

Comparative Effectiveness Review Number 241

Physical Activity and the Health of Wheelchair Users: A Systematic Review in Multiple Sclerosis, Cerebral Palsy, and Spinal Cord Injury

Comparative Effectiveness Review

Number 241

Physical Activity and the Health of Wheelchair Users: A Systematic Review in Multiple Sclerosis, Cerebral Palsy, and Spinal Cord Injury

Prepared for:

Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 5600 Fishers Lane Rockville, MD 20857 www.ahrq.gov

Contract No. 290-2015-00009-I

Prepared by: Pacific Northwest Evidence-based Practice Center Portland, OR

Investigators:

Shelley S. Selph, M.D., M.P.H. Andrea C. Skelly, Ph.D., M.P.H. Ngoc Wasson, M.P.H. Joseph R. Dettori, Ph.D., M.P.H., M.P.T. Erika D. Brodt, B.S. Erik Ensrud, M.D. Diane Elliot, M.D., FACSM Kristin M. Dissinger, P.T., D.P.T. Erica Hart, M.S.T. Shelby Kantner, B.A. Elaine Graham, M.L.S. Mark Junge, B.A. Tracy Dana, M.L.S. Marian McDonagh, Pharm.D.

AHRQ Publication No. 21(22)-EHC017 October 2021 This report is based on research conducted by the Pacific Northwest Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. 290-2015-00009-I). The report was commissioned and funded by the National Institutes of Health (NIH) Office of Disease Prevention to inform a Pathways to Prevention Workshop. The findings and conclusions in this document are those of the authors, who are responsible for its contents; the findings and conclusions do not necessarily represent the views of AHRQ or NIH. Therefore, no statement in this report should be construed as an official position of NIH, AHRQ, or the U.S. Department of Health and Human Services.

None of the investigators have any affiliations or financial involvement that conflicts with the material presented in this report.

The information in this report is intended to help healthcare decision makers—patients and clinicians, health system leaders, and policymakers, among others—make well-informed decisions and thereby improve the quality of healthcare services. This report is not intended to be a substitute for the application of clinical judgment. Anyone who makes decisions concerning the provision of clinical care should consider this report in the same way as any medical reference and in conjunction with all other pertinent information, i.e., in the context of available resources and circumstances presented by individual patients.

This report is made available to the public under the terms of a licensing agreement between the author and the Agency for Healthcare Research and Quality. This report may be used and reprinted without permission except those copyrighted materials that are clearly noted in the report. Further reproduction of those copyrighted materials is prohibited without the express permission of copyright holders.

AHRQ or U.S. Department of Health and Human Services endorsement of any derivative products that may be developed from this report, such as clinical practice guidelines, other quality enhancement tools, or reimbursement or coverage policies, may not be stated or implied.

AHRQ appreciates appropriate acknowledgment and citation of its work. Suggested language for acknowledgment: This work was based on an evidence report, Physical Activity and the Health of Wheelchair Users: A Systematic Review in Multiple Sclerosis, Cerebral Palsy, and Spinal Cord Injury, by the Evidence-based Practice Center Program at the Agency for Healthcare Research and Quality (AHRQ).

Suggested citation: Selph SS, Skelly AC, Wasson N, Dettori JR, Brodt ED, Ensrud E, Elliot D, Dissinger KM, Hart E, Kantner S, Graham E, Junge M, Dana T, McDonagh M. Comparative Effectiveness Review No. 241. Physical Activity and the Health of Wheelchair Users: A Systematic Review of Evidence in Multiple Sclerosis, Cerebral Palsy, and Spinal Cord Injury. (Prepared by the Pacific Northwest Evidence-based Practice Center under Contract No. 290-2015-00009-I.) AHRQ Publication No. 21(22)-EHC017. Rockville, MD: Agency for Healthcare Research and Quality; October 2021.

DOI: <u>https://doi.org/10.23970/AHRQEPCCER241</u>. Posted final reports are located on the Effective Health Care Program <u>search page</u>.

Preface

The Agency for Healthcare Research and Quality (AHRQ), through its Evidence-based Practice Centers (EPCs), sponsors the development of evidence reports and technology assessments to assist public- and private-sector organizations in their efforts to improve the quality of healthcare in the United States.

The National Institutes of Health (NIH) Office of Disease Prevention requested this report from the EPC Program at AHRQ to inform a Pathways to Prevention Workshop. The NIH Office of Disease Prevention provided the funding for this report through an Interagency Agreement with AHRQ. AHRQ assigned this report to the following EPC: Pacific Northwest Evidencebased Practice Center (Contract Number 290-2015-00009-I).

The report was presented at the NIH Office of Disease Prevention's Pathways to Prevention Workshop public meeting—"Can Physical Activity Improve the Health of Wheelchair Users?"—December 1, 2020, to December 3, 2020.

The reports and assessments provide organizations with comprehensive, evidence-based information on common medical conditions and new healthcare technologies and strategies. For the NIH Pathways to Prevention program, the EPC reports identify research gaps in the selected scientific area, identify methodological and scientific weaknesses, suggest research needs, and move the field forward through an unbiased, evidence-based assessment of the available literature. The EPCs systematically review the relevant scientific literature on topics assigned to them by AHRQ and conduct additional analyses when appropriate prior to developing their reports and assessments.

To bring the broadest range of experts into the development of evidence reports and health technology assessments, AHRQ encourages the EPCs to form partnerships and enter into collaborations with other medical and research organizations. The EPCs work with these partner organizations to ensure that the evidence reports and technology assessments they produce will become building blocks for healthcare quality improvement projects throughout the Nation. The reports undergo peer review and public comment prior to their release as a final report.

AHRQ expects that the EPC evidence reports and technology assessments, when appropriate, will inform individual health plans, providers, and purchasers as well as the healthcare system as a whole by providing important information to help improve healthcare quality.

If you have comments on this evidence report, they may be sent by mail to the Task Order Officer named below at: Agency for Healthcare Research and Quality, 5600 Fishers Lane, Rockville, MD 20857, or by email to epc@ahrq.hhs.gov.

David Meyers, M.D.	Arlene S. Bierman, M.D., M.S.
Acting Director	Director
Agency for Healthcare Research and Quality	Center for Evidence and Practice
	Improvement
Christine Chang, M.D., M.P.H.	Agency for Healthcare Research and Quality
Acting Director	
Evidence-based Practice Center Program	David W. Niebuhr, M.D., M.P.H., M.Sc.
Center for Evidence and Practice	Task Order Officer
Improvement	Center for Evidence and Practice
Agency for Healthcare Research and Quality	Improvement
	Agency for Healthcare Research and Quality

Acknowledgments

The authors gratefully acknowledge the following individuals for their contributions to this project: David Niebuhr, M.D., M.P.H., M.Sc., AHRQ Task Order Officer; Keisha Shropshire, M.P.H., Public Health Analyst, P2P Coordinator, NIH Office of Disease Prevention (ODP) Working Group and NIH partners; Meera Viswanathan (Associate Editor); Christine Chang, M.D., M.P.H., Acting Director, Evidence-based Practice Center Program, Center for Evidence and Practice Improvement, AHRQ; Technical Expert Panel members; Peer Reviewers; Leah Williams, B.S., publications editor; Roger Chou, M.D., FACP, Pacific Northwest EPC Director.

Technical Expert Panel

In designing the study questions and methodology at the outset of this report, the EPC consulted several technical and content experts. Broad expertise and perspectives were sought. Divergent and conflicted opinions are common and perceived as healthy scientific discourse that results in a thoughtful, relevant systematic review. Therefore, in the end, study questions, design, methodologic approaches, and/or conclusions do not necessarily represent the views of individual technical and content experts.

Technical Experts must disclose any financial conflicts of interest greater than \$5,000 and any other relevant business or professional conflicts of interest. Because of their unique clinical or content expertise, individuals with potential conflicts may be retained. The TOO and the EPC work to balance, manage, or mitigate any potential conflicts of interest identified.

The list of Technical Experts who provided input to this report follows:

Sheila Stahl Butler, P.T. Physical Therapist Director of Rehabilitation Services Forward Stride Beaverton, OR

Mark Nash, Ph.D., FACSM* Professor, Departments of Neurological Surgery and Rehabilitation Medicine Principal Investigator, the Miami Project to Cure Paralysis Director of Research, Department of Physical Medicine & Rehabilitation, University of Miami Miller School of Medicine Lois Pope Life Center Miami, FL

Mark D. Peterson, Ph.D., M.S., FACSM Associate Professor, University of Michigan-Medicine Department of Physical Medicine and Rehabilitation, Neuroscience Graduate Program Ann Arbor, MI

Rebecca Romero, M.D., FAAN* Assistant Professor of Neurology Associate Program Director Neurology Director of Multiple Sclerosis Clinic University of Texas Health San Antonio, TX

Wei-Han Tan, M.D.* Director of Clinical Quality, Spinal Cord Injury, VA North Texas HCS Assistant Professor, UT Southwestern Medical Center, Department of Physical Medicine and Rehabilitation Dallas, TX

*Provided input on Draft Report.

Peer Reviewers

Prior to publication of the final evidence report, EPCs sought input from independent Peer Reviewers without financial conflicts of interest. However, the conclusions and synthesis of the scientific literature presented in this report do not necessarily represent the views of individual reviewers.

Peer Reviewers must disclose any financial conflicts of interest greater than \$5,000 and any other relevant business or professional conflicts of interest. Because of their unique clinical or content expertise, individuals with potential nonfinancial conflicts may be retained. The TOO and the EPC work to balance, manage, or mitigate any potential nonfinancial conflicts of interest identified.

The list of Peer Reviewers follows:

Cheri Blauwet, M.D. Director, Kelley Adaptive Sports Research Institute & Assistant Professor, Harvard Medical School, Harvard University Cambridge, MA Sherilyn Driscoll, M.D. Associate Professor of Physical Medicine and Rehabilitation, Department of Physical Medicine & Rehabilitation and Department of Pediatric and Adolescent Medicine Mayo Clinic Rochester, MN

Amanda Montague, Ed.M. Vice President of Education & Healthcare Relations Multiple Sclerosis Association of America Western Regional Office Seattle, WA

Physical Activity and the Health of Wheelchair Users: A Systematic Review in Multiple Sclerosis, Cerebral Palsy, and Spinal Cord Injury

Structured Abstract

Objectives. Although the health benefits of physical activity are well described for the general population, less is known about the benefits and harms of physical activity in people dependent upon, partially dependent upon, or at risk for needing a wheelchair. This systematic review summarizes the evidence for physical activity in people with multiple sclerosis, cerebral palsy, and spinal cord injury regardless of current use or nonuse of a wheelchair.

Data sources. We searched MEDLINE[®], CINAHL[®], PsycINFO[®], Cochrane CENTRAL, Embase[®], and Rehabilitation and Sports Medicine Source from 2008 through November 2020, reference lists, and clinical trial registries.

Review methods. Predefined criteria were used to select randomized controlled trials, quasiexperimental nonrandomized trials, and cohort studies that addressed the benefits and harms of observed physical activity (at least 10 sessions on 10 different days of movement using more energy than rest) in participants with multiple sclerosis, cerebral palsy, and spinal cord injury. Individual study quality (risk of bias) and the strength of bodies of evidence for key outcomes were assessed using prespecified methods. Dual review procedures were used. Effects were analyzed by etiology of impairment and physical activity modality, such as treadmill, aquatic exercises, and yoga, using qualitative, and when appropriate, quantitative synthesis using random effects meta-analyses.

Results. We included 146 randomized controlled trials, 15 quasiexperimental nonrandomized trials, and 7 cohort studies (168 studies in 197 publications). More studies enrolled participants with multiple sclerosis (44%) than other conditions, followed by cerebral palsy (38%) and spinal cord injury (18%). Most studies were rated fair quality (moderate risk of bias). The majority of the evidence was rated low strength.

- In participants with multiple sclerosis, walking ability may be improved with treadmill training and multimodal exercise regimens that include strength training; function may be improved with treadmill training, balance exercises, and motion gaming; balance is likely improved with postural control exercises (which may also reduce risk of falls) and may be improved with aquatic exercises, robot-assisted gait training, treadmill training, motion gaming, and multimodal exercises; activities of daily living may be improved with aquatic therapy; sleep may be improved with aerobic exercises; aerobic fitness may be improved with multimodal exercises; and female sexual function may be improved with aquatic exercise.
- In participants with cerebral palsy, balance may be improved with hippotherapy and motion gaming, and function may be improved with cycling, treadmill training, and hippotherapy.

- In participants with spinal cord injury, evidence suggested that activities of daily living may be improved with robot-assisted gait training.
- When randomized controlled trials were pooled across types of exercise, physical activity interventions were found to improve walking in multiple sclerosis and likely improve balance and depression in multiple sclerosis. Physical activity may improve function and aerobic fitness in people with cerebral palsy or spinal cord injury. When studies of populations with multiple sclerosis and cerebral palsy were combined, evidence indicated dance may improve function.
- Evidence on long-term health outcomes was not found for any analysis groups. For intermediate outcomes such as blood pressure, lipid profile, and blood glucose, there was insufficient evidence from which to draw conclusions. There was inadequate reporting of adverse events in many trials.

Conclusions. Physical activity was associated with improvements in walking ability, general function, balance (including fall risk), depression, sleep, activities of daily living, female sexual function, and aerobic capacity, depending on population enrolled and type of exercise utilized. No studies reported long-term cardiovascular or metabolic disease health outcomes. Future trials could alter these findings; further research is needed to examine health outcomes, and to understand the magnitude and clinical importance of benefits seen in intermediate outcomes.

Evidence Summary	ES-1
Introduction	
Purpose	
Background	1
Scope and Key Questions	
Key Questions	
PICOTS	
Analytic Framework	
Organization of Report	9
Methods	
Topic Refinement	
Literature Search Strategy	
Inclusion and Exclusion Criteria and Study Selection	
Data Abstraction and Data Management	
Quality (Risk of Bias) Assessment of Individual Studies	
Data Analysis and Synthesis	
Statistical Meta-Analysis	
Grading the Strength of Evidence	
Assessing Applicability	
Peer Review and Public Commentary	
Results	
Overview	
Results of Literature Searches	
Description of Included Studies	
KQ1: Prevention of Obesity, Diabetes, and Cardiovascular Conditions	
KQ1a: Interventions	
KQ1b: Outcomes	
KQ1c: Study Inclusion/Exclusion Criteria	
KQ1d: Research Methodologies	
KQ2: Physical Activity Interventions	
Aerobic Exercise Interventions	
Postural Control Interventions	55
Strength Exercise Interventions	
Multimodal Interventions	
All Exercise	
KQ2a: Clinical Outcomes	120
KQ2b: Intermediate Outcomes	
KQ2c: Harms of Immobility	
KQ2d: Risk of Adverse Outcomes due to MS, CP, SCI	
KQ2e: Physical Activity Harms	
KQ2f: Physical Activity Characteristics	
KQ3: Patient Factors and Physical Activity	
KQ3a: Patient Demographics	
KQ3b: Variations by Condition and Intervention	
KQ4: Methodological Gaps	

Contents

KQ4a: Types of Studies	. 160
KQ4b: Weaknesses in Study Design	. 160
KQ4C: Future Research	. 160
Discussion	
Key Findings and Strength of Evidence	. 162
Findings in Relationship to What Is Already Known	. 164
Multiple Sclerosis	. 165
Cerebral Palsy	. 165
Spinal Cord Injury	
Applicability and Generalizability	. 166
Limitations of the Evidence Base	. 166
Addressing Limitations: Minimal Effort	. 167
Addressing Limitations: Moderate to Large Effort	. 168
Addressing Limitations: Large Effort	
Implications for Clinical and Policy Decision Making	
Implications for All Providers	
Implications for Primary Care Providers with MS, CP, and SCI Patients	. 169
Implications for Primary Care Providers With Patients With Disabilities Other than MS	
or SCI	
Implications for Physical Activity during a Pandemic	
Limitations of the Systematic Review Process	. 171
Research Recommendations	. 171
Conclusion	. 172
References	. 173
Abbreviations and Acronyms	. 194

Tables

Table A. Effects of physical activity interventions compared with usual care	ES-2
Table 1. Characteristics, causes, and prevalence of multiple sclerosis, cerebral palsy, and spi	nal
cord injury	2
Table 2. PICOTS—Inclusion and exclusion criteria	13
Table 3. Outcomes	15
Table 4. Included studies by intervention category and population ^a	23
Table 5. Included trials with intermediate outcomes related to cardiovascular disease, diabete	es,
and obesity	26
Table 6. Studies with intermediate outcomes related to cardiovascular disease, diabetes, and	
obesity that did not meet inclusion criteria	27
Table 7. Aerobic exercise in multiple sclerosis	31
Table 8. Aerobic exercise in cerebral palsy	33
Table 9. Aquatic exercise in multiple sclerosis	34
Table 10. Aquatic exercise in cerebral palsy	35
Table 11. Cycling exercise in multiple sclerosis	37
Table 12. Cycling exercise in cerebral palsy	39
Table 13. Cycling exercise in spinal cord injury	40
Table 14. Robot-assisted gait training in multiple sclerosis	
Table 15. Robot-assisted gait training in cerebral palsy	44

Table 16. Robot-assisted gait training in spinal cord injury	17
Table 17. Treadmill exercise in multiple sclerosis	
Table 18. Treadmill exercise in cerebral palsy	
Table 19. Treadmill exercise in spinal cord injury	
Table 20. Balance training in multiple sclerosis	
Table 21. Balance training in cerebral palsy	
Table 22. Balance training in spinal cord injury	
Table 23. Hippotherapy in multiple sclerosis	
Table 24. Hippotherapy in cerebral palsy	
Table 25. Tai Chi exercise in multiple sclerosis	
Table 26. Tai Chi exercise in spinal cord injury	59
Table 27. Motion gaming in multiple sclerosis	
Table 28. Motion gaming in cerebral palsy	
Table 29. Motion gaming in spinal cord injury 7	
Table 30. Whole body vibration exercise in multiple sclerosis	75
Table 31. Whole body vibration exercise in cerebral palsy	76
Table 32. Whole body vibration exercise in spinal cord injury	76
Table 33. Yoga exercise in multiple sclerosis	78
Table 34. Muscle strength exercise in multiple sclerosis 8	
Table 35. Muscle strength exercise in cerebral palsy)]
Table 36. Muscle strength exercise in spinal cord injury) 5
Table 37. Multimodal exercise in multiple sclerosis) 6
Table 38. Multimodal exercise in cerebral palsy	
Table 39. Multimodal strength exercise in spinal cord injury 10)9
Table 40. Effects of exercise on depression in participants with multiple sclerosis 12	21
Table 41. Effects of exercise on depression and anxiety in spinal cord injury 12	26
Table 42. Intermediate outcomes of physical activity in participants with multiple sclerosis 12	28
Table 43. Intermediate outcomes of physical activity in participants with cerebral palsy 13	
Table 44. Intermediate outcomes of physical activity in participants with spinal cord injury 13	35
Table 45. Impact of physical activity interventions on spasticity in participants with multiple	
sclerosis14	12
Table 46. Impact of physical activity interventions on spasticity in children with cerebral palsy	
Table 47. Impact of physical activity interventions on spasticity in participants with spinal cord	
injury14	
Table 48. Within-study subgroup analyses of effects of exercise in participants with MS, SCI, o	
CP	
Table 49. Effects of physical activity interventions compared with usual care	52

Figures

Figure 1. Analytic framework for physical activity and the health of wheelchair users with	
multiple sclerosis, cerebral palsy, and spinal cord injury	8
Figure 2. Literature flow diagram	20
Figure 3. Overview of included studies by population and intervention ^a	22
Figure 4. Wheelchair user and exercise number of studies: interventions and population ^a	24
Figure 5. Quality ratings by intervention ^a	. 25

Figure 6. Insomnia Sleep Index in multiple sclerosis trials	
Figure 7. GMFM-66 in cerebral palsy trials	
Figure 8. Pediatric Balance Scale in cerebral palsy trials	4
Figure 9. Muscle strength exercise versus usual care in multiple sclerosis: 6MWT immediately	
following intervention	
Figure 10. Muscle strength exercise versus usual care in multiple sclerosis: 2MWT immediately	
following intervention	6
Figure 11. Muscle strength exercise versus usual care in multiple sclerosis: 10MWT immediately	у
following intervention and during the short-term followup	7
Figure 12. Muscle strength exercise versus usual care in multiple sclerosis: MSWS-12	
immediately following intervention	
Figure 13. Muscle strength exercise versus usual care in multiple sclerosis: 25FWT immediately	r
following intervention	7
Figure 14. Muscle strength exercise versus usual care in multiple sclerosis: TUG immediately	
following intervention	8
Figure 15. Muscle strength exercise versus usual care in multiple sclerosis: SSST immediately	
following intervention	8
Figure 16. Muscle strength exercise versus usual care in multiple sclerosis: MSQOL/SF-36 MCS	3
and PCS immediately following intervention	9
Figure 17. Muscle strength exercise versus usual care in multiple sclerosis: ABCS immediately	
following intervention	0
Figure 18. Muscle strength exercise versus usual care in multiple sclerosis: BBS immediately	
following intervention	0
Figure 19. Muscle strength exercise versus usual care in multiple sclerosis: depression	
immediately following intervention	0
Figure 20. Muscle strength exercise versus usual care in cerebral palsy: 10MWT immediately	
following intervention	4
Figure 21. Multimodal exercise versus usual care in multiple sclerosis: 6MWT 10.	2
Figure 22. Multimodal exercise versus usual care in multiple sclerosis: 10MWT 10	3
Figure 23. Multimodal exercise versus usual care in multiple sclerosis: TUG 10	3
Figure 24. Multimodal exercise versus usual care in multiple sclerosis: MSQOL MCS and	
MSQOL PCS	4
Figure 25. Multimodal exercise versus usual care in multiple sclerosis: BBS 10	5
Figure 26. Multimodal exercise versus usual care in multiple sclerosis: EDSS 10	
Figure 27. Multimodal exercise versus usual care in cerebral palsy: 1MWT ^a 10	8
Figure 28. Multimodal exercise versus usual care in cerebral palsy: GMFM-66 10	
Figure 29. 6MWT meta-analysis of all randomized controlled trials versus no treatment/usual	
care	2
Figure 30. 10MWT meta-analysis of all randomized controlled trials versus no treatment/usual	
care	3
Figure 31. MSWS-12 meta-analysis of all RCTs versus no treatment/usual care	
Figure 32. GMFM-66 meta-analysis of all randomized controlled trials versus no treatment/usua	
care	
Figure 33. GMFM-66-D meta-analysis of all randomized controlled trials versus no	
intervention/usual care	6

Figure 34. GMFM-66-E meta-analysis of all randomized controlled trials versus no	
intervention/usual care 1	17
Figure 35. Timed Up and Go Test versus no interventin/usual care 1	18
Figure 36. BBS meta-analysis of all randomized controlled trials versus no intervention/usual	
care1	19
Figure 37. Effect of exercise versus usual care on depression scores in multiple sclerosis 1	27

Appendixes

Appendix A. Literature Search Strategies

Appendix B. Included Studies List

Appendix C. Excluded Studies List

Appendix D. Included and Excluded Study Details and Systematic Reviews Evaluated

Appendix E. Criteria for Assessing Quality and Internal Validity of Individual Studies

Appendix F. Evidence Tables

Appendix G. Quality Assessment

Appendix H. Strength of Evidence

Evidence Summary

Main Points

- We found physical activity to be associated with improvements in walking ability, general function, balance (including fall risk), depression, sleep, activities of daily living, aerobic capacity, and female sexual function, depending on population and type of activity.
- No studies reported long-term cardiovascular or metabolic disease health outcomes.
- Evidence was also limited by heterogeneity in interventions and control groups and by small sample sizes; evidence in spinal cord injury was limited by the small number of trials.
- Evidence was lacking for many prioritized outcomes.
- Adverse effects of the interventions were inadequately reported in many studies.

Background and Purpose

The benefits of regular physical activity (movement using more energy than rest) for the general population include reduced risk of heart disease, stroke, type 2 diabetes, dementia, depression, falls with injuries among the elderly, and breast, colon, endometrial, esophageal, kidney, stomach, and lung cancer.¹ Although routine physical activity combining aerobic exercise with strength and balance training is recommended for people with physical disabilities,² less is known about the specific benefits and potential harms for this diverse population. In particular, the various populations using wheelchairs as a result of their physical disabilities is broad and poorly captured in the literature on physical activity. This review includes three diverse conditions commonly associated with wheelchair use: multiple sclerosis, cerebral palsy, and spinal cord injury. The three populations were chosen as representative of those using a wheelchair or those who might benefit from using a wheelchair in the future. While there are differences in etiology and pathophysiology, a common denominator is the involvement of the corticospinal tracts of the central nervous system, which results in impaired central control and/or coordination of the peripheral muscles. This may lead to paralysis or reduced extremity muscle force and increased spasticity, which can greatly affect general mobility or coordinated movement such as posture and gait.

Methods

We employed methods consistent with those outlined in the Agency for Healthcare Research and Quality Evidence-based Practice Center Program Methods Guidance (<u>https://effectivehealthcare.ahrq.gov/topics/cer-methods-guide/overview</u>), and these are described in the full report. Our searches covered publication dates from 2008 to November 2020. (See Appendix A of the full report for search strategies.)

Results

We included 168 studies in 197 publications (n=7,511), comprising of 146 randomized controlled trials, 15 quasiexperimental nonrandomized trials, and 7 cohort studies. More studies enrolled participants with multiple sclerosis (44%) than other conditions, followed by cerebral palsy (38%) and spinal cord injury (18%).

Key Question 1: Prevention of Cardiovascular Conditions, Diabetes, and Obesity

No included study (n=168) or study excluded at the full-text level provided evidence on the prevention of cardiovascular conditions (e.g., myocardial infarction, stroke, development of hypertension) or the development of diabetes or obesity.

Key Question 2: Benefits and Harms

Compared with no physical activity or usual care, physical activity improved walking ability, function, balance, sleep, activities of daily living, cardiovascular fitness as measure with VO₂ peak, female sexual function (e.g., desire, lubrication, pain), and depression in participants with multiple sclerosis. Physical activity improved balance, function, and VO₂ peak in trials that enrolled participants with cerebral palsy. The evidence in spinal cord injury was sparse. Physical activity improved activities of daily living, function, and VO₂ peak in participants with spinal cord injury. All studies focused on benefits of physical activity was associated with increased episodes of autonomic dysreflexia in spinal cord injury. Table A summarizes the strength of evidence on effects of physical activity interventions compared with usual care and general exercise effect across interventions compared with usual care.

Key Question 3: Patient Factors Affecting Benefits and Harms

In patients with incomplete spinal cord injury, having better function and more recent injury at baseline was associated with better response to aerobic interventions (2 randomized controlled trials). Other subgroup analyses (3 randomized controlled trials) did not find evidence of variation in effects based on baseline function or spasticity in children with cerebral palsy (total body vibration), or based on weight category in multiple sclerosis patients (cycling). There were no differences across cerebral palsy trials in walking outcomes when stratified by age group (children, adolescents, and adults).

Intervention Category	Multiple Sclerosis Studies	Cerebral Palsy Studies	Spinal Cord Injury Studies
Intervention	Strength of Evidence ^b (Direction of Finding)	Strength of Evidence ^b (Direction of Finding)	Strength of Evidence ^b (Direction of Finding)
Aerobic Exercise Dance (1 RCT in MS and 1 RCT in CP) ^a	Low (function improvement)	Low (function improvement)	Insufficient
Aerobic Exercise Aerobics	Low (sleep improvement)	Insufficient	Insufficient
Aerobic Exercise Aquatics	Low (balance, ADL improvement, female sexual function)	Insufficient	Insufficient
Aerobic Exercise Cycling	Low (no clear benefit on walking)	Low (function improvement)	Insufficient
Aerobic Exercise	Low	Insufficient	Low

Table A. Effects of physical activity interventions compared with usual care^a

Intervention Category	Multiple Sclerosis Studies	Cerebral Palsy Studies	Spinal Cord Injury Studies
Intervention	Strength of Evidence ^ь (Direction of Finding)	Strength of Evidence ^b (Direction of Finding)	Strength of Evidence ^b (Direction of Finding)
Robot-Assisted Gait Training	(balance improvement) Low (no clear benefit in function)		(ADL improvement) Low (no clear benefit on function)
Aerobic Exercise Treadmill	Low (walking, function, and balance improvement)	Low (function improvement)	Insufficient
Postural Control Balance Exercises	Moderate (balance improvement)	Insufficient	Insufficient
Postural Control Balance Exercises	Low (fall risk improvement)	Insufficient	Insufficient
Postural Control Balance Exercises	Low (function improvement)	Insufficient	Insufficient
Postural Control Hippotherapy	Insufficient	Low (balance and function improvement)	Insufficient
Postural Control Tai Chi	Insufficient	Insufficient	Insufficient
Postural Control Motion Gaming	Low (function, balance improvement)	Low (balance improvement)	Insufficient
Postural Control Whole Body Vibration	Insufficient	Insufficient	Insufficient
Postural Control Yoga	Low (no clear benefit on function)	Insufficient	Insufficient
Strength Interventions Muscle Strength Exercise	Low (no clear benefit on walking, function, balance, quality of life, spasticity)	Low (no clear benefit on walking and function)	Insufficient
Multimodal Exercise Progressive Resistance or Strength Exercise Plus Aerobic and/or Balance Exercise	Low (walking, balance, VO ₂ improvement)	Low (no clear benefit on function, quality of life)	Insufficient
All Types of Exercise	High (walking improvement)	Low (function)	Low (function)

Intervention Category Intervention	Multiple Sclerosis Studies Strength of Evidence ^b (Direction of Finding)	Cerebral Palsy Studies Strength of Evidence ^b (Direction of Finding)	Spinal Cord Injury Studies Strength of Evidence ^b (Direction of Finding)
	Moderate (balance, depression improvement, no clear benefit on function)	Low (VO ₂ improvement)	Low (VO ₂ improvement, increased episodes of autonomic dysreflexia ^c , no clear benefit on depression)

Abbreviations: ADL = activities of daily living; CP = cerebral palsy; MS = multiple sclerosis; RCT = randomized controlled trial ^a Strength of evidence color shading: blue=high strength of evidence, green=moderate, yellow=low, white=insufficient

^b Strength of evidence based on combining the two populations, multiple sclerosis and cerebral palsy.

^c Whole-body exercise versus exercise limited to upper body

Limitations

Key Question 4: Methodological Weaknesses or Gaps

Conclusions that can be drawn from the evidence on physical activity in patients with multiple sclerosis, cerebral palsy, and spinal cord injury are limited by small sample sizes; few trials (in spinal cord injury); inadequate descriptions of population characteristics, control group activities, and intensity of physical activity; incomplete data analysis; inadequate reporting of adverse events; and relatively few trials considered to be high quality (low risk of bias). The addition of larger, well-conducted randomized controlled trials of longer duration and including all disability levels would greatly strengthen the evidence base and may alter the current conclusions.

Implications and Conclusions

Physical activity was associated with improvements in walking ability, general function, balance (including fall risk), depression, aerobic capacity, activities of daily living, female sexual function, and sleep, depending on population and type of physical activity. No studies reported long-term cardiovascular or metabolic disease health outcomes. Future trials could alter these findings, and further research is needed to examine health outcomes to understand the magnitude and clinical importance of benefits seen in intermediate outcomes.

References

- U.S. Department of Health and Human Services. Physical Activity Guidelines for Americans, 2nd edition. Washington, D.C.: U.S. Department of Health and Human Services; 2018. https://health.gov/paguidelines/secondedition/pdf/Physical_Activity_Guidelines_2 nd_edition.pdf Accessed Sept. 15, 2019.
- UK Chief Medical Officers' Physical Activity Guidelines Care UKDoHS; Sept. 7, 2019. https://assets.publishing.service.gov.uk/gove rnment/uploads/system/uploads/attachment_ data/file/829841/uk-chief-medical-officersphysical-activity-guidelines.pdf Accessed Sept. 15, 2019.

Introduction

Purpose

This systematic review summarizes the current evidence on the health effects of physical activity interventions in people with multiple sclerosis (MS), cerebral palsy (CP), and spinal cord injury (SCI). These three diverse conditions were chosen to represent individuals using a wheelchair or individuals who may benefit from using a wheelchair in the future. ("Wheeled mobility device" is sometimes used to encompass manual wheelchairs, motorized wheelchairs, and motorized scooters; this report uses the term wheelchair in this broad sense.) The review is focused on four Key Questions developed by the National Institutes of Health to inform a Pathways to Prevention Workshop. It is anticipated that the evidence synthesis on the health effects of physical activity intervention in people with multiple sclerosis, cerebral palsy, and spinal cord injury will be of ongoing interest to primary and specialty care providers, health researchers, policymakers, and other stakeholders.

Background

For the general population, the health benefits of regular physical activity are wellrecognized, as highlighted in 2008 and 2018 reports to the Department of Health and Human Services from the Physical Activity Guidelines Advisory Committee.^{1,2} In addition to a reduced risk of death, greater amounts of regular moderate-to-vigorous physical activity reduces the risk of many of the most common and expensive diseases or conditions in the United States. Heart disease, stroke, hypertension, type 2 diabetes, dementia, depression, postpartum depression, excessive weight gain, falls with injuries among the elderly, and breast, colon, endometrial, esophageal, kidney, stomach, and lung cancer are all less common among individuals who are or become more physically active.² Physical activity may also help reduce the natural progression of disability in certain populations.³ In 2016 one in four noninstitutionalized U.S. adults (25.7%, representing an estimated 61.4 million people) reported having a physical and/or cognitive disability, and mobility was the most prevalent disability type (13.7% of the total).⁴ Newly released physical activity guidelines suggest adults with disability benefit from similar amounts of physical activity and muscle strengthening as the general population, although there may be some risk of injury for populations who are not accustomed to exercise.⁵ The U.S. Department of Health and Human Services indicates that routine physical activity programs combining aerobic exercise with muscle strength and balance training improve fitness, function, and quality of life for individuals with physical disabilities.² Less is known regarding specific health benefits of physical activity in people who use a wheelchair.

The various populations using wheelchairs are broad and poorly captured in the literature on physical activity, making a systematic review of all "wheelchair users" unfeasible. Additionally, some individuals may only need the use of a wheelchair some of the time—to cover longer distances or when experiencing a disease flare-up, for example. In order to generate a meaningful result from representative populations that reflect relatively consistent examples of why and how wheelchairs are being used, the analysis is focused on a broad but representative sample of potential wheelchair users—individuals with MS, CP, and SCI. Wheelchair users with these conditions have diverse underlying physiologic mechanisms, demographic profiles, respective physical limitations, and potential outcomes from regular physical activity. Understanding those

differences assists in interpreting the literature relating to exercise among these diverse groups (Table 1).

Causes, Prevalence,			
and Characteristics	Cerebral Palsy	Multiple Sclerosis	Spinal Cord Injury
Etiology	Traumatic injury to a developing brain before, during, or after birth	Progressive autoimmune disease of the central nervous system with variable disease patterns; 10% primary progressive and others progressive after initial relapse and remitting course	Usually traumatic cord injury (motor vehicle accidents, falls, violence, sports); nervous system above the lesion is intact
Prevalence	1.5 to more than 4 per 1,000 live births; males 30% greater than females; 764,000 children and adults living with CP in the United States ⁶	Nearly 1 million people in the United States have MS; average age onset 30 years old and females 2 to 3 times males ⁷	Estimated 282,000 in the United States with SCI; recent evidence puts the average age 43 years old; 78% male ^{8,9}
Mobility	40% limitations in walking and 30% use walkers or wheelchairs	Mobility limitations generally occur later in disease course; after 45 years of disease, on average 76% of individuals require ambulatory aid and 52% bilateral assistance ¹⁰	Variable and depends on level and completeness of injury; generally stable after injury and initial rehabilitation
Associated morbidity	40% of children with CP have intellectual disability, 35% epilepsy, and more than 15% had vision impairment	Sequela of immune suppression including urinary and respiratory infections, seizures, other autoimmune diseases, visual abnormalities, ataxia ¹¹	Respiratory complications, thromboembolism, autonomic dysreflexia, orthostatic hypotension, bladder dysfunction, neurogenic bowel, spasticity, pain, pressure ulcers ¹²
Usual intent of physical activity	Increase mobility and overall level of function as component multimodality efforts during childhood development	Maintain mobility and attenuate limitations of progressive disease; because those with MS often have normal life expectancies the benefits of exercise for the general population would also apply	Maximize functional abilities; recreation; because long-term sequela SCI better prevented/managed, longer term health benefits of regular exercise also are relevant

Table 1. Characteristics, causes, and prevalence of multiple sclerosis, cerebral palsy, and spinal	
cord injury	

Abbreviations: CP = cerebral palsy; MS = multiple sclerosis; SCI = spinal cord injury

SCI, MS, and CP have very different physiologic mechanisms (brain vs. spinal cord, degenerative vs. not) and demographic profiles (male vs. female predominance, childhood vs. adult onset). CP is usually present at birth. While the brain injury involved in CP can in general be relatively static, its early onset has effects on musculoskeletal development with functional sequela. In contrast, MS and SCI most often have onset after skeletal maturation is complete. MS can affect any central nervous system function, including vision, and can be progressive for many years. SCI does not affect motor or sensory systems above the level of the spinal cord lesion, sparing cerebral function, and the nervous system injury is usually static after the acute period.

While they are distinctly different in general etiology and pathophysiology, a common denominator for all three conditions is the involvement of the corticospinal tracts of the central nervous system, which results in an impaired central control and/or coordination of the

peripheral muscles. This may lead to paralysis or reduced extremity muscle force and increased spasticity, which can greatly affect general mobility or coordinated movement such as posture and gait. The consequences on ambulation of this corticospinal tract injury exist along a functional spectrum, from fully ambulatory despite motor involvement, to a wide range of overlap of independent ambulation with intermittent wheelchair use, to full-time wheelchair use. Having MS, CP, or SCI is typically permanent and may result in decades of being sedentary if engaging in physical activity is not made a priority. The potential benefits in these populations may be even greater than in able-bodied people who are still mobile and who achieve some benefit of activity through performing ordinary activities in daily life such as pushing a grocery cart around a store, fixing dinner, or carrying a child up the stairs.

Many users of wheelchairs encounter psychological and physical barriers as well as limitations of access to preventive healthcare and appropriate physical activity programs intended to maintain healthy weight or body composition and physical fitness. The preventive benefits of regular exercise are particularly relevant for people with disabilities, who experience accelerated risk for the conditions known to be attenuated by regular exercise, such as obesity or increased body fat,¹³⁻¹⁵ dyslipidemia,^{16,17} and cardiovascular events such as myocardial infarction,^{17,18} stroke,¹⁸⁻²⁰ and death.^{8,18} Increased risk for morbidity and mortality may be due, in part, to the specific disease that limits mobility or leads to the use of a wheelchair, the treatment for the disease (e.g., steroids used to treat MS), and/or a sedentary lifestyle.

The National Academies of Sciences, Engineering, and Medicine's 2017 report on the use of assistive technologies to enhance activity recommends that individuals who require wheeled and seated mobility devices receive regular evaluations of their physical condition.²¹ Evaluation should include at least annual assessments of the functioning and fitting of the devices, ergonomics and safety, ability to use the device, underlying disorder and secondary health conditions, functional needs, and the individual's satisfaction. Access to appropriate care can facilitate education, linkage to activity resources, and encouragement of physical activity to help mitigate these risks.

People with disabilities face a number of barriers to exercise. Skill at using a wheelchair, fatigue, fear of falling, pain, heat sensitivity, negative bias/stigma,²² and conflicting information from providers have been listed as barriers to exercise among those with MS.²³⁻²⁷ Those with CP cite the need for caregiver support, prohibitive cost, and their medical condition as barriers to regular physical activity.²⁸ Additionally, it can be challenging to find physical activities that a child with quadriplegic CP can do to improve strength or aerobic conditioning when motor control is insufficient. For individuals with SCI, concern about autonomic dysfunction, blood pressure and temperature regulation during exercise, may limit exercise participation,^{29,30} contributing to decreasing fitness levels with increasing time since injury.²¹ All wheelchair users are limited by lack of access to facilities, lack of transportation, and insufficient Americans with Disabilities Act compliance at community fitness centers.³¹⁻³³ Individuals who infrequently need a wheelchair may not be completely comfortable with their wheelchair skills and therefore may not be active enough in participating in wheelchair sports or physical activities.³⁴ Special equipment such as robot-assisted gait training (RAGT) or body weight support treadmill devices can be prohibitively difficult for people outside of major urban areas to access.

A review of Canadian community-based physical activity and wheelchair mobility programs points out a clear need for more programs, particularly those that assess long-term impact.³² Longer time since injury is associated with lower fitness levels in SCI with paraplegia.³⁵

Decreased strength and muscle mass associated with aging increases risk for shoulder injury, and elderly wheelchair users need specific interventions to preserve mobility.³⁶

Physical activity has been shown to improve body composition,³⁷⁻³⁹ cognition,⁴⁰ glucose metabolism,^{39,41,42} and lipid profiles,^{39,43} and to decrease risk of morbidity and mortality in nondisabled people.^{38,44} Physical activity could similarly benefit those with disabilities. Recently published SCI guidelines recommend moderate to vigorous intensity aerobic exercise at least twice weekly and strength exercise for each major functioning muscle group twice weekly.⁴⁵ Verschuren et al. recommend aerobic sessions and strength training twice weekly for individuals with CP,⁴⁶ while Halabchi et al. recommend aerobic exercises, strength training, and daily flexibility and stretching exercises for individuals with MS.⁴⁷ In the past, exercise was not recommended for individuals with MS due to fear of worsening of symptoms.⁴⁸ However, more recent evidence suggests that physical activity improves health outcomes in people with disabilities (including people with MS), and the updated 2018 Physical Activity Guidelines for Americans now recommend between 2.5 to 5 hours of moderate aerobic exercise weekly, or over 1 hour to 2.5 hours of vigorous aerobic exercise weekly, plus muscle strengthening activities, for people with physical disabilities.² These guidelines suggest that children ages 3 through 5 years engage in physical activity throughout the day for normal growth and development and that school-aged children and adolescents receive 60 minutes of moderate to vigorous-intensity aerobic activity, 60 minutes of muscle-strengthening activity, and 60 minutes of bonestrengthening activity at least 3 days a week. The guidelines do not offer recommendations regarding physical activity in children or adolescents with chronic disease or physical disability.

Scope and Key Questions

This systematic review summarizes and synthesizes current research on the specific benefits and potential harms of physical activity for people with MS, CP, and SCI, regardless of current use of a wheelchair. This topic was nominated by the Director of the National Center for Medical Rehabilitation Research, and supported by the National Institute of Child Health and Human Development, the National Institute of Neurological Disorders and Stroke, the National Institutes of Health Office of Disease Prevention, and the National Institutes of Health Medical Rehabilitation Coordinating Committee, which has representatives from 20 Institutes and Centers, along with other federal partners for a Pathways to Prevention (P2P) workshop to assess the benefits and harms of physical activity on the physical and mental health of adults, children, and adolescents using a wheelchair, or who may benefit from using a wheelchair in the future. In considering studies related to physical activity among three representative populations who consistently use, sometimes use, or who may, at some point in their lives, need to use a wheelchair as a result of neurological conditions of MS, CP, and SCI, we prioritized certain outcomes. These included long-term health outcomes of: cardiovascular mortality; myocardial infarction; stroke; development of diabetes; and new or increased need for a wheelchair. Other prioritized immediate health outcomes included: pulmonary function tests; VO₂ peak; hemoglobin A1c (HbA1c); bowel, bladder, and sexual function; decubitus ulcers; development of obesity; body mass index; weight; depression; quality of life; falls; function; autonomic dysreflexia; and spasticity. We evaluated outcomes of diverse physical activity interventions, inclusion/exclusion criteria, and research methodologies to identify future research needs. The outcomes of pain and cognition were not included because it is expected that the magnitude of the literature involved would indicate that these topics should be separate reviews. Our overarching objective was to understand the specific benefits and potential harms of physical

activity for those currently using or those who may benefit from using a wheelchair in the future and to identify domains for future research focus—ultimately improving health and quality of life.

Key Questions

<u>Key Question 1:</u> What is the evidence base on physical activity interventions to prevent obesity, diabetes, and cardiovascular conditions, including evidence on harms of the interventions in people with multiple sclerosis, cerebral palsy, or spinal cord injury who are at risk for or currently using a wheeled mobility device?

- a. What interventions have been studied?
- b. What outcomes have been studied?
- c. What inclusion/exclusion criteria have been used in studies?
- d. What other research methodologies (control/comparison group design, length of intervention, research setting) have been used?

<u>Key Question 2:</u> What are the benefits and harms of physical activity interventions for people with multiple sclerosis, cerebral palsy, or spinal cord injury who are at risk for or currently using a wheeled mobility device?

- a. Does physical activity improve clinical outcomes such as cardiovascular disease, diabetes, overweight or obesity, mental health, or sexual function?
- b. Does physical activity improve intermediate outcomes such as physical fitness, obesity, or bone density?
- c. Does physical activity reduce the harms of immobility, such as incidence of decubitus ulcer, urinary tract infection, bowel dysfunction, or autonomic dysfunction?
- d. Does physical activity decrease the risk for adverse outcomes of disorders associated with wheeled mobility device use, such as spasticity, autonomic dysreflexia, or muscle contractures?
- e. What are the harms of physical activity, such as injuries that are associated with wheeled mobility device use (e.g., falls, tips, overuse injuries)?
- f. Do the benefits or harms of physical activity vary by the location of the intervention (e.g., home, community, clinic), amount of training or instruction (e.g., no training, some training, all physical activity sessions with training), or level of supervision (e.g., inpatient, telehealth)?

<u>Key Question 3:</u> What are the patient factors that may affect the benefits and harms of physical activity in patients with multiple sclerosis, cerebral palsy, or spinal cord injury who are at risk for or currently using a wheeled mobility device?

- a. Do the benefits and harms of physical activity vary by age, sex, or race/ethnicity?
- b. Do the benefits and harms of physical activity vary by primary disease or injury that led to wheelchair use?

<u>Key Question 4:</u> What are methodological weaknesses or gaps that exist in the evidence to determine benefits and harms of physical activity in patients with multiple sclerosis, cerebral palsy, or spinal cord injury who are at risk for or currently using a wheeled mobility device?

- a. What types of studies supported conclusions in Key Questions 2 and 3?
- b. What are the major weaknesses in study designs?
- c. What would improve ability of future research to address the Key Questions?

PICOTS

The Methods section provides details on the Populations, Interventions, Comparators, Outcomes, Timing, Settings, and Study Designs (PICOTS) inclusion and exclusion criteria. An overview of the PICOTS for this review follows.

Populations

- *Include for Key Question (KQ) 1, KQ2, and KQ3:* Patients with MS, CP, or SCI; in studies of mixed populations, at least 80 percent will be individuals with MS, CP, and/or SCI. All ages included.
- *Exclude:* Other populations.

Interventions

- *Include for all KQs:* Any gross motor intervention with a defined period of directed physical activity that is expected to increase energy expenditure. Intervention must have a minimum of 10 sessions on 10 different days of activity in a supervised individual or group setting. Include: aerobic exercise, strength training, standing, balance, flexibility, and combination interventions.
- *Exclude:* Unobserved physical activity; parent or caregiver observed interventions; interventions that do not target the whole body (e.g., interventions to improve reaching or to improve the function of one joint, partial body vibration); single studies of one intervention.

Comparators

- *Include for all KQs:* Between-group comparisons with no physical activity or other types of physical activity or a behavioral intervention with a physical activity outcome.
- *Exclude:* Comparisons to other active comparators such as drug therapy; pre-post studies with only one group of participants.

Outcomes

• For KQ1: Outcome measures, physical activity interventions, inclusion/exclusion criteria, and research methodologies related to prevention of obesity, diabetes, cardiovascular

conditions, or harms; types of studies or bodies of studies supporting conclusions for KQs 2 and 3.

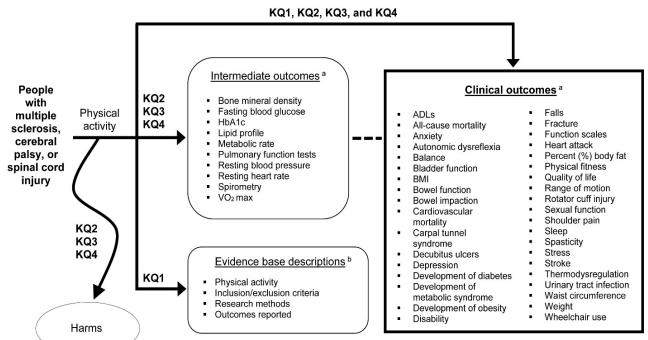
- For KQ2 and KQ3: Benefits and harms of physical activity including: (a) clinical outcomes such as cardiovascular mortality, myocardial infarction, stroke, diabetes, mental health, obesity/overweight, and sexual function; (b) intermediate outcomes such as physical fitness, HbA1c, bone density, and resting heart rate; and (c) subgroup differences based on location of intervention (e.g., home, community, clinic), level of instruction or training (e.g., no training, some training, all physical activity sessions with training), and level of supervision (e.g., inpatient, telehealth).
- For KQ4: Major weakness in study design, items that improve the ability to address the KQs.
- *Exclude:* Outcomes not used to make clinical decisions (e.g., estradiol level, muscle thickness).

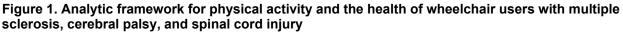
Timing

- *Include for all KQs:* At least 10 sessions of physical activity spread out over no fewer than 10 days.
- *Exclude:* Acute spinal cord trauma stabilization period, immediate postoperative period (e.g., after surgeries to improve musculoskeletal function in CP).

Setting

- *Include for all KQs:* Any U.S. or U.S.-applicable study, including clinic, home (provided physical activity is observed by healthcare or research staff), or community setting (e.g., gym or athletic class).
- *Exclude:* Non-U.S.-applicable setting.


Study Designs


- *Include for all KQs:* Clinical trials and observational studies (cohort studies and case-control studies).
- *Include for all KQs:* Studies with the following minimum sample sizes analyzed: MS (n=30), CP (n=20), SCI (n=20).
- *Include for all KQs:* Studies published since 2008; systematic reviews published since 2014.
- *Include, if needed, due to lack of clinical trials or controlled observational studies:* Prepost studies.
- *Exclude:* Case report, case series, and cross-sectional studies.

Analytic Framework

The analytic framework (Figure 1) illustrates the relationship between the KQs and the outcomes for this review. The figure indicates the questions associated with intermediate outcomes, descriptions of the evidence base, clinical outcomes, and harms. The complete

PICOTS criteria for inclusion and exclusion of studies in this review appear in the Methods section.

Abbreviations: ADL = activities of daily living; BMI = body mass index; HbA1c = hemoglobin A1c; KQ = Key Question; VO_2 max = maximal oxygen uptake

^a Outcomes are specified in the Methods section

^b Studies that evaluate prevention of obesity, diabetes, cardiovascular conditions, and harms

Organization of Report

This report is organized by sections. Each represents either a main section of the report (i.e., Introduction, Methods, Results, Discussion, and Conclusion) or a Key Question.

Key Question 1 provides an overview of the evidence base of included studies as well as identification of studies that did not meet the inclusion criteria of this report.

For Key Question 2 we present the results of the benefits and harms of physical activity interventions for clinical outcomes of interest (Figure 1), subdivided by intervention categories of aerobic exercise, postural control, strength interventions, and multimodal interventions. Interventions specific to each of these categories are indicated with a brief description of the subtype of exercise, key points specific to that intervention, and detailed results are organized by the specific population of MS, CP, and SCI. Studies that reported on only one or more intermediate outcomes (Figure 1) are reported separately.

The Key Question 2 intervention categories include:

Aerobic exercise interventions:

- Aerobics
- Aquatics
- Cycling
- Hand cycling
- RAGT
- Treadmill

Postural control interventions:

- Balance exercise
- Hippotherapy
- Tai Chi
- Motion gaming
- Whole body vibration
- Yoga

Strength interventions:

• Muscle strength exercise

Multimodal interventions:

• Progressive resistance or strengthening exercise plus aerobics and/or postural control interventions

For Key Question 2 the general effects of exercise were also assessed:

All exercise interventions:

• Interventions with sufficient outcomes data to be analyzed independent of population or intervention category

Key Question 3 evaluates patient factors that may affect the benefits and harms of physical activity, and Key Question 4 reports the methodological weaknesses or gaps in the evidence base.

Methods

This Comparative Effectiveness Review follows the methods suggested in the AHRQ *Methods Guide for Effectiveness and Comparative Effectiveness Reviews* (hereafter the "EPC Methods Guide").⁴⁹ All methods were determined *a priori* and the protocol was published on the Agency for Healthcare Research and Quality website

(https://effectivehealthcare.ahrq.gov/sites/default/files/pdf/wheelchair-users-amendedprotocol.pdf). The protocol for this review was also submitted to the PROSPERO systematic review registry (CRD42019130060).

Topic Refinement

Prior to conducting this review, the Evidence-based Practice Center (EPC) refined the preliminary Key Questions and PICOTS (Populations, Interventions, Comparators, Outcomes, Timing, Studies, Settings) with the AHRQ Task Order Officer (TOO), representatives from National Institutes of Health (NIH), Key Informants and the Technical Expert Panel (TEP). NIH assisted in evaluating proposed changes based on the preliminary literature review and input from the stakeholders as well as prioritization of outcomes.

Literature Search Strategy

We searched MEDLINE[®], CINAHL[®], PsycINFO[®], Cochrane CENTRAL, Embase[®], and Rehabilitation and Sports Medicine Source. We also searched ClinicalTrials.gov to capture gray literature. These databases were broad enough to capture the study types, the populations (multiple sclerosis [MS], cerebral palsy [CP], and spinal cord injury [SCI]), and physical activities studied. The full search strategies are in Appendix A. We reviewed reference lists of systematic reviews for includable literature. In addition, TEP members were asked to provide suggestions about unpublished literature. We limited the search to studies published since 2008 and systematic reviews since 2014. An updated literature search was conducted in November 2020. Authors of three studies were contacted for information (no additional information was provided).⁵⁰⁻⁵⁴

The criteria for selection of studies to be included in the review were pre-established (Table 2) and used to determine eligibility for inclusion and exclusion of abstracts according to the EPC Methods Guide.⁴⁹ Two team members trained in systematic review methodology reviewed titles and abstracts for potential eligibility.⁵⁵ Excluded abstracts were dual reviewed. We retrieved the full text of articles for all abstracts selected by at least one reviewer as potentially eligible for inclusion in the review, and two team members independently reviewed the full-text articles. Disagreements on eligibility were resolved by consensus.

Inclusion and Exclusion Criteria and Study Selection

The criteria for inclusion and exclusion of studies were designed to identify outcomes that answer the Key Questions and are based on the PICOTS (Table 2).

The populations for this review are people who have MS, CP, or SCI. Limiting the population to these three groups was designed to capture a broad, diverse population of those who need or who may need the assistance of a wheelchair. Study designs indicated in Table 2 were included. We included studies from countries with a very high or high score on the Human Development Index because studies from these countries are more likely to generate results

similar to a study conducted in the United States. Pre-post studies that otherwise meet inclusion criteria were considered for inclusion in the absence of higher-quality evidence.

Interventions with a defined period of observed physical activity (movement using more energy than rest) with a minimum of 10 sessions of activity on 10 days or more in a supervised or group setting were included. Prioritized outcomes for which we assessed the strength of evidence include: cardiovascular mortality; myocardial infarction; stroke; pulmonary function tests; VO₂ max or peak; development of diabetes; hemoglobin A1c (HbA1c); bowel, bladder, and sexual function; decubitus ulcers; development of obesity; body mass index (BMI); weight; depression; quality of life; time to and amount of wheelchair use; falls; general function; autonomic dysreflexia; and spasticity (Table 3). The strength of evidence was as also assessed for balance. We did not include interventions that were reported in only one study.

