arm RCTs 
        w[i,k] <- (delta[i,k] - d[t[i,k]] + d[t[i,1]]) 
# cumulative adjustment for multi-arm trials 
        sw[i,k] <- sum(w[i,1:k-1])/(k-1) 
      } 
  }    
totresdev <- sum(resdev[])            #Total Residual Deviance 
d[1]<-0       # treatment effect is zero for control arm 
# vague priors for treatment effects 
for (k in 2:nt){  d[k] ~ dnorm(0,.0001) } 
sd ~ dunif(0,5)     # vague prior for between-trial SD 
tau <- pow(sd,-2)   # between-trial precision = (1/between-trial variance) 
 
# All pairwise comparisons 
for (c in 1:(nt-1)) {  for (k in (c+1):nt)  { diff[c,k] <- (d[c] - d[k] )}} 
for (k in 1:nt) { 
rk[k] <- nt+1-rank(d[],k) # assumes events are “good” 
#rk[k] <- rank(d[],k) # assumes events are “bad” 
best[k] <- equals(rk[k],1) #calculate probability that treat k is best 
} 
 
}                                     # *** PROGRAM ENDS                                                                               
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KQ 1: WinBUGS Dataset for SGA Continuous  
#Full Network (star, closed loop, loop plus one, and ladder are subsets) 

#Description of data inputs 

#ns = Number of studies 

#nt = Number of treatments (including placebo) 

#t[,x] = Treatment indicator 

#y[,x] = Mean change from baseline in HAM-D score   

#se[,x]= Standard error of mean change from baseline in HAM-D score   

#na[] = Number of arms in study 

list(ns=40, nt=14)    
 
t[,1] t[,2] t[,3] y[,1] y[,2] y[,3] se[,1] se[,2] se[,3] na[] 
1   4   NA   -10.7   -13.2   NA   0.84   0.82   NA   2 
1   4   NA   -9.3   -12.6   NA   0.74   0.75   NA   2 
1   4   NA   -7.5   -9.1   NA   0.66   0.67   NA   2 
1   5   6   -5.97   -7.61   -7.22   0.58   0.42   0.4   3 
1   5   11   -8.8   -12.1   -11.7   0.5   0.5   0.5   3 
1   5   11   -10.8   -12.1   -11.9   0.5   0.5   0.5   3 
1   5   NA   -10.27   -10.85   NA   0.67   0.69   NA   2 
1   7   11   -11.6   -10.8   -11.1   2.04   1.29   1.27   3 
1   7   NA   -7.9   -10.3   NA   0.44   0.49   NA   2 
1   7   NA   -7   -11.2   NA   0.98   0.86   NA   2 
1   11   NA   -7.6   -7.8   NA   1.2   1.13   NA   2 
1   12   NA   -8.8   -11.1   NA   0.65   0.63   NA   2 
1   12   NA   -6.1   -6.1   NA   1.04   0.96   NA   2 
1   12   NA   -9.2   -10.53   NA   0.67   0.72   NA   2 
1   12   NA   -8.16   -11.66   NA   0.66   0.69   NA   2 
1   14   NA   -7.3   -11.7   NA   0.71   0.75   NA   2 
2   12   NA   -15.5   -16.3   NA   0.66   0.69   NA   2 
3   6   NA   -13.8   -14.7   NA   0.69   0.76   NA   2 
6   5   NA   -11.1   -9.6   NA   0.59   0.68   NA   2 
6   7   NA   -15.8   -14.7   NA   0.59   0.74   NA   2 
6   12   NA   -16.9   -16.1   NA   0.7   0.8   NA   2 
6   14   NA   -14.9   -12.9   NA   0.91   0.92   NA   2 
7   10   NA   -12.2   -11.4   NA   0.79   0.83   NA   2 
7   11   NA   -14.78   -13.92   NA   0.11   0.11   NA   2 
7   11   NA   -15   -17.3   NA   1.61   1.56   NA   2 
7   13   NA   -12.2   -13.9   NA   0.91   1.02   NA   2 
7   13   NA   -14.8   -17.1   NA   1.74   1.02   NA   2 
7   14   NA   -14.4   -16.1   NA   0.88   0.7   NA   2 
7   14   NA   -10.4   -14.4   NA   1.05   0.95   NA   2 
8   11   NA   -15.9   -13.9   NA   0.66   0.66   NA   2 
8   11   NA   -13.45   -12.86   NA   1.25   1.27   NA   2 
8   12   NA   -23.7   -18   NA   1.72   1.5   NA   2 
8   12   NA   -10.61   -10.98   NA   1.11   0.9   NA   2 
9   11   NA   -9.22   -7.29   NA   0.51   0.54   NA   2 
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11   13   NA   -15   -14.6   NA   0.68   0.66   NA   2 
11   14   NA   -14.1   -14.7   NA   0.6   0.57   NA   2 
11   14   NA   -15.5   -15.7   NA   0.95   0.9   NA   2 
12   13   NA   -11.5   -12.9   NA   1.08   1.15   NA   2 
12   14   NA   -11.3   -12.7   NA   0.61   0.64   NA   2 
12   14   NA   -15.9   -14.3   NA   0.95   0.94   NA   2 
END 
 
#Initial Values 
#chain 1 
list(d=c( NA, 0,0,0,0,0,0,0,0,0,0,0,0,0), sd=1, mu=c(0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0)) 
#chain 2 
list(d=c( NA, -1,-3,-1,1,3,-1,-3, -1,1,3,-1,-3, 1), sd=4, mu=c(-3, -3, -3, -3, -3, -3, -3,-3,-3,-3, 
-3, -3, -3, -3, -3, -3,-3,-3,-3,-3, 
-3, -3, -3, -3, -3, -3,-3,-3,-3,-3, 
-3, -3, -3, -3, -3, -3,-3,-3,-3,-3)) 
#chain 3 
list(d=c( NA, 2,2,2,2,2,2,2,2,2,2,2,2,2), sd=2, mu=c(-3, 5, -1, -3, 7,  -3, -4, -3, 5, -1, 
-3, 5, -1, -3, 7, -3, -4, -3, 5, -1, 
-3, 5, -1, -3, 7, -3, -4, -3, 5, -1, 

-3, 5, -1, -3, 7, -3, -4, -3, 5, -1)) 
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KQ2: Random Effects Meta-Regression Model With a Subgroup 
Indicator Covariate 
# Binomial likelihood, logit link, subgroup 
# Random effects model for multi-arm trials 
 
model{                               # *** PROGRAM STARTS 
for(i in 1:ns){                      # LOOP THROUGH STUDIES 
    w[i,1] <- 0    # adjustment for multi-arm trials is zero for control arm 
    delta[i,1] <- 0             # treatment effect is zero for control arm 
    mu[i] ~ dnorm(0,.0001)           # vague priors for all trial baselines 
    for (k in 1:na[i]) {             # LOOP THROUGH ARMS 
        r[i,k] ~ dbin(p[i,k],n[i,k]) # binomial likelihood 
# model for linear predictor, covariate effect relative to treat in arm 1 
        logit(p[i,k]) <- mu[i] + delta[i,k] 
                      + (beta[t[i,k]]-beta[t[i,1]]) * x[i] 
        rhat[i,k] <- p[i,k] * n[i,k] # expected value of the numerators  
#Deviance contribution 
        dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))   
            +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k])))         } 
#  summed residual deviance contribution for this trial 
    resdev[i] <- sum(dev[i,1:na[i]])        
    for (k in 2:na[i]) {             # LOOP THROUGH ARMS 
# trial-specific LOR distributions 
        delta[i,k] ~ dnorm(md[i,k],taud[i,k]) 
# mean of LOR distributions (with multi-arm trial correction) 
        md[i,k] <-  d[t[i,k]] - d[t[i,1]] + sw[i,k]  
# precision of LOR distributions (with multi-arm trial correction) 
        taud[i,k] <- tau *2*(k-1)/k 
# adjustment for multi-arm RCTs 
        w[i,k] <- (delta[i,k] - d[t[i,k]] + d[t[i,1]]) 
# cumulative adjustment for multi-arm trials 
        sw[i,k] <- sum(w[i,1:k-1])/(k-1) 
      } 
  }    
totresdev <- sum(resdev[])           # Total Residual Deviance 
d[1]<-0       # treatment effect is zero for reference treatment 
beta[1] <- 0  # covariate effect is zero for reference treatment 
for (k in 2:nt){  # LOOP THROUGH TREATMENTS 
    d[k] ~ dnorm(0,.0001) # vague priors for treatment effects 
    beta[k] <- B # common covariate effect 
  } 
B ~ dnorm(0,.0001) # vague prior for covariate effect 
sd ~ dunif(0,5)     # vague prior for between-trial SD 
tau <- pow(sd,-2)   # between-trial precision = (1/between-trial variance) 
# treatment effect when covariate = z[j] 
for (k in 1:nt){  # LOOP THROUGH TREATMENTS 
    for (j in 1:nz) { dz[j,k] <- d[k] + (beta[k]-beta[1])*z[j] } 
  } 
# pairwise ORs and LORs for all possible pair-wise comparisons, if nt>2 
for (c in 1:(nt-1)) {   
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    for (k in (c+1):nt)  {  
# when covariate is zero 
        or[c,k] <- exp(d[k] - d[c]) 
        lor[c,k] <- (d[k]-d[c]) 
# at covariate=z[j] 
        for (j in 1:nz) { 
            orz[j,c,k] <- exp(dz[j,k] - dz[j,c]) 
            lorz[j,c,k] <- (dz[j,k]-dz[j,c]) 
          } 
     }   
 } 
}                                                     # *** PROGRAM ENDS 
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KQ 2: WinBUGS Dataset for Meta-Regression With a Subgroup 
Indicator Covariate 
# ns= number of studies; nt=number of treatments; 
# z=values of covariate at which to calculate treatment effects; nz=length of z 
list(ns=72, nt=14, z=c(1), nz=1)  
 
t[,1] t[,2] t[,3] r[,1] r[,2] r[,3] n[,1] n[,2] n[,3] x[] na[] 
1   2   7   73   76   83   152   150   154   0 3 
1   2   12   66   78   66   124   122   118   0 3 
1   2   12   55   77   79   121   120   119   0 3 
1   3   NA   34   34   NA   90   84   NA   1 2 
1   4   NA   40   205   NA   161   324   NA   0 2 
1   4   NA   39   52   NA   122   125   NA   0 2 
1   4   NA   48   142   NA   126   249   NA   0 2 
1   4   NA   36   46   NA   121   123   NA   0 2 
1   4   5   61   132   74   164   315   159   0 3 
1   5   NA   54   55   NA   141   141   NA   0 2 
1   5   NA   49   64   NA   139   128   NA   0 2 
1   5   NA   26   54   NA   122   123   NA   0 2 
1   5   6   44   117   112   137   273   274   0 3 
1   5   7   24   32   15   70   70   33   0 3 
1   5   11   51   129   59   99   196   97   0 3 
1   5   11   41   126   63   93   188   86   0 3 
1   7   NA   92   125   NA   336   335   NA   1 2 
1   7   NA   18   132   NA   78   285   NA   0 2 
1   7   11   10   31   32   19   54   55   0 3 
1   7   14   37   45   51   102   104   102   0 3 
1   7   14   41   52   54   98   103   100   0 3 
1   8   NA   5   9   NA   18   18   NA   0 2 
1   9   13   25   20   17   50   50   50   1 3 
1   10   NA   15   25   NA   42   39   NA   0 2 
1   10   NA   14   41   NA   45   90   NA   0 2 
1   11   NA   12   24   NA   56   55   NA   0 2 
1   11   11   72   85   100   180   168   177   1 3 
1   12   NA   45   70   NA   129   129   NA   0 2 
1   12   NA   16   19   NA   49   49   NA   0 2 
1   12   NA   49   77   NA   150   149   NA   0 2 
1   12   NA   43   65   NA   129   132   NA   0 2 
1   12   NA   96   126   NA   376   371   NA   1 2 
1   12   NA   13   26   NA   116   111   NA   0 2 
1   14   NA   29   53   NA   102   95   NA   0 2 
2   7   NA   37   35   NA   61   62   NA   0 2 
2   11   NA   34   40   NA   48   52   NA   1 2 
2   12   NA   81   93   NA   122   126   NA   0 2 
2   13   NA   33   21   NA   63   61   NA   0 2 
3   6   NA   87   83   NA   120   120   NA   0 2 
3   8   NA   33   31   NA   108   109   NA   0 2 
5   6   NA   66   83   NA   138   140   NA   0 2 
5   6   NA   81   94   NA   151   144   NA   0 2 
5   11   NA   144   157   NA   238   240   NA   0 2 
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6   7   NA   94   89   NA   123   117   NA   0 2 
6   11   NA   175   146   NA   232   227   NA   0 2 
6   12   NA   75   74   NA   107   108   NA   0 2 
6   14   NA   59   47   NA   98   100   NA   0 2 
7   9   NA   30   35   NA   66   66   NA   0 2 
7   10   NA   27   29   NA   61   64   NA   0 2 
7   11   NA   67   67   NA   101   102   NA   0 2 
7   11   NA   27   30   NA   45   45   NA   0 2 
7   11   NA   26   25   NA   50   50   NA   0 2 
7   11   12   57   64   70   92   96   96   0 3 
7   12   NA   84   85   NA   119   117   NA   1 2 
7   12   NA   35   48   NA   120   118   NA   0 2 
7   12   NA   63   73   NA   144   142   NA   0 2 
7   14   NA   31   36   NA   54   55   NA   0 2 
7   14   NA   35   35   NA   47   40   NA   0 2 
7   14   NA   98   81   NA   170   171   NA   0 2 
7   14   NA   153   170   NA   186   196   NA   0 2 
7   14   NA   95   107   NA   161   153   NA   0 2 
7   14   NA   34   48   NA   73   73   NA   0 2 
8   12   NA   28   25   NA   40   48   NA   1 2 
9   11   NA   74   66   NA   139   136   NA   0 2 
9   13   NA   61   51   NA   100   100   NA   0 2 
10   11   NA   11   16   NA   20   20   NA   0 2 
10   12   NA   42   41   NA   78   82   NA   0 2 
11   13   NA   48   48   NA   53   55   NA   0 2 
12   13   NA   37   46   NA   60   62   NA   0 2 
12   14   NA   41   49   NA   72   75   NA   0 2 
12   14   NA   56   56   NA   79   84   NA   0 2 
12   14   NA   45   49   NA   82   78   NA   0 2 
END 
 
 
#Initial Values 
#chain 1 
list(d=c( NA, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), mu=c(0,0,0,0,0,   0,0,0,0,0,   0,0,0,0,0,   0,0,0,0,0, 
0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0, 
0,0,0,0,0, 0,0,0,0,0,   0,0), B=0, sd=1) 
#chain 2 
list(d=c( NA, -1, -1, -2, -1, -1, -2, -1, -1, -2, -1, -1, -2, 1), mu=c(-3,-3, 3,-3, 3, -3, 3,-3, 3,-3,     
-3,-3, 3, 3, -3, 3, -3, -3, 3, -3, 3,-3,3,-3, -3, 3,-3,3,-3, -3, 3,-3,3,-3,-3, 3,-3,3,-3, -3, 3,-3,3,-3,-3, 3,-
3,3,-3, -3, 3,-3,3,-3,-3, 3,-3,3,-3,-3, 3,-3,3,-3,-3, 3,-3,3,-3, 3,-3  ), B=-1, sd=3) 
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KQ2: Random Effects Continuous Covariate Meta-Regression 
Model  
# Binomial likelihood, logit link 
# Random effects model for multi-arm trials 
model{                               # *** PROGRAM STARTS 
for(i in 1:ns){                      # LOOP THROUGH STUDIES 
    w[i,1] <- 0    # adjustment for multi-arm trials is zero for control arm 
    delta[i,1] <- 0             # treatment effect is zero for control arm 
    mu[i] ~ dnorm(0,.0001)           # vague priors for all trial baselines 
    for (k in 1:na[i]) {             # LOOP THROUGH ARMS 
        r[i,k] ~ dbin(p[i,k],n[i,k]) # binomial likelihood 
# model for linear predictor 
        logit(p[i,k]) <- mu[i] + delta[i,k] 
                      + (beta[t[i,k]]-beta[t[i,1]]) * (x[i]-mx) 
        rhat[i,k] <- p[i,k] * n[i,k] # expected value of the numerators  
#Deviance contribution 
        dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))   
            +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k])))         } 
#  summed residual deviance contribution for this trial 
    resdev[i] <- sum(dev[i,1:na[i]])        
    for (k in 2:na[i]) {             # LOOP THROUGH ARMS 
# trial-specific LOR distributions 
        delta[i,k] ~ dnorm(md[i,k],taud[i,k]) 
# mean of LOR distributions (with multi-arm trial correction) 
# covariate effect relative to treat in arm 1  
        md[i,k] <-  d[t[i,k]] - d[t[i,1]] + sw[i,k] 
# precision of LOR distributions (with multi-arm trial correction) 
        taud[i,k] <- tau *2*(k-1)/k 
# adjustment for multi-arm RCTs 
        w[i,k] <- (delta[i,k] - d[t[i,k]] + d[t[i,1]]) 
# cumulative adjustment for multi-arm trials 
        sw[i,k] <- sum(w[i,1:k-1])/(k-1) 
      } 
  }    
totresdev <- sum(resdev[])           # Total Residual Deviance 
d[1]<-0       # treatment effect is zero for reference treatment 
beta[1] <- 0  # covariate effect is zero for reference treatment 
# vague priors for treatment effects 
for (k in 2:nt){   
    d[k] ~ dnorm(0,.0001)  
    beta[k] <- B # common covariate effect 
  } 
B ~ dnorm(0,.0001) # vague prior for covariate effect 
sd ~ dunif(0,5)     # vague prior for between-trial SD 
tau <- pow(sd,-2)   # between-trial precision = (1/between-trial variance) 
# treatment effect when covariate = z[j] (un-centring treatment effects) 
for (k in 1:nt){   
    for (j in 1:nz) { dz[j,k] <- d[k] - (beta[k]-beta[1])*(mx-z[j]) } 
  } 
# pairwise ORs and LORs for all possible pair-wise comparisons, if nt>2 
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for (c in 1:(nt-1)) {   
    for (k in (c+1):nt)  {  
# at mean value of covariate 
        or[c,k] <- exp(d[k] - d[c]) 
        lor[c,k] <- (d[k]-d[c]) 
# at covariate=z[j] 
        for (j in 1:nz) { 
            orz[j,c,k] <- exp(dz[j,k] - dz[j,c]) 
            lorz[j,c,k] <- (dz[j,k]-dz[j,c]) 
          } 
     }   
 } 
# ranking on relative scale 
for (k in 1:nt) { 
rk[k] <- nt+1-rank(d[],k) # assumes events are “good” 
#rk[k] <- rank(d[],k) # assumes events are “bad” 
best[k] <- equals(rk[k],1) #calculate probability that treat k is best        
}                                          # *** PROGRAM ENDS 
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KQ 2: WinBUGS Dataset for Continuous Covariate Meta-Regression 
# Data (RA with ACR50 – covariate x[] is disease duration) 
list(ns=28, nt=9, mx=8.50, z=c(1,2,10), nz=3) 
 
t[,1] t[,2] t[,3] na[] n[,1] n[,2] n[,3] r[,1]  r[,2] r[,3] x[] 
1 2 NA 2 219 433 NA 36 169 NA 8.7 
1 2 NA 2 119 115 NA 14 42 NA 9.3 
1 2 7 3 110 156 165 22 63 61 7.87 
1 3 NA 2 318 318 NA 36 92 NA 10.4 
1 3 NA 2 70 142 NA 1 36 NA 10 
1 3 NA 2 110 328 NA 9 84 NA 11.2 
1 3 NA 2 200 419 NA 19 166 NA 10.9 
1 3 NA 2 62 67 NA 5 37 NA 12.3 
1 3 NA 2 63 65 NA 9 28 NA 6.85 
1 3 NA 2 12 35 NA 2 12 NA 7.25 
1 4 NA 2 121 232 NA 9 33 NA 3.9 
1 4 NA 2 253 253 NA 20 43 NA 10.5 
1 4 NA 2 48 105 NA 2 22 NA 7.55 
1 5 NA 2 80 78 NA 4 31 NA 12 
1 5 NA 2 30 59 NA 1 23 NA 13 
1 6 NA 2 133 89 NA 13 31 NA 5.5 
1 6 NA 2 35 35 NA 2 13 NA 7.8 
1 7 NA 2 47 100 NA 4 33 NA 7.8 
1 7 NA 2 7 14 NA 1 3 NA 6.2 
1 7 NA 2 363 721 NA 33 229 NA 7.5 
1 7 NA 2 86 87 NA 22 38 NA 7.55 
1 7 NA 2 88 340 NA 4 94 NA 8.6 
1 8 NA 2 172 340 NA 16 88 NA 7 
1 8 NA 2 40 40 NA 5 17 NA 11.5 
1 9 NA 2 204 419 NA 22 157 NA 7.65 
1 9 NA 2 49 99 NA 14 45 NA 0.865 
1 9 NA 2 415 805 NA 37 302 NA 9.8 
1 9 NA 2 394 802 NA 38 228 NA 9 
END 
 
 
# Initial values for RE model 
#chain 1 
list(d=c( NA, 0,0,0,0,0,0, 0, 0), mu=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0), sd=1, B=0) 
#chain 2 
list(d=c( NA, -1,1,-1,1,-1,1, -1, 1), mu=c(-3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, 
-3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3 ), sd=0.5, B=-1) 
#chain 3 
list(d=c( NA, 2,-2,2,-2,2,-2, 2, -2), mu=c(-3, 5, -1, -3, 7, -3, -4, -3, -3, 0, 5, 0, -3, 5, -1, -3, 7, -3, -
4, -3, -3, 0, 5, 0, 1,-1, 3,4), sd=3, B=5) 
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KQ 3: Simulation Code Related to Key Question 3  
 
Initially, we created two master datasets generated from random binomial draws from which 

to sample sub-datasets for each of the different network pattern and sample size criteria. Each 
dataset reflected a different scenario we wanted to introduce to the Bayesian MTC models.  The 
datasets were created from binomial distributions of varying probability of response and sample 
size. The SAS version 9.2 code is presented below. 

 
/* master_even: dataset where drugs have equal efficacy and drug1 low efficacy */ 
data master_even (drop=i); 
 do i=1 to 10000; 
  r1 = rand('BINOM',0.1, 100); 
  r2 = rand('BINOM',0.5, 100); 
  r3 = rand('BINOM',0.5, 100); 
  r4 = rand('BINOM',0.5, 100); 
  output; 
 end; 
run; 
 
/* master_winnner: dataset where one drug has a high efficacy and the others low efficacy */ 
data master_winner (drop=i); 
n=100; 
 do i=1 to 10000; 
  r1 = rand('BINOM',0.2, 100); 
  r2 = rand('BINOM',0.2, 100); 
  r3 = rand('BINOM',0.2, 100); 
  r4 = rand('BINOM',0.8, 100); 
  output; 
 end; 
run; 
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KQ 3: WinBUGS Datasets  
From these master datasets, sub-datasets for WinBUGS were created for each of the network 

patterns and sample size criteria. A total of 40,000 datasets were created by taking successive 
studies in each of the master datasets.  In this way, studies were sampled without replacement for 
each of the datasets.  An example dataset is shown below. 

We used macros created in SAS to invoke repeated calls of openBUGS for each model run 
(for a total of 40,000 model runs). OpenBUGS was utilized instead of winBUGS since the 
simulations were performed on UNC’s linux cluster. The output, in this case, the ‘best’ statistic, 
was parsed and processed in SAS for post-data management and panel plot creation.  

 
#Star network, study sample size = 2 
#Description of data inputs 
#ns = Number of studies 
#nt = Number of treatments (including placebo) 
#t[,x] = Treatment indicator 
#r[,x] = Number achieving response  
#n[,x]= Number of all randomized patients (ITT)  
#na[] = Number of arms in study 
 
list(ns=6, nt=4)    
 
t[,1] t[,2] t[,3] r[,1] r[,2] r[,3] n[,1] n[,2] n[,3] na[]  
1   2   7   73   76   83   152   150   154   2 
1   2   12   66   78   66   124   122   118   2 
1   2   12   55   77   79   121   120   119   2 
1   4   NA   40   205   NA   161   324   NA   2 
1   4   NA   39   52   NA   122   125   NA   2 
1   4   NA   48   142   NA   126   249   NA   2 
END 
#Set Initial Values 
#chain 1 
list(d=c( NA, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), sd=1,  
mu=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  
           0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  
           0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  
           0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  
           0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  
           0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  
           0, 0, 0, 0)) 
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Random Effects Model for Dichotomous Data  
# Binomial likelihood, logit link 
# Random effects model for multi-arm trials 
 
model{                               # *** PROGRAM STARTS 
 
for(i in 1:ns){                      # LOOP THROUGH STUDIES 
    w[i,1] <- 0    # adjustment for multi-arm trials is zero for control arm 
    delta[i,1] <- 0             # treatment effect is zero for control arm 
    mu[i] ~ dnorm(0,.0001)           # vague priors for all trial baselines 
    for (k in 1:na[i]) {             # LOOP THROUGH ARMS 
        r[i,k] ~ dbin(p[i,k],n[i,k]) # binomial likelihood 
        logit(p[i,k]) <- mu[i] + delta[i,k]  # model for linear predictor 
        rhat[i,k] <- p[i,k] * n[i,k] # expected value of the numerators  
 
#Deviance contribution 
        dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))   
            +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k])))         } 
 
#  summed residual deviance contribution for this trial 
    resdev[i] <- sum(dev[i,1:na[i]])        
    for (k in 2:na[i]) {             # LOOP THROUGH ARMS 
# trial-specific LOR distributions 
        delta[i,k] ~ dnorm(md[i,k],taud[i,k]) 
# mean of LOR distributions (with multi-arm trial correction) 
        md[i,k] <-  d[t[i,k]] - d[t[i,1]] + sw[i,k] 
# precision of LOR distributions (with multi-arm trial correction) 
        taud[i,k] <- tau *2*(k-1)/k 
# adjustment for multi-arm RCTs 
        w[i,k] <- (delta[i,k] - d[t[i,k]] + d[t[i,1]]) 
# cumulative adjustment for multi-arm trials 
        sw[i,k] <- sum(w[i,1:k-1])/(k-1) 
      } 
  } 
totresdev <- sum(resdev[])           # Total Residual Deviance 
d[1]<-0       # treatment effect is zero for reference treatment 
# vague priors for treatment effects 
for (k in 2:nt){  d[k] ~ dnorm(0,.0001) } 
sd ~ dunif(0,5)     # vague prior for between-trial SD 
tau <- pow(sd,-2)   # between-trial precision = (1/between-trial variance) 
 
  



A-21 

# ranking on relative scale 
for (k in 1:nt) { 
rk[k] <- nt+1-rank(d[],k) # assumes events are “good” 
# rk[k] <- rank(d[],k) # assumes events are “bad” 
best[k] <- equals(rk[k],1) #calculate probability that treat k is best 
} 
} 
# *** PROGRAM ENDS   
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Appendix B. Summary of Studies Included  
in Analyses 

Table B-1. Summary of studies included in analyses of response for second-generation 
antidepressants 

Study N Duration Comparison and Dose 
(mg/day) Responsea Population 

Feighner, 19911 123 6 weeks Bupropion 225-450 
Fluoxetine 20-80 

37/61 
35/62 

Adults 

Coleman, 20012 456 8 weeks Bupropion 150-400 
Fluoxetine 50-200 
Placebo 

76/150 
83/154 
73/152 

Adults 

Weihs, 20003 100 6 weeks Bupropion 100-300 
Paroxetine 10-40 

34/48 
40/52 

Older adults 

Rush, 20014 248 16 weeks Bupropion 100-300 
Sertraline 50-200 

81/122 
93/126 

Adults 

Coleman, 19995 364 8 weeks Bupropion 150-400 
Sertraline 50-200 
Placebo 

78/122 
66/118 
66/124 

Adults 

Croft, 19996 360 8 weeks Bupropion 150-400 
Sertraline 50-200 
Placebo 

77/120 
79/119 
55/121 

Adults 

Weisler, 19947 124 6 weeks Bupropion 225-450 
Trazodone 150-400 

33/63 
21/61 

Adults 

Ou, 20118 240 6 weeks Citalopram 20-40 
Escitalopram 10-20 

87/120 
83/120 

Adults 

Haffmans, 19969 217 6 weeks Citalopram 20-40 
Fluvoxamine 100-200 

33/108 
31/109 

Adults 

Roose, 200410 174 8 weeks Citalopram 10-40 
Placebo 

34/84 
34/90 

Older adults 

Tourian, 200911 638 8 weeks Desvenlafaxine 50-100 
Duloxetine 60 
Placebo 

132/315 
74/159 
61/164 

Adults 

Feiger, 200912 244 8 weeks Desvenlafaxine 200-400 
Placebo 

46/123 
36/121 

Adults 

Boyer, 200813 485 8 weeks Desvenlafaxine 50-100 
Placebo 

205/324 
40/161 

Adults 

Liebowitz, 200714 247 8 weeks Desvenlafaxine 100-200 
Placebo 

52/125 
39/122 

Adults 

Septien-Velez, 200715 375 8 weeks Desvenlafaxine 200-400 
Placebo 

142/249 
48/126 

Adults 

Khan, 200716 278 8 weeks Duloxetine 60 
Escitalopram 10-20 

66/138 
83/140 

Adults 

Wade, 200717 295 24 weeks Duloxetine 60 
Escitalopram 20 

81/151 
94/144 

Adults 

Nierenberg,2007.18 684 8 weeks Duloxetine 40-60 
Escitalopram 10-20 
Placebo 

117/273 
112/274 
44/137 

Adults 

Goldstein, 200219 173 8 weeks Duloxetine 40-120 
Fluoxetine 20 
Placebo 

32/70 
15/33 
24/70 

Adults 

Lee, 200720 478 8 weeks Duloxetine 60 
Paroxetine 20 

144/238 
157/240 

Adults 
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Table B-1. Summary of studies included in analyses of response for second-generation 
antidepressants (continued) 
Study N Duration Comparison and Dose 

(mg/day) Responsea Population 

Detke, 200421 367 8 weeks Duloxetine 80-120 
Paroxetine 20 
Placebo 

126/188 
63/86 
41/93 

Adults 

Perahia, 200622 393 8 weeks Duloxetine 80-120 
Paroxetine 20 
Placebo 

129/196 
59/97 
51/99 

Adults 

Brannan, 200523 282 7 weeks Duloxetine 60 
Placebo 

55/141 
54/141 

Adults 

Detke, 2002a24 267 9 weeks Duloxetine 60 
Placebo 

64/128 
49/139 

Adults 

Detke, 2002b25 245 9 weeks Duloxetine 60 
Placebo 

54/123 
26/122 

Adults 

Mao, 200826 240 8 weeks Escitalopram 10 
Fluoxetine 20 

94/123 
89/117 

Adults 

Boulenger, 200627 459 24 weeks Escitalopram 10-20 
Paroxetine 20-40 

175/232 
146/227 

Adults 

Ventura, 200728 215 8 weeks Escitalopram 10 
Sertraline 50-200 

75/107 
74/108 

Adults 

Bielski, 200429 198 8 weeks Escitalopram 20 
Venlafaxine 225 

59/98 
47/100 

Adults 

Hong, 200330 132 6 weeks Fluoxetine 20-40 
Mirtazapine 15-45 

30/66 
35/66 

Adults 

Rush, 199831 125 8 weeks Fluoxetine 20-40 
Nefazodone 100-500 

27/61 
29/64 

Adults 

De Wilde, 199332 100 6 weeks Fluoxetine 20-60 
Paroxetine 20-40 

26/50 
25/50 

Adults 

Gagiano, 199333 90 6 weeks Fluoxetine 20-60 
Paroxetine 20-40 

27/45 
30/45 

Adults 

Chouinard, 199934 203 12 weeks Fluoxetine 20-80 
Paroxetine 20-50 

67/101 
67/102 

Adults 

Fava, 199835 128 12 weeks Fluoxetine 20-80 
Paroxetine 20-50 
Placebo 

31/54 
32/55 
10/19 

Adults 

Fava, 200236 284 10-16 weeks Fluoxetine 20-60 
Paroxetine 20-60 
Sertraline 50-200 

57/92 
64/96 
70/96 

Adults 

Wernicke, 198837 363 6 weeks Fluoxetine 5-40 
Placebo 

132/285 
18/78 

Adults 

Tollefson, 199338 671 6 weeks Fluoxetine 20 
Placebo 

125/335 
92/336 

Older adults 

Bennie, 199539 286 6 weeks Fluoxetine 20-40 
Sertraline 50-100 

63/144 
73/142 

Adults 

Sechter, 199940 238 24 weeks Fluoxetine 20-60 
Sertraline 50-150 

35/120 
48/118 

Adults 

Newhouse, 200541 236 12 weeks Fluoxetine 20-40 
Sertraline 50-100 

84/119 
85/117 

Older adults 

Dierick, 199642 314 8 weeks Fluoxetine 20 
Venlafaxine 75-150 

95/161 
107/153 

Adults 

Tylee, 199743 341 12 weeks Fluoxetine 20 
Venlafaxine 75 

98/170 
81/171 

Adults 

Costa e Silva, 199844 382 8 weeks Fluoxetine 20-40 
Venlafaxine 75-150 

153/186 
170/196 

Adults 

Alves, 199945 87 12 weeks Fluoxetine 20-40 
Venlafaxine 75-150 

35/47 
35/40 

Adults 
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Table B-1. Summary of studies included in analyses of response for second-generation 
antidepressants (continued) 
Study N Duration Comparison and Dose 

(mg/day) Responsea Population 

Tzanakaki, 200046 109 6 weeks Fluoxetine 20-60 
Venlafaxine 75-250 

31/54 
36/55 

Adults 

De Nayer, 200247 146 12 weeks Fluoxetine 20 
Venlafaxine 75 

34/73 
48/73 

Adults 

Rudolph, 199948 301 8 weeks Fluoxetine 20-60 
Venlafaxine 75-225 
Placebo 

52/103 
54/100 
41/98 

Adults 

Nemeroff, 200749 308 6 weeks Fluoxetine 20-60 
Venlafaxine 75-225 
Placebo 

45/104 
51/102 
37/102 

Adults 

Lydiard, 198950 36 6 weeks Fluvoxamine 100-300 
Placebo 

9/18 
5/18 

Adults 

Rossini, 200551 88 7 weeks Fluvoxamine 200 
Sertraline 150 

28/40 
25/48 

Older adults 

Benkert, 200052 275 6 weeks Mirtazapine 20-40 
Paroxetine 15-45 

74/139 
66/136 

Adults 

Halikas, 199553 150 6 weeks Mirtazapine 5-35 
Trazodone 40-280 
Placebo 

20/50 
17/50 
25/50 

Older adults 

van Moffaert, 199554 200 6 weeks Mirtazapine 24-72 
Trazodone 150-450 

61/100 
51/100 

Adults 

Hicks, 200255 40 8 weeks Nefazodone 400-600 
Paroxetine 20-40 

11/20 
16/20 

Adults 

Cohn, 199656 81 8 weeks Nefazodone 200-600 
Placebo 

25/39 
15/42 

Adults 

Fontaine, 199457 135 6 weeks Nefazodone 100-500 
Placebo 

41/90 
14/45 

Adults 

Feiger, 199658 160 6 weeks Nefazodone 100-600 
Sertraline 50-200 

42/78 
41/82 

Adults 

Rickels, 198959 111 6 weeks Paroxetine 10-50 
Placebo 

24/55 
12/56 

Adults 

Rapaport, 200960 525 10 weeks Paroxetine 12.5-25 
Placebo 

185/345 
72/180 

Older adults 

Kasper, 200561 108 6 weeks Paroxetine 20-40 
Trazodone 150-450 

48/53 
48/55 

Adults 

Reimherr, 199062 299 8 weeks Sertraline 20-200 
Placebo 

77/149 
49/150 

Adults 

Lydiard, 199763 261 8 weeks Sertraline 50-200 
Placebo 

65/132 
43/129 

Adults 

Olie, 199764 258 6 weeks Sertraline 50-200 
Placebo 

70/129 
45/129 

Adults 

Hypericum Group, 
200265 

227 8 weeks Sertraline 50-100 
Placebo 

26/111 
13/116 

Adults 

Schneider, 200366 747 8 weeks Sertraline 50-100 
Placebo 

126/371 
96/376 

Older adults 

Blumenthal, 200767 98 16 weeks Sertraline 50-200 
Placebo 

19/49 
16/49 

Adults 

Munizza, 200668 122 6 weeks Sertraline 50-100 
Trazodone 150-450 

37/60 
46/62 

Adults 

Mehtonen, 200069 147 8 weeks Sertraline 50-100 
Venlafaxine 75-150 

41/72 
49/75 

Adults 

Sir, 200570 163 8 weeks Sertraline 50-150 
Venlafaxine 75-225 

56/79 
56/84 

Adults 
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Table B-1. Summary of studies included in analyses of response for second-generation 
antidepressants (continued) 
Study N Duration Comparison and Dose 

(mg/day) Responsea Population 

Shelton, 200671 160 8 weeks Sertraline 50-150 
Venlafaxine 75-225 

45/82 
49/78 

Adults 

Thase, 199772 197 8 weeks Venlafaxine 75-225 
Placebo 

53/95 
29/102 

Adults 

Note: Studies are listed alphabetically by drug and chronologically within each set of drugs  

a Response, defined as a 50% improvement on the Hamilton Depression Rating Scale (HAM-D), is presented as the number of 
responders out of the number in the group. 

Abbreviations: mg = milligram 
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Table B-2. Summary of studies included in analyses of mean change in HAM-D for second-
generation antidepressants 

Study N Duration Comparison and Dose 
(mg/day) 

Mean change in 
HAM-D (SE) 

Rush, 20014 248 16 weeks Bupropion 100-300 
Sertraline 50-200 

-15.5 (0.66) 
-16.3 (0.69) 

Ou, 20118 232 6 weeks Citalopram 20-40 
Escitalopram 10-20 

-13.8 (0.69) 
-14.7 (0.76) 

Septien-Velez, 200715 245 8 weeks Desvenlafaxine 200-400 
Placebo 

-12.6 (0.75) 
-9.3 (0.74) 

Boyer, 200813 325 8 weeks Desvenlafaxine 50-100 
Placebo 

-13.2 (0.82) 
-10.7 (0.84) 

Feiger, 200912 235 8 weeks Desvenlafaxine 200-400 
Placebo 

-9.1 (0.67) 
-7.5 (0.66) 

Khan, 200716 262 8 weeks Duloxetine 60 
Escitalopram10-20 

-9.6 (0.68) 
-11.1 (0.59) 

Nierenberg, 200718 684 8 weeks Duloxetine 60 
Escitalopram 10 
Placebo 

-7.61 (0.42) 
-7.22 (0.40) 
-5.97 (0.58) 

Detke, 200421 272 8 weeks Duloxetine 80-120 
Paroxetine 20 
Placebo 

-12.1 (0.50) 
-11.7 (0.50) 
-8.8 (0.50) 

Perahia, 200622 289 8 weeks Duloxetine 80-120 
Paroxetine 20 
Placebo 

-12.1 (0.50) 
-11.7 (0.50) 
-8.8 (0.50) 

Brannan, 200523 268 7 weeks Duloxetine 60 
Placebo 

-10.85 (0.69) 
-10.27 (0.67) 

Mao, 200826 231 8 weeks Escitalopram 10 
Fluoxetine 20 

-15.8 (0.59) 
-14.7 (0.74) 

Ventura, 200728 211 8 weeks Escitalopram 10 
Sertraline 50-200 

-16.9 (0.70) 
-16.1 (0.80) 

Bielski, 200429 195 8 weeks Escitalopram 20 
Venlafaxine 225 

-14.9 (0.91) 
-12.9 (0.92) 

Rush, 199831 122 8 weeks Fluoxetine 20-40 
Nefazodone 200-500 

-12.2 (0.79) 
-11.4 (0.83) 

De Wilde, 199332 78 6 weeks Fluoxetine 20-60 
Paroxetine 20-40 

-15.0 (1.61) 
-17.3 (1.56) 

Chouinard, 199934 198 12 weeks Fluoxetine 20-80 
Paroxetine 20-50 

-14.8 (0.11) 
-13.9 (0.11) 

Fava, 199835 128 12 weeks Fluoxetine 20-80 
Paroxetine 20-50 
Placebo 

-10.8 (1.29) 
-11.1 (1.27) 
-11.6 (2.04) 

Wernicke, 198837 169 6 weeks Fluoxetine 5-40 
Placebo 

-11.2 (0.86) 
-7.0 (0.98) 

Tollefson, 199338 534 6 weeks Fluoxetine 20 
Placebo 

-10.3 (0.49) 
-7.9 (0.44) 

Perry, 198973 40 6 weeks Fluoxetine 21-50 
Trazodone 241-337 

-14.8 (1.74) 
-17.1 (1.02) 

Beasley, 199174 120 6 weeks Fluoxetine 20-40 
Trazodone 50-400 

-12.2 (0.91) 
-13.9 (1.02) 

Dierick, 199642 314 8 weeks Fluoxetine 20 
Venlafaxine 75-150 

-14.4 (0.88) 
-16.1 (0.70) 

De Nayer, 200247 131 12 weeks Fluoxetine 20 
Venlafaxine 75 

-10.4 (1.05) 
-14.4 (0.95) 

Kiev, 199775 58 7 weeks Fluvoxamine 50 
Paroxetine 20 

-13.5 (1.3) 
-12.9 (1.3) 

Ushiroyama, 200476 105 12 weeks Fluvoxamine 50 
Paroxetine 20 

-15.9 (0.66) 
-13.9 (0.66) 

  



 

B-6 

Table B-2. Summary of studies included in analyses of mean change in HAM-D for second-
generation antidepressants (continued) 
Study N Duration Comparison and Dose 

(mg/day) 
Mean change in 
HAM-D (SE) 

Nemeroff, 199577 92 7 weeks Fluvoxamine 50-150 
Sertraline 50-200 

-10.6 (1.11) 
-11.0 (0.90) 

Rossini, 200551 84 7 weeks Fluvoxamine 50-200 
Sertraline 25-150 

-23.7 (1.72) 
-18.0 (1.50) 

Schatzberg, 200278 246 8 weeks Mirtazapine 15-45 
Paroxetine 20-40 

-9.2 (0.51) 
-7.3 (0.54) 

Ehde, 200879 42 12 weeks Paroxetine 10-40 
Placebo 

-7.8 (1.13) 
-7.6 (1.20) 

Kasper, 200561 108 6 weeks Paroxetine 20-40 
Trazodone 150-450 

-15.0 (0.68) 
-14.6 (0.66) 

McPartlin, 199880 336 12 weeks Paroxetine 20 
Venlafaxine 75 

-14.1 (0.60) 
-14.7 (0.57) 

Ballus, 200081 84 24 weeks Paroxetine 20-40 
Venlafaxine 75-150 

-15.5 (0.95) 
-15.7 (0.90) 

Reimherr, 199062 283 8 weeks Sertraline 50-200 
Placebo 

-11.7 (0.69) 
-8.2 (0.66) 

Lydiard, 199763 234 8 weeks Sertraline 50-200 
Placebo 

-11.1 (0.63) 
-8.8 (0.65) 

Hypericum, 200265 225 8 weeks Sertraline 50-100 
Placebo 

-10.5 (0.72) 
-9.2 (0.67) 

Blumenthal, 200767 98 16 weeks Sertraline 50-200 
Placebo 

-6.1 (0.96) 
-6.1 (1.04) 

Munizza, 200668 121 6 weeks Sertraline 50-100 
Trazodone 150-450 

-11.5 (1.08) 
-12.9 (1.15) 

Sir, 200570 158 8 weeks Sertraline 50-150 
Venlafaxine 75-225 

-15.9 (0.95) 
-14.3 (0.94) 

Shelton, 200671 158 8 weeks Sertraline 50-150 
Venlafaxine 75-225 

-11.3 (0.61) 
-12.7 (0.64) 

Thase, 199772 191 8 weeks Venlafaxine 75-225 
Placebo 

-11.7 (0.75) 
-7.3 (0.71) 

Note:  studies are listed alphabetically by drug and chronologically within each set of drugs  

Abbreviations: mg = milligram; SE = standard error 
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Table B-3. Summary of studies included in analyses of ACR50 response for biologic DMARDs 
Author, Year 
Study Name N Comparison and Dose Disease 

Duration (yrs) Responsea 

Kremer, 200382 
NR 

234 Abatacept 10 mg/kg 
Placebo 

9.7 
8.9 

42/115 
14/119 

Kremer, 200683 
AIM 

652 Abatacept 10 mg/kg 
Placebo 

8.5 
8.9 

169/433 
36/219 

Schiff, 200884 
ATTEST 

431 Abatacept 10 mg/kg 
Infliximab 3 mg/kg 
Placebo 

7.9 
7.3 
8.4 

63/156 
61/165 
22/110 

Furst, 200385 
STAR 

636 Adalimumab 40 mg 
Placebo 

9.3 
11.5 

92/318 
36/318 

van de Putte, 200386 
NR 

212 Adalimumab 20 mg, 40 mg 
Placebo 

10.2 
9.4 

36/142 
1/70 

Weinblatt, 200387 
ARMADA 

129 Adalimumab 40 mg 
Placebo 

12.2 
11.1 

37/67 
5/62 

Keystone, 200488 
NR 

619 Adalimumab 20 mg, 40 mg 
Placebo 

11.0 
10.9 

166/419 
19/200 

van de Putte, 200489 
NR 

438 Adalimumab 20 mg, 40 mg 
Placebo 

10.8 
11.6 

84/328 
9/110 

Kim, 200790 
NR 

128 Adalimumab 40 mg 
Placebo 

6.8 
6.9 

28/65 
9/63 

Chen, 200991 
NR 

47 Adalimumab 40 mg 
Placebo 

6.2 
8.3 

12/35 
2/12 

Bresnihan, 199892 
NR 

353 Anakinra 75 mg, 150 mg 
Placebo 

4.1 
3.7 

33/232 
9/121 

Cohen, 200293 
NR 

153 Anakinra 1 mg/kg, 2 mg/kg 
Placebo 

7.3 
7.8 

22/105 
2/48 

Cohen, 200494 
NR 

506 Anakinra 100 mg 
Placebo 

11.0 
10.0 

43/253 
20/253 

Moreland, 199795 
NR 

88 Etanercept 16 m/m sq. 
Placebo 

NR 
NR 

25/44 
3/44 

Moreland, 199996 
NR 

158 Etanercept 25 mg 
Placebo 

12 
12 

31/78 
4/80 

Weinblatt, 199997 
NR 

89 Etanercept 25 mg 
Placebo  

13 
13 

23/59 
1/30 

Lan, 200498 
NR 

58 Etanercept 25 mg 
Placebo 

NR 
NR 

19/29 
3/29 

Kay, 200899 
NR 

70 Golimumab 50 mg 
Placebo 

8.2 
5.6 

13/35 
2/35 

Keystone, 2009100 
GO-FORWARD 

222 Golimumab 50 mg 
Placebo 

4.5 
6.5 

31/89 
13/133 

Maini, 1999101 
ATTRACT 

428 Infliximab 3 mg/kg, 10 mg/kg 
Placebo 

8.3 
8.9 

94/340 
4/88 

Kavanaugh, 2000102 
NR 

21 Infliximab 5 mg/kg, 10 mg/kg 
Placebo 

6.6 
4.9 

3/14 
1/7 

Abe, 2006103 
NR 

147 Infliximab 3 mg/kg, 10 mg/kg 
Placebo 

8.1 
7.5 

33/100 
4/47 

Westhovens, 2006104 
START 

1,084 Infliximab 3 mg/kg, 10 mg/kg 
Placebo 

7.1 
8.4 

229/721 
33/363 

Zhang, 2006105 
NR 

173 Infliximab 3 mg/kg 
Placebo 

7.1 
8.0 

38/87 
22/86 

Edwards, 2004106 
NR 

80 Rituximab 2x1,000 mg  
Placebo 

12 
11 

17/40 
5/40 

Emery, 2010107 
SERENE 

275 Rituximab 2x500 mg, 2x1,000 mg 
Placebo 

6.9 
7.5 

88/340 
16/172 

Maini, 2006108 
CHARISMA 

148 Tocilizumab 4 mg/kg, 8 mg/kg 
Placebo 

0.79 
0.94 

45/99 
14/49 
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Table B-3. Summary of studies included in analyses of ACR50 response for biologic DMARDs 
(continued) 
Author, Year 
Study Name N Comparison and Dose Disease 

Duration (yrs) Responsea 

Genovese, 2008109 
TOWARD 

1,220 Tocilizumab 8 mg/kg 
Placebo 

9.8 
9.8 

302/805 
37/415 

Smolen, 2008110 
OPTION 

623 Tocilizumab 4 mg/kg, 8 mg/kg 
Placebo 

7.5 
7.8 

157/419 
22/204 

Kremer, 2011111 
LITHE 

1,196 Tocilizumab 4 mg/kg, 8 mg/kg 
Placebo 

9.4 
9.0 

228/802 
38/394 

Note: studies are listed alphabetically by drug and chronologically within each set of drugs   

a Response is presented as the number of responders/total number in the group. 