Given the publication of the initial 2008 Physical Activity Guidelines¹ (updated with a second edition in 2018⁵) and the large number of potentially relevant publications for this review, we searched for studies published since 2008 and systematic reviews published since 2014. Systematic reviews were used only to identify additional studies because the populations, inclusion criteria, interventions, and timing of the studies in the systematic reviews differed in study eligibility from the inclusion criteria for this report. We examined reference lists from systematic reviews and if specific studies reported in the systematic reviews met our inclusion criteria based on the Key Questions and PICOTS (Table 2) those studies were dual reviewed and included in the report.

These decisions regarding study design, study size, publication date range, and prioritization of outcomes were developed in collaboration with the NIH Pathways 2 Prevention Working Group and reviewed with a panel of technical experts.

Table 2. PICOTS—inclusion and exclusion criteria

PICOTS	Inclusion	Exclusion
Populations	Patients using a wheelchair or those who may benefit from using a wheelchair in the future due to MS, CP, or SCI. All ages included.	 Other populations Studies of mixed populations with <80% MS, CP, SCI
Interventions	Any gross motor intervention with a defined period of directed physical activity that is expected to increase energy expenditure. Intervention must have a minimum of 10 sessions of activity on 10 days or more in a supervised or group setting. Include aerobic exercise, strength training, standing, balance, flexibility, and combination interventions. <u>Included activities (not exhaustive, additional activities may qualify):</u> Balance/flexibility • Stretching/flexibility • Yoga or Pilates • Martial arts (e.g., Tai Chi) • Hippotherapy (equine-assisted therapy) Physical/aerobic exercise • Arm ergometry • Cycling (stationary, recumbent, or arm) • Weight lifting/strength training • Functional electronic stimulation • Robot-assisted gait training • Swimming • Aquatherapy • Group exercise • Team sports • Treadmill (including with body weight support) Strength/resistance training • Weight lifting	 Interventions with <10 sessions Interventions over a period lasting <10 days Unobserved physical activity Family- or caregiver-only observed physical activity Patient-recalled physical activity Postoperative physical activity Intervention focused on improving reaching Interventions without whole body effect (e.g., targeting one joint) Intervention reported in only one study
Comparators	Comparisons to no physical activity or other types of physical activity or behavioral counseling.	All other active controls
Outcomes	 Cardiovascular Cardiovascular mortality, myocardial infarction, stroke, all-cause mortality, resting heart rate, resting blood pressure, lipid profile Respiratory Pulmonary function tests, VO₂ max/peak, spirometry Endocrine Development of diabetes, HbA1c, fasting blood glucose, development of metabolic syndrome, metabolic rate Gastrointestinal Bowel function, bowel impaction Genitourinary Bladder function, urinary tract infection Musculoskeletal Fracture, bone mineral density, muscle strength, rotator cuff injury, shoulder pain, range of motion Reproductive Sexual function 	 Outcomes not used to make clinical decisions (e.g., estradiol level) Other outcomes (e.g., head pitch and roll, kinematic variables, stepping kinematics, reaching, muscle thickness, muscle quality, blood flow restriction, premotoneuronal control) Hospitalization or length of stay Cognition Pain other than shoulder pain

PICOTS	Inclusion	Exclusion
Outcomes (continued)	 Integumentary Decubitus ulcers Body composition Weight, BMI, development of obesity, waist circumference, % body fat Mental health Depression, quality of life, anxiety, stress, sleep General function Walking, falls, wheelchair use, function scales, disability, ADL, balance, physical fitness Neurological Autonomic dysreflexia, spasticity, thermodysregulation, carpal tunnel syndrome 	
Timing	At least 10 days with at least one session of physical activity per day.	 Acute SCI, undergoing stabilization Immediate postoperative period
Setting	Any setting, including, clinic, home, or community setting (e.g., gym or athletic class). Physical activity occurring in the home must still be observed by medical, research, or athletic staff.	Non-U.S. applicable studies
Study Designs	 Randomized controlled trials published since 2008 Controlled observational studies published since 2008 Systematic reviews published since 2014 to review for additional studies meeting inclusion criteria Potentially include pre-post studies in the absence of clinical trials and controlled observational studies Studies with the following sample sizes: MS (n≥30), CP (n≥20), SCI (n≥20). 	 All other study designs (e.g., case series and case reports) Studies published before 2008 Systematic reviews published prior to 2015

Abbreviations: ADL = activities of daily living; BMI = body mass index; CP = cerebral palsy; HbA1c = hemoglobin A1c; MS = multiple sclerosis; SCI = spinal cord injury; VO₂ max = maximal oxygen uptake; VO₂ peak = highest value of VO₂ attained

System	Prioritized Outcomes	Other Outcomes
Cardiovascular	 Cardiovascular mortality Myocardial infarction Stroke 	 All-cause mortality Lipid profile Resting blood pressure Resting heart rate
Respiratory	 Pulmonary function tests VO₂ max/peak 	Spirometry
Endocrine	Development of diabetesHbA1c	 Development of metabolic syndrome Fasting blood glucose Metabolic rate
Gastrointestinal	Bowel function	Impaction
Genitourinary	Bladder function	Urinary tract infection
Musculoskeletal	None prioritized	 Bone mineral density Fracture Muscle strength Range of motion Rotator cuff injury Shoulder pain
Reproductive	Sexual function	None
Integumentary	Decubitus ulcers	None
Body Composition	 Body mass index Development of obesity Weight 	Percent body fatWaist circumference
Mental Health	DepressionQuality of life	AnxietySleepStress
General Function	FallsFunction scalesWheelchair use	 Activities of daily living Balance Disability Physical fitness
Neurological	Autonomic dysreflexiaSpasticity	Carpal tunnel syndromeThermodysregulation

Table 3. Outcomes

Abbreviations: HbA1c = hemoglobin A1c; VO₂ max = maximal oxygen uptake; VO₂ peak = highest value of VO₂ attained

Data Abstraction and Data Management

Data was abstracted from studies meeting the inclusion criteria (Table 2, and Appendix B). We abstracted data on study design, year, setting, country, sample size, eligibility criteria, population, clinical characteristics, (e.g., age, sex, race, MS, CP, or SCI), current versus potential wheelchair users, interventions and comparators, characteristics of the intervention (e.g., number of sessions, level of training of session supervisor), and outcomes (e.g., body mass index, resting heart rate, 6-Minute Walk Test (6MWT), depression scale scores, balance scale scores), and funding. Abstracted study data was verified for accuracy and completeness by a second team member. A record of studies excluded at the full-text level with reasons for exclusion is included in Appendix C. Definitions and characteristics of the included and excluded studies and details of the systematic reviews evaluated for potential includable studies are in Appendix D.

Quality (Risk of Bias) Assessment of Individual Studies

We assessed the risk of bias of randomized controlled trials (RCTs), quasiexperimental studies (nonrandomized studies), and cohort studies following the EPC Methods Guide⁵⁶ using

study design-specific criteria adapted from the U.S. Preventive Services Task Force ⁵⁷ and the Cochrane Collaboration.⁵⁸ For RCTs, we evaluated factors such as randomization and allocation concealment methods, attrition, use of intent-to-treat methods, and blinding. For nonrandomized studies, we assessed factors such as participant selection methods; attrition; accuracy of methods for measuring exposures, outcomes, and confounders; and appropriateness of methods to address potential confounding.

Studies rated "good" have the least risk of bias, and their results are considered valid. Goodquality studies include clear descriptions of the population, setting, interventions, and comparison groups; a valid method for allocation of participants to treatment; low dropout rates and clear reporting of dropouts; appropriate means for preventing bias; and appropriate measurement of outcomes.

Studies rated "fair" may be susceptible to some bias, though not enough to invalidate the results. These studies may not meet all the criteria for a rating of good quality, but no flaw is likely to cause major bias. The study may be missing information, making it difficult to assess limitations and potential problems. The fair-quality category is broad, and studies with this rating will vary in their strengths and weaknesses. The results of some fair-quality studies are likely to be valid, while others may be only possibly valid.

Studies rated "poor" have significant flaws that imply biases of various types that may invalidate the results. They may have a serious or "fatal" flaw in design, analysis, or reporting; large amounts of missing information; discrepancies in reporting; or serious problems in the delivery of the intervention. The results of these studies will be at least as likely to reflect flaws in the study design as the true difference between the compared interventions.

Each included study was independently dual-reviewed for quality by two EPC team members and disagreements resolved by consensus. Criteria for assessing the quality and external validity of studies is provided in Appendix E.

Data Analysis and Synthesis

The findings are summarized in evidence tables indicating the study characteristics and outcome results and study quality ratings, and are included in summary tables of the key findings. Findings are organized by the intervention categories: aerobic exercise (including aquatics, cycling, dance, and robot-assisted gait training [RAGT]), postural control (including postural control exercises, hippotherapy, Tai Chi, motion games, whole body vibration [WBV], and yoga) as well as strength exercises (including; muscle strengthening exercise and multimodal exercise with strength as a major component). Results for each of these categories are reported by etiology of disability (i.e., MS, CP, SCI). Evidence from the included studies is in Appendix F, and Appendix G provides the quality ratings for individual studies.

Statistical Meta-Analysis

We conducted quantitative synthesis involving pooling of study findings in meta-analyses as appropriate (i.e., when studies are homogeneous enough to provide meaningful combined estimates) to summarize data from multiple studies and to obtain more precise and accurate estimates of effects. The difference between each intervention's mean change from baseline to followup, or the mean difference (MD), was the primary effect size. Standardized mean differences were calculated when the scale of units varied within an outcome. Methods for calculating the standard deviation of the change scores followed the recommendations given in The Cochrane Handbook 7.7.⁵⁸ Meta-analyses were conducted using STATA 14.0 and 14.2

(StataCorp, College Station Texas). In the case of nonconvergence with Profile Likelihood, or when there was no meaningful difference between analyses using Profile Likelihood and Dersimonian and Laird, the Dersimonian and Laird estimates were reported. The I-squared (I²) statistic was used to assess statistical heterogeneity. When statistical heterogeneity is present (i.e., $I^2 > 30\%$), an attempt to understand the heterogeneity through stratification of data and/or sensitivity analysis was conducted.

When pooled studies varied in quality and included poor-quality RCTs, a sensitivity analysis was conducted by removing studies rated poor quality. Quasiexperimental and cohort studies were not included in meta-analyses involving RCTs due to the difference in study design and the relatively poor quality of these studies. Pooled analysis focused on prioritized outcomes for which there was sufficient data.

Due to the large number of potential outcomes, quantitative synthesis focused on those outcomes previously prioritized for strength of evidence rating (Table 3) with the addition of the Berg Balance Scale, which was not a prioritized outcome but was the outcome with the most evidence.

Grading the Strength of Evidence

The strength of evidence for each Key Question was initially assessed by one researcher and verified by a second reviewer for each outcome by using the approach described in the EPC Methods Guide.⁵⁶ To ensure consistency and validity of the evaluation, the grades reviewed for:

- Study limitations (low, medium, or high level of study limitations)
- Consistency (consistent, inconsistent, or unknown/not applicable)
- Directness (direct or indirect)
- Precision (precise or imprecise)
- Reporting bias (suspected or not detected)

The strength of evidence was assigned an overall grade of high, moderate, low, or insufficient according to a four-level scale by evaluating and weighing the combined results of the above domains:

- High: Very confident that the estimate of effect lies close to the true effect for this outcome. The body of evidence has few or no deficiencies. The findings are stable, meaning another study would not change the conclusions.
- Moderate: Moderately confident that the estimate of effect lies close to the true effect for this outcome. The body of evidence has some deficiencies. The findings are likely to be stable, but some doubt remains.
- Low: Limited confidence that the estimate of effect lies close to the true effect for this outcome. The body of evidence has major or numerous deficiencies (or both). Additional evidence is needed before concluding either that the findings are stable or that the estimate of effect is close to the true effect.
- Insufficient: No evidence, unable to estimate an effect, or have no confidence in the estimate of effect for this outcome. No evidence is available or the body of evidence has unacceptable deficiencies, precluding reaching a conclusion.

Individual strength of evidence domains are indicated in summary tables with ratings for the strength of evidence. Ratings for strength of evidence were assigned for prioritized outcomes only and focus on concepts when possible (e.g., an overall rating for depression rather than individual ratings for each depression scale). Strength of evidence ratings were assigned by study population (i.e., MS, CP, SCI). Appendix H describes the strength of evidence for each Key Question.

Assessing Applicability

Applicability was assessed in accordance with the *Methods Guide*, ⁵⁶ which is based on the PICOTS framework. Applicability addresses the extent to which outcomes associated with an intervention are likely to be similar across different participants and settings in clinical practice based on the populations, interventions, comparisons, and outcomes evaluated in the studies. For example, exclusion of adults in CP trials may render findings that are not applicable to all CP patients seen in clinical practice. Results from trials of elite wheelchair athletes may not be applicable to the average wheelchair user. Factors that may affect applicability, which we have identified a priori include eligibility criteria and participant factors (e.g., age, gender, age at injury or diagnosis, duration of injury or diagnosis, baseline fitness level, degree of dependence on the use of a wheelchair, etiology of disability or potential disability), intervention factors (e.g., dose and duration of the intervention, degree of physical activity supervision), comparisons and rate in the comparison group (e.g., no physical activity, other physical activity), outcomes (e.g., clinical health outcomes, intermediate outcomes, validated or unvalidated outcomes), setting (e.g., home, community, research lab), and study design features (e.g., RCT vs. non-RCT, study location). We used this information to assess the situations in which the evidence is most relevant and to evaluate applicability to real-world clinical practice in typical U.S. settings, summarizing applicability assessments qualitatively.

Peer Review and Public Commentary

Clinical and methodological experts were invited to provide external peer review of this systematic review. Comments and editorial review were also be provided by the AHRQ TOO and an EPC Program Associate Editor. The peer-reviewed draft report was posted on the AHRQ website for 4 weeks to elicit public comment. We revised the text as needed and address all relevant reviewer comments in an associated disposition of comments report with the authors' individual responses. The final report of the review will be posted on AHRQ's website.

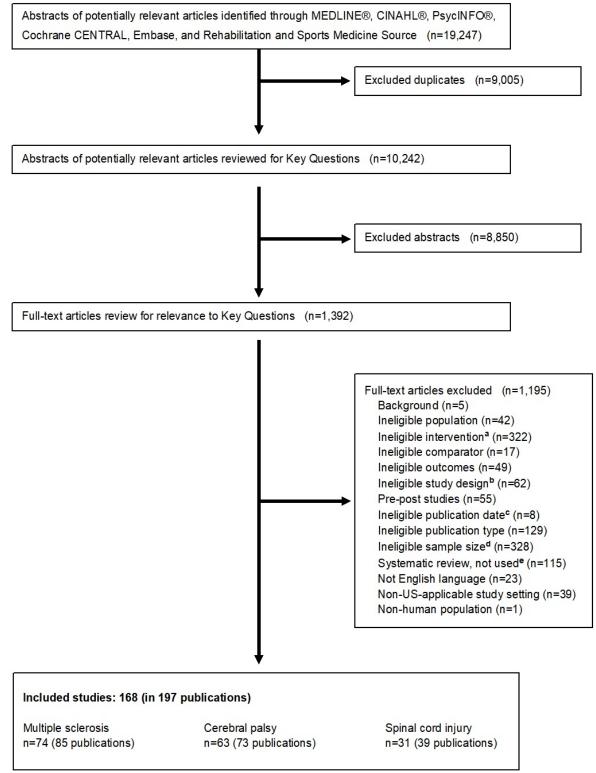
Results

Overview

Findings are presented in order of the Key Questions (KQ). For KQ1 we identified studies within the entire literature base (including studies that met inclusion criteria and those that did not) with results on prevention of obesity, diabetes, and cardiovascular conditions in participants with multiple sclerosis (MS), cerebral palsy (CP), or spinal cord injury (SCI). For KQ2 on the benefits and harms of physical activity interventions, we reported results by type of intervention: aerobics, postural control, strength, and multimodal exercise, and by population. We assessed the strength of evidence (SOE) for prioritized outcomes and described other outcomes. For KQ3 we examined patient factors that may affect the benefits and harms of physical activity, and for KQ4 we reported the methodological weaknesses or gaps in the evidence base.

We synthesized results qualitatively and quantitatively. We did meta-analysis for studies that had criteria similar enough to provide meaningful combined estimates. Meta-analyses included the 6-Minute Walk Test (6MWT), 10-Meter Walk Test (10MWT), Timed Up and Go Test (TUG), Gross Motor Function Measure (GMFM), MS Walking Scale, and Berg Balance Scale (BBS), among others.

Acronyms and abbreviations used are listed at the end of the report.


Results of Literature Searches

Searches identified 19,247 potentially relevant abstracts with 10, 242 nonduplicated abstracts. From the abstracts, 1,392 full-text articles were dual reviewed by two researchers, and 168 studies in 197 publications (n=7,511) met the inclusion criteria. We included 146 randomized controlled trials (RCTs), 15 quasiexperimental studies, and 7 cohort studies.

Results of the literature search are indicated in the literature flow diagram (Figure 2) which shows the number of excluded abstracts and the number of excluded articles, as well as exclusion reasons at the full-text level. The list of included studies is in Appendix B and excluded full-text studies list is in Appendix C. Full-text review resulted in inclusion of 74 studies (85 publications) for MS, 63 studies (73 publications) for CP, and 31 studies (39 publications) for SCI. We evaluated the lists of studies included in 116 different systematic reviews judged to be relevant to our review topic to identify additional publications of studies that might be eligible for inclusion in our review (Appendix D). We identified no studies of mixed populations that met inclusion criteria.

At the full-text review level there were 1,195 studies excluded. Primary reasons for exclusion included ineligible interventions and inadequate sample sizes. The majority of excluded studies did not meet our inclusion criteria due to sample size (328 studies with inadequate sample sizes) or intervention requirements (322 interventions did not have adequate duration or number of interventions, the exercise was unobserved, or otherwise did not meet criteria for inclusion). Evidence tables and quality assessment tables for all included studies are in Appendix F and Appendix G.

Figure 2. Literature flow diagram

^a Interventions with < than 10 sessions/< than 10 days, or only family/caregiver observed

^b Case reports and case series are not included due to methodological limitations

^c Studies before January 2008 and systematic reviews from 2014 or older are outside of the search dates

- ^d Studies with sample sizes <30 for multiple sclerosis and cerebral palsy, and <20 for spinal cord injury
- ° Systematic reviews not used because they did not meet all inclusion criteria, but checked for includable studies

Description of Included Studies

A general overview of the included studies for each population by intervention categories of aerobics exercise, postural control, strength, and multimodal interventions is in Figure 3, which indicates the percentage of each type of exercise studied for people with MS, CP, and SCI. Table 4 shows the studies with primary outcomes from the 168 studies (in 197 publications) that met inclusion criteria and the details of the included studies. A visual summary of the interventions by each population (Figure 4) indicates that in patients with MS, the most frequent interventions were muscle strengthening, multimodal exercises, and cycling. For CP, treadmill and hippotherapy were frequent interventions, and for SCI, robot-assisted gait training (RAGT), treadmill training, hand cycling, and multimodal interventions were used most often. The mean number of participants per study was 45 (range 20 to 242) with only three studies having a sample size of 100 or more. Studies in MS and CP tended to enroll participants with less disability (average study mean Expanded Disability Status [EDSS] score in MS 3.6 standard deviation (SD) 1.77, with little evidence in participants with EDSS scores of 6.5 or higher; GMFCS in CP typically I to III (average study mean Gross Motor Function Classification System [GMFCS] I-IV) 2.40, SD 0.87). Studies in SCI enrolled a wider spectrum of disability. The mean number of exercise sessions and the mean duration of exercise in MS was 25 sessions over 9 weeks, in CP 28 sessions over 10 weeks, and in SCI 68 sessions over 17 weeks. Studies were conducted most often in Iran (26 studies), Turkey (19 studies), the United States (15 studies), Italy (12 studies), and South Korea (12 studies). The remaining studies were conducted in numerous countries with fewer studies per location. Most studies were conducted in an (usually unspecified) outpatient setting (51%) or in an inpatient hospital or rehabilitation center (14%). Some studies were conducted in more than one location; 18 percent did not report study setting. Most studies were funded by a government entity (25%) or by a nonprofit (13%). Twenty-nine percent of studies did not comment on funding and 15 percent reported that no funding was received. No study reported on the use of a wheeled scooter (as opposed to a wheelchair).

The distribution of quality ratings by intervention is shown in Figure 5. Two-thirds of the studies were fair quality (n=113), one-fourth were poor quality (n=42), and only 8 percent (n=13) were considered good quality.

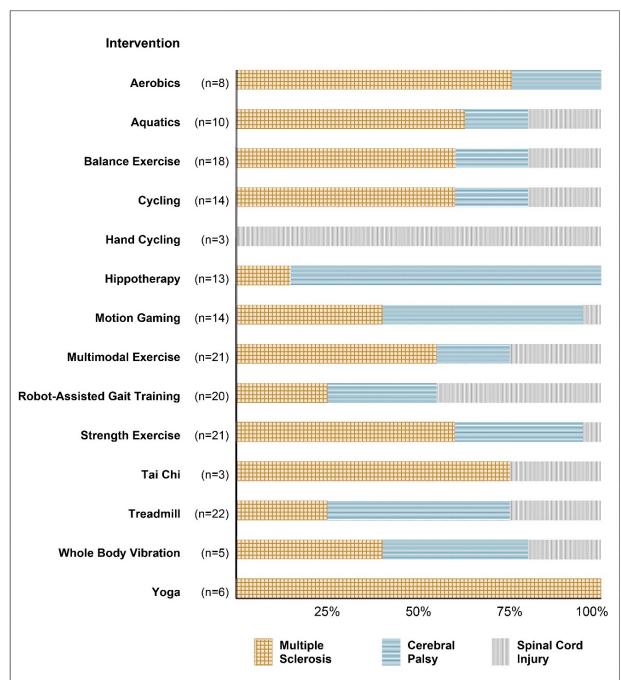


Figure 3. Overview of included studies by population and intervention^a

^a Studies with multiple interventions appear more than once.

Category		Multiple Sclerosis n=74 (85 Publications)	Cerebral Palsy n=63 (73 Publications)	Spinal Cord Injury n=31 (39 Publications)	Total Studies n=168 (197 Publications)
Aerobic Exercise	Aerobics	4 RCTs ^{54,59-61} 2 Quasiexperimental studies ^{62,63}	2 RCTs ^{64,65}	No studies	n=8 6 RCTs 2 Quasiexperimental studies
Aerobic Exercise	Aquatics	6 RCTs ⁶⁶⁻⁷²	1 RCT ⁷³ 1 Cohort ⁷⁴	2 RCTs ^{75,76}	n=10 9 RCTs 1 Cohort study
Aerobic Exercise	Cycling	7 RCTs ^{53,77-83} 1 Quasiexperimental study ⁸⁴	2 RCTs ⁸⁵⁻⁸⁷ 1 Quasiexperimental study ⁸⁸	1 RCT ⁸⁹ 1 Cohort study ⁹⁰ 1 Quasiexperimental study ⁹¹	n=14 10 RCTs 3 Quasiexperimental studies 1 Cohort study
Aerobic Exercise	Hand Cycling	No studies	No studies	2 RCTs ^{89,92} 1 Cohort study ⁹³	n=3 studies 2 RCTs 1 Cohort study
Aerobic Exercise	Robot- Assisted Gait Training	5 RCTs ⁹⁴⁻⁹⁸	5 RCTs ⁹⁹⁻¹⁰⁴ 1 Quasiexperimental study ¹⁰⁵ 1 Cohort study ¹⁰⁶ 10 RCTs ¹²¹⁻¹³⁰	8 RCTs ¹⁰⁷⁻¹¹⁶	n=20 studies 18 RCTs 1 Quasiexperimental study 1 Cohort study
Aerobic Exercise	Treadmill	4 RCTs ¹¹⁷⁻¹²⁰	10 RCTs ¹²¹⁻¹³⁰ 2 Quasiexperimental studies ^{131,132}	6 RCTs ^{113,133-140}	n=22 20 RCTs 2 Quasiexperimental studies
Postural Control	Balance Exercises	12 RCTs ^{61,83,141-151}	1 RCT ¹⁵² 2 Quasiexperimental studies ^{153,154} 1 Cohort study ¹⁵⁵	2 RCT ^{156,157}	n=18 15 RCTs 2 Quasiexperimental studies 1 Cohort study
Postural Control	Hippotherapy	2 RCTs ¹⁵⁸⁻¹⁶⁰	8 RCTs ¹⁶¹⁻¹⁶⁸ 2 Quasiexperimental studies ^{169,170} 1 Cohort study ¹⁷¹	No studies	n=13 studies 10 RCTs 2 Quasiexperimental studies 1 Cohort study
Postural Control	Tai Chi	1 RCT ¹⁷² 1 Quasiexperimental study ¹⁷³	No studies	1 RCT ¹⁷⁴	n=3 studies 2 RCTs 1 Quasiexperimental study
Postural Control	Motion Gaming	6 RCTs ^{51,83,151,175-177}	7 RCTs ^{50,178-183}	1 RCT ¹⁸⁴	n=14 studies 14 RCTs
Postural Control	Whole Body Vibration	2 RCTs ^{185,186}	2 RCTs ^{187,188}	1 RCT ¹⁸⁹	n=5 studies 5 RCTs
Postural Control	Yoga	6 RCTs ^{54,120,190-197}	No studies	No studies	n=6 studies 6 RCTs
Strength Exercise	Muscle Strength Exercises	11 RCTs ^{52,68,69,83,149,198-} 206 1 Quasiexperimental study ⁶²	7 RCTs ²⁰⁷⁻²¹⁶ 1 Quasiexperimental study ²¹⁷	1 RCT ^{218,219}	n=21 studies 19 RCTs 2 Quasiexperimental study
Multimodal Exercise	PRE or strength exercise plus aerobic or balance	12 RCTs ²²⁰⁻²³² 1 Quasiexperimental study ²³³	5 RCTs ²³⁴⁻²⁴³	3 RCTs ²⁴⁴⁻²⁴⁹ 1 Cohort study ²⁵⁰	n=21 studies 19 RCTs 1 Cohort study 1 Quasiexperimental study

Table 4. Included studies by intervention category and population^a

Abbreviations: PRE = progressive resistance exercise; RCT = randomized controlled trial ^a Studies with multiple interventions appear more than once on the table. Studies with only an intermediate outcome(s) appear in Tables 42, 43, 44, and 46.

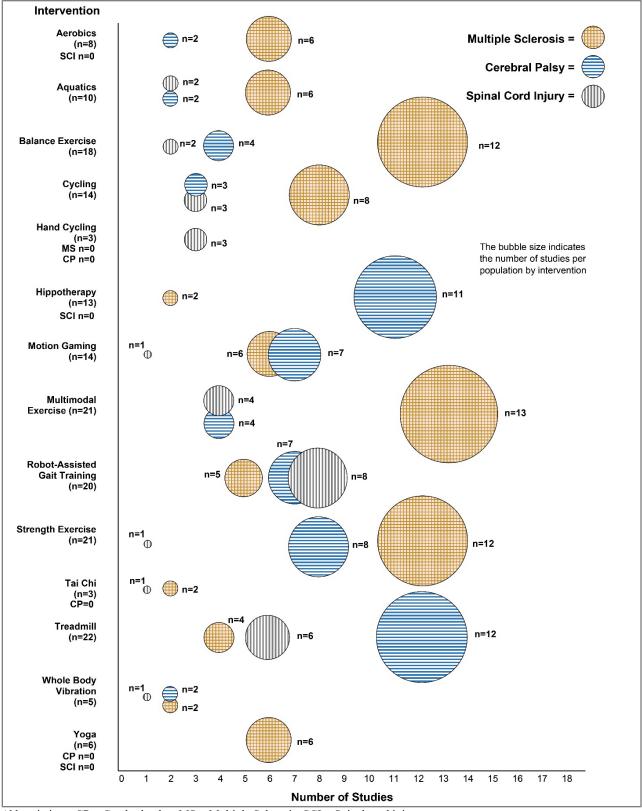
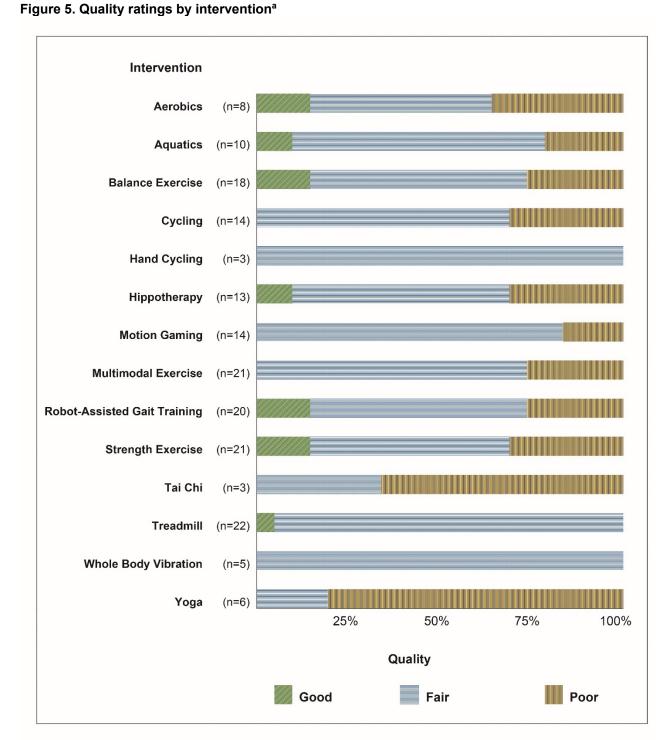



Figure 4. Wheelchair user and exercise number of studies: interventions and population^a

Abbreviations: CP = Cerebral palsy; MS = Multiple Sclerosis; SCI = Spinal cord injury

^a Studies with multiple interventions appear more than once.

^a Studies with multiple interventions appear more than once.

KQ1: Prevention of Obesity, Diabetes, and Cardiovascular Conditions

This KQ identifies existing research that links physical activity to the prevention of longterm health outcomes such as myocardial infarction, stroke, and the development of diabetes or obesity, regardless of whether that study met inclusion criteria. No studies on the effects of physical activity in participants with MS, CP, or SCI reported long-term cardiovascular or longterm metabolic disease health outcomes, although some studies reported intermediate outcomes such as blood pressure, lipid profile, and blood glucose. Table 5 identifies the studies that met inclusion criteria for this review. Table 6 identifies the studies that did not meet inclusion criteria but nonetheless reported intermediate obesity, diabetes, and/or cardiovascular outcomes. The results of the included studies are discussed in KQ2. Studies not meeting inclusion criteria for this review may help identify gaps in the evidence and inform future research needs.

Study (Author, Year)	Outcome Measure	Condition (MS, CP, SCI)	Intervention (Treatment Duration)	Study Inclusion/ Exclusion Criteria	Study Design
Akkurt, 2017 ⁸⁹	BMI, weight, fat, lipids	SCI	Upper extremity cycling vs. general exercises (12 weeks)	Age 15-65, traumatic lesion, less than 2 hours per week of physical activity, CV disease	RCT
Faramarzi, 2020 ²³⁰	Lipids, fat	MS	Resistance exercises + endurance exercise + balance exercises + Pilates + Stretching (12 weeks)	Female, Age 18 to 50, less than 2 hours per week of physical activity, no history of cardiovascular, kidney or other chronic disease	RCT
Gervasoni, 2014 ¹¹⁷	Resting HR	MS	Treadmill + usual therapy vs. usual therapy (2 weeks)	Stand for 30 seconds, walk for 6 minutes/no cardiac, pulmonary, or metabolic disease	RCT
Giangregorio, 2012 ¹³⁴	BMI, weight, fat	SCI	Treadmill walking with FES vs. aerobic and resistance training (16 weeks)	Traumatic incomplete SCI/no cardiac pacemaker, ulcer at harness site, orthostatic hypotension, unstable AD	RCT
Jones, 2014a/b ^{246,247}	BMI, weight, fat, glucose	SCI	Activity-based therapy vs. waitlist (24 weeks)	Age ≥ 18, motor incomplete SCI	RCT
Marandi, 2013 ^{68,69}	BMI, weight, fat	MS	Aquatics vs. Pilates (12 weeks)	EDSS <4.5	RCT
Mogharnasi, 2019 ²¹⁹	BMI, weight, fat, lipids	SCIk	Upper body resistance training vs. usual care (8 weeks)	Obese, paraplegic, male, traumatic lesions, could sit and maintain upper body balance/no braces, crutches or walkers	RCT
Sandroff, 2017 ²²¹	BMI, weight, fat	MS	Resistance + aerobics + balance vs. toning and stretching (24 weeks)	Age 18-64, EDSS 4.0-6.0, engaging in low level of physical activity, low risk for exercise contraindication	RCT

Table 5. Included trials with intermediate outcomes related to cardiovascular disease, diabetes, and obesity

Study (Author, Year)	Outcome Measure	Condition (MS, CP, SCI)	Intervention (Treatment Duration)	Study Inclusion/ Exclusion Criteria	Study Design
Slaman, 2014 ²³⁵	BMI, weight, fat, lipids	СР	Strength + aerobic training + counseling on physical activity and sports participation vs. usual care (12 weeks)	Age 16-24, GMFCS I-IV, spastic CP/no disabilities other than CP that affect physical activity, contraindications to maximal exercise, severe cognitive disorder	RCT
Totosy de Zepetnek, 2015 ²⁴⁹	Resting BP, HR, HbA1c, lipids, BMI	SCI	Progressive resistance + aerobic training (16 weeks)	Age 18-65, no progressive loss of neurologic function within past 6 months	RCT
Wens, 2015 ²²⁴	Resting HR, BMI, weight, fat, glucose	MS	Strength + high- intensity interval training vs. strength + high-intensity continuous aerobic training vs. sedentary control (12 weeks)	Age ≥18 years/no diabetes or other chronic disease (CV, pulmonary, and/or renal)	RCT

Abbreviations: AD = autonomic dysreflexia; BMI = body mass index; BP = blood pressure; CP = cerebral palsy; CV = cardiovascular; EDSS = Expanded Disability Status Scale; FES = functional electrical stimulation; GMFCS = Gross Motor Function Classification System; HbA1c = hemoglobin A1c; HR = heart rate; MS = multiple sclerosis; RCT = randomized controlled trial; SCI = spinal cord injury

Table 6. Studies with intermediate outcomes related to cardiovascular disease, diabetes,	, and
obesity that did not meet inclusion criteria	

Study (Author, Year)	Outcome Measure	Condition (MS, CP, SCI)	Intervention (Treatment Duration)	Study Inclusion/ Exclusion Criteria	Study Design
Brochetti, 2018 ²⁵¹	Weight, waist circumference	SCI	Weight management program: working on healthy eating, exercise and lifestyle (12 weeks)	1 year post-SCI with chronic weight issue or obesity diagnosis	Pre-Post
de Groot, 2018 ²⁵²	Hip circum- ference, fat	SCI	Competitive self-guided training for Dutch cycling race HandbikeBattle (12 weeks)	Passed medical screening; no contraindications to exercise	Pre-Post
de Rossi, 2014 ²⁵³	LV function	SCI	None	Tetraplegic rugby players; paraplegic basketball players; sedentary SCI; no diabetes, smoking, CV or pulmonary disease, no cancer, no hypertension or hyperlipidemia	Cross- sectional
Gibbons, 2016 ^{254,255}	Cardiac structure and function	SCI	FES rowing: FES trained vs. untrained	Age 26-56, at least 12 months post-SCI between C4 and T10,	Cross- sectional
2 studies			FES rowing: FES naïve (length varied based on progression)	ASIA A or B, otherwise healthy; FES trained and non-FES trained	Pre-Post
Hubli, 2014 ²⁵⁶	Arterial stiffness, BP, HR	SCI	None	Elite hand cyclists; nonathletes	Cross- sectional

Study (Author, Year)	Outcome Measure	Condition (MS, CP, SCI)	Intervention (Treatment Duration)	Study Inclusion/ Exclusion Criteria	Study Design
Jorissen, 2018 ²⁵⁷	Lipids	MS	Medium vs. high- intensity CV training (12 weeks)	No hyperlipidemia, CV disease, diabetes, cholesterol modifying drugs	RCT
Keytsman, 2017 ²⁵⁸	Glucose, HOMA, fat, BP, lipids	MS	High-intensity interval and resistance training (12 weeks)	Age ≥ 18; No EDSS >6	Pre-Post
Lauglo, 2016 ²⁵⁹	Weight, BMI, fat	СР	High-intensity walking or running on treadmill (6 to 12 weeks)	Age 10-17, GMFCS I-IV	Pre-Post
Magnani, 2016 ²⁶⁰	Hemo- dynamic data	MS	Aerobic and strength training vs. no exercise control (6 months)	Age 18-65; no chronic cardio-pulmonary diseases	RCT
Myers, 2012 ²⁶¹	Weight, HOMA	SCI	Visits by dietitian, physical therapist, exercise physiologist (2 years)	Male veteran at high risk for CVD, ≥ 20% 10 year risk of CVD; no CVD	Pre-Post
Zabay Neiro, 2018 ²⁶²	BMI, BP	MS	Walking with classes on healthy diet, rest, and physical activity vs. usual care (12 weeks)	EDSS score < 6.0	RCT
Orban, 2019 ²⁶³	Fat	MS	Aerobic exercise vs. guided stretching control (8 weeks)	Age 18-65, RRMS, fully ambulatory; no uncontrolled CV or pulmonary disease	Matched cohort

Abbreviations: ASIA = American Spinal Injury Association Impairment Scale; BMI = body mass index; BP = blood pressure; CV = cardiovascular; CVD = cardiovascular disease; EDSS = Expanded Disability Status Scale; FES = functional electrical stimulation; GMFCS = Gross Motor Function Classification System; HR = heart rate; HOMA = homeostatic model assessment; LV = left ventricular function; MS = multiple sclerosis; RCT = randomized controlled trial; RRMS = relapsing-remitting multiple sclerosis; SCI = spinal cord injury

KQ1a: Interventions

There is no evidence for any intervention studied on the prevention of cardiovascular conditions, diabetes, or obesity. Interventions paired with relevant intermediate outcomes of cardiac structure and function, heart rate, blood pressure, lipid profile, glucose levels or metabolism, body weight, body mass index (BMI), fat mass, or other measures of body composition are numerous. These interventions include aerobic exercise (e.g., aerobic exercises, treadmill walking or running, cycling, and aquatics), strength exercise (e.g., resistance training and Pilates), and postural control training. Physical activity interventions include multimodal therapies (e.g., strength plus aerobic training and/or balance exercises), training at different levels of effort (e.g., high-intensity interval and resistance training and medium-intensity aerobic training), and training with a guidance component (e.g., walking, with classes on healthy diet, rest, and physical activity). Interventions have also been self-guided, focused on weight management, or did not involve a specified physical activity (e.g., intervention focused on visits by exercise professionals plus a dietitian).

KQ1b: Outcomes

Only intermediate outcomes have been studied. Studies have evaluated blood pressure, heart rate, blood sugar, homeostatic model assessment (HOMA) (an estimate of insulin resistance), lipid profile, body weight, BMI, fat mass, percent body fat, waist and hip circumference, echocardiographic images of cardiac structure and function, measures of central arterial stiffness,

systemic vascular resistance, and other hemodynamic variables (e.g., stroke volume and ventricular filling rate).

KQ1c: Study Inclusion/Exclusion Criteria

Most studies in MS and SCI, when an age was specified, required participants to be 18 years or older (Tables 5 and 6). One study required veterans to be male²⁶¹ and another required participants to be female.²³⁰ Two studies enrolled obese participants.^{146,219} Several studies limited participants to those without known cardiometabolic disease. Sometimes study eligibility parameters were placed around degree of impairment (EDSS <6, wheelchair use only, GMFCS I-IV). Three studies enrolled elite athletes.^{252,253,256} Several studies in SCI enrolled only participants with traumatic SCI (vs. atraumatic SCI)^{89,134,219} or required American Spinal Injury Association Impairment Scale (ASIA) scores of A or B.^{254,255}

KQ1d: Research Methodologies

Comparison and control groups of studies that assess intermediate outcomes for cardiovascular conditions, diabetes, and obesity have varied. The most frequent control group was usual care and no exercise/waitlist control. Other comparison groups included general exercise, aerobic plus resistance training, functional electrical stimulation (FES)-untrained and FES-naïve rowing. One study compared aquatics with Pilates;^{68,69} another compared strength plus high-intensity interval training with strength plus high-intensity continuous aerobic training.²²⁴ The duration of the intervention was most often 12 weeks (53%), which was also the median treatment duration (range 2 weeks to 2 years). The research setting was rarely specified in study publications.

KQ2: Physical Activity Interventions

This KQ presents the results of included studies subdivided by intervention categories. These include results for aerobic exercise (aerobics, aquatics, cycling, hand cycling, RAGT, and treadmill), postural control interventions (balance exercise, hippotherapy, Tai Chi, whole body vibration [WBV], and yoga), strength interventions (muscle strength exercises), and multimodal interventions (progressive resistance or strengthening exercise combined with aerobic or postural control interventions). Results for interventions with enough data to analyze outcomes independent of population or intervention category are also provided.

Aerobic Exercise Interventions

Aerobic exercise is exercise that raises heart rate and blood pressure through cardiovascular conditioning. Examples of aerobic exercise include running, fast walking, cycling, swimming laps, group exercise classes like Zumba[®], fast sports like basketball, soccer, lacrosse, or football, and certain types of dance with a fast rhythm such a mambo, east-coast swing, or Viennese waltz.

Aerobics

Some aerobic programs incorporate music as a fitness motivator or use cadence to help participants keep in time or rhythm. Two dance programs met inclusion criteria and are

discussed below. This section also includes aerobic exercise studies that did not solely involve use of a treadmill, robot assistance, cycling, or a swimming pool, as studies employing these methods are presented in other sections under aerobic exercise. One study in this section that did not fit neatly into another section involved used of a treadmill, cycling, and/or walking/jogging as the aerobic activity of participant choice.⁶¹

Key Points

- Two fair-quality RCTs, one in participants with MS and one in participants with CP, provided evidence that function improved with dance compared with controls (SOE: low).
- One poor- and one fair-quality MS trial found aerobic exercise associated with improved sleep in pooled analysis (SOE: low).
- Evidence was insufficient for improvement in function with aerobic exercises not centered on music (SOE: insufficient).

Detailed Synthesis

One good-quality RCT (n=42),⁶⁵ four fair-quality RCTs (n=164),^{54,59,61,64} one poor-quality RCT (n=30)⁶⁰ and two poor-quality, nonrandomized, quasiexperimental studies (n=67)^{62,63} (total n=303) evaluated aerobic exercise versus no treatment,⁵⁴ usual care,^{63,65} attention control,⁶¹ traditional kinesiotherapy exercises,⁶⁴ home exercises,^{59,60} and pilates.⁶² Types of aerobic exercise included movement to music or dance,^{54,64} and aerobic exercises, running,⁶⁵ stair stepping,⁶⁰ or calisthenics.^{59,62,63} One RCT allowed participants to either walk or jog on or off a treadmill or to use an exercise bicycle for aerobic activity.⁶¹ Study quality ratings were downgraded due to unclear methods of randomization and concealment of the allocation, differences between randomized groups based on prognostic characteristics, and high attrition.

Aerobics—Multiple Sclerosis

Six studies with durations of 6,^{60,63} 8,^{59,61,62} and 12 weeks^{54,59} enrolled 235 participants with MS (Table 7). The mean participant age across trials ranged from 35.5 to 48.5 years and the study proportion female ranged from 50 to 100 percent. Only one trial reported race and was 47.5 percent nonwhite.⁵⁴ No trial described the participant's degree of ambulation or need for wheelchair. Mean EDSS scores ranged from 2.0 to 3.1.

One fair-quality RCT (n=55) in MS patients found improved function with movement to music that involved three 60-minute sessions per week for 36 sessions and targeted strength, cardiorespiratory endurance, and balance.⁵⁴ Each session was choreographed and led by a dance instructor and accompanied by music. Outcomes that demonstrated improvement were TUG and 6MWT, although neither Movement to Music nor waitlist controls showed statistically significant improvement on 5 Times Sit-to-Stand. Average attendance was 53.7 percent with a mean of seven make-up classes offered.

Two RCTs (n=77) provided low-strength evidence of improved pooled sleep scores on the Insomnia Sleep Index (mean difference [MD] -3.34, 95% CI 5.65 to 1.03, I²=58%) with aerobic exercise compared with home exercise or attention control^{60,61} (Figure 6). One trial also reported improved sleep time.⁶⁰

Figure 6. Insomnia Sleep Index in multipl	e sclerosis trials
---	--------------------

Study	Cond.	Exercise	Control	N Exercise	N Control	Weight	MD ∆ Scores PL [95% Cl]		
Al-Sharman 2019	MS	Stair Stepper	Home ex	17	13	46.7%	-4.60 [-6.89, -2.31]	_	
Sadeghi Bahmani 2019	MS	Treadmill, Cycle, Walk, Jog	AC	26	21	53.3%	-2.24 [-4.19, -0.29]	-	
Total (95% CI)				43	34	100.0%	-3.34 [-5.65, -1.03]	•	
Heterogeneity: Tau ² = 1.61;	Chi ² = 2.3	6, df = 1 (P = 0.12); l ² = 58%					-		<u> </u>
Test for overall effect: Z = 2	.84 (P = 0.	.005)						Favors Exercise Fa	5 10 avors Control

Abbreviatons: Δ = change; AC = attention control; CI = confidence interval; MD = mean difference; MS = multiple sclerosis; PL = profile likelihood

One trial⁶¹ and the two quasiexperimental studies found no clear evidence of differences between aerobic exercise and comparisons groups on function, balance, or quality of life.⁶¹⁻⁶³

One study reported that adverse events in the Movement to Music group were one each muscle strain, stress fracture, and knee pain, compared with none reported in the control group.⁵⁴ The remaining studies did not address adverse events or harms.

Author, Year			
Intervention			
Study Design	Intervention		– <i>и</i>
Study Quality	and Comparison	Population	Results
Al-Sharman,	A. Moderate-	A vs. B	A vs. B, mean (SD), p-value is between groups:
2019 ⁶⁰	intensity exercise	Age: 39 vs. 32	PSQI: 8.0 (3.8) to 4.6 (2.3) vs. 8.9 (4.3) to 7.1
	with stair stepper,	Female: 76% vs. 77%	(3.2), p<0.001
Aerobics	18 sessions over 6	EDSS: 2.1 vs. 1.9	ISI: 12.8 (5.3) to 6.6 (4.08) vs. 10.3 (3.3) to 8.7
DOT	weeks (n=17)		(5.1), p=0.04
RCT	.		<u>Total Sleep Time</u> : 333.38 (84.6) to 372.4 (59.4)
_	B. Home exercises		vs. 325.9 (84.5) to 320 (54), p=0.05
Poor	(n=13)		
Aydin, 2014 ⁵⁹	A. Callisthenic	A vs. B	A vs. B, mean (SD)
	exercises (in	Age: 32.6 vs. 33	10MWT:
Aerobics	clinic): 60	Female: 56% vs. 55%	10.81 (2.15) vs. 9.95 (1.92), p=0.211 (baseline)
DOT	sessions, over 12	EDSS: 3.6 vs. 3.4	9.47 (1.56) vs. 9.02 (1.78), p=0.386
RCT	weeks, (n=16)		(postintervention)
			Pre-post exercise intra-group comparison:
Fair	B. Callisthenic		Difference1.34 (1.26) vs. 0.93 (1.12), p=0.442
	exercises (home-		MusiQoL:
	based): 60		63.69 (17.00) vs. 59.75 (14.06), p=0.293
	sessions, over 12		(baseline)
	weeks, (n=20)		76.00 (18.81) vs. 69.00 (15.11), p= 0.119 (postintervention)
			Pre-post exercise intra-group comparison:
			Difference12.31 (7.45) vs. 9.25 (6.99), p=0.146
			BBS:
			47.56 (6.57) vs. 48.95 (5.38) (baseline)
			50.94 (4.97) vs. 50.40 (5.27) (postintervention),
			p=0.031
Kara, 2017 ⁶²	A. Aerobic	A vs. B	A vs. B mean difference between groups:
	exercise 16	Age: 43 vs. 50	TUG right:
Aerobics	sessions over 8	Female: 65% vs. 67%	-0.47, 95% CI -2.98 to 2.04, p=0.71
	weeks (n=28)	EDSS: 3.2 vs. 2.85	TUG left:
Quasiexperimental			-3.07, 95% CI -6.34 to 0.20), p=0.07
	B. Pilates 16		BBS:
Poor	sessions over 8		-0.67, 95% CI -10.56 to 9.22, p=0.89
	weeks (n=9)		,

Table 7. Aerobic exercise in multiple sclerosis

Author, Year Intervention			
Study Design	Intervention		
Study Quality	and Comparison	Population	Results
Keser, 2011 ⁶³	A. Calisthenics, 18	A vs. B	A vs. B, mean change, p=between groups:
	sessions over 6	Age: 36 vs. 35	
Aerobic exercise	weeks (n=15)	Female: 53% vs. 47% EDSS: 2.9 vs. 2.8	<u>MSFC</u> : -0.002 (0.44) vs. 0.02 (0.23), p>0.05
Quasiexperimental	B. Neuro-		<u>SF-36</u> : 0.20 (5.67) vs. 1.73 (7.75), p>0.05
	rehabilitation 18		
Poor	sessions over 6		<u>BBS</u> : –1.73 (3.03) vs. –1.80 (2.67), p>0.05
	weeks (n=15)		
Sadeghi Bahmani,	A. Endurance	A vs. B	A vs. B, mean (SD), p=between groups:
2019 ⁶¹	training (treadmill,	Age: 38 vs. 38	
Asystics	cycling, walking,	Female: 100% EDSS: 2.46 vs. 2.02	EDSS: 2.46 (1.50) to 2.27 (1.64) vs. 2.02 (1.84)
Aerobics	jogging), 24 sessions over 8	ED33. 2.46 VS. 2.02	to 1.98 (1.70), p>0.05
RCT	weeks (n=26)		ISI: 11.62 (5.23) to 8.81 (5.41) vs. 1.71 (5.43) to
			11.14 (5.39), p>0.05
Fair	B. Attention		····· (0.00), p· 0.00
	control, 24		
	sessions over 8		
	weeks (n=21)		
Young, 2019 ⁵⁴	A. Movement to	A vs. B	A vs. B mean difference between groups:
	Music, 36 sessions	Age: 50 vs. 47	
Aerobic exercise	over 12 weeks	Female: 81% vs. 86%	<u>TUG</u> : –1.89, 95% CI –3.30 to –0.48, p=0.01
DOT	(n=27)	White: 44 vs. 61%	
RCT	D. Waitlist control	PDDS:	<u>6MWT</u> : 40.98, 95% CI 2.21 to 79.75, p=0.04
Foir			5x Sit to Stand: 1.00.05% CL 2.58 to 0.55
	(11-20)		
Fair	B. Waitlist control (n=28)	PDDS 0: 30% vs. 21% PDDS 3: 15% vs. 14% PDDS 6: 11% vs. 11%	<u>5x Sit-to-Stand</u> : −1.00, 95% CI −2.58 to 0.55, p=0.38

Abbreviations: 5x = five times; 6MWT = 6-Minute Walk Test; 10MWT = 10-Minute Walk Test; BMI = body mass index; BBS ISI = Insomnia Severity Index; MusiQoL = Multiple Sclerosis International Quality of Life Scale; <math>PSQI = Pittsburgh Sleep Quality Index; SF-36; Short Form; MSFC = Multiple Sclerosis Functional Composite; n = number; PDDS = Patient Determined Disease Steps; RCT = randomized controlled trial; <math>SD = standard deviation; TUG = Timed Up and Go Test

Aerobics—Cerebral Palsy

One good-quality trial found no improvement in running speed or mobility with a running program compared with usual care in adolescents (mean age 12 years, n=42) with CP.⁶⁵ All adolescents except one had scores on the Gross Motor Classification System of I or II. Changes in walking measures were not assessed (Table 8).

Another trial⁶⁴ enrolled young adult participants (mean age 17.5 years, n=26) with CP. Fiftyeight percent were female, and race was not reported. The proportions who could ambulate well or who used a wheelchair part time were also not reported. However, mean scores on the International Classification of Functioning, Disability and Health (ICF) indicated a severe to a complete problem walking a long distance such as a kilometer.

Dance, in this trial, involved 24 one-hour sessions that covered range of motion, motor coordination, space-time orientation, temporal coordination, proprioception, and skill and agility. Kinesiotherapy exercises consisted of range of motion, motor coordination, space-time orientation, proprioception, and skill and agility. Dance was conducted in a space with parallel bars, mirror, and sound equipment whereas the kinesiotherapy exercises were conducted as part of physical therapy (PT). Dance was associated with an improvement in function, disability, and health as measured by the Functional Independence Measure (FIM) and the ICF compared with traditional kinesiotherapy exercises. Harms and adverse events were not addressed.

Author, Year Intervention			
Study Design	Intervention		
Study Quality	and Comparison	Population	Results
Gibson, 2018 ⁶⁵	A. Running and	A vs. B	A vs. B, mean difference between groups:
	running exercises,	Age: 12.4 vs. 12.5	
Aerobics	48 sessions over	Female: 33% vs. 38%	<u>Shuttle Run Test (min)</u> : 0.9, 95% CI –0.3 to 2.2,
	12 weeks (n=21)	GMFCS I: 57% vs. 60%	p=0.142
RCT		GMFCS II: 38% vs. 40%	<u>HiMat:</u> 0.8, 95% CI –2.7 to 4.3, p=0.651
	B. Usual care	GMFCS III: 5% vs. 0%	<u>10X5 sprint (sec)</u> : –1.3, 95% CI –5.4 to 2.8,
Good	(n=21)		p=0.535
Teixeira-	A. Dance exercise	A vs. B	A vs. B mean change scores:
Machado,	24 sessions over	Age: 18 vs. 17.07	
2018 ⁶⁴	12 weeks (n=13)	Female: 54% vs. 62%	<u>FIM</u> : 1.7 vs. 0.03, p<0.001
		GMFCS II: 46% vs. 23%	
Aerobic	B. Kinesiotherapy	GMFCS III: 23% vs. 38%	<u>ICF</u> : –44.56 vs. 14.90, p<0.001
exercise	exercises 24	GMFCS IV: 23% vs. 31%	
	sessions over 12	GMFCS V: 8% vs. 8%	
RCT	weeks (n=13)		
Fair			

Abbreviations: FIM = Functional Independence Measure; GMFCS = Gross Motor Function Classification System; HiMAT = High-level Mobility Assessment Tool; ICF = International Classification of Functioning; RCT= randomized controlled trial

Both trials that involved dancing or dance moves in participants with MS⁵⁴ or CP⁶⁴ found improvement in functioning with dancing (SOE: low), whereas the two poor-quality, nonrandomized studies^{62,63} found no evidence of improvement in function with aerobic exercises.

Aerobics—Spinal Cord Injury

No studies were identified.

Aquatics

Aquatic exercise has advantages of providing body weight support for the exerciser while also increasing resistance against limb movement. Participants may be kept upright during aquatic exercise with the use of flotation devices.

Key Points

- Balance may be improved with aquatic exercises when compared with usual care in adults with MS (SOE: low).
- Evidence was too limited to draw conclusions about aquatic exercise for those with CP (SOE: insufficient).
- There were no studies of aquatics in SCI.

Detailed Synthesis

Five RCTs^{66-69,71,73} and one cohort study⁷⁴ of aquatic exercise met inclusion criteria (n=231). These included three RCTs⁶⁶⁻⁶⁹ and one cohort study⁷⁴ of aquatic exercise versus usual care and one RCT of aquatic exercise compared with cycling and strength exercises.⁷³ One trial met criteria for good quality,⁷¹ one RCT was rated poor quality,^{68,69} and the remainder were rated fair quality.^{66,67,73,74} Trials were downgraded due to unclear randomization and concealment of the allocation, groups not similar at baseline on prognostic variables, unclear blinding of outcome

assessors, and lack of intent-to-treat analysis. The most frequently reported outcomes were related to function (e.g., GMFM, Wee-Functional Independence Measure for children [WeeFIM], 6MWT).

Aquatics—Multiple Sclerosis

Four trials (n=175)^{66-69,71} enrolled participants with MS (Table 9). The mean age of participants ranged from 19 to 50 years; three trials enrolled only female participants and the fourth had predominately female enrollees.⁷¹ Race was not reported in these trials, but three studies took place in Iran and one in Spain.⁷¹ In three trials enrolled participants could ambulate at least 100 meters overground, but in one trial most participants needed consistent assistance to walk from 5 meters to 100 meters.⁷¹

Author, Year Intervention Study Design Study Quality	Intervention and Comparison	Population	Results
Castro-Sanchez, 2012 ⁷¹	A. Ai-Chi aqua therapy with Tai- Chi music, 40	A vs. B Age: 46 vs. 50 Female: 72% vs. 65%	A vs. B, median (SD), p-value=between groups: <u>MSIS-29 Physical</u> : 48 (15.91) to 41 (12.37) vs. 46
Aerobic Exercise	sessions over 20 weeks (n=36)	EDSS: 6.3 vs. 5.9 PPMS: 17% vs. 24%	(18.34) to 45 (17.14), p=0.014
RCT	B. Relaxation	SPMS: 25% vs. 32%	<u>MSIS-29 Psychological</u> : 34 (29.47) to 21 (15.73) vs. 30 (23.53) to 25 (19.36), p=0.023
Good	exercises on exercise mat without music, 40 sessions over 20 weeks (n=37)		Barthel Index: 91 (7.12) to 86 (9.23) vs. 87 (10.34) to 88 (8.92), p>0.05 Differences in MSIS-29 maintained at 30 weeks
Kargarfard, 2018 ⁶⁶	A. Aquatic exercise, 24 sessions over 8	A vs. B Age: 36.5 vs. 36.2 Female: 100%	A vs. B, mean change scores: 6MWT: –52 vs. 29, p<0.001
Aerobic Exercise	weeks (n=17)	EDSS 3.4 vs. 3.7	<u>Sit to Stand:</u> 4.2 vs. –5.9, p<0.001 <u>BBS:</u> –1.6 vs. 2.1, p<0.001
RCT	B. Waitlist control group (n=15)		
Fair	A A 1		
Kooshiar, 2015 ⁶⁷	A. Aquatic exercise, 24	A vs. B Age: 29.24 (<46 years)	A vs. B, mean change scores:
Aerobic Exercise	sessions over 8 weeks (n=20)	Female: 100% EDSS: 2.5	<u>MQLIM: −16.93 vs. −1.04, p<0.001</u>
RCT	B. Usual care	RRMS: 75.7% PPMS: 16.2%	
Fair	(n=20)	SPMS: 8.1%	
Marandi, 2013 ^{68,69}	A. Aquatics: 36 sessions over 12 weeks (n=15)	A vs. B Age: Unclear Female: 100%	A vs. B, Six Spot Step Test: Adjusted mean difference between groups:
Aerobic Exercise	B. Usual care	Ambulatory: 100% EDSS: <4.5	Right leg dynamic balance: –5.88 (SE 1.4), p<0.001
RCT	(n=15)		Left leg dynamic balance: –6.23 (SE 1.2), p<0.001
Poor			

Table 9. Aquatic exercise in multiple	ole sclerosis
---------------------------------------	---------------

Abbreviations: 6MWT=6-Minute Walk Test; BBS=Berg Balance Scale; EDSS = Expanded Disability Status Scale; MQLIM=Multicultural Quality of Life Index; MSIS-29 = Multiple Sclerosis Impact Scale; PPMS = primary progressive multiple sclerosis; RCT = randomized controlled trial; RRMS = relapsing-remitting multiple sclerosis; SCI = spinal cord injury; SPMS = secondary progressive multiple sclerosis; SE = standard error Two trials found low-strength evidence for improved balance with aquatic exercises compared with usual care or attention control,^{66,68} as measured with the Berg Balance Scale, the Six Spot Step test, and dynamic balance.

The trial rated good quality found low-strength evidence for improvement in activities of daily living (ADL) with aquatic exercises compared with relaxation exercises out of water (on mat)⁷¹ Scores on the Multiple Sclerosis Impact Scale-29 (MSIS-29) (physical and psychological) were better with Ai-Chi aqua therapy and the differences were maintained at 30 weeks (10 weeks postintervention), while scores on the Barthel Index favored aquatics, but the difference did not reach statistical significance.⁷¹

Of the Iranian trials, one found significant improvement with aquatic exercise in the 6MWT and Sit to Stand compared with usual care (p<0.001 for both outcomes)⁶⁶ and another trial found significant improvement in quality of life assessed with the Multicultural Quality of Life Index (MQLIM) compared with usual care (p<0.001).⁶⁷ No study addressed harms or adverse events.

Two additional trials of aquatics report depression outcomes and are found in table 40, KQ2a.^{70,72}

Aquatics—Cerebral Palsy

One RCT $(n=32)^{73}$ and one cohort study $(n=24)^{74}$ enrolled children and adolescents with CP (Table 10). The mean age of participants ranged from 4 to 17 years with the proportion female 47 percent. Race was not reported in these trials. Baseline EDSS scores ranged from 1 to 4. All children were able to walk short distances either with or without assist devices.

Author, Year Intervention Study Design	Intervention		
Study Quality	and Comparison	Population	Outcomes
Adar, 2017 ⁷³	A. Aquatic	A vs. B	A vs. B, mean change scores:
	exercise, 30	Age:10.1 vs. 9.3	<u>TUG</u> : –0.13 (0.14) vs. –0.16 (0.13), p=0.664
Aerobic	sessions over 6	Female: 53% vs. 40%	
exercise	weeks (n=17)	Spastic diplegia: 65% vs. 67%	<u>GMFM-88</u> : 0.05 (0.05) vs. 0.05 (0.03), p=0.451
RCT	B. Land-based	Hemiplegia: 35% vs.	WeeFIM motor: 0.04 (0.04) vs. 0.06 (0.06),p=0.860
	exercise, 30	33%	WeeFIM total: -0.13 (0.14) vs0.16 (0.13),
Fair	sessions over 6	GMFCS: Median 2 vs.	p=0.287
	weeks (n=15)	2	
Lai, 2015 ⁷⁴	A. Aquatic therapy,	A vs. B	A vs. B, mean difference between groups:
Taiwan	24 sessions over	Age: 7.6 vs. 6.6	
	12 weeks, rehab	Female: 64% vs.31%	<u>GMFM-66:</u> 5.0 vs. 0.7, p=0.007
Aerobic	exercises, 24-36	Diplegia: 27% vs.	
exercise	sessions over 12	46%	<u>CPQoL</u> scales for Social, Functioning, Participation,
	weeks (n=11)	Quadriplegia 45% vs.	Emotional, Access, Pain and Disability, and Family
Cohort study	. ,	31%	Health: All NS
÷	B. Rehab	Hemiplegia 27% vs.	
Fair	exercises, 24-36	23%	
	sessions over 12	GMFCS: 2.7 vs. 2.6	
	weeks (n=13)		

Table 10. Aquatic exercise in cerebral palsy

Abbreviations: CPQoL = Cerebral Palsy Quality of Life scale; FIM = Functional Independence Measure; GMFCS = Gross Motor Function Classification System; GMFM-66 = Gross Motor Function Measure 66; GMFM-88 = Gross Motor Function Measure 88; NS = not significant; RCT = randomized control trial; TUG = Timed Up and Go Test; WeeFIM = Wee-Functional Independence Measure for children

One trial in children with CP found no differences between 6 weeks of aquatic therapy and land-based exercises on the functional outcomes of TUG and GMFM-88 tests.⁷³ One cohort

study that enrolled children with CP compared aquatic therapy plus traditional rehabilitation over 12 weeks found a significant effect on GMFM-66 scores (p=0.007) compared with traditional rehabilitation, but did not show a significant effect on quality of life as measured with the Cerebral Palsy Quality of Life (CPQoL) scales.⁷⁴ Harms and adverse events were not addressed.

Aquatics—Spinal Cord Injury

No studies were identified.

Cycling

Stationary cycling has been studied as means for aerobic or endurance training. This exercise method has multiple attributes, including relatively easy access in a study setting, and the potential to be used as an exercise method at home. Another advantage of cycling is the possibility of exercising the lower and/or upper extremities. Two SCI trials^{89,93} utilized upper extremity cycling, and one MS trial⁵³ used both upper and lower extremity cycling. All other trials utilized lower extremity cycling.

Key Points

- There was no clear benefit in function (primarily walking ability) versus control interventions with leg cycling in participants with MS (SOE: low); evidence on quality of life was too limited to draw conclusions (SOE: insufficient).
- Leg cycling interventions were associated with improvement in function in participants with CP over control interventions (SOE: low); evidence for quality of life was lacking (SOE: insufficient).
- Evidence for function and quality of life in participants with SCI was limited (SOE: insufficient).
- Evidence for hand cycling was insufficient.

Detailed Synthesis

Ten RCTs,^{53,77-83,85-87,89} one quasiexperimental nonrandomized study,⁸⁴ and one cohort study⁹⁰ (n=596) involving cycling interventions met inclusion criteria. These included five RCTs^{53,77,83,85-87} and one quasiexperimental study⁸⁴ of cycling versus usual care; one RCT,⁸⁹ one cohort study,⁹⁰ and one quasiexperimental study⁸⁴ of cycling versus active rehabilitation; one RCT of cycling using visual feedback compared with home exercise;⁸¹ one RCT of cycling versus wait-list control;^{79,80} and one trial of intermittent versus static cycling.⁸²

Seven RCTs^{53,77-82} and one quasiexperimental trial⁸⁴ enrolled participants with MS (Table 11), two RCTs⁸⁵⁻⁸⁷ were conducted in participants with CP (Table 12), and one RCT⁸⁹ and one cohort study⁹⁰ were conducted in participants with SCI (Table 13). Two RCTs and one cohort study was rated poor quality and the remaining trials were rated fair quality. Methodological limitations for downgrading studies included unclear methods of the allocation, baseline differences in prognostic variables between randomized arms, and high attrition. The most frequently reported outcomes were related to function (e.g., GMFM, 6MWT) and quality of life (e.g., SF-36, World Health Organization Quality of Life scale [WHOQOL]).

Cycling—Multiple Sclerosis Seven RCTs^{53,77,78,80-83} and one quasiexperimental study⁸⁴ (n=459) enrolled participants with MS (Table 11). Mean ages of participants in the trials ranged from 32 to 52 years with a range of 58 to 93 percent female. Race was not reported in these trials. All studies enrolled participants who could ambulate with assistance or better.

Author, Year			
Intervention	• • •		
Study Design	Intervention	Population	Results
Study Quality Baquet, 2018 ⁷⁷	and Comparison A. Bicycle ergometry,	A vs. B	A vs. B mean difference between groups:
Daquet, 2010	24-36 sessions over 12	Age: 38.2 vs. 39.6	6MWT: 4.0, 95% CI –36.5 to 44.5, p=0.85
Aerobic exercise	weeks (n=34)	Female: 62% vs. 74%	25 foot walk: -0.1, 95% CI -0.4 to 0.2, p=0.49 MSWS-12: -0.3, 95% CI -2.1 to 1.6, p=0.78
RCT	B. Waitlist control group (n=34)	EDSS: 1.7 vs. 1.8 RRMS: 100%	HAQUAMS: -0.4, 95% CI -4.5 to 3.7, p=0.84
Fair			
Collett, 2011 ⁸²	A. Combined intermittent and continuous static	A vs. B vs. C Age: 55 vs. 50 vs. 52	Change postintervention: no data provided
Aerobic exercise	cycling, 24 sessions over 12 weeks (n=20)	Female: 53% vs. 78% vs. 80%	2MWT, SF-36 total, TUG: All NS
RCT	B. Intermittent static	Ambulatory: 100%	
Poor	cycling, 24 sessions over 12 weeks (n=21)		
	C. Continuous static cycling, 24 sessions over 12 weeks (n=20)		
Heine, 2017 ⁷⁸	A. Leg cycling, 48 sessions over 16 weeks	A vs. B Age: 43.1 vs. 48.2	A vs. B, mean difference (SE) between groups:
Aerobic exercise	(n=43)	Female: 74% vs. 72%	IPA autonomy indoors: –0.11 (0.088), p=0.203
RCT	B. MS nurse consultation, 3	Ambulatory: 100% EDSS: 2.5 vs. 3.0	<u>IPA family role</u> : -0.082 (0.1222), p=0.502 IPA autonomy outdoors: -0.097 (0.125),
Fair	consultations over 16 weeks (n=46)	RRMS: 72% vs. 74% SPMS: 7% vs. 11%	p=0.438 IPA Social Relations: -0.138 (0.092), p=0.135
		PPMS: 21% vs. 15%	<u>IPA Work/education</u> : 0.225 (0.167), p=0.181
Hebert, 2011 ⁸⁰	A. Bicycle ergometry, 12 sessions for 6 weeks	A vs. B vs. C Age: 46.8 vs. 42.6	Mean difference between groups:
Aerobic Exercise	(n=12)	vs. 50.2 Female: 75% vs.	<u>6MWT</u> : A vs. B: 39.1, 95% CI –105 to 183, p=1.00
RCT	B. Vestibular rehab (n=13)	85% vs. 85% Ambulatory: 100%	A vs. C: 62.7, 95% CI –103 to 103, p=1.00 B vs. C: 23.6, 95% CI –117 to 165, p=1.00
Fair			
Hochsprung,	C. Waitlist control (n=13) A. Visual biofeedback	A vs. B	A vs. B mean change scores:
2017 ⁸¹	cycling training, 12 sessions over 12 weeks	Female: 66% vs. 50%	FAP:
Aerobic exercise	plus home exercise program (n=30)	Ambulatory: 100% RRMS: 37% vs. 52%	3.036 (p=0.002) vs. –1.06 (p=0.289)
RCT		PPMS: 20% vs. 26%	No comparison between groups provided
Poor	B. Home exercise program (n=31)	SPMS: 43% vs. 23%	

Table 11. Cycling exercise in multiple sclerosis

Author, Year Intervention Study Design	Intervention		
Study Quality	and Comparison	Population	Results
Negaresh, 2019 ⁵³	A. Normal BMI cycling UE/LE, 24 sessions over	A vs. B vs. C vs. D Age: 31.2 vs. 29.1	A vs. B vs. C vs. D, mean difference between groups (scores are estimates from graph):
Aerobic exercise	8 weeks (n=18)	vs. 32.1 vs. 2.1 Female: 64% vs.	<u>TUG</u> : –3.8 vs. –0.1 vs. –2.5 vs. 0, p=0.001
RCT	B. Normal BMI control (n=15)	64% vs. 64% vs. 69%	
Fair	· · · ·	EDSS: <4	Interaction between weight and exercise p=0.52
	C. Overweight cycling UE/LE, 24 sessions over 8 weeks (n=17)	RRMS: 100%	
	D. Overweight control (n=13)		
Niwald, 2017 ⁸⁴	A. Cycle ergometry, 60 sessions over 4 weeks	A vs. B Age: 57 vs. 60	A vs. B, mean difference between groups: <u>EDDS</u> : 0.01, 95% CI –0.61 to 1.29, p=0.48
Aerobic exercise	plus 480 minutes of rehab exercises over 4	Female: 62% vs. 65%	WHOQOL-Bref Physical: 1.45, 95% CI –0.72 to 3.62, p=0.19
Quasiexperimental	weeks (n=21)	Race: NR Ambulatory: 100%	WHOQOL-Bref Psychological: 3.05, 95%Cl 1.30 to 4.80 to, p=0.001
Fair	B. 480 minutes of rehab exercises 480 over 4 weeks (n=32)	EDSS: 6.33 vs. 6.20	<u>WHOQOL-Bref Social</u> : 0.60, 95% CI –0.64 to 1.84, p=0.34 <u>WHOQOL-Bref Environmental</u> : 2.56, 95% CI 0.20 to 4.92, p=0.03
Tollar, 2020 ⁸³	A. Stationary cycling, 25 sessions over 5 weeks	A vs. B Age: 48.1 vs. 44.4	A vs. B, mean difference between groups: MSIS-29: –6.3 (8.07) vs. 1.0 (3.46), p=0.008
Aerobic exercise	(n=14)	Female: 93% vs. 92%	6MWT: 32.1 (44.58) vs. 6.3 (49.27), p=0.174 BBS: 2.5 (2.62) vs. –0.2 (2.62), p=0.015
RCT	B. Usual PT, 25 sessions over 5 weeks	EDSS median: 5.0 vs. 5.0	EQ-5 Sum score:-1.4 (1.7) vs. 0.0 (1.13), p=0.023
Fair	(n=12)	RRMS: 64% vs. 67%	

Abbreviations: 2MWT = 2-Minute Walk Test; 6MWT = 6-Minute Walk Test, BBB = Berg Balance Scale; BMI = body mass index; CI = confidence interval; EDSS = Expanded Disability Status Scale; FAP = Functional Ambulation Profile; IPA = Impact on Participation and Autonomy; LE = lower extremity; MS = multiple sclerosis; MSWS-12 = Multiple Sclerosis Walking Scale-12; MSIS-29 = Multiple Sclerosis Impact Scale; HAQUAMS = Hamburg Quality of Life Questionnaire in Multiple Sclerosis questionnaire; NR = not reported; NS = not significant; PPMS = primary progressive multiple sclerosis; PT = physical therapy; RCT = randomized controlled trial; RRMS = relapsing-remitting multiple sclerosis; SE = standard error; SF-36; Short Form-36; SPMS = secondary progressive multiple sclerosis; TUG = Timed Up and Go Test; UE = upper extremity; WHOQOL = World Health Organization Quality of Life scale

These studies provided low SOE of no clear difference in function (primarily walking outcomes) between cycling and usual rehabilitation/no intervention. One fair-quality RCT did find a difference in change from baseline BMI across four groups (two intervention arms and two control arms, p=0.001), but pairwise comparisons were not provided.⁵³ Change in ADLs as measured with the Impact of Participation and Autonomy questionaire⁸⁰ was insufficient from which to draw conclusions as was the evidence for quality of life on the Hamburg Quality of Life Questionnaire in Multiple Sclerosis.⁷⁷ A poor-quality RCT, without a usual care/no intervention arm, found no differences between three cycling intervention groups (combined intermittent continuous static cycling vs. intermittent static cycling vs. continuous static cycling) on the SF-36, a quality of life measure, or on function outcomes (i.e., 2-Minute Walk Test [2MWT], TUG).⁸²

Of the seven studies, five did not address harms or adverse events. An RCT of only active groups reported that three participants in the combined exercise group experienced adverse events (tachycardia, leg pain, and exacerbation of knee injury), while four participants in the intermittent group left the study due to adverse events (pain with cycling, exacerbation of MS

symptoms, and loss of consciousness during cycling), and no adverse events were reported in the continuous exercise group.⁸² Another RCT evaluated the risk of experiencing an MS relapse in patients with relapsing-remitting MS as a potential adverse event, but found lower risk in the aerobic training group (OR [odds ratio] 0.28, 95% CI 0.10 to 0.79, p=0.016) in favor of aerobic training.⁷⁸ The remaining study reported that no participant experienced any adverse event.⁵³

Cycling—Cerebral Palsy

Two cycling RCTs⁸⁵⁻⁸⁷ (n=85) enrolled participants with CP (Table 12). Mean ages of participants were 11 years and 13.9 years in the trial and mean proportion female was 53 and 60 percent. One RCT reported the proportion of nonwhite participants as 48 percent.^{85,86} One trial enrolled participants who had markedly limited or no ambulation (GMFCS IV or V)⁸⁷ and one RCT enrolled only ambulatory participants (GMFCS I-III).^{85,86}

Author, Year Intervention			
Study Design	Intervention	Demulation	Deculto
Study Quality	and Comparison	Population	Results
Bryant, 2013 ⁸⁷	A. Static bike group, 18 sessions	A vs. B Age: 14.3 vs. 13.8	A vs. B mean difference between groups:
Aerobic	over 6 weeks	Female: 45% vs. 58%	<u>GMFM-66</u> : 0.70, 95% CI –1.43 to 2.83, p=0.52
exercise	(n=11)	Race: NR Ambulatory: 0%	<u>GMFM-88-D</u> : 5.4, 95% CI 1.23 to 9.57, p=0.01
RCT	B: No intervention control (n=12)	Wheelchair user: 100% Bilateral CP: 100%	<u>GMFM-88-E</u> : 2.3, 95% CI 0.20 to 4.40, p=0.03
Fair		GMFCS: 4.3 vs. 4.4	
Demuth, 2012 ⁸⁶	A. Stationary	A vs. B	A vs. B
Fowler, 2010 ⁸⁵	cycling, 30	Age: 10.7 vs. 11.2	GMFM-66:
	sessions over 12	Female: 42% vs. 65%	Change from baseline: 1.2, 95% CI 0.5 to 1.8
Aerobic	weeks (n=31)	Race: African-American:	vs. 0.5, 95% CI –0.2 to 1.3, between groups
exercise		16% vs. 10%	p=0.23
	B. No intervention	White: 58% vs. 48%	600-Yard Walk-Run Test:
RCT	control (n=31)	Asian: 3% vs. 16 %	Change from baseline: 5.6, 95% CI 1.6 to 9.5
		Other: 23% vs. 26%	vs. 2.5, 95% CI –1.1 to 6.0, p=0.24
Fair		Ambulatory: 100%	Peds Quality of Life Total Score:
		GMFCS: 2.0 vs. 2.3	Mean difference between groups:
			3.5, 95% CI –2.0 to 8.8, p=0.21

Table 12. Cycling exercise in cerebral palsy

Abbreviations: CI = confidence interval; CP = cerebral palsy; GMFCS = Gross Motor Function Classification System; GMFM-66 = Gross Motor Function Measure-66 items, GMFM-88 = Gross Motor Function Measure-88 items; GMFM-88-D = Gross Motor Function Measure 88 (standing); GMFM-88-E = Gross Motor Function Measure 88 (walking, running, jumping); NR = not reported; RCT = randomized controlled trial

One RCT found an improvement with cycling on the GMFM-88-D and GMFM-88-E subscales that focused on standing (D subscale) and walking, running, and jumping (E subscale).⁸⁷ Pooled analysis of GMFM-66 favored cycling over control condition, but did not reach statistical significance (MD –0.70, 95% confidence interval [CI] –1.60 to 0.20, $I^2=0\%$)^{85,87} (Figure 7). Similarly, performance on the 600-yard walk-run test favored cycling but was not significant.⁸⁵ These studies provided low-strength evidence that cycling may improve gross motor function when compared with no intervention⁸⁵ or usual care⁸⁷ in children with CP.

Figure 7. GMFM-66 in cerebral palsy trials

Study	Cond.	Exercise	Control	N Exercise	N	Weight	MD A Scores PL [95% CI]	
otudy	oonu.	LACICISC	00111101	LACIDISC	0011101	weight	1 - [55/6 61]	
Bryant 2013	CP	Stationary Cycling	No Intervention	11	11	17.8%	-0.70 [-2.83, 1.43]	
Demuth 2012/Fowler 2010	CP	Stationary Cycling	No Intervention	29	29	82.2%	-0.70 [-1.69, 0.29]	
Total (95% CI)				40	40	100.0%	-0.70 [-1.60, 0.20]	•
Heterogeneity: Tau ² = 0.00; Test for overall effect: Z = 1.5								-4 -2 0 2 4 Favors Exercise Favors Control

Abbreviations: Δ = change; CI = confidence interval; CP = cerebral palsy; GMFM-66 = Gross Motor Function Measure 66; MD = mean difference

One RCT found no statistically significant difference in quality of life between cycling and no intervention on the Pediatric Quality of Life Inventory total score (insufficient evidence).⁸⁶

Although no overall harms or adverse events were reported by treatment group, one RCT reported that two participants withdrew from the treadmill group (one due to gastric problems and one to recurrence of hip pain).⁸⁷ The other RCT reported that there were mild adverse events (falls, soreness, muscle cramping, pain, fatigue, skin rash, colds, flu, tooth loss, headache, stomach ache, tonsillectomy) but did not specify the study group.⁸⁶

Cycling—Spinal Cord Injury

One RCT⁸⁹ and one cohort study⁹⁰ enrolled participants (n=78) with SCI (Table 13). The mean age of participants was 35 and 36 years with 12 and 16 percent female. Racial background was not reported in these studies. Ambulatory status and wheelchair use were also not reported.

Author, Year Intervention			
Study Design	Intervention		D Ka
Study Quality	and Comparison	Population	Results
Akkurt, 2017 ⁸⁹	A. Arm ergometer, 36	A vs. B	A vs. B, mean change scores:
	sessions over 12	Age: 33 vs. 37	<u>FIM</u> : 0.5 vs. –0.5, p=1.00
Aerobic exercise	weeks plus 120	Female: 5% vs. 19%	CHART-sf, p>0.05
	sessions general	Ambulatory: 41% vs.	
RCT	exercises over 12	50%	WHOQOL-Bref, p>0.05
	weeks (n=17)	Wheelchair user:	<u></u> , p
Fair		59% vs. 50%	
	B. General exercises,	Paraplegia:100% vs.	
	120 sessions over 12	94%	
	weeks (n=16)	0170	
Sadowsky,	A. FES cycle	A vs. B	A vs. B, mean change scores:
201390	ergometry, 3 sessions	Age: 37.2 vs. 34.6	Total FIM: 80% vs. 60%, p<0.001
	per week over a	Female: 12% vs.	With significant improvement with FES in
Aerobic exercise	mean of 120 weeks	20%	subscales: self-care, sphincter control, transfer,
	(n=25)	Quadriplegia: 52%	and locomotion
Cohort study		vs. 75%	SF-36: total and composite scores NR
,	B. Rehabilitation care,		Significant improvement in physical function and
Poor	not specified (n=20)		role limit physical with FES, no difference in
			mental health subscales

Table 13. Cycling exercise in spinal cord injury

Abbreviations: CHART = Craig Handicap and Assessment Reporting Technique; FES = functional electrical stimulation; FIM = Functional Independence Measure; NR = not reported; SF-36 = Short-Form 36; RCT = randomized controlled trial; WHOQOL = World Health Organization Quality of Life scale

One fair-quality RCT showed no significant improvement in function, quality of life, or ADL with upper extremity cycling versus general exercises in patients with SCI⁸⁹ (rated insufficient for all outcomes). One poor-quality cohort study reported that lower extremity cycling resulted in significant improvement in mean FIM total score compared with usual care, but this study has

substantial risk of bias based on study quality and nonrandomized design.⁹⁰ Harms and adverse events were not addressed in either study.

One additional trial of the reports the effects of hand cycling on asymptomatic bacteria is discussed in KQ2b.⁹²

Robot-Assisted Gait Training

Robot-assisted gait training is a form of physical activity/gait training in which a motorized, computer-controlled orthotic device provides a guidance force to the lower extremities, usually coupled with body weight support, enabling a person with limited ambulation the ability to walk greater distances and with potentially increased speed and safety, without necessarily requiring physical assistance of a physical therapist or caregiver. The robotic device places the lower extremity in improved alignment and form throughout the gait cycle, which can improve gait mechanics overground after the training. RAGT's value as a form of aerobic exercise for patients with ambulation impairment may be limited by the cost and access of the device to most people with MS, CP, or SCI.

Key Points

- Evidence suggested that RAGT training may improve balance in patients with MS versus usual care (SOE: low); there was low-strength evidence of no clear benefit of RAGT on function (SOE: low).
- When compared with overground or treadmill walking, there was low-strength evidence of no clear benefit with RAGT on function, balance, or quality of life in MS (SOE: low).
- Evidence for the effectiveness of RAGT on function and balance in CP was insufficient due to the poor quality of the trials (SOE: insufficient).
- Evidence from RCTs suggested that RAGT may improve function in patients with SCI in head-to-head studies (SOE: low) but the evidence was less clear in three trials versus usual care (SOE: low); there was low-strength evidence that RAGT training may improve ADL in people with SCI (SOE: low).

Detailed Synthesis

Seventeen RCTs (n=810),^{94-104,107,108,110-112,114-116} one quasiexperimental study (n=44),¹⁰⁵ and one cohort study¹⁰⁶ (n=24) evaluated RAGT interventions. These included eight RAGT studies versus usual care,^{95,98,101,102,104,106,112,115,116} one versus no intervention,¹¹⁴ two RCTs versus overground gait training,^{107,108} and eight RCTs versus other interventions such as aquatics, taskoriented physical therapy (TOP), and nonrobotic treadmill training. Five RCTs enrolled participants with MS (Table 14), seven RCTs enrolled children and adolescents with CP (Table 15), one RCT enrolled adolescents and adults,¹⁰⁴ and the remaining RAGT studies were in adults, and ten RCTs were conducted in participants with SCI (Table 16).

Three studies⁹⁶⁻⁹⁸ met criteria for good quality, eleven^{94,95,99,100,103,107,108,110-112,115,116} for fair quality, and five^{101,102,104-106,114} for poor quality. Studies were downgraded due to unclear methods of selection and concealment of the allocation, differences between groups in prognostic patient characteristics, and lack of intent-to-treat analysis. Almost all of the trials used the Lokomat[®] (manufactured by Hocoma)²⁶⁴ as their RAGT device. The most frequently reported outcomes were gait parameters such as gait speed, walking endurance, and measures of overall physical function such as EDSS and GMFM.

Robot-Assisted Gait Training—Multiple Sclerosis

Five RAGT trials enrolled 252 participants with MS⁹⁴⁻⁹⁸ (Table 13). Mean trial age of participants ranged from 42 to 56 years and the proportion female ranged from 52 to 68 percent. The length of the interventions ranged from 4 to 8 weeks, 3 to 5 sessions per week.

Participants' EDSS scores ranged from 4.0 to 7, encompassing a wide range of walking ability at baseline. One RCT⁹⁶ examined the effect of RAGT on less impaired participants with RRMS (relapsing-remitting multiple sclerosis) with EDSS of 4.0 to 5.5, indicating ability to ambulate 100 to 500 meters without aid, while the other three RCTs^{94,95,97} enrolled only participants with EDSS scores between 6.0 and 7.5 (minimal ability to walk, from a few steps to 100 meters total with the use of an assistive device).

Author, Year Intervention Study Design Study Quality	Intervention and Comparison	Population	Results
Calabro, 2017 ⁹⁶ Aerobic exercise RCT	A. Lokomat-Pros (RAGT + VR), 40 sessions over 8 weeks (n=20)	A vs. B Age: 44 vs. 41 Female: 65% vs. 60% EDSS: 4.40 vs. 4.75	A vs. B, mean difference between groups: <u>TUG:</u> –0.064, 95% CI –0.408 to 0.536, p=0.3 <u>FIM:</u> –0.054, 95% CI –1.73 to 2.839, p=0.5 <u>BBS:</u> –0.019, 95% CI –2.403 to 2.365, p=0.8
Good	B. Lokomat-Nanos (RAGT), 40 sessions over 8 weeks (n=20)		
Pompa, 2017 ⁹⁴ Aerobic exercise RCT Fair	A. RAGT, 12 sessions over 4 weeks (n=21) B. Conventional Walking Training, 12 sessions over 4 weeks (n=22)	A vs. B Age: 47 vs. 50 Female: 48% vs. 55% PPMS: 0% vs. 13.6% EDSS: 6.62 vs. 6.50	A vs. B, mean difference between groups: <u>2MWT</u> : 6.07, 95% CI –6.51 to 18.65, p=0.34 <u>FAC</u> : 0.66, 95% CI –0.07 to 1.39, p=0.08 <u>Rivermead Mobility Index</u> : 0.73, 95% CI –0.85 to 2.31, p=0.37 <u>EDSS</u> : 0.14, 95% CI –0.13 to 0.41, p=0.30 <u>mBI</u> : 3.99, 95% CI –6.69 to 14.67, p=0.46
Russo, 2018 ⁹⁵ Aerobic exercise RCT Fair	A. RAGT, 18 sessions over 6 weeks then 36 sessions of rehabilitation exercises over 12 weeks (n=30) B. Rehabilitation exercises, 54 sessions over 18 weeks (n=15)	A vs. B Age: 42 vs. 41 Female: 53% vs. 67%	A vs. B, mean difference between groups: <u>TUG 6 weeks</u> : 0.20, 95% CI –3.40 to 3.80, p=0.91 <u>TUG 18 weeks</u> : 0.20, 95% CI –2.90 to 3.30, p=0.90 <u>FIM 6 weeks</u> : -2.10, 95% CI –2.75 to –1.45, p<0.001 <u>FIM 18 weeks</u> : -2.20, 95% CI –2.85 to –1.55, p<0.001 <u>TBS 6 weeks</u> : -1.00, 95% CI –1.75 to –0.66, p<0.001 <u>TBS 18 weeks</u> : -0.50, 95% CI –1.10 to 0.10, p=0.10
Straudi, 2016 ⁹⁷ Aerobic exercise RCT Good	A. RAGT, 12 sessions over 6 weeks (n=27) B. Conventional physiotherapy, 12 sessions over 6 weeks (n=25)	A vs. B Age: 52 vs. 54 Female: 63% vs. 68% EDSS: 6.43 vs. 6.46 PPMS: 33% vs. 28% SPMS: 67% vs. 72%	A vs. B, mean change scores: <u>TUG</u> : 2.66 (13.79) vs3.96 (10.50), p=0.95 <u>6MWT</u> : 23.22 (32.23) vs0.75 (26.40), p=0.01 <u>SF 36-PCS:</u> 1.67 (7.74) vs. 1.84 (6.77), p=0.99 <u>SF 36-MCS</u> : 5.37 (9.58) vs. 1.60 (9.41), p=0.14 <u>BBS</u> : 3.24 (4.99) vs. 0.87 (6.45), p=0.19

Table 14. Robot-assisted gait training in multiple sclerosis

Author, Year Intervention Study Design Study Quality	Intervention and Comparison	Population	Results
Straudi, 2019 ⁹⁸	A. RAGT, 12 sessions over 4	A vs. B Age: 56 vs. 55	A vs. B, mean difference between groups: <u>6MWT</u> : 4, 95% CI –10 to 18, p=0.86
Aerobic exercise	weeks (n=36)	Female: 67% vs. 69% EDSS: 6.5 vs. 6.5	<u>25FWT</u> : 0, 95% CI –0.06 to 0.05, p=0.98 TUG: 7.8, –0.2 to 15.8, p=0.25
RCT	B. Overground walking, 12 sessions	PPMS: 50% vs. 45% SPMS: 50% vs. 55%	<u>BBS</u> : 0, 95% CI –2 to 2, p=0.91 <u>MSIS-29 motor</u> : –3, 95% CI –9 to 3, p=0.31
Good	over 4 weeks (n=36)		MSIS-29 psychological: -2, 95% CI -5 to 1, p=0.22 <u>SF-36 PCS</u> : -1, 95% CI -4 to 3, p=0.13 <u>SF-36 MCS</u> : 1, 95% CI -2 to 4, p=0.94

Abbreviations: 2MWT = 2-Minute Walk Test; 6MWT = 6-Minute Walk Test; 25FWT = 25-Foot Walk Test; BBS = Berg Balance Scale; CI = confidence interval; EDSS = Expanded Disability Status Scale; FAC = functional ambulation category; FIM = Functional Independence Measure; MSIS-29 = Multiple Sclerosis Impact Scale; PPMS = primary progressive multiple sclerosis; RAGT = robot-assisted gait training; RCT = randomized controlled trial; SF-36 = Short-Form 36; SF 36-MCS = Short-Form 36 Mental Component Summary; SF 36-PCS = Short-Form 36 Physical Component Summary; SPMS = secondary progressive multiple sclerosis; TBS = Tinetti Balance Scale; TUG = Timed Up and Go Test; VR = virtual reality

These studies indicated that use of RAGT can improve balance versus usual care without RAGT (SOE: low). There was low-strength evidence of no clear benefit of RAGT versus usual care on function as assessed with the TUG test,^{95,97} while evidence for walking ability,^{94,97} quality of life,⁹⁷ and ADL⁹⁴ was too limited to draw conclusions (SOE: insufficient).

One RCT enrolled participants with MS and compared RAGT with virtual reality versus RAGT alone.⁹⁶ In this RCT, there were no differences between groups on the TUG, FIM, and the BBS, indicating that virtual reality added to 40 sessions of RAGT did not improve balance, time up and go, or ADL compared with RAGT without virtual reality. However, this finding needs confirmation with other trials (SOE: insufficient).

Two head-to-head trials (n=95) compared RAGT with treadmill or overground walking^{97,98} and found low-strength evidence of no clear difference between treatment groups on function, balance, or quality of life.

Four RCTs did not address harms or adverse events. One RCT reported that no participant withdrew from the study due to an adverse event.⁹⁶

Robot-Assisted Gait Training—Cerebral Palsy

Five RAGT trials,⁹⁹⁻¹⁰⁴ one quasiexperimental study,¹⁰⁵ and one cohort study¹⁰⁶ enrolled 220 participants with CP (Table 15). The trial mean age of participants ranged from 8 to 21 years (one trial did not report age but inclusion criteria were between 6 and 14 years¹⁰³) with the mean proportion female ranging between 39 and 50 percent. GMFCS functional categories ranged from I-IV, with one study¹⁰¹ enrolling only GMFCS level II participants.

Author, Year Intervention Study Design Study Quality	Intervention and Comparison	Population	Outcomes
Aras, 2019 ¹⁰³ Aerobic exercise RCT Fair	 A. RAGT, 20 sessions over 4 weeks (n=10) B. Partial body- weight supported treadmill training, 20 sessions over 4 weeks (n=10) C. Anti-gravity treadmill training, 20 sessions over 4 weeks (n=9) 	A vs. B Age: NR Female: 40% vs. 40% vs. 33.3% GMFCS II: 90% vs. 70% vs. 88.9% Hemiplegic: 30% vs. 30% vs. 33.3%	A vs. B vs. C, mean change (SD): <u>6MWT</u> : 39.6 (40.4) vs. 37.6 (20.2) vs. 48.3 (25.1), p>0.05 for all pairwise comparisons <u>6MWT (3-month followup</u>): 45.2 (44.4) vs. 48.6 (37.8) vs. 58.2 (22.9), p>0.05 for all pairwise comparisons <u>GMFM-D</u> : 3.6 (2.5) vs. 4.6 (4.6) vs. 3.5 (2.5), p>0.05 for all pairwise comparisons <u>GMFM-D (3-month followup</u>): 3.6 (2.5) vs. 4.6 (4.6) vs. 3.5 (2.5), p>0.05 for all pairwise comparisons <u>GMFM-E</u> : 2.4 (2.0) vs. 2.6 (1.7) vs. 3.7 (1.9), p>0.05 for all pairwise comparisons <u>GMFM-E (3-month followup)</u> : 2.6 (1.8) vs. 2.6 (1.7) vs. 3.7 (1.9), p>0.05 for all pairwise comparisons
Klobucka, 2020 ¹⁰⁴ Aerobic exercise RCT Poor	A. RAGT, 20 sessions over 4 to 6 weeks (n=21) B. Conventional therapy (n=26)	A vs. B Age: 18.3 vs. 23.4 Female: 48% vs. 39% GMFCS I: 4.8% vs. 0% GMFCS II: 14.3% vs. 15.4% GMFCS III: 42.9% vs. 46.2% GMFCS IV: 38.1% vs. 38.5% Mechanical wheelchair: 23.8% vs. 53.8% Electric wheelchair: 0% vs. 15.3%	A vs. B, mean change scores, p=between groups: <u>Total GMFM</u> : MD 9.43, 95% CI 6.989 to 11.891 vs. MD 0.80, 95% CI 0.154 to 1.446, p<0.001 <u>GMFM D</u> : MD 8.30, 95% CI 4.699 to 11.901 vs. MD 1.09, 95% CI -0.438 to 2.619, p<0.001 <u>GMFM E</u> : MD 9.32, 95% CI 5.329 to 13.310 vs. MD 0.53, 95% CI -0.208 to 1.268, p<0.001
Peri, 2017 ¹⁰⁵ Aerobic exercise Quasiexperimen tal Poor	A. RAGT plus TOP (20 sessions each over 10 weeks (n=10) B. Personalized RAGT plus TOP, 20 sessions each over 4 weeks (n=12) C. TOP 40 sessions over 10 weeks (n=10) D. RAGT 40 sessions over 10 weeks (n=12)	A vs. B vs. C vs. D Age: 6.8 vs. 10.8 vs. 9.3 vs. 8 Female: 60% vs. 42% vs. 50% vs. 50% Spastic bilateral CP: 100% Ambulatory: 100% with or without aid	A vs. B vs. C vs. D, mean (SD): <u>6MWT (meters, T0 to T1 to T2):</u> 285.2 (219.2) to 300.9 (201.9) to 309.0 (214.9) vs. 222.1 (237.6) to 208.5 (252.7) to 225.0 (193.7) vs. 378.2 (182.6) to 381.7 (159.3) to 364.1 (179.8) vs. 324.4 (110.2) to 345.0 (92.4) to 346.5 (84.3) <u>GMFM-66:</u> 66.0 (12.1) to 67.0 (12.7) to 69.2 (10.4) vs. 66.2 (6.3) to 67.1 (6.2) to 68.1 (6.3) vs. 66.4 (13.4) to 68.2 (11.9) to 69.2 (9.7) vs. 68.5 (8.8) to 68.9 (8.6) to 69.2 (9.7) No differences between groups

Table 15. Robot-assisted gait training in cerebral palsy

	ntervention and Comparison	Population	Outcomes
Aerobic w exercise B Cohort a Poor w	A. RAGT, 36 essions over 12 veeks (n=12) B. Physiotherapy assumed, 36 essions over 12 veeks assumed n=12)	A vs. B Age: 8.8 vs. 9.5 Female: 50% vs. 50% GMFCS I or II: 100%	A vs. B, mean or median (SD), MD calculated as if all are means, p=between groups <u>6MWT</u> : 409.58 (49.1) to 475.17 (47.7) vs. 437.00 (55.0) to 459.17 (53.75); MD 43.42, 95% CI 19.64 to 67.21, p<0.001 <u>6MFM-88</u> : 253.00 (8.81) to 256.17 (8.23) vs. 253.67 (7.70) to 255.25 (7.94), MD 1.59, 95% CI –2.19 to 5.37, p=0.410 <u>6MFM-88-D</u> : 36.08 (2.27) to 36.92 (1.73) vs. 36.75 (2.22) to 37.42 (1.98), MD 0.17, 95% CI –0.79 to 1.13, p=0.729 <u>6MFM-88-E</u> : 64.00 (6.90) to 66.25 (6.78) vs. 64.08 (6.43) to 64.92 (6.72), MD 1.14, 95% CI –1.69 to 4.51, p=0.373 <u>BBS</u> : 50.08 (2.43) to 52.08 (2.68) vs. 50.25 (2.93) to 51.00 (3.30), MD 1.25, 95% CI –0.07 to 2.57, p=0.064
Wallard, 2018 ¹⁰² se Aerobic exercise B	A. RAGT, 20 veeksions over 4 veeks (n=14) 3. Usual care, 20 veeks one 4 veeks (n=16)	A vs. B Age: 8.3 vs. 9.6 Female: 43% vs. 56% Ambulatory: 100% Ambulatory without aids: 57% vs. 63% GMFCS II: 100%	A vs. B, mean difference between groups: <u>GMFM-66-D</u> : 4.73, 95% CI –6.14 to 15.60, p=0.39 <u>GMFM-66-E</u> : 7.54, 95% CI –2.64 to 17.42, p=0.15
Poor			
(effects of) (r Aerobic 6 exercise RCT B Fair set	A. RAGT resistive force), 8 sessions over 5 weeks (n=11) 8. Treadmill raining, 18 ressions over 6 veeks (n=12)	A vs. B Age: 11.3 vs. 10.5 Female: 45% vs. 33% Race: nonwhite: 54.5% vs. 58% GMFCS I: 9% vs. 17% GMFCS II: 55% vs. 25% GMFCS III: 27% vs. 42% GMFCS IV: 9% vs. 17%	A vs. B, mean difference between groups: <u>GMFM-66 total</u> : -5.1, 95% CI 13.62 to 3.42, p=0.24 <u>GMFM-66-D</u> : 3.6, 95% CI -5.40 to 12.60, p=0.43 <u>GMFM-66-E</u> : 0.2, 95% CI -17.79 to 19.19, p=0.98 <u>PODCI self</u> : 7.5, 95% CI -10.48 to 25.48, p=0.41 <u>PODCI parent</u> : 5.5, 95% CI -8.96 to 19.96, p=0.46
re	A. RAGT with esistance, 18 sessions over 6 veeks (n=12)	A vs. B Age: 10.6 vs. 10.8 Female: 50% vs. 45% GMFCS I: 8% vs. 0% GMFCS II: 42% vs.	A vs. B, mean difference between groups: 6MWT: 49.8, 95% CI –49.85 to 149.45, p=0.33 <u>GMFM-66 total</u> : 0.10, 95% CI –7.74 to 7.94, p=0.98 GMFM-66-D: 0.10, 95% CI –8.55 to 8.75, p=0.98
RCT a	8. RAGT with issistance,18 iessions over 6 veeks (n=11)	GMFCS II. 42% vs. 45% GMFCS III: 42% vs. 36% GMFCS IV: 8% vs.	<u>GMFM-66-E</u> : 0.10, 95% CI –6.33 to 6.75, p=0.98 <u>GMFM-66-E</u> : 0.10, 95% CI –16.32 to 16.52, p=0.99 <u>PODCI self</u> : –3.5, 95% CI –20.80, 13.80, p=0.69 <u>PODCI parent</u> : 9.7, 95% CI –6.29 to 25.69, p=0.23

Abbreviations: 6MWT = 6-Minute Walk Test; CI = confidence interval; GMFCS = Gross Motor Function Classification System; GMFM-66 = Gross Motor Function Measure 66; GMFM-66-D = Gross Motor Function Measure 66 (standing); GMFM-66-E = Gross Motor Function Measure 66 (walking, running, jumping); GMFM-88 = Gross Motor Function Measure 88; GMFM-88-D = Gross Motor Function Measure 88 (standing); GMFM-88-E = Gross Motor Function Measure 88 (walking, running, jumping); MD = mean difference; PODCI = Pediatric Outcomes Data Collection Instrument; RAGT = robot-assisted gait training; RCT = randomized controlled trial; SD = standard deviation; TOP = task-oriented physical therapy The RAGT studies in the CP population enrolled children who were generally limited community ambulators. The control groups received conventional PT, TOP, or treadmill training. There was little difference on function outcomes, regardless of comparator. One RCT¹⁰⁰ used a specific device that produced a resistive force during treadmill training (as opposed to the Lokomat[®], which gives a guidance force to the patient). Between group differences were not significant, and the experimental group did not have statistically significant improvement in function from baseline, except for the 6MWT. One small RCT¹⁰⁴ that enrolled adolescents and adults found improved GMFM-88 scores with RAGT compared with usual care, but due to the poor-quality rating of this trial and two other studies that assessed GMFM and found no difference^{101,102,106} this evidence was considered insufficient to draw conclusions regarding the benefit of RAGT on function in CP.

Another trial by the same author⁹⁹ assessed RAGT versus treadmill training on function as measured with the GMFM-66 and also did not find a difference between groups. A trial comparing RAGT with partial body-weight supported treadmill training and with anti-gravity treadmill training found no differences between groups on walking or function as assessed with the 6MWT, the GMFM-D and GMFM-E measures postintervention or at 3-month followup.¹⁰³

A poor quality cohort study found improvement on the 6MWT with RAGT compared with physiotherapy, but no difference on the GMFM-88.¹⁰⁶ Finally, one quasiexperimental study¹⁰⁵ found no significant difference in function compared with TOP. However, due to the low quality of the included trials, along with small samples sizes, the evidence was considered insufficient to determine whether RAGT is beneficial in children with CP on function and balance.

None of the five studies included for primary outcomes addressed harms or adverse events.

Robot-Assisted Gait Training—Spinal Cord Injury

Seven RAGT RCTs enrolled 406 participants with SCI.^{107,108,110-112,114-116} The study mean age of participants ranged from 35 to 50 years and the proportion female ranged from 0 to 38 percent. One study reported racial breakdown and was 47 percent White and 36 percent Hispanic. Number of training sessions ranged from 12 to 60 over the course of 4 to 12 weeks. Most of the study participants were limited ambulators.

Author, Year Intervention Study Design Study Quality	Intervention and Comparison	Population	Outcomes
Duffell, 2014 ¹¹⁴ Aerobic exercise RCT Poor	A. RAGT, 12 sessions over 4 weeks (n=23) B. No intervention (n=29)	A vs. B Age: NR Female: NR Incomplete: 100%	A vs. B, p=between groups <u>10MWT</u> achieved minimal important difference (0.13m/s): 13% vs. 8%, p>0.05 <u>6MWT and TUG</u> : p>0.05
Esclarin-Ruz, 2014 ¹⁰⁷ Aerobic exercise RCT Fair	A. RAGT overground, 40 sessions over 8 weeks (n=44) B. Overground therapy without RAGT, 40 sessions over 8 weeks (n=44)	A vs. B Age UMN injury: 43.6 vs. 44.9 Age LMN injury: 36.4 vs. 42.7 Female UMN: 29% vs. 29% Female LMN: 30% vs. 29%	A vs. B, mean (SD): 10MWT: UMN: 0.48 (0.25) to 0.54 (0.31) vs. 0.36 (0.25) to 0.39 (0.31), LMN: 0.24 (0.11) to 0.46 (0.25), vs. 0.28 (0.27) to 0.45 (0.25), p=0.09 <u>6MWT:</u> UMN: 122.3 (49.2) to 187.48 (103.78) vs. 93.3 (53.1) to 119.41 (89.25), LMN: 82.7 (45.5) to 157.54 (89.51) vs. 94.3 (75.1) to 145.62 (125.15), p=0.047, favors RAGT <u>FIM/Motor:</u> UMN: 5 (2.7) to 8.95 (2.96) vs. 4.9 (4.1) to 7.05 (2.62), LMN: 6 (2.9) to 8.9 (2.61) vs. 5 (2.8) to 8.67 (2.65), p=0.09 <u>WISCI-II</u> : UMN: 5.9 (4.5) to 13.47 (5.65) vs. 4.9 (4.1) to 11.04 (5.09), LMN: 6 (3.2) to 12.45 (4.17) vs. 5 (3.7) to 10.8 (4.54), p=0.10 <u>LEMS:</u> UMN: 30 (10.4) to 38.33 (10.6) vs. 27 (10.9) to 32.28 (11.04) vs. LMN: 21 (10.3) to 27.15 (10.8) vs. 20 (9.9) to 22.57 (10.8), p<0.01 favors RAGT
Field-Fote, 2011 ¹⁰⁸ Kressler, 2013 ¹¹⁰ Aerobic exercise RCT Fair	 A. Treadmill BWS training with manual assistance, 60 sessions over 12 weeks (n=17) B. Treadmill BWS training with electrical stimulation, 60 sessions over 12 weeks (n=18) C. Overground BWS training with electrical stimulation, 60 sessions over 12 weeks (n=15) D. RAGT treadmill BWS training with robot assistance, 60 sessions over 12 weeks (n=14) 	A vs. B Age: 39.3 vs. 38.5 vs. 42.2 vs. 45 Female: 17.7% vs. 22.2% vs. 13.9% vs. 18% White: 58.8% vs. 44.4% vs. 40.0% vs. 42.9% Hispanic: 29.4% vs. 38.9% vs. 40% vs. 35.7% African American: 11.8% vs. 16.7% vs. 20% vs. 21.4%	Mean difference between groups: <u>2MWT:</u> A vs. B: -3.0 , 95% CI -17.91 to 11.91 , p=0.69 A vs. C: -13.4 , 95% CI -36.82 to 10.02 , p=0.26 A vs. D: -0.4 , 95% CI -12.19 to 11.39 , p=0.95 B vs. C: -10.4 , 95% CI -34.21 to 13.41 , p=0.39 B vs. D: 2.6, 95% CI -9.93 to 15.13 , p=0.68 C vs. D: 13.0, 95% CI -8.99 to 34.99 , p=0.25 Time X Group Interaction p<0.001 A vs. B vs. C vs. D, mean difference (SD): <u>2MWT</u> : 0.8 (7.7) vs. 3.8 (6.3) vs. 14.2 (15.2) vs. 1.2 (5.1), favors e-stim <u>Velocity changed scores</u> averaged across speeds: Group X Time Interaction p=0.004, favors e-stim A vs. B: NR, NS A vs. C: 3.66 (0.74) vs. 4.36 (0.74), p=0.15 A vs. D: NR, NS B vs. C: NR, NS B vs. D: 4.13 (0.74) vs. 3.33 (0.76), p=0.009 C vs. D: 4.36 (0.74) vs. 3.33 (0.76), p=0.001

 Table 16. Robot-assisted gait training in spinal cord injury

Author, Year Intervention Study Design Study Quality	Intervention and Comparison	Population	Outcomes
Kumru, 2016 ¹¹¹ Aerobic exercise RCT Fair	A. RAGT with rTMS, 20 sessions over 4 weeks, then RAGT (n=15) B. RAGT with sham rTMS, 20 sessions over 4 weeks (n=16)	A vs. B Age: 51 vs. 49 Female: 33% vs. 13% Cervical or thoracic: 100% Cervical: 53% vs. 38%	A vs. B, p=between groups: Change in number able to perform <u>10MWT</u> between groups: 4 vs. 2, p=0.09 Change in <u>WISCI-II</u> between groups, p>0.05 Change in <u>UEMS</u> between groups, p=0.02 Change in <u>LEMS</u> between groups, p=0.001
Midik, 2020 ¹¹⁶ Aerobic exercise RCT Fair	 A. RAGT plus conventional rehab, 25 sessions over 5 weeks (n=15) B. Conventional rehab only, 25 sessions over 5 weeks (n=15) 	A vs. B Age: 35.4 vs. 37.9 Female: 0% AIS C: 40% vs. 67% AIS D: 60% vs. 33%	A vs. B, mean change (SE), p=between groups: <u>WISCI:</u> 3.9 (0.8) vs. 2.5 (0.5), p=0.178 <u>SCIM</u> : 9.9 (2.5) vs. 7.0 (1.3), p=0.326 <u>LEMS</u> : 1.8 (0.4) vs. 0.6 (0.2), p=0.061 At 3 month followup, change from baseline: <u>WISC</u> : 4.3 (1.0) vs. 2.5 (0.5), p=0.139 <u>SCIM</u> : 16.5 (3.2) vs. 7.6 (1.5), p=0.127 <u>LEMS</u> : 2.1 (0.5) vs. 0.6 (0.2), p=0.049
Shin, 2014 ¹¹² Aerobic exercise RCT Fair	 A. RAGT, 12 sessions over 4 weeks plus usual physiotherapy, 28 sessions over 4 weeks (n=27) B. Conventional overground training, 40 sessions over 4 weeks (n=26) 	A vs. B Age: 43 vs. 48 Female: 26% vs. 46% Cervical: 52% vs. 62% Months since injury: 3.3 vs. 2.7	A vs. B, mean change, p=between groups: <u>WISCI-II</u> : 8 vs. 5, p=0.01 <u>LEMS</u> : 6 vs. 4, p=0.24 <u>SCiM3-M</u> : 6 vs. 3, p=0.13
Yildirim, 2019 ¹¹⁵ Aerobic exercise RCT Fair	A. RAGT, 16 sessions over 8 weeks + conventional therapy (n=44) B. Conventional therapy (n=44)	A vs. B Age: 32 vs. 37 Female: 39% vs. 36% Tetraplegia: 20% vs. 16% ASIA Complete: 48% vs. 41%	A vs. B, median (IQR), p-value=between groups: <u>FIM</u> : 69 (31) to 85 (35) vs. 67 (36) to 77 (24), p=0.022 <u>WISCI II</u> : 5 (9) to 9 (7) vs. 5 (6.7) to 6.5 (5), p=0.011

Abbreviations: 2MWT = 2-Minute Walk Test; 6MWT = 6-Minute Walk Test; 10MWT = 10-Meter Walk Test; ASIA = American Spinal Injury Association Impairment Scale; BWS = body weight supported; CI = confidence interval; FIM = Functional Independence Measure; IQR = interquartile range; LEMS = Lower Extremity Motor Score; LMN = lower motor neuron; NR = not reported; NS = not significant; rTMS = transcranial magnetic stimulation; RAGT = robot-assisted gait training; RCT = randomized controlled trial; SD = standard deviation; TUG = Timed Up and Go Test; UEMS = Upper Extremity Motor Score; UMN = upper motor neuron; SCiM3-M = Spinal Cord Independence Measurement III mobility section; WISCI-II = Walking Index for Spinal Cord Injury

RAGT showed positive results in function for participants with SCI in head-to-head studies comparing RAGT with treadmill training or overground walking (SOE: low), but evidence was insufficient for comparisons with usual care due to inconsistent results.^{107,108,110,112} There was also low-strength evidence that RAGT may improve ADL in SCI based on two RCTs.^{107,115} There was insufficient evidence to determine the benefit of transcranial magnetic stimulation (rTMS) in conjunction with RAGT, but the trial was small.¹¹¹

An RCT of overground therapy with and without RAGT stratified results according to upper motor neuron (UMN) versus lower motor neuron (LMN) SCI participants.¹⁰⁷ Both UMN and LMN injured individuals improved significantly more on the 6MWT and Lower Extremity

Motor Score (LEMS) with RAGT. A study that compared RAGT with treadmill training, overground training, and treadmill plus FES¹⁰⁸ did not find RAGT significantly different to the other groups in function outcomes.