Abbreviations: kg = kilogram; mg = milligram; NR = not reported; yrs = years 
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Appendix C. Evidence Networks 

Figure C-1. Response for second-generation antidepressants: Full network 
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Figure C-2. Response for second-generation antidepressants: Star sub-network 
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Figure C-3. Response for second-generation antidepressants: Loop sub-network 
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Figure C-4. Response for second-generation antidepressants: One closed loop sub-network 

 

Figure C-5. Response for second-generation antidepressants: Ladder sub-network 
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Figure C-6. Response for second-generation antidepressants: Full network, including studies in 
older adults (meta-regression for Key Question 2) 
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Figure C-7. Mean change in HAM-D for second-generation antidepressants: Full network 

 

Figure C-8. Mean change in HAM-D for second-generation antidepressants: Star sub-network 
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Figure C-9. Mean change in HAM-D for second-generation antidepressants: Loop sub-network 

 

Figure C-10. Mean change in HAM-D for second-generation antidepressants: One closed loop sub-
network 
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Figure C-11. Mean change in HAM-D for second-generation Antidepressants: Ladder sub-network 

 

Figure C-12. ACR50 response for biologic DMARDs: Full network  

 

Figure C-13. ACR50 response for biologic DMARDs: Star sub-network  
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Figure C-14. ACR50 response for biologic DMARDs: Loop sub-network  
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Figure C-15. ACR50 response for biologic DMARDs: One closed loop sub-network using 
Adalimumab 
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Figure C-16. ACR50 response for biologic DMARDs: One closed loop sub-network using 
Etanercept 
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Figure C-17. ACR50 response for biologic DMARDs: Ladder sub-network using Adalimumab 
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Figure C-18. ACR50 response for biologic DMARDs: Ladder sub-network using Etanercept 
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Figure C-19. ACR50 response for biologic DMARDs: Full network excluding studies that did not 
report disease duration (meta-regression for Key Question 2)   
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Appendix D. Results of Analyses 
Table D-1. Comparison of response for second-generation antidepressants (full network), by 
method of analysis: Odds ratios (95% credible interval or 95% confidence interval)  
Comparison Bayesian MTC Meta-Regression Bucher Method Logistic Regression 
BUP vs. CIT 0.58 (0.29 to 1.39) NA NA 0.81 (0.48 to 1.35)  
BUP vs. DES 0.88 (0.59 to 1.40) 0.78 (0.30 to 2.01) 0.77 (0.40 to 1.50) 0.93 (0.70 to 1.23) 
BUP vs. DUL 0.99 (0.69 to 1.46) 0.85 (0.50 to 1.45) 0.87 (0.56 to 1.36) 1.00 (0.78 to 1.29) 
BUP vs. ESC 0.73 (0.50 to 1.12) 1.04 (0.21 to 5.11) 1.04 (0.59 to 1.85) 0.76 (0.58 to 1.00) 
BUP vs. FLUO 1.07 (0.78 to 1.52) 0.98 (0.56 to 1.71) 0.98 (0.62 to 1.56) 1.05 (0.83 to 1.32) 
BUP vs. FLUV 0.62 (0.26 to 1.79) 0.59 (0.02 to 15.8) 0.58 (0.14 to 2.46) 1.03 (0.54 to 1.94) 
BUP vs. MIR 0.75 (0.45 to 1.35) 0.71 (0.0 to 113.5) IS 0.76 (0.51 to 1.12) 
BUP vs. NEF 0.90 (0.55 to 1.58) 0.65 (0.19 to 2.18) 0.82 (0.35 to 1.91) 0.94 (0.64 to 1.39) 
BUP vs. PAR 0.92 (0.64 to 1.38) 0.94 (0.45 to 1.99) 0.71 (0.38 to 1.33) 0.92 (0.70 to 1.19) 
BUP vs. SER 0.90 (0.67 to 1.26) 0.80 (0.49 to 1.30) 0.80 (0.52 to 1.24) 0.91 (0.73 to 1.14) 
BUP vs. TRA 1.09 (0.67 to 1.93) 0.54 (0.06 to 4.55) IS 1.01 (0.69 to 1.50) 
BUP vs. VEN 0.83 (0.58 to 1.22) 0.74 (0.33 to 1.62) 0.73 (0.42 to 1.28) 0.83 (0.64 to 1.07) 
CIT vs. DES 1.32 (0.66 to 3.14) NA NA 1.15 (0.69 to 1.91) 
CIT vs. DUL 1.48 (0.76 to 3.34) NA NA 1.24 (0.77 to 2.01) 
CIT vs. ESC 1.11 (0.59 to 2.38) NA NA 0.94 (0.59 to 1.49) 
CIT vs. FLUO 1.60 (0.82 to 3.63) IS IS 1.30 (0.80 to 2.11) 
CIT vs. FLUV 1.03 (0.53 to 2.23) NA NA 1.27 (0.75 to 2.14) 
CIT vs. MIR 1.11 (0.51 to 2.93) NA NA 0.94 (0.53 to 1.67) 
CIT vs. NEF 1.34 (0.63 to 3.46) NA NA 1.17 (0.66 to 2.07) 
CIT vs. PAR 1.38 (0.70 to 3.15) NA NA 1.13 (0.69 to 1.85) 
CIT vs. SER 1.34 (0.69 to 3.08) NA NA 1.13 (0.69 to 1.84) 
CIT vs. TRA 1.61 (0.74 to 4.35) NA NA 1.26 (0.69 to 2.27) 
CIT vs. VEN 1.23 (0.62 to 2.84) NA NA 1.03 (0.63 to 1.69) 
DES vs. DUL 1.10 (0.78 to 1.59) 1.10 (0.59 to 2.03) 1.14 (0.63 to 2.05) 1.08 (0.87 to 1.34) 
DES vs. ESC 0.81 (0.55 to 1.24) 1.35 (0.22 to 8.18) 1.35 (0.67 to 2.71) 0.82 (0.63 to 1.06) 
DES vs. FLUO 1.18 (0.84 to 1.73) 1.27 (0.64 to 2.54) 1.27 (0.69 to 2.34) 1.13 (0.89 to 1.42) 
DES vs. FLUV 0.68 (0.29 to 1.99) 0.76 (0.06 to 10.1) 0.76 (0.17 to 3.37) 1.10 (0.59 to 2.08) 
DES vs. MIR 0.82 (0.48 to 1.54) NA NA 0.82 (0.55 to 1.20) 
DES vs. NEF 1.00 (0.61 to 1.75) 0.83 (0.21 to 3.27) 1.07 (0.42 to 2.71) 1.02 (0.70 to 1.48) 
DES vs. PAR 1.02 (0.70 to 1.53) 1.23 (0.51 to 2.96) 0.93 (0.44 to 1.94) 0.99 (0.77 to 1.27) 
DES vs. SER 1.00 (0.71 to 1.46) 1.05 (0.57 to 1.93) 1.04 (0.58 to 1.87) 0.98 (0.78 to 1.24) 
DES vs. TRA 1.20 (0.69 to 2.26) NA NA 1.09 (0.72 to 1.65) 
DES vs. VEN 0.91 (0.63 to 1.38) 0.95 (0.36 to 2.54) 0.96 (0.48 to 1.89) 0.89 (0.69 to 1.15) 
DUL vs. ESC 0.74 (0.56 to 0.99) 1.23 (0.54 to 2.82) 1.19 (0.73 to 1.94) 0.76 (0.63 to 0.91) 
DUL vs. FLUO 1.07 (0.82 to 1.43) 1.12 (0.75 to 1.68) 1.12 (0.79 to 1.59) 1.05 (0.87 to 1.26) 
DUL vs. FLUV 0.62 (0.27 to 1.72) 0.69 (0.11 to 4.35) 0.67 (0.16 to 2.72) 1.02 (0.55 to 1.89) 
DUL vs. MIR 0.74 (0.45 to 1.30) 0.74 (0.20 to 2.69) IS 0.76 (0.53 to 1.08) 
DUL vs. NEF 0.90 (0.58 to 1.51) 0.77 (0.33 to 1.79) 0.94 (0.43 to 2.07) 0.94 (0.66 to 1.35) 
DUL vs. PAR 0.93 (0.70 to 1.24) 1.08 (0.66 to 1.77) 0.82 (0.47 to 1.41) 0.92 (0.76 to 1.10) 
DUL vs. SER 0.90 (0.68 to 1.22) 0.92 (0.64 to 1.31) 0.92 (0.67 to 1.25) 0.91 (0.75 to 1.11) 
DUL vs. TRA 1.08 (0.65 to 1.93) 1.25 (0.07 to 21.4) IS  1.01 (0.69 to 1.49) 
DUL vs. VEN 0.82 (0.61 to 1.15) 0.92 (0.54 to 1.59) 0.84 (0.53 to 1.34) 0.83 (0.67 to 1.03) 
ESC vs. FLUO 1.44 (1.06 to 1.99) 0.94 (0.42 to 2.11) 0.94 (0.57 to 1.57) 1.38 (1.12 to 1.70) 
ESC vs. FLUV 0.83 (0.37 to 2.26) IS 0.56 (0.13 to 2.40) 1.35 (0.74 to 2.47) 
ESC vs. MIR 1.00 (0.60 to 1.80) IS IS 1.00 (0.69 to 1.44) 
ESC vs. NEF 1.21 (0.75 to 2.07) IS 0.79 (0.33 to 1.88) 1.24 (0.86 to 1.80) 
ESC vs. PAR 1.24 (0.90 to 1.74) 0.69 (0.15 to 3.13) 1.15 (0.71 to 1.88) 1.21 (0.98 to 149) 
ESC vs. SER 1.21 (0.88 to 1.70) 0.77 (0.39 to 1.52) 0.77 (0.47 to 1.24) 1.20 (0.97 to 1.49) 
ESC vs. TRA 1.45 (0.85 to 2.68) IS IS 1.33 (0.90 to 1.99) 
ESC vs. VEN 1.11 (0.80 to 1.58) 0.71 (0.14 to 3.46) 0.71 (0.39 to 1.28) 1.09 (0.87 to 1.37) 
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Table D-1. Comparison of response for second-generation antidepressants (full network), by 
method of analysis: Odds ratios (95% credible interval or 95% confidence interval) (continued) 
Comparison Bayesian MTC Meta-Regression Bucher Method Logistic Regression 
FLUO vs. FLUV 0.57 (0.25 to 1.60) 0.60 (0.09 to 4.02) 0.60 (0.15 to 2.44) 0.98 (0.53 to 1.81) 
FLUO vs. MIR 0.69 (0.43 to 1.17) 0.77 (0.34 to 1.71) IS 0.72 (0.51 to 1.02) 
FLUO vs. NEF 0.84 (0.55 to 1.36) 0.66 (0.28 to 1.56) 0.84 (0.38 to 1.86) 0.90 (0.64 to 1.21) 
FLUO vs. PAR 0.86 (0.66 to 1.13) 0.73 (0.39 to 1.37) 0.73 (0.41 to 1.28) 0.88 (0.72 to 1.06) 
FLUO vs. SER 0.84 (0.66 to 1.06) 0.82 (0.54 to 1.23) 0.82 (0.58 to 1.15) 0.87 (0.74 to 1.03) 
FLUO vs. TRA 1.00 (0.62 to 1.75) 1.30 (0.22 to 7.66) IS 0.97 (0.66 to 1.41) 
FLUO vs. VEN 0.77 (0.61 to 0.97) 0.75 (0.42 to 1.35) 0.75 (0.46 to 1.22) 0.79 (0.67 to 0.94) 
FLUV vs. MIR 0.97 (0.40 to 3.17) NA  NA 0.74 (0.37 to 1.47) 
FLUV vs. NEF 1.18 (0.50 to 3.72) IS 1.40 (0.29 to 6.80) 0.92 (0.46 to 183) 
FLUV vs. PAR 1.21 (0.54 to 3.5) 1.61 (0.13 to 20.0) IS 0.89 (0.48 to 1.66) 
FLUV vs. SER 1.18 (0.52 to 3.38) 1.37 (0.23 to 8.11) IS 0.89 (0.48 to 1.65) 
FLUV vs. TRA 1.42 (0.57 to 4.70) NA NA 0.99 (0.49 to 1.99) 
FLUV vs. VEN 1.08 (0.48 to 3.12) 1.26 (0.05 to 35.0) 1.26 (0.30 to 5.32) 0.81 (0.43 to 1.51) 
MIR vs. NEF 1.14 (0.63 to 2.29) IS IS 1.25 (0.78 to 1.99) 
MIR vs. PAR 1.18 (0.74 to 1.97) 1.25 (0.43 to 3.64) IS 1.21 (0.86 to 1.70) 
MIR vs. SER 1.14 (0.71 to 1.98) 0.89 (0.17 to 4.61) IS 1.20 (0.84 to 1.72) 
MIR vs. TRA 1.40 (0.84 to 2.54) IS IS 1.34 (0.89 to 2.01) 
MIR vs. VEN 1.04 (0.64 to 1.85) 1.03 (0.33 to 3.20) IS 1.10 (0.76 to 1.58) 
NEF vs. PAR 0.98 (0.62 to 1.63) 1.46 (0.47 to 4.51) 0.87 (0.35 to 2.15) 0.97 (0.68 to 1.40) 
NEF vs. SER 0.96 (0.63 to 1.54) 1.23 (0.56 to 2.67) 0.98 (0.44 to 2.14) 0.97 (0.69 to 1.36) 
NEF vs. TRA 1.15 (0.63 to 2.34) IS IS 1.07 (0.66 to 1.74) 
NEF vs. VEN 0.87 (0.55 to 1.45) 0.84 (0.29 to 2.41) 0.90 (0.38 to 2.11) 0.88 (0.61 to 1.26) 
PAR vs. SER 0.96 (0.72 to 1.31) 1.14 (0.71 to 1.84) 1.12 (0.65 to 1.93) 0.99 (0.81 to 1.22) 
PAR vs. TRA 1.16 (0.71 to 2.04) IS IS 1.11 (0.76 to 1.62) 
PAR vs. VEN 0.88 (0.65 to 1.23) 0.78 (0.36 to 1.70) 1.03 (0.54 to 1.96) 0.91 (0.72 to 1.14) 
SER vs. TRA 1.19 (0.74 to 2.06) 1.03 (0.13 to 8.31) IS 1.11 (0.76 to 1.62) 
SER vs. VEN 0.91 (0.70 to 1.21) 0.92 (0.55 to 1.54) 0.92 (0.58 to 1.45) 0.91 (0.75 to 1.11) 
TRA vs. VEN 0.71 (0.43 to 1.30) 1.51 (0.23 to 9.95) IS 0.82 (0.55 to 1.21) 
Abbreviations: BUP = bupropion; CIT = citalopram; DES = desvenlafaxine; DUL = duloxetine; ESC = escitalopram; FLUO = 
fluoxetine; FLUV = fluvoxamine; IS = insufficient studies; MIR = mirtazapine; NA = not applicable; NEF = nefazodone; PAR = 
paroxetine; SER = sertraline; TRA = trazodone; VEN = velafaxine 
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Table D-2. Comparison of mean change in ham-d for second-generation antidepressants (full 
network), by method of analysis: Weighted mean difference (95% credible interval or 95% 
confidence interval)  
Comparison Bayesian MTC Meta-Regression Bucher Method 
BUP vs. CIT 0.52 (-3.50 to 4.55) NA NA 
BUP vs. DES 1.13 (-2.10 to 4.37) NA NA 
BUP vs. DUL 0.65 (-2.3 to 3.60) NA NA 
BUP vs. ESC 1.42 (-1.50 to 4.43) IS 0.00 (-2.79 to 2.79) 
BUP vs. FLUO 0.54 (-2.40 to 3.43) NA NA 
BUP vs. FLUV 2.24 (-0.96 to 5.47) IS 0.55 (-2.47 to 3.57) 
BUP vs. MIR 2.48 (-1.20 to 6.24) NA NA 
BUP vs. NEF -0.25 (-4.40 to 3.79) NA NA 
BUP vs. PAR 0.55 (-2.30 to 3.48) NA NA 
BUP vs. SER 0.79 (-1.80 to 3.39) Direct Direct 
BUP vs. TRA 1.44 (-1.70 to 4.68) IS 0.60 (-3.01 to 4.21) 
BUP vs. VEN 1.62 (-1.30 to 4.52) IS -0.74 (-4.21 to 2.73) 
CIT vs. DES 0.6 (-2.80 to 3.95) NA NA 
CIT vs. DUL 0.12 (-2.90 to 3.09) -0.95 (-32.88 to 30.98) 0.85 (-2.49 to 4.19) 
CIT vs. ESC 0.9 (-1.80 to 3.61) Direct Direct 
CIT vs. FLUO 0.01 (-3.10 to 3.03) IS -0.20 (-2.88 to 2.48) 
CIT vs. FLUV 1.71 (-1.70 to 5.14) NA NA 
CIT vs. MIR 1.96 (-1.90 to 5.81) NA NA 
CIT vs. NEF -0.78 (-5.10 to 3.38) NA NA 
CIT vs. PAR 0.03 (-3.00 to 3.07) NA NA 
CIT vs. SER 0.27 (-2.80 to 3.30) IS 0.10 (-2.76 to 2.96) 
CIT vs. TRA 0.92 (-2.50 to 4.31) NA NA 
CIT vs. VEN 1.09 (-2.00 to 4.14) IS -1.10 (-4.30 to 2.10) 
DES vs. DUL -0.48 (-2.40 to 1.40) -0.65 (-2.92 to 1.61) -0.68 (-2.25 to 0.90) 
DES vs. ESC 0.29 (-1.70 to 2.32) -1.23 (-5.06 to 2.61) -1.23 (-2.97 to 0.51) 
DES vs. FLUO -0.59 (-2.60 to 1.28) 0.72 (-4.27 to 5.71) -0.27 (-5.19 to 4.64) 
DES vs. FLUV 1.11 (-1.30 to 3.55) NA NA 
DES vs. MIR 1.35 (-1.60 to 4.33) NA NA 
DES vs. NEF -1.40 (-4.90 to 2.02) NA NA 
DES vs. PAR -0.58 (-2.40 to 1.31) -0.67 (-3.33 to 2.00) -0.72 (-2.65 to 1.21) 
DES vs. SER -0.33 (-2.20 to 1.53) -0.41 (-2.68 to 1.86) -0.47 (-2.15 to 1.21) 
DES vs. TRA 0.32 (-2.10 to 2.71) NA NA 
DES vs. VEN 0.49 (-1.50 to 2.43) 1.92 (-3.05 to 6.89) 1.92 (-0.34 to 4.18) 
DUL vs. ESC 0.77 (-0.49 to 2.10) -0.55 (-4.68 to 3.58) -0.55 (-2.34 to 1.24) 
DUL vs. FLUO -0.11 (-1.50 to 1.19) 1.15 (-3.45 to 5.76) 0.41 (-4.53 to 5.34) 
DUL vs. FLUV 1.59 (-0.42 to 3.64) 1.27 (-5.47 to 8.00) 1.40 (-0.43 to 3.22) 
DUL vs. MIR 1.83 (-0.77 to 4.50) 2.23 (-8.66 to 13.12) -2.23 (-3.91 to -0.55) 
DUL vs. NEF -0.90 (-4.10 to 2.21) NA NA 
DUL vs. PAR -0.10 (-1.30 to 1.17) -0.04 (-2.59 to 2.51) -0.04 (-2.02 to 1.94) 
DUL vs. SER 0.15 (-1.30 to 1.53) 0.20 (-2.00 to 2.39) 0.21 (-1.53 to 1.95) 
DUL vs. TRA 0.80 (-1.20 to 2.79) -0.10 (-13.31 to 13.11) -0.70 (2.74 to 1.34) 
DUL vs. VEN 0.97 (-0.48 to 2.41) 2.60 (-2.15 to 7.35) 2.60 (0.29 to 4.91) 
ESC vs. FLUO -0.88 (-2.40 to 0.48) 0.91 (-49.15 to 50.98) 0.96 (-4.03 to 5.95) 
ESC vs. FLUV 0.82 (-1.30 to 2.93) IS 0.55 (-2.59 to 3.69) 
ESC vs. MIR 1.06 (-1.70 to 3.77) NA NA 
ESC vs. NEF -1.70 (-5.00 to 1.47) IS -1.90 (-4.77 to 0.97) 
ESC vs. PAR -0.87 (-2.30 to 0.54) 0.26 (-5.51 to 6.03) 0.51 (-1.60 to 2.62) 
ESC vs. SER -0.63 (-2.10 to 0.78) 0.77 (-3.44 to 4.97) 0.76 (-1.13 to 2.65) 
ESC vs. TRA 0.02 (-2.00 to 2.05) 0.78 (-17.89 to 19.45) -2.99 (-5.85 to -0.13) 
ESC vs. VEN 0.20 (-1.30 to 1.63) IS 3.15 (0.73 to 5.57) 
FLUO vs. FLUV 1.70 (-0.22 to 3.75) IS IS 
FLUO vs. MIR 1.94 (-0.53 to 4.61) 1.72 (-4.68 to 8.11) -2.12 (-4.30 to 0.06) 
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Table D-2. Comparison of mean change in ham-d for second-generation antidepressants (full 
network), by method of analysis: Weighted mean difference (95% credible interval or 95% 
confidence interval) (continued) 
Comparison Bayesian MTC Meta-Regression Bucher Method 
FLUO vs. NEF -0.79 (-3.70 to 2.07) Direct Direct 
FLUO vs. PAR 0.01 (-1.00 to 1.22) -1.08 (-7.51 to 5.36) -0.45 (-5.51 to 4.61) 
FLUO vs. SER 0.26 (-1.00 to 1.65) -0.92 (-5.82 to 3.97) -0.20 (-5.17 to 4.77) 
FLUO vs. TRA 0.90 (-0.81 to 2.72) NA NA 
FLUO vs. VEN 1.08 (-0.14 to 2.41) 2.24 (-48.69 to 53.16) 2.19 (-3.00 to 7.39) 
FLUV vs. MIR 0.24 (-2.70 to 3.15) NA NA 
FLUV vs. NEF -2.50 (-6.10 to 0.96) NA NA 
FLUV vs. PAR -1.70 (-3.40 to 0.06) Direct Direct 
FLUV vs. SER -1.40 (-3.30 to 0.40) Direct Direct 
FLUV vs. TRA -0.80 (-3.20 to 1.59) IS -2.10 (-4.56 to 0.37) 
FLUV vs. VEN -0.62 (-2.60 to 1.35) 3.53 (-20.92 to 27.98) -1.21 (-3.33 to 0.92) 
MIR vs. NEF -2.70 (-6.70 to 1.02) NA NA 
MIR vs. PAR -1.90 (-4.20 to 0.39) Direct Direct 
MIR vs. SER -1.70 (-4.40 to 0.92) NA NA 
MIR vs. TRA -1.00 (-3.90 to 1.84) IS 1.53 (-0.83 to 3.89) 
MIR vs. VEN -0.86 (-3.50 to 1.71) IS 2.42 (0.42 to 4.42) 
NEF vs. PAR 0.80 (-2.20 to 3.96) 2.01 (-20.25 to 24.27) 0.61 (-2.14 to 3.36) 
NEF vs. SER 1.05 (-2.10 to 4.24) NA NA 
NEF vs. TRA 1.70 (-1.60 to 5.15) 2.68 (-17.72 to 23.08) -1.09 (-4.23 to 2.05) 
NEF vs. VEN 1.87 (-1.20 to 5.04) IS 2.50 (-0.64 to 5.64) 
PAR vs. SER 0.24 (-1.10 to 1.47) 0.24 (-2.46 to 2.93) 0.25 (-1.82 to 2.32) 
PAR vs. TRA 0.89 (-0.84 to 2.61) 0.67 (-6.88 to 8.22) -1.70 (-4.45 to 1.05) 
PAR vs. VEN 1.07 (-0.17 to 2.24) 2.66 (-4.47 to 9.79) 2.64 (0.08 to 5.20) 
SER vs. TRA 0.65 (-1.20 to 2.55) Direct Direct 
SER vs. VEN 0.82 (-0.44 to 2.09) 2.38 (-2.49 to 7.26) 2.39 (0.01 to 4.77) 
TRA vs. VEN 0.18 (-1.80 to 2.08) 0.79 (-5.72 to 7.29) -0.85 (-4.00 to 2.31) 
Abbreviations: BUP = bupropion; CIT = citalopram; DES = desvenlafaxine; DUL = duloxetine; ESC = escitalopram; FLUO = 
fluoxetine; FLUV = fluvoxamine; IS = insufficient studies; MIR = mirtazapine; NA = not applicable; NEF = nefazodone; PAR = 
paroxetine; SER = sertraline; TRA = trazodone; VEN = velafaxine 
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Table D-3. Comparison of ACR50 response for biologic DMARDs (full network), by method of 
analysis: Odds ratios (95% credible interval or 95% confidence interval)  
Comparison Bayesian MTC Meta-Regression Bucher Method Logistic Regression 
ABA vs. ADA  0.65 (0.37 to 1.20) 0.67 (0.34 to 1.33) 0.64 (0.38 to 1.08) 0.83 (0.60 to 1.14) 
ABA vs. ANA 1.26 (0.63 to 2.78) 1.32 (0.63 to 2.79) 1.32 (0.78 to 2.24) 1.82 (1.20 to 2.76) 
ABA vs. ETA 0.19 (0.08 to 0.50) 0.21 (0.08 to 0.57) 0.21 (0.10 to 0.45) 0.41 (0.26 to 0.66) 
ABA vs. GOL 0.54 (0.23 to 1.49) 0.59 (0.18 to 1.89) 0.57 (0.28 to 1.17) 0.76 (0.43 to 1.34) 
ABA vs. INF 0.94 (0.58 to 1.65) 0.92 (0.49 to 2.29) 0.80 (0.47 to 1.38) 1.01 (0.75 to 1.35) 
ABA vs. RIT 0.84 (0.39 to 2.08) 0.88 (0.34 to 1.53) 0.89 (0.49 to 1.60) 1.03 (0.64 to 1.67) 
ABA vs. TOC 0.80 (0.47 to 1.57) 0.76 (0.38 to 2.44) 0.77 (0.48 to 1.25) 0.82 (0.60 to 1.13) 
ADA vs. ANA 1.88 (1.01 to 3.98) 1.95 (0.82 to 4.61) 2.08 (1.12 to 3.83) 2.20 (1.49 to 3.26) 
ADA vs. ETA 0.29 (0.13 to 0.73) 0.32 (0.12 to 0.84) 0.33 (0.15 to 0.75) 0.50 (0.32 to 0.78) 
ADA vs. GOL 0.80 (0.36 to 2.14) 0.87 (0.27 to 2.82) 0.90 (0.41 to 1.97) 0.93 (0.53 to 1.59) 
ADA vs. INF 1.39 (0.86 to 2.53) 1.42 (0.72 to 2.81) 1.26 (0.67 to 2.35) 1.22 (0.91 to 1.63) 
ADA vs. RIT 1.25 (0.61 to 3.04) 1.30 (0.47 to 3.60) 1.39 (0.71 to 2.72) 1.25 (0.79 to 1.98) 
ADA vs. TOC 1.19 (0.74 to 2.27) 1.20 (0.60 to 2.44) 1.21 (0.68 to 2.16) 1.00 (0.75 to 1.32) 
ANA vs. ETA 0.14 (0.06 to 0.41) 0.16 (0.06 to 0.47) 0.16 (0.07 to 0.36) 0.23 (0.13 to 0.38) 
ANA vs. GOL 0.39 (0.16 to 1.18) 0.45 (0.12 to 1.60) 0.43 (0.20 to 0.95) 0.42 (0.23 to 0.77) 
ANA vs. INF 0.68 (0.36 to 1.47) 0.71 (0.31 to 1.63) 0.61 (0.32 to 1.13) 0.55 (0.37 to 0.82) 
ANA vs. RIT 0.61 (0.27 to 1.70) 0.67 (0.22 to 1.97) 0.67 (0.34 to 1.31) 0.57 (0.33 to 0.96) 
ANA vs. TOC 0.58 (0.32 to 1.30) 1.00 (0.45 to 2.21) 0.59 (0.33 to 1.04) 0.45 (0.31 to 0.67) 
ETA vs. GOL 2.39 (0.92 to 8.64) 2.77 (0.72 to 10.62) 2.70 (1.05 to 6.96) 1.85 (0.98 to 3.51) 
ETA vs. INF 4.17 (2.00 to 11.20) 4.34 (1.62 to 11.60) 3.78 (1.66 to 8.58) 2.45 (1.56 to 3.82) 
ETA vs. RIT 3.76 (1.51 to 12.70) 4.15 (1.24 to 13.88) 4.18 (1.78 to 9.82) 2.50 (1.41 to 4.43) 
ETA vs. TOC 3.59 (1.73 to 9.80) 3.63 (1.32 to 9.98) 3.65 (1.67 to 7.98) 2.00 (1.28 to 3.12) 
GOL vs. INF 1.47 (0.68 to 4.05) 1.63 (0.51 to 5.20) 1.40 (0.63 to 3.08) 1.32 (0.77 to 2.28) 
GOL vs. RIT 1.33 (0.53 to 4.54) 1.50 (0.24 to 4.93) 1.55 (0.68 to 3.53) 1.35 (0.70 to 2.60) 
GOL vs. TOC 1.27 (0.59 to 3.57) 1.37 (0.38 to 1.97) 1.35 (0.64 to 2.86) 1.08 (0.63 to 1.86) 
INF vs. RIT 0.87 (0.41 to 2.07) 0.93 (0.34 to 2.51) 1.11 (0.56 to 2.19) 1.02 (0.64 to 1.62) 
INF vs. TOC 0.83 (0.51 to 1.52) 0.72 (0.38 to 1.38) 0.97 (0.54 to 1.74) 0.82 (0.62 to 1.08) 
RIT vs. TOC 0.84 (0.42 to 2.12) 0.84 (0.26 to 2.77) 0.87 (0.46 to 1.65) 0.80 (0.51 to 1.26) 
Abbreviations: ABA = abatacept; ADA = adalimumab; ANA = anakinra; ETA = etanercept; GOL = golimumab; INF = 
infliximab; RIT = rituximab; TOC = tocilizumab 
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Table D-4. Comparison of response for second-generation antidepressants for placebo star sub-
network, by method of analysis: Odds ratios (95% credible interval or 95% confidence interval)  
Comparison Bayesian MTC Meta-Regression Bucher Method Logistic Regression 
BUP vs. CIT NA NA NA NA 
BUP vs. DES 0.73 (0.43 to 1.35) 0.78 (0.30 to 2.01) 0.77 (0.40 to 1.50) 0.87 (0.64 to 1.18) 
BUP vs. DUL 0.84 (0.51 to 1.49) 0.85 (0.50 to 1.45) 0.87 (0.56 to 1.36) 0.94 (0.70 to 1.26) 
BUP vs. ESC 0.94 (0.43 to 2.56) 1.04 (0.21 to 5.11) 1.04 (0.59 to 1.85) 1.08 (0.72 to 1.63) 
BUP vs. FLUO 0.94 (0.56 to 1.72) 0.98 (0.56 to 1.71) 0.98 (0.62 to 1.56) 0.99 (0.73 to 1.33) 
BUP vs. FLUV 0.39 (0.11 to 2.63) 0.59 (0.02 to 15.83) 0.58 (0.14 to 2.46) 0.82 (0.26 to 2.54) 
BUP vs. MIR NA NA NA NA 
BUP vs. NEF 0.58 (0.27 to 1.49) 0.65 (0.19 to 2.18) 0.82 (0.35 to 1.91) 1.00 (0.51 to 1.98) 
BUP vs. PAR 0.67 (0.37 to 1.39) 0.94 (0.45 to 1.99) 0.71 (0.38 to 1.33) 0.84 (0.57 to 1.23) 
BUP vs. SER 0.78 (0.47 to 1.41) 0.80 (0.49 to 1.30) 0.80 (0.52 to 1.24) 0.96 (0.72 to 1.27) 
BUP vs. TRA NA NA NA NA 
BUP vs. VEN 0.69 (0.38 to 1.43) 0.74 (0.33 to 1.62) 0.73 (0.42 to 1.28) 0.80 (0.55 to 1.17) 
CIT vs. DES NA NA NA NA 
CIT vs. DUL NA NA NA NA 
CIT vs. ESC NA NA NA NA 
CIT vs. FLUO NA NA NA NA 
CIT vs. FLUV NA NA NA NA 
CIT vs. MIR NA NA NA NA 
CIT vs. NEF NA NA NA NA 
CIT vs. PAR NA NA NA NA 
CIT vs. SER NA NA NA NA 
CIT vs. TRA NA NA NA NA 
CIT vs. VEN NA NA NA NA 
DES vs. DUL 1.11 (0.73 to 1.79) 1.10 (0.59 to 2.03) 1.14 (0.63 to 2.05) 1.08 (0.86 to 1.34) 
DES vs. ESC 1.25 (0.59 to 3.13) 1.35 (0.22 to 8.18) 1.35 (0.67 to 2.71) 1.24 (0.86 to 1.79) 
DES vs. FLUO 1.25 (0.81 to 2.04) 1.27 (0.64 to 2.54) 1.27 (0.69 to 2.34) 1.14 (0.86 to 1.50) 
DES vs. FLUV 0.51 (0.14 to 3.45) 0.76 (0.06 to 10.14) 0.76 (0.17 to 3.37) 0.94 (0.31 to 2.88) 
DES vs. MIR NA NA NA NA 
DES vs. NEF 0.77 (0.37 to 1.85) 0.83 (0.21 to 3.27) 1.07 (0.42 to 2.71) 1.15 (0.60 to 2.23) 
DES vs. PAR 0.89 (0.52 to 1.69) 1.23 (0.51 to 2.96) 0.93 (0.44 to 1.94) 0.97 (0.69 to 1.35) 
DES vs. SER 1.03 (0.66 to 1.69) 1.05 (0.57 to 1.93) 1.04 (0.58 to 1.87) 1.10 (0.85 to 1.43) 
DES vs. TRA NA NA NA NA 
DES vs. VEN 0.92 (0.53 to 1.75) 0.95 (0.36 to 2.54) 0.96 (0.48 to 1.89) 0.92 (0.65 to 1.30) 
DUL vs. ESC 1.10 (0.53 to 2.70) 1.23 (0.54 to 2.82) 1.19 (0.73 to 1.94) 1.16 (0.85 to 1.58) 
DUL vs. FLUO 1.10 (0.73 to 1.72) 1.12 (0.75 to 1.68) 1.12 (0.79 to 1.59) 1.06 (0.81 to 1.37) 
DUL vs. FLUV 0.45 (0.12 to 3.03) 0.69 (0.11 to 4.35) 0.67 (0.16 to 2.72) 0.88 (0.29 to 2.67) 
DUL vs. MIR NA NA NA NA 
DUL vs. NEF 0.68 (0.33 to 1.61) 0.77 (0.33 to 1.79) 0.94 (0.43 to 2.07) 1.07 (0.56 to 2.06) 
DUL vs. PAR 0.78 (0.47 to 1.45) 1.08 (0.66 to 1.77) 0.82 (0.47 to 1.41) 0.90 (0.67 to 1.21) 
DUL vs. SER 0.91 (0.61 to 1.43) 0.92 (0.64 to 1.31) 0.92 (0.67 to 1.25) 1.02 (0.80 to 1.31) 
DUL vs. TRA NA NA NA NA 
DUL vs. VEN 0.81 (0.48 to 1.49) 0.92 (0.54 to 1.59) 0.84 (0.53 to 1.34) 0.85 (0.61 to 1.19) 
ESC vs. FLUO 0.86 (0.41 to 2.17) 0.94 (0.42 to 2.11) 0.94 (0.57 to 1.57) 0.91 (0.62 to 1.34) 
ESC vs. FLUV 0.35 (0.09 to 2.86) IS 0.56 (0.13 to 2.40) 0.76 (0.24 to 2.39) 
ESC vs. MIR NA NA NA NA 
ESC vs. NEF 0.53 (0.21 to 1.79) IS 0.79 (0.33 to 1.88) 0.93 (0.45 to 1.89) 
ESC vs. PAR 0.61 (0.27 to 1.69) 0.69 (0.15 to 3.13) 1.15 (0.71 to 1.88) 0.78 (0.51 to 1.18) 
ESC vs. SER 0.71 (0.34 to 1.79) 0.77 (0.39 to 1.52) 0.77 (0.47 to 1.24) 0.88 (0.61 to 1.29) 
ESC vs. TRA NA NA NA NA 
ESC vs. VEN 0.63 (0.29 to 1.72) 0.71 (0.14 to 3.46) 0.71 (0.39 to 1.28) 0.74 (0.48 to 1.14) 
FLUO vs. FLUV 0.40 (0.11 to 2.63) 0.60 (0.09 to 4.02) 0.60 (0.15 to 2.44) 0.83 (0.27 to 2.55) 
FLUO vs. MIR NA NA NA NA 
FLUO vs. NEF 0.60 (0.29 to 1.45) 0.66 (0.28 to 1.56) 0.84 (0.38 to 1.86) 1.01 (0.52 to 1.98) 
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Table D-4. Comparison of response for second-generation antidepressants for placebo star sub-
network, by method of analysis: Odds ratios (95% credible interval or 95% confidence interval) 
(continued) 
Comparison Bayesian MTC Meta-Regression Bucher Method Logistic Regression 
FLUO vs. PAR 0.69 (0.40 to 1.30) 0.73 (0.39 to 1.37) 0.73 (0.41 to 1.28) 0.85 (0.60 to 1.20) 
FLUO vs. SER 1.23 (0.78 to 1.89) 0.82 (0.54 to 1.23) 0.82 (0.58 to 1.15) 0.97 (0.73 to 1.28) 
FLUO vs. TRA NA NA NA NA 
FLUO vs. VEN 0.72 (0.42 to 1.33) 0.75 (0.42 to 1.35) 0.75 (0.46 to 1.22) 0.81 (0.59 to 1.11) 
FLUV vs. MIR NA NA NA NA 
FLUV vs. NEF 0.79 (0.21 to 6.67) IS 1.40 (0.29 to 6.80) 1.22 (0.34 to 4.35) 
FLUV vs. PAR 0.93 (0.26 to 6.67) 1.61 (0.13 to 20.02) IS 1.02 (0.33 to 3.20) 
FLUV vs. SER 1.08 (0.31 to 7.69) 1.37 (0.23 to 8.11) IS 1.17 (0.38 to 3.57) 
FLUV vs. TRA NA NA NA NA 
FLUV vs. VEN 0.96 (0.27 to 7.14) 1.26 (0.05 to 35.00) 1.26 (0.30 to 5.32) 0.98 (0.31 to 3.05) 
MIR vs. NEF NA NA NA NA 
MIR vs. PAR NA NA NA NA 
MIR vs. SER NA NA NA NA 
MIR vs. TRA NA NA NA NA 
MIR vs. VEN NA NA NA NA 
NEF vs. PAR 1.01 (0.47 to 2.70) 1.46 (0.47 to 4.51) 0.87 (0.35 to 2.15) 0.84 (0.42 to 1.68) 
NEF vs. SER 1.16 (0.57 to 2.86) 1.23 (0.56 to 2.67) 0.98 (0.44 to 2.14) 0.95 (0.49 to 1.85) 
NEF vs. TRA NA NA NA NA 
NEF vs. VEN 1.04 (0.48 to 2.78) 0.84 (0.29 to 2.41) 0.90 (0.38 to 2.11) 0.80 (0.40 to 1.61) 
PAR vs. SER 1.09 (0.63 to 2.04) 1.14 (0.71 to 1.84) 1.12 (0.65 to 1.93) 1.14 (0.81 to 1.61) 
PAR vs. TRA NA NA NA NA 
PAR vs. VEN 0.97 (0.52 to 2.04) 0.78 (0.36 to 1.70) 1.03 (0.54 to 1.96) 0.95 (0.63 to 1.43) 
SER vs. TRA NA NA NA NA 
SER vs. VEN 0.87 (0.51 to 1.61) 0.92 (0.55 to 1.54) 0.92 (0.58 to 1.45) 0.84 (0.59 to 1.18) 
TRA vs. VEN NA NA NA NA 
Abbreviations: BUP = bupropion; CIT = citalopram; DES = desvenlafaxine; DUL = duloxetine; ESC = escitalopram; FLUO = 
fluoxetine; FLUV = fluvoxamine; IS = insufficient studies; MIR = mirtazapine; NA = not applicable; NEF = nefazodone; PAR = 
paroxetine; SER = sertraline; TRA = trazodone; VEN = velafaxine 

Table D-5. Comparison of response for second-generation antidepressants for loop sub-network, 
by method of analysis: Odds ratios (95% credible interval or 95% confidence interval)  
Comparison Bayesian MTC Meta-Regression Bucher Method Logistic Regression 
FLUO vs. PAR via SER 0.83 (0.64 to 1.11) 0.88 (0.19 to 4.02) 0.88 (0.44 to 1.76) 0.80 (0.63 to 1.02) 
FLUO vs. PAR via placebo NA/same 0.73 (0.39 to 1.37) 0.73 (0.41 to 1.28) NA/same  
FLUO vs. SER via PAR 0.76 (0.61 to 0.96) 0.69 (0.26 to 1.83) 0.69 (0.34 to 1.37) 0.78 (0.64 to 0.96) 
FLUO vs. SER via placebo NA/same 0.82 (0.54 to 1.23) 0.82 (0.58 to 1.15) NA/same  
PAR vs. SER via FLUO 0.90 (0.68 to 1.25) 0.71 (0.41 to 1.22) 0.71 (0.46 to 1.10) 0.97 (0.74 to 1.26) 
PAR vs. SER via placebo NA/same 1.14 (0.71 to 1.84) 1.12 (0.65 to 1.93) NA/same  
Abbreviations: FLUO = fluoxetine; NA = not applicable; PAR = paroxetine; SER = sertraline 
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Table D-6. Comparison of response for second-generation antidepressants for one closed loop 
sub-network, by method of analysis: Odds ratios (95% credible interval or 95% confidence 
interval) 
Comparison Bayesian MTC Meta-Regression Bucher Method Logistic Regression 
BUP vs. CIT 0.74 (0.30 to 2.27) NA NA 0.94 (0.49 to 1.80) 
BUP vs. ESC 0.91 (0.46 to 2.13) NA NA 0.95 (0.55 to 1.64) 
BUP vs. FLUO 0.99 (0.65 to 1.61) IS IS 1.07 (0.81 to 1.40) 
BUP vs. FLUV 0.78 (0.28 to 3.13) NA NA 1.18 (0.53 to 2.65) 
BUP vs. MIR 1.32 (0.62 to 3.85) IS IS 1.10 (0.51 to 2.35) 
BUP vs. PAR 0.83 (0.51 to 1.43) IS IS 0.89 (0.64 to 1.23) 
BUP vs. SER 0.77 (0.52 to 1.18) Direct Direct 0.87 (0.67 to 1.13) 
BUP vs. TRA 2.04 (1.02 to 4.76) Direct Direct 1.75 (0.96 to 3.18) 
CIT vs. ESC 1.11 (0.63 to 2.17) Direct Direct 1.01 (0.61 to 1.68) 
CIT vs. FLUO 1.09 (0.50 to 2.94) IS IS 1.14 (0.62 to 2.09) 
CIT vs. FLUV 1.05 (0.58 to 2.08) NA NA 1.26 (0.71 to 2.21) 
CIT vs. MIR 1.37 (0.44 to 7.14) NA NA 1.17 (0.45 to 3.07) 
CIT vs. PAR 0.91 (0.40 to 2.56) NA NA 0.95 (0.50 to 1.79) 
CIT vs. SER 0.84 (0.37 to 2.33) NA NA 0.93 (0.50 to 1.73) 
CIT vs. TRA 2.08 (0.70 to 

10.00) 
NA NA 1.86 (0.80 to 4.35) 

ESC vs. FLUO 0.98 (0.53 to 1.92) Direct Direct 1.12 (0.69 to 1.82) 
ESC vs. FLUV 0.85 (0.39 to 2.27) IS IS 1.24 (0.60 to 2.56) 
ESC vs. MIR 1.22 (0.42 to 5.56) NA NA 1.15 (0.47 to 2.83) 
ESC vs. PAR 0.81 (0.42 to 1.67) IS IS 0.93 (0.55 to 1.58) 
ESC vs. SER 0.75 (0.40 to 1.54) IS IS 0.91 (0.55 to 1.52) 
ESC vs. TRA 1.89 (0.70 to 7.14) NA NA 1.84 (0.85 to 3.98) 
FLUO vs. FLUV 0.78 (0.31 to 2.86) NA NA 1.11 (0.51 to 2.40) 
FLUO vs. MIR 1.27 (0.52 to 4.35) NA NA 1.03 (0.47 to 2.23) 
FLUO vs. PAR via SER 0.83 (0.65 to 1.10) IS IS 0.83 (0.65 to 1.06) 
FLUO vs. PAR via placebo NA/same 0.73 (0.39 to 