Six studies did not address harms or adverse events. One RCT reported that three individuals left the study (2 in the RAGT plus rTMS group due to repeated urinary tract infection and severe spasticity; 1 in the sham rTMS group due to severe spasticity).¹¹¹ Other adverse events experienced in the rTMS group were twitching of facial muscles and headache.

One additional trial of reports the effects of RAGT on bowel dysfunction and is discussed in KQ2c.¹¹³

Treadmill

A motorized treadmill is a common means for aerobic or endurance training. Its speed and elevation can be manipulated to provide a wide range of training intensities. Handrails are used for support and stability, and for those unable to walk more than short distances, it can be modified to add a harness that provides partial body weight support. Specialized treadmills accommodate upper body training by self-propelling a wheelchair on a treadmill.

Key Points

- Among ambulatory individuals with MS, there was evidence that treadmill training may improve balance and function, including walking (SOE: low).
- When compared with usual care, there was low-strength evidence that treadmill training may improve function in CP (SOE: low).
- There was low-strength evidence of no clear benefit of treadmill training on walking in CP when compared with overground walking (SOE: low).
- Among study participants with SCI, there was low-strength evidence of no clear benefit of treadmill training compared with structured PT or aerobic plus strength training on function, including walking (SOE: low).

Detailed Synthesis

Seventeen RCTs,^{117-130,133-138} and two quasiexperimental, nonrandomized studies^{131,132} (n=583) using treadmill training met inclusion criteria.

These included six RCTs and one quasiexperimental trial of treadmill training versus usual care in CP,^{121,126,129,132} MS,^{117,120} and SCI;¹³³ three comparisons of treadmill versus overground walking in CP;^{123,127,128} two RCTs where treadmill training was compared with strength training in CP¹²⁵ and MS;¹¹⁸ and one treadmill training with direct-current stimulation of the motor cortex compared with treadmill training with sham stimulation study in participants with CP.¹³⁰

An additional five RCTs and one quasiexperimental trial had unique comparisons, where treadmill training was compared with different alternative training methods or unique modifications of standard treadmill walking (SCI,^{133,138} CP,^{122,131,134-137} MS¹¹⁹). Thus, few studies used similar treadmill training and comparator/control training for the same condition. One trial¹²⁸ met criteria for good quality and the remainder were rated fair quality.

The most frequently reported outcomes were related to walking parameters (e.g., 6MWT, 10MWT), balance (e.g., BBS), combined gait and balance measures such as TUG, and standardized functional constructs combining several measures, such as the GMFM. The GMFM was used both to classify CP participants and as an outcome variable.

Treadmill—Multiple Sclerosis

Four trials¹¹⁷⁻¹²⁰ enrolled individuals (n=119) with MS (Table 17). The mean age of participants across trials ranged from 33 to 53 years with a range of 40 to 100 percent female. Each trial enrolled ambulatory individuals, and participants needed to be able to walk a minimum of 6 meters¹¹⁷ or 10 meters,^{118,119} with or without assistance.

Author, Year Intervention			
Study Design Study Quality	Intervention and Comparison	Population	Results
Ahmadi, 2013 ¹²⁰	A. Treadmill, 24 sessions over 8 weeks	A vs. B Age: 37 vs. 37	A vs. B, mean (SD), p-value between groups:
Aerobic	(n=10)	Female: 100%	10MWT: 8.68 (1.93) to 7.07 (1.03) vs.
exercise		EDSS: 2.40 vs. 2.25	9.16 (1.88) to 9.47 (1.92), p=0.001
	B. Waitlist control		<u>2MWT</u> : 120.40 (20.29) to 139.90 (20.78)
RCT	(n=10)		vs. 121.50 (27.73) to 119.05 (27.12),
_ .			p=0.001
Fair			BBS: 46.20 (6.32) to 53.80 (2.34) vs.
Convegeni	A. 30 minutes	A vs. B	44.50 (9.43) to 41.70 (8.48), p=0.001
Gervasoni, 2014 ¹¹⁷	conventional therapy +	A vs. B Age: 49.6 vs. 45.7	A vs. B, mean change, p=between groups
2014	15 minutes treadmill	Female: 40%	gioups
Aerobic	training, 12 sessions	Able to walk 6 meters	<u>DGI</u> : 2.16 vs. 2.07, p=0.51
exercise	over 2 weeks (n=15)	with or without assist	
		device	<u>BBS</u> : 4.01 vs. 3.15, p=0.33
RCT	B. 45 minutes	RRMS: 47.6%	
_ ·	conventional therapy,	PPMS: 19.0%	
Fair	12 sessions over 2 weeks (n=15)	SPMS: 33.3% EDSS (median): 5.5	
Jonsdottir,	A. Treadmill walking, 20	A vs. B	A vs. B, mean difference between
2018 ¹¹⁸	sessions over 4 weeks	Age: 51.4 vs. 56.7	groups:
	(n=26)	Female: 48% vs. 29%	TUG: –2.83, 95% CI –4.7 to –0.9,
Aerobic		EDSS: 5.5 vs. 5.6	p=0.009
exercise	B. Strength training, 16-	RRMS: 85% vs. 58%	<u>DGI:</u> 0.2, 95% CI –1.95 to 2.27, p=0.87
DOT	20 sessions over 4	PPMS: 8% vs. 17%	<u>2MWT</u> : 28.3, 95% CI 13.04 to 43.60,
RCT	weeks (n=12)	SPMS: 8% vs. 25%	p<0.001
Fair			<u>SF-12 mental</u> : –3.0, 95% CI –9.43 to 3.38, p=0.34
			<u>SF-12 physical</u> : 1.8, 95% CI –2.08 to
			5.59, p=0.36
			BBS: 1.1, 95% CI –1.4 to 3.7, p=0.39
Samaei, 2016 ¹¹⁹	A. Downhill treadmill	A vs. B	A vs. B, mean change between groups:
	training, 12 sessions	Age: 33.9 vs. 32.1	<u>25FWT</u> : 8.7 (2.4) to 6.1 (1.8) vs. 7.9 (1.1)
Aerobic	over 4 weeks (n=16)	Female: 82% vs. 82%	to 7.0 (1.6), p=0.001
exercise	B. Uphill treadmill	Ambulatory: 100%	<u>2MWT</u> : 120.01 (23.6) to 160.1 (35.7) vs. 132.6 (32.3) to 147.5 (29.8), p<0.001
RCT	training, 12 sessions		<u>TUG:</u> 9.8 (1.7) to 7.5 (1.8) vs. 9.4 (2.3) to
	over 4 weeks (n=15)		8.9 (0.9), p=0.041
Fair			<u>GNDS:</u> 35.4 (9.1) to 21.8 (5.3) vs. 32.1
			(8.6) to 27.5 (6.1), p=0.012
			Modified Riverman Mobility Index: 10.6
			(3.2) to 14.3 (2.7) vs.10.5 (2.3) to 11.9
			(2.1), p=0.005

Table 17. Treadmill exercise in multiple sclerosis

Abbreviations: 2MWT = 2-Minute Walk Test; 10MWT = 10-Meter Walk Test; 25FWT = 25-Foot Walk Test; BBS = Berg Balance Scale; CI = confidence interval; DGI = Dynamic Gait Index; EDSS = Expanded Disability Status Scale; GNDS = Guy's Neurological Disability Scale; PPMS = primary progressive multiple sclerosis; RCT = randomized controlled trial; RRMS = relapsing-remitting multiple sclerosis; SF-12 = Short Form (12) Health Survey; SPMS = secondary progressive multiple sclerosis; TUG = Timed Up and Go Test The single trial using 2 weeks of training¹¹⁷ did not find a benefit of treadmill walking. However, 2 weeks is less than the typical duration of exercise training studies. Combining with the longer duration study of 8 weeks^{118,120} provided low-strength evidence for improved function, including walking with treadmill training. Two trials also provided low-strength evidence for improved balance versus usual care or waitlist control.^{1171,120} There was insufficient evidence to determine whether downhill treadmill training is superior to uphill training,¹¹⁹ or whether treadmill training is better than strength training, due to small sample sizes and only a single study evaluating each comparison.¹¹⁸

Each trial's treadmill sessions were closely supervised and the treadmill speeds adjusted to maintain appropriate intensities and safety while participants trained. Three RCTs did not address harms or adverse events; the fourth RCT reported that participants experienced only muscle and general fatigue that resolved in a few hours after exercising.¹¹⁸

Treadmill—Cerebral Palsy

The greatest number of treadmill trials were with children and adolescents with CP. Twelve trials^{121-125,127,128,130-132} enrolled children (n=127) or adolescents (n=102) with CP (Table 18). Two RCTs^{126,129} assessed 146 adults with CP (mean age 27 years and 52% to 56% male) (Table 18).

The trials with adults,^{126,129} three of the four trials with adolescents,^{121,131,132} and three of the six trials with children^{123,124,130} enrolled ambulatory individuals and assessed treadmill walking without body weight support. Other trials^{122,125,127,128} used partial body weight support as an intervention component.

Author, Year Intervention			
Study Design	Intervention		
Study Quality	and Comparison	Population	Results
Aviram, 2017	A. Treadmill walking, 30 sessions over 3	A vs. B Age: 43 vs. 52	A vs. B, mean (SE) change from baseline and 6 months postintervention; p-values are between
Aerobic exercise	months (n=43)	Female: 21% vs. 48% GMFCS II: 72% vs. 75%	groups <u>6MWT:</u> 20.9 (4.0) vs. 27.9 (6.7), p=0.31
Quasiexperimental	B. Group resistance training, 30 sessions	GMFCS III: 28% vs. 25%	<u>TUG:</u> –2.82 (0.51) vs. 3.52 (0.60), p=0.014 <u>GMFM-66:</u> 1.98 (0.40) vs. 3.10 (0.44), p=0.001
Fair	over 3 months (n=52)		<u>GMFM-66-D:</u> 5.53 (1.61) vs. 8.36 (1.24), p=0.013 <u>GMFM-66-E:</u> 4.80 (1.33) vs. 7.21 (0.96), p=0.81 <u>10MWT-self-paced:</u> 0.272 (0.045) vs. 0.276 (0.049), p=0.41 <u>10MWT-fast:</u> 0.387 (0.070) vs. 0.374 (0.069), p=0.30
Bahrami, 2019 ¹²⁹	A. Treadmill, 16 sessions over 8 weeks	A vs. B Age: 30 vs. 25	A vs. B, mean (SD); percentage change score, p=between groups
Aerobic exercise	(n=15)	Female: 47% vs. 40% GMFCS I: 47% vs. 53%	<u>10MWT</u> : 22.46% change vs. 1.28% change, p<0.05
RCT	B. Physiotherapy, 16 sessions over 8 weeks	GMFCS II: 13% vs. 13% GMFCS III: 40% vs. 33%	6MWT: 23.68% change vs. 16.54% change, p>0.05
Fair	(n=15)		<u>WHOQOL-Brief</u> : % change 3.83% change vs. 8.94% change, p>0.05

Table 18. Treadmill exercise in cerebral palsy

Author, Year			
Intervention			
Study Design	Intervention		
Study Quality	and Comparison	Population	Results
Chrysagis, 2012 ¹²¹	A. Treadmill training, 36 sessions over 12	A vs. B Age: 15.90 vs. 16.09	A vs. B, mean change, p=between groups:
Aerobic exercise	weeks (n=11)	Female: 45% vs. 36% Ambulatory: 100%	<u>GMFM-D+E</u> : 3.87 vs. 0.69, p=0.007 Self-selected walking speed: 8.06 vs. 0.48,
RCT	B. Conventional PT, 36 sessions over 12	GMFM-D+E: 67.81 vs. 64.45	p=0.009
Fair	weeks (n=11)	04.43	
Duarte Nde,	A. Treadmill + tDCS,	A vs. B	A vs. B, mean (SD), p-value=between groups:
2014 ¹³⁰	10 sessions over 2 weeks (n=12)	Age: 8 vs. 8 Female: NR	<u>PBS</u> : 40.5 (9.4) to 45.3 (7.9) vs.39.1 (9.8) to 39.7
Aerobic exercise	B. Treadmill + sham	GMFCS I: 25% vs. 17% GMFCS II: 50% vs. 57%	(8.4); MD 4.2, 95% CI –2.88 to 11.28, p=0.245 PEDI self-care: 46.1 (10) to 48.0 (9.5) vs. 45.0
RCT	tDCS, 10 sessions over 2 weeks, (n=12)	GMFCS III: 25% vs. 25%	(9.2) to 45.5 (9.3); MD 1.4, 95% CI –6.21 to 9.01, p=0.718
Fair			PEDI mobility: 38.0 (8.5) to 41.7 (7.4) vs. 38.3
May share			(7.4) to 39.5 (7.6); MD 2.5, 95% CI –3.71 to 8.71,
participants with			p=0.430
Grecco, 2014			
Emara, 2016 ¹²²	A. Treadmill walking, 36 sessions over 12	A vs. B Age: 6.6 vs. 6.9	A vs. B, mean difference between groups: 10MWT: 0.4 (0.04) to 0.5 (0.04) vs. 0.4 (0.03) to
Aerobic exercise	weeks (n=10)	Female: 70% vs. 60% Spastic diplegic CP: 100%	$\frac{1000001}{0.6 (0.04)}, p=0.12$ $\frac{5XSit-to-Stand}{2}: 21.5 (1.3) to 18.9 (1.0) vs. 21.7$
RCT	B. Overground walking with spider cage, 36	GMFCS III: 100%	(1.5) to 17.7 (0.8), p=0.26 GMFM-88-D: 12.5 (1.6) to 15.8 (1.5) vs.12.0
Fair	sessions over 12		(0.7) to 19.2 (2.1), p=0.02
	weeks (n=10)		<u>GMFM-88-E</u> : 10.9 (1.3) to 14.8 (1.5) vs.10.4 (0.8) to 17.2 (2.1), p=0.05
Grecco, 2014 ¹²³	A. Treadmill training	A vs. B	A vs. B, mean difference between groups:
	with transcranial direct	Age: 7.8 vs. 8.0	
Aerobic exercise	current stimulation, 10	Female: 75% vs. 67%	<u>6MWT:</u> MD 1996.6 (133.1 to 266.0) vs. 111.8
RCT	sessions over 2 weeks (n=12)	GMFCS II: 67% vs. 67% GMFCS III: 33% vs. 33%	(27.1 to 196.4), p<0.05 <u>GMFM-88-D:</u> MD 11.5 (-1.6 to 24.7) vs. MD 3.7
E - in	D. The educil the initial		(-2.3 to 9.8), p>0.05
Fair May share	B. Treadmill training with sham stimulation,		<u>GMFM-88-E:</u> MD 0.8 (-1.5 to 3.2) vs. MD 1.0 (- 0.1 to 2.1), p>0.05
participants with	10 sessions over 2		0.1 to 2.1), p>0.05
Duarte Nde,	weeks (n=12)		
2014 ¹³⁰			
Grecco 2013 ¹²⁴	A. Treadmill walking,	A vs. B	A vs. B, mean change, p=between groups:
	14 sessions over 7	Age: 6.8 vs. 6.0	<u>6MWT</u> : 149.7 vs. 44.8, p<0.001
Aerobic exercise	weeks (n=16)	Female: 63% vs. 47%	<u>TUG</u> : -6.4 vs2.0, p=0.004
RCT	B Overground	GMFCS I: 31% vs. 47% GMFCS II: 50% vs. 41%	<u>GMFM-88-D</u> : 23.9 vs. 8.1, p<0.001 GMFM-88-E: 20.1 vs. 8.2, p<0.001
	B. Overground walking, 14 sessions	GMFCS II: 50% vs. 41% GMFCS III: 19% vs. 12%	<u>BMPM-88-E</u> : 20.1 VS. 8.2, p<0.001 <u>PEDI</u> : 11.0 vs. 4.0, p=0.035
Fair	over 7 weeks (n=17)	Givil OO III. 1370 vo. 1270	<u>BBS</u> : 11.8 vs. 3.3, p<0.001
Johnston, 2011 ¹²⁵	A. Partial BWS	A vs. B	A vs. B, mean scores (SD), p=between groups:
,	treadmill training with	Age: 9.6 vs. 9.5	
Aerobic exercise	20 sessions over 2	Female: 50% vs. 42%	<u>GMFM</u> : 62.7 (17.5) to 63.3 (16.2) vs. 58.4 (26.9)
	weeks, then 50	GMFCS II: 7% vs. 8%	to 60.1 (25.1), p=0.66
RCT	sessions at home over	GMFCS III: 64% vs. 50%	
Fair	10 weeks (n=14)	GMFCS IV: 29% vs. 42% Diplegic CP: 57% vs. 33%	PODCI (global): 50.4 (11.2) to 59.3 (11.4) to 60.0 (10.0) vs. 50.9 (14.9) to, 52.0 (22.6) to 55.4
i all	B. Individualized	Triplegic CP: 57% vs. 33%	(10.0) vs. 50.9 (14.9) to, 52.0 (22.6) to 55.4 (21.7), p=0.73
	strength-based PT, 20	Quadriplegic CP: 43% vs.	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	sessions over 2	50%	
	weeks, then 50		
	session at home over		
	10 weeks (n=12)		

Author, Year Intervention			
Study Design	Intervention		
Study Quality	and Comparison	Population	Results
Kim, 2015 ¹²⁶	A. Treadmill walking,	A vs. B	A vs. B, mean difference between groups:
	20 sessions over 1-2	Age: 28.6 vs. 24.4	
Aerobic exercise	months plus PT (n=14)	Female: 50% vs. 43% Ambulatory without gait	6MWT on treadmill: 5.71, 95% CI –53.22 to 64.64, p=0.85
RCT	B. PT (n=7)	aid: 100%	
Fair			6MWT on overground walking: 24.07, 95% Cl -46.80 to 94.94, p=0.51
Nsenga Leunkeu,	A. Treadmill walking,	A vs. B	A vs. B, mean change:
2012 ¹³²	24 sessions over 8 weeks, (n=12)	Age: 14.2 vs. 14.2 Female: 50% vs. 50%	(estimates from bar graph)
Aerobic exercise	B. No training, (n=12)	Hemiplegic CP: 83% vs. 83%	<u>6MWT</u> : 480 to 601 vs. 450 to 450, no difference in baseline values, significant difference in
Quasiexperimental		GMFCS I: 67% vs. 67% GMFCS II: 33% vs. 33%	postintervention values favoring treatment
Fair			
Swe, 2015 ¹²⁸	A. Partial BWS	A vs. B	A vs. B, mean difference between groups:
	treadmill walking, 16	Age: 13.03 vs. 13.37	<u>6MWT</u> : –17.00, 95% CI –89.77 to 55.77, p=0.65
Aerobic exercise	sessions over 8 weeks (n=15)	Female: 33% vs. 33% GMFCS II: 67% vs. 53%	<u>10MWT</u> : -0.013, 95% CI -0.23, 0.21, p=0.91
RCT		GMFCS III: 33% vs. 47%	<u>GMFM-88-D</u> : –2.94, 95% CI –16.42 to 10.64,
	B. Overground	6MWT: 233.33 vs. 205.00	p=0.67
Good	walking, 16 sessions		<u>GMFM-88-E</u> : –2.8, 95% CI –20.02 to 14.42,
	over 8 weeks (n=15)		p=0.75
Willoughby, 2010 ¹²⁷	A. Partial BWS	A vs. B	A vs. B, mean (SD), p=between groups:
2010127	treadmill training, 18 sessions over 9 weeks	Age: 10.35 vs. 11.24 Female: 50% vs. 36%	<u>10MWT</u> : 244.33 (115.41) to 219.38 (123.71) vs.
Aerobic exercise	(n=12)	GMFCS III: 42% vs. 21%	118.36 (89.89) to 135.82 (95.65), p=0.097
	('' '-)	GMFCS IV: 58% vs. 79%	110.00 (00.00) to 100.02 (00.00), p=0.001
RCT	B. Overground		
	walking, 18 sessions		
Fair	over 9 weeks (n=14)		tar Walls Taats DDS = Dara Dalaraa Saala s

Abbreviations: 5x = five times; 6MWT = 6-Minute Walk Test; 10MWT = 10-Meter Walk Test; BBS = Berg Balance Scale ; BWS = body weight supported; CI = confidence interval; CP = cerebral palsy; GMFCS = Gross Motor Function Classification System; GMFM = Gross Motor Function Measure; GMFM-66-D = Gross Motor Function Measure 66 (standing); GMFM-66-E= Gross Motor Function Measure 66 (walking, running, jumping); GMFM-88-D = Gross Motor Function Measure 88 (standing); GMFM-88-E = Gross Motor Function Measure 88 (walking, running, jumping); MD = mean difference; NR = not reported; PBS = Pediatric Balance Scale; PEDI = Pediatric Evaluation Disability Inventory; PODCI = Pediatric Outcomes Data Collection Instrument; PT = physical therapy; RCT = randomized controlled trial; SD = standard deviation; SE = standard error; tDCS =transcranial direct current stimulation; TUG = Timed Up and Go Test; WHOQOL = World Health Organization Quality of Life scale

These trials provided low-strength evidence of benefit on function with treadmill training in CP compared with usual care, and low-strength evidence of no clear benefit of treadmill training when compared with overground walking. When trials enrolling participants of various ages are combined, ^{122,124,127,128} the evidence does not suggest a benefit of treadmill training when compared with various comparator interventions.

When treadmill training combined with transcranial direct current stimulation to the child's motor cortex was compared with treadmill training with sham stimulation, performance on the 6MWT was improved significantly, although GMFM-88-D and GMFM-88-E scores were not.¹²³ In another publication with the same trial registry number, there was no association between treadmill training with or without transcranial stimulation on balance or ADL.¹³⁰

Two trials in children with CP evaluated ADL on the Pediatric Outcomes Data Collection Instrument¹²⁵ and the Pediatric Evaluation Disability Inventory¹²⁴ and found mixed results.

Activities of daily living were improved with treadmill training versus overground walking in younger children (mean age 6)¹²⁴ but not versus individualized strength-based PT in older children (mean age 9).¹²⁵ One trial reported balance as measured with the BBS and found BBS scores improved with treadmill training versus overground walking in younger children.¹²⁴ Trials in children were too varied and results were too inconsistent to draw conclusions regarding treadmill training versus other interventions in children with CP.

Six trials did not address harms or adverse events.^{121,122,124,130-132} One RCT reported that there were no adverse events.¹²⁸ One RCT indicated that there were no reports of adverse events with transcranial stimulation during treadmill training but did not comment on other potential adverse events.¹²³ Another RCT reported that no injury occurred that was due to the intervention.¹²⁹ One trial reported that four children in the experimental group and one in the control group dropped out due to unexpected surgery or botulinum toxin administration and that one child dropped out due to back pain with walking.¹²⁷ Another trial reported that two children developed knee or leg pain and one child developed a blister underneath the ankle-foot arthrosis.¹²⁵

Treadmill—Spinal Cord Injury

Three trials¹³³⁻¹³⁹ enrolled individuals (n=89) with SCI (Table 19). Trial mean age of participants ranged from 37 to 55 years with an average mean proportion female between 14 and 30 percent. The disability of participants varied. One trial¹³⁸ enrolled individuals who could walk at least 5 meters with braces or walking aids, while another trial¹³³ only required that participants be able to independently advance one leg.

Author, Year Intervention	Intervention		
Study Design	and		
Study Quality	Comparison	Population	Results
Alexeeva,	A. BWS treadmill	A vs. B vs. C	A vs. B vs. C: mean (SD), p=across all groups:
2011 ¹³³	training, max 39	Age: 43 vs. 36 vs.	
	sessions over 13	35	<u>10MWT (m/s):</u> 0.30 (0.26) to 0.46 (0.40) vs. 0.22 (0.20) to 0.44
Aerobic	weeks (n=9)	Female: 11% vs.	(0.33) vs. 0.41 (0.34) to 0.51 (0.36), p>0.05
exercise		14% vs. 17%	
	B. BWS track	Cervical: 89% vs.	TBS: 9.8 (5.4) to 19.4 (5.0) vs. 10.5 (3.4) to 11.9 (2.5) vs. 10.1(3.6)
RCT	training, max 39	57% vs. 58%	to 12.9 (2.7), p<0.05, post-hoc group C
	sessions over 13		improving (p<0.001) and B improving (p<0.01) but not A (p=0.23)
Fair	weeks (n=14)		
			SAWS: 39.3 ((8.3) to 35.2 (8.7) vs. 35.9 (6.9) to 32.4 (7.6) vs. 36.6
	C. Structured PT,		(9.9) to 29.0 (7.9), p>0.05
	max 39 sessions		
	over 13 weeks		
	(n=12)		

Table 19. Treadmill exercise in spinal cord injury

Author, Year			
Intervention	Intervention		
Study Design	and		
Study Quality	Comparison	Population	Results
Giangregorio,	A. BWS treadmill	A vs. B	A vs. B, mean (SD), pre, post, and 8 months after intervention:
2012 ¹³⁴	walking with	Age: 56.6 vs. 54.1	10MWT: 42.8 (46.2) to 35.2 (40.8) to 42.2 (67.7) vs. 49.1 (41.7) to
Hitzig, 2013 ¹³⁵	FES, 48 sessions	Female: 18% vs.	28.7 (8.3) to 35.1 (18.8), p=0.829
Kapadia,	over 16 weeks	29%	6MWT: 187.9 (123.4) to 217.1 (134.4) to 232.5 (138.9) vs. 79.4
2014 ¹³⁶	(n=17)	Tetraplegia: 82%	(83.9) to 130 (46.0) to 126.4 (63.8), p=0.096
Craven,		vs. 71%	TUG: 43.6 (25.5) to 33.0 (15.7) to 32.2 (19.1) vs. 61.6 (36.2) to
2017 ¹³⁷	B. Aerobic and	UEMS: 38.3 vs.	49.5 (21.9) to 51.3 (19.6), p=0.138
	resistance	37.5	FIM: 4.7 (1.82) to 5.19 (1.80) to 5.19 (1.83) vs. 4.18 (2.14) to 4.82
Aerobic	training, 48	LEMS: 30.4 vs.	(1.66) to 5.09 (2.98), p=0.115
exercise	sessions over 16	27.9	CHART Mobility subscale: 79.81 (21.00) to 85.28 (13.81) to 86.36
	weeks (n=17)	C2-T12: 100%	(14.44) vs. 82.09 (19.31) to 84.27 (11.89) to 88.45 (15.25), p=0.840
RCT		AIS C or D: 100%	CHART Social subscale: 89.94 (13.12) to 90.31 (18.02) to 88.69
			(17.10) vs. 72.73 (24.00) to 89.64 (12.63) to 73.73 (31.15), p=0.065
Fair			CHART Physical subscale: 92.35 (11.75) to 93.72 (8.02) to 93.81
			(6.16) vs. 97.94 (2.49) to 94.99 (7.30) to 93.85 (5.01), p=0.214
Yang, 2014 ¹³⁸	A. BWS (if	A vs. B	A vs. B, mean change, p=between groups:
	needed) treadmill	Age: 48 vs. 44	<u>6MWT</u> : 29 vs. 10, p=0.045
Aerobic	walking, 40	Female: 30% vs.	<u>10MWT (self-selected):</u> 0.070 vs. 0.025, p>0.05
Exercise	sessions over 8	30%	<u>10MWT (fast):</u> 0.075 vs. 0.12, p>0.05
	weeks (n=10)	Able to walk <u>></u> 5	<u>SCIFAP</u> : –75 vs. –42, p>0.05
RCT		meters with walking	WISCI (self-selected): 0.08 vs. 0.85, p>0.05
(Crossover)		aid or braces: 100%	<u>WISCI (max):</u> 0.04 vs. 0.08, p>0.05
	walking training,	Cervical: 50%	
Fair	40 sessions over		
	8 weeks (n=10)		e_{terr} Walk Test: $\Delta IS = \Delta SI \Delta$ Impairment Scale: $RWS = hody$

Abbreviations: 6MWT = 6-Minute Walk Test; 10MWT = 10-Meter Walk Test; AIS = ASIA Impairment Scale; BWS = body weight supported; CHART = Craig Handicap and Assessment Reporting Technique; FES = functional electrical stimulation; FIM = Functional Independence Measure; LEMS = Lower Extremity Motor Score; PT = physical therapy; RCT = randomized controlled trial; SAWS = Satisfaction with Abilities and Well-Being Scale; SD = standard deviation; TBS = Tinetti Balance Scale; TUG = Timed Up and Go Test; UEMS = Upper Extremity Motor Score; WISCI = Walking Index for Spinal Cord Injury

All three trials provided low-strength evidence for no clear benefit of treadmill training versus all comparators on function, including walking (SOE: low). Evidence was insufficient to draw conclusions on the effects of treadmill training on quality of life or balance in study participants with SCI.

One RCT did not address harms or adverse events.¹³³ One RCT¹³⁸ reported a single participant withdrew due to wrist pain and that no other adverse events that were related to training occurred; one RCT reported adverse events that were considered a result of the intervention (bruising, blistering, fall on treadmill, and pain in heel/ankle and hip/groin) and loss of consciousness, muscle strain, swollen knees, elbow pain, and dizziness in the control group.¹³⁴

One additional trial of reports the effects of RAGT on bowel dysfunction and is discussed in KQ2c.¹¹³

Postural Control Interventions

Balance Exercises

Balance training involves muscle-strengthening exercises to improve stability and coordination. Balance exercises may involve specific methods (e.g., Cawthorne-Cooksey exercises, Frenkel exercises, core stability, dual tasking, sensory strategies [CoDuSe] exercises) or individual or group standard balance exercises or traditional rehabilitation with a balance

focus. These exercises are designed to improve postural control and walking, or other functional outcomes, and/or to decrease falls and near falls.

Key Points

- Balance exercises were associated with improved balance in MS compared with usual care or waitlist controls (SOE: moderate), a lower risk of falls (SOE: low), and low-strength evidence of improved function (SOE: low).
- Due to poor-quality studies, evidence for the effects of balance exercises in CP was rated insufficient to draw conclusions (SOE: insufficient).
- There was also limited evidence for the effects of balance training in SCI (SOE: insufficient).

Detailed Synthesis

Fifteen RCTs,^{61,83,141-149,151,152,156,157} two quasiexperimental nonrandomized studies,¹⁵³⁻¹⁵⁵ and one cohort study¹⁵⁵ involving 751 participants evaluated balance training. Fifteen studies compared balance training interventions with usual care, waitlist, or attention control,^{61,83,141,143,145-149,151-157} and one study¹⁴² compared balance training alone and in combination with lumbar stabilization exercises or task-oriented training exercises. Twelve studies enrolled people with MS,^{61,83,141-143,145-149,151} four studies enrolled people with CP,¹⁵²⁻¹⁵⁵ and two studies were conducted in participants with SCI.^{156,157} Among the trials, three met criteria for good quality,^{145,146,148} and eleven were rated fair quality.^{61,83,141-143,147,149,151,152,156,157} The three quasiexperimental nonrandomized studies were rated poor quality due to unclear enrollment methods, unbalanced study group allocation, and/or lack of clear adjustment for clinical or demographic confounders.¹⁵³⁻¹⁵⁵ The most frequently reported outcomes were related to balance and function.

Balance Exercise—Multiple Sclerosis

Twelve trials enrolled people (n=640) with MS (Table 20).^{61,83,141-143,145-149,151} The trial mean age of participants ranged from 32 to 59 years with a mean proportion female from 59 to 100 percent. Race/ethnicity was not reported in any of the trials. Mean baseline EDSS score ranged from 2.4 to 6.1.

BBS scores were evaluated in eight trials (Table 20).^{83,141-146,151} Seven trials (n=332) comparing balance training with usual care found balance training consistently associated with significant improvements in BBS scores relative to usual care (MD –4.14, 95% CI –5.57 to –2.70, I²=79%).^{83,141,143-146,151} Two other RCTs measured balance with the Mini Balance Evaluation System Test (MiniBEST) and found similar results (MD 2.40, 95% CI 1.10 to 3.70, I²=51%).^{148,149} One study reported improvements in static and dynamic balance with balance exercises.¹⁴⁷ These studies provide moderate-strength evidence of improved balance with balance with balance exercises in MS compared with usual care or waitlist controls.

Two RCTs reported falls or near falls as an outcome, with both reporting significantly fewer falls in the intervention groups than the control groups, based on patient diaries.^{141,143} Comparing the average number of falls and near falls before, during, and after the intervention in one study showed they significantly decreased over time (falls: 4.18, 2.17, 1.68, before-after p=0.0011; near falls: 23.2, 18.0, 8.64, before-after p=0.0038). The other RCT found that the likelihood of having an unexpected fall was lower with balance training than with usual care (p=0.005).¹⁴¹ These studies provide low-strength evidence of improvement in fall risk with balance training.

A trial (n=42) comparing balance training alone with balance training combined with lumbar stabilization or task-oriented training found the combination therapies improved balance more than balance training alone (mean change from baseline 3.57 [balance training alone] versus 5.78 [balance training with lumbar stabilization] versus 5.57 [balance training with task-oriented training]), but the difference between groups was not statistically significant (SOE: insufficient).¹⁴²

Seven studies provided low-strength evidence of benefit of balance exercises on function. Subjective assessment of walking was improved with balance training in four studies (n=248, MD –4.66, 95% CI –6.65 to –2.67, $I^2=0\%$).^{143,144,149,150} Objective measures of walking (e.g., 6MWT, Functional Gait Assessment) largely favored balance exercises compared with usual care, although individual results were not always statistically significant.^{83,143,144,147,149-151} One trial reported improved scores on the MSIS-29 with balance exercises versus usual PT.⁸³ However, there was no improvement in TUG with balance exercises in pooled analysis of three trials (n=127, MD 0.45, 95% CI –1.92 to 2.82, $I^2=54\%$).^{143,144,147,149,151}

One fair-quality RCT (n=45) found no difference between balance exercises and attention control on sleep as measured by the Insomnia Sleep Index but future trials are needed to confirm these findings.⁶¹ (SOE: insufficient). Quality of life, based on Multiple Sclerosis Quality of Life (MSQOL)-54 score, was not significantly different between balance training with conventional rehabilitation one trial (n=80).¹⁴¹ (SOE: insufficient).

Six RCTs did not address harms or adverse events.^{61,83,146-148,151} Of the studies that did report on adverse events, one reported no falls or adverse events during the study, and another reported two falls during CoDuSe training.^{143,145,149} Two other studies reported that there were no adverse events related to training.^{141,142}

Author, Year			
Intervention			
Study Design	Intervention		
Study Quality	and Comparison	Population	Results
Afrasiabifar,	A. Cawthorne-	A vs. B vs. C	A vs. B vs. C, mean change from baseline
2018 ¹⁴⁵	Cooksey exercise: 36	Age: 32.4 vs. 32 vs. 33.6	(SD):
	sessions over 12	Female: 83% vs. 74% vs.	BBS: 8.9 (SD 1.8) vs. 2.3 (SD 0.9) vs1.2
Postural control	weeks (n=24)	76%	(SD 1.05)
		RRMS: 96% vs. 96% vs.	BBS: mean difference between-groups:
RCT	B. Frenkel exercises,	92%	A vs. B: 5.9, 95% CI 1.9 to 9.9, p=0.001
	number of sessions	PPMS+SPMS: 4% vs.	A vs. C: 10.7, 95% CI 6.8 to 14.6, p=0.001
Good	NR, over 12 weeks	4% vs. 8%	B vs. C: 4.8, 95% CI 0.9 to 8.8, p=0.01
	(n=23)		
	C. Usual care (n=25)		
Amiri, 2019 ¹⁴⁷	A. Core stability	A vs. B	Significant interaction between time and
	training, 30 sessions	Age: 32 vs. 31	group according to baseline EDSS score for
Postural control	over 10 weeks (n=35)	Female: 100%	core muscle function (i.e., core endurance
		EDSS: 3.58 vs. 3.74	and core strength tests) and static and
RCT	B. Conventional	RRMS: 100%	dynamic stability (p<0.05)
	treatment (n=34)		
Fair			

Table 20. Balance training in multiple sclerosis

Author, Year			
Intervention	• • •		
Study Design Study Quality	Intervention and Comparison	Population	Results
Arntzen, 2019 ¹⁴⁸ Arntzen, 2020 ¹⁵⁰ Postural control RCT Good	A. GroupCoreDIST, 18 sessions over 6 weeks + home exercises (n=39) B. Usual care (n=40)	A vs. B Age: 52 vs. 48 Female: 69% vs. 73% EDSS: 2.45 vs. 2.28 RRMS: 82% vs. 90% PPMS: 13% vs. 5% SPMS: 5% vs. 5%	A vs. B, mean difference between groups: MiniBEST: MD 1.91, 95% CI 1.07 to 2.76, p<0.001 2MWT at 7 weeks: MD 16.7, 95% CI 8.15 to 25.25 2MWT at 30 weeks: MD 16.38, 95% CI 7.65 to 25.12 10MWT at 7 weeks: MD 0.48, 95% CI 0.11 to 0.85 10MWT at 30 weeks: MD 0.33, 95% CI -0.04 to 0.71 MSWS-12 at 7 weeks: MD 9.77, 95% CI 3.19 to 16.35 MSWS-12 at 30 weeks: MD 3.87, 95% CI -2.80 to 10.54
Brichetto, 2015 ¹⁴⁶ Postural control RCT	A. Personalized rehab (tailored to sensory impairment), 12 sessions over 4 weeks (n=16)	A vs. B Age: 50.1 vs. 51.0 Female: 69% vs. 75% RRMS: 56% vs. 63% SPMS: 31% vs. 25%	A vs. B, mean (SD), p=between groups: <u>BBS</u> : 46.5 (3.6) to 52.8 (2.8) vs. 45.8 (6.6) to 47.8 (6.1), p<0.001
Good	B. Traditional rehab (visual rehab for balance disorders), 12 sessions over 4 weeks (n=16)	PPMS: 13% vs. 13% EDSS: 3.7 vs. 3.7	
Callesen, 2019 ¹⁴⁹ Postural control RCT Fair	A. Balance and motor control training, 20 sessions over 10 weeks (n=28) B. Waitlist control (n=18)	A vs. B Age: 51 vs. 56 Female: 82% vs. 80% EDSS: 4 vs. 3.5 RRMS: 75% vs. 65% SPMS: 14% vs. 15% PPMS: 11% vs. 20%	A vs. B, mean difference, p=between groups <u>6MWT:</u> MD 17.5, 95% CI -4.1 to 39.2, p=0.11 <u>25FWT (m/s):</u> MD 0.10, 95% CI 0.00 to 0.20, p=0.04 <u>MSWS-12</u> : MD -7.3, 95% CI -12.7 to -2.0, p=0.01 <u>MiniBEST</u> : MD 3.3, 95% CI 1.6 to 5.0, p<0.01
Carling, 2017 ¹⁴³ Postural control RCT	A. Group CoDuSe, 14 sessions over 7 weeks (n=23) B. Waitlist (Late start) controls (n=25)	A vs. B Age: 62 vs. 55 Female: 76% vs. 62% EDSS: 6.16 vs. 6.06 RRMS: 0% vs. 23% SPMS: 68% vs. 58%	A vs. B, mean change (SE): <u>BBS:</u> 3.65 (1.44), p=0.015 <u>TUG</u> : 4.41 (3.17), p=0.17 <u>2MWT</u> : -3.24 (3.37), p=0.34 <u>Sit-to-Stand</u> : 0.24 92.12), p=0.17 <u>10MWT</u> : 1.49 (3.84), p=0.70
Fair		PPMS: 32% vs. 19%	Falls Efficiency Scale: -1.66 (2.39), p=0.49 MSWS-12: -7.21 (3.60), p=0.051 Falls: -1.24 (1.66), p<0.001
Forsberg, 2016 ¹⁴⁴ Postural control	A. Group CoDuSe, 14 sessions over 7 weeks (n=35)	A vs. B Age: 52 vs. 56 Female: 80% vs. 82%	A vs. B, least squares mean, 95% Cl p=between groups <u>TUG</u> : 1.4, 95% Cl –1.7 to 4.5, p=0.37
RCT	B. No intervention (n=38)	EDSS 6.0 or less: 100% RRMS: 57% vs. 34% PPMS: 11% vs. 13%	<u>MSWS-12</u> : –3.7, 95% CI –6.0 to –1.3, p=0.0026
Fair		SPMS: 31% vs. 53%	<u>FGA</u> : 2.1, 95% CI 0.6 to 3.6, p=0.0079
			BBS: -2.1, 95% CI -3.8 to -0.5, p=0.011

Author, Year			
Intervention			
Study Design	Intervention		
Study Quality	and Comparison	Population	Results
Gandolfi, 2015 ¹⁴¹ Postural control	A. Balance training (sensory integration), 15 sessions over 5 weeks (n=39)	A vs. B Age: 47.21 vs. 49.56 Female: 72% vs. 76% EDSS (median): 3.00 vs.	A vs. B, mean (SD), p=between groups: <u>MSQOL-54 PHC</u> : 63.09 (11.09) to 65.56 (10.31) vs. 58.77 (11.05) to 59.64 (9.80), p>0.05 (postintervention); 63.09 (11.09) to
RCT		3.66	63.56 (10.27) vs. 58.77 (11.05) to 58.54
Fair	B. Conventional rehabilitation, 15 sessions over 5 weeks (n=41)	RRMS: 100%	(11.64), $p>0.05$ (1 month postfreatment) <u>MSQOL-54 MHC</u> : 61.05 (20.15) to 65.32 (18.29) vs. 60.50 (16.6) to 63.09 (12.19), p>0.05 (postintervention); 61.05 (20.15) to 63.19 (17.94) vs. 60.50 (16.6) to 63.25 (13.18), $p>0.05$ (1 month posttreatment) <u>BBS</u> : 47.97 (4.89) to 52.77 (3.15) vs. 46.49 (5.21) to 47.79 (6.05), $p<0.001$ (postintervention); 47.97 (4.89) to 52.92 (2.97) vs. 46.49 (5.21) to 48.33 (5.88), p<0.001 (1 month posttreatment) <u>Number of Falls</u> : 0.59 (0.99) to 0.03 (0.16) vs. 0.37 (0.54) to 0.29 (0.34), $p=0.005$ (postintervention); 0.59 (0.99) to 0.08 (0.27) vs. 0.37 (0.54) to 0.27 (0.55), $p=0.053$ (1 month posttreatment)
Ozkul, 2020 ¹⁵¹	A. Balance training, 16 sessions over 8 weeks	A vs. B Age: 34 vs. 34	Pre-post median (IQR):
Postural control	(n=13)	Female: 85% vs. 77% EDSS median: 1 vs. 2	<u>BBS:</u> 47 (44, 56) to 52 (46, 56) vs. 55 (53, 56) to 56 (53.5, 56), p>0.05
RCT	B. Relaxation	Number of relapses: 2 vs.	
Fair	exercises at home, 16 sessions over 8 weeks (n=13)	2	TUG: 7.3 (6.7, 8.5) to 7.3 (6, 7.9) vs. 6.9 (6.5, 7.5) to 7.4 (6.4, 7.7), p<0.017
Sadeghi	A. Balance and	A vs. B	A vs. B, mean (SD), p=between groups:
Bahmani, 201961	coordination	Age: 39 vs. 38	
Postural control	exercises, 24 sessions over 8 weeks (n=24)	Female: 100% EDSS: 3.38 vs. 2.02	EDSS: 3.38 (1.87) to 3.10 (1.86) vs. 2.02 (1.84) to 1.98 (1.70), p>0.05
RCT Fair	B. Attention control, 24 sessions over 8 weeks (n=21)		<u>ISI:</u> 13.46 (5.81) to 10.13 (4.92) vs. 1.71 (5.43) to 11.14 (5.39), p>0.05
Salci, 2017 ¹⁴²	A. Balance training, 18	A vs. B vs. C	A vs. B vs. C, mean change (SD),
Postural control	sessions over 6 weeks (n=14)	Age: 35.36 vs. 37.29 vs. 34.36 Female: 43% vs. 62% vs.	p=between groups: <u>2MWT:</u> 10.75 (SD 9.97) vs. 25.55 (SD
RCT	B. Lumbar stabilization plus balance training,	71% Ambulatory: 100%	16.90) vs. 18.69 (SD 14.24) A vs. B: p=0.08; A vs. C: p=0.085; B vs. C:
Fair	18 sessions over 6 weeks (n=14) C. Task-oriented training (individualized exercises) plus balance training, 18	EDSS (median): 3.5 vs. 3.5 vs. 3.5 RRMS: 79% vs. 79% vs. 86% PPMS: 7% vs. 7% vs. 0% SPMS: 14% vs. 14% vs. 14%	p=0.265 <u>BBS:</u> 3.57 (SD 2.20) vs. 5.78 (SD 3.40) vs. 5.57 (SD 3.73); p=>0.05 for all comparisons
	sessions over 6 weeks (n=14)	ידי /ט	

Author, Year Intervention Study Design Study Quality	Intervention and Comparison	Population	Results
Tollar, 2020 ⁸³	A. Balance training, 25	A vs. B	A vs. B, mean difference between groups:
	sessions over 5 weeks	Age: 46.9 vs. 44.4	MSIS-29: -6.3 (4.36) vs. 1.0 (3.46), p=0.008
Postural control	(n=14)	Female: 86% vs. 92%	6MWT: 19.2 (35.40) vs. 6.3 (49.27),
		EDSS median: 5.0 vs.	p=0.174
RCT	B. Usual PT, 25	5.0	BBS: 3.9 (2.25) vs. –0.2 (2.62), p=0.015
	sessions over 5 weeks	RRMS: 64% vs. 67%	EQ-5 Sum score:-0.6 (1.15) vs. 0.0 (1.13),
Fair	(n=12)		p=0.023

Abbreviations: 2MWT = 2-Minute Walk Test; 6MWT = 6-Minute Walk Test; 10MWT = 10-Meter Walk Test; 25FWT = 25-Foot Walk Test; BBS = Berg Balance Scale; CoDuSe = core stability, dual tasking, sensory strategies; EDSS=Expanded Disability Status Scale; EQ-5 = Euro Quality of Life; FGA = Functional Gait Assessment; ISI = Insomnia Severity Index; IQR = interquartile range; MiniBEST = Mini Balance Evaluation Systems Test; MSIS-29 = Multiple Sclerosis Impact Scale; MSQOL=Multiple Sclerosis Quality of Life; MSWS-12 = Multiple Sclerosis Walking Scale-12; NR = not reported; PPMS = primary progressive multiple sclerosis; PT = physical therapy; RRMS = relapsing-remitting multiple sclerosis; RCT = randomized controlled trial; SD = standard deviation; SE = standard error; SPMS = secondary progressive multiple sclerosis; TUG = Timed Up and Go Test

Balance Exercise—Cerebral Palsy

One RCT,¹⁵² two quasiexperimental studies,^{153,154} and one cohort study¹⁵⁵ enrolled people (n=117) with CP (Table 21). Three studies¹⁵²⁻¹⁵⁴ enrolled children and one¹⁵⁵ enrolled young adults. In the studies conducted in children, mean age was 10 years (range 8 to 11 years) and 40 percent were female (range 32% to 50%). In the study conducted in adults, the mean age was 22 years and 46 percent were female. None of the studies reported race/ethnicity. Ambulatory status was not reported in any of the studies. Three studies reported baseline function using the GMFCS.¹⁵²⁻¹⁵⁴ One study primarily enrolled people with Level I GMFCS classification¹⁵⁴ and the other two studies enrolled people classified Level III or higher.^{152,153} One fair-quality trial¹⁵² (n=28) and 2 poor-quality quasiexperimental studies (n=66)^{153,154} provided evidence on the effects of balance exercises versus usual care on function in CP. Due to the high risk of bias in this body of evidence, evidence was considered insufficient to draw conclusions (SOE: insufficient). Similarly, evidence was insufficient to draw conclusions on the effects of balance training exercises on balance^{152,154} and ADL.^{152,153,155}

Harms and adverse events were not addressed in any of the studies of balance training in people with CP.¹⁵²⁻¹⁵⁵

Author, Year Intervention			
Study Design	Intervention		
Study Quality	and Comparison	Population	Results
Bleyenheuft,	A. Hand-arm	A vs. B	A vs. B, mean (SD); p=interaction of 2
2017 ¹⁵³	bimanual intensive	Age: 10.5 vs. 11.4	interventions X 3 time points (baseline,
2011	therapy including	Female: 40% vs. 50%	postintervention and 3 months postintervention):
Postural control	lower extremity,	GMFCS II: 20% vs. 20%	<u>GMFM-66</u> : 55 (5.9) to 58 (6.2) to 62 (6.4) vs. 55
	thirteen 6.5 hours	GMFCS III: 70% vs. 70%	(8.7) to 56 (7.6) to 57 (6.6), p<0.001
Quasiexperimental	per day over 13	GMFCS IV: 10% vs. 10%	<u>6MWT</u> : 190 (108.5) to 226 (100.8) to 236 (105.1)
	days (n=10)		vs. 194 (101.1) to 180 (111.1) to 182 (101.1),
Poor			p=0.026
	B. Usual PT, 2		<u>PEDI</u> : 52 (12.4) to 57 (11.5) to 60 (10.7) vs. 51
	weeks (n=10)		(14.6) to 51 (15.3) to 51 (15.8), p=0.001
			PBS: 33 (17.5) to 43 (20.1) to 42 (21.3) vs. 30
			(23.9) to 27 (22.2) to 26 (23.2), p=0.002

Table 21.	Balance	training	in	corobral r	nalev
	Dalalice	uannig		Cerebrar	Jaisy

Author, Year Intervention			
Study Design	Intervention		
Study Quality	and Comparison	Population	Results
Curtis, 2018 ¹⁵²	A. Trunk control training: 120	A vs. B Age: 8 vs. 8	A vs. B, mean difference, p=between groups: GMFM–66: 1.1, 95% CI –2.2 to 4.4, p>0.05
Postural control	sessions over 24 weeks (n=14)	Female: 21% vs. 50% Spastic: 50% vs. 64% Dyskinetic: 50% vs. 36%	(postintervention); 0.1, 95% CI –3.6 to 3.3, p>0.05 (12-month followup) <u>SATCo</u> : mean between group difference at end of
RCT	B. Usual care (n=14)	GMFCS III: 14% vs. 21% GMFCS IV: 29% vs. 14%	treatment and at posttreatment followup: p>0.05 PEDI Self Care, PEDI Mobility, PEDI Mobility
Fair		GMFCS V: 57% vs. 64%	<u>Caregiver Assistance</u> : mean between group difference at end of treatment and at posttreatment followup: p>0.05
Kim, 2017 ¹⁵⁵	A. Group boccia, 12 sessions over 6	A vs. B Age: 22.36 vs. 21.83	A vs. B, mean (SD), p=between groups:
Postural control	weeks (n=11)	Female: 45% vs. 42%	<u>Modified Barthel Index</u> , mean change from baseline: 2.82 (SD 1.25) vs. 1.58 (SD 1.38),
Social	B. Usual care		p<0.05; MD 1.24, 95% CI 0.09 to 2.34, p=0.04
activity/exercise (Boccia)	(n=12)		
Cohort study			
Poor			
Lorentzen, 2015 ¹⁵⁴	A. Interactive, home-based	A vs. B Age: 10.9 vs. 11.3	A. vs. B, mean (SD), p=between groups: Sit-to-stand, number of cycles performed: 20.0
Postural control	computer training, 140 sessions over	Female: 32% vs. 42% GMFCS I: 97% vs. 92%	(0.9) vs, 15.1 (0.9), p=0.04 Left leg lateral step up, number of steps: 23.5 (1.4)
Quasiexperimental	20 weeks (n=34)	GMFCS II: 3% vs. 8%	vs. 17.8 (2.2), p=0.004 Right leg lateral step up, number of steps: 22.1
Poor	B. Usual care		(1.4) vs. 18.0 (2.0), p<0.001
	(n=12)		Romberg Balance Test center of gravity
			<u>maintenance area (mm2)</u> : 462.2 (62.5) vs. 314.6 (104.9), p=0.18

Abbreviations: 6MWT = 6-Minute Walk Test; CI = confidence interval; GMFCS = Gross Motor Function Classification System; GMFM = Gross Motor Function Measure; GMFM-66 = Gross Motor Function Measure 66; MD = mean difference; PBS = Pediatric Balance Scale; PEDI = Pediatric Evaluation of Disability Inventory; PT = physical therapy; RCT = randomized controlled trial; SATCo=Segmental Assessment of Trunk Control; SD = standard deviation

Balance Exercise—Spinal Cord Injury

There was insufficient evidence on the benefits and harms of balance training in SCI. One RCT compared the effects of Cawthorne/Cooksey exercises versus conventional therapy on balance in Iranian male veterans with SCI (n=20) (Table 22).¹⁵⁶ All participants had L3 to L4 injury. A second trial in SCI patients of various ages with CSI compared dual task exercises to a control group.¹⁵⁷ Both trials reported improved balance as assessed with the BBS with balance exercises (n=60, MD 4.53, 95% CI 2.61 to 6.46, I²=0%). The second trial also reported improved coordination and walking speed in the intervention group compared with the control group.¹⁵⁷

Table 22. Balance training in spinal cord injury

Author, Year Intervention			
Study Design	Intervention		
Study Quality	and Comparison	Population	Results
Hota, 2020 ¹⁵⁷	A. Dual task	A vs. B	A vs. B, mean (SD):
	exercises for	Age 11-25: 40% vs. 30%	
Postural control	upper and lower	Age 26-40: 25% vs. 45%	BBS: MD 4.55, 95% CI 2.16 to 6.94
	limbs, 24 sessions	Age 41-55: 25% vs. 25%	
RCT	over 4 weeks	Age 56-70: 10% vs. 0%	Motor Assessment Scale: MD 3.82, 95% CI
	(n=20)	Female: 10% vs. 10%	1.09 to 6.55, p=0.006
Fair	. ,		
	B. Control group –		
	details NR, (n=20)		
Norouzi, 2019 ¹⁵⁶	A. Cawthorne/	A vs. B	A vs. B, mean (SD), p-value=between groups
	Cooksey	Age: NR	
Postural control	exercises, 12	Female: 0%	BBS: 38.36 (6.01) to 48.39 (4.01) vs. 37.67
	sessions over 4	L3-L4: 100%	(6.07) to 43.20 (4.05), MD 4.5, 95% CI –0.17 to
RCT	weeks (n=10)		9.17, p=0.059
	. ,		
Fair	B. Usual care, 4		
	sessions over 4		
	weeks (n=10)		

Abbreviations: BBS = Berg Balance Scale; CI = confidence interval; MD = mean difference; NR = not reported; RCT = randomized controlled trial; SD = standard deviation

Hippotherapy

Hippotherapy is a type of therapeutic horseback riding that uses the movement of a horse (or a simulated horse) in conjunction with a physical and/or occupational therapist to improve function and stability and other outcomes in people with neuromuscular disease or disability.²⁶⁵

Key Points

- Although data from two fair-quality trials favored hippotherapy over usual care on walking, short-term quality of life, and balance in adults with MS, no firm conclusions can be drawn (SOE: insufficient).
- Low-strength evidence found hippotherapy associated with improved function and balance in CP (SOE: low).
- There were no studies of hippotherapy in SCI.