1.37) 
0.73 (0.41 to 

1.28) 
NA/same  

FLUO vs. SER 0.77 (0.63 to 0.96) 0.82 (0.54 to 
1.23) 

0.82 (0.58 to 
1.15) 

0.81 (0.67 to 1.00) 

FLUO vs. TRA 1.96 (0.87 to 5.88) NA NA 1.64 (0.88 to 3.05) 
MIR vs. PAR 0.50 (0.19 to 1.61) NA NA 0.81 (0.37 to 1.80) 
MIR vs. SER 0.47 (0.18 to 1.43) NA NA 0.79 (0.36 to 1.73) 
MIR vs. TRA 1.45 (0.91 to 2.50) Direct Direct 1.59 (0.92 to 2.76) 
PAR vs. SER via FLUO 0.91 (0.68 to 1.27) IS IS 0.98 (0.75 to 1.28) 
PAR vs. SER via placebo NA/same 1.14 (0.71 to 

1.84) 
1.12 (0.65 to 1.93 NA/same  

PAR vs. TRA 2.33 (1.02 to 7.14) NA NA 1.97 (1.03 to 3.76) 
SER vs. TRA 2.56 (1.16 to 7.14) IS IS 2.01 (1.08 to 3.75) 
Abbreviations: BUP = bupropion; CIT = citalopram; ESC = escitalopram; FLUO = fluoxetine; FLUV = fluvoxamine; IS = 
insufficient studies; MIR = mirtazapine; NA = not applicable; PAR = paroxetine; SER = sertraline; TRA = trazodone 

  



 

D-9 

Table D-7. Comparison of response for second-generation antidepressants for ladder sub-
network, by method of analysis: Odds ratios (95% credible interval or 95% confidence interval) 
Comparison Bayesian MTC Meta-Regression Bucher Method Logistic Regression 
BUP vs. CIT 0.75 (0.28 to 2.56) NA NA 1.36 (0.72 to 2.58) 
BUP vs. DUL 1.20 (0.58 to 2.94) NA NA 1.43 (0.90 to 2.28) 
BUP vs. ESC 0.94 (0.41 to 2.44) NA NA 1.24 (0.76 to 2.03) 
BUP vs. FLUO 1.20 (0.68 to 2.44) NA NA 1.25 (0.83 to 1.90) 
BUP vs. FLUV 0.79 (0.26 to 3.57) NA NA 1.82 (0.82 to 4.03) 
BUP vs. MIR 1.30 (0.56 to 3.57) IS 0.67 (0.26 to 1.69) 1.38 (0.65 to 2.91) 
BUP vs. PAR 1.10 (0.56 to 2.38) NA NA 1.22 (0.79 to 1.90) 
BUP vs. SER 0.95 (0.68 to 1.39) Direct Direct 1.08 (0.77 to 1.51) 
BUP vs. TRA 2.00 (0.99 to 5.00) Direct Direct 2.14 (1.18 to 3.86) 
BUP vs. VEN 0.79 (0.47 to 1.45) 0.82 (0.38 to 1.79) 0.82 (0.51 to 1.34) 0.98 (0.65 to 1.48) 
CIT vs. DUL 1.39 (0.74 to 3.13) 1.52 (0.23 to 10.02) 1.44 (0.78 to 2.64) 1.05 (0.64 to 1.74) 
CIT vs. ESC 1.11 (0.63 to 2.27) Direct Direct 0.91 (0.56 to 1.47) 
CIT vs. FLUO 1.32 (0.63 to 3.57) NA NA 0.92 (0.53 to 1.59) 
CIT vs. FLUV 1.05 (0.58 to 2.17) Direct Direct 1.33 (0.76 to 2.33) 
CIT vs. MIR 1.27 (0.41 to 7.14) NA NA 1.01 (0.41 to 2.47) 
CIT vs. PAR 1.23 (0.61 to 3.03) NA NA 0.90 (0.53 to 1.53) 
CIT vs. SER 0.95 (0.41 to 3.23) NA NA 0.79 (0.44 to 1.41) 
CIT vs. TRA 1.96 (0.68 to 10.00) NA NA 1.57 (0.72 to 3.43) 
CIT vs. VEN 0.83 (0.37 to 2.38) NA NA 0.72 (0.41 to 1.25) 
DUL vs. ESC 0.79 (0.57 to 1.06) Direct Direct 0.86 (0.69 to 1.08) 
DUL vs. FLUO 0.94 (0.61 to 1.56) 0.96 (0.58 to 1.60) 0.97 (0.64 to 1.45) 0.87 (0.64 to 1.20) 
DUL vs. FLUV 0.66 (0.28 to 1.96) NA NA 1.27 (0.63 to 2.56) 
DUL vs. MIR 0.92 (0.33 to 3.85) NA NA 0.96 (0.44 to 2.10) 
DUL vs. PAR 0.88 (0.65 to 1.25) Direct Direct 0.85 (0.67 to 1.08) 
DUL vs. SER 0.69 (0.37 to 1.52) NA NA 0.75 (0.52 to 1.09) 
DUL vs. TRA 1.43 (0.57 to 5.26) NA NA 1.49 (0.78 to 2.86) 
DUL vs. VEN 0.60 (0.36 to 1.11) NA NA 0.68 (0.49 to 0.96) 
ESC vs. FLUO 1.18 (0.71 to 2.22) NA NA 1.01 (0.71 to 1.45) 
ESC vs. FLUV 0.85 (0.37 to 2.38) IS 0.94 (0.42 to 2.11) 1.47 (0.73 to 2.93) 
ESC vs. MIR 1.15 (0.41 to 5.00) NA NA 1.11 (0.50 to 2.48) 
ESC vs. PAR 1.10 (0.72 to 1.85) 1.16 (0.57 to 2.36) 1.09 (0.77 to 1.56) 0.99 (0.72 to 1.35) 
ESC vs. SER 0.86 (0.44 to 2.13) NA NA 0.87 (0.58 to 1.31) 
ESC vs. TRA 1.79 (0.69 to 7.14) NA NA 1.73 (0.88 to 3.38) 
ESC vs. VEN 0.75 (0.42 to 1.56) NA NA 0.79 (0.54 to 1.15) 
FLUO vs. FLUV 0.66 (0.25 to 2.22) NA NA 1.45 (0.70 to 2.99) 
FLUO vs. MIR 0.97 (0.38 to 3.57) NA NA 1.10 (0.51 to 2.35) 
FLUO vs. PAR 0.91 (0.66 to 1.30) Direct Direct 0.98 (0.75 to 1.27) 
FLUO vs. SER 0.73 (0.45 to 1.32) 0.90 (0.47 to 1.71) 0.95 (0.62 to 1.45) 0.86 (0.64 to 1.16) 
FLUO vs. TRA 1.49 (0.65 to 5.00) NA NA 1.71 (0.91 to 3.18) 
FLUO vs. VEN 0.64 (0.47 to 0.87) Direct Direct 0.78 (0.65 to 0.94) 
FLUV vs. MIR 1.08 (0.33 to 7.69) NA NA 0.76 (0.28 to 2.09) 
FLUV vs. PAR 1.04 (0.43 to 3.45) NA NA 0.67 (0.33 to 1.38) 
FLUV vs. SER 0.81 (0.29 to 3.57) NA NA 0.59 (0.28 to 1.26) 
FLUV vs. TRA 1.67 (0.53 to 11.11) NA NA 1.18 (0.47 to 2.94) 
FLUV vs. VEN 0.71 (0.27 to 2.70) NA NA 0.54 (0.26 to 1.12) 
MIR vs. PAR 0.66 (0.24 to 2.56) NA NA 0.89 (0.41 to 1.92) 
MIR vs. SER 0.57 (0.25 to 1.89) NA NA 0.78 (0.37 to 1.66) 
MIR vs. TRA 1.45 (0.92 to 2.50) Direct Direct 1.55 (0.90 to 2.68) 
MIR vs. VEN 0.48 (0.20 to 1.69) NA NA 0.71 (0.33 to 1.52) 
PAR vs. SER 0.78 (0.45 to 1.59) NA NA 0.88 (0.63 to 1.24) 
PAR vs. TRA 1.61 (0.67 to 5.88) NA NA 1.75 (0.92 to 3.31) 
PAR vs. VEN 0.68 (0.44 to 1.11) 0.83 (0.50 to 1.38) 0.87 (0.60 to 1.25) 0.80 (0.60 to 1.08) 
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Table D-7. Comparison of response for second-generation antidepressants for ladder sub-
network, by method of analysis: Odds ratios (95% credible interval or 95% confidence interval) 
(continued) 
Comparison Bayesian MTC Meta-Regression Bucher Method Logistic Regression 
SER vs. TRA 2.04 (0.93 to 5.56) IS 1.03 (0.46 to2.30) 1.99 (1.08 to 3.67) 
SER vs. VEN 0.83 (0.55 to 1.30) Direct Direct 0.91 (0.68 to 1.21) 
TRA vs. VEN 0.33 (0.14 to 0.99) NA NA 0.46 (0.25 to 0.86) 
Abbreviations: BUP = bupropion; CIT = citalopram; DUL = duloxetine; ESC = escitalopram; FLUO = fluoxetine; FLUV = 
fluvoxamine; IS = insufficient studies; MIR = mirtazapine; NA = not applicable; PAR = paroxetine; SER = sertraline; TRA = 
trazodone; VEN = velafaxine 

Table D-8. Comparison of mean change in HAM-D for second-generation antidepressants for 
placebo star sub-network, by method of analysis: Weighted mean difference (95% credible interval 
or 95% confidence interval)  
Comparison Bayesian MTC Meta-Regression Bucher Method 
DES vs. DUL -0.65 (-2.80 to 1.38) -0.65 (-2.92 to 1.61) -0.68 (-2.25 to 0.90) 
DES vs. ESC -1.20 (-4.10 to 1.75) -1.23 (-5.06 to 2.61) -1.23 (-2.97 to 0.51) 
DES vs. FLUO 0.12 (-2.30 to 2.50) 0.72 (-4.27 to 5.71) -0.27 (-5.19 to 4.64) 
DES vs. PAR -0.88 (-3.20 to 1.24) -0.67 (-3.33 to 2.00) -0.72 (-2.65 to 1.21) 
DES vs. SER -0.43 (-2.60 to 1.70) -0.41 (-2.68 to 1.86) -0.47 (-2.15 to 1.21) 
DES vs. VEN 1.94 (-1.30 to 5.21) 1.92 (-3.05 to 6.89) 1.92 (-0.34 to 4.18) 
DUL vs. ESC -0.53 (-3.30 to 2.20) -0.55 (-4.68 to 3.58) -0.55 (-2.34 to 1.24) 
DUL vs. FLUO 0.77 (-1.40 to 2.92) 1.15 (-3.45 to 5.76) 0.41 (-4.53 to 5.34) 
DUL vs. PAR -0.24 (-2.20 to 1.63) -0.04 (-2.59 to 2.51) -0.04 (-2.02 to 1.94) 
DUL vs. SER 0.21 (-1.70 to 2.08) 0.20 (-2.00 to 2.39) 0.21 (-1.53 to 1.95) 
DUL vs. VEN 2.59 (-0.50 to 5.69) 2.60 (-2.15 to 7.35) 2.60 (0.29 to 4.91) 
ESC vs. FLUO 1.30 (-1.70 to 4.28) 0.91 (-49.15 to 50.98) 0.96 (-4.03 to 5.95) 
ESC vs. PAR 0.30 (-2.60 to 3.04) 0.49 (-5.90 to 6.88) 0.51 (-1.60 to 2.62) 
ESC vs. SER 0.75 (-2.10 to 3.54) 0.77 (-3.44 to 4.97) 0.76 (-1.13 to 2.65) 
ESC vs. VEN 3.12 (-0.61 to 6.85) IS 3.15 (0.73 to 5.57) 
FLUO vs. PAR -1.00 (-3.40 to 1.23) -1.08 (-7.51 to 5.36) -0.45 (-5.51 to 4.61) 
FLUO vs. SER -0.55 (-2.80 to 1.72) -0.92 (-5.82 to 3.97) -0.20 (-5.17 to 4.77) 
FLUO vs. VEN 1.82 (-1.50 to 5.20) 2.24 (-48.69 to 53.16) 2.19 (-3.00 to 7.39) 
PAR vs. SER 0.45 (-1.50 to 2.54) 0.24 (-2.46 to 2.93) 0.25 (-1.82 to 2.32) 
PAR vs. VEN 2.83 (-0.29 to 6.11) 2.66 (-4.47 to 9.79) 2.64 (0.08 to 5.20) 
SER vs. VEN 2.37 (-0.75 to 5.56) 2.38 (-2.49 to 7.26) 2.39 (0.01 to 4.77) 
Abbreviations: DES = desvenlafaxine; DUL = duloxetine; ESC = escitalopram; FLUO = fluoxetine; IS = insufficient studies; 
PAR = paroxetine; SER = sertraline; VEN = venlafaxine 

Table D-9. Comparison of mean change in HAM-D for second-generation antidepressants for loop 
sub-network, by method of analysis: Weighted mean difference (95% credible interval or 95% 
confidence interval)  
Comparison Bayesian MTC Meta-Regression Bucher Method Via 
ESC vs. FLUO -1.20 (-4.00 to 1.41) 0.91 (-49.15 to 50.98) 0.96 (-4.03 to 5.95) Placebo 
ESC vs. FLUO -1.20 (-4.00 to 1.41) IS -4.74 (-8.11 to -1.36) VEN 
ESC vs. VEN 0.65 (-2.90 to 3.94) IS 0.60 (-2.27 to 3.47) FLUO 
FLUO vs. VEN 1.87 (-0.90 to 4.77) IS -0.90 (-4.00 to 2.20) ESC 
Abbreviations: ESC = escitalopram; FLUO = fluoxetine; IS = insufficient studies; VEN = venlafaxine 
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Table D-10. Comparison of mean change in HAM-D for second-generation antidepressants for one 
closed loop sub-network, by method of analysis: Weighted mean difference (95% credible interval 
or 95% confidence interval)  
Comparison Bayesian MTC Meta-Regression Bucher Method Via 
ESC vs. FLUO -1.20 (-4.60 to 1.80) 0.91 (-49.15 to 50.98) 0.96 (-4.03 to 5.95) placebo 
ESC vs. FLUO -1.20 (-4.00 to 1.41) IS -4.74 (-8.11 to -1.36) VEN 
ESC vs. FLUV 0.74 (-4.20 to 5.66) NA NA NA 
ESC vs. PAR -1.10 (-5.30 to 2.93) NA NA NA 
ESC vs. SER -1.10 (-4.70 to 2.18) 0.77 (-3.44 to 4.97) 0.76 (-1.13 to 2.65) placebo 
ESC vs. TRA -0.26 (-4.20 to 3.69) NA NA NA 
ESC vs. VEN 0.67 (-2.30 to 3.45) IS 0.60 (-2.27 to 3.47) FLUO 
FLUO vs. FLUV 1.92 (-2.70 to 6.71) NA NA NA 
FLUO vs. PAR 0.04 (-2.90 to 3.24) IS -1.49 (-4.38 to 1.40) TRA 
FLUO vs. SER 0.04 (-3.00 to 3.06) -0.92 (-5.82 to 3.97) -0.20 (-5.17 to 4.77) placebo 
FLUO vs. TRA 0.92 (-1.90 to 3.96) NA NA NA 
FLUO vs. VEN 1.85 (-0.50 to 4.31) IS -0.90 (-4.00 to 2.20) ESC 
FLUO vs. VEN 1.85 (-0.50 to 4.31) 2.24 (-48.69 to 53.16) 2.19 (-3.00 to 7.39) placebo 
FLUV vs. PAR -1.90 (-7.40 to 3.69) NA NA NA 
FLUV vs. SER -1.90 (-5.60 to 1.63) NA NA NA 
FLUV vs. TRA -1.00 (-6.50 to 4.47) NA NA NA 
FLUV vs. VEN -0.07 (-5.10 to 4.71) NA NA NA 
PAR vs. SER 0.00 (-4.40 to 4.13) NA NA NA 
PAR vs. TRA 0.88 (-2.30 to 4.06) NA NA NA 
PAR vs. VEN 1.81 (-2.20 to 5.56) NA NA NA 
SER vs. TRA 0.88 (-3.20 to 5.21) NA NA NA 
SER vs. VEN 1.81 (-1.50 to 5.21) NA NA NA 
TRA vs. VEN 0.93 (-2.90 to 4.61) IS 3.59 (0.45 to 6.73) FLUO 
Abbreviations: ESC = escitalopram; FLUO = fluoxetine; FLUV = fluvoxamine; IS = insufficient studies; NA = not applicable; 
PAR = paroxetine; SER = sertraline; TRA = trazodone; VEN = venlafaxine 
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Table D-11. Comparison of mean change in HAM-D for second-generation antidepressants for 
ladder sub-network, by method of analysis: Weighted mean difference (95% credible interval or 
95% confidence interval)  
Comparison Bayesian MTC Meta-Regression Bucher Method Via 
BUP vs. CIT -2.20 (-9.40 to 5.43) NA NA NA 
BUP vs. DUL -1.70 (-7.60 to 4.43) NA NA NA 
BUP vs. ESC -1.30 (-7.60 to 5.39) NA NA NA 
BUP vs. FLUO -1.70 (-7.00 to 3.25) NA NA NA 
BUP vs. PAR -2.00 (-7.50 to 3.68) NA NA NA 
BUP vs. SER 0.83 (-2.70 to 4.30) NA NA NA 
BUP vs. VEN 1.04 (-3.50 to 5.14) IS -0.74 (-4.21 to 2.73) SER 
CIT vs. DUL 0.54 (-3.90 to 4.71) IS 0.85 (-2.49 to 4.19) ESC 
CIT vs. ESC 0.91 (-2.70 to 4.51) NA NA NA 
CIT vs. FLUO 0.52 (-5.30 to 5.59) NA NA NA 
CIT vs. PAR 0.24 (-4.80 to 5.09) NA NA NA 
CIT vs. SER 3.02 (-3.80 to 9.39) NA NA NA 
CIT vs. VEN 3.23 (-3.20 to 8.95) NA NA NA 
DUL vs. ESC 0.36 (-1.90 to 2.82) NA NA NA 
DUL vs. FLUO -0.02 (-3.70 to 2.90) NA NA NA 
DUL vs. PAR -0.30 (-2.60 to 2.06) NA NA NA 
DUL vs. SER 2.48 (-2.60 to 7.27) NA NA NA 
DUL vs. VEN 2.69 (-1.70 to 6.62) NA NA NA 
ESC vs. FLUO -0.38 (-4.90 to 3.26) NA NA NA 
ESC vs. PAR -0.67 (-4.10 to 2.62) 0.26 (-5.51 to 6.03) -0.35 (-3.17 to 2.47) DUL 
ESC vs. SER 2.11 (-3.60 to 7.35) NA NA NA 
ESC vs. VEN 2.32 (-2.90 to 6.80) NA NA NA 
FLUO vs. PAR -0.28 (-2.20 to 2.36) NA NA NA 
FLUO vs. SER 2.50 (-1.10 to 6.53) 1.66 (-31.65 to 34.98) 2.68 (-1.01 to 6.36) VEN 
FLUO vs. VEN 2.71 (0.03 to 5.54) NA NA NA 
PAR vs. SER 2.78 (-1.70 to 7.05) NA NA NA 
PAR vs. VEN 2.99 (-0.74 to 6.23) -4.13 (-12.41 to 4.15) 1.89 (-0.86 to 4.64) FLUO 
SER vs. VEN 0.21 (-2.50 to 2.65) NA NA NA 
Abbreviations: BUP = bupropion; CIT = citalopram; DUL = duloxetine; ESC = escitalopram; FLUO = fluoxetine; IS = 
insufficient studies; NA = not applicable; PAR = paroxetine; SER = sertraline; VEN = venlafaxine 
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Table D-12. Comparison of ACR50 response for biologic DMARDs for placebo star sub-network, 
by method of analysis: Odds ratios (95% credible interval or 95% confidence interval)  
Comparison Bayesian MTC Meta-Regression Bucher Method Logistic Regression 
ABA vs. ADA  0.59 (0.33 to 1.14) 0.67 (0.34 to 1.33) 0.64 (0.38 to 1.08) 0.83 (0.60 to 1.14) 
ABA vs. ANA 1.15 (0.57 to 2.63) 1.32 (0.63 to 2.79) 1.32 (0.78 to 2.24) 1.82 (1.20 to 2.76) 
ABA vs. ETA 0.17 (0.08 to 0.49) 0.21 (0.08 to 0.57) 0.21 (0.10 to 0.45) 0.41 (0.26 to 0.66) 
ABA vs. GOL 0.49 (0.21 to 1.39) 0.59 (0.18 to 1.89) 0.57 (0.28 to 1.17) 0.76 (0.43 to 1.34) 
ABA vs. INF 0.85 (0.48 to 1.72) 0.92 (0.49 to 2.29) 0.80 (0.47 to 1.38) 1.01 (0.75 to 1.35) 
ABA vs. RIT 0.78 (0.36 to 2.00) 0.88 (0.34 to 1.53) 0.89 (0.49 to 1.60) 1.03 (0.64 to 1.67) 
ABA vs. TOC 0.74 (0.42 to 1.49) 0.76 (0.38 to 2.44) 0.77 (0.48 to 1.25) 0.82 (0.60 to 1.13) 
ADA vs. ANA 1.89 (0.99 to 4.00) 1.95 (0.82 to 4.61) 2.08 (1.12 to 3.83) 2.20 (1.49 to 3.26) 
ADA vs. ETA 0.28 (0.13 to 0.77) 0.32 (0.12 to 0.84) 0.33 (0.15 to 0.75) 0.50 (0.32 to 0.78) 
ADA vs. GOL 0.81 (0.36 to 2.13) 0.87 (0.27 to 2.82) 0.90 (0.41 to 1.97) 0.93 (0.53 to 1.59) 
ADA vs. INF 1.39 (0.83 to 2.56) 1.42 (0.72 to 2.81) 1.26 (0.67 to 2.35) 1.22 (0.91 to 1.63) 
ADA vs. RIT 1.27 (0.62 to 3.13) 1.30 (0.47 to 3.60) 1.39 (0.71 to 2.72) 1.25 (0.79 to 1.98) 
ADA vs. TOC 1.20 (0.74 to 2.33) 1.20 (0.60 to 2.44) 1.21 (0.68 to 2.16) 1.00 (0.75 to 1.32) 
ANA vs. ETA 0.14 (0.06 to 0.41) 0.16 (0.06 to 0.47) 0.16 (0.07 to 0.36) 0.23 (0.13 to 0.38) 
ANA vs. GOL 0.39 (0.16 to 1.18) 0.45 (0.12 to 1.60) 0.43 (0.20 to 0.95) 0.42 (0.23 to 0.77) 
ANA vs. INF 0.68 (0.36 to 1.49) 0.71 (0.31 to 1.63) 0.61 (0.32 to 1.13) 0.55 (0.37 to 0.82) 
ANA vs. RIT 0.62 (0.27 to 1.72) 0.67 (0.22 to 1.97) 0.67 (0.34 to 1.31) 0.57 (0.33 to 0.96) 
ANA vs. TOC 0.58 (0.32 to 1.32) 1.00 (0.45 to 2.21) 0.59 (0.33 to 1.04) 0.45 (0.31 to 0.67) 
ETA vs. GOL 2.38 (0.90 to 8.33) 2.77 (0.72 to 10.62) 2.70 (1.05 to 6.96) 1.85 (0.98 to 3.51) 
ETA vs. INF 4.17 (1.96 to 11.11) 4.34 (1.62 to 11.60) 3.78 (1.66 to 8.58) 2.45 (1.56 to 3.82) 
ETA vs. RIT 3.85 (1.52 to 12.50) 4.15 (1.24 to 13.88) 4.18 (1.78 to 9.82) 2.50 (1.14 to 4.43) 
ETA vs. TOC 3.57 (1.69 to 10.00) 3.63 (1.32 to 9.98) 3.65 (1.67 to 7.98) 2.00 (1.28 to 3.12) 
GOL vs. INF 1.45 (0.68 to 4.17) 1.63 (0.51 to 5.20) 1.40 (0.63 to 3.08) 1.32 (0.77 to 2.28) 
GOL vs. RIT 1.33 (0.53 to 4.76) 1.50 (0.24 to 4.93) 1.55 (0.68 to 3.53) 1.35 (0.70 to 2.60) 
GOL vs. TOC 1.27 (0.59 to 3.70) 1.37 (0.38 to 1.97) 1.35 (0.64 to 2.86) 1.08 (0.63 to 1.86) 
INF vs. RIT 0.88 (0.41 to 2.13) 0.93 (0.34 to 2.51) 1.11 (0.56 to 2.19) 1.02 (0.64 to 1.62) 
INF vs. TOC 0.83 (0.50 to 1.56) 0.72 (0.38 to 1.38) 0.97 (0.54 to 1.74) 0.82 (0.62 to 1.08) 
RIT vs. TOC 0.83 (0.41 to 2.13) 0.84 (0.26 to 2.77) 0.87 (0.46 to 1.65) 0.80 (0.51 to 1.26) 
Abbreviations: ABA = abatacept; ADA = adalimumab; ANA = anakinra; ETA = etanercept; GOL = golimumab; INF = 
infliximab; RIT = rituximab; TOC = tocilizumab 

Table D-13. Comparison of ACR50 response for biologic DMARDs for loop sub-network, by 
method of analysis: Odds ratios (95% credible interval or 95% confidence interval) 
Comparison Bayesian MTC Meta-Regression Bucher Method Logistic Regression 
ABA vs. INF 0.92 (0.50 to 1.79) 0.90 (0.33 to 2.44) 0.77 (0.48 to 1.25) 1.04 (0.78 to 1.38) 
Abbreviations: ABA = abatacept; INF = infliximab 

Table D-14. Comparison of ACR50 response for biologic DMARDs for one closed loop sub-
network using adalimumab, by method of analysis: Odds ratios (95% credible interval or 95% 
confidence interval) 
Comparison Bayesian MTC Meta-Regression Bucher Method Logistic Regression 
ABA vs. ADA 0.62 (0.31 to 1.33) 0.67 (0.34 to 1.33) 0.64 (0.38 to 1.08) 0.83 (0.60 to 1.15) 
ABA vs. INF 0.93 (0.51 to 1.89) 0.92 (0.49 to 2.29) 0.80 (0.47 to 1.38) 1.01 (0.75 to 1.36) 
ADA vs. INF 1.39 (0.78 to 2.94) 1.42 (0.72 to 2.81) 1.26 (0.67 to 2.35) 1.21 (0.91 to 1.63) 
Abbreviations: ABA = abatacept; ADA = adalimumab; INF = infliximab 
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Table D-15. Comparison of ACR50 response for biologic DMARDs for one closed loop sub-
network using etanercept, by method of analysis: Odds ratios (95% credible interval or 95% 
confidence interval) 
Comparison Bayesian MTC Meta-Regression Bucher Method Logistic Regression 
ABA vs. ETA 0.19 (0.08 to 0.52) 0.21 (0.08 to 0.57) 0.21 (0.10 to 0.45) 0.41 (0.25 to 0.67) 
ABA vs. INF 0.94 (0.56 to 1.67) 0.88 (0.34 to 2.29) 0.80 (0.47 to 1.38) 1.00 (0.75 to 1.35) 
ETA vs. INF 4.17 (1.96 to 11.11) 4.34 (1.62 to 11.60) 3.78 (1.66 to 8.58) 2.46 (1.54 to 3.93) 
Abbreviations: ABA = abatacept; ETA = etanercept; INF = infliximab 

Table D-16. Comparison of ACR50 response for biologic DMARDs for ladder sub-network, by 
method of analysis: Odds ratios (95% credible interval or 95% confidence interval) 
Comparison Bayesian MTC Meta-Regression Bucher Method Logistic Regression 
ABA vs. ETA 0.19 (0.05 to 1.05) NA NA 0.79 (0.50 to 1.26) 
ABA vs. INF 0.98 (0.38 to 3.45) Direct Direct 0.98 (0.65 to 1.47) 
ETA vs. INF 4.00 (1.72 to 12.50) 4.34 (1.62 to 11.60) 3.78 (1.66 to 8.58) 1.24 (0.91 to 1.67) 
Abbreviations: ABA = abatacept; ETA = etanercept; INF = infliximab 
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Appendix E. Comparison of Precision 
For each set of results in Appendix D, the tables below provide a comparison of the precision 

(determined by width of the 95% credible interval or confidence interval) for the Bayesian MTC 
meta-analysis and the frequentist methods used. The darkest shading indicates the most precise 
result and the lightest indicates the least precise. The drug-drug comparisons for each of the 
tables below are limited to those where at least one of the frequentist methods could produce a 
result. 

Table E-1. Comparison of response for second-generation antidepressants (full network), by 
method of analysis: Odds ratios (95% credible interval or 95% confidence interval)  
Comparison Bayesian MTC Meta-Regression Bucher Method Logistic Regression 
BUP vs. CIT 0.58 (0.29 to 1.39) NA NA 0.81 (0.48 to 1.35)  
BUP vs. DES 0.88 (0.59 to 1.40) 0.78 (0.30 to 2.01) 0.77 (0.40 to 1.50) 0.93 (0.70 to 1.23) 
BUP vs. DUL 0.99 (0.69 to 1.46) 0.85 (0.50 to 1.45) 0.87 (0.56 to 1.36) 1.00 (0.78 to 1.29) 
BUP vs. ESC 0.73 (0.50 to 1.12) 1.04 (0.21 to 5.11) 1.04 (0.59 to 1.85) 0.76 (0.58 to 1.00) 
BUP vs. FLUO 1.07 (0.78 to 1.52) 0.98 (0.56 to 1.71) 0.98 (0.62 to 1.56) 1.05 (0.83 to 1.32) 
BUP vs. FLUV 0.62 (0.26 to 1.79) 0.59 (0.02 to 15.8) 0.58 (0.14 to 2.46) 1.03 (0.54 to 1.94) 
BUP vs. MIR 0.75 (0.45 to 1.35) 0.71 (0.0 to 113.5) IS 0.76 (0.51 to 1.12) 
BUP vs. NEF 0.90 (0.55 to 1.58) 0.65 (0.19 to 2.18) 0.82 (0.35 to 1.91) 0.94 (0.64 to 1.39) 
BUP vs. PAR 0.92 (0.64 to 1.38) 0.94 (0.45 to 1.99) 0.71 (0.38 to 1.33) 0.92 (0.70 to 1.19) 
BUP vs. SER 0.90 (0.67 to 1.26) 0.80 (0.49 to 1.30) 0.80 (0.52 to 1.24) 0.91 (0.73 to 1.14) 
BUP vs. TRA 1.09 (0.67 to 1.93) 0.54 (0.06 to 4.55) IS 1.01 (0.69 to 1.50) 
BUP vs. VEN 0.83 (0.58 to 1.22) 0.74 (0.33 to 1.62) 0.73 (0.42 to 1.28) 0.83 (0.64 to 1.07) 
CIT vs. DES 1.32 (0.66 to 3.14) NA NA 1.15 (0.69 to 1.91) 
CIT vs. DUL 1.48 (0.76 to 3.34) NA NA 1.24 (0.77 to 2.01) 
CIT vs. ESC 1.11 (0.59 to 2.38) NA NA 0.94 (0.59 to 1.49) 
CIT vs. FLUO 1.60 (0.82 to 3.63) IS IS 1.30 (0.80 to 2.11) 
CIT vs. FLUV 1.03 (0.53 to 2.23) NA NA 1.27 (0.75 to 2.14) 
CIT vs. MIR 1.11 (0.51 to 2.93) NA NA 0.94 (0.53, to1.67) 
CIT vs. NEF 1.34 (0.63 to 3.46) NA NA 1.17 (0.66 to 2.07) 
CIT vs. PAR 1.38 (0.70 to 3.15) NA NA 1.13 (0.69 to1.85) 
CIT vs. SER 1.34 (0.69 to 3.08) NA NA 1.13 (0.69 to 1.84) 
CIT vs. TRA 1.61 (0.74 to 4.35) NA NA 1.26 (0.69 to 2.27) 
CIT vs. VEN 1.23 (0.62 to 2.84) NA NA 1.03 (0.63 to 1.69) 
DES vs. DUL 1.10 (0.78 to 1.59) 1.10 (0.59 to 2.03) 1.14 (0.63 to 2.05) 1.08 (0.87 to 1.34) 
DES vs. ESC 0.81 (0.55 to 1.24) 1.35 (0.22 to 8.18) 1.35 (0.67 to 2.71) 0.82 (0.63 to 1.06) 
DES vs. FLUO 1.18 (0.84 to 1.73) 1.27 (0.64 to 2.54) 1.27 (0.69 to 2.34) 1.13 (0.89 to 1.42) 
DES vs. FLUV 0.68 (0.29 to 1.99) 0.76 (0.06 to 10.1) 0.76 (0.17 to 3.37) 1.10 (0.59 to 2.08) 
DES vs. MIR 0.82 (0.48 to 1.54) NA NA 0.82 (0.55 to 1.20) 
DES vs. NEF 1.00 (0.61 to 1.75) 0.83 (0.21 to 3.27) 1.07 (0.42 to 2.71) 1.02 (0.70 to 1.48) 
DES vs. PAR 1.02 (0.70 to 1.53) 1.23 (0.51 to 2.96) 0.93 (0.44 to 1.94) 0.99 (0.77 to 1.27) 
DES vs. SER 1.00 (0.71 to 1.46) 1.05 (0.57 to 1.93) 1.04 (0.58 to 1.87) 0.98 (0.78 to 1.24) 
DES vs. TRA 1.20 (0.69 to 2.26) NA NA 1.09 (0.72 to 1.65) 
DES vs. VEN 0.91 (0.63 to 1.38) 0.95 (0.36 to 2.54) 0.96 (0.48 to 1.89) 0.89 (0.69 to 1.15) 
DUL vs. ESC 0.74 (0.56 to 0.99) 1.23 (0.54 to 2.82) 1.19 (0.73 to 1.94) 0.76 (0.63 to 0.91) 
DUL vs. FLUO 1.07 (0.82 to 1.43) 1.12 (0.75 to 1.68) 1.12 (0.79 to 1.59) 1.05 (0.87 to 1.26) 
DUL vs. FLUV 0.62 (0.27 to 1.72) 0.69 (0.11 to 4.35) 0.67 (0.16 to 2.72) 1.02 (0.55 to 1.89) 
DUL vs. MIR 0.74 (0.45 to 1.30) 0.74 (0.20 to 2.69) IS 0.76 (0.53 to 1.08) 
DUL vs. NEF 0.90 (0.58 to 1.51) 0.77 (0.33 to 1.79) 0.94 (0.43 to 2.07) 0.94 (0.66 to 1.35) 
DUL vs. PAR 0.93 (0.70 to 1.24) 1.08 (0.66 to 1.77) 0.82 (0.47 to 1.41) 0.92 (0.76 to 1.10) 
DUL vs. SER 0.90 (0.68 to 1.22) 0.92 (0.64 to 1.31) 0.92 (0.67 to 1.25) 0.91 (0.75 to 1.11) 
DUL vs. TRA 1.08 (0.65 to 1.93) 1.25 (0.07 to 21.4) IS  1.01 (0.69 to 1.49) 
DUL vs. VEN 0.82 (0.61 to 1.15) 0.92 (0.54 to 1.59) 0.84 (0.53 to 1.34) 0.83 (0.67 to 1.03) 
ESC vs. FLUO 1.44 (1.06 to 1.99) 0.94 (0.42 to 2.11) 0.94 (0.57 to 1.57) 1.38 (1.12 to 1.70) 
ESC vs. FLUV 0.83 (0.37 to 2.26) IS 0.56 (0.13 to 2.40) 1.35 (0.74 to 2.47) 
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Table E-1. Comparison of response for second-generation antidepressants (full network), by 
method of analysis: Odds ratios (95% credible interval or 95% confidence interval) (continued) 
Comparison Bayesian MTC Meta-Regression Bucher Method Logistic Regression 
ESC vs. MIR 1.00 (0.60 to 1.80) IS IS 1.00 (0.69 to 1.44) 
ESC vs. NEF 1.21 (0.75 to 2.07) IS 0.79 (0.33 to 1.88) 1.24 (0.86 to 1.80) 
ESC vs. PAR 1.24 (0.90 to 1.74) 0.69 (0.15 to 3.13) 1.15 (0.71 to 1.88) 1.21 (0.98 to 1.49) 
ESC vs. SER 1.21 (0.88 to 1.70) 0.77 (0.39 to 1.52) 0.77 (0.47 to 1.24) 1.20 (0.97 to 1.49) 
ESC vs. TRA 1.45 (0.85 to 2.68) IS IS 1.33 (0.90 to 1.99) 
ESC vs. VEN 1.11 (0.80 to 1.58) 0.71 (0.14 to 3.46) 0.71 (0.39 to 1.28) 1.09 (0.87 to 1.37) 
FLUO vs. FLUV 0.57 (0.25 to 1.60) 0.60 (0.09 to 4.02) 0.60 (0.15 to 2.44) 0.98 (0.53 to 1.81) 
FLUO vs. MIR 0.69 (0.43 to 1.17) 0.77 (0.34 to 1.71) IS 0.72 (0.51 to 1.02) 
FLUO vs. NEF 0.84 (0.55 to 1.36) 0.66 (0.28 to 1.56) 0.84 (0.38 to 1.86) 0.90 (0.64 to 1.21) 
FLUO vs. PAR 0.86 (0.66 to 1.13) 0.73 (0.39 to 1.37) 0.73 (0.41 to 1.28) 0.88 (0.72 to 1.06) 
FLUO vs. SER 0.84 (0.66 to 1.06) 0.82 (0.54 to 1.23) 0.82 (0.58 to 1.15) 0.87 (0.74 to 1.03) 
FLUO vs. TRA 1.00 (0.62 to 1.75) 1.30 (0.22 to 7.66) IS 0.97 (0.66 to 1.41) 
FLUO vs. VEN 0.77 (0.61 to 0.97) 0.75 (0.42 to 1.35) 0.75 (0.46 to 1.22) 0.79 (0.67 to 0.94) 
FLUV vs. MIR 0.97 (0.40 to 3.17) NA  NA 0.74 (0.37 to 1.47) 
FLUV vs. NEF 1.18 (0.50 to 3.72) IS 1.40 (0.29 to 6.80) 0.92 (0.46 to 1.83) 
FLUV vs. PAR 1.21 (0.54 to 3.5) 1.61 (0.13 to 20.0) IS 0.89 (0.48 to 1.66) 
FLUV vs. SER 1.18 (0.52 to 3.38) 1.37 (0.23 to 8.11) IS 0.89 (0.48 to 1.65) 
FLUV vs. TRA 1.42 (0.57 to 4.70) NA NA 0.99 (0.49 to 1.99) 
FLUV vs. VEN 1.08 (0.48 to 3.12) 1.26 (0.05 to 35.0) 1.26 (0.30 to 5.32) 0.81 (0.43 to 1.51) 
MIR vs. NEF 1.14 (0.63 to 2.29) IS IS 1.25 (0.78 to 1.99) 
MIR vs. PAR 1.18 (0.74 to 1.97) 1.25 (0.43 to 3.64) IS 1.21 (0.86 to 1.70) 
MIR vs. SER 1.14 (0.71 to 1.98) 0.89 (0.17 to 4.61) IS 1.20 (0.84 to 1.72) 
MIR vs. TRA 1.40 (0.84 to 2.54) IS IS 1.34 (0.89 to 2.01) 
MIR vs. VEN 1.04 (0.64 to 1.85) 1.03 (0.33 to 3.20) IS 1.10 (0.76 to 1.58) 
NEF vs. PAR 0.98 (0.62 to 1.63) 1.46 (0.47 to 4.51) 0.87 (0.35 to 2.15) 0.97 (0.68 to 1.40) 
NEF vs. SER 0.96 (0.63 to 1.54) 1.23 (0.56 to 2.67) 0.98 (0.44 to 2.14) 0.97 (0.69 to 1.36) 
NEF vs. TRA 1.15 (0.63 to 2.34) IS IS 1.07 (0.66 to 1.74) 
NEF vs. VEN 0.87 (0.55 to 1.45) 0.84 (0.29 to 2.41) 0.90 (0.38 to 2.11) 0.88 (0.61 to 1.26) 
PAR vs. SER 0.96 (0.72 to 1.31) 1.14 (0.71 to 1.84) 1.12 (0.65 to 1.93) 0.99 (0.81 to 1.22) 
PAR vs. TRA 1.16 (0.71 to 2.04) IS IS 1.11 (0.76 to 1.62) 
PAR vs. VEN 0.88 (0.65 to 1.23) 0.78 (0.36 to 1.70) 1.03 (0.54 to 1.96) 0.91 (0.72 to 1.14) 
SER vs. TRA 1.19 (0.74 to 2.06) 1.03 (0.13 to 8.31) IS 1.11 (0.76 to 1.62) 
SER vs. VEN 0.91 (0.70 to 1.21) 0.92 (0.55 to 1.54) 0.92 (0.58 to 1.45) 0.91 (0.75 to 1.11) 
TRA vs. VEN 0.71 (0.43 to 1.30) 1.51 (0.23 to 9.95) IS 0.82 (0.55 to 1.21) 
Abbreviations: BUP = bupropion; CIT = citalopram; DES = desvenlafaxine; DUL = duloxetine; ESC = escitalopram; FLUO = 
fluoxetine; FLUV = fluvoxamine; IS = insufficient studies; MIR = mirtazapine; NA = not applicable; NEF = nefazodone; PAR = 
paroxetine; SER = sertraline; TRA = trazodone; VEN = velafaxine 
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Table E-2. Comparison of mean change in HAM-D for second-generation antidepressants (full 
network), by method of analysis: Weighted mean difference (95% credible interval or 95% 
confidence interval)  
Comparison Bayesian MTC Meta-Regression Bucher Method 
BUP vs. ESC 1.42 (-1.50 to 4.43) IS 0.00 (-2.79 to 2.79) 
BUP vs. FLUV 2.24 (-0.96 to 5.47) IS 0.55 (-2.47 to 3.57) 
BUP vs. TRA 1.44 (-1.70 to 4.68) IS 0.60 (-3.01 to 4.21) 
BUP vs. VEN 1.62 (-1.30 to 4.52) IS -0.74 (-4.21 to 2.73) 
CIT vs. DUL 0.12 (-2.90 to 3.09) -0.95 (-32.88 to 30.98) 0.85 (-2.49 to 4.19) 
CIT vs. FLUO 0.01 (-3.10 to 3.03) IS -0.20 (-2.88 to 2.48) 
CIT vs. SER 0.27 (-2.80 to 3.30) IS 0.10 (-2.76 to 2.96) 
CIT vs. VEN 1.09 (-2.00 to 4.14) IS -1.10 (-4.30 to 2.10) 
DES vs. DUL -0.48 (-2.40 to 1.40) -0.65 (-2.92 to 1.61) -0.68 (-2.25 to 0.90) 
DES vs. ESC 0.29 (-1.70 to 2.32) -1.23 (-5.06 to 2.61) -1.23 (-2.97 to 0.51) 
DES vs. FLUO -0.59 (-2.60 to 1.28) 0.72 (-4.27 to 5.71) -0.27 (-5.19 to 4.64) 
DES vs. PAR -0.58 (-2.40 to 1.31) -0.67 (-3.33 to 2.00) -0.72 (-2.65 to 1.21) 
DES vs. SER -0.33 (-2.20 to 1.53) -0.41 (-2.68 to 1.86) -0.47 (-2.15 to 1.21) 
DES vs. VEN 0.49 (-1.50 to 2.43) 1.92 (-3.05 to 6.89) 1.92 (-0.34 to 4.18) 
DUL vs. ESC 0.77 (-0.49 to 2.10) -0.55 (-4.68 to 3.58) -0.55 (-2.34 to 1.24) 
DUL vs. FLUO -0.11 (-1.50 to 1.19) 1.15 (-3.45 to 5.76) 0.41 (-4.53 to 5.34) 
DUL vs. FLUV 1.59 (-0.42 to 3.64) 1.27 (-5.47 to 8.00) 1.40 (-0.43 to 3.22) 
DUL vs. MIR 1.83 (-0.77 to 4.50) 2.23 (-8.66 to 13.12) -2.23 (-3.91 to -0.55) 
DUL vs. PAR -0.10 (-1.30 to 1.17) -0.04 (-2.59 to 2.51) -0.04 (-2.02 to 1.94) 
DUL vs. SER 0.15 (-1.30 to 1.53) 0.20 (-2.00 to 2.39) 0.21 (-1.53 to 1.95) 
DUL vs. TRA 0.80 (-1.20 to 2.79) -0.10 (-13.31 to 13.11) -0.70 (-2.74 to 1.34) 
DUL vs. VEN 0.97 (-0.48 to 2.41) 2.60 (-2.15 to 7.35) 2.60 (0.29 to 4.91) 
ESC vs. FLUO -0.88 (-2.40 to 0.48) 0.91 (-49.15 to 50.98) 0.96 (-4.03 to 5.95) 
ESC vs. FLUV 0.82 (-1.30 to 2.93) IS 0.55 (-2.59 to 3.69) 
ESC vs. NEF -1.70 (-5.00 to 1.47) IS -1.90 (-4.77 to 0.97) 
ESC vs. PAR -0.87 (-2.30 to 0.54) 0.26 (-5.51 to 6.03) 0.51 (-1.60 to 2.62) 
ESC vs. SER -0.63 (-2.10 to 0.78) 0.77 (-3.44 to 4.97) 0.76 (-1.13 to 2.65) 
ESC vs. TRA 0.02 (-2.00 to 2.05) 0.78 (-17.89 to 19.45) -2.99 (-5.85 to -0.13) 
ESC vs. VEN 0.20 (-1.30 to 1.63) IS 3.15 (0.73 to 5.57) 
FLUO vs. MIR 1.94 (-0.53 to 4.61) 1.72 (-4.68 to 8.11) -2.12 (-4.30 to 0.06) 
FLUO vs. PAR 0.01 (-1.00 to 1.22) -1.08 (-7.51 to 5.36) -0.45 (-5.51 to 4.61) 
FLUO vs. SER 0.26 (-1.00 to 1.65) -0.92 (-5.82 to 3.97) -0.20 (-5.17 to 4.77) 
FLUO vs. VEN 1.08 (-0.14 to 2.41) 2.24 (-48.69 to 53.16) 2.19 (-3.00 to 7.39) 
FLUV vs. TRA -0.80 (-3.20 to 1.59) IS -2.10 (-4.56 to 0.37) 
FLUV vs. VEN -0.62 (-2.60 to 1.35) 3.53 (-20.92 to 27.98) -1.21 (-3.33 to 0.92) 
MIR vs. TRA -1.00 (-3.90 to 1.84) IS 1.53 (-0.83 to 3.89) 
MIR vs. VEN -0.86 (-3.50 to 1.71) IS 2.42 (0.42 to 4.42) 
NEF vs. PAR 0.80 (-2.20 to 3.96) 2.01 (-20.25 to 24.27) 0.61 (-2.14 to 3.36) 
NEF vs. TRA 1.70 (-1.60 to 5.15) 2.68 (-17.72 to 23.08) -1.09 (-4.23 to 2.05) 
NEF vs. VEN 1.87 (-1.20 to 5.04) IS 2.50 (-0.64 to 5.64) 
PAR vs. SER 0.24 (-1.10 to 1.47) 0.24 (-2.46 to 2.93) 0.25 (-1.82 to 2.32) 
PAR vs. TRA 0.89 (-0.84 to 2.61) 0.67 (-6.88 to 8.22) -1.70 (-4.45 to 1.05) 
PAR vs. VEN 1.07 (-0.17 to 2.24) 2.66 (-4.47 to 9.79) 2.64 (0.08 to 5.20) 
SER vs. VEN 0.82 (-0.44 to 2.09) 2.38 (-2.49 to 7.26) 2.39 (0.01 to 4.77) 
TRA vs. VEN 0.18 (-1.80 to 2.08) 0.79 (-5.72 to 7.29) -0.85 (-4.00 to 2.31) 
Abbreviations: BUP = bupropion; CIT = citalopram; DES = desvenlafaxine; DUL = duloxetine; ESC = escitalopram; FLUO = 
fluoxetine; FLUV = fluvoxamine; IS = insufficient studies; MIR = mirtazapine; NA = not applicable; NEF = nefazodone; PAR = 
paroxetine; SER = sertraline; TRA = trazodone; VEN = velafaxine 