Detailed Synthesis

Nine RCTs,^{158,160-162,164-168} two quasiexperimental nonrandomized studies,^{169,170} and one cohort study¹⁷¹ involving 567 participants evaluated hippotherapy. Five studies compared hippotherapy versus usual care,^{158,162,165,169,170} four studies compared hippotherapy versus no hippotherapy (either waitlist or inactive hippotherapy simulator),^{160,161,168,171} one trial compared hippotherapy versus home aerobic exercise,¹⁶⁴ one RCT compared hippotherapy versus outdoor recreation,¹⁶⁷ and one RCT examined the effects of hippotherapy versus a hippotherapy simulator.¹⁶⁶ Two RCTs enrolled participants with MS (Table 23),^{158,160} and the remaining 11 studies were in participants with CP (Table 24).

Among the trials, one met criteria for good quality,¹⁶⁴ six for fair quality,^{158,160-162,167,168} and one was rated poor quality and deemed to have high risk of bias due to unclear reporting of randomization method, allocation concealment, blinding of outcome assessors, and high loss to followup.¹⁶⁶ One quasiexperimental study was rated fair quality¹⁶⁹ and one quasiexperimental

study¹⁷⁰ and one cohort study¹⁷¹ were rated poor quality due to unclear enrollment methods and lack of clear adjustment for prognostic clinical or demographic confounders. The most frequently reported outcomes were related to function (e.g., GMFM)^{160-162,164,165,167,169,171} and balance (e.g. BBS, Pediatric Balance Scale [PBS]).^{158,164,166,169-171}

Hippotherapy—Multiple Sclerosis

Two trials of hippotherapy enrolled patients with MS, one (MS-HIPPO) with a usual care control group, and the other with a waitlist control group (Table 23). Both trials enrolled more females with similar ages but EDSS scores were higher in one trial, indicating greater disability.¹⁵⁸

The MS-HIPPO trial found that weekly hippotherapy was associated with significantly greater improvement in quality of life based on MSQoL-54 mental and physical health scores compared with usual care (mean difference 12.0, 95% CI 6.2 to 17.7 and 14.4, 95% CI 7.5 to 21.3).¹⁵⁸ Balance, measured by BBS score, was also significantly better with hippotherapy versus usual care after 12 weeks (mean difference 2.33, 95% CI 0.03 to 4.63) using imputed (last observation carried forward) data.¹⁵⁸ Subgroup analysis found hippotherapy associated with greater improvement in BBS score in participants with EDSS 5 or greater (vs. usual care, MD 5.1, 95% CI 2.3 to 7.9) and in participants age 50 years or older (MD 4.8, 95% CI 1.8 to 7.8) than in those with EDSS less than 5 at baseline (MD –0.8, 95% CI –4.2 to 2.5) or less than age 50 years (MD 1.8, 95% CI –1.3 to 4.9). The other hippotherapy study in patients with MS (n=33) found improved walking distance on the 6MWT and walking speed on the 25FWT.¹⁶⁰ Data from these trials provides insufficient evidence from which to draw firm conclusions.

One trial did not address adverse events,¹⁶⁰ while the other trial reported similar numbers of participants with any adverse event (43% vs. 41%; p=0.82) and serious adverse events (3% vs. 5%; p=0.69) in hippotherapy and control groups. Participants in the hippotherapy group were more likely to experience unspecified accidents versus control (13% vs. 3%; p=0.14).¹⁵⁸

Table 23. Hippot	nerapy in multiple	SCIEIUSIS	
Author, Year Intervention Study Design Study Quality	Intervention and Comparison	Population	Results
Moraes, 2020 ¹⁶⁰	A. Hippotherapy,	A vs. B	A vs. B, mean (SD):
	16 sessions over	Age: 45.5 vs. 48.4	<u>6MWT</u> : 459.06 (118.34) to 503.59 (126.38) vs.
Postural control	8 weeks (n=17)	Female: 94% vs.	513.00 (101.97) to 497.13 (88.88), p<0.001
		94%	25FWT: 6.37 (1.70) to 5.36 (1.43) vs. 5.82 (1.29) to
RCT	B. Waitlist control	EDSS, median: 2.0	5.84 (1.08), p<0.001
	(n=16)	vs. 1.75	
Fair		RRMS: 100%	
Vermohlen,	A. Hippotherapy	A vs. B	A vs. B, mean difference, p=between groups:
2018 ¹⁵⁸	plus standard	Age (median): 50	MSQoL-54 mental health subscale score: 14.4, 95%
	care, 12 sessions	vs. 51	CI 7.5 to 21.3, p<0.001
Postural control	over 12 weeks	Female: 90% vs.	MSQoL-54 physical health subscale score: 12.0,
	(n=32)	73%	95% CI: 6.2 to 17.7, p<0.001
		EDSS: 5.4 vs. 5.3	BBS: 2.33, 95% CI: 0.03 to 4.63, p=0.047
RCT	B. Control group		
	(standard care),		
Fair	12 weeks (n=38)		

Table 23. Hippotherapy in multiple sclerosis

Abbreviations: 6MWT = 6-Minute Walk Test; 25FWT = 25-Foot Walk Test; BBS = Berg Balance Scale; CI = confidence interval; EDSS = Expanded Disability Status Scale; MSQoL = Multiple Sclerosis Quality of Life; RCT = randomized controlled trial; SD = standard deviation

Hippotherapy—Cerebral Palsy

Seven RCTs,^{161,162,164-168} two quasiexperimental nonrandomized studies,^{169,170} and one cohort study¹⁷¹ enrolled children (n=464) with CP (Table 24). The trial mean age ranged from 6 to 11 years with a trial mean of 29 to 58 percent female. None of the studies reported race/ethnicity. Two trials^{169,170} specified that they enrolled ambulatory participants but participants' ambulatory status was not reported in the remaining seven studies. Ten studies reported baseline function using the GMFCS.^{161-165,167-171} GMFCS classification at baseline varied widely among the studies (Table 24). Three studies enrolled only participants classified GMFCS Level I or II.¹⁶⁸⁻¹⁷⁰

Evidence on functional outcomes with hippotherapy in children with CP was based on seven studies (Table 24) and provided low-strength evidence of a benefit of hippotherapy on function versus control groups.^{161,162,164,165,167,169,171} The largest (n=92) and only good-quality trial found significantly higher GMFM-66 scores after 8 weeks (16 sessions) of hippotherapy compared with at-home exercise; GMFM-88 and subscale scores D and E (standing and walking, running, jumping) were also improved with hippotherapy.¹⁶⁴

The effect of hippotherapy on balance/sitting ability was assessed in four fair- and two poorquality studies, using the PBS^{164,166,169} or Sitting Assessment Scale.^{161,168,170} Most trials compared hippotherapy with usual care or, in one case, a hippotherapy simulator.¹⁶¹ These trials provided low-strength evidence for improved balance scores on the PBS in pooled analysis (MD -3.14, 95% CI -5.28 to $-1.18, I^2=0\%$) (Figure 8). Sitting ability was assessed in three studies and showed a benefit in two,^{168,170} but one of the two studies was rated poor quality and in the other study the control group had worse baseline disability (SOE: insufficient).

Figure 8. Pediatric Balance Scale in cerebral palsy trials

Study	Cond.	Exercise	Control	N Exercise	N Control	Weight	MD ∆ Scores PL [95% Cl]	
Kwon 2011 Kwon 2015 Lee 2014	CP CP CP	Hippotherapy+PT Hippotherapy+PT Hippotherapy	PT Home-based ex. + PT Horse-back simulator	16 45 13	16 46 13	19.7% 15.1% 65.2%	-3.60 [-7.83, 0.63] -3.60 [-8.43, 1.23] -2.90 [-5.22, -0.58]	
Total (95% CI) Heterogeneity: Tau ² Test for overall effec		= 0.12, df = 2 (P = 0.94); P = 0.001)	l² = 0%	74	75	100.0%	-3.14 [-5.28, -1.18]	-10 -5 0 5 10 Favors Exercise Favors Control

Abbreviations: Δ = change; CI = confidence interval; CP = cerebral palsy; MD = mean difference; PL = profile likelihood; PT = physical therapy

One fair-quality RCT (n=24) reported improvement in positive feeling and self-esteem scores on the WHOQOL instrument with hippotherapy compared with outdoor recreation, whereas negative feeling scores were similar between groups (Table 24).¹⁶⁷ The only other evidence on the effect of hippotherapy on quality of life was from a poor-quality, crossover trial of 73 children with CP.¹⁶⁵ The trial found no difference between hippotherapy and conventional physiotherapy on the Child Health Questionnaire-28 psychosocial or physical subscale scores or on KIDSCREEN-27 parental scale scores. These studies provided insufficient evidence to draw a conclusion on the effects of hippotherapy on quality of life in children with CP.

One cohort study¹⁷¹ (n=55) found ADL as assessed with the Pediatric Evaluation Disability Inventory (PEDI) to favor hippotherapy over waitlist control, but the study had high risk of bias and the data were too limited to draw conclusions.

Six studies did not address harms or adverse events. The good-quality trial reported one fall in the hippotherapy group versus no falls in the control group (2% [1/46] vs. 0% [0/46]; OR 3.01, 95% CI 0.12 to 77). A poor-quality crossover study also reported one fracture as a result of a fall from a horse during hippotherapy.¹⁶⁵

One additional trial that reports the effects of hippotherapy on spasticity is found in Table 46, KQ2d.¹⁶³

Author, Year			
Intervention			
Study Design	Intervention		
Study Quality	and Comparison	Population	Results
Deutz, 2018 ¹⁶⁵	A. Hippotherapy, 16 to 32 sessions over	A vs. B Age: 9.29 vs. 8.87	A vs. B, mean difference, p=between groups: <u>GMFM-66 total</u> : 0.52, 95% CI –0.52 to 1.55,
Postural control	16 to 20 weeks plus usual physiotherapy	Female: 34% vs. 45% GMFCS II: 29% vs. 45%	p>0.05 <u>GMFM-66-D</u> : 0.016, 95% CI –1.09 to 1.12,
RCT	(n=35)	GMFCS III: 20% vs. 26% GMFCS IV: 51% vs. 29%	p>0.05 <u>GMFM-66-E</u> : 2.30, 95% CI 0.28 to 4.33, p<0.05
Poor	B. Usual physiotherapy over 16 to 20 weeks (n=38)		<u>CHQ-28 social</u> : 0.21, 95% CI –3.89 to 3.47, p>0.05 <u>CHQ-28 physical</u> : 4.77, 95% CI –1.12 to 10.66, p>0.05 <u>KIDSCREEN-27</u> : mean difference 1.07, 95% CI
	Crossover study		-2.53 to 4.68, p>0.05
Herrero, 2012 ¹⁶¹	A. Hippotherapy simulator ON, 10	A vs. B Age: 9.95 vs. 9.05	A vs. B, mean difference, p=between groups <u>GMFM total:</u> 0.27, 95% CI –0.07 to 0.62, p>0.05
Postural control	sessions over 10 weeks (n=19)	Female: 26% vs. 32% GMFCS I: 11% vs. 11%	<u>GMFM total, 22 weeks</u> : 0.25, 95% CI –0.10 to 0.60, p>0.05
RCT	B. Hippotherapy	GMFCS II: 11% vs. 5% GMFCS III: 16% vs. 11%	<u>GMFM total: Proportion with improvement from</u> baseline, 10 weeks: (11/19) vs. (8/19); OR 1.89
Fair	simulator OFF, 10 sessions over 10 week (n=19)	GMFCS IV: 16% vs. 21% GMFCS V: 47% vs. 53%	(95% CI 0.5 to 6.9), p>0.05 <u>GMFM total: Proportion with improvement from</u> <u>baseline, 22 weeks:</u> (10/19) vs. (12/19); OR 0.65 (95% CI 0.18 to 2.37), p>0.05 <u>Sitting Assessment Scale</u> : 0.26 (0.65) vs0.21 (0.92), p>0.05
Kwon, 2011 ¹⁶⁹ Postural control	A. Hippotherapy, 16 sessions over 8 weeks plus usual	A vs. B Age: 6.4 vs. 6.1 Female: 31% vs. 38%	A vs. B, mean (SD), p=between groups: <u>GMFM-66</u> : 70.4 (7.4) to 73.7 (8.3) vs. 69.8 (8.7) to 70.1 (8.1), p=0.003
	PT, 16 sessions over 8 weeks (n=16)	Ambulatory: 100% GMFCS I: 25% vs. 25%	<u>GMFM-88</u> : 89.4 (7.3) to 91.1 (6.7) vs. 88.0 (8.3) to 88.3 (8.4), p=0.054
Quasiexperimental	B. Usual PT, 16	GMFCS II: 75% vs. 75%	<u>GMFM-88-D</u> : 83.2 (15.5) to 83.3 (10.9) vs. 79.6 (15.5) to 79.3 (16.6), p=0.826
Fair	sessions over 8 weeks (n=16)		<u>GMFM-88-E</u> : 67.2 (17.5) to 74.6 (19.3) vs. 65.3 (20.0) vs. 66.9 (20.1), p=0.042 <u>PBS</u> : 41.7 (8.8) to 45.8 (8.6) vs. 41.0 (10.4) to 41.5 (10.6), p=0.004
Kwon, 2015 ¹⁶⁴	A. Hippotherapy, 16 sessions over 8	A vs. B Age: 5.7 vs. 5.9	A vs. B, mean (SD), p=between groups: <u>GMFM-66:</u> 60.8 (14.9) to 63.5 (15.8) vs. 61.4
Balance	weeks plus usual PT (n=46)	Female: 56% vs. 37% GMFCS I: 27% vs. 26%	(14.8) to 61.8 (15.0), p<0.01 <u>GMFM-88:</u> 72.7 (19.2) to 75.7 (18.3) vs. 73.9
RCT	B. Home-based	GMFCS II: 27% vs. 26% GMFCS III: 24% vs. 26%	(17.9) to 74.3 (18.1), p<0.01 <u>GMFM-88-D:</u> 54.1 (34.2) to 59.7 (32.5) vs. 55.5
Good	aerobic exercise, 16 sessions over 8 weeks plus usual PT (n=46)	GMFCS IV: 22% vs. 22% Spastic: 91% vs. 93% Unilateral: 9% vs. 13%	(32.2) to 54.9 (33.2), p<0.01 <u>GMFM-88-E</u> : 41.0 (34.1) to 45.1 (35.4) vs. 42.0 (33.2) to 43.0 (33.0), p<0.01 <u>PBS:</u> 25.1 (18.9) to 28.9 (18.8) vs. 26.9 (18.3) to 27.1 (18.3), p<0.01

Table 24. Hippotherapy in cerebral palsy

Author, Year Intervention Study Design Study Quality	Intervention and Comparison	Population	Results
Lee, 2014 ¹⁶⁶ Postural control	A. Hippotherapy, 36 sessions over 12 weeks (n=13)	A vs. B Age: 10.8 vs. 10.0 Female: 38% vs. 31% Walk > 10 meters	A vs. B, mean (SD), p=between groups <u>PBS:</u> 35.6 (3.8) to 41.2 (4.7) vs. 35.8 (4.7) to 38.5 (5.3), p>0.05
RCT Poor	B. Horseback riding simulator, 36 sessions over 12 weeks (n=13)	independently: 100%	
Matusiak-	A. Hippotherapy, 12	A vs. B	A vs. B, mean (SD)
Wieczorek,	sessions over 12	Age: 8.42 vs. 8.3	, (()) , (()) ())
2016 ¹⁷⁰	weeks (n=19)	Female: 47% vs. 45% Ambulatory: 100%	Sitting Assessment Scale: 14.42 (4.39) to 15.63 (3.65) vs.15.50 (3.14) to 15.75 (3.19), p=0.010
Postural control	B. Maintain current activities (n=20)	Hemiplegia: 68% vs. 75% GMFCS I: 63% vs. 55%	(3.03) vs. 13.30 (3.14) to 13.73 (3.13), p=0.010
Quasiexperimental		GMFCS II: 37% vs. 45%	
Poor			
Matusiak-	A. Hippotherapy, 24	A vs. B vs. C	A vs. B vs. C, mean (SD), p=between groups
Wieczorek,	sessions over 12	Age: 7.93 vs. 7.60 vs.	
2020 ¹⁶⁸	weeks (n=15)	8.13	Sitting Assessment Scale: 10.93 (3.97) to 13.13
Postural control	B. Hippotherapy, 12 sessions over 12	Female: 40% vs. 47% vs. 47% GMFCS I: 67% vs. 80%	(3.46) vs. 15.93 (4.17) to 17.27 (2.76) vs. 14.87 (3.27) to 15.13 (3.36)
RCT	weeks (n=15)	vs. 47% GMFCS II: 33% vs. 20%	<u>A vs. C</u> : MD 1.93, 95% CI 0.94 to 2.92, p<0.001 B vs. C: MD 1.06, 95% CI 0.61 to 1.51, p<0.001
Fair	C. No hippotherapy (n=15)	vs. 53%	<u>A vs. B</u> : MD 0.87, 95% Cl 0.06 to 1.69, p=0.036
Mutoh, 2019 ¹⁶⁷	A. Hippotherapy, 48 sessions over 48	A vs. B Age: 8 vs. 9	A vs. B, mean (SD), p=between groups <u>GMFM-66:</u> 56.6 (9.2) to 62.8 (10.8) vs. 57.4
Postural control	weeks (n=12)	Female: 58% vs. 50% GMFCS II: 42% vs. 42%	(7.9) to 57.9 (9.2), p<0.05 <u>GMFM-66-E</u> : 45.4 (7.0) to 49.7 (7.6) vs. 46.0
RCT	B. Outdoor recreation 48	GMFCS III: 58% vs. 58%	(6.3) to 46.5 (6.6), p<0.05 <u>5MWT (m/min):</u> 31.9 (10.7) to 38.8 (13.5) vs.
Fair	sessions over 48 weeks (n=12)		<u>31.1 (11.3) to 32.3 (11.6), p<0.05</u> <u>WHOQOL (positive feelings):</u> 3.1 (1) to 4.1 (1) vs. 3.1 (0.9) to 3.4 (1), p<0.05
			WHOQOL (self-esteem): 2.9 (1.2) to 4.0 (0.7) vs. 3.3 (1.1) to 3.7 (0.7), p<0.05 WHOQOL (negative feelings): 2.9 (0.8) to 2.8
Park, 2014 ¹⁷¹	A. Hippotherapy, 16	A vs. B	(0.7) vs. 2.8 (0.8) to 2.8 (0.8), p>0.05 A vs. B, mean (SD) change from baseline,
1 an, 2014	sessions over 8	Age: 6.68 vs. 7.76	p=between groups:
Postural control	weeks (n=34)	Female: 56% vs. 52% Bilateral CP: 94% vs.	GMFM-66: 2.93 (3.95) vs. 1.25 (1.99), p<0.05
	B. Waitlist control	90%	<u></u>
Cohort	(n=21)	GMFCS I: 24% vs. 29% GMFCS II: 32% vs. 19%	PEDI: 10.89 (11.94) vs. 2.00 (4.93), p<0.05
Poor		GMFCS III: 15% vs. 29% GMFCS IV: 29% vs. 24%	

Author, Year Intervention Study Design Study Quality	Intervention and Comparison	Population	Results
Silva e Borges,	A. Riding simulator,	A vs. B	A vs. B, p=between groups:
2011 ¹⁶²	12 sessions over 6	Age: 5.65 vs. 5.77	
	weeks (n=20)	Female: 60% vs. 55%	GMFCS reclassification indicating improved
Postural control		GMFCS II: 20%	function: 25% (5/20) vs. 10% (2/20), p=0.24
	B. Usual PT, 12	GMFCS III: 40%	
	sessions over 6	GMFCS IV: 35%	
RCT	weeks (n=20)	GMFCS V: 5%	
	, ,		
Fair			

Abbreviations: CI = confidence interval; CP = cerebral palsy; GMFCS = Gross Motor Function Classification System; GMFM = Gross Motor Function Measure; GMFM-66 = Gross Motor Function Measure 66; GMFM-66-D = Gross Motor Function Measure 66 (standing); GMFM-66-E = Gross Motor Function Measure 66 (walking, running, jumping); GMFM-88 = Gross Motor Function Measure 88; GMFM-88-D = Gross Motor Function Measure 88 (standing); GMFM-88-E = Gross Motor Function Measure 88 (walking, running, jumping); PBS = Pediatric Balance Scale; PEDI = Pediatric Evaluation Disability Inventory; PT = physical therapy; RCT = randomized controlled trial; SD = standard deviation; WHOQOL = World Health Organization Quality of Life scale

Hippotherapy—Spinal Cord Injury

No studies were identified.

Tai Chi

Tai Chi is a form of Chinese martial arts exercise with focused movements and deep breathing that combines balance, core strength, flexibility, and meditation. It can be performed in a standing or seated position and is practiced to improve balance, flexibility, and mindfulness meditation.

Key Points

- There was insufficient evidence to determine the effect of Tai Chi on quality of life, balance, or other outcomes in participants with MS (SOE: insufficient).
- No Tai Chi studies of participants with CP were identified.
- There was insufficient evidence to determine the effect of wheelchair Tai Chi on quality of life or other outcomes in participants with SCI (SOE: insufficient).

Detailed Synthesis

Two RCTs^{172,174} and one quasiexperimental study,¹⁷³ with a combined total of 106 participants, evaluated Tai Chi. These included two studies of Tai Chi versus usual care^{173,174} and one trial¹⁷² of Tai Chi plus psychological classes and PT versus psychological classes and PT without Tai Chi. Two studies^{172,173} enrolled participants with MS (Table 25), and one trial was conducted in participants with SCI.¹⁷⁴ (Table 26). No studies met criteria for good quality, one trial was rated fair quality,¹⁷⁴ and two were rated poor quality and deemed to have high risk of bias due to unclear randomization and treatment allocation concealment and a lack of comparability between groups at baseline. Reported outcomes were related to quality of life (e.g., WHOQOL scale), balance (e.g., BBS), and depression (Center for Epidemiological Studies Depression Scale).

Tai Chi-Multiple Sclerosis

One poor-quality RCT¹⁷² and one poor-quality quasiexperimental study¹⁷³ enrolled participants (n=66) with MS (Table 25). Trial mean participant ages were 35 and 43 years, mean proportion female was 69 and 100 percent, and no trials reported race. Both studies enrolled participants who could ambulate.

The RCT found twice-weekly Tai Chi plus usual care obtained similar results as usual care on balance,¹⁷² whereas the quasiexperimental trial found twice-weekly Tai Chi compared with usual care resulted in improved balance and quality of life.¹⁷³ However, the two balance measures were very different and provided insufficient evidence to draw conclusions on the effects of Tai Chi on these outcomes (SOE: insufficient).

Neither study adequately addressed harms or adverse events. The RCT reported a participant in the Tai Chi intervention group withdrew due to unspecified health issues.¹⁷²

Author, Year Intervention Study Design Study Quality	Intervention and Comparison	Population	Results
Azimzadeh,	A. Tai Chi plus	A vs. B	A vs. B, mean (SD)
2015 ¹⁷²	usual care, 24	Age: 37.5 vs. 33	
	sessions over 12	Female: 100%	<u>BBS:</u> 52.25 (3.39) to 53.94 (2.23) vs. 53.22 (2.23)
Postural control	weeks (n=16)	Ambulatory: 100%	to 53.61 (2.14); MD 1.39, 95% CI –0.39 to 3.17,
DOT	Dillougheens		p=0.13
RCT	B. Usual care (n=18)		
Poor	· · · ·		
Burschka,	A. Tai Chi, 48	A vs. B	A vs. B, mean (SD), p=between groups:
2014 ¹⁷³	sessions 6 months	Age: 42 vs. 43	<u>CES-D:</u> 12.21 (6.66) to 7.67 (5.12) vs. 13.87
	(n=15)	Female: 66% vs. 71%	(10.82) to 16.13 (11.99), p<0.05
Postural control		Ambulatory: 100%	QLS 7 item, 1–7 rating scale, maximum score 420
	B. Usual care	RRMS: 93% vs. 76%	points): 215 (25.55) to 232.57 (25.62) vs. 204.46 to
Quasiexperime	(n=17)	SPMS: 0% vs. 24%	193.81 (36.20), p<0.01
ntal		CIS: 7% vs. 0%	Balance (14 Balance tasks, measured 1=achieved
			task, 0=failed task): 8.00 (2.83) to 9.33 (2.26) vs.
Poor			6.88 (4.09) to 6.53 (4.49), p<0.05

Table 25. Tai Chi exercise in multiple sclerosis

Abbreviations: BBS = Berg Balance Scale; CES-D = Center for Epidemiologic Studies Depression Scale; CI = confidence interval; CIS = Clinically Isolated Syndrome; MD = mean difference; QLS=Questionnaire of Life Satisfaction; RCT = randomized controlled trial; RRMS = relapsing-remitting multiple sclerosis; SPMS = secondary progressive multiple sclerosis; SD = standard deviation

Tai Chi—Cerebral Palsy

No studies of Tai Chi in participants with CP were identified.

Tai Chi—Spinal Cord Injury

One RCT enrolled 40 adults with SCI (Table 26).¹⁷⁴ The mean age of participants in the trial was 40 and the mean proportion female was 23 percent. All were wheelchair users. The mean baseline rating on the American Spinal Injury Association Impairment Scale was 7.5 (range 2 to 8). This trial found that treatment with wheelchair Tai Chi resulted in improved quality of life scores on the psychological subscale of the WHOQOL-BREF, but there were no differences between wheelchair Tai Chi and usual care on the physical, social, and environmental subscales (SOE: insufficient).

This study reports that there no adverse events occurred during this trial.

Author, Year Intervention Study Design Study Quality	Intervention and Comparison	Population	Results
Qi, 2018b ¹⁷⁴	A. Wheelchair Tai	A vs. B	A vs. B, mean (SD), p=between groups:
	Chi, 60 sessions	Age: 38.3 vs. 43.05	WHOQOL-BREF (physical): 11.40 (1.25) to 11.80
Postural	over 6 weeks	Female: 25% vs. 20%	(1.33) vs. 10.94 (1.15) to 11.09 (1.29), p=0.08
control	(n=20)	Wheelchair user: 100%	WHOQOL-BREF (psychological): 10.95 (1.57) to
		C6-T1: 15% vs. 20%	12.23 (1.65) vs. 10.87 (1.08) to 11.20 (1.33), p=0.01
RCT	B. Usual care	T2-T5: 25% vs. 30%	WHOQOL-BREF (social): 10.93 (1.60) to 12.40
	control, (n=20)	T6-T12: 40% vs. 35%	(1.79) vs. 10.53 (1.29) to 11.27 (1.47), p=0.07
Fair	. ,	Below L1: 20% vs. 15%	WHOQOL-BREF (environmental): 10.00 (1.72) to
			10.65 (1.58) vs. 9.67 (1.51) to 10.09 (1.77), p=0.28

Table 26. Tai Chi exercise in spinal cord injury

Abbreviations: RCT = randomized controlled trial; SD = standard deviation; WHOQOL-Bref = World Health Organization Quality of Life Assessment-BREF

Motion Gaming

Motion gaming or active video gaming is defined as technology-driven activities that require the game user to be physically active to play the game.²⁶⁶

Key Points

- Four RCTs provided low-strength evidence of improvement in function and balance with motion gaming compared with usual care in trial participants with MS (SOE: low).
- Four RCTs provided low-strength evidence of improved balance with motion gaming compared with use of a mouse, conventional balance exercises, or usual physical activity in participants with CP (SOE: low).
- One RCT found improved dynamic balance with the T-shirt test in SCI patients with motion gaming versus conventional rehabilitation, but additional evidence is needed to confirm this finding (SOE: insufficient).

Detailed Synthesis

Fourteen RCTs examined the effects of motion gaming on function, quality of life, and balance.^{50,51,83,151,175-184} Twelve trials met criteria for fair quality^{50,51,83,151,175-178,181-184} and two^{179,180} were rated poor quality and deemed to have high risk of bias due to unclear methods of patient selection and concealment of the allocation, differences in prognostic patient factors between groups at baseline, and high attrition.

Motion Gaming—Multiple Sclerosis

Six RCTs enrolled 240 adult participants with MS,^{51,83,151,175-177} with a mean age of participants between 32 and 50 years and between 64 and 90 percent female (Table 27). These trials assessed effects on balance compared with no intervention or conventional balance training.

	n gaming in multiple scle	10515	
Author, Year			
Intervention			
Study Design	Intervention		
Study Quality	and Comparison	Population	Results
Kalron, 2016 ⁵¹ Postural control	A. Balance training using Caren Integrated Virtual Reality System with 3D visual, sound and	A vs. B Age: 47.3 vs. 43.9 Female: 67% vs. 60% EDSS: 4.5 vs. 3.9	A vs. B, mean (SD), p=between groups: <u>BBS:</u> 46.8 (9.6) to 47.9 (6.4) vs. 43.3 (7.1) to 44.6 (4.9), p=0.56 <u>Four Square Step Test:</u> 16.2 (7.0) to 12.7 (6.4)
RCT	proprioception, 12 sessions over 6 weeks		vs. 14.2 (7.1) to 11.7 (5.9), p=0.361 <u>FES-I:</u> 36.4 (9/7) to 29.4 (7.8) vs. 32.9 (10.3) to
Fair	(n=15)		28.6 (5.8), p=0.021
	B. Static postural control, weight shifting and perturbation exercises, 12 sessions over 6 weeks (n=15)		
Khalil, 2018 ¹⁷⁶	A. Nintendo Wii balance board and VR scenarios	A vs. B Age: 39.9 vs. 34.9	A vs. B, mean difference between groups: TUG: 0.04, 95% CI –2.24 to 2.32, p=0.97
Postural control	with tasks to complete, 12 sessions over 6 weeks	Female: 75% vs. 63% EDSS: 2.9 vs. 3.1	10MWT: 8.48, 95% CI –5.16 to 22.12, p=0.21 3MWT: –7.11, 95% CI –34.18 to 19.95, p=0.59
RCT	(n=16)	RRMS: 100%	<u>SF-36 PCS:</u> –11.62, 95% CI –22.27 to –0.99, p=0.03
Fair	B. Balance training at home, 18 sessions over 6 weeks (n=16)		<u>SF-36 MCS:</u> –13.60, 95% CI –23.66 to –3.55, p=0.01 <u>FES-I:</u> 3.86, 95% CI –0.062 to 8.34, p=0.08 <u>BBS:</u> –4.52, 95% CI –7.90 to –1.09, p=0.01
Nilogaard		A vo B	
Nilsagard, 2013 ¹⁷⁵	A. Play games using Nintendo Wii Fit Plus® Balance Board for	A vs. B Age: 50.0 vs. 49.4 Female: 76% vs. 76%	A vs. B, mean (SD) change at followup, p=between groups:
Postural control	balance, yoga, strength and aerobics, 12 sessions	Able to walk 100 m: 100%	<u>TUG:</u> –0.8 (2.4) vs. 0.1 (2.1), p=0.10 <u>25footWT:</u> –0.3 (1.1) vs. –0.1 (1.4), p=0.51
RCT	over 6 weeks (n=42)	RRMS: 62% vs. 67% SPMS: 31% vs. 31%	<u>DGI:</u> 1.78 (2.3) vs. 1.0 (2.0), p=0.21 <u>MS Walking Scale:</u> –5.9 (11.5) vs. –3.95 (18.1),
Fair	B. No balance exercise during routine PT (n=42)	PPMS: 7% vs. 2% No assist device indoors: 76% vs. 88% No assist device outdoors: 52% vs. 50%	p=0.76 <u>Four Square Step Test</u> : –1.6(2.1) vs. –2.0 (6.6), p=0.64
Ozkul, 2020 ¹⁵¹	A. Immersive virtual reality, 16 sessions over 8	A vs. B Age: 29 vs. 34	Pre-post median (IQR):
Postural control	weeks (n=13)	Female: 69% vs. 77% EDSS median: 1 vs. 2	BBS: 52 (42.5, 56) to 54 (44.5, 56) vs. 55 (53, 56) to 56 (53.5, 56), p>0.05
RCT	B. Relaxation exercises at home, 16 sessions over 8	Number of relapses: 3 vs. 2	<u>TUG</u> : 7.6 (6.9, 8) to 6.3 (5.7, 7.2) vs. 6.9 (6.5,
Fair	weeks (n=13)		7.5) to 7.4 (6.4, 7.7), p<0.017
Tollar, 2020 ⁸³	A. Xbox 360, Adventure video game, 25 sessions	A vs. B Age: 48.2 vs. 44.4	A vs. B, mean difference between groups: <u>MSIS-29</u> : –10.8 (6.09) vs. 1.0 (3.46), p<0.001
Postural control	over 5 weeks (n=14)	Female: 86% vs. 92% EDSS median: 5.0 vs.	$\frac{MSI3-29}{6MWT}: 57.4 (52.09) \text{ vs. } 6.3 (49.27), \text{ p=}0.017$ $\frac{BBS}{6.1}: 6.1 (3.52) \text{ vs. } -0.2 (2.62), \text{ p=}0.001$
RCT	B. Usual PT, 25 sessions over 5 weeks (n=12)	5.0 RRMS: 50% vs. 67%	$\frac{\text{DDS}}{\text{EQ-5 Sum score}} = -2.3 (1.44) \text{ vs. } 0.0 (1.13),$ $p<0.001$
Fair			

Author, Year Intervention Study Design Study Quality	Intervention and Comparison	Population	Results
Yazgan,	A. Nintendo Wii Fit, 16	A vs. B vs. C	A vs. C, mean change scores:
2020 ¹⁷⁷	sessions over 8 weeks	Age: 47.5 vs. 43.1 vs.	<u>BBS:</u> 5.8 vs. 0.93, p<0.05
	(n=15)	40.7	TUG: –1.54 vs; 0.05, p<0.05
Postural control	, ,	Female: 86.7% vs.	6MWT: 42.71 vs. 7.59 p<0.05
	B. Balance Trainer motion	100% vs. 86.7%	MusiQoL: 12.61 vs. –0.19, p<0.05
RCT	gaming, 16 sessions over	EDSS: 4.16 vs. 3.83 vs.	B vs. C, mean change scores:
	8 weeks (n=12)	4.06	<u>BBS:</u> 2.66 vs. 0.93, p<0.05
Fair		RRMS: 73.3% vs.	<u>TUG</u> : –0.64 vs; 0.05, p<0.05
	C. Waitlist control (n=15)	66.7% vs. 93.3%	6MWT: 23.25 vs. 7.59 p>0.05
			MusiQoL: 5.32 vs. –0.19, p<0.05
			A vs. C, mean change scores: p<0.05 in favor of
			group A for BBS and MusiQoL

Abbreviations: 3MWT = 3-Minute Walk Test; 6MWT = 6-Minute Walk Test; 10MWT = 10-Meter Walk Test; BBS = Berg Balance Scale; CI = confidence interval; DGI = Dynamic Gait Index; EDSS = Expanded Disability Status Scale; EQ-5 = EuroQuality of Life; FES-I = Falls Efficacy Scale-International; IQR = interquartile range; MS = multiple sclerosis; MSIS-29 = Multiple Sclerosis Impact Scale; MusiQoL = Multiple Sclerosis International Quality of Live Questionnaire; SF-36 MCS = Short-Form 36 Mental Component Summary; SF-36 PCS = Short-Form 36 Physical Component Score PPMS = primary progressive multiple sclerosis; PT = physical therapy; RCT = randomized controlled trial; RRMS = relapsing-remitting multiple sclerosis; SD = standard deviation; SPMS = secondary progressive multiple sclerosis; SF-36 = Short Form-36; TUG = Timed Up and Go Test; VR = virtual reality

Four RCTs (n=177) provided low-strength evidence of improvement with motion gaming versus usual care on function in MS as measured with the 6MWT (2 studies, n=68, MD –30.90, 95% CI –49.55 to –12.25, I²=14%) and the TUG (3 studies, n=152, MD –1.06, 95% CI –1.43 to –0.69, I²=0%).^{51,83,151,175-177} Three studies provided low-strength evidence of improvement with motion gaming on balance (n=94, MD –3.43, 95% CI –6.30 to –0.57, I²=89%).^{83,151,177} Evidence was insufficient to draw conclusions regarding the effects of motion gaming compared with different balance exercises on function, balance, and quality of life.

Three trials did not mention adverse events,^{83,151,177} one trial reported that there were no harms or adverse events,⁵¹ one trial reported that there were no serious adverse events but did not report adverse events considered not serious,¹⁷⁶ and one trial reported 10 falls in the exercise group compared with 14 in the control group – none occurring during balance exercises, and no other adverse events.¹⁷⁵

Motion Gaming—Cerebral Palsy

Seven RCTs assessed 237 children with CP (Table 28).^{50,178-183} For these trials, mean participant age ranged between 7 and 11 years old, and the proportion of girls ranged between 27 and 100 percent. Four trials primarily focused on upper extremity movements^{50,179-181} while two used a balance system^{178,182} and one used a virtual dance game.¹⁸³

Table 28. Motion	gaming in cerebr	al palsy
------------------	------------------	----------

Author, Year	n gaming in cerebral pais		
Intervention			
Study Design	Intervention		
Study Quality	and Comparison	Population	Results
Study Quality Acar, 2016 ¹⁷⁹ Postural control RCT Poor	A. Nintendo Wii gaming plus neuro-developmental treatment, 12 sessions over 6 weeks (n=15) B. Neurodevelopmental treatment, 12 sessions over 6 weeks (n=15)	Population A vs. B Age: 9.5 vs. 9.7 Female: 47% vs. 60% GMFCS I: 40% vs. 40% GMFCS II: 60% vs. 60% Spastic hemiparesis: 100%	Results A vs. B, mean (SD), p=between groups <u>WeeFIM</u> : 46.0 (8.23) to 46.751 (7.51) vs. 48.3 (7.27) to 48.0 (7.14), p>0.05 <u>QUEST (dissociated movement)</u> : 80.1 (7.73) to 85.6 (8.54) vs. 81.4 (10.70) to 86.4 (8.78), p>0.05 <u>QUEST (grasp)</u> : 42.2 (18.76) to 47.1 (16.64) vs. 53.0 (16.45) to 55.7 (15.30), p>0.05 <u>QUEST (weight bearing)</u> : 60.2 to 72.7 (19.60) vs. 75.4 (19.97) to 77.3 (15.43), p>0.05 <u>QUEST (extension)</u> : 72.9 (14.78) to 77.0 (12.05) vs. 71.0 (23.53) to 74.0 (23.36), p>0.05
El-Shamy,	A. Arm exoskeletal + virtual	A vs. B	A vs. B, mean (SD), p=between groups
2018 ¹⁸¹ Postural control RCT	reality 36 sessions over 12 weeks (n=15) B. Conventional therapy, 36 sessions over 12 weeks (n=15)	Age: 7 vs. 7 Female 40% vs. 27% Mobile Ability Classification I: 33% vs. 40% II: 53% vs. 40%	<u>QUEST total</u> : 61.9 (2) to 84.6 (2.7) vs. 62.3 (1.8) to 79.1 (2); MD 5.9, 95% CI 3.7 to 7.3, p<0.05
Fair		III: 13% vs. 20%	
Hsieh, 2018 ⁵⁰ Postural control RCT Fair	 A. PC gaming using arm and trunk, 60 sessions over 12 (n=20) B. PC gaming using mouse, 60 sessions over 12 weeks (n=20) 	A vs. B Age: 7.3 vs. 7.4 Female: 30% vs. 25% Quadriplegia: 55% vs. 60% Diplegia: 20% vs. 15% Athetoid: 10% vs. 10% Ataxic: 15% vs. 15%	A vs. B, mean (SD), p=between groups: <u>TUG:</u> 16.43 (2.12) to 17.51 (1.70) vs. 15.60 (1.10) to 15.91 (1.87), p<0.05 <u>BBS:</u> 44.74 (2.75) to 48.81 (4.74) vs. 44.39 (2.33) to 45.37 (2.68), p<0.05
Hsieh, 2020 ¹⁸² Postural control RCT Fair	 A. PC gaming using balance board, 36 sessions over 12 weeks (n=28) B. PC gaming using mouse, 36 sessions over 12 weeks (n=28) 	A vs. B Age: 7.9 vs. 8.1 Female: 32% vs. 31.5% GMFCS I: 53.5% vs. 50% GMFCS II: 28.6% vs. 32.1% GMFCS III: 17.9% vs. 17.9% Deplegic: 57.1% vs. 42.9%	A vs. B, mean (SD) <u>2MWT:</u> 103.4 (16.6) to 120.1 (20.2) vs. 101.4 (23.1) to 106.1 (22.8), p=0.002 <u>PBS-total:</u> 29.9 (5.3) to 35.8 (5.5) vs. 32.3 (7.5) to 34.4 (5.9), p=0.002
Pourazar, 2020 ¹⁸³ Postural control RCT Fair	 A. Virtual reality Microsoft Xbox 360 Kinect, 20 sessions over 6 weeks (n=10) B. Encouraged to do typical physical activity at home (n=10) 	A vs. B Age: 9.2 vs. 9.6 Female: 100% GMFCS I: 50% vs. 60% GMFCS II: 20% vs. 30% GMFCS III: 30% vs. 10%	<u>Dynamic balance</u> was improved in the anterior, posterolateral, and posteromedial directions with virtual reality dance game compare with the control group, p=0.001 all comparisons
1 011			

Author, Year Intervention Study Design Study Quality	Intervention and Comparison	Population	Results
Tarakci, 2016 ¹⁷⁸	A. Nintendo Wii-Fit balanced gaming, 24	A vs. B Age: 10.5 vs. 10.5	A vs. B, mean difference between groups: <u>TUG:</u> –1.24, 95% CI –4.13 to 1.65, p=0.40
Postural control	sessions over 12 weeks (n=15)	Female: 33% vs. 40% Hemiplegic: 47% vs. 47% Diplegic: 47% vs. 33%	<u>10MWT:</u> –1.4, 95% CI –4.36 to 1.56, p=0.35 <u>Sit to Stand Test</u> : 2.07, 95% CI 0.82 to 3.32, p=0.001, favors conventional balance
RCT	B. Conventional balance training, 24 sessions over	Dyskinetic: 7% vs. 20% Assist devices: 0% vs.	training <u>10 Step Climbing Test</u> : –0.99, 95% CI –3.99
Fair	12 weeks (n=15)	20%	to 2.01, p=0.52 <u>WeeFIM:</u> 3.43, 95% CI –3.75 to 10.61, p=0.35 <u>Wiibalance</u> : 1.05, 95% CI 0.64 to 1.46, p<0.001 <u>Tilt-table</u> : 11.00, 95% CI 4.74 to 17.26, p=0.001 <u>Tight-rope walking, heading in soccer, and</u> <u>ski slalom:</u> p<0.001
Zoccolillo, 2015 ¹⁸⁰	A. Microsoft Xbox with Kinect (3D motion capture)	No demographics by group	A vs. B, mean (SD), p=between groups:
Postural control	gaming plus neuro- developmental treatment, 16 sessions over 8 weeks	Age: 6.89 Female: NR GMFM-88: 84.6	<u>QUEST:</u> 76 (21) to 81 (20) vs. 74 (20) to 78 (20), p>0.05
RCT	(n=15)		
Poor	B. Neurodevelopmental treatment, 16 sessions over 8 weeks (n=16)		

Abbreviations: 10MWT = 10-Meter Walk Test; BBS = Berg Balance Scale; CI = confidence interval; FIM = Functional Independence Measure; GMFCS = Gross Motor Function Classification System; GMFM-88 = Gross Motor Function Measure 88; MD = mean difference; NR = not reported; QUEST = Quality of Upper Extremity Skills Test; RCT = randomized controlled trial; SD = standard deviation; TUG = Timed Up and Go Test; WeeFIM = Wee-Functional Independence Measure for children

Four fair-quality RCTs^{50,178,182,183} provided low-strength evidence of improved balance with motion gaming, although the specific gaming interventions studied varied (Table 28). Changes in other outcomes (TUG, 10MWT, 10-Step Walking Test) after treatment were not different between groups, were inconsistent, or favored conventional balance training (SOE: insufficient).

Three trials of children with CP evaluated upper extremity function with interventions using a Wii^{179,181} and a Microsoft Xbox.¹⁸⁰ Two trials did not show an advantage over traditional neurodevelopmental PT,^{179,180} while the third (n=30) found the quality of upper extremity movement improved with virtual reality plus an exoskeleton versus conventional rehabilitation.¹⁸¹ Due to low quality of included studies and small sample sizes, the evidence for improved quality of upper extremity movements is too limited to draw conclusions (SOE: insufficient).

Six RCTs did not address harms or adverse events. One RCT reported that there were no adverse events during the study.²²³

Motion Gaming—Spinal Cord Injury

One RCT (n=26) demonstrated reduced time to put on a t-shirt, as a measure of dynamic balance, after Nintendo Wii training, in conjunction with conventional therapy compared with conventional therapy alone, but additional evidence is needed to confirm these results (SOE: insufficient) (Table 29).¹⁸⁴

This study did not address adverse events or harms.

Author, Year Intervention Study Design Study Quality	Intervention and Comparison	Population	Results
Tak, 2015 ¹⁸⁴	A. Nintendo Wii, 18	A vs. B	A vs. B mean (SD), p=between groups
	sessions over 6 weeks	Age: 50 vs. 43	
Postural control	+ conventional	Cervical: 31% vs. 38%	<u>T-shirt test (s):</u> 29.5 (10.95) to 22.60
	rehabilitation (n=13)	ASIA (A): 77% vs. 77%	(8.28) vs. 23.59 (11.35) to 22.15
RCT		ASIA (B): 23% vs. 23%	(12.28), p<0.05
	B. Conventional		
Fair	rehabilitation (n=13)		

Table 29. Motion gaming in spinal cord injury

Abbreviations: ASIA = American Spinal Injury Association Impairment Scale; RCT = randomized controlled trial; SD = standard deviation

Whole Body Vibration

Whole body vibration is performed in a PT setting using a vibration board upon which a person can stand, sit, or lie for a set period of time, either passively or while performing active movements, depending on the ability of a participant to move on the vibration board.

There is not a standard frequency or amplitude level for vibration therapy, and more research is needed to establish what vibration frequency is most beneficial for this form of exercise.

Key Points

- Evidence for WBV on function, balance, and quality of life in patients with MS is too sparse to draw conclusions (SOE: insufficient).
- Two trials provided insufficient evidence on the effect on walking with WBV in children with CP (SOE: insufficient).
- One trial provided insufficient evidence for improved function in patients with SCI (SOE: insufficient).

Detailed Synthesis

Five RCTs evaluated the effects of WBV in participants with MS,^{185,186} CP,^{187,188} and SCI.¹⁸⁹ All trials met criteria for fair quality.

Whole Body Vibration—Multiple Sclerosis

Two RCTs (n=93) studied WBV exercise in participants with MS (Table 30).^{185,186} All RCTs had intervention groups who performed exercises on the vibration board with a vibration level of 20Hz¹⁸⁶ or 30-40 Hz.¹⁸⁵ One RCT had the participants perform active exercises on the vibration board, while the control group performed the exercises on a stable surface.¹⁸⁵ The second RCT had a no intervention control group.¹⁸⁶

One RCT provided insufficient evidence to draw conclusions on the effects of WBV versus usual care on function, including walking.¹⁸⁵ One RCT found improvements in quality of life using the MSQoL-54 instrument¹⁸⁶ but additional evidence is needed to confirm this finding (SOE: insufficient).

None of the trials addressed harms or adverse events.

Author, Year			
Intervention			
Study Design	Intervention and		
Study Quality	Comparison	Population	Results
Abbasi, 2019 ¹⁸⁶	A. WBV, 18 sessions	A vs. B	A vs. B, median (IQR) followup baseline
	over 6 weeks (n=22)	Age: 37 vs. 39	scores, p=between groups:
Postural control		Female: 5% vs. 17%	<u>MSQOL-54 (PCS)</u> : 4.20 (1.73, 8.40) vs. –
	B. No intervention	EDSS: 1.54 vs. 1.55	1.26 (–3.28, 0), p<0.001
RCT	(n=24)		<u>MSQOL-54 (MCS)</u> : 5.96 (2.71, 11.89) vs. –
			0.17 (–2.20, 0.07), p<0.001
Fair			
Claerbout,	A. WBV, 10 sessions	A vs. B vs. C	A vs. B vs. C: mean (SD) change for each
2012 ¹⁸⁵	over 3 weeks plus	Age: 39.1 vs. 43.8 vs. 47.6	group, p=between groups:
	conventional therapy	Female: 28.6% vs. 22.2% vs.	
Postural control	(n=16)	64.7%	<u>3MWT:</u> 45.0 (42.6) vs. 37.4 (34.3) vs. 20.4
		EDSS: 5.3 vs. 5.1 vs. 5.2	(27.95), p>0.05 for all comparisons
RCT	B. Whole body light		<u>TUG:</u> –0.8 (2.3) vs. –3.2 (4.7) vs. 0.8 (5.5),
	vibration, 10 sessions		p>0.05 for all comparisons
Fair	over 3 weeks plus		<u>BBS</u> : 3.9 (4.4) vs. 4.2 (6.1) vs. 0.2 (7.5),
	conventional therapy		p>0.05 for all comparisons
	(n=14)		
	C. Conventional therapy		
	(n=17)		

Abbreviations: 3MWT = 3-Minute Walk Test; 6MWT = 6-Minute Walk Test; BBS = Berg Balance Scale; EDSS = Expanded Disability Status Scale; IQR = interquartile range; MSQoL = Multiple Sclerosis Quality of Life; RCT = randomized controlled trial; RRMS = relapsing-remitting multiple sclerosis; SD = standard deviation; TUG = Timed Up and Go Test; WBV = whole body vibration

Whole Body Vibration—Cerebral Palsy

Two RCTs^{187,188,267} (n=50) studied WBV as an intervention for children with CP, providing insufficient evidence on improvement in walking with WBV (Table 31) due to heterogeneous outcomes reported and inconsistency in direction of findings. One¹⁸⁷ found improved walking speed with vibration therapy where the participants stood or squatted on a vibration board and re

ceived varying frequencies of vibration from 5-25 Hz. The second trial¹⁸⁸ found that walking distance was significantly improved in the control group that stood on the nonvibrating device compared with the group that received 18 minutes of standing WBV (20 to 24 Hz) per training day.¹⁸⁸

The trials did not address harms or adverse events.

Author Voor	·		
Author, Year			
Intervention			
Study Design	Intervention and		
Study Quality	Comparison	Population	Results
Ahmadizadeh,	A. WBV + stretching, 18	A vs. B	A vs. B, mean (SD):
2020 ¹⁸⁸	sessions over 6 weeks	Age: 6.9 vs. 8.1	
2020	(n=10)	Hemiplegic: 30% vs. 60%	6MWT: 158.8 (100.24) to 189.45 (115.47)
Postural control		Diplegic: 60% vs. 40%	vs. 194 (78.82) to 271.5 (60.81), p=0.04
	B. Stretching only, 16	Quadrapletic: 10% vs. 0%	
RCT	sessions over 6 weeks	•	
NO1	(n=10)		
Fair			
		A	
Lee, 2013 ¹⁸⁷	A. WBV + PT, 24		A vs. B, mean (SD), p=between groups:
	sessions of vibration	Age: 10.00 vs. 9.66	
Postural control	over 8 weeks (n=15)	Female: 60% vs. 40%	Walking speed (meters/second): 0.37 (0.04)
		Ambulatory: 100%	to 0.48 (0.06) vs. 0.39 (0.05) to 0.40 (0.05),
RCT	B. PT (n=15)	GMFM: 78.4 vs. 79.53	p=0.001
	. ,		
Fair			
		1	

Abbreviations: 6MWT = 6-Minute Walk Test; GMFM = Gross Motor Function Measure; PT = physical therapy; RCT = randomized controlled trial; SD = standard deviation; WBV = whole body vibration

Whole Body Vibration—Spinal Cord Injury

One RCT¹⁸⁹ (n=28) studied the effect of WBV on adults with incomplete cervical SCI. Participants were a mean of 14 months post-SCI (Table 32). All participants were ambulatory at baseline and received 80 treatments over 8 weeks in an inpatient rehabilitation setting. The intervention group performed repetitions of a semi-squatting position on a vibration board at 30Hz, while the control group received a sham treatment where they performed the movements on a nonvibrating board. Both groups also received conventional PT. While favoring WBV over usual care on improvement in function, additional studies are needed to confirm this finding (SOE: insufficient).

This trial reported that there were no serious adverse events at 30 Hz but did not address nonserious adverse events.

Author, Year Intervention Study Design Study Quality	Intervention and Comparison	Population	Results
In, 2018 ¹⁸⁹			A vs. B, mean (SD), p=between groups:
	sessions over 8 weeks	Age: 46.1 vs. 49.9	<u>10MWT</u> : 29.3 (9.0) to 25.8 (8.1) vs. 28.8
Postural control	(n=14)	Female: 36% vs. 29%	(7.2) to 27.5 (6.3), p=0.005
		Ambulatory: 100%	TUG: 13.7 (3.1) to 11.4 (2.8) vs. 14.7 (4.5)
RCT	B. Sham WBV plus PT,	C6-C7: 100%	to 13.7 (4.1), p=0.016
	80 sessions over 8		. , .
Fair	weeks (n=14)		

Table 32. Whole body vibration exercise in spinal cord injury

Abbreviations: 10MWT = 10-Meter Walk Test; PT = physical therapy; RCT = randomized controlled trial; SD = standard deviation; TUG = Timed Up and Go Test; WBV = whole body vibration

Yoga

Originating from ancient India, yoga is a group of physical, mental, and spiritual practices or disciplines. Goals of yoga practices include improving physical and mental health and in the United States yoga often involves meditation, breathing techniques, and holding specific physical postures.

Key Points

- There was low-strength evidence of no clear benefit of yoga compared with usual care on function in MS (SOE: low).
- Evidence was insufficient to draw conclusions among MS study participants on the effects of yoga versus a variety of active controls on balance, function, or quality of life (SOE: insufficient).
- There were no studies of yoga in people with CP or SCI.

Detailed Synthesis

Six RCTs, reported in nine publications,^{54,120,190-197} enrolled and randomized participants to yoga versus a comparison group. The types of yoga included Hatha (postures, breathing techniques, and meditation),^{191,194-196} an Iyengar approach (focus on alignment) to Hatha Yoga,⁵⁴ or was not predefined or well-delineated. ^{192,193,197} Comparison groups included waitlist control,⁵⁴ no intervention,¹⁹² walking,^{191,193-196} movement to music,⁵⁴ PT-led exercise,^{120,192,193} fitness instructor-led exercise,^{192,193} group physiotherapy,¹⁹⁷ and one-on-one physiotherapy.¹⁹⁷ Two RCTs were rated fair quality,^{54,120} and the remaining were rated poor quality due to methodological limitations that included unclear methods of randomization, allocation concealment and blinding, lack of intent-to-treat analysis, and high attrition. All trials were in participants with MS. Type of MS was reported in one RCT only,^{192,193} including 45 percent RRMS, 16 percent SPMS (secondary progressive multiple sclerosis), 10 percent PPMS (primary progressive multiple sclerosis), and 2 percent considered benign MS. All trials involved 8, 10, or 12 weeks of yoga.

Yoga—Multiple Sclerosis

Six RCTs enrolled 648 participants with MS with a weighted mean age of participants of 46.8 years (range 31.6 to 51.4 years) and a weighted mean proportion female of 79.6 percent (range 72.3% to 100%). Three trials enrolled only females (Table 33). Race was only reported in the U.S. study⁵⁴ and was 54 percent White, 44 percent Black, and 2 percent other. One study was conducted in participants needing bilateral support for ambulation who may need a wheelchair for longer distances,¹⁹⁷ and one trial enrolled participants with minimal gait impairment.^{192,193} Scores on the Patient Determined Disease Steps (PDDS) (0=normal, 8=bedridden) tended toward lower disability (32% PDDS=0) in one RCT.⁵⁴

Four trials provided low-strength evidence of no clear benefit on function with yoga compared with usual care in MS.^{54,120,192,193,197} All other findings were supported by limited evidence and/or evidence that was considered to have a high risk of bias (SOE: insufficient). These included balance and quality of life in trials comparing yoga with dance,⁵⁴ aerobics,¹⁹⁴⁻¹⁹⁶ physiotherapist-led exercises,^{192,193} fitness instructor-led exercises,^{192,193} group exercises,¹⁹⁷ and one-on-one exercises.¹⁹⁷ Also included was function in the trial comparing yoga with physiotherapist- and fitness instructor-led exercises^{192,193} and in the trial comparing yoga with group and one-on-one exercises.¹⁹⁷

Three trials did not address harms or adverse events. One RCT reported one adverse event (stroke) in the yoga group versus no adverse events in the control group.⁵⁴ Another trial excluded deaths from the analysis but did not report the incidence of death.¹⁹⁶ One additional trial reports the effects of yoga on depression and is discussed in KQ2a.⁷⁰

Author, Year			
Intervention	Intoniontion		
Study Design Study Quality	Intervention and Comparison	Population	Results
Ahmadi, 2013 ¹²⁰	A. Yoga, 24	A vs. B	A vs. B, mean (SD), p-value between groups:
	sessions over 8	Age: 32 vs. 37	<u>10MWT (sec)</u> : 8.78 to 8.13 vs. 9.16 to 9.47,
Postural control	weeks (n=11)	Female: 100%	p<0.001
		EDSS: 2.00 vs. 2.25	<u>2MWT</u> : 109 (17.44) to 120.36 (20.62) vs.
RCT	B. Waitlist control (n=10)		121.50 (27.73) to 119.05 (27.12), p=0.11 BBS: 47.72 (6.78) to 53.81 (3.40) vs. 44.50
Fair	(11-10)		(8.48) to 41.70 (8.48), p=0.07
Doulatabad,	A. Yoga, 24	A vs. B	A vs. B, mean difference between groups;
2012 ¹⁹⁰	sessions over 12	Age: 31.6 (18 to 45)	mean (SD), p-value within groups
Najafidoulatabad,	weeks (n=30)	Female: 100%	
2014 ¹⁹¹	B. No intervention		MSQoL-54: 2.6, 95% CI 1.64 to 3.56,
Postural control	over 12 weeks		p<0.001 Sexual satisfaction:
	(n=30)		A: baseline 1.8 (2.0) to 1.4 (1.5), p=0.001
RCT			B: 2.1 (1.2) to 2.1 (1.2), p>0.05
Deer			
Poor Garrett, 2013a ¹⁹³	A. Physiotherapist–	A vs. B vs. C vs. D	B vs. D, median (SIQR), p=between groups:
Garrett, 2013b ¹⁹²	led exercise, 10	Age: 51.7 vs. 49.6 vs. 50.3	b vs. b, median (orger), p=between groups.
	sessions over 10	vs. 48.8	<u>6MWT</u> : 268 (222) to 285 (152) vs. 250 (206)
Postural control	weeks (n=80)ª	Female: 79% vs. 70% vs.	to 315 (232), p=0.73
		68% vs. 87%	MSIS-29 (physical): 33.4 (20.0) to 29.4 (19.4)
RCT	B. Yoga, 10 sessions over 10	Wheelchair user: 0% RRMS: 55% vs. 60% vs.	vs. 29.6 (23.0) to 29.9 (20.7), p=0.12 <u>MSIS-29 (psychological):</u> 33.3 (33.3) to 25.9
	weeks (n=77)	49% vs. 55%	(33.3) vs. 22.2 (24.1) to 18.5 (38.9), p=0.04
Poor		SPMS: 14% vs. 11% vs.	
	C. Fitness	19% vs. 20%	
	instructor-led exercise, 10	PPMS: 7% vs. 13% vs. 13% vs. 6%	
	sessions over 10	Benign: 0% vs. 2% vs. 5%	
	weeks (n=86) ^a	vs. 2%	
	D. Usual care		
Hasanpour-	(n=71) A. Yoga, 36	A vs. B vs. C	A vs. B vs. C mean difference, p=between
Dehkordi, 2014 ¹⁹⁶	sessions over 12	Age: 31.9	groups on <u>SF-36 QOL</u> :
Hasanpour-	weeks (n=20)	Female: 98%	Č vs. A: 1106.41, p<0.001
Dehkordi, 2016 ¹⁹⁵			B vs. A: 229.32, p=0.07
Hasanpour-	B. Aerobics, 36		C vs. B: 877.10, p<0.001
Dehkordi, 2016 (2) ¹⁹⁴	sessions over 12 weeks (n=20)		
· · /			
Postural control	C. Usual care		
RCT	control (n=21)		
Poor			

Table 33. Yoga e	xercise in	multiple	sclerosis
Author Voor			

Hogan, 2014 ¹⁹⁷ A. Group PT, 10 sessions over 10 weeks (n=48) A vs. B vs. C vs. D Age: 57 vs. 52 vs. 58 vs. 49 A vs. B vs. C vs. D, mean (SD/SIQR), p=between groups: 62% vs. 87% RCT B. 1-on-1 PT, 10 sessions over 10 weeks (n=35) A vs. B vs. C vs. D Age: 57 vs. 52 vs. 58 vs. 49 A vs. B vs. C vs. D, mean (SD/SIQR), p=between groups: 62% vs. 87% Poor B. 1-on-1 PT, 10 sessions over 10 weeks (n=35) A vs. B vs. C vs. D, mean (SD/SIQR), p=between groups: 62% vs. 87% Door Weeks (n=35) 51% vs. 33% vs. 33% SPMS: 42% vs. 46% vs. 38% vs. 33% D. Usual care (n=15) D. Usual care (n=15) D. Usual care (n=15) Novement to Music, 36 sessions over 12 weeks (n=27) A vs. B vs. C Age: 50 vs. 48 vs. 47 Female: 81% vs. 77% vs. 86% White: 44 vs. 58% vs. 61% A vs. B vs. C A vs. B vs. C, mean difference, p=between groups: RCT B. Adapted Yoga, 36 sessions over A vs. B vs. C (n=27) A vs. B vs. C A vs. C vs. 10.69, 95% CI -0.70 to 6.13, p=0.03 6MWT: RCT B. Adapted Yoga, 36 sessions over A vs. B vs. C (1-1.20, 95% CI -0.71 to 2.08, p=0.33 6MWT: RCT B. Adapted Yoga, 36 sessions over C. Waitlist control (n=28) A vs. B vs. C: -1.00, 95% CI -2.58 to 0.18, p=0.09 B vs. A: 0.69, 95% CI -2.71 to 2.08, p=0.20 B vs. C: 22.83, 95% CI -2.58 to 0.55, p=0.20 B vs. C: -1.00, 95% CI -2.58 to 0.55, p=0.20 B vs. C: -0.70, 95% CI -2.58 to 0.55, p=0.20 B vs. C: -0.70, 95% CI -2.71 to 0.77, p	Author, Year Intervention Study Design Study Quality	Intervention and Comparison	Population	Results
Sessions over 10 weeks (n=48) Age: 57 vs. 52 vs. 58 vs. 49 p=between groups: 6MWT: 101 (39.5) to 121.2 (47.4) vs. 70 (30) to 45 (54.5) vs. 83.9 (39.8) to 100 (55) vs. 83.5 (44) to 90 (35), p>0.05 for all group comparisons RCT B. 1-on-1 PT, 10 sessions over 10 weeks (n=35) RRMS: 27% vs. 20% vs. 31% vs. 33% RRMS: 27% vs. 20% vs. 31% vs. 33% RRMS: 27% vs. 66% vs. 31% vs. 33% RSIS-29 (physical): 50.5 (9.5) to 45.9 (10.5) vs. 48.3 (10.5) to 49.6 (11.6) vs. 54 (11.3), p=NR MSIS-29 (psychological): 18 (5.5) to 15 (5.7) vs. 14 (12) vs. 553 (9.5) to 50.5 (11.3), p=NR MSIS-29 (psychological): 18 (5.5) to 15 (5.7) vs. 14 (12) vs. 513 (9.5) to 50.5 (11.3), p=NR MSIS-29 (psychological): 18 (5.5) to 15 (5.7) vs. 14 (12) vs. 513 (9.5) to 34.5 (9.8) vs. 22.6 (12.6) to 527.9 (11.5) vs. 30.4 (11.6) to 34.2 (9.8) vs. 15% vs. 0% Young, 2019 ⁵⁴ A. Movement to Music, 36 sessions over 12 weeks (n=27) A vs. B vs. C Age: 50 vs. 48 vs. 47 Female: 81% vs. 77% vs. 86% White: 44 vs. 58% vs. 61% A vs. B vs. C, mean difference, p=between groups: TUG: A vs. C: -1.89, 95% CI -2.30 to -0.48, p=0.01 B vs. C: -1.20, 95% CI -2.58 to 0.18, p=0.03 <u>6MWTT:</u> A vs. C: 40.98, 95% CI -2.58 to 0.18, p=0.03 <u>6MWTT:</u> A vs. C: 40.98, 95% CI -2.61 to 6.2, p=0.25 B vs. A: 0.69, 95% CI -2.58 to 0.55, p=0.20 B vs. A: -18.15, 95% CI -2.58 to 0.55, p=0.20 B vs. C: -1.00, 95% CI -2.58 to 0.55, p=0.20 B vs. C: -1.00, 95% CI -2.58 to 0.55, p=0.20 B vs. C: -1.00, 95% CI -2.17 to 0.77, p=0.34				
Postural control Weeks (n=48) Age Season's over 10 Multicle is the ison of the ison	Hogan, 2014			n=between groups:
Postular control weeks (n=46) 49 Female: 63% vs. 57% vs. 62% vs. 87% io 45 (54.5) vs. 83.9 (39.8) to 100 (55) vs. 83.5 (44) to 90 (35), p>0.05 for all group Poor B. 1-on-1 PT, 10 sessions over 10 weeks (n=35) RRMS: 27% vs. 20% vs. 31% vs. 33% io 45 (54.5) vs. 83.9 (39.8) to 100 (55) vs. 83.5 (44) to 90 (35), p>0.05 for all group vs. 48.3 (10.5) to 49.6 (11.6) vs. 54 (11.5) to vs. 48.3 (10.5) to 49.6 (11.6) vs. 54 (11.5) to vs. 48.3 (10.5) to 49.6 (11.6) vs. 54 (11.5) to vs. 48.3 (10.5) to 49.6 (11.6) vs. 54 (11.5) to vs. 48.3 (10.5) to 50.5 (9.5) to 15 (5.7) vs. 14 (12.2) to 15 (4) vs. 18 (5.38) to 17 (4.8) vs. 17 (4) to 15 (4.5), p>0.05 for all group comparisons unknown: 15% vs. 33% Unknown: 15% vs. 34 See solution over 12 weeks (n=27) A vs. B vs. C A vs. B vs. C nean difference, p=between groups: TUG; A vs. C -1.20, 95% CI -0.30 to -0.48, p=0.01 B vs. C: -1.20, 95% CI -0.71 to 2.08, p=0.03 GMWTi A vs. C: 40.98, 95% CI -0.71 to 2.08, p=0.02 B vs. C: -1.00, 95% CI -2.58 to 0.55, p=0.20 B vs. C: -1.00, 95% CI -2.58 to 0.55, p=0.20 B vs. C: -1.00, 95% CI -2.58 to 0.55, p=0.20 B vs. C: -1.00, 95% CI -2.17 to 0.77, p=0.34	.		0	
RCT B. 1-on-1 PT, 10 sessions over 10 weeks (n=35) B. 1-on-1 PT, 10 sessions over 10 weeks (n=35) RRMS: 27% vs. 20% vs. 31% vs. 33% SPMS: 42% vs. 46% vs. 38% vs. 33% 83.5 (44) to 90 (35), p>0.05 for all group comparisons Poor Weeks (n=35) RRMS: 27% vs. 20% vs. 31% vs. 33% MSIS-29 (physical): 50.5 (9.5) to 45.9 (10.5) vs. 48.3 (10.5) to 49.6 (11.6) vs. 54 (11.5) to 49.4 (12) vs. 55.3 (9.5) to 50.5 (11.3), p=NR D. Usual care (n=15) PPMS: 17% vs. 31% vs. 15% vs. 33% Novement vs. 15% vs. 33% Novement vs. 15% vs. 33% Young, 2019 ⁵⁴ A. Movement to Music, 36 sessions (n=27) A vs. B vs. C (n=27) A vs. B vs. C Age: 50 vs. 48 vs. 47 Female: 81% vs. 77% vs. 15% vs. 58% vs. 61% A vs. B vs. C, nean difference, p=between groups: RCT B. Adapted Yoga, 36 sessions over Fair A dapted Yoga, 36 sessions over Fair A vs. B vs. C + 1.89, 95% CI -3.30 to -0.48, p=0.01 B vs. C: -1.20, 95% CI -2.58 to 0.18, p=0.09 B vs. A: 0.69, 95% CI -2.58 to 0.18, p=0.04 B vs. C: 22.83, 95% CI -2.17 to 2.08, p=0.33 <u>6MWTT:</u> A vs. C: 40.98, 95% CI -2.17 to 0.77, p=0.34	Postural control	weeks (n=48)		to 45 (54.5) vs. 83.9 (39.8) to 100 (55) vs.
RCT B. 1-on-1 PT, 10 sessions over 10 weeks (n=35) 62% vs. 87% RRMS: 27% vs. 20% vs. 31% vs. 33% comparisons comparisons Poor weeks (n=35) 31% vs. 33% SPMS: 42% vs. 46% vs. 38% vs. 33% Generation of the second SPMS: 42% vs. 46% vs. 38% vs. 33% Comparisons Comparisons MSIS-29 (physical): 50.5 (9.5) to 45.9 (10.5) vs. 48.3 (10.5) to 49.6 (11.6) vs. 54 (11.5) to 49.4 (12) vs. 55.3 (9.5) to 50.5 (11.3), p=NR WSIS-29 (psychological): 18 (5.5) to 15 (5.7) vs. 14 (2.2) to 15 (4) vs. 18 (5.3) to 17 (4.8) vs. 17 (4) to 15 (4.5), p>0.05 for all group comparisons vs. control Young, 2019 ⁵⁴ A. Movement to Music, 36 sessions over 12 weeks (n=27) A vs. B vs. C Age: 50 vs. 48 vs. 47 Female: 81% vs. 77% vs. 36 sessions over A vs. B vs. C Age: 50 vs. 48 vs. 47 Female: 81% vs. 77% vs. 36 sessions over A vs. B vs. C (1-3.30 to -0.48,p=0.01 B vs. C: -1.20, 95% CI -2.58 to 0.18, p=0.09 B vs. A: 0.69, 95% CI -0.71 to 2.08, p=0.33 <u>6MWT:</u> A vs. C: 40.98, 95% CI -2.11 to 80, p=0.04 B vs. C: 22.83, 95% CI -2.58 to 0.55, p=0.20 B vs. A: -18.15, 95% CI -2.58 to 0.55, p=0.20 B vs. C: -0.70, 95% CI -2.58 to 0.55, p=0.20 B vs. C: -0.70, 95% CI -2.57 to 0.77, p=0.34				83.5 (44) to 90 (35), p>0.05 for all group
Poor weeks (n=35) 31% vs. 33% vs. 48.3 (10.5) to 49.6 (11.6) vs. 54 (11.5) to vs. 48.3 (10.5) to 49.6 (11.6) vs. 54 (11.5) to vs. 48.3 (10.5) to 49.6 (11.6) vs. 54 (11.5) to vs. 48.3 (10.5) to 49.6 (11.6) vs. 54 (11.5) to vs. 48.3 (10.5) to 49.6 (11.6) vs. 54 (11.5) to vs. 48.3 (10.5) to 49.6 (11.6) vs. 54 (11.5) to vs. 48.3 (10.5) to 49.6 (11.6) vs. 54 (11.5) to vs. 48.3 (10.5) to 49.6 (11.6) vs. 54 (11.5) to vs. 48.3 (10.5) to 49.6 (11.6) vs. 54 (11.5) to vs. 48 (5.20) to 50.5 (11.3), p=NR MSIS-29 (psychological): 18 (5.3) to 15 (5.7) vs. 14 (2.2) to 15 (4) vs. 18 (5.38) to 17 (4.8) vs. 17 (4) to 15 (4.5), p>0.05 for all group comparisons Young, 2019 ³⁴ A. Movement to Music, 36 sessions over 12 weeks (n=27) A vs. B vs. C Age: 50 vs. 48 vs. 47 Female: 81% vs. 77% vs. 86% White: 44 vs. 58% vs. 61% A vs. B vs. C, mean difference, p=between groups: TUG: A vs. C: -1.89, 95% Cl -3.30 to -0.48,p=0.01 B vs. A: 0.69, 95% Cl -2.58 to 0.18, p=0.09 B vs. A: 0.69, 95% Cl -2.58 to 0.18, p=0.09 B vs. A: 0.69, 95% Cl -2.58 to 0.18, p=0.02 B vs. A: -18.15, 95% Cl -56.4 to 20.1, p=0.34 <u>5xSit-to-Stand:</u> A vs. C: -1.00, 95% Cl -2.58 to 0.55, p=0.20 B vs. C: -0.70, 95% Cl -2.58 to 0.55, p=0.20 B vs. C: -0.70, 95% Cl -2.17 to 0.77, p=0.34	RCT	,		comparisons
C. Yoga (n=13) SPMS: 42% vs. 46% vs. 38% vs. 33% 49.4 (12) vs. 55.3 (9.5) to 50.5 (11.3), p=NR MSIS-29 (psychological): 18 (5.5) to 15 (5.7) vs. 14 (2.2) to 15 (4) vs. 18 (5.38) to 17 (4.8) vs. 17 (4) to 15 (4.5), p>0.05 for all group comparisons D. Usual care (n=15) Invite on the second comparisons A. Movement to Music, 36 sessions over 12 weeks (n=27) A. Movement to Music, 36 sessions over 12 weeks (n=27) A vs. B vs. C Age: 50 vs. 48 vs. 47 Female: 81% vs. 77% vs. 86% A vs. B vs. C Age: 50 vs. 48 vs. 47 Female: 81% vs. 77% vs. 86% A vs. B vs. C As vs. B vs. C - 1.89, 95% CI -3.30 to -0.48, p=0.01 B vs. C: -1.20, 95% CI -0.71 to 2.08, p=0.33 <u>6MWT:</u> A vs. C: 40.98, 95% CI -0.71 to 2.08, p=0.03 <u>6MWT:</u> A vs. C: 40.98, 95% CI -2.58 to 0.18, p=0.04 B vs. C: 22.83, 95% CI -0.64 to 20.1, p=0.34 <u>5xSitt-o-Standi</u> A vs. C: -0.70, 95% CI -2.58 to 0.55, p=0.20 B vs. C: -0.70, 95% CI -2.58 to 0.55, p=0.20 B vs. C: -0.70, 95% CI -2.58 to 0.55, p=0.20				MSIS-29 (physical): 50.5 (9.5) to 45.9 (10.5)
C. Yoga (n=13) 38% vs. 33% MSIS-29 (psychological): 18 (5.5) to 15 (5.7) D. Usual care (n=15) D. Usual care (n=15) PPMS: 17% vs. 31% vs. 15% vs. 33% Vs. 14 (2.2) to 15 (4) vs. 18 (5.3) to 17 (4.8) Young, 2019 ⁵⁴ A. Movement to Music, 36 sessions over 12 weeks (n=27) A vs. B vs. C Age: 50 vs. 48 vs. 47 Female: 81% vs. 77% vs. 86% Avs. B vs. 77% vs. 86% A vs. C : -1.89, 95% CI -3.30 to -0.48, p=0.01 RCT B. Adapted Yoga, 36 sessions over As sessions over Avs. 58% vs. 61% Fair 12 weeks (n=26) White: 44 vs. 58% vs. 61% B vs. C: -1.20, 95% CI -3.30 to -0.48, p=0.09 B vs. C: 22.83, 95% CI -0.71 to 2.08, p=0.33 6MWT: A vs. C: 40.98, 95% CI -2.58 to 0.18, p=0.09 B vs. C: 22.83, 95% CI -0.71 to 2.08, p=0.25 B vs. C: -1.00, 95% CI -2.58 to 0.55, p=0.20 B vs. C: -1.00, 95% CI -2.58 to 0.55, p=0.20 B vs. C: -1.00, 95% CI -2.58 to 0.55, p=0.20	Poor	weeks (n=35)	31% vs. 33%	vs. 48.3 (10.5) to 49.6 (11.6) vs. 54 (11.5) to
Volume 0.1.10gu (n=10) 0.01.007% 0.01.007% vs. 14 (2.2) to 15 (4) vs. 18 (5.38) to 17 (4.8) Volume 0.1.10gu (n=10) PPMS: 17% vs. 31% vs. 15% vs. 33% vs. 17 (4) to 15 (4.5), p>0.05 for all group Volume (n=15) 15% vs. 33% Unknown: 15% vs. 3% vs. 15% vs. 33% vs. vs. 17 (4) to 15 (4.5), p>0.05 for all group Young, 2019 ⁵⁴ A. Movement to A vs. B vs. C BS: 28.9 (9.5) to 34.5 (9.8) vs. 22.6 (12.6) to 27.9 (11.5) vs. 30.4 (11.6) to 34.2 (9.8) vs. Young, 2019 ⁵⁴ A. Movement to Avs. B vs. C Age: 50 vs. 48 vs. 47 Female: 81% vs. 77% vs. Postural control over 12 weeks Female: 81% vs. 77% vs. A vs. C : -1.89, 95% CI -3.30 to -0.48, p=0.01 RCT B. Adapted Yoga, 36 sessions over Female: 81% vs. 58% vs. 61% B vs. C: -1.20, 95% CI -0.71 to 2.08, p=0.33 GMWT: A vs. C : 40.98, 95% CI -0.71 to 2.08, p=0.03 B vs. C: 22.83, 95% CI -16.67 to 6.2, p=0.25 B vs. A: -18.15, 95% CI -56.4 to 20.1, p=0.34 Stait-to-Stand: A vs. C: -1.00, 95% CI -2.58 to 0.55, p=0.20 B vs. C: -0.70, 95% CI -2.17 to 0.77, p=0.34 Stait-to-Stand: A vs. C: -0.70, 95% CI -2.17 to 0.77, p=0.34			SPMS: 42% vs. 46% vs.	49.4 (12) vs. 55.3 (9.5) to 50.5 (11.3), p=NR
D. Usual care (n=15) D. Usual care (n=27) D. Usual care (n=27) D. Usual care (n=27) D. May care (n=28) D. May care (n=27) D. May care (n=27) D. May care (n=28) D. May care (n=27) D. May care (n=28) D. May care (n=28) <td></td> <td>C. Yoga (n=13)</td> <td>38% vs. 33%</td> <td>$\frac{\text{MSIS-29 (psychological):}}{18 (5.5) \text{ to } 15 (5.7)}$</td>		C. Yoga (n=13)	38% vs. 33%	$\frac{\text{MSIS-29 (psychological):}}{18 (5.5) \text{ to } 15 (5.7)}$
D. Usual care (n=15) 15% vs. 33% Unknown: 15% vs. 3% vs. 15% vs. 0% comparisons BBS: 28.9 (9.5) to 34.5 (9.8) vs. 22.6 (12.6) to 27.9 (11.5) vs. 30.4 (11.6) to 34.2 (9.8) vs. 24.9 (11.6) to 21.8 (11.9), p<0.05 for all comparisons vs. control Young, 2019 ⁵⁴ A. Movement to Music, 36 sessions over 12 weeks (n=27) A vs. B vs. C Age: 50 vs. 48 vs. 47 Female: 81% vs. 77% vs. 86% White: 44 vs. 58% vs. 61% A vs. B vs. C, mean difference, p=between groups: TUG: A vs. C = 1.89, 95% CI = 3.30 to = 0.48, p=0.01 B vs. C: = 1.20, 95% CI = 2.58 to 0.18, p=0.09 B vs. A: 0.69, 95% CI = 0.71 to 2.08, p=0.33 <u>6MWT:</u> A vs. C: 40.98, 95% CI = 2.21 to 80, p=0.04 B vs. C: 22.83, 95% CI = 16.67 to 6.2, p=0.25 B vs. A: = -18.15, 95% CI = 56.4 to 20.1, p=0.34 <u>5xSit-to-Stand:</u> A vs. C: =0.70, 95% CI = 2.17 to 0.77, p=0.34			PPMS: 17% vs. 31% vs.	
(n=15) Unknown: 15% vs. 3% vs. 15% vs. 0% BBS: 28.9 (9.5) to 34.5 (9.8) vs. 22.6 (12.6) to 27.9 (11.5) vs. 30.4 (11.6) to 34.2 (9.8) vs. 24.9 (11.6) to 21.8 (11.9), p<0.05 for all comparisons vs. control Young, 2019 ⁵⁴ A. Movement to Music, 36 sessions over 12 weeks (n=27) A vs. B vs. C Age: 50 vs. 48 vs. 47 Female: 81% vs. 77% vs. 86% A vs. B vs. C, mean difference, p=between groups: TUG: A vs. C : -1.89, 95% Cl -3.30 to -0.48,p=0.01 B vs. C : -1.20, 95% Cl -2.58 to 0.18, p=0.09 B vs. A: 0.69, 95% Cl -0.71 to 2.08, p=0.33 <u>6MWT:</u> A vs. C : 40.98, 95% Cl -0.71 to 2.08, p=0.04 B vs. C : 22.83, 95% Cl -16.67 to 6.2,p=0.25 B vs. A: -18.15, 95% Cl -56.4 to 20.1, p=0.34 <u>5xSit-to-Standi:</u> A vs. C : -0.70, 95% Cl -2.17 to 0.77, p=0.34		D. Usual care	15% vs. 33%	
Young, 2019 ⁵⁴ A. Movement to Music, 36 sessions over 12 weeks (n=27) A vs. B vs. C Age: 50 vs. 48 vs. 47 Female: 81% vs. 77% vs. 86% A vs. B vs. C, mean difference, p=between groups: TUG: A vs. C : -1.89, 95% CI -3.30 to -0.48, p=0.01 B vs. C: -1.20, 95% CI -2.58 to 0.18, p=0.09 B vs. A: 0.69, 95% CI -2.58 to 0.18, p=0.09 B vs. A: 0.69, 95% CI -2.58 to 0.18, p=0.09 B vs. A: 0.69, 95% CI -0.71 to 2.08, p=0.33 <u>6MWT:</u> A vs. C: 40.98, 95% CI -2.11 to 80, p=0.04 B vs. A: -18.15, 95% CI -56.4 to 20.1, p=0.34 <u>5xSit-to-Stand:</u> A vs. C: -1.00, 95% CI -2.58 to 0.55, p=0.20 B vs. C: -0.70, 95% CI -2.58 to 0.55, p=0.20 B vs. C: -0.70, 95% CI -2.58 to 0.55, p=0.20		(n=15)	Unknown: 15% vs. 3% vs.	
Young, 2019 ⁵⁴ A. Movement to Music, 36 sessions over 12 weeks (n=27) A vs. B vs. C Age: 50 vs. 48 vs. 47 Female: 81% vs. 77% vs. 86% White: 44 vs. 58% vs. 61% A vs. B vs. C, mean difference, p=between groups: TUG: A vs. C - 1.89, 95% CI - 3.30 to -0.48,p=0.01 B vs. C: -1.20, 95% CI - 2.58 to 0.18, p=0.09 B vs. A: 0.69, 95% CI - 2.58 to 0.18, p=0.09 B vs. A: 0.69, 95% CI - 0.71 to 2.08, p=0.33 <u>6MWT:</u> A vs. C: 40.98, 95% CI - 2.21 to 80, p=0.04 B vs. C: 22.83, 95% CI - 16.67 to 6.2,p=0.25 B vs. A: -18.15, 95% CI - 56.4 to 20.1, p=0.34 <u>5xSit-to-Stand:</u> A vs. C: -0.70, 95% CI - 2.58 to 0.55, p=0.20 B vs. C: -0.70, 95% CI - 2.17 to 0.77, p=0.34		、 <i>`</i>	15% vs. 0%	
Young, 2019 ⁵⁴ A. Movement to Music, 36 sessions over 12 weeks (n=27) A vs. B vs. C Age: 50 vs. 48 vs. 47 Female: 81% vs. 77% vs. 86% A vs. B vs. C, mean difference, p=between groups: TUG: A vs. C: -1.89, 95% CI -3.30 to -0.48,p=0.01 B vs. C: -1.20, 95% CI -2.58 to 0.18, p=0.09 B vs. A: 0.69, 95% CI -2.58 to 0.18, p=0.09 B vs. A: 0.69, 95% CI -0.71 to 2.08, p=0.33 <u>6MWT:</u> A vs. C: 40.98, 95% CI 2.21 to 80, p=0.04 B vs. C: 22.83, 95% CI -16.67 to 6.2,p=0.25 B vs. A: -18.15, 95% CI -56.4 to 20.1, p=0.34 <u>5xSit-to-Stand:</u> A vs. C: -0.70, 95% CI -2.58 to 0.55, p=0.20 B vs. C: -0.70, 95% CI -2.17 to 0.77, p=0.34				
Music, 36 sessions over 12 weeks (n=27) Age: 50 vs. 48 vs. 47 Female: 81% vs. 77% vs. 86% groups: <u>TUG:</u> A vs. C: -1.89, 95% CI -3.30 to -0.48,p=0.01 B vs. C: -1.20, 95% CI -2.58 to 0.18, p=0.09 B vs. A: 0.69, 95% CI -2.58 to 0.18, p=0.09 B vs. A: 0.69, 95% CI -0.71 to 2.08, p=0.33 <u>6MWT:</u> A vs. C: 40.98, 95% CI 2.21 to 80, p=0.04 B vs. A: -18.15, 95% CI -16.67 to 6.2,p=0.25 B vs. A: -18.15, 95% CI -56.4 to 20.1, p=0.34 <u>5xSit-to-Stand:</u> A vs. C: -0.70, 95% CI -2.58 to 0.55, p=0.20 B vs. C: -0.70, 95% CI -2.17 to 0.77, p=0.34				comparisons vs. control
Postural control over 12 weeks (n=27) Female: 81% vs. 77% vs. 86% TUG: A vs. C: -1.89, 95% CI -3.30 to -0.48,p=0.01 RCT B. Adapted Yoga, 36 sessions over White: 44 vs. 58% vs. 61% B vs. C: -1.20, 95% CI -2.58 to 0.18, p=0.09 Fair 12 weeks (n=26) Mite: 44 vs. 58% vs. 61% B vs. C: 40.98, 95% CI -0.71 to 2.08, p=0.33 C. Waitlist control (n=28) C. Waitlist control (n=28) B vs. C: 22.83, 95% CI -16.67 to 6.2, p=0.25 B vs. A: -18.15, 95% CI -2.58 to 0.55, p=0.20 B vs. C: -1.00, 95% CI -2.58 to 0.55, p=0.20 B vs. C: -0.70, 95% CI -2.17 to 0.77, p=0.34	Young, 2019 ⁵⁴	A. Movement to	A vs. B vs. C	A vs. B vs. C, mean difference, p=between
RCT B. Adapted Yoga, 36 sessions over Fair 12 weeks (n=26) C. Waitlist control (n=28) C. Waitlist control (n=28) 86% White: 44 vs. 58% vs. 61% A vs. C: -1.89, 95% CI -2.58 to 0.18, p=0.09 B vs. A: 0.69, 95% CI -0.71 to 2.08, p=0.33 6MWT: A vs. C: 40.98, 95% CI -2.21 to 80, p=0.04 B vs. A: -18.15, 95% CI -16.67 to 6.2, p=0.25 B vs. A: -18.15, 95% CI -56.4 to 20.1, p=0.34 5xSit-to-Stand: A vs. C: -1.00, 95% CI -2.58 to 0.55, p=0.20 B vs. C: -0.70, 95% CI -2.17 to 0.77, p=0.34	-	Music, 36 sessions	Age: 50 vs. 48 vs. 47	groups:
RCT B. Adapted Yoga, 36 sessions over White: 44 vs. 58% vs. 61% B vs. C: -1.20, 95% CI -2.58 to 0.18, p=0.09 B vs. C: -1.20, 95% CI -0.71 to 2.08, p=0.33 GMWT: Y Y Y </td <td>Postural control</td> <td>over 12 weeks</td> <td>Female: 81% vs. 77% vs.</td> <td>TUG:</td>	Postural control	over 12 weeks	Female: 81% vs. 77% vs.	TUG:
RCT B. Adapted Yoga, 36 sessions over White: 44 vs. 58% vs. 61% B vs. C: -1.20, 95% CI -2.58 to 0.18, p=0.09 Fair B. Adapted Yoga, 36 sessions over B vs. C: -1.20, 95% CI -0.71 to 2.08, p=0.33 C. Waitlist control (n=28) C: Waitlist control (n=28) B vs. C: 22.83, 95% CI 2.21 to 80, p=0.04 B vs. C: 22.83, 95% CI -16.67 to 6.2,p=0.25 B vs. C: 22.83, 95% CI -16.67 to 6.2,p=0.25 B vs. A: -18.15, 95% CI -56.4 to 20.1, p=0.34 D vs. C: -1.00, 95% CI -2.58 to 0.55, p=0.20 B vs. C: -0.70, 95% CI -2.17 to 0.77, p=0.34		(n=27)	86%	A vs. C: -1.89, 95% CI -3.30 to -0.48,p=0.01
RCT B. Adapted Yoga, 36 sessions over B vs. A: 0.69, 95% CI -0.71 to 2.08, p=0.33 Fair B vs. A: 0.69, 95% CI -0.71 to 2.08, p=0.04 B vs. C: 40.98, 95% CI 2.21 to 80, p=0.04 B vs. C: 22.83, 95% CI -16.67 to 6.2,p=0.25 B vs. A: -18.15, 95% CI -56.4 to 20.1, p=0.34 5xSit-to-Stand: A vs. C: -1.00, 95% CI -2.58 to 0.55, p=0.20 B vs. C: -0.70, 95% CI -2.17 to 0.77, p=0.34		、 <i>`</i>	White: 44 vs. 58% vs. 61%	B vs. C: -1.20, 95% CI -2.58 to 0.18, p=0.09
Fair 36 sessions over 12 weeks (n=26) 6MWT: A vs. C: 40.98, 95% CI 2.21 to 80, p=0.04 B vs. C: 22.83, 95% CI -16.67 to 6.2,p=0.25 B vs. C: 22.83, 95% CI -16.67 to 6.2,p=0.25 B vs. A: -18.15, 95% CI -56.4 to 20.1, (n=28) p=0.34 5xSit-to-Stand: A vs. C: -1.00, 95% CI -2.58 to 0.55, p=0.20 B vs. C: -0.70, 95% CI -2.17 to 0.77, p=0.34	RCT	B. Adapted Yoga.		
C. Waitlist control (n=28) B vs. C: 22.83, 95%Cl –16.67 to 6.2,p=0.25 B vs. A: –18.15, 95% Cl –56.4 to 20.1, p=0.34 <u>5xSit-to-Stand:</u> A vs. C: –1.00, 95% Cl –2.58 to 0.55, p=0.20 B vs. C: –0.70, 95% Cl –2.17 to 0.77, p=0.34	-			
C. Waitlist control (n=28) B vs. C: 22.83, 95%Cl –16.67 to 6.2,p=0.25 B vs. A: –18.15, 95% Cl –56.4 to 20.1, p=0.34 <u>5xSit-to-Stand:</u> A vs. C: –1.00, 95% Cl –2.58 to 0.55, p=0.20 B vs. C: –0.70, 95% Cl –2.17 to 0.77, p=0.34	Fair	12 weeks (n=26)		A vs. C: 40.98, 95% CI 2.21 to 80, p=0.04
C. Waitlist control (n=28) B vs. A: -18.15, 95% CI -56.4 to 20.1, p=0.34 <u>5xSit-to-Stand:</u> A vs. C: -1.00, 95% CI -2.58 to 0.55, p=0.20 B vs. C: -0.70, 95% CI -2.17 to 0.77, p=0.34				
(n=28) p=0.34 <u>5xSit-to-Stand:</u> A vs. C: -1.00, 95% CI -2.58 to 0.55, p=0.20 B vs. C: -0.70, 95% CI -2.17 to 0.77, p=0.34		C. Waitlist control		
5xSit-to-Stand: A vs. C: -1.00, 95% CI -2.58 to 0.55, p=0.20 B vs. C: -0.70, 95% CI -2.17 to 0.77, p=0.34		•••••••••		
A vs. C: –1.00, 95% CI –2.58 to 0.55, p=0.20 B vs. C: –0.70, 95% CI –2.17 to 0.77, p=0.34		(20)		
B vs. C: –0.70, 95% Cl –2.17 to 0.77, p=0.34				
$B v_{c} A \cdot 0.30 \ \mu 5\% = 1.21 \text{ to } 1.82 \ \mu = 0.60$				B vs. A: 0.30, 95% –1.21 to 1.82, p=0.69

Abbreviations: 5x = five times; 6MWT = 6-Minute Walk Test; BBS = Berg Balance Scale; CI = confidence interval; EDSS = Expanded Disability Status Scale; MS = multiple sclerosis; MSIS-29 = Multiple Sclerosis Impact Scale; MSQoL = Multiple Sclerosis Quality of Life; NR = not reported; PT = physical therapy; RCT = randomized controlled trial; RRMS = relapsing-remitting multiple sclerosis; SD = standard deviation; SIQR = semi-interquartile range; SF-36 QOL = Short Form Survey (36 Item) Quality of Life; SPMS = secondary progressive multiple sclerosis; TUG = Timed Up and Go Test ^a Not included in the sample size total in the Detailed Synthesis paragraph.

Yoga—Cerebral Palsy

No studies were identified.

Yoga—Spinal Cord Injury

No studies were identified.

Strength Exercise Interventions

Muscle Strength Exercise

Strength exercise focuses on muscle training interventions to increase muscle strength and includes exercises such as progressive resistance exercise, body weight resistance exercise, and Pilates.

Key Points

- In participants with MS, muscle strength exercise was not associated with improved function, including walking, balance, or quality of life versus usual care (SOE: low).
- In participants with CP, evidence from small trials suggest muscle strength exercise was not associated with improved walking or function when compared with usual care immediately postintervention or in the short term (SOE: low).
- In participants with SCI, there was insufficient evidence from one small trial on quality of life compared with usual care (SOE: insufficient).

Detailed Synthesis

Nineteen RCTs^{52,68,83,149,198-216,218} and two quasiexperimental trials^{62,217} involving 1,070 participants evaluated muscle strengthening interventions. Muscle strength exercises included progressive resistance exercises of various kinds (e.g., resistance against external weights such as leg press and hamstring curls, as well as body weight resistance such as abdominal crunches and Pilates). Most trials compared muscle strengthening to usual care, which included continuation of usual PT or rehabilitation, ^{52,200,201,204,205,213,216} previous activity levels, ^{199,202,203} or an attention control of relaxation techniques at home or massage.^{198,200,201,206} Two trials included two comparator groups.^{68,69,206} Pilates was compared with aquatic exercise in one trial^{68,69} and progressive resistance combined with neuromuscular electrical stimulation versus neuromuscular electrical stimulation alone in another.²¹⁰ Eleven trials^{52,68,69,149,198-206,215} and one quasiexperimental study⁶² enrolled participants with MS (Table 34). Seven trials²⁰⁷⁻²¹⁶ and one quasiexperimental study²¹⁷ were of participants with CP (Table 35), and one trial was conducted in participants with SCI (Table 36).²¹⁸ Three trials^{204,205,211,212} met criteria for good quality, twelve for fair quality,^{52,83,149,198-203,207-210,214,215,218} and four trials^{68,69,206,213,216} and two quasiexperimental studies^{62,217} were rated poor quality. The poor-quality trials were judged to have high risk of bias due to unclear randomization and/or allocation concealment, lack of similarity between treatment groups at baseline, and unacceptable attrition. The quasiexperimental trials were deemed to have high risk of bias due to lack of similarity between treatment groups, the absence of controlling for potential confounding, and unacceptable attrition. The most frequently reported outcomes varied by condition. Most prioritized outcomes reported across conditions were walking-related (e.g., 2MWT, 6MWT, 10MWT) and few studies reported measures of functional capacity (e.g., TUG) or quality of life (e.g., SF-36). Metaanalyses of trials was conducted as appropriate.

Muscle Strength Exercise—Multiple Sclerosis

Eleven trials^{52,68,69,83,149,198-206} and one quasiexperimental study⁶² enrolled participants with MS (n=584) (Table 34). Weighted mean age of participants across trials was 45.7 years (range 41 to 54 years) with a weighted mean proportion female of 67.9 percent (range 29% to 100%). Race/ethnicity generally was not reported. Ambulation status varied across studies. All studies enrolled participants who could, at minimum, ambulate using bilateral assistance (i.e., crutches, canes). The EDSS at baseline was reported in four trials with a range of means or medians of 2.9 to 5.9. The weighted mean number of sessions across trials was 22.6 over a weighted mean period of 11.6 weeks.

Author, Year			
Intervention	Intervention		
Study Design	and		
Study Quality	Comparison	Population	Results
Bulguroglu,	A. Mat Pilates,	A vs. B vs. C	Median (IQR)
2017 ²⁰⁶	16 sessions	Age: 45 vs. 37 vs. 40	A vs. C
	over 8 weeks	Ambulatory: 100%	TUG: 6.5 (5.2 to 7.0) vs. 5.2 (4.6 to 6.1)
Strength	(n=12)	EDSS: 1.8 vs. 2.0 vs. 1.0	(baseline); 5.7 (5.0 to 6.5) vs. 4.9 (4.5 to 5.3) (postintervention)
RCT	B. Reformer		MSQoL-54-MCS: 74.54 (65.43 to 83.41)
	Pilates, 16		vs. 75.65 (68.08 to 86.38) (baseline);
Poor	sessions over		77.23 (70.72 to 84.54) vs. 78.52 (64.77
	8 weeks		to 89.21) (postintervention)
	(n=13)		MSQoL-54-PCS: 74.54 (65.43 to 83.41)
	(-)		vs. 77.35 (68.17 to 88.31)
	C. Attention		(baseline);75.8 (70.83 to 86.42) vs.
	control, 16		82.64 (66.77 to 91.27)
	sessions over		(postintervention)
	8 weeks		<u>ABCS:</u> 76.6 (62.7 to 92.7) vs. 90.6 (74.4
	(n=13)		to 97.4) (baseline); 80.5 (71.7 to 97.3)
			vs. 91.9 (75.6 to 99.1) (postintervention)
			B vs. C
			<u>TUG:</u> 6.4 (5.0 to 8.9) vs. 5.2 (4.6 to 6.1)
			(baseline); 5.4 (4.9 to 7.1) vs. 4.9 (4.5 to
			5.3) (postintervention)
			MSQoL-54-MCS: 74.58 (70.39 to 80.58)
			vs. 75.65 (68.08 to 86.38) (baseline);
			69.2 (65.86 to 71.41) vs. 78.52 (64.77
			to 89.21) (postintervention)
			MSQoL-54-PCS: 71.14 (67.26 to 74.35)
			vs. 77.35 (68.17 to 88.31) (baseline); 76.3 (74.39 to 83.37) vs. 82.64 (66.77
			to 91.27) (postintervention)
			ABCS: 69.4 (52.8 to 87.8) vs. 90.6 (74.4
			to 97.4) (baseline); 69.4 (52.8 to 87.8)
			vs. 91.9 (75.6 to 99.1) (postintervention)
L			

Table 34. Muscle strength exercise in multiple sclerosis

Author Veer			1
Author, Year	1		
Intervention	Intervention		
Study Design	and		
Study Quality	Comparison	Population	Results
Callesen, 2019 ¹⁴⁹	A. Progressive	A vs. B vs. C	Mean change scores (95% CI); mean
	resistance	Median age: 52 vs. 51 vs. 56	difference between groups (95% CI)
Strength	training	years	A vs. C
	(n=17): 20	Female: 70% vs. 82% vs.	6MWT (meters):
RCT	sessions over	80%	22.8 (4.6 to 41.0) vs. 11.3 (-6.0 to
	10 weeks	Race: NR	28.5), MD 12.6 (-11.3 to 36.5), p=0.30
Fair	-median	Ambulatory: 100% vs. 100%	MSWS-12:
	number of	vs. 100%	-6.5 (3.0 to 10.1) vs1.3 (-2.2 to 4.7),
	sessions	Gait assistive devices: 17%	MD -4.2 (-10.0 to 1.6), p=0.16
	completed	vs. 11% vs. 10%	MiniBEST:
	(range): 17 (8	Median duration of illness: 15	2.1 (0.8 to 3.4) vs. 0.9 (-0.4 to 2.2), MD
	to 19)	vs. 10 vs. 11 years	1.1 (-0.7 to 2.9), p=0.24
	10 10)	MS type	25FWT (meters/second):
	B. Balance	- RRMS: 70% vs. 75% vs.	0.06 (-0.01 to 0.13) vs. 0.04 (-0.03 to
	training	65%	0.00 (-0.0110 0.13) vs. 0.04 (-0.0310 0.13), mD 0.02 (-0.08 to 0.13), p=0.66
	(n=24): 20	- SPMS: 22% vs. 14% vs.	$\frac{\text{SSST (seconds):}}{(2.0 \text{ to } 0.2)}$
	sessions over	15%	-0.9 (-2.0 to 0.2) vs. -0.4 (-1.5 to 0.7),
	10 weeks	- PPMS: 70% vs. 9% vs. 20%	MD -0.5 (-2.1 to 1.0), p=0.52
	-median	Median EDSS: 4 vs. 4 vs. 3.5	B vs. A
	number of		<u>6MWT (meters):</u>
	sessions		28.5 (13.6 to 43.4) vs. 2.8 (4.6 to 41.0),
	completed		MD 4.9 (-17.5 to 27.3), p=0.67
	(range): 16 (6		<u>MSWS-12:</u>
	to 20)		-9.3 (6.3 to 12.3) vs6.5 (3.0 to 10.1),
			MD -3.1 (-8.2 to 2.0), p=0.23
	C. Waitlist		MiniBEST:
	control (n=18)		4.1 (3.0 to 5.2) vs. 2.1 (0.8 to 3.4), MD
			2.2 (0.5 to 3.9), p=0.01
			25FWT (meters/second):
			0.14 (0.08 to 0.20) vs. 0.06 (-0.01 to
			0.13), MD 0.08 (-0.02 to 0.18), p=0.11
			SSST (seconds):
			-2.6 (-3.6 to -1.7) vs0.9 (-2.0 to
			0.2), MD -1.7 (-3.1 to -0.2), p=0.02
Dalgas, 2009 ²⁰²	A. Progressive	A vs. B	A vs. B, mean (95% CI), p=between
Dalgas, 2000 Dalgas, 2010 ²⁰³	resistance. 24	Age: 45 vs. 48	groups:
2 aiguo, 2010	sessions over	Female: 63% vs. 67%	<u>6MWT</u> : 15.3% (9.8% to 20.9%) vs.
Strength	12 weeks	Ambulatory to 100m: 100%	$\frac{600000}{3.9\%}$ (-1.2% to 8.9%), p<0.05
Cachgai	(n=15)	RRMS: 100%	<u>10MWT</u> : -12.3% (-16.8% to -7.9%) vs.
RCT	(1-13)		$\frac{1000001}{6.7\%}$ (-0.7% to 14.1%), p<0.05
	R Maitlist		SF-36 MCS: 54.3 (50.4 to 58.2) vs. 55.0
Fair	B. Waitlist		
Fair	control (n=16)		(50.5 to 59.5) (baseline); 56.8 (52.4 to
			61.2) vs. 53.1 (49.3 to 56.8)
			(postintervention), p>0.05
			<u>SF-36 PCS</u> : 41.4 (37.5 to 45.3) vs. 42.6
			(38.5 to 46.6) (baseline); 44.9 (40.9 to
			48.9) vs. 41.6 (37.8 to 45.4)
			(postintervention), p<0.05
			EDSS: 3.9% (-3.4% to 11.2%) vs.
			-0.7% (-9.3% to 7.9%), p>0.05

Author, Year Intervention	Intervention		
Study Design	and		
Study Quality	Comparison	Population	Results
Dodd, 2011 ²⁰⁴ Strength RCT	A. Progressive resistance, 20 sessions over 10 weeks (n=36)	A vs. B Age: 47.7 vs. 50.4 Female: 72% vs. 74% Ambulation index: 2 (mild): 47% vs. 54% 3 (moderate): 39% vs. 26%	A vs. B, mean difference <u>2MWT</u> : MD 2.6, 95% CI -4.0 to 9.1, p>0.05 (post-pre change); MD -3.4 (95% CI -9.5 to 2.7), p>0.05 (week 22 followup) <u>WHO-QOL</u> : MD 0.3, 95% CI -0.1 to
Good	B. Attention control (social program), 10 sessions over 10 weeks (n=35)	4 (severe): 14% vs. 20% Gait aid use (yes): 33% vs. 37%	0.6, p>0.05 (post-pre change); MD −0.2, 95% CI −0.6 to 0.3, p>0.05 (week 22 followup)
Duff, 2018 ¹⁹⁸	A. Pilates plus massage, 24	A vs. B Age: 45.7 vs. 45.1	A vs. B, mean difference (95% CI), p=between groups
Strength	sessions of Pilates and 12	Female: 80% vs. 73% Ambulatory: 100%	<u>TUG left turn</u> : -1.5 (-2.7 to -0.4) vs. 0.3 (95% CI -0.9 to 1.4), p=0.03
RCT	massages over 12 weeks	Wheelchair user: 0% RRMS: 93% vs. 73%	<u>TUG right turn</u> : -1.1 (95% CI -2.1 to - 0.1) vs. 0.3 (-0.7 to 1.4), p=0.6
Fair	(n=15)	SPMS: 0% vs. 13% PPMS: 7% vs. 13%	<u>6MWT</u> : 52.4 (32.7 to 72.1) vs. 15.0 (– 4.7 to 34.7), p=0.01
	B. Attention control		<u>MSQoL-54-PCS</u> : 4.6 (–1.3 to 10.5) vs. 2.4 (–3.5 to 8.3), p=0.60
	(massage), 12 massages		MSQoL-54-MCS: 5.9 (-0.5 to 12.2) vs. 4.2 (-2.1 to 10.6), p=0.71
	over 12 weeks (n=15)		<u>FABS</u> : 2.3 (0.3 to 4.3) vs. 2.2 (0.2 to 4.2), p=0.96
Fox, 2016 ²⁰⁰	A. Pilates, 12	A vs. B vs. C	Mean difference (95% CI), p=between
Freeman, 2012 ²⁰¹	sessions over 12 weeks	Age: 53.97 vs. 54.60 vs. 53.78	groups: A vs. B
Strength	(n=33)	Female: 85% vs. 71% vs. 66%	<u>10MWT:</u> −3.71 (−7.79 to 0.37), p>0.05 (postintervention); −1.96 (−6.04 to
RCT	B. Usual PT, 12 sessions	Ambulatory to 20 m: 100% RRMS: 39% vs. 37% vs. 38%	2.13), p>0.05 (4-week followup) <u>MSWS-12</u> : −15.65 (−29.50 to −1.79),
Fair	over 12 weeks (n=35)	SPMS: 24% vs. 31% vs. 34% PPMS: 36% vs. 31% vs. 25% Popier: 0% vs. 0% vs. 2%	p<0.05 (postintervention); −15.97 (−29.83 to −2.12), p<0.05 (4-week
	C. Relaxation, 3 sessions	Benign: 0% vs. 0% vs. 3%	followup) <u>ABCS:</u> 0.98 (-0.24 to 2.21), p>0.05 (postintervention); 0.95 (-0.28 to 2.17),
	over 12 weeks (n=32)		p>0.05 (4-week followup) A vs. C
			<u>10MWT:</u> −0.50 (−4.68 to 3.69), p>0.05 (postintervention); −0.50 (−4.68 to
			3.69), p>0.05 (4-week followup) <u>MSWS-12</u> : −4.90 (−19.11 to 9.32), p>0.05 (postinton (ortion)) = 2.71
			p>0.05 (postintervention); −3.71 (−17.93 to 10.50), p>0.05 (4-week
			followup) <u>ABCS:</u> 0.49 (-0.76 to 1.74), p>0.05 (postintervention); 0.31 (-0.94 to 1.56),
			p>0.05 (4-week followup)

Author, Year			
Intervention	Intervention		
Study Design	and		
Study Quality	Comparison	Population	Results
Kalron, 2017 ⁵²	A. Pilates, 12	A vs. B	A vs. B, mean change (SD), p=between
Kailon, 2017	sessions over	A vs. B Age: 42.9 vs. 44.3	group
Strength	12 weeks	Female: 60.9% vs. 68.2%	<u>TUG:</u> −1.8 (2.1) vs. −1.7 (2.1), p=0.422
Suengui	(n=22)	Ambulatory to 100m: 100%	<u>6MWT</u> : 39.1 (78.3) vs. 25.3 (67.2),
RCT	(11-22)	EDSS: 4.1 vs. 4.6	p=0.341
	B. Usual	RRMS: 100%	<u>2MWT:</u> 14.5 (25.8) vs. 12.7 (23.0),
Fair	physical		p=0.872
	therapy, 12		<u>MSWS-12:</u> 2.8 (6.3) vs. 2.4 (5.9),
	sessions over		p=0.924
	12 weeks		<u>BBS:</u> 1.1 (4.2) vs. 1.3 (5.2), MD –0.20,
	(n=23)		95% CI –2.888 to 2.488, p=0.561
Kara, 2017 ⁶²	A. Pilates, 16	A vs. B	A vs. B, mean difference (95% CI),
	sessions over	Age: 50 vs. 43	p=between groups:
	8 weeks	Female: 67% vs. 65%	TUG right:
Strength	(n=27)	EDSS: 2.85 vs. 3.2	-0.47 (-2.98 to 2.04), p=0.71
			TUG left:
Quasiexperimental	B. Multimodal		-3.07 (-6.34 to 0.20), p=0.07
5	exercise		BBS:
Poor	(focus on		-0.67 (-10.56 to 9.22), p=0.89
	aerobic), 16 sessions over		
	8 weeks		
	(n=28)		
Kjolhede, 2016 ¹⁹⁹	A. Progressive	A vs. B	A vs. B, mean (95% CI), p=between
	resistance, 48	Age: 44.6 vs. 42.2	group:
Strength	sessions over	Female: 75% vs. 75%	<u>2MWT (m/s)</u> : 1.61 (1.4 to 1.8) vs. 1.66
	24 weeks	EDSS: 2.9 vs. 2.9	(1.5 to 1.8) (baseline); 1.77 (1.6 to 2.0)
RCT	(n=17)	RRMS: 100%	vs. 1.69 (1.5 to 1.9) (postintervention),
			p=0.011
Fair	B. Usual care		<u>2MWT (meters)</u> : 193.2 (168 to 216) vs.
	(habitual		199.2 (180 to 216) (baseline); 212.2
	lifestyle)		(192 to 240) vs. 202.8 (180 to 228)
	(n=18)		(postintervention) <u>25FWT (m/s)</u> : 1.66 (1.5 to 1.8) vs. 1.79
			(1.6 to 2.0) (baseline); 1.82 ($1.7 to 2.0$)
			vs. 1.80 (1.6 to 2.0) (postintervention),
			p=<0.001
Marandi, 201368,69	A. Pilates, 36	A vs. B vs. C	Mean difference (SE), p=between
	sessions over	Age: NR	groups:
Strength	12 weeks	Female: 100%	A vs. C
	(n=15)	Ambulatory: 100%	A vs. C
RCT		Wheelchair user: 0%	<u>Right leg SSST:</u> −5.96 (1.4), p=0.000
	B. Aquatics,		Left leg SSST: -6.23 (1.2), p=0.000
Poor	36 sessions		A vs. B
	over 12 weeks		<u>Right leg SSST:</u> −0.08 (1.4), p=0.955
	(n=15)		Left leg SSST: 0.00 (1.2), p=0.997
	C. Usual care		
	(n=15)		

Author, Year Intervention Study Design Study Quality	Intervention and Comparison	Population	Results
Ortiz-Rubio, 2016 ²⁰⁵ Strength RCT Good	A. Upper extremity strength plus coordination, 16 sessions over 8 weeks (n=19) B. Booklet with	A vs. B Age: 42.21 vs. 44.89 Female: 26% vs. 33% MS type: RRMS: 21% vs. 22% PPMS: 16% vs. 11% SPMS: 63f% vs. 67% EDSS: 5.71 vs. 6.04	A vs. B, mean difference (95% CI), p=between groups: <u>ARAT most affected upper limb:</u> 2.21 (-2.95 to -1.46) vs. 0.16 (-0.29 to 0.62), p=<0.001 <u>ARAT least affected upper limb:</u> 0.68 (-1.28 to -0.08) vs. 0.16 (-0.08 to 0.42), p<0.001
Tollar, 2020 ⁸³ Strength : proprioceptive	exercise info (n=18) A. Proprioceptive neuromuscular facilitation, 25	Age: 47 vs. 44 Female: 93% vs. 92% Ambulatory: 100% RRMS: 64% vs. 66%	A vs. B, mean (SD) <u>MSIS-29:</u> 109.8 (10.67) vs. 109.8 (10.67) (baseline)
neuromuscular facilitation	sessions over 5 weeks (n=14) B. Usual care,	PPMS: 36% vs. 34% Median EDSS score: 5.0 vs. 5.0	-1.9 (2.8) vs. 1.0 (3.46), MD –2.9 (95% CI –5.4 to –0.4) (pre-post change) <u>EQ-5D sum score:</u> 13.9 (1.44) vs. 13.3 (0.89) (baseline)
Fair	25 sessions over 5 weeks (n=12)		-0.5 (1.16) vs. 0.0 (1.3), MD -0.5 (95% CI -1.5 to 0.5) (pre-post change) <u>BDI:</u> 12.3 (2.55) vs. 14.3 (3.22) (baseline) -0.6 (1.87) vs0.4 (2.94), MD -0.2 (95% CI -2.2 to 1.8) (pre-post change)
			BBS: 21.1 (1.51) vs. 22.5 (4.38) (baseline) 1.6 (3.52) vs0.2 (2.62), MD 1.8 (95% CI -0.7 to 4.3) (pre-post change)
			<u>6MWT:</u> 244.3 (52.98) vs. 243.3 (39.56) (baseline) 5.5 (34.64) vs. 6.3 (49.27), MD –0.8 (95% CI –34.9 to 33.3) (pre-post change)

Abbreviations: 2MWT = 2-Minute Walk Test; 6MWT = 6-Minute Walk Test; 10MWT = 10-Meter Walk Test; 25FWT = 25-Foot Walk Test; ABCS = Activities-specific Balance Confidence Scale; AC = attention control; AE = adverse event; ARAT = Action Research Arm Tests; BBS = Berg Balance Scale; BDI = Beck Depression Index; CI = confidence interval; EDSS = Expanded Disability Status Scale; EPC = Evidence-based Practice Center; EQ-5D = EuroQOL-5 Dimension Questionnaire; FABS = Fullerton Advanced Balance Scale; IQR = interquartile range; MD = mean difference; MiniBEST = Mini Balance Evaluation System Test; MS = multiple sclerosis; MSIS-29 = Multiple Sclerosis Impact Scale; MSQoL-MCS = Multiple Sclerosis Quality of Life–54 instrument Mental Component Score; MSQoL-PCS = Multiple Sclerosis Quality of Life–54 instrument Physical Component Score; MSWS-12 = Multiple Sclerosis Walking Scale-12; MD = mean difference; NR = not reported; PPMS = primary progressive multiple sclerosis; SD = standard deviation; SE = standard error; SF-36 MCS = Short-Form 36 Mental Component Summary; SF-36 PCS = Short-Form 36 Physical Component Score; SPMS = secondary progressive multiple sclerosis; SSST = Six Spot Step Test; TUG = Timed Up and Go Test; WHOQoL = World Health Organization Quality of Life

Walking Measures

Walking-related outcome measures were most commonly reported. Strengthening exercises were generally not clearly associated with improved walking ability across measures compared with attention control (massage or social program), continuation of previous exercise, or PT

immediately postintervention, based on pooled differences in changed scores (6MWT [Figure 9, 5 trials⁸³]; 2MWT [Figure 10, 3 trials^{52,199,204}]; 10MWT [Figure 11, 2 trials with 3 comparisons²⁰⁰⁻²⁰³]; and multiple sclerosis walking scale MSWS-12 [Figure 12, 0-100 scale, 3 trials with 3 comparisons ^{52,149,200,201}]). Study results were generally homogeneous across trials for all walking measures despite variability in type, duration, and intensity of the strengthening exercises, and differences in the baseline activity level in the control groups. Two trials also reported no difference in walking speed in the strengthening group versus previous activity level or waitlist controls for the 25FWT^{149,199} (2 trials, MD –0.07 seconds, 95% CI –0.19 to 0.05, $I^2=47\%$) (Figure 13).