 
  



 

E-4 

Table E-3. Comparison of ACR50 response for biologic DMARDs (full network), by method of 
analysis: Odds ratios (95% credible interval or 95% confidence interval)  
Comparison Bayesian MTC Meta-Regression Bucher Method Logistic Regression 
ABA vs. ADA  0.65 (0.37 to 1.20) 0.67 (0.34 to 1.33) 0.64 (0.38 to 1.08) 0.83 (0.60 to 1.14) 
ABA vs. ANA 1.26 (0.63 to 2.78) 1.32 (0.63 to 2.79) 1.32 (0.78 to 2.24) 1.82 (1.20 to 2.76) 
ABA vs. ETA 0.19 (0.08 to 0.50) 0.21 (0.08 to 0.57) 0.21 (0.10 to 0.45) 0.41 (0.26 to 0.66) 
ABA vs. GOL 0.54 (0.23 to 1.49) 0.59 (0.18 to 1.89) 0.57 (0.28 to 1.17) 0.76 (0.43 to 1.34) 
ABA vs. INF 0.94 (0.58 to 1.65) 0.92 (0.49 to 2.29) 0.80 (0.47 to 1.38) 1.01 (0.75 to 1.35) 
ABA vs. RIT 0.84 (0.39 to 2.08) 0.88 (0.34 to 1.53) 0.89 (0.49 to 1.60) 1.03 (0.64 to 1.67) 
ABA vs. TOC 0.80 (0.47 to 1.57) 0.76 (0.38 to 2.44) 0.77 (0.48 to 1.25) 0.82 (0.60 to 1.13) 
ADA vs. ANA 1.88 (1.01 to 3.98) 1.95 (0.82 to 4.61) 2.08 (1.12 to 3.83) 2.20 (1.49 to 3.26) 
ADA vs. ETAa 0.29 (0.13 to 0.73) 0.32 (0.12 to 0.84) 0.33 (0.15 to 0.75) 0.50 (0.32 to 0.78) 
ADA vs. GOL 0.80 (0.36 to 2.14) 0.87 (0.27 to 2.82) 0.90 (0.41 to 1.97) 0.93 (0.53 to 1.59) 
ADA vs. INF 1.39 (0.86 to 2.53) 1.42 (0.72 to 2.81) 1.26 (0.67 to 2.35) 1.22 (0.91 to 1.63) 
ADA vs. RIT 1.25 (0.61 to 3.04) 1.30 (0.47 to 3.60) 1.39 (0.71 to 2.72) 1.25 (0.79 to 1.98) 
ADA vs. TOC 1.19 (0.74 to 2.27) 1.20 (0.60 to 2.44) 1.21 (0.68 to 2.16) 1.00 (0.75 to 1.32) 
ANA vs. ETA 0.14 (0.06 to 0.41) 0.16 (0.06 to 0.47) 0.16 (0.07 to 0.36) 0.23 (0.13 to 0.38) 
ANA vs. GOL 0.39 (0.16 to 1.18) 0.45 (0.12 to 1.60) 0.43 (0.20 to 0.95) 0.42 (0.23 to 0.77) 
ANA vs. INF 0.68 (0.36 to 1.47) 0.71 (0.31 to 1.63) 0.61 (0.32 to 1.13) 0.55 (0.37 to 0.82) 
ANA vs. RIT 0.61 (0.27 to 1.70) 0.67 (0.22 to 1.97) 0.67 (0.34 to 1.31) 0.57 (0.33 to 0.96) 
ANA vs. TOC 0.58 (0.32 to 1.30) 1.00 (0.45 to 2.21) 0.59 (0.33 to 1.04) 0.45 (0.31 to 0.67) 
ETA vs. GOL 2.39 (0.92 to 8.64) 2.77 (0.72 to 10.62) 2.70 (1.05 to 6.96) 1.85 (0.98 to 3.51) 
ETA vs. INF 4.17 (2.00 to 11.20) 4.34 (1.62 to 11.60) 3.78 (1.66 to 8.58) 2.45 (1.56 to 3.82) 
ETA vs. RIT 3.76 (1.51 to 12.70) 4.15 (1.24 to 13.88) 4.18 (1.78 to 9.82) 2.50 (1.41 to 4.43) 
ETA vs. TOC 3.59 (1.73 to 9.80) 3.63 (1.32 to 9.98) 3.65 (1.67 to 7.98) 2.00 (1.28 to 3.12) 
GOL vs. INF 1.47 (0.68 to 4.05) 1.63 (0.51 to 5.20) 1.40 (0.63 to 3.08) 1.32 (0.77 to 2.28) 
GOL vs. RIT 1.33 (0.53 to 4.54) 1.50 (0.24 to 4.93) 1.55 (0.68 to 3.53) 1.35 (0.70 to 2.60) 
GOL vs. TOC 1.27 (0.59 to 3.57) 1.37 (0.38 to 1.97) 1.35 (0.64 to 2.86) 1.08 (0.63 to 1.86) 
INF vs. RIT 0.87 (0.41 to 2.07) 0.93 (0.34 to 2.51) 1.11 (0.56 to 2.19) 1.02 (0.64 to 1.62) 
INF vs. TOC 0.83 (0.51 to 1.52) 0.72 (0.38 to 1.38) 0.97 (0.54 to 1.74) 0.82 (0.62 to 1.08) 
RIT vs. TOC 0.84 (0.42 to 2.12) 0.84 (0.26 to 2.77) 0.87 (0.46 to 1.65) 0.80 (0.51 to 1.26) 
aThe Bayesian MTC method and the Bucher method produced the same precision and therefore are shaded the same (i.e., they 
tied for second most precise for this comparison) 

Abbreviations: ABA = abatacept; ADA = adalimumab; ANA = anakinra; ETA = etanercept; GOL = golimumab; INF = 
infliximab; RIT = rituximab; TOC = tocilizumab 
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Table E-4. Comparison of response for second-generation antidepressants for placebo star sub-
network, by method of analysis: Odds ratios (95% credible interval or 95% confidence interval)  
Comparison Bayesian MTC Meta-Regression Bucher Method Logistic Regression 
BUP vs. DES 0.73 (0.43 to 1.35) 0.78 (0.30 to 2.01) 0.77 (0.40 to 1.50) 0.87 (0.64 to 1.18) 
BUP vs. DUL 0.84 (0.51 to 1.49) 0.85 (0.50 to 1.45) 0.87 (0.56 to 1.36) 0.94 (0.70 to 1.26) 
BUP vs. ESC 0.94 (0.43 to 2.56) 1.04 (0.21 to 5.11) 1.04 (0.59 to 1.85) 1.08 (0.72 to 1.63) 
BUP vs. FLUO 0.94 (0.56 to 1.72) 0.98 (0.56 to 1.71) 0.98 (0.62 to 1.56) 0.99 (0.73 to 1.33) 
BUP vs. FLUV 0.39 (0.11 to 2.63) 0.59 (0.02 to 15.83) 0.58 (0.14 to 2.46) 0.82 (0.26 to 2.54) 
BUP vs. NEF 0.58 (0.27 to 1.49) 0.65 (0.19 to 2.18) 0.82 (0.35 to 1.91) 1.00 (0.51 to 1.98) 
BUP vs. PAR 0.67 (0.37 to 1.39) 0.94 (0.45 to 1.99) 0.71 (0.38 to 1.33) 0.84 (0.57 to 1.23) 
BUP vs. SER 0.78 (0.47 to 1.41) 0.80 (0.49 to 1.30) 0.80 (0.52 to 1.24) 0.96 (0.72 to 1.27) 
BUP vs. VEN 0.69 (0.38 to 1.43) 0.74 (0.33 to 1.62) 0.73 (0.42 to 1.28) 0.80 (0.55 to 1.17) 
DES vs. DUL 1.11 (0.73 to 1.79) 1.10 (0.59 to 2.03) 1.14 (0.63 to 2.05) 1.08 (0.86 to 1.34) 
DES vs. ESC 1.25 (0.59 to 3.13) 1.35 (0.22 to 8.18) 1.35 (0.67 to 2.71) 1.24 (0.86 to 1.79) 
DES vs. FLUO 1.25 (0.81 to 2.04) 1.27 (0.64 to 2.54) 1.27 (0.69 to 2.34) 1.14 (0.86 to 1.50) 
DES vs. FLUV 0.51 (0.14 to 3.45) 0.76 (0.06 to 10.14) 0.76 (0.17 to 3.37) 0.94 (0.31 to 2.88) 
DES vs. NEF 0.77 (0.37 to 1.85) 0.83 (0.21 to 3.27) 1.07 (0.42 to 2.71) 1.15 (0.60 to 2.23) 
DES vs. PAR 0.89 (0.52 to 1.69) 1.23 (0.51 to 2.96) 0.93 (0.44 to 1.94) 0.97 (0.69 to 1.35) 
DES vs. SER 1.03 (0.66 to 1.69) 1.05 (0.57 to 1.93) 1.04 (0.58 to 1.87) 1.10 (0.85 to 1.43) 
DES vs. VEN 0.92 (0.53 to 1.75) 0.95 (0.36 to 2.54) 0.96 (0.48 to 1.89) 0.92 (0.65 to 1.30) 
DUL vs. ESC 1.10 (0.53 to 2.70) 1.23 (0.54 to 2.82) 1.19 (0.73 to 1.94) 1.16 (0.85 to 1.58) 
DUL vs. FLUO 1.10 (0.73 to 1.72) 1.12 (0.75 to 1.68) 1.12 (0.79 to 1.59) 1.06 (0.81 to 1.37) 
DUL vs. FLUV 0.45 (0.12 to 3.03) 0.69 (0.11 to 4.35) 0.67 (0.16 to 2.72) 0.88 (0.29 to 2.67) 
DUL vs. NEF 0.68 (0.33 to 1.61) 0.77 (0.33 to 1.79) 0.94 (0.43 to 2.07) 1.07 (0.56 to 2.06) 
DUL vs. PAR 0.78 (0.47 to 1.45) 1.08 (0.66 to 1.77) 0.82 (0.47 to 1.41) 0.90 (0.67 to 1.21) 
DUL vs. SER 0.91 (0.61 to 1.43) 0.92 (0.64 to 1.31) 0.92 (0.67 to 1.25) 1.02 (0.80 to 1.31) 
DUL vs. VEN 0.81 (0.48 to 1.49) 0.92 (0.54 to 1.59) 0.84 (0.53 to 1.34) 0.85 (0.61 to 1.19) 
ESC vs. FLUO 0.86 (0.41 to 2.17) 0.94 (0.42 to 2.11) 0.94 (0.57 to 1.57) 0.91 (0.62 to 1.34) 
ESC vs. FLUV 0.35 (0.09 to 2.86) IS 0.56 (0.13 to 2.40) 0.76 (0.24 to 2.39) 
ESC vs. NEF 0.53 (0.21 to 1.79) IS 0.79 (0.33 to 1.88) 0.93 (0.45 to 1.89) 
ESC vs. PAR 0.61 (0.27 to 1.69) 0.69 (0.15 to 3.13) 1.15 (0.71 to 1.88) 0.78 (0.51 to 1.18) 
ESC vs. SER 0.71 (0.34 to 1.79) 0.77 (0.39 to 1.52) 0.77 (0.47 to 1.24) 0.88 (0.61 to 1.29) 
ESC vs. VEN 0.63 (0.29 to 1.72) 0.71 (0.14 to 3.46) 0.71 (0.39 to 1.28) 0.74 (0.48 to 1.14) 
FLUO vs. FLUV 0.40 (0.11 to 2.63) 0.60 (0.09 to 4.02) 0.60 (0.15 to 2.44) 0.83 (0.27 to 2.55) 
FLUO vs. NEF 0.60 (0.29 to 1.45) 0.66 (0.28 to 1.56) 0.84 (0.38 to 1.86) 1.01 (0.52 to 1.98) 
FLUO vs. PAR 0.69 (0.40 to 1.30) 0.73 (0.39 to 1.37) 0.73 (0.41 to 1.28) 0.85 (0.60 to 1.20) 
FLUO vs. SER 0.81 (0.53 to 1.28) 0.82 (0.54 to 1.23) 0.82 (0.58 to 1.15) 0.97 (0.73 to 1.28) 
FLUO vs. VEN 0.72 (0.42 to 1.33) 0.75 (0.42 to 1.35) 0.75 (0.46 to 1.22) 0.81 (0.59 to 1.11) 
FLUV vs. NEF 0.79 (0.21 to 6.67) IS 1.40 (0.29 to 6.80) 1.22 (0.34 to 4.35) 
FLUV vs. PAR 0.93 (0.26 to 6.67) 1.61 (0.13 to 20.02) IS 1.02 (0.33 to 3.20) 
FLUV vs. SER 1.08 (0.31 to 7.69) 1.37 (0.23 to 8.11) IS 1.17 (0.38 to 3.57) 
FLUV vs. VEN 0.96 (0.27 to 7.14) 1.26 (0.05 to 35.00) 1.26 (0.30 to 5.32) 0.98 (0.31 to 3.05) 
NEF vs. PAR 1.01 (0.47 to 2.70) 1.46 (0.47 to 4.51) 0.87 (0.35 to 2.15) 0.84 (0.42 to 1.68) 
NEF vs. SER 1.16 (0.57 to 2.86) 1.23 (0.56 to 2.67) 0.98 (0.44 to 2.14) 0.95 (0.49 to 1.85) 
NEF vs. VEN 1.04 (0.48 to 2.78) 0.84 (0.29 to 2.41) 0.90 (0.38 to 2.11) 0.80 (0.40 to 1.61) 
PAR vs. SER 1.09 (0.63 to 2.04) 1.14 (0.71 to 1.84) 1.12 (0.65 to 1.93) 1.14 (0.81 to 1.61) 
PAR vs. VEN 0.97 (0.52 to 2.04) 0.78 (0.36 to 1.70) 1.03 (0.54 to 1.96) 0.95 (0.63 to 1.43) 
SER vs. VEN 0.87 (0.51 to 1.61) 0.92 (0.55 to 1.54) 0.92 (0.58 to 1.45) 0.84 (0.59 to 1.18) 
Abbreviations: BUP = bupropion; CIT = citalopram; DES = desvenlafaxine; DUL = duloxetine; ESC = escitalopram; FLUO = 
fluoxetine; FLUV = fluvoxamine; IS = insufficient studies; MIR = mirtazapine; NA = not applicable; NEF = nefazodone; PAR = 
paroxetine; SER = sertraline; TRA = trazodone; VEN = velafaxine 
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Table E-5. Comparison of response for second-generation antidepressants for loop sub-network, 
by method of analysis: Odds ratios (95% credible interval or 95% confidence interval)  
Comparison Bayesian MTC Meta-Regression Bucher Method Logistic Regression 

FLUO vs. PAR via SER 0.83 (0.64 to 1.11) 0.88 (0.19 to 4.02) 0.88 (0.44 to 1.76) 0.73 (0.51 to 1.05) 
FLUO vs. PAR via placebo Same as above 0.73 (0.39 to 1.37) 0.73 (0.41 to 1.28) 0.85 (0.60 to 1.20) 
FLUO vs. SER via PAR 0.76 (0.61 to 0.96) 0.69 (0.26 to 1.83) 0.69 (0.34 to 1.37) 0.86 (0.64 to 1.16) 
FLUO vs. SER via placebo Same as above 0.82 (0.54 to 1.23) 0.82 (0.58 to 1.15) 0.97 (0.73 to 1.28) 
PAR vs. SER via FLUO 0.90 (0.68 to 1.25) 0.71 (0.41 to 1.22) 0.71 (0.46 to 1.10) 0.73 (0.51 to 1.05) 
PAR vs. SER via placebo Same as above 1.14 (0.71 to 1.84) 1.12 (0.65 to 1.93) 1.14 (0.81 to 1.61) 
Abbreviations: FLUO = fluoxetine; NA = not applicable; PAR = paroxetine; SER = sertraline 

Table E-6. Comparison of response for second-generation antidepressants for one closed loop 
sub-network, by method of analysis: Odds ratios (95% credible interval or 95% confidence 
interval) 
Comparison Bayesian MTC Meta-regression Bucher method Logistic regression 
BUP vs. CIT 0.74 (0.30 to 2.27) NA NA 0.94 (0.49 to 1.80) 
BUP vs. ESC 0.91 (0.46 to 2.13) NA NA 0.95 (0.55 to 1.64) 
BUP vs. FLUO 0.99 (0.65 to 1.61) IS IS 1.07 (0.81 to 1.40) 
BUP vs. FLUV 0.78 (0.28 to 3.13) NA NA 1.18 (0.53 to 2.65) 
BUP vs. MIR 1.32 (0.62 to 3.85) IS IS 1.10 (0.51 to 2.35) 
BUP vs. PAR 0.83 (0.51 to 1.43) IS IS 0.89 (0.64 to 1.23) 
BUP vs. SER 0.77 (0.52 to 1.18) Direct Direct 0.87 (0.67 to 1.13) 
BUP vs. TRA 2.04 (1.02 to 4.76) Direct Direct 1.75 (0.96 to 3.18) 
CIT vs. ESC 1.11 (0.63 to 2.17) Direct Direct 1.01 (0.61 to 1.68) 
CIT vs. FLUO 1.09 (0.50 to 2.94) IS IS 1.14 (0.62 to 2.09) 
CIT vs. FLUV 1.05 (0.58 to 2.08) NA NA 1.26 (0.71 to 2.21) 
CIT vs. MIR 1.37 (0.44 to 7.14) NA NA 1.17 (0.45 to 3.07) 
CIT vs. PAR 0.91 (0.40 to 2.56) NA NA 0.95 (0.50 to 1.79) 
CIT vs. SER 0.84 (0.37 to 2.33) NA NA 0.93 (0.50 to 1.73) 
CIT vs. TRA 2.08 (0.70 to 10.00) NA NA 1.86 (0.80 to 4.35) 
ESC vs. FLUO 0.98 (0.53 to 1.92) Direct Direct 1.12 (0.69 to 1.82) 
ESC vs. FLUV 0.85 (0.39 to 2.27) IS IS 1.24 (0.60 to 2.56) 
ESC vs. MIR 1.22 (0.42 to 5.56) NA NA 1.15 (0.47 to 2.83) 
ESC vs. PAR 0.81 (0.42 to 1.67) IS IS 0.93 (0.55 to 1.58) 
ESC vs. SER 0.75 (0.40 to 1.54) IS IS 0.91 (0.55 to 1.52) 
ESC vs. TRA 1.89 (0.70 to 7.14) NA NA 1.84 (0.85 to 3.98) 
FLUO vs. FLUV 0.78 (0.31 to 2.86) NA NA 1.11 (0.51 to 2.40) 
FLUO vs. MIR 1.27 (0.52 to 4.35) NA NA 1.03 (0.47 to 2.23) 
FLUO vs. PAR 
via SER 

0.83 (0.65 to 1.10) IS IS 0.83 (0.65 to 1.06) 

FLUO vs. PAR 
via placebo 

NA/same 0.73 (0.39 to 1.37) 0.73 (0.41 to 1.28) NA/same  

FLUO vs. SER 0.77 (0.63 to 0.96) 0.82 (0.54 to 1.23) 0.82 (0.58 to 1.15) 0.81 (0.67 to 1.00) 
FLUO vs. TRA 1.96 (0.87 to 5.88) NA NA 1.64 (0.88 to 3.05) 
MIR vs. PAR 0.50 (0.19 to 1.61) NA NA 0.81 (0.37 to 1.80) 
MIR vs. SER 0.47 (0.18 to 1.43) NA NA 0.79 (0.36 to 1.73) 
MIR vs. TRA 1.45 (0.91 to 2.50) Direct Direct 1.59 (0.92 to 2.76) 
PAR vs. SER 
via FLUO 

0.91 (0.68 to 1.27) IS IS 0.98 (0.75 to 1.28) 