There was limited evidence for a strengthening exercise effect beyond immediate posttreatment. There was no clear improvement in walking ability (10MWT) at short-term followup for strengthening exercises versus a relaxation attention control or PT (2 trials with 3 comparisons,²⁰⁰⁻²⁰³ MD –1.3, 95% CI –2.75 to 0.22) (Figure 11).

These trials provided low-strength evidence of no clear benefit on walking with muscle strength exercises compared with usual care immediately postintervention and at short-term followup.

Figure 9. Muscle strength exercise versus usual care in multiple sclerosis: 6MWT immediately following intervention

Study	Cond.	Exercise	Control	N Exercise	N Control	Weight	MD ∆ Scores PL [95% Cl]	
Kairon 2017	MS	Pilates	PT	22	23	15.4%	-13.80 [-56.51, 28.91]	
Duff 2018	MS	Pilates	AC Massage	15	15	5.6%	-37.40 [-108.14, 33.34]	
Dalgas 2010	MS	PRE	Previous	16	18	4.4%	-56.10 [-135.91, 23.71]	
Callesen 2019	MS	PRE	WL	17	9	49.2%	-12.60 [-36.50, 11.30]	
Tollar 2020	MS	Cycling	WL	14	12	25.4%	0.80 [-32.46, 34.06]	
Total (95% CI)				84	77	100.0%	-12.69 [-29.45, 4.07]	•
Heterogeneity: Test for overall		, ,	4 (P = 0.69); I ² = 0%					-200 -100 0 100 200 Favors Exercise Favors Control

Abbreviations: Δ = change; 6MWT = 6-Minute Walk Test; AC = attention control; CI = confidence interval; MD = mean difference; PL = profile likelihood; PRE = progressive resistance exercise; PT = physical therapy

Figure 10. Muscle strength exercise versus usual care in multiple sclerosis: 2MWT immediately following intervention

			N	N		MD A Scores	
Study	Exercise	Control	Exercise	Control	Weight	PL [95% CI]	
Kjolhede 2016	PRE	Previous	16	14	7.5%	-15.40 [-36.32, 5.52]	
Kalron 2017	Pilates	PT	22	23	16.0%	-1.80 [-16.10, 12.50]	
Dodd 2011	PRE	AC PT + Social	39	37	76.5%	-2.60 [-9.15, 3.95]	-
Total (95% CI)			77	74	100.0%	-3.43 [-11.92, 2.81]	•
Heterogeneity: Tau Test for overall effe	,	87, df = 2 (P = 0.50); l ^a .24)	= 0%			_	

Abbreviations: Δ = change; 2MWT = 2-Minute Walk Test; AC = attention control; CI = confidence interval; MD = mean difference; PL = profile likelihood; PRE = progressive resistance exercise; PT = physical therapy

		N	N		MD \triangle Scores	
Exercise	Control	Exercise	Control	Weight	PL [95% CI]	
Pilates	AC Relaxation	16	29	22.1%	-1.15 [-3.89, 1.59]	
Pilates	PT	17	32	25.9%	0.39 [-2.14, 2.92]	
PRE	Previous	16	18	52.0%	-1.70 [-3.49, 0.09]	
		49	79	100.0%	-1.04 [-2.48, 0.69]	
.00; Chi² = 1.76, d	f = 2 (P = 0.42); I ²	= 0%				
= 1.58 (P = 0.11)						
Pilates	AC Relaxation	16	29	25.1%	-1.13 [-3.98, 1.72]	
Pilates	PT	17	32	20.2%	-1.35 [-4.52, 1.82]	
PRE	Previous	15	16	54.7%	-1.30 [-3.23, 0.63]	
		48	77	100.0%	-1.27 [-2.75, 0.22]	
.00; Chi² = 0.01, d	f = 2 (P = 0.99); l ²	= 0%				
= 1.74 (P = 0.08)						
					-	-4 -2 0 2 4
						Favors Exercise Favors Control
	Pilates PRE 00; Chi ² = 1.76, d = 1.58 (P = 0.11) Pilates Pilates PRE 00; Chi ² = 0.01, d	PilatesAC RelaxationPilatesPTPREPrevious00; Chi² = 1.76, df = 2 (P = 0.42); l²= 1.58 (P = 0.11)PilatesAC RelaxationPilatesPTPREPrevious	Pilates AC Relaxation 16 Pilates PT 17 PRE Previous 16 49 00; Chi ² = 1.76, df = 2 (P = 0.42); l ² = 0% 49 00; Chi ² = 1.76, df = 2 (P = 0.42); l ² = 0% 9 16 Pilates AC Relaxation 16 Pilates PT 17 PRE Previous 15 48 00; Chi ² = 0.01, df = 2 (P = 0.99); l ² = 0%	Pilates AC Relaxation 16 29 Pilates PT 17 32 PRE Previous 16 18 49 79 00; Chi ² = 1.76, df = 2 (P = 0.42); l ² = 0% = 1.58 (P = 0.11) Pilates AC Relaxation 16 29 Pilates PT 17 32 PRE Previous 15 16 48 77 00; Chi ² = 0.01, df = 2 (P = 0.99); l ² = 0% 90	$\begin{array}{cccccccc} Pilates & AC Relaxation & 16 & 29 & 22.1\% \\ Pilates & PT & 17 & 32 & 25.9\% \\ PRE & Previous & 16 & 18 & 52.0\% \\ & & 49 & 79 & 100.0\% \\ 00; Chi^2 = 1.76, df = 2 (P = 0.42); l^2 = 0\% \\ = 1.58 (P = 0.11) \\ \hline \\ Pilates & AC Relaxation & 16 & 29 & 25.1\% \\ Pilates & PT & 17 & 32 & 20.2\% \\ PRE & Previous & 15 & 16 & 54.7\% \\ & & 48 & 77 & 100.0\% \\ 00; Chi^2 = 0.01, df = 2 (P = 0.99); l^2 = 0\% \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Figure 11. Muscle strength exercise versus usual care in multiple sclerosis: 10MWT immediately following intervention and during the short-term followup

Abbreviations: Δ = change; 10MWT = 10-Meter Walk Test; AC = attention control; CI = confidence interval; MD = mean difference; PL = profile likelihood; PRE = progressive resistance exercise; PT = physical therapy

Figure 12. Muscle strength exercise versus usual care in multiple sclerosis: MSWS-12 immediately following intervention

Figure 12 is a forest plot examining 12 minute walking test scores comparing muscle strength exercise with usual care. The pooled mean difference for the four studies is -1.36 (95% confidence interval -4.83 to 2.10), favoring exercise, with an I-squared value of 26% and a p-value of 0.44.

Study	Cond.	Exercise	Control	N Exercise	N Control	Weight	MD ∆ Scores PL [95% CI]	
Kalron 2017	MS	Pilates	PT	22	23	46.8%	0.40 [-3.17, 3.97]	_
Fox 2016 (AC)	MS	Pilates	AC Relaxation	16	29	13.5%	-6.44 [-15.18, 2.30]	
Fox 2016 (PT)	MS	Pilates	PT	17	32	13.9%	2.88 [-5.69, 11.45]	
Callesen 2019	MS	PRE	WL	17	9	25.8%	-4.20 [-10.00, 1.60]	
Total (95% CI)				72	93	100.0%	-1.36 [-4.83, 2.10]	-
Heterogeneity: Tau ² Test for overall effec			0.26); l² = 26%					-20 -10 0 10 5 Favors Exercise Favors Control

Abbreviations: AC = attention control; CI = confidence interval; MD = mean difference; MSWS-12 = Multiple Sclerosis Walking Scale-12; PL = profile likelihood; PT = physical therapy

Figure 13. Muscle strength exercise versus usual care in multiple sclerosis: 25FWT immediately following intervention

Study	Cond.	Exercise	Control	N Exercise	N Control	Weight	MD ∆ Scores PL [95% Cl]	
Kjolhede 2016	MS	PRE	Previous	16	14	38.5%	-0.15 [-0.31, 0.01]	
Callesen 2019	MS	PRE	WL	17	18	61.5%	-0.02 [-0.12, 0.08]	
Total (95% CI)				33	32	100.0%	-0.07 [-0.19, 0.05]	
Heterogeneity: Ta Test for overall ef			-0.5 -0.25 0 0.25 0.5 Favors Exercise Favors Control					

Abbreviations: Δ = change; 25FWT = 25-Foot Walk Test; CI = confidence interval; MD = mean difference; MS = multiple sclerosis; PL = profile likelihood; PRE = progressive resistance exercise; WL = waitlist

Functional Capacity Measures

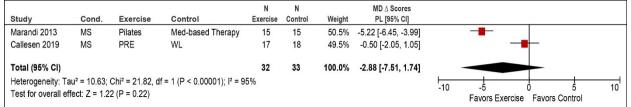

Muscle strengthening exercises resulted in no difference in improvement in functional capacity based on the TUG immediately postintervention compared with usual care or attention control (3 trials^{52,198,206} MD –1.3 seconds, 95% CI –4.38 to 1.78, I²=0%) (Figure 14). Exclusion of the poor-quality trial²⁰⁶ resulted in a smaller but more precise effect estimate, however the difference did not reach statistical significance (2 trials, MD –0.61 seconds, 95% CI –2.00 to 0.78, I²=33%). One poor-quality study of Pilates versus aerobics found no difference between groups for the right or left TUG.⁶² Two trials (1 fair and 1 poor quality)^{68,69,149} found no improvement in the Six Spot Step Test (SSST), with strengthening exercises compared with usual care (2 trials, MD –2.88 seconds, 95% CI –7.51 to 1.74, I²=95%) (Figure 15). Additionally, there was no difference in the SSST compared with aquatic exercise in one trial.^{68,69} Results provided low-strength evidence of no clear benefit on function with strength exercises alone compared with usual care.

Figure 14. Muscle strength exercise versus usual care in multiple sclerosis: TUG immediately following intervention

			Ν	Ν		$\textbf{MD} \ \Delta \ \textbf{Scores}$		
Study	Exercise	Control	Exercise	Control	Weight	PL [95% CI]		
Duff 2018	Pilates	AC Massage	15	15	74.6%	-1.60 [-5.17, 1.97]		
Bulguroglu 2017	Pilates	AC Relaxation	25	13	12.4%	-0.75 [-9.49, 7.99]		
Kalron 2017	Pilates	PT	22	23	12.9%	-0.10 [-8.67, 8.47]		
Total (95% CI)*			62	51	100.0%	-1.30 [-4.38, 1.78]		
Heterogeneity: Tau ² = 0.00; Chi ² = 0.12, df = 2 (P = 0.94); l ² = 0% -10 -5 0 5								
Test for overall effect: Z	2 = 0.83 (P = 0.41)						Favors Exercise Favors Control	

Abbreviations: Δ = change; AC = attention control; CI = confidence interval; MD = mean difference; PL = profile likelihood; PT = physical therapy; TUG = Timed Up and Go Test

Figure 15. Muscle strength exercise versus usual care in multiple sclerosis: SSST immediately following intervention

Abbreviations: Δ = change; CI = confidence interval; MD = mean difference; MS = multiple sclerosis; PL = profile likelihood; PRE = progressive resistance exercise; SSST = Six Spot Step Test; WL = waitlist

Quality of Life Measures

Quality of life based on the Mental Component Summary (MCS) and Physical Component Summary (PCS) of either the SF-36 or MSQoL (0-100 scales) was reported in three trials.^{198,202,203,206} A small improvement in MCS was seen for muscle strengthening exercises versus attention control or massage (3 trials,^{198,202,203,206} MD –3.5, 95% CI –6.61 to –0.27, I²=0%) (Figure 16). Exclusion of the poor-quality trial²⁰⁶ had a negligible impact on the effect size (MD -3.85, 95% CI -7.33 to -0.37, I²=0%). It is unclear whether this small difference represents a clinically meaningful improvement. There was no difference between groups for PCS across all three trials^{198,202,203,206} (MD –2.8, 95% CI –6.68 to 3.12, I²=34%) (Figure 16). However, exclusion of the poor-quality trial²⁰⁶ resulted in a small improvement favoring muscle strengthening exercise (2 trials, MD –4.2, 95% CI –7.51 to –0.79, I²=0%). Again, it is unclear whether this small difference represents a clinically meaningful improvement. Two additional trials found no difference in overall quality of life based on the WHOQOL immediately postintervention or 12 weeks after the intervention (difference 0.3, 95% CI –0.1 to 0.6, and difference –0.2, 95% CI –0.6 to 0.3, respectively),^{83,204} or the EuroQOL-5 Dimension Questionnaire (EQD-5) immediately postintervention (difference –0.5, 95% CI –1.5 to 0.5).⁸³ Together these studies found low-strength evidence of no clear benefit with strength exercises alone on quality of life compared with usual care.

Figure 16. Muscle strength exercise versus usual care in multiple sclerosis: MSQOL/SF-36 MCS	3
and PCS immediately following intervention	

			N	N		MD \triangle Scores	
Study	Exercise	Control	Exercise	Control	Weight	PL [95% CI]	
MCS							
Duff 2018	Pilates	AC Massage	15	15	15.6%	-1.70 [-9.42, 6.02]	
Bulguroglu 2017	Pilates	AC Relaxation	25	13	23.0%	-2.22 [-8.59, 4.15]	
Dalgas 2010	PRE	Previous	16	18	61.4%	-4.40 [-8.30, -0.50]	
Subtotal (95% CI)			56	46	100.0%	-3.48 [-6.61, -0.27]	
Heterogeneity: Tau ² = 0	0.00; Chi² = 0.57, df	= 2 (P = 0.75); l ² =	: 0%				
Test for overall effect: Z	2 = 2.23 (P = 0.03)						
PCS							
Duff 2018	Pilates	AC Massage	15	15	18.3%	-2.20 [-10.78, 6.38]	
Bulguroglu 2017	Pilates	AC Relaxation	25	13	28.5%	2.00 [-4.38, 8.38]	
Dalgas 2010	PRE	Previous	16	18	53.3%	-4.50 [-8.15, -0.85]	
Subtotal (95% CI)			56	46	100.0%	-2.77 [-6.68, 3.12]	
Heterogeneity: Tau ² = 4	.73; Chi ² = 3.03, df	= 2 (P = 0.22); I ² =	34%				
Test for overall effect: Z	2 = 1.07 (P = 0.29)						
						,	-10 -5 0 5 10
							Favors Exercise Favors Control

Abbreviations: Δ = change; AC = attention control; CI = confidence interval; MD = mean difference; MSQOL = Multiple Sclerosis Quality of Life; PL = profile likelihood; PRE = progressive resistance exercise; SF-36 MCS/PCS = Short-Form 36 Mental Component Summary/Physical Component Summary

Other Outcome Measures

Across five trials comparing strengthening exercises with usual care, previous activity, or attention control, different measures of balance were used. Two trials with three comparisons assessed balance immediately postintervention using the Activities-specific Balance Confidence Scale (ABCS) (0-100 scale). Strengthening exercises were not associated with improved balance immediately postintervention (MD -1.33, 95% CI -4.95 to 2.60, I²=39%) (Figure 17).^{149,200,201,206} There was no difference in balance improvement immediately postintervention in three other fair-quality trials, one using the Fullerton Advanced Balance Scale (scale 0-4, difference in change score MD 0.1, 95% CI -5.43 to 5.63)¹⁹⁸ and two the BBS (scale 0-56, Figure 18, 2 trials^{52,83}). One poor-quality trial⁶² comparing strengthening to aerobic exercise found no difference in balance as assessed by the BBS immediately postintervention (difference in change score, MD 0.7, 95% CI -5.93 to 7.23). These studies provided low-strength evidence for no benefit on balance between strength exercises and usual care, previous activity, or attention control.

Disability status was assessed in one fair-quality trial that compared strengthening exercises to previous activity level using the EDSS (0-10 scale). Strengthening exercises were not associated with an improvement in disability immediately postintervention (difference 0.1, 95% CI - 0.43 to 0.63).^{202,203}

Two fair-quality trials assessed depression immediately following 12 weeks of progressive resistance training $(PRT)^{202,203}$ or 5 weeks of proprioceptive neuromuscular facilitation $(PNF)^{83}$ using the Major Depression Inventory and Beck Depression Inventory, respectively. There was no difference comparing the strengthening exercise groups versus standard care (Figure 19, 2 trials^{83,202,203}). In the trial assessing PNF, the scores on the MSIS-29 improved slightly compared with usual care (MD –2.9, 95% CI –5.4 to –0.4).

Upper extremity strengthening exercises were associated with a small functional improvement for both the more and the less affected upper extremity compared with attention control immediately postintervention based on the Action Research Arm Tests (ARAT) (scale 0-57, difference in change score, 2.1, 95% CI 1.54 to 2.56 and 0.5, 95% CI 0.23 to 0.81, respectively).²⁰⁵ However, it is not clear whether these small changes represent clinically important differences.

Figure 17. Muscle strength exercise versus usual care in multiple sclerosis: ABCS immediately following intervention

			Ν	Ν		$\textbf{MD} \ \Delta \ \textbf{Scores}$				
Study	Exercise	Control	Exercise	Control	Weight	PL [95% CI]				
Bulguroglu 2017	Pilates	AC Relaxation	25	13	0.9%	-0.65 [-8.08, 6.78]	· · · · · · · · · · · · · · · · · · ·			
Fox 2016 (AC)	Pilates	AC Relaxation	16	29	50.6%	-0.75 [-1.52, 0.02]				
Fox 2016 (PT)	Pilates	PT	17	32	48.4%	0.18 [-0.62, 0.98]				
Total (95% CI)			58	74	100.0%	-0.30 [-1.38, 0.77]	-			
Heterogeneity: Tau ² = 0.11; Chi ² = 2.73, df = 2 (P = 0.26); l ² = 27%										
Test for overall effect: Z	Z = 0.81 (P = 0.42)						-4 -2 0 2 4 Favors Exercise Favors Control			

Abbreviations: Δ = change; ABCS = Activities-specific Balance Confidence Scale; AC = attention control; CI = confidence interval; MD = mean difference; PL = profile likelihood; PT = physical therapy

Figure 18. Muscle strength exercise versus usual care in multiple sclerosis: BBS immediately following intervention

Study	Cond.	Exercise	Control	N Exercise	N Control	Weight	MD ∆ Scores PL [95% Cl]	
Kalron 2017	MS	Pilates	UC	22	23	43.5%	0.20 [-2.56, 2.96]	
Tollar 2020	MS	PNF	WL	14	12	56.5%	-1.80 [-4.17, 0.57]	
Total (95% CI)				36	35	100.0%	-0.93 [-2.87, 1.01]	-
Heterogeneity: T Test for overall e			(P = 0.28); ² = 14	1%				-10 -5 0 5 10 Favors Exercise Favors Control

Abbreviations: Δ = change; BBS = Berg Balance Scale; CI = confidence interval; MD = mean difference; PL = profile likelihood; SE = standard error

Figure 19. Muscle strength exercise versus usual care in multiple sclerosis: BDI depression immediately following intervention

Study	Cond.	Exercise	Control	N Exercise	N Control	Weight	SMD ∆ Scores PL [95% Cl]	
Dalgas 2010 Tollar 2020	MS MS	PRE PNF	Previous WL	15 14	16 12	54.2% 45.8%	-0.32 [-1.03, 0.39] -0.04 [-0.81, 0.73]	
Total (95% CI) Heterogeneity: Tau ² = 0.00; Chi ² = 0.28, df = 1 (P = 0.60); l ² = 0% Test for overall effect: Z = 0.72 (P = 0.47)					28	100.0%	-0.19 [-0.71, 0.33]	-1 -0.5 0 0.5 1 Favors Exercise Favors Control

Abbreviations: Δ = change; BDI = Beck Depression Inventory; CI = confidence interval; MD = mean difference; MDI = Major Depression Inventory; PL = profile likelihood; SE = standard error

Six trials did not address harms or adverse events. Three trials reported no adverse events;^{52,198,205} one trial reported no intervention-related adverse events but four events unrelated to the intervention (1 fractured ankle from falling in the snow in the Pilates group, 1 fractured humerus from falling in the snow in the PT group, and 1 pneumonia and 1 pancreatitis in the relaxation group);^{200,201} and one trial reported short-term muscle soreness in 25 (69%) participants in the strengthening exercise group,²⁰⁴ however, no training sessions were missed due to any injury.

Muscle Strength Exercise—Cerebral Palsy

Seven trials²⁰⁷⁻²¹⁶ and one quasiexperimental study²¹⁷ enrolled participants with CP (n=388) (Table 35). Weighted mean age of participants across trials was 9.9 years (range, 5.9 to 18.4 years) with weighted mean proportion female of 45 percent (range, 38% to 53%). No study provided data on race. Six studies enrolled participants who could, at minimum, ambulate using bilateral assistance (i.e., crutches, canes),^{207-212,215-217} while one enrolled children who could sit for 10 seconds with back unsupported and feet supported,²¹³ and one did not report data on ambulatory status.²¹⁴ The weighted mean baseline GMFM was 61.2 (range, 44.3 to 80.2). Seventeen percent of patients in the quasiexperimental study were wheelchair users; no other study provided data on wheelchair use.²¹⁷ Six trials compared strengthening exercises with usual PT,^{207-209,211-216} and the remaining trial compared strengthening combined with neuroelectrical stimulation versus neuroelectrical stimulation alone.²¹⁰ One quasiexperimental study compared strengthening group.²¹⁷

Author, Year			
Intervention	Internetien.		
Study Design Study Quality	Intervention and Comparison	Population	Results
Cho, 2020 ²¹⁶	A. FPRE, 12	A vs. B	A vs. B, mean (SD)
0110, 2020	sessions over 6	Age (mean years): 5.54	GMFM-88 score
Strength	weeks (n=13)	vs. 7.17	69.98 (21.55) vs. 68.15 (27.15) (baseline)
ouongui		Female: 9 (69%) vs. 4	71.78 (21.05) vs. 63.48 (27.48)
RCT	B. Conventional	(33%)	(postintervention), p=0.019 for group A and
	therapy, 18	Ambulatory: 100%	0.375 for group B for change from baseline
Poor	sessions over 6	-	
	weeks (n=12)	GMFCS: 2.08 vs. 2.33	Increase pre-post for FPRE group p=0.019;
			control group showed no significant difference,
			p=0.375.
Elnaggar 2019 ²¹⁵	A. Plyometric	Age: 9.5 vs. 10.3	A vs. B, mean (SD)
01 11	training, 16	Female: 32% vs. 45%	
Strength	sessions over 8	Ambulatory: 100% All	<u>10MWT (m/s):</u>
RCT	weeks (n=19)	patients were considered to have mild	1.18 (0.08) vs. 1.21 (0.09) (baseline)
KU I	B. Usual care	spastic CP	1.29 (0.06) vs. 1.25 (0.05) (postintervention) 0.11 (0.05) vs. 0.04 (0.06), MD 0.07 (95% CI
Fair	(n=20)	spastic Ci	0.04 to 0.10) (pre-post change score)
Kara, 2020 ²¹⁴	A. Strength and	A vs. B	A vs. B, mean (SD), p-value for between group
	power training, 36	Age: 12.3 vs. 11.8	difference
Strength	sessions over 12	Female: 53% vs. 53%	
0	weeks (n=15)	MACS Level	QUEST total:
RCT		I: 47% vs. 40%	8.88 (6.51) vs. 2.22 (4.74), MD 6.65 (95% CI 2.4
	B. Usual care	II: 27% vs. 33%	to 10.9), p=0.001 (pre-post change)
Fair	occupational	III: 27% vs. 27%	
	therapy, 36	GMFCS Level	<u>COPM total:</u>
	sessions over 12	I: 87% vs. 87%	6.12 (2.33) vs. 0.41 (1.56), MD 5.71 (95% CI 4.2
	weeks (n=15)	II: 13% vs. 13%	to 7.2), p<0.001 (pre-post change)

Table 35. Muscle strength exercise in cerebral palsy

Author, Year Intervention Study Design Study Quality	Intervention and Comparison	Population	Results
Scholtes, 2010 ²⁰⁹	A. Progressive	A vs. B	A vs. B, Regression effect size (95% CI),
Scholtes, 2010 ²⁰⁷	resistance, 36	Age: 10.33 vs. 10.25	p=between groups:
	sessions over 12	Female: 33% vs. 50%	
Scholtes, 2008 ²⁰⁸			<u>GMFM-66:</u> -0.56 (-2.11 to 0.99), p=0.48
04	weeks (n=24)	Ambulatory: 100%	(postintervention); 0.26 (-1.23 to 1.76), p=0.73
Strength	D. Havel and	Bilateral: 71% vs. 60%	(6 weeks postintervention)
DOT	B. Usual care	GMFM I: 54% vs. 48%	<u>10MWT</u> : -0.04 (-0.18 to 0.10), p=0.56
RCT	(n=25)	GMFM II: 33% vs. 36%	(postintervention); -0.06 (-0.17 to 0.04), p=0.25
_ ·		GMFM III: 13% vs. 16%	(6 weeks postintervention)
Fair			<u>Sit-to-Stand (reps):</u> -0.47 (-2.28 to 1.33),
			p=0.61 (postintervention); -0.75 (-2.21 to 0.72),
			p=0.32 (6-weeks postintervention)
			Lateral step-up test (reps): $0.48 (-1.45 \text{ to } 2.40)$,
			p=0.63 (postintervention); 0.13 (-1.84 to 2.10),
			p=0.9 (6 weeks postintervention)
			<u>1-minute fast walking test (m/s):</u> 0.04 (-0.04 to
			0.12), p=0.30 (postintervention); -0.01 (-0.08 to
			0.06), p=0.78 (6 weeks postintervention)
			<u>Timed Stair Test (s):</u> 0.83 (-2.64 to 4.30),
			p=0.64 (postintervention); 2.87 (-2.41 to 8.16),
Taulan 0040211			p=0.29 (6 weeks postintervention)
Taylor, 2013 ²¹¹	A. Progressive	A vs. B	A vs. B, mean difference (95% CI) between
Bania, 2016 ²¹²	resistance, 24	Age: 18.17 vs. 18.58	groups:
0, 1,	sessions over 12	Female: 44% vs. 48%	<u>GMFM-66-D</u> : –1.3 (–4.9 to 2.4), p>0.05
Strength	weeks (n=23)	No gait aid 57% vs.	(postintervention); 2.5 (–1.8 to 6.9), p>0.05 (12
DOT	B 11 1	60%	weeks postintervention)
RCT	B. Usual care	GMFM II: 57% vs. 64%	<u>GMFM-66-E:</u> 0.9 (-3.0 to 4.7), p>0.05
Quad	(n=25)	GMFM III: 43% vs. 36%	(postintervention); 1.0 (–2.6 to 4.5), p>0.05 (12
Good			weeks postintervention)
			<u>6MWT</u> : 0.1 (-20.6 to 20.9), p>0.05
			(postintervention); -12.3 (-34.8 to 10.2), p>0.05
			(12 weeks postintervention) Timed Stair Test (s): -0.9 (-4.7 to 2.9)
			(postintervention); -0.6 (-4.2 to 3.0) (12 weeks)
			postintervention)
			<u>Gait Profile Score (°)</u> : 0.2 (–0.6 to 0.9), p>0.05
			(postintervention); $0.2 (-0.8 \text{ to } 1.2)$, p>0.05 (12
			weeks postintervention)
Kirk, 2016 ²¹⁷	A. Progressive	A+B	A vs. B, mean (SD), p=between groups:
MIN, 2010-1	resistance, 36	A+D Age: 36.5	<u>10MWT:</u> 7.76 (1.23) to 7.49 (1.10) vs. 8.83
Strength	sessions over 12	Female: 43%	$\frac{1000001}{(0.78)}$ to 8.47 (0.86), p>0.05
Gaengai	weeks (n=12)	Wheelchair user: 17%	6MWT: 481 (30) to 510 (33) vs. 400 (32) to 416
Quasiexperimental			(33) p>0.05
guasicoperintental	B. Usual care		Timed Stair Test (s): 30.69 (4.92) to 29.15
Poor	(n=23)		(4.62) vs. 49.82 (7.27) to 45.01 (6.57), p>0.05
Qi, 2018a ²¹⁰	A. Strength	A vs. B	A vs. B, mean (SD)
Si, 2010a	exercises +	Age: 5.8 vs. 6.0	7, vo. b, mean (ob)
Strength	neuromuscular	Female: 48% vs. 46%	GMFM-D/E:
Caongai	electrical	Spastic CP: 100%	44.5 (13.2) vs. 44 (12.6), p>0.05 (baseline)
RCT	stimulation, 30		70.6 (15.2) vs. 56.7 (14.3), p<0.05
	sessions over 6		(postintervention)
Fair	weeks (n=50)		
			MD 13.4, 95% CI 7.94 to 18.86, p<0.001
	B. Neuromuscular		71.0 (16.4) vs. 58.0 (15.6), p<0.05 (6 weeks
	electrical		postintervention)
	stimulation, 30		MD 12.5, 95% CI 6.74 to 18.26, p<0.001
	sessions over 6		me 12.0, 0070 01 0.1 1 to 10.20, p 0.001
	weeks (n=50)		
L		1	

Author, Year Intervention Study Design Study Quality	Intervention and Comparison	Population	Results
Tedla, 2014 ²¹³	A. Strength training 18 sessions over 6	A vs. B (data are for completers only; n=30	A vs. B, mean change from baseline (SD):
Strength	weeks + conventional PT	vs. 30) Age: 9.1 vs. 8.9 years	PBS total score 7.23 (3.350) vs. 1.87 (1.074), p<0.001
RCT	(n=31)	Female: 33% vs. 33% Gross motor function	GMFM-total score
Poor	B. Conventional PT 3-5 sessions per week for 6 weeks (n=31)	classification system: l: 7% vs. 3% ll: 20% vs. 27% lll: 37% vs. 27% lV: 37% vs. 43%	9.9 (NR) vs. 2.2 (NR), p=NR

Abbreviations: 6MWT = 6-Minute Walk Test; 10MWT = 10-Meter Walk Test; AE = adverse event; COPM = Canadian Occupational Performance Measure; CI = confidence interval; COPM = Canadian Occupational Performance Measure; CP = cerebral palsy; EPC = Evidence-based Practice Center; FPRE = functional progressive resistance exercise; GMFM = Gross Motor Function Measure; GMFM-66 = Gross Motor Function Measure 66; GMFM-66-D = Gross Motor Function Measure 66 (standing); GMFM-66-E = Gross Motor Function Measure 66 (walking, running, jumping); MACS = manual ability classification system; MD = mean difference; NR = not reported; PBS = Pediatric Balance Scale; PT = physical therapy; QUEST = Quality of Upper Extremity Skill Test; RCT = randomized controlled trial; SD = standard deviation

Walking Measures

There were no differences between strengthening exercise compared with usual PT care in one good-quality^{211,212} and one fair-quality trial²⁰⁷⁻²⁰⁹ immediately post-12-week treatment in the 1MWT,²⁰⁷⁻²⁰⁹ the 6MWT,^{211,212} and the 10MWT (Figure 20, 2 trials^{207-209,215}). In one trial,^{211,212} there was no improvement in gait profile scores following strength exercises versus PT in immediate- or short-term followup. One quasiexperimental study also reported no difference on 6MWT and 10MWT comparing strengthening with active training.²¹⁷ At short-term followup, no difference was reported in walking ability between groups in the two trials (1 minute fast walking test),²⁰⁷⁻²⁰⁹ the 6MWT,^{211,212} and the 10MWT.²⁰⁷⁻²⁰⁹ These studies provided low-strength evidence of no clear benefit on walking with strength exercises alone compared with usual care immediately postintervention and at short-term followup.

Functional Capacity Measures

Evidence on functional outcomes with strengthening exercise in children with CP was based on one good-quality,^{211,212} one fair-quality,²⁰⁷⁻²⁰⁹ and two poor-quality studies^{213,216} (Table 35) and provided low-strength evidence of no clear benefit of strengthening exercise on function versus control groups using the GMFM immediately, 6 weeks, or 12 weeks following treatment. One fair-quality trial²⁰⁷⁻²⁰⁹ also reported no difference between groups in the 30-second lateral step-up test in immediate and short-term followup.

In one fair-quality trial,²¹⁰ strength exercises combined with neuroelectrical stimulation versus neuroelectrical stimulation alone resulted in improved functional capacity based on the GMFM in immediate- and short-term followup (difference in change scores -13.4, 95% CI -16.90 to -9.90; and -12.5, 95% CI -16.26 to -8.74, respectively). Due to study limitations, lack of corroborating evidence, and imprecision in the estimates, this evidence was insufficient to draw conclusions.

Other Outcome Measures

Across two trials (1 good and 1 fair quality), there was no improvement in the timed stair test with strengthening versus usual PT immediately postintervention and at short-term followup.²⁰⁷⁻

^{209,211,212} The one poor-quality quasiexperimental study reported no difference immediately posttreatment between strength exercises and usual care in the timed stair test.²¹⁷ Strengthening compared with usual PT did not improve 30-second sit-to-stand in one trial in the immediate- or short-term followup.²⁰⁷⁻²⁰⁹

Strengthening compared with usual PT improved balance immediately after the intervention as measured by the PBS in one poor-quality trial²¹³ (differences in change scores 7.23, standard deviation (SD) 3.35 and 1.87, SD 1.07, p<0.001) and in the Forward and Side Functional Reach Test (before-after change, p<0.005) in another poor-quality trial.²¹⁶

One fair-quality trial (n=30) found the quality of upper extremity movement, and both activity performance and satisfaction improved, with strength and power training versus usual occupational therapy.²¹⁴ Due to the risk of bias and small sample size, the evidence for improved upper extremity movements is too limited to draw conclusion. None of the trials reported on quality of life measures.

Adverse events were reported in one RCT and in one quasiexperimental study. In the RCT,^{211,212} short-term muscle soreness was reported by most participants in the strength exercise group. Additionally, one minor calf strain and one minor discomfort due to plantar fasciitis occurred in the same group. In the quasiexperimental study, most subjects in the exercise group reported muscle soreness and three subjects reported irritation in tendon tissue surrounding the knee.²¹⁷ One trial reported no adverse events in either treatment arm²¹⁴ and the remaining four RCTs did not address harms or adverse events.

Figure 20. Muscle strength exercise versus usual care in cerebral palsy: 10MWT immediately following intervention

Study	Cond.	Exercise	Control	N Exercise	N Control	Weight	MD ∆ Scores PL [95% Cl]	
Elnaggar 2019 Scholtes 2008/2010/2012	CP CP	Plyometrics PRE	Standard PT	19 23	20 23	75.7% 24.3%	-0.46 [-0.70, -0.22] 0.36 [-0.82, 1.54]	.
Total (95% Cl) Heterogeneity: Tau ² = 0.15; Test for overall effect: Z = 0.			; l² = 44%	42	43	100.0%	-0.26 [-0.95, 0.43]	-4 -2 0 2 4 Favors Exercise Favors Control

Abbreviations: Δ = change; 10MWT = 10-meter Walk Test; CI = confidence interval; MD = mean difference; PL = profile likelihood.

Muscle Strength Exercise—Spinal Cord Injury

One fair-quality trial²¹⁸ enrolled adult males (n=98) with SCI (Table 36). The mean age of participants was 63 years; all participants were paraplegic. Limited evidence suggested 12 months of breathing and upper limb strength exercises improved quality of life as measured on four of five SF-36 subscales (0-100 scale) immediately after the intervention: physical function (26.7, 95% CI 24.61 to 28.79); social function (28.9, 95% CI 26.06 to 31.74); role emotional (22.0, 95% CI 20.11 to 23.89); and mental health (21.0, 95% CI 19.10 to 22.90). There were no differences between groups in any of the SF-36 subscales after 4 weeks of intervention. However, the evidence was considered too limited to draw firm conclusions on the effectiveness of strength training on quality of life (SOE: insufficient).²¹⁸

This trial did not address harms or adverse events.

Author, Year Intervention Study Design Study Quality	Intervention and Comparison	Population	Prioritized Outcomes
Chen, 2016 ²¹⁸	A. Pulmonary	A vs. B	A vs. B, mean (SD):
	rehabilitation, 365	Age: 62.3 vs. 63.1	SF-36 Subscale - physical function:
Strength	sessions over 52	Female: 0%	54.2 (7.8) vs. 54.2 (7.8), p>0.05 (baseline)
	weeks (n=49)	T1–2: 35% vs. 35%	81.1 (3.1) vs. 54.4 (7.7), p<0.05 (postintervention)
RCT		T3–4: 33% vs. 33%	54.4 (8.0) vs. 54.6 (7.9), p>0.05 (4-week followup)
	B. Usual care	T5–6: 33% vs. 33%	SF-36 Subscale - social function:
Fair	(n=49)		50.6 (11.8) vs. 50.6 (11.8), p>0.05 (baseline)
			80.1 (9.4) vs. 51.2 (11.0), p<0.05 (postintervention)
			51.2 (11.0) vs. 50.6 (11.8), p>0.05 (4-week followup)
			SF-36 Subscale - role emotional:
			54.3 (7.85 vs. 5.3 (6.9), p>0.05 (baseline)
			76.3 (7.3) vs. 54.3 (7.8), p<0.05 (postintervention)
			54.2 (7.8) vs. 54.4 (7.7), p>0.05 (4-week followup)
			SF-36 Subscale - mental health:
			54.1 (7.7) vs. 54.2 (7.8), p>0.05 (baseline)
			75.1 (6.8) vs. 54.2 (7.8), p<0.05 (postintervention)
			54.2 (7.8) vs. 54.2 (7.8), p>0.05 (4-week followup)

Table 36. Muscle strength exercise in spinal cord injury

Abbreviations: RCT = randomized controlled trial; SD = standard deviation; SF-36=Short-Form 36

Multimodal Interventions

Progressive Resistance or Strengthening Combination Exercises

Multimodal exercises provide information on the benefit of combining different types of interventions. Unlike single exercise interventions, multimodal exercise blends various types of exercises by linking progressive resistance exercise and/or strengthening exercises with at least one component of aerobic exercises, balance exercises, or other interventions.

Key Points

- In participants with MS, across measures of walking ability (6MWT and 10MWT), multimodal exercise was associated with improved walking ability and balance compared with usual care at the end of treatment (SOE: low). Evidence was insufficient to draw conclusions from one small trial of group versus home-based exercise with regard to walking ability or balance.
- Evidence was limited in MS on functional capacity and quality of life (SOE: insufficient).
- In participants with CP, there was low-strength evidence of no clear benefit in functional capacity or quality of life with multimodal exercises. Evidence was insufficient to draw conclusions regarding the impact of multimodal exercise on walking.
- In participants with SCI, evidence from small trials was insufficient to draw conclusions regarding the impact of exercise on walking or functional capacity (SOE: insufficient).

Detailed Synthesis

Seventeen RCTs,^{220-223,225,226,228-230,232,234-242,244-248} one quasiexperimental study,²³³ and one cohort study²⁵⁰ in 911 participants evaluated multimodal exercise. Multimodal exercises included progressive resistance exercises/strengthening exercises in combination with aerobic exercise. Some also included balance exercises. Most trials compared multimodal exercise to usual care. Usual care included maintaining previous activity levels (5 trials, 1 quasiexperimental

study),^{222,223,225,226,228,233} inclusion of an attention control (2 trials),^{221,232} PT (4 trials),²³⁴⁻²⁴² self-regulated exercise (1 study),²⁵⁰ or waitlist (2 trials).^{230,231,246,247} Additional trials compared multimodal exercise with aerobic exercise,²²⁰ or a different combination of multimodal exercises.^{244,245,248} Ten trials^{220-223,225,226,228,230-232} and one quasiexperimental study²³³ enrolled participants with MS (Table 37), four trials²³⁴⁻²⁴² were in participants with CP (Table 38), and four studies (3 RCTs, 1 cohort study)^{244-248,250} were conducted in participants with SCI (Table 39). Twelve^{220-223,230-232,234-242,244,245,248} trials met criteria for fair quality and four^{225,226,228,246,247} were rated poor quality and deemed to have high risk of bias due to unclear randomization and/or allocation concealment, lack of similarity between treatment groups at baseline, and unacceptable attrition. The quasiexperimental and cohort studies were walking-related measures (e.g., 6MWT, 10MWT) and quality of life (e.g., SF-36); few studies reported on functional capacity measures (e.g., TUG). Measures reported varied by condition. Differences in change scores (mean difference) between treatment groups were reported unless otherwise noted.

Multimodal Exercises—Multiple Sclerosis

Ten trials^{220-223,225,226,228,230-232} and one quasiexperimental study²³³ enrolled participants (n=540) with MS (Table 37). Weighted mean age of participants across trials was 39.76 years (range 32.7 to 52.0 years) with weighted mean proportion female of 73.9 percent (range 55.9% to 100%). No study provided data on race. All studies enrolled participants who could, at minimum, ambulate using bilateral assistance (i.e., crutches or canes), and the weighted mean baseline EDSS (across 4 studies)^{222,223,228,232} was 4.9 (range 1.61 to 8.7).

Author, Year Intervention Study Design Study Quality	Intervention and Comparison	Population	Results
Cakit, 2010 ²²⁵	A. Progressive	A vs. B	A vs. B, mean (SD) change, p=between groups:
	resistance cycling	Age: 36.4 vs. 35.5	<u>TUG</u> : -1.3 (1.2) vs. -0.2 (0.8), p<0.05
Multimodal	plus balance	Female: 64% vs. 67%	10MWT: -1.9 (1.2) vs. 0.1 (0.8), p<0.05
exercise	exercises (lower	RRMS or SPMS:	<u>DGI:</u> 2.7 (0.5) vs. 0.4 (0.4), p<0.01
	extremity	100%	Falls Efficiency Scale: -11.3 (7.8) vs2.6 (3.1),
RCT	strengthening), 16	Assistive device:	p<0.01
	sessions over 8	28.5% vs. 37.5%	<u>SF-36 Physical Function</u> : 21.2 (14.4) vs. 7.7 (7.4),
Poor	weeks (n=14)		p>0.05
			SF-36 Role-Physical Function: 34.0 (30.1) vs. 5.0
	B. Usual care		(44.7), p>0.05
	(n=9)		SF-36 General Health: 4.3 (8.4) vs. 3.2 (11.7),
			p>0.05
			SF-36 Vitality: 9.0 (19.3) vs. 11.0 (20.4), p>0.05
			SF-36 Social Functioning: 3.4 (23.1) vs. 5.0 (16.7),
			p>0.05
			SF-36 Role-Emotional Function: 24.2 (49.6) vs. 19.9
			(50.5), p>0.05
			SF-36 Mental Health: 7.2 (13.4) vs. 7.0 (6.7), p>0.05

Table 37. Multimodal exercise in multiple sclerosis

Author, Year Intervention Study Design Study Quality Ebrahimi, 2015 ²²⁸ Multimodal exercise RCT Poor	Intervention and Comparison A. Whole body vibration + low- intensity exercise, 30 sessions over 10 weeks (n=17) B. Usual care (n=17)	Population A vs. B Age: 37.06 vs. 40.75 Female: 69% vs. 86% Ambulatory: 100% EDSS: 3.12 vs. 3.10	Results A vs. B, mean (SD), p=between groups: <u>TUG:</u> 11.32 (5.21) to 11.16 (8.82) vs. 14.43 (3.20) to 14.57 (4.02), p=0.05 <u>10MWT:</u> 17.67 (8.92) to 13.37 (4.59) vs. 21.16 (6.36) to 19.39 (6.52), p=0.56 <u>6MWT:</u> 184.01 (101.04) to 272.32 (105.60) vs. 150.37 (65.18) to 162.80 (60.57), p=0.01 <u>MSQol-54 PCS:</u> 45.80 (9.70) to 53.36 (11.9) vs. 43.38 (15.43) to 45.53 (7.30), p=0.40 <u>MSQol-54 MCS:</u> 50.87 (15.46) to 58.34 (14.89) vs. 41.66 (17.07) to 50.10 (14.72), p=0.42 <u>EDSS:</u> 3.12 (1.19) to 2.65 (1.20) vs. <u>8BS:</u> 40.37 (9.97) to 46.43 (8.34) vs.
Faramarzi, 2020 ²³⁰ Has companion: Banitalebi, 2020 ²³¹ Multimodal Exercise Immediately Postintervention, 12 weeks RCT Fair	A. Resistance + endurance + Pilates + balance + stretch), 36 sessions over 12 weeks (n=23) B. Combined exercise - Moderate disability group ($4.5 \le EDSS \le 6$) 36 sessions (3 per week) over 12 weeks (n=13) C. Combined exercise - High disability group (EDSS ≥ 6.5) 36 sessions (3 per week) over 12 weeks (n=11) D. Waitlist control Low (n=23) E. Waitlist control Moderate (n=13) F. Waitlist control High (n=11)	A vs. B vs. C vs. D Age: NR (between 18 and 50 years) Female: 100% Ambulatory: 100% EDSS score: EDSS < 4.5: A. 23 (24%) vs. D. 23 (24%) EDSS \leq 4.5 to \leq 6: B.13 (14%) vs. D. 13 (14%) EDSS \geq 6.5: C.11 (12%) vs. D. 11 (12%)	$\overline{35.85}$ (7.22), p=0.01 A vs. B vs. C vs. D vs. E vs. F, Mean change from baseline (95% CI) [change value calculated by EPC from figures] $\overline{6MWT:}$ A vs. D 63.1 (95% CI -15.6 to 139.5) vs11.1 (95% CI -44.6 to 21.7) B vs. E 49.7 (95% CI 1.5 to 97.83) vs1.9 (95% CI -35.0 to 32.4) C vs. F 64.1 (95% CI 39.2 to 88.6) vs13.1 (95% CI -42.8 to 17.4) TUG: A vs. D -1.5 (95% CI -4.1 to 1.2) vs. 0.72 (95% CI -0.34 to 1.8) B vs. E -1.6 (95% CI -3.6 to 0.37) vs0.3 (95% CI -4.9 to 4.5) C vs. F -1.9 (95% CI -3.9 to 0.03) vs. 1.4 (95% CI 0.05 to 2.6) Author tests for interactions between disability levels were not statistically significant. VO ₂ -peak change (mL/kg/min): Significant positive correlation between changes (Vo ₂ peak) with exercise, p=0.041 There was a significant condition main effect on change in VO ₂ peak, p=0.004

Author, Year			
Intervention			
Study Design	Intervention	B I. C	
Study Quality	and Comparison	Population	Results
Kerling, 2015 ²²⁰	A. Full body progressive	A vs. B Age: 42.3 vs. 45.6	A vs. B, mean (SD), p=between groups:
Multimodal	resistance +	Female: 80% vs. 67%	SF-36 PCS: 44.9 (9.1) to 46.2 (9.1) vs. 39.0 (10.8)
exercise	aerobic training,	EDSS: 2.6 vs. 3.1	to 39.6 (11.3), p=0.56
	36 sessions over		
RCT	12 weeks (n=30)		<u>SF=36 MCS</u> : 44.9 (13.6) to 45.4 (13.4) vs. 46.7 (11.7) to 51.4 (8.6), p=0.01
Fair	B. Aerobic		
	training, 36		
	sessions over 12		
Ozkul, 2020b ²³²	weeks (n=30) A. Aerobics +	A vs. B	A vs. B, Mean (SD), change mean (SD), p=within
OZKUI, 20200	Pilates, 24	Age: 35.8 vs. 36.7	groups
Multimodal	sessions over 8	Female: 76% vs. 76%	groups
Exercise	weeks (n=17)	Ambulatory: 100%	6MWT (meters):
			539.94 (50.21) vs. 513.82 (50.96) (baseline)
RCT	B. Control group, relaxation exercise	EDSS: 1.5 vs. 1.71	587.92 (51.44) vs. 502.75 (53.54) (postintervention); change mean (SD) 47.98 (23.34) vs. −11.07
Fair	at home, 24		(36.40), p<0.001
	sessions over 8		
	weeks (n=17)		MSQOL-54-MCS:
			62.74 (19.37) vs. 56.29 (16.47) (baseline)
			74.24 (14.83) vs. 50.91 (20.42) (postintervention)
			change mean (SD) 11.50 (15.94) vs. −5.38 (17.37),
			p=0.006
			MSQOL-54-PCS:
			120.54 (29.32) vs. 109.67(27.89) (baseline)
			140.08 (18.42) vs. 97.83 (35.58) (postintervention)
			change mean (SD) 19.54 (14.42) vs. −11.84
			(28.36), p<0.001
			52
Roppolo, 2013 ²³³	A. Combination	A vs. B	A vs. B, mean (SD)
Multime ed = !	therapy (aerobic +	Age: 40 vs. 40 years	MSQOL-54
Multimodal	strength training), 24 sessions over	Female: 100% vs. 100%	202.7 (7.9) vs. 139.3 (32.4), MD 63.4 (7.86) (95% CI 47.43 to 79.4), p<0.001 (postintervention);
exercise	12 weeks (n=17)	EDSS: 1.5 vs. 2.0	29.5 (36.17) vs. −22.5 (55.57), MD 52.0, 95% CI
Quasiexperimental		LD00. 1.0 V8. 2.0	20.8 to 83.2, p=NR (pre-post change)
Cadoloxponinonia	B. Usual care		
Fair	(n=18)		
Sandroff, 2017 ²²¹	A. Resistance +	A vs. B	A vs. B mean (SD), p=between groups:
	aerobics +	Age: 49.8 vs. 51.2	
Multimodal	balance, 72	Female: 83.7% vs.	6MWT: 1073.1 (529.0) vs. 1097.5 (493.3)
exercise	sessions over 24	87.5%	(baseline); 1185.5 (600.5) vs. 1115.1 (512.7)
	weeks. (n=43)	EDSS 4-6: 100%	(postintervention), p=0.05
RCT		Walking difficulties:	25 foot WT: 3.7 (1.8) vs. 4.0 (1.4) (baseline); 4.0
	B. Usual care-	100%	(1.9) vs. 4.0 (1.5) (postintervention), p>0.11
Fair	stretching and		<u>MSWS-12</u> : 64.8 (24.7) vs. 51.8 (24.7) (baseline); 50.0(22.4) vs. 40.2 (27.1) (pastinter (option)) p=0.08
	toning, 72 sessions over 24		59.0 (23.4) vs. 49.3 (27.1) (postintervention), p=0.98
	weeks (n=40)		
	WEERS (11-40)	1	