PAR vs. SER 
via placebo 

NA/same 1.14 (0.71 to 1.84) 1.12 (0.65 to 1.93) NA/same  

PAR vs. TRA 2.33 (1.02 to 7.14) NA NA 1.97 (1.03 to 3.76) 
SER vs. TRA 2.56 (1.16 to 7.14) IS IS 2.01 (1.08 to 3.75) 
Abbreviations: BUP = bupropion; CIT = citalopram; ESC = escitalopram; FLUO = fluoxetine; FLUV = fluvoxamine; IS = 
insufficient studies; MIR = mirtazapine; NA = not applicable; PAR = paroxetine; SER = sertraline; TRA = trazodone 
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Table E-7. Comparison of response for second-generation antidepressants for ladder sub-
network, by method of analysis: Odds ratios (95% credible interval or 95% confidence interval) 
Comparison Bayesian MTC Meta-Regression Bucher Method Logistic Regression 
BUP vs. CIT 0.75 (0.28 to 2.56) NA NA 1.36 (0.72 to 2.58) 
BUP vs. DUL 1.20 (0.58 to 2.94) NA NA 1.43 (0.90 to 2.28) 
BUP vs. ESC 0.94 (0.41 to 2.44) NA NA 1.24 (0.76 to 2.03) 
BUP vs. FLUO 1.20 (0.68 to 2.44) NA NA 1.25 (0.83 to 1.90) 
BUP vs. FLUV 0.79 (0.26 to 3.57) NA NA 1.82 (0.82 to 4.03) 
BUP vs. MIR 1.30 (0.56 to 3.57) IS 0.67 (0.26 to 1.69) 1.38 (0.65 to 2.91) 
BUP vs. PAR 1.10 (0.56 to 2.38) NA NA 1.22 (0.79 to 1.90) 
BUP vs. SER 0.95 (0.68 to 1.39) Direct Direct 1.08 (0.77 to 1.51) 
BUP vs. TRA 2.00 (0.99 to 5.00) Direct Direct 2.14 (1.18 to 3.86) 
BUP vs. VEN 0.79 (0.47 to 1.45) 0.82 (0.38 to 1.79) 0.82 (0.51 to 1.34) 0.98 (0.65 to 1.48) 
CIT vs. DUL 1.39 (0.74 to 3.13) 1.52 (0.23 to 10.02) 1.44 (0.78 to 2.64) 1.05 (0.64 to 1.74) 
CIT vs. ESC 1.11 (0.63 to 2.27) Direct Direct 0.91 (0.56 to 1.47) 
CIT vs. FLUO 1.32 (0.63 to 3.57) NA NA 0.92 (0.53 to 1.59) 
CIT vs. FLUV 1.05 (0.58 to 2.17) Direct Direct 1.33 (0.76 to 2.33) 
CIT vs. MIR 1.27 (0.41 to 7.14) NA NA 1.01 (0.41 to 2.47) 
CIT vs. PAR 1.23 (0.61 to 3.03) NA NA 0.90 (0.53 to 1.53) 
CIT vs. SER 0.95 (0.41 to 3.23) NA NA 0.79 (0.44 to 1.41) 
CIT vs. TRA 1.96 (0.68 to 10.00) NA NA 1.57 (0.72 to 3.43) 
CIT vs. VEN 0.83 (0.37 to 2.38) NA NA 0.72 (0.41 to 1.25) 
DUL vs. ESC 0.79 (0.57 to 1.06) Direct Direct 0.86 (0.69 to 1.08) 
DUL vs. FLUO 0.94 (0.61 to 1.56) 0.96 (0.58 to 1.60) 0.97 (0.64 to 1.45) 0.87 (0.64 to 1.20) 
DUL vs. FLUV 0.66 (0.28 to 1.96) NA NA 1.27 (0.63 to 2.56) 
DUL vs. MIR 0.92 (0.33 to 3.85) NA NA 0.96 (0.44 to 2.10) 
DUL vs. PAR 0.88 (0.65 to 1.25) Direct Direct 0.85 (0.67 to 1.08) 
DUL vs. SER 0.69 (0.37 to 1.52) NA NA 0.75 (0.52 to 1.09) 
DUL vs. TRA 1.43 (0.57 to 5.26) NA NA 1.49 (0.78 to 2.86) 
DUL vs. VEN 0.60 (0.36 to 1.11) NA NA 0.68 (0.49 to 0.96) 
ESC vs. FLUO 1.18 (0.71 to 2.22) NA NA 1.01 (0.71 to 1.45) 
ESC vs. FLUV 0.85 (0.37 to 2.38) IS 0.94 (0.42 to 2.11) 1.47 (0.73 to 2.93) 
ESC vs. MIR 1.15 (0.41 to 5.00) NA NA 1.11 (0.50 to 2.48) 
ESC vs. PAR 1.10 (0.72 to 1.85) 1.16 (0.57 to 2.36) 1.09 (0.77 to 1.56) 0.99 (0.72 to 1.35) 
ESC vs. SER 0.86 (0.44 to 2.13) NA NA 0.87 (0.58 to 1.31) 
ESC vs. TRA 1.79 (0.69 to 7.14) NA NA 1.73 (0.88 to 3.38) 
ESC vs. VEN 0.75 (0.42 to 1.56) NA NA 0.79 (0.54 to 1.15) 
FLUO vs. FLUV 0.66 (0.25 to 2.22) NA NA 1.45 (0.70 to 2.99) 
FLUO vs. MIR 0.97 (0.38 to 3.57) NA NA 1.10 (0.51 to 2.35) 
FLUO vs. PAR 0.91 (0.66 to 1.30) Direct Direct 0.98 (0.75 to 1.27) 
FLUO vs. SER 0.73 (0.45 to 1.32) 0.90 (0.47 to 1.71) 0.95 (0.62 to 1.45) 0.86 (0.64 to 1.16) 
FLUO vs. TRA 1.49 (0.65 to 5.00) NA NA 1.71 (0.91 to 3.18) 
FLUO vs. VEN 0.64 (0.47 to 0.87) Direct Direct 0.78 (0.65 to 0.94) 
FLUV vs. MIR 1.08 (0.33 to 7.69) NA NA 0.76 (0.28 to 2.09) 
FLUV vs. PAR 1.04 (0.43 to 3.45) NA NA 0.67 (0.33 to 1.38) 
FLUV vs. SER 0.81 (0.29 to 3.57) NA NA 0.59 (0.28 to 1.26) 
FLUV vs. TRA 1.67 (0.53 to 11.11) NA NA 1.18 (0.47 to 2.94) 
FLUV vs. VEN 0.71 (0.27 to 2.70) NA NA 0.54 (0.26 to 1.12) 
MIR vs. PAR 0.66 (0.24 to 2.56) NA NA 0.89 (0.41 to 1.92) 
MIR vs. SER 0.57 (0.25 to 1.89) NA NA 0.78 (0.37 to 1.66) 
MIR vs. TRA 1.45 (0.92 to 2.50) Direct Direct 1.55 (0.90 to 2.68) 
MIR vs. VEN 0.48 (0.20 to 1.69) NA NA 0.71 (0.33 to 1.52) 
PAR vs. SER 0.78 (0.45 to 1.59) NA NA 0.88 (0.63 to 1.24) 
PAR vs. TRA 1.61 (0.67 to 5.88) NA NA 1.75 (0.92 to 3.31) 
PAR vs. VEN 0.68 (0.44 to 1.11) 0.83 (0.50 to 1.38) 0.87 (0.60 to 1.25) 0.80 (0.60 to 1.08) 
SER vs. TRA 2.04 (0.93 to 5.56) IS 1.03 (0.46 to2.30) 1.99 (1.08 to 3.67) 
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Table E-7. Comparison of response for second-generation antidepressants for ladder sub-
network, by method of analysis: Odds ratios (95% credible interval or 95% confidence interval) 
(continued) 
Comparison Bayesian MTC Meta-Regression Bucher Method Logistic Regression 
SER vs. VEN 0.83 (0.55 to 1.30) Direct Direct 0.91 (0.68 to 1.21) 
TRA vs. VEN 0.33 (0.14 to 0.99) NA NA 0.46 (0.25 to 0.86) 
Abbreviations: BUP = bupropion; CIT = citalopram; DUL = duloxetine; ESC = escitalopram; FLUO = fluoxetine; FLUV = 
fluvoxamine; IS = insufficient studies; MIR = mirtazapine; NA = not applicable; PAR = paroxetine; SER = sertraline; TRA = 
trazodone; VEN = venlafaxine 

Table E-8. Comparison of mean change in HAM-D for second-generation antidepressants for 
placebo star sub-network, by method of analysis: Weighted mean difference (95% credible interval 
or 95% confidence interval)  
Comparison Bayesian MTC Meta-Regression Bucher Method 
DES vs. DUL -0.65 (-2.80 to 1.38) -0.65 (-2.92 to 1.61) -0.68 (-2.25 to 0.90) 
DES vs. ESC -1.20 (-4.10 to 1.75) -1.23 (-5.06 to 2.61) -1.23 (-2.97 to 0.51) 
DES vs. FLUO 0.12 (-2.30 to 2.50) 0.72 (-4.27 to 5.71) -0.27 (-5.19 to 4.64) 
DES vs. PAR -0.88 (-3.20 to 1.24) -0.67 (-3.33 to 2.00) -0.72 (-2.65 to 1.21) 
DES vs. SER -0.43 (-2.60 to 1.70) -0.41 (-2.68 to 1.86) -0.47 (-2.15 to 1.21) 
DES vs. VEN 1.94 (-1.30 to 5.21) 1.92 (-3.05 to 6.89) 1.92 (-0.34 to 4.18) 
DUL vs. ESC -0.53 (-3.30 to 2.20) -0.55 (-4.68 to 3.58) -0.55 (-2.34 to 1.24) 
DUL vs. FLUO 0.77 (-1.40 to 2.92) 1.15 (-3.45 to 5.76) 0.41 (-4.53 to 5.34) 
DUL vs. PAR -0.24 (-2.20 to 1.63) -0.04 (-2.59 to 2.51) -0.04 (-2.02 to 1.94) 
DUL vs. SER 0.21 (-1.70 to 2.08) 0.20 (-2.00 to 2.39) 0.21 (-1.53 to 1.95) 
DUL vs. VEN 2.59 (-0.50 to 5.69) 2.60 (-2.15 to 7.35) 2.60 (0.29 to 4.91) 
ESC vs. FLUO 1.30 (-1.70 to 4.28) 0.91 (-49.15 to 50.98) 0.96 (-4.03 to 5.95) 
ESC vs. PAR 0.30 (-2.60 to 3.04) 0.49 (-5.90 to 6.88) 0.51 (-1.60 to 2.62) 
ESC vs. SER 0.75 (-2.10 to 3.54) 0.77 (-3.44 to 4.97) 0.76 (-1.13 to 2.65) 
ESC vs. VEN 3.12 (-0.61 to 6.85) IS 3.15 (0.73 to 5.57) 
FLUO vs. PAR -1.00 (-3.40 to 1.23) -1.08 (-7.51 to 5.36) -0.45 (-5.51 to 4.61) 
FLUO vs. SER -0.55 (-2.80 to 1.72) -0.92 (-5.82 to 3.97) -0.20 (-5.17 to 4.77) 
FLUO vs. VEN 1.82 (-1.50 to 5.20) 2.24 (-48.69 to 53.16) 2.19 (-3.00 to 7.39) 
PAR vs. SER 0.45 (-1.50 to 2.54) 0.24 (-2.46 to 2.93) 0.25 (-1.82 to 2.32) 
PAR vs. VEN 2.83 (-0.29 to 6.11) 2.66 (-4.47 to 9.79) 2.64 (0.08 to 5.20) 
SER vs. VEN 2.37 (-0.75 to 5.56) 2.38 (-2.49 to 7.26) 2.39 (0.01 to 4.77) 
Abbreviations: DES = desvenlafaxine; DUL = duloxetine; ESC = escitalopram; FLUO = fluoxetine; IS = insufficient studies; 
PAR = paroxetine; SER = sertraline; VEN = venlafaxine 

Table E-9. Comparison of mean change in HAM-D for second-generation antidepressants for loop 
sub-network, by method of analysis: Weighted mean difference (95% credible interval or 95% 
confidence interval)  
Comparison Bayesian MTC Meta-Regression Bucher Method Via 
ESC vs. FLUO -1.20 (-4.00 to 1.41) 0.91 (-49.15 to 50.98) 0.96 (-4.03 to 5.95) Placebo 
ESC vs. FLUO -1.20 (-4.00 to 1.41) IS -4.74 (-8.11 to -1.36) VEN 
ESC vs. VEN 0.65 (-2.90 to 3.94) IS 0.60 (-2.27 to 3.47) FLUO 
FLUO vs. VEN 1.87 (-0.90 to 4.77) IS -0.90 (-4.00 to 2.20) ESC 
Abbreviations: ESC = escitalopram; FLUO = fluoxetine; IS = insufficient studies; VEN = venlafaxine 
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Table E-10. Comparison of mean change in HAM-D for second-generation antidepressants for one 
closed loop sub-network, by method of analysis: Weighted mean difference (95% credible interval 
or 95% confidence interval)  
Comparison Bayesian MTC Meta-Regression Bucher Method Via 
ESC vs. FLUO -1.20 (-4.60 to 1.80) 0.91 (-49.15 to 50.98) 0.96 (-4.03 to 5.95) placebo 
ESC vs. FLUO -1.20 (-4.00 to 1.41) IS -4.74 (-8.11 to -1.36) VEN 
ESC vs. SER -1.10 (-4.70 to 2.18) 0.77 (-3.44 to 4.97) 0.76 (-1.13 to 2.65) placebo 
ESC vs. VEN 0.67 (-2.30 to 3.45) IS 0.60 (-2.27 to 3.47) FLUO 
FLUO vs. PAR 0.04 (-2.90 to 3.24) IS -1.49 (-4.38 to 1.40) TRA 
FLUO vs. SER 0.04 (-3.00 to 3.06) -0.92 (-5.82 to 3.97) -0.20 (-5.17 to 4.77) placebo 
FLUO vs. VEN 1.85 (-0.50 to 4.31) IS -0.90 (-4.00 to 2.20) ESC 
FLUO vs. VEN 1.85 (-0.50 to 4.31) 2.24 (-48.69 to 53.16) 2.19 (-3.00 to 7.39) placebo 
TRA vs. VEN 0.93 (-2.90 to 4.61) IS 3.59 (0.45 to 6.73) FLUO 
Abbreviations: ESC = escitalopram; FLUO = fluoxetine; FLUV = fluvoxamine; IS = insufficient studies; NA = not applicable; 
PAR = paroxetine; SER = sertraline; TRA = trazodone; VEN = venlafaxine 

Table E-11. Comparison of mean change in HAM-D for second-generation antidepressants for 
ladder sub-network, by method of analysis: Weighted mean difference (95% credible interval or 
95% confidence interval)  
Comparison Bayesian MTC Meta-Regression Bucher Method Via 
BUP vs. VEN 1.04 (-3.50 to 5.14) IS -0.74 (-4.21 to 2.73) SER 
CIT vs. DUL 0.54 (-3.90 to 4.71) IS 0.85 (-2.49 to 4.19) ESC 
ESC vs. PAR -0.67 (-4.10 to 2.62) 0.26 (-5.51 to 6.03) -0.35 (-3.17 to 2.47) DUL 
FLUO vs. SER 2.50 (-1.10 to 6.53) 1.66 (-31.65 to 34.98) 2.68 (-1.01 to 6.36) VEN 
PAR vs. VEN 2.99 (-0.74 to 6.23) -4.13 (-12.41 to 4.15) 1.89 (-0.86 to 4.64) FLUO 
Abbreviations: BUP = bupropion; CIT = citalopram; DUL = duloxetine; ESC = escitalopram; FLUO = fluoxetine; IS = 
insufficient studies; NA = not applicable; PAR = paroxetine; SER = sertraline; VEN = venlafaxine 

  



 

E-10 

Table E-12. Comparison of ACR50 response for biologic DMARDs for placebo star sub-network, 
by method of analysis: Odds ratios (95% credible interval or 95% confidence interval)  
Comparison Bayesian MTC Meta-Regression Bucher Method Logistic Regression 
ABA vs. ADA  0.59 (0.33 to 1.14) 0.67 (0.34 to 1.33) 0.64 (0.38 to 1.08) 0.83 (0.60 to 1.14) 
ABA vs. ANA 1.15 (0.57 to 2.63) 1.32 (0.63 to 2.79) 1.32 (0.78 to 2.24) 1.82 (1.20 to 2.76) 
ABA vs. ETA 0.17 (0.08 to 0.49) 0.21 (0.08 to 0.57) 0.21 (0.10 to 0.45) 0.41 (0.26 to 0.66) 
ABA vs. GOL 0.49 (0.21 to 1.39) 0.59 (0.18 to 1.89) 0.57 (0.28 to 1.17) 0.76 (0.43 to 1.34) 
ABA vs. INF 0.85 (0.48 to 1.72) 0.92 (0.49 to 2.29) 0.80 (0.47 to 1.38) 1.01 (0.75 to 1.35) 
ABA vs. RIT 0.78 (0.36 to 2.00) 0.88 (0.34 to 1.53) 0.89 (0.49 to 1.60) 1.03 (0.64 to 1.67) 
ABA vs. TOC 0.74 (0.42 to 1.49) 0.76 (0.38 to 2.44) 0.77 (0.48 to 1.25) 0.82 (0.60 to 1.13) 
ADA vs. ANA 1.89 (0.99 to 4.00) 1.95 (0.82 to 4.61) 2.08 (1.12 to 3.83) 2.20 (1.49 to 3.26) 
ADA vs. ETA 0.28 (0.13 to 0.77) 0.32 (0.12 to 0.84) 0.33 (0.15 to 0.75) 0.50 (0.32 to 0.78) 
ADA vs. GOL 0.81 (0.36 to 2.13) 0.87 (0.27 to 2.82) 0.90 (0.41 to 1.97) 0.93 (0.53 to 1.59) 
ADA vs. INF 1.39 (0.83 to 2.56) 1.42 (0.72 to 2.81) 1.26 (0.67 to 2.35) 1.22 (0.91 to 1.63) 
ADA vs. RIT 1.27 (0.62 to 3.13) 1.30 (0.47 to 3.60) 1.39 (0.71 to 2.72) 1.25 (0.79 to 1.98) 
ADA vs. TOC 1.20 (0.74 to 2.33) 1.20 (0.60 to 2.44) 1.21 (0.68 to 2.16) 1.00 (0.75 to 1.32) 
ANA vs. ETA 0.14 (0.06 to 0.41) 0.16 (0.06 to 0.47) 0.16 (0.07 to 0.36) 0.23 (0.13 to 0.38) 
ANA vs. GOL 0.39 (0.16 to 1.18) 0.45 (0.12 to 1.60) 0.43 (0.20 to 0.95) 0.42 (0.23 to 0.77) 
ANA vs. INF 0.68 (0.36 to 1.49) 0.71 (0.31 to 1.63) 0.61 (0.32 to 1.13) 0.55 (0.37 to 0.82) 
ANA vs. RIT 0.62 (0.27 to 1.72) 0.67 (0.22 to 1.97) 0.67 (0.34 to 1.31) 0.57 (0.33 to 0.96) 
ANA vs. TOC 0.58 (0.32 to 1.32) 1.00 (0.45 to 2.21) 0.59 (0.33 to 1.04) 0.45 (0.31 to 0.67) 
ETA vs. GOL 2.38 (0.90 to 8.33) 2.77 (0.72 to 10.62) 2.70 (1.05 to 6.96) 1.85 (0.98 to 3.51) 
ETA vs. INF 4.17 (1.96 to 11.11) 4.34 (1.62 to 11.60) 3.78 (1.66 to 8.58) 2.45 (1.56 to 3.82) 
ETA vs. RIT 3.85 (1.52 to 12.50) 4.15 (1.24 to 13.88) 4.18 (1.78 to 9.82) 2.50 (1.14 to 4.43) 
ETA vs. TOC 3.57 (1.69 to 10.00) 3.63 (1.32 to 9.98) 3.65 (1.67 to 7.98) 2.00 (1.28 to 3.12) 
GOL vs. INF 1.45 (0.68 to 4.17) 1.63 (0.51 to 5.20) 1.40 (0.63 to 3.08) 1.32 (0.77 to 2.28) 
GOL vs. RIT 1.33 (0.53 to 4.76) 1.50 (0.24 to 4.93) 1.55 (0.68 to 3.53) 1.35 (0.70 to 2.60) 
GOL vs. TOC 1.27 (0.59 to 3.70) 1.37 (0.38 to 1.97) 1.35 (0.64 to 2.86) 1.08 (0.63 to 1.86) 
INF vs. RIT 0.88 (0.41 to 2.13) 0.93 (0.34 to 2.51) 1.11 (0.56 to 2.19) 1.02 (0.64 to 1.62) 
INF vs. TOC 0.83 (0.50 to 1.56) 0.72 (0.38 to 1.38) 0.97 (0.54 to 1.74) 0.82 (0.62 to 1.08) 
RIT vs. TOC 0.83 (0.41 to 2.13) 0.84 (0.26 to 2.77) 0.87 (0.46 to 1.65) 0.80 (0.51 to 1.26) 
Abbreviations: ABA = abatacept; ADA = adalimumab; ANA = anakinra; ETA = etanercept; GOL = golimumab; INF = 
infliximab; RIT = rituximab; TOC = tocilizumab 

Table E-13. Comparison of ACR50 response for biologic DMARDs for loop sub-network, by 
method of analysis: Odds ratios (95% credible interval or 95% confidence interval) 
Comparison Bayesian MTC Meta-Regression Bucher Method Logistic Regression 
ABA vs. INF 0.92 (0.50 to 1.79) 0.90 (0.33 to 2.44) 0.77 (0.48 to 1.25) 0.82(0.60 to 1.13) 
Abbreviations: ABA = abatacept; INF = infliximab 

Table E-14. Comparison of ACR50 response for biologic DMARDs for one closed loop sub-
network using Adalimumab, by method of analysis: Odds ratios (95% credible interval or 95% 
confidence interval) 
Comparison Bayesian MTC Meta-Regression Bucher Method Logistic Regression 
ABA vs. ADA 0.62 (0.31 to 1.33) 0.67 (0.34 to 1.33) 0.64 (0.38 to 1.08) 0.83 (0.60 to 1.14) 
ABA vs. INF 0.93 (0.51 to 1.89) 0.92 (0.49 to 2.29) 0.80 (0.47 to 1.38) 1.01 (0.75 to 1.35) 
ADA vs. INF 1.39 (0.78 to 2.94) 1.42 (0.72 to 2.81) 1.26 (0.67 to 2.35) 1.22 (0.91 to 1.63) 
Abbreviations: ABA = abatacept; ADA = adalimumab; INF = infliximab 

Table E-15. Comparison of ACR50 response for biologic DMARDs for one closed loop sub-
network using Etanercept, by method of analysis: Odds ratios (95% credible interval or 95% 
confidence interval) 
Comparison Bayesian MTC Meta-Regression Bucher Method Logistic Regression 
ABA vs. ETA 0.19 (0.08 to 0.52) 0.21 (0.08 to 0.57) 0.21 (0.10 to 0.45) 0.41 (0.26 to 0.66) 
ABA vs. INF 0.94 (0.56 to 1.67) 0.88 (0.34 to 2.29) 0.80 (0.47 to 1.38) 1.01 (0.75 to 1.35) 
ETA vs. INF 4.17 (1.96 to 11.11) 4.34 (1.62 to 11.60) 3.78 (1.66 to 8.58) 2.45 (1.56 to 3.82) 
Abbreviations: ABA = abatacept; ETA = etanercept; INF = infliximab 
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Table E-16. Comparison of ACR50 response for biologic DMARDs for ladder sub-network, by 
method of analysis: Odds ratios (95% credible interval or 95% confidence interval) 
Comparison Bayesian MTC Meta-Regression Bucher Method Logistic Regression 
ABA vs. ETA 0.19 (0.05 to 1.05) NA NA 0.79 (0.50 to 1.26) 
ABA vs. INF 0.98 (0.38 to 3.45) Direct Direct 0.98 (0.65 to 1.47) 
ETA vs. INF 4.00 (1.72 to 12.50) 4.34 (1.62 to 11.60) 3.78 (1.66 to 8.58) 1.24 (0.91 to 1.67) 
Abbreviations: ABA = abatacept; ETA = etanercept; INF = infliximab 
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Appendix F. Distribution Plots From Simulation Study  
For each of the scenarios in KQ3, the histograms below provide a graphical representation of 

the distribution of the probability of best treatment statistic.  
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Figure F-1. Distribution of best treatment probability: Star pattern, equivalent efficacy scenario 
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Figure F-2. Distribution of best treatment probability: Loop pattern, equivalent efficacy scenario 
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Figure F-3. Distribution of best treatment probability: One closed loop pattern, equivalent efficacy 
scenario 
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Figure F-4. Distribution of best treatment probability: Ladder pattern, equivalent efficacy scenario 
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Figure F-5. Distribution of best treatment probability: Star pattern, superior efficacy scenario 
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Figure F-6. Distribution of best treatment probability: Loop pattern, superior efficacy scenario 
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Figure F-7. Distribution of best treatment probability: One closed loop pattern, superior efficacy 
scenario 
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Figure F-8. Distribution of best treatment probability: Ladder pattern, superior efficacy scenario 
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