Author, Year Intervention Study Design Study Quality	Intervention and Comparison	Population	Results
Sangelaji, 2014 ²²⁶	A. Strength + aerobics +	A vs. B Age: 33.05 vs. 7.68	A vs. B, mean difference (SD), p=between groups: <u>6MWT</u> : 137.2 (24.54), p<0.0001; 184.3 (51.1),
Multimodal	balance, 30	Female: 61.5% vs.	p=0.001 (1-year followup)
exercise	sessions over 10	68.2%	MSQoL-PCS: 12.17 (3.62), p=0.001; 10.90 (4.55),
RCT	weeks (n=29)	EDSS 0-4: 100%	p=0.02 (1-year followup) MSQoL-MCS: MD 16.36 (4.46), p=0.001; 13.54
	B. Usual care		(5.37), p=0.02 (1-year followup)
Poor	(previous activity		<u>EDSS:</u> –0.13 (0.23), p=0.60; –0.28 (0.29), p=0.35 (1
	level) (n=22)		year followup) <u>BBS:</u> 3.34 (0.87), p<0.0001; 3.21 (1.44), p=0.03 (1-
			year followup) (0.07) , $p < 0.0001$, 0.21 (1.44), $p = 0.03$ (1^{-1}
Sangelaji, 2016 ²²²	A. 1 aerobic + 3	A vs. B vs. C vs. D	Mean difference (SE), p=vs. control group:
	resistance	Age: 36 vs. 31 vs. 34	
Multimodal exercise	training, 32 sessions over 8	vs. 34 Female: 60% vs. 60%	A vs. D 10MWT: 2.31 (1.04), p=0.030
	weeks (n=10)	vs. 60 vs. 60%	<u>6MWT:</u> -75.22 (28.21), p=0.010
RCT		Baseline EDSS: 1.33	<u>BBS:</u> –5.88 (1.80), p<0.001
F - in	B. 2 aerobic + 2	vs. 2.06 vs. 1.95 vs.	B vs. D
Fair	resistance training, 32	1.81	<u>10MWT</u> : 1.45 (1.07), p=0.190 6MWT: -63.00 (29.03), p=0.040
	sessions over 8		<u>BBS</u> : -1.25 (1.85), p=0.500
	weeks (n=10)		C vs. D
	C. 3 aerobic + 1		<u>10MWT</u> : 1.83 (1.01), p=0.080 <u>6MWT</u> : −27.50 (27.54), p=0.330
	resistance		BBS: -3.10 (1.75), p=0.090
	training, 32		<u></u> , p
	sessions over 8		
	weeks (n=10)		
	D. No intervention		
	control (n=10)		
Tarakci, 2013 ²²³	A. Exercise (e.g.,	A vs. B	A vs. B, mean (SD), p=between groups:
Multimodal	ROM, strength, flexibility, balance,	Age: 41.5 vs. 39.7 Female: 67% vs. 63%	<u>10MWT:</u> 17.97 (2.89) vs. 17.17 (3.89) (baseline) 15.24 (2.51) vs. 18.62 (4.21), MD 0.98
exercise	core stability), 36	EDSS: 9.0 vs. 8.4	(postintervention), p<0.001
	sessions over 12	RRMS: 63% vs. 69%	MusiQoL: 74.41 (9.20) vs. 73.42 (9.73) (baseline)
RCT	weeks (n=51)	PPMS: 20% vs. 17%	76.39 (9.53) vs. 73.02 (10.30), MD 0.34
Fair	B. Waitlist control	SPMS: 18% vs. 15%	(postintervention), p=0.02 BBS: 37.68 (9.91) vs. 36.94 (12.55) (baseline)
	(n=48)		42.01 (9.32) vs. 34.81 (12.85), MD 0.64
	/		(postintervention), p=0.003
			<u>Stair Climbing Test:</u> 12.00 (3.57) vs. 13.92 (4.54)
			9.53 (3.49) vs. 18.46 (16.34), MD 0.290 (postintervention), p<0.001
		1	(posinite vention), p > 0.001

Author, Year Intervention			
Study Design	Intervention		
Study Quality	and Comparison	Population	Results
Williams, 2020 ²²⁹	A. Center-based	Age: 53 vs. 51	A vs. B, mean (SD) <u>:</u>
	group strength +	Female: 65% vs. 88%	All patients
Multimodal	endurance +	Ambulatory: 100%	0.83 (0.5) vs. 1.1 (0.4) (baseline)
exercise	balance, 16	Aid use	0.95 (0.5) vs. 1.25 (0.5) (postintervention)
	sessions over 8	None: 27% vs. 58%	MD 0.01 (95% CI -0.36 to 0.37) (pre-post change)
RCT	weeks (n=26)	Unilateral: 42% vs.	0.86 (0.4) vs. 1.2 (0.4) (8 weeks postintervention)
		29%	MD –0.07 (95% CI –0.22 to 0.08) (pre-8 week
Fair	B. Home-based	Bilateral: 31% vs. 13%	postintervention change)
	exercise strength		Low disability patients (Disease Step Rating Scale
	+ endurance +	Type of MS	0-2)
	balance exercises,	RRMS: 58% vs. 67%	1.37 (0.38) vs. 1.37 (0.32) (baseline)
		PPMS: 19% vs. 8%	1.28 (0.33) vs. 1.52 (0.46) (postintervention)
	weeks (n=24)	SPMS: 15% vs. 8%	MD 0.24 (95% CI -0.61 to 1.08) (pre-post change)
		Benign: 4% vs. 8% Unknown/NR: 4% vs.	1.22 (0.06) vs. 1.41 (0.37) (8 weeks postintervention)
		8%	MD –0.19 (95% CI –0.41 to 0.03) (pre-8 week
		0 70	postintervention change)
			High disability patients (Disease Step Rating Scale
			(3-5)
			0.71 (0.39) vs. 0.81 (0.28) (baseline)
			0.86 (0.46) vs. 0.89 (0.36) (postintervention)
			0.16 (0.59) vs. 0.07 (0.85) MD 0.8 (95% CI -0.47 to
			0.64) (pre-post change)
			0.76 (0.41) vs. 0.92 (0.33) (8 weeks
			postintervention)
			MD –0.06 (95% CI –0.24 to 0.12) (pre-8 week
			postintervention change)
			6MWT (meters):
			216.4 (128.4) vs. 301.3 (108.4) (baseline)
			248.7 (125.3) vs. 312.3 (121.9) (immediately
			postintervention)
			MD 18.67 (95% CI -78.22 to 115.56) (pre-post
			change)
			236.3 (115.2) vs. 300.7 (119.4) (8 weeks
			postintervention)
			MD -20.5 (95% CI –60.21 to 19.21) (pre-8 week
			postintervention change)
			Low disability patients:
			372.5 (61.5) vs. 359.36 (85.6) (baseline)
			378 (63.3) vs. 382.4 (103) (postintervention)
			5.5 (248.8) vs. 23.1 (151.5), MD 17.6 (95% CI -184.2 to 219.26) (pre-post change)
			352 (67.2) vs. 367 (97.4) (8 weeks postintervention)
			MD 28.14 (95% CI –8.26 to 64.54) (pre-8 week
			postintervention change)
	1	1	

Author, Year			
Intervention			
Study Design	Intervention		
Study Quality	and Comparison	Population	Results
Williams, 2020			High disability patients:
			178.6 (102.1) vs. 216.5 (84.6) (baseline)
(Continued)			214.5 (111.5) vs. 221.2 (93.7) (postintervention)
(-)			35.9 (151.7) vs. 4.7 (211.80), MD 31.17 (95% CI
			-108.37 to 170.72) (pre-post change score)
			204.1 (105.2) vs. 212.2 (85.1) (8 weeks
			postintervention)
			MD –29.8 (95% CI –77.21 to 17.61) (pre-8 week
			postintervention change)
			BBS:
			42 (16.7) vs. 50.9 (6) (baseline)
			43.5 (14.9) vs. 50.7 (7.9) (postintervention)
			1.5 (17.02) vs. −0.18 (17.37), MD 1.70 (95% CI −8.4
			to 11.80) (pre-post change)
			44 (15.4) vs. 51 (6.9) (8 weeks postintervention)
			MD –1.9 (–6.44 to 2.64) (pre-8 week
			postintervention change)
			Low disability patients:
			53.8 (0.8) vs. 53.3 (3.6) (baseline)
			54.2 (1.9) vs. 53.8 (3.5) (immediately
			postintervention)
			MD 0.2 (95% CI -7.69 to 8.01) (pre-post change)
			54 (1.9) vs. 53.5 (3.9) (8 weeks postintervention)
			0.20 (1.35) vs. 0.20 (2.39), MD 0.0 (-1.37 to 1.37)
			(pre-8 week postintervention change)
			High disability patients:
			39.1 (17.5) vs. 47.6 (7.3) (baseline)
			40.7 (15.5) vs. 46.7 (10.2) (immediately
			postintervention)
			MD 2.54 (95% CI -18.01 to 23.08) (pre-post
			change)
			41.2 (16.4) vs. 47.7 (8.7) (8 weeks postintervention)
			MD –2.0 (95% CI –9.31 to 5.31) (pre-8 week
			postintervention change)

Abbreviations: 6MWT = 6-Minute Walk Test; 10MWT = 10-Meter Walk Test; AE = adverse event; BBS = Berg Balance Scale; BDI = Beck Depression Inventory; CI = confidence interval; DGI = Dynamic Gait Index; EDSS = Expanded Disability Status Scale; EPC = Evidence-based Practice Center; MD = mean difference; MS = multiple sclerosis; MSQoL-MCS = Multiple Sclerosis Quality of Life–54 instrument Mental Component Score; MSQoL-PCS = Multiple Sclerosis Quality of Life–54 instrument Physical Component Score; MSWS-12 = Multiple Sclerosis Walking Scale-12; MusiQoL = Multiple Sclerosis International Quality of Life questionnaire; NR = not reported; PPMS = primary progressive multiple sclerosis; QOL = quality of life; RCT = randomized controlled trial; RRMS = relapsing-remitting multiple sclerosis; SD = standard deviation; SE = standard error; SF-36 MCS = Short-Form 36 Mental Component Summary; SF-36 PCS = Short-Form 36 Physical Component Score; SF-36 = Short-Form 36 Quality of Life; SPMS = secondary progressive multiple sclerosis; TUG = Timed Up and Go Test; VO₂ peak = highest value of VO₂ attained

Walking Measures

There was low strength of evidence that multimodal exercise was generally associated with improved walking ability across measures, compared with attention control (stretching) or continuation of previous activity based on pooled difference in change scores (6MWT, 6 trials, MD –67.7 meters, 95% CI -85.6 to -49.9, $I^2=58\%$;^{221,222,226,228,230,232} 10MWT, 4 trials, MD –2.7 seconds, 95% CI –4.2 to –1.2, $I^2=80\%$ ^{222,223,225,228}) immediately posttreatment (Figures 21 and 22). Substantial heterogeneity in pooled estimates for both measures was noted; all but one trial favored multimodal exercise and all had different magnitudes of effect and variability. This may in part be due to differences in baseline measure values across studies and may also be related to

differences in intervention. Isolated studies reported ambulatory ability or use of assistive devices, duration of MS, or status (e.g., progressive, remitting), precluding evaluation of these as sources of heterogeneity. For the 6MWT, exclusion of two poor-quality trials only slightly attenuated the effect size and but did substantially reduce heterogeneity (4 trials, MD -66.3 meters, 95% CI -75.1 to -38.5, $I^2=0\%$)^{221,222,230,232} and exclusion of an outlier trial resulted in a decrease in effect size and substantially reduced heterogeneity (4 trials, MD -64.9 meters, 95% CI - 73.5 to -56.2, $I^2 = 0\%$), 221,222,228 maintaining an effect size that may be clinically meaningful. These trials provided low-strength evidence for improved walking with multimodal exercises compared with usual care, previous activity, or attention control. Authors of one trial reported that results did not statistically differ based on disability status based on EDSS scores considered low (<4.5), moderate (4.5 to ≤ 6), or high (≥ 6.5).²³⁰ Interestingly, the trial with the longest intervention length (72 sessions over 24 months) showed no difference between treatment groups and had smallest effect size;²²¹ the other trials involved 30 to 36 sessions over 8 to 12 weeks. For the 10MWT, exclusion of poor-quality trials had negligible impact on either effect size and increased heterogeneity (2 trials, MD 3.1 seconds, 95% CI -5.4 to -0.8, I²=87%).^{222,223} However, exclusion of an outlier trial resulted in a slightly smaller but more precise effect size and substantially reduced heterogeneity (3 trials MD -1.99 seconds, 95% CI -2.8 to -1.2, $I^2=0\%$).^{222,225,228} The differences between groups may not be not clinically meaningful for this outcome. The mean baseline EDSS of the excluded trial was \sim 4.3 compared with a mean of \sim 2 in the only other trial reporting this measure.

In one trial²²¹ there was no difference in walking ability on the Multiple Sclerosis Walking Scale-12 (difference -3.3, 95% CI -10.2 to 3.6, 0-100 scale) or on a timed 25FWT (difference 0.30, 95% CI -0.2 to 0.8 feet/second) immediately posttreatment.

One poor-quality trial²²⁶ reported that improvement in the 6MWT persisted long- term (42 weeks) posttreatment (MD 184.3 \pm 51.1 meters, p=0.03) following multimodal exercise (strength, aerobics and balance exercises) versus usual care.

One small fair-quality trial²²⁹ found no difference in walking ability between multimodal exercise performed in a group setting or home setting based on 6MWT immediately after the 8-week intervention or at the subsequent 8-week followup, or for 10MWT at either time. Authors reported higher percentage of completed sessions in the group exercise arm (83% versus 45%). No differences between groups in either walking measure were observed based on disability level measured via the Disease Step Rating Scale (0-6 overall score with scores 0-2 for low and 3-6 for high disability) at either time frame (Table 37).

			N	N	•	MD			
Study	Exercise	Control	Exercise	Control	Weight	PL [95% CI]			
Sandroff 2017	PRE+Aerob+Bal	AC Stretch	43	40	10.8%	-28.70 [-73.45, 16.05]		_	
Sangelaji 2014	PRE+Aerob+Bal	Previous	35	20	9.8%	-135.70 [-183.80, -87.60]			
Sangelaji 2016	PRE+Aerob	Previous	30	10	13.0%	-55.20 [-93.95, -16.45]			
Ebrahimi 2015	PRE+balance (WBV)	Previous	16	14	13.2%	-75.90 [-114.22, -37.58]			
Faramarzi 2020	PRE+Aerob+Bal+Pilates+Stretch	WL	46	43	30.1%	-68.22 [-78.67, -57.77]	+		
Ozkul 2020	Aerob+Pilates	AC	17	17	23.2%	-59.05 [-79.61, -38.49]			
Total (95% CI)			187	144	100.0%	-67.73 [-85.56, -49.90]	•		
Heterogeneity: Tau ² = 246.53; Chi ² = 11.84, df = 5 (P = 0.04); l ² = 58%							-200 -100 0	100	200
Test for overall effect: Z	= 7.44 (P < 0.00001)							Favors Control	200

Abbreviations: Δ = change; 6MWT = 6-Minute Walk Test; AC = attention control; CI = confidence interval; MD = mean difference; PA = previous activity; PL = profile likelihood; PRE = progressive resistance exercise

			Ν	Ν		$\textbf{MD} \vartriangle \textbf{Scores}$	
Study	Exercise	Control	Exercise	Control	Weight	PL [95% CI]	
Sangelaji 2016	PRE+Aerob	PA	30	10	26.3%	-1.86 [-3.27, -0.45]	_
Cakit 2010	PRE+Aerob+Bal	PA	14	9	31.8%	-2.00 [-2.82, -1.18]	
Ebrahimi 2015	PRE+Bal	PA	16	14	10.7%	-2.53 [-6.13, 1.07]	
Tarakci 2013	PRE+Bal	PA	55	55	31.3%	-4.18 [-5.05, -3.31]	-
Total (95% CI)			115	88	100.0%	-2.73 [-4.15, -1.22]	•
Heterogeneity: Ta	u² = 1.46; Chi² = 15.	-					
	ect: Z = 3.75 (P = 0.		-4 -2 0 2 4 Favors Exercise Favors Control				

Figure 22. Multimodal exercise versus usual care in multiple sclerosis: 10MWT

Abbreviations: Δ = change; 10MWT = 10-Meter Walk Test; AC = attention control; CI = confidence interval; MD = mean difference; PA = previous activity; PL = profile likelihood; PRE = progressive resistance exercise= profile likelihood; PRE = progressive resistance exercise; TUG = Timed Up and Go Test

Functional Capacity Measures

Improvement in functional capacity based on TUG was seen immediately postmultimodal exercise intervention across two small poor-quality trials and one larger fair-quality trial (3 trials, MD –1.65 seconds, 95% CI –2.6 to –0.4; $I^2=62\%)^{225,228}$ compared with previous activity but may not be clinically meaningful. Evidence was considered insufficient (Figure 23).

Figure 23. Multimodal exercise versus usual care in multiple sclerosis: TUG

			N	N		MD \triangle Scores		
	Exercise	Control	Exercise	Control	Weight	PL [95% CI]		
	PRE+Aero+Bal	Previous	14	9	41.8%	-1.10 [-1.92, -0.28]	-	
)15	PRE+Balance(WBV)	Previous	16	14	8.4%	-0.30 [-3.32, 2.72]		
2020	PRE+Aerob+Bal+Pilates+Stretch	WL	46	43	49.8%	-2.15 [-2.72, -1.58]		
CI)			76	66	100.0%	-1.65 [-2.59, -0.36]		
,	u ² = 0.38; Chi ² = 5.21, df = 2 (P = fect: Z = 3.23 (P = 0.001)	0.07); I ² = 62%					-4 -2 (Favors Exercise) 2 4 Favors Control

Abbreviations: Δ = change; AC = attention control; CI = confidence interval; MD = mean difference; PA = previous activity; PRE = progressive resistance exercise; PL = profile likelihood; TUG = Timed Up and Go Test

Quality of Life Measures

Quality of life evidence, based on MSQOL-54 MCS and PCS (0 to 100 scales) across two poor-quality trials and one fair-quality trial postintervention was considered insufficient to draw firm conclusions (Figure 24).^{226,228} For MCS, there was substantial heterogeneity for the pooled difference (3 trials, MD –10.7, 95% CI –22.6 to 1.24, $I^2=91\%$). Two trials favored exercise²²⁶ versus maintenance of usual activity but a third showed no difference between treatment groups (0.97, 95% CI –6.2 to 8.1).²²⁸ All trials reported improvement on the PCS (3 trials, MD –13.7, 95% CI –21.64 to –4.9 I²=81%) but only one reached statistical significance; substantial heterogeneity was noted although estimates tended to favor exercise. Author-reported data for one trial appeared to be out of the expected range for this measure; exclusion of it slightly reduced the effect size and heterogeneity for PCS (2 poor -quality trials, MD –12.0, 95% CI 13.8 to –5.0, I²=75%). It is unclear if this was a clinically meaningful difference.

Improved quality of life based on the Multiple Sclerosis International Quality of Life questionnaire (MusiQoL) (0-100 scale) was seen in an additional fair-quality trial (difference – 2.4, 95% CI –4.7 to –0.1).²²³ In one fair-quality prospective quasiexperimental study,²³³ exercise significantly improved MSQOL-54 total scores postintervention compared with usual care (difference 52.0, 95% CI 20.8 to 83.2).

In one poor-quality trial, individual SF-36 domain scores that improved with exercise were physical functioning and bodily pain; no differences between groups were seen for the other domains (Table 38).²²⁵

In the only trial (poor-quality) that reported long-term outcomes (42 weeks) posttreatment, improvement on both the PCS and MCS of the MSQOL persisted long term (PCS difference 10.9 ± 4.55 , p=0.02, MCS difference 13.5 ± 5.4 , p=0.02, 0-100 scale) for multimodal exercise versus usual care.²²⁶

In one trial, the control condition of aerobic exercise was associated with improvement in the SF-36 MCS compared with multimodal exercise (difference 4.2, 95% CI 0.2 to 8.2, 0-100 scale) but there was no difference between groups on SF-36 PCS (difference -0.7, 95% CI -3.9 to 2.2, 0-100 scale) in one trial.²²⁰

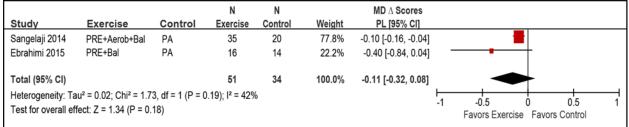
Figure 24. Multimodal exercise versus usual care in multiple sclerosis: MSQOL MCS and MSQOL PCS

			N	Ν		MD \triangle Scores	
Study	Exercise	Control	Exercise	Control	Weight	PL [95% CI]	
MCS							
Sangelaji 2014	PRE+Aerob+Bal	Previous	35	20	38.0%	-16.36 [-17.54, -15.18]	•
Ebrahimi 2015	PRE+Balance(WBV)	Previous	16	14	33.5%	0.97 [-6.19, 8.13]	_
Ozkul 2020	Aerob+Pilates	AC	17	17	28.5%	-16.88 [-28.09, -5.67]	
Subtotal (95% CI)			68	51	100.0%	-10.70 [-22.64, 1.24]	
Heterogeneity: Tau ² =	97.33; Chi ² = 21.93, df = 2	P < 0.0001); I ² =	91%				
Test for overall effect:	Z = 1.76 (P = 0.08)						
PCS							_
Sangelaji 2014	PRE+Aerob+Bal	Previous	35	20	45.7%	-12.17 [-13.13, -11.21]	•
Ebrahimi 2015	PRE+Balance(WBV)	Previous	16	14	35.9%	-5.41 [-11.95, 1.13]	
Ozkul 2020	Aerob+Pilates	AC	17	17	18.4%	-31.38 [-46.51, -16.25] 🔸	
Subtotal (95% CI)			68	51	100.0%	-13.27 [-21.64, -4.90]	
Heterogeneity: Tau ² =	39.67; Chi ² = 10.28, df = 2	P = 0.006); I ² = 8	1%				
Test for overall effect:	Z = 3.11 (P = 0.002)						
							-20 -10 0 10 20

Abbreviations: Δ = change; AC = attention control; CI = confidence interval; MD = mean difference; MCS = mental component score; MSQOL = Multiple Sclerosis Quality of Life; PA = previous activity; PCS = physical component score; PL = profile likelihood; PRE = progressive resistance exercise

Functional capacity was improved with multimodal exercise based on a timed climbing test in one fair-quality trial (difference -7.0 seconds, 95% CI -10.5 to -3.5)²²³ and based on the Dynamic Gait Index (DGI) (difference 0.20, 95% CI 1.9 to 2.7) and Falls Efficacy Scale (difference -8.7, 95% CI -14.4 to -3.0) in another poor-quality trial.²²⁵

Balance improved with multimodal exercise compared with continuation of previous activity (4 trials, MD –3.4, 95% CI –3.8 to –3.1, I²=38%, BBS, 0-56 scale);^{222,223,226,228} individually all trials favored exercise but the magnitude of effect size varied (range –3.3 to –6.5) (Figure 25). Analysis excluding one outlier had no impact on effect size but substantially reduced heterogeneity (3 trials, MD –3.4, 95% CI –3.6 to –3.1, I²=0%).^{222,226,228} These trials provided low-strength evidence of improved balance scores with multimodal exercises. However, no difference in balance (BBS 0-56 scale) between group and home-based multimodal exercise in one trial²²⁹ was observed immediately after the intervention or at 8-week followup. Similarly, there were no differences between groups observed based on disability level (low or high) at either timeframe in this trial (Table 37).


No clear difference in disability immediately posttreatment was reported across two poorquality trials based on the EDSS (0-10 scale, 2 trials, MD –0.1, 95% CI –0.3 to 0.1, $I^2=42\%$) (Figure 26).^{226,228} One of the trials reported no difference in EDSS at long term (42 weeks) between multimodal exercises and usual care.²²⁶

			N	Ν		$\mathbf{MD} \Delta \mathbf{Scores}$			
Study	Exercise	Control	Exercise	Control	Weight	PL [95% Cl]			
Sangelaji 2014	PRE+Aerob+Bal	AC	35	20	59.9%	-3.34 [-3.57, -3.11]			
Sangelaji 2016	PRE+Aerob	PA	30	10	36.6%	-3.41 [-3.92, -2.90]	+		
Ebrahimi 2015	PRE+Bal	PA	16	14	1.2%	-4.21 [-8.32, -0.10]		1	
Tarakci 2013	PRE+Bal	PA	51	48	2.4%	-6.46 [-9.28, -3.64]			
Total (95% CI)			132	92	100.0%	-3.37 [-3.76, -3.14]	•		
Heterogeneity: Ta	u² = 0.07; Chi² = 4.8	5, df = 3 (P = 0	0.18); l² = 38	%			-10 -5		10
Test for overall ef	fect: Z = 15.23 (P <	0.00001)					Favors Exercise	Favors Control	10

Figure 25. Multimodal exercise versus usual care in multiple sclerosis: BBS

Abbreviations: Δ = change; AC = attention control; BBS = Berg Balance Scale; CI = confidence interval; MD = mean difference; PA = previous activity; PL = profile likelihood; PRE = progressive resistance exercise

Figure 26. Multimodal exercise versus usu	al care in multiple sclerosis: EDSS
---	-------------------------------------

Abbreviations: Δ = change; CI = confidence interval; EDSS = Expanded Disability Status Scale; MD = mean difference; PA = previous activity; PL = profile likelihood; PRE = progressive resistance exercise

Six RCTs did not address harms or adverse events. Two RCTs reported that no adverse events occurred.^{223,229}

Multimodal Exercises—Cerebral Palsy

Four trials enrolled participants (n=177) with CP (Table 38).²³⁴⁻²⁴⁰ Weighted mean age of participants across trials was 13.5 years (range 9.75 to 20 years) with weighted mean proportion female of 48.5 percent (range 42% to 52.6%). No study provided data on race. Weighted mean proportion of participants who could ambulate was 96.3 percent (range 92.3% to 100%) and level I, II, III, and IV GMFCS levels were 56, 31, 13, and 3 percent, respectively.

Table 38	. Multimodal	exercise in	cerebral	palsy
----------	--------------	-------------	----------	-------

Author, Year	nodal exercise in cer		
Intervention			
Study Design	Intervention		
Study Quality	and Comparison	Population	Results
Fosdahl,	A. Strength training	A vs. B	A vs. B, mean change score (SD)
2019b ²⁴¹	(progressive	Age: 10.4 vs. 10.0	<u>6MWT (meters):</u>
Multimodal	resistance exercise)	Female: 59% vs. 30%	-45.7 (55.4) vs55.4 (55.5), adj. MD 10.6 (95%
Multimodal exercise	+ stretching, 48 sessions over 16	Ambulatory: 100% GMFM:	Cl −29.3 to 50.6), p=0.590 (pre-post change) −51.1 (72.8) vs. −56.6 (59.6), adj. MD 7.2 (95% Cl
CACICISC	weeks (n=17)	I: 59% vs. 60%	-43.3 to 57.7), p=0.772 (16-week change)
RCT		II: 41% vs. 35%	GDI:
	B. Usual care (n=20)	III: 0% vs. 5%	-0.4 (4.4) vs0.8 (7.14), adj. MD -1.0 (95% Cl
Fair			−5.3 to 3.3), p=0.650 (pre-post change)
			-0.7 (6.0) vs. 1.01 (5.9), adj. MD -1.4 (95% Cl
	A Other with the initial	A	-5.6 to 2.8), p=0.504 (16-week change)
Kaya Kara, 2019 ²⁴²	A. Strength training (progressive	A vs. B Age: 11.8 vs. 11.3	A vs. B, mean change from baseline (SD) (data are for completers only; n=15 vs. 15)
2019-1-	resistance exercise)	Female: 53% vs. 60%	GMFM-88D:
Multimodal	+ balance, 36	Ambulatory: 100%	0.17 (0.67) vs. 0.32 (1.42), MD -0.15 (95% CI
exercise	sessions over 12	Manual ability	-0.93 to 0.63), p=0.632; effect size 0.13
	weeks (n=17)	classification	GMFM-88E:
RCT		system level:	2.31 (2.20) vs0.37 (2.59), MD 2.68 (95% CI
- ·	B. Usual care,	I: 47% vs. 47%	0.98 to 4.38), p=0.004; effect size 1.11
Fair	36 sessions over 12 weeks (n=16)	II: 33% vs. 27% III: 20% vs. 27%	<u>1MWT:</u> 7.76 (7.03) vs. 0.53 (3.37), MD 7.23 (95% CI NR),
	weeks (II-10)	111. 2076 VS. 2776	p=0.001; effect size 1.31
			<u>TUG:</u>
			-1.02 (0.45) vs. 0.08 (0.45), MD -1.10 (95% CI
			-1.42 to -0.78), p<0.001; effect size 2.42
Slaman,	A. Strength training +	A vs. B	A vs. B, mean difference (95% CI), p=between
2015 ²³⁷	aerobic fitness, 48	Age: 20 vs. 20	groups:
Slaman, 2015 ²³⁴	sessions over 3	Female: 48.3% vs. 57.1%	<u>GMFM-66</u> : -1.94 (-4.69 to 0.82), p>0.05
Slaman,	months plus 8-10 counseling sessions	Ambulatory: 97% vs. 89% Wheelchair user: 3.3% vs.	(postintervention); -0.08 (-1.99 to 1.83), p>0.05 (1-year followup)
2014 ²³⁵	on physical activity	10.7%	<u>SF-36 Physical Functioning</u> : 3.11 (95% CI –8.31
Slaman,	and sports	Unilateral CP: 52% vs.	to 14.53), p>0.05 (postintervention); 5.45 (–5.13 to
2010 ²³⁶	participation over 3	50%	16.04), p>0.05 (1 year followup)
	months: (n=28)	GMFM I: 61% vs. 55%	<u>SF-36 Role Physical</u> : 4.15 (–15.10 to 23.40),
Multimodal	D (layed same $(n-20)$	GMFM II: 32% vs. 31%	p>0.05 (postintervention); 16.27 (-8.65 to 41.20),
exercise	B. Usual care (n=29)	GMFM III: 7% vs. 10% GMFM IV: 0% vs. 3%	p>0.05 (1-year followup) SF-36 General Health: 7.41 (–3.81 to 18.62),
RCT			p>0.05 (postintervention); 10.28 (-1.42 to 21.98),
			p > 0.05 (1 year followup)
Fair			SF-36 Vitality: 1.64 (-4.96 to 8.23), p>0.05
			(postintervention); −0.40 (–6.92 to 7.71), p>0.05
			(1-year followup)
			<u>SF-36 Social Functioning:</u> 1.76 (–5.88 to 9.41), p>0.05 (postintervention); −3.08 (–12.64 to 6.49),
			p>0.05 (positive vention), -5.08 (-12.04 to 6.49), p>0.05 (1-year followup)
			SF-36 Role Emotional: 5.94 (–5.01 to 16.90),
			p>0.05 (postintervention); 11.09 (-1.22 to 23.39),
			p>0.05 (1 year followup)
			<u>SF-36 Mental Health</u> : 8.00 (0.96 to 15.05), p<0.05
			(postintervention); 8.80 (0.99 to 16.61), p<0.05 (1-
	l		year followup)

Author, Year Intervention Study Design Study Quality	Intervention and Comparison	Population	Results
Van Wely,	A. Strength plus	A vs. B	A vs. B, mean difference (95% CI), p=between
2014a ²³⁸	aerobics 24 sessions	Age: 9.5 vs. 10.0	groups:
Van Wely,	over 4 months plus	Female: 52% vs. 33%	<u>GMFM-66</u> : 2.8 (0.2 to 5.4), p=0.03 (month 6); -0.9
2014b ²³⁹	PT and counseling	Ambulatory: 100%	(-3.3 to 1.4), p>0.05 (month 12)
Van Wely,	over 6 months plus	Wheelchair user for long	<u>1MWT:</u> 5.0 (0.0 to 9.0), p=0.06 (month 4); 2.0
2010 ²⁴⁰	usual PT from	distances: 20%) vs. (21%	(-4.0 to 9.0), p>0.05 (month 6); 3.0 (-43.0 to
	months 4-12 (n=25)	GMFCS I: 60% vs. 54%	10.0), p>0.05 (month 12)
Multimodal		GMFCS II: 24% vs. 25%	CPQoL Social Well-Being & Acceptance:
exercise	B. Usual PT months	GMFCS III: 16% vs. 21%	-3.1 (-7.9 to 1.7), p=0.19 (month 12)
	0-12 (n=25)	Bilateral: 52% vs. 54%	<u>CPQoL Functioning</u> : -2.5 (-7.3 to 2.3), p=0.30
RCT			(month 12)
			CPQoL Participation & Physical Health:
Fair ^a			-0.8 (-5.7 to 4.1), p=0.75 (month 12)
			CPQoL Emotional Well-Being and Self-Esteem:
			-0.3 (-5.3 to 4.7), p=0.90 (month 12)
			CPQoL pain and impact on disability: 5.0 (-5.2 to
			15.2), p=0.33 (month 12)

Abbreviations: 1MWT = One-Minute Walk Test; 6MWT = 6-Minute Walk Test; adj. = adjusted; CI = confidence interval; CPQoL = Cerebral Palsy Quality of Life questionnaire; GDI = Gait Deviation Index; GMFCS = Gross Motor Function Classification System; GMFM = Gross Motor Function Measure; GMFM-88D = Gross Motor Function Measure-88D (standing); GMFM-88E = Gross Motor Function Measure E (walking, running, jumping); MD = mean difference; NR = not reported; PT = physical therapy; RCT = randomized controlled trial; SD = standard deviation; SF-36 = Short-Form 36 Quality of Life; TUG = Timed Up and Go Test

^a Van Wely was considered a fair-quality trial based on the 2014a publication which reported primary outcomes of interest; the 2014b publication reported secondary outcomes (quality of life) and the 2010 publication is the trial protocol (LEARN 2 MOVE 7-12).

Walking outcomes were reported in three RCTs.²³⁸⁻²⁴² Evidence was considered insufficient to draw firm conclusions on the impact of exercise on walking. There was no improvement in 6MWT versus usual care either immediately post-16-week intervention or at 16 weeks postintervention.²⁴¹ Similarly, there was no improvement in Gait Deviation Index (GDI) at either time in the same trial.²⁴¹ There was improvement on the 1MWT with multimodal exercise versus usual care immediately post-12- to 16-week treatment across two trials (MD –5.3, 95% CI – 10.24 to –0.33, I²=45) (Figure 27). There was no difference between multimodal exercise and usual care in one trial at 26 weeks or 52-week followup.²³⁸⁻²⁴⁰

There was low-strength evidence of no clear benefit to exercise on functional capacity based on GMFM-66 compared with usual care immediately posttreatment. Results across two trials reporting GMFM-66 (0-100 scale) were inconsistent with the pooled differences, showing no difference between multimodal exercise versus usual care (2 trials, MD –1.5, 95% CI –6.4 to 4.7, I²=71%) (Figure 28).²³⁴⁻²⁴⁰ No difference between groups was seen in one trial (difference 1.6, 95% CI –2.7 to 5.9)²³⁴⁻²³⁷ while the other trial favored the combination of strength training, aerobics, and PT over usual care (difference –3.1, 95% CI –5.7 to –0.6).²³⁸⁻²⁴⁰ In addition to variation in interventions, differences in patient populations may have contributed to the inconsistency: the first study enrolled older participants (mean age 20 years vs. 10 years) and more participants with GMFCS level II (32% vs. 24.5%). It was unclear whether the effect sizes are clinically meaningful. In one small trial, there was no difference between exercise and usual care on the GMFM-88-D but some improvement in GMFM-88-E (difference 2.7, 95%CI 1.0 to 4.4).²⁴² In the same trial, TUG improved with exercise (difference –1.1, 95% CI –1.4 to –0.78) compared with usual care, but evidence was considered insufficient for this outcome. No improvement in quality of life for any CPQoL domain was reported in one trial following multimodal exercise (strength training combined with cardiopulmonary fitness exercise) versus usual care.²³⁸⁻²⁴⁰ The other trial reported no improvement for any SF-36 domain scores immediately postintervention with multimodal exercise versus usual care; only the bodily pain subscale was improved at intermediate-term (24 weeks) followup (Table 38).²³⁴⁻²³⁷ These trials provided low-strength evidence of no clear benefit of multimodal exercises function or quality of life.

Functional muscle strength measured as the number of lateral step-ups and sit-to-stands in 30 seconds was not different between the multimodal exercise and usual care groups immediately after the 16-week intervention or at 24 weeks followup.²³⁸⁻²⁴⁰

One RCT reported that there were no adverse events.²³⁴ Another RCT indicated that two participants were lost to followup due to medical reasons, but did not specify the medical reasons or otherwise address harms or adverse events.²³⁸ A third trial reported that no adverse events were associated with the training protocol, but that one participant in the exercise group had ankle pain following a fall while playing basketball.²⁴² A fourth trial did not report on adverse events.²⁴¹

Figure 27. Multimodal exercise versus usua	al care in cerebral palsy: 1MWT ^a
--	--

			Exercise	Control		Mean Difference	Mean Difference
Study or Subgroup	Mean Difference	SE	Total	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% CI
Kaya Kara 2019	-7.23	2.01	15	15	62.8%	-7.23 [-11.17, -3.29]	
Van Wely 2014	-2	3.32	25	25	37.2%	-2.00 [-8.51, 4.51]	
Total (95% CI)			40	40	100.0%	-5.28 [-10.24, -0.33]	
Heterogeneity: Tau ² = 6.15; Chi ² = 1.82, df = 1 (P = 0.18); l ² = 45%						-20 -10 0 10 20	
Test for overall effect: 2	Z = 2.09 (P = 0.04)						Favors Exercise Favors Control

Abbreviations: Δ = change; 1MWT = 1-Minute Walk Test; CI = confidence interval; IV = weighted mean difference; SE = standard error

^a This figure reflects Dersimonian Laird estimates as the Profile Likelihood model did not converge.

Figure 28. Multimodal exercise versus usu	al care in cerebral palsy: GMFM-66
---	------------------------------------

Study	Exercise	Control	N Exercise	N	Weight	MD ∆ Scores PL [95% CI]	
Slaman 2015	PRE+Areob	PT	28	27	43.0%	1.59 [-2.68, 5.86]	
Van Wely 2014	PRE+Areob PRE+Aerob+PT	• •	20 25	25	43.0% 57.0%	-3.10 [-5.65, -0.55]	
,							
Total (95% CI)			53	52	100.0%	-1.48 [-6.37, 4.66]	
Heterogeneity: Ta	au ² = 7.78; Chi ² = 3.41,	df = 1 (P = 0.	.06); l² = 719	6			
Test for overall ef	fect: Z = 0.47 (P = 0.64)					Favors Exercise Favors Control

Abbreviations: Δ = change; AC = attention control; CI = confidence interval; GMFM-66 = Gross Motor Function Measure 66; MD = mean difference; PA = previous activity; PL = profile likelihood; PRE = progressive resistance exercise

Multimodal Exercises—Spinal Cord Injury

Three $RCTs^{244-248}$ and one cohort study²⁵⁰ enrolled participants (n=228) with SCI (Table 39). Weighted mean age of participants across trials was 35.3 (range 36.8 to 41.4 years) with weighted mean proportion female of 17.6 percent (range 1% to 15.5%). No study provided data on race or ambulatory abilities. Evidence was considered insufficient for all outcomes based on single trials for each comparison, study quality, and imprecision of effect sizes.

Author, Year		cise in spinal cord inju	· y
Intervention			
Study Design Study Quality	Intervention and Comparison	Population	Results
Galea, 2018 ²⁴⁵	A. Whole body	A vs. B	A vs. B, mean difference (95% CI) between groups:
	strength + aerobics,	Age: 40.1 vs. 42.8	<u>6MWT:</u> –18.36 (–68.57 to 31.84), p=0.45 (12 weeks);
Multimodal	36 sessions over 12	Female: 15% vs.16%	27.12 (-12.69 to 66.94), p=0.168 (6 months)
exercise	weeks (n=60)	ASIA A: 48% vs. 50%	<u>10MWT (m•sec⁻¹)</u> : -0.01 (-0.1 to 0.08), p=0.818 (12
DOT	B 11 - 1	ASIA B: 15% vs. 14%	weeks); -0.72 (-2.41 to 0.98), p=0.382 (6 months)
RCT	B. Upper body strength + aerobics,	ASIA C: 12% vs. 9% ASIA D: 25% vs. 27%	ASIA-UEMS: -0.04 (-1.12 to 1.04), p=0.94 ASIA-LEMS: 0.90 (-0.48 to 2.27), p=0.20
Fair	36 sessions over 12	C2-C8: 48% vs. 59%	<u>ASIA-LEMIS</u> . $0.90 (-0.46 \text{ to } 2.27), p-0.20$
1 dii	weeks (n=56)	T1-T6: 30% vs. 23%	
		T7-T12: 22% vs. 18%	
Harness,	A. Strength + cycling	A vs. B	A vs. B, mean change (SE), p=between groups:
2008 ²⁵⁰	+ vibration, mean 56	Age: 37.8 vs. 34.5	
	days over 6 months	Female: 13.6% vs. 0%	<u>EQ-5D</u> : 14.0 (5.0) vs. 3.0 (5.0), p=0.14
Multimodal	(n=22)	ASIA-UEMS: 31.0 vs.	<u>LEMS:</u> 3.3 (0.9) vs. 0 (0.2), p=0.035
exercise	D. Llovel core (colf	38.0, p=0.37	ASIA Total Motor: 4.8 (1.0) vs0.1 (0.5), p<0.001
Cohort study	B. Usual care (self- regulated exercise),	ASIA-LEMS: 8 vs. 4	<u>CHART:</u> 12.0 (15.0) vs. 0.1 (18.0), p=0.60
Conort Study	mean 98 days over		
Fair	6 months (n=9)		
Jones,	A. Activity-based	A vs. B	A vs. B, mean change (SD), p=between groups:
2014a ²⁴⁷	therapy, 72 sessions	Age: 42 vs. 34	<u>10MWT (m/s)</u> : 0.096 (0.140) vs. 0.027 (0.104),
2014b ²⁴⁶	over 24 weeks	Female: 5% vs. 48%	p=0.036
	(n=20)	Tetraplegia: 75% vs.	<u>6MWT</u> : 35.97 (48.15) vs. 3.0 (25.51), p=0.002
Multimodal	\mathbf{D} (M/-:H) = t (m - 0.4)	76%	<u>TUG</u> : –37.2 (81.3) vs. –6.2 (18.1), p=0.267
exercise	B. Waitlist (n=21)	AIS C: 35% vs. 52% AIS D: 65% vs. 48%	<u>Reintegration to normal living index</u> : 4.6 (13.87) vs. – 2.0 (10.01), p=0.087
RCT		AIS D. 05% VS. 46%	SCI-FAI: 5.0 (8.03) vs. –0.21 (2.83), p=0.031
NOT			SCIM-III: 1.35 (5.2) vs. 0.0 (4.53), p=0.393
Poor			
Liu, 2019 ²⁴⁸	A. Strength exercise + treadmill + core	A vs. B (data are for completers	A vs. B, mean (SD), data for completers only:
Multimodal	stability training on a	only; n=14 vs. 15)	Stride length (units NR):
exercise	stable support	Age: 43 vs. 46	0.564 (0.189) vs. 0.454 (0.173), p=0.025
	surface, 60 sessions	Female: 21% vs. 27%	(postintervention)
RCT	over 12 weeks	Ambulatory: 100%	0.09 (0.26) vs. 0.06 (0.24), MD 0.03 (95% CI –0.16 to
- .	(n=20)	-paraplegia: 36% vs.	0.22), p=NR (pre-post change)
Fair	D. Other attactions	40%	Malling an and (units ND)
	B. Strength exercise + treadmill + core	-tetraplegia: 64% vs. 60%	<u>Walking speed (units NR):</u> 0.350 (0.226) vs. 0.209 (0.171), p=0.0196
	stability training on	00 /0	(postintervention)
	an unstable support		0.09 (0.30) vs. 0.03 (0.23), MD 0.06 (95% CI –0.14 to
	surface, 60 sessions		0.26), p=NR (pre-post change)
	over 12 weeks		
	(n=20)		

Abbreviations: 6MWT = 6-Minute Walk Test; 10MWT = 10-Meter Walk Test; AE = adverse event; AIS = ASIA Impairment Scale; ASIA-LEMS = American Spinal Injuries Association Impairment Scale - Lower Extremity Motor Score; ASIA-UEMS = American Spinal Injuries Association Impairment Scale - Upper Extremity Motor Score; CHART = Craig Handicap Assessment and Reporting Technique; CI = confidence interval; EQ-5D = European Quality of Life 5 dimensions; MD = mean difference; NR = not reported; RCT = randomized controlled trial; SCI = spinal cord injury; SCIM = Spinal Cord Independence Measure; SD = standard deviation; SE = standard error; SEM = standard error mean; TUG = Timed Up and Go Test; UEMS = Upper Extremety Motor Score

Evidence from small trials was insufficient to draw conclusions regarding the impact of multimodal exercise on functional capacity or walking in participants with SCI.

Two studies, one RCT^{246,247} and one cohort study,²⁵⁰ compared multimodal exercise with usual care. Multimodal exercise (which consisted of progressive resistance exercise and locomotor training using manual or robot-assisted gait and aquatic exercise) was associated with improved walking ability compared with waitlist immediately postintervention in the RCT (at 24 weeks), based on the 6MWT (36.0 ± 48.2 vs. 3.0 ± 25.5 meters, p=0.002), the 10MWT (0.1 ± 0.1 vs. 0.03 ± 0.1 meters per second; p=0.036), and the Spinal Cord Injury Function Ambulation Index (SCI-FAI, scale not provided) (5.0 ± 8.0 vs. -0.2 ± 2.8 , p=0.031). It is not clear if differences are clinically meaningful. Multimodal exercise was not associated with improved functional capacity based on the TUG test in the RCT.²⁴⁷

The fair-quality cohort study found no difference between multimodal exercise (consisting of progressive resistance exercise, aerobic exercise, and balance training) versus self-regulated exercise in quality of life using the EQ-5D immediately posttreatment (26 weeks) change scores $(14.0 \pm 5.0 \text{ vs}. 3.0 \pm 5.0, \text{ respectively}, p=0.14).^{250}$

Another trial compared whole-body (progressive resistance exercise for the trunk and upper and lower extremity, locomotor training, and functional electrical stimulation assisted cycling) versus upper body (circuit-based strength and aerobic training) multimodal exercise programs.^{244,245} Walking measures were only reported for the small subset of participants who could walk (n=26). There was no difference immediately following the 12-week intervention (6MWT difference –12.30 meters, 95% CI –68.01 to 43.41; 10MWT difference –0.10 m•sec⁻¹, 95% CI –0.30 to 0.10). At 12-week followup, whole body exercise was associated with improvement in the 6MWT (difference –88.0 meters, 95% CI –143.71 to –32.29) but not the 10MWT (difference –0.80 m•sec⁻¹, 95% CI –2.3 to 0.70) versus upper body exercise. Evidence was considered insufficient to draw firm conclusions.

One trial compared trunk stabilization exercises done on an unstable surface to exercises performed on a stable surface.²⁴⁸ There were no differences between treatment groups for either walking speed or stride length immediately after the 12-week intervention. (Authors did not provide units of measure.)

One RCT comparing multimodal exercise with usual care (waitlist) found no differences in change scores between groups in disability or activities of daily life immediately posttreatment (12 weeks): Spinal Cord Independence Measure, version III (SCIM-III) (1.4 ± 5.2 vs. 0.0 ± 4.5 , p=0.393) and Reintegration to Normal Living (4.6 ± 13.9 vs. -2.0 ± 10.0 , p=0.087), respectively.^{244,245} The cohort study reported no differences in disability between multimodal exercise and usual care based on the Craig Handicap and Assessment Reporting Technique (CHART).²⁵⁰

Withdrawals due to injuries related to participation in intensive exercise versus usual care were reported in one trial (7.7% vs. 0%).^{246,247} In the trial comparing whole body versus upper body multimodal exercise, withdrawal due to adverse events was similar (3.3% vs. 1.8%) even though the reporting of any definite or probable intervention-related event was more common with whole body strengthening and aerobics versus the upper body intervention.^{244,245} Skin abrasion/bruising was the most common (Table 39). The study comparing trunk stabilization exercise on an unstable support surface versus the exercises done on a stable surface reported that no adverse events occurred.²⁴⁸

All Exercise

The outcomes with sufficient data were analyzed using meta-analysis across all trials combined to determine a general exercise effect that was not dependent on patient population or intervention modality(s). The comparison group consisted of no treatment or waitlist controls, or control groups with low-intensity usual care. Usual care arms of higher intensity (e.g., 48 sessions over 12 weeks of strength, aerobic, balance, and coordination exercises) were excluded from the analysis, due to concern that they may confer some level of treatment. The analysis included the difference in outcome from before treatment (baseline) to immediately postintervention. Only RCTs were included in these meta-analyses due to the overall lower quality of nonrandomized studies in this body of evidence. Sensitivity analyses removing trials rated poor quality from the meta-analyses in this section yielded results similar to the primary analyses, with the exception of the TUG test, which was no longer statistically significant after the removal of poor quality studies.

Key Points

- Across different interventions in trials of participants with MS, there was evidence that physical exercise improves walking ability (SOE: high).
- Across different interventions in trials of participants with MS, there was evidence that physical exercise improves balance (SOE: moderate).
- There was moderate-strength evidence of no clear benefit of physical activity on function in participants with MS (SOE: moderate).
- Across different interventions in trials of participants with CP, there was low-strength evidence that physical activity improves function (SOE: low).
- Across different interventions in trials of participants with SCI, there was low-strength evidence that physical activity improves function (SOE: low).

Detailed Synthesis

Walking Ability

In order to determine if walking ability improves with any physical activity intervention, RCTs that assessed performance on the 6MWT, the 10MWT, and/or the MSWS-12 versus no or low-intensity usual care were pooled. Twenty-seven total RCTs were included (23 RCTs for the 6MWT, 14 RCTs for 10MWT, 9 RCTs for MSWS-12). Most trials enrolled participants with MS (25 RCTs, n=1,343). Seven RCTs enrolled participants with CP (n=234)^{126,129,188,207,211,215,241} and two enrolled participants with SCI (n=69).^{189,247}

6-Minute Walk Test

Twenty-five RCTs (n=1,196) were included in the 6MWT analysis^{52,54,66,77,80,83,126,129,149,160,177,188,192,193,197,198,203,211,221,222,226,228,230,232,241,246,247} (Figure 29).

analysis^{52,54,66,77,80,83,126,129,149,160,177,188,192,193,197,198,203,211,221,222,226,228,230,232,241,246,247} (Figure 29). Most trials were rated fair quality, one trial was rated good quality,²¹¹ and eight RCTs were rated poor quality.^{188,192,193,197,226,228,246,247} Nineteen trials were in participants with MS,^{52,54,66,77,80,83,149,160,177,192,193,197,198,203,221,222,226,228,230,232} five RCTs enrolled participants with CP,^{126,129,188,211,241} and one was in participants with SCI.²⁴⁷ Aerobic interventions included cycling, aquatics, dance, motion gaming, and treadmill training; strength interventions included Pilates and progressive resistance exercises; and multimodal interventions generally included strength training along with aerobic and/or balance training. One study included balance and motor control training as an intervention.¹⁴⁹

In pooled analysis, participants in the intervention groups walked a mean of almost 33 more meters than those in the control groups after controlling for baseline walking distance (MD

-32.94, 95% CI -46.07 to $-19.81, I^2=78\%$, p<0.001) (Figure 29). The treatment effect was stronger and significant in trials of multimodal interventions (MD, -51.70, 95% CI -71.92 to -31.48, p<0.001) for a significant difference based on exercise modality subgroup (i.e., aerobic, vs. strength, vs. postural control vs. multimodal exercises, p=0.02).

In pooled analysis of the 19 trials that enrolled participants with MS, results also favored physical activity (MD –42.70, 95% CI –57.05 to –28.35, I^2 =75%). This was not the case in the four trials that enrolled participants with CP where distance walked was similar in the intervention and control groups (MD 6.85, 95% CI –13.39 to 27.08, I^2 =0%), or in the one SCI trial (MD –32.97, 95% CI -68.17 to 2.23).

0,	MS MS MS CP CP MS	Cycling Cycling Aqua Movement to music	WL WL WL	34 13	34	17.1%	4 40 5 22 74 22 041	
Hebert 2011* Kargarfard 2018 Young 2018 Kim 2015 Bahrami 2019 Tollar 2020 Subtotal (95% CI) Heterogeneity: Tau ² = 1	MS MS CP CP	Cycling Aqua Movement to music	WL		34	17 1%	4 40 5 22 74 22 041	
Kargarfard 2018 Young 2018 Kim 2015 Bahrami 2019 Tollar 2020 Subtotal (95% CI) Heterogeneity: Tau ² = 1	MS MS CP CP	Cycling Aqua Movement to music		12			-4.40 [-32.74, 23.94]	7
Young 2018 Kim 2015 Bahrami 2019 Tollar 2020 Subtotal (95% CI) Heterogeneity: Tau ² = 1	MS MS CP CP	Aqua Movement to music		13	13	12.4%	-7.19 [-61.42, 47.04]	
Young 2018 Kim 2015 Bahrami 2019 Tollar 2020 Subtotal (95% CI) Heterogeneity: Tau ² = 1	MS CP CP	Novement to music		17	15	18.4%	-81.00 [-100.72, -61.28]	
Kim 2015 Bahrami 2019 Tollar 2020 Subtotal (95% CI) Heterogeneity: Tau ² = 1	CP CP		WL	20	19	12.4%	-33.70 [-88.09, 20.69]	
Bahrami 2019 Tollar 2020 Subtotal (95% CI) Heterogeneity: Tau² = 1	CP	Treadmill	PT	14	7	15.4%	-5.71 [-43.18, 31.76]	_
Tollar 2020 Subtotal (95% CI) Heterogeneity: Tau ² = 1		Treadmill	PT	15	14	8.7%	-19.03 [-98.40, 60.34]	
Subtotal (95% CI) Heterogeneity: Tau ² = 1	1410	Cycling	WL	14	12	15.6%	-25.80 [-62.16, 10.56]	_ _
Heterogeneity: Tau ² = 1		Cycling		127	114	100.0%	-27.30 [-58.36, 3.76]	•
0,	1261 16 [.] Chi	² = 28.14, df = 6 (P < 0.0001); l ² = 7	9%					•
Test for overall effect: Z	,		070					
		0.00)						
Strength ex								
Kalron 2017	MS	Pilates	PT	22	23	13.2%	-13.80 [-56.51, 28.91]	
Duff 2018	MS	Pilates	AC Massage	15	15	4.8%	-37.40 [-108.14, 33.34]	
Dalgas 2010	MS	PRE	Previous	16	18	3.8%	-56.10 [-135.91, 23.71]	
Taylor 2013	CP	PRE	PT	23	25	14.0%	0.00 [-41.59, 41.59]	_
Callesen 2019	MS	PRE	WL	17	9	42.3%	-12.60 [-36.50, 11.30]	
Tollar 2020	MS	PRE	WL	14	12	21.8%	0.80 [-32.46, 34.06]	
Subtotal (95% CI)	MO			107	102	100.0%	-10.92 [-27.12, 4.65]	•
Test for overall effect: Z		2.55, df = 5 (P = 0.77); l² = 0% : 0.17)						
Postural Control ex								_
Callesen 2019	MS	Bal. Training	WL	24	9	27.3%	-17.50 [-39.15, 4.15]	
Ahmadizadeh 2019	CP	WBV + stretching	AC	10	10	12.6%	46.85 [-5.38, 99.08]	
Moraes 2020	MS	Hippotherapy	WL	17	16	14.1%	-60.40 [-108.13, -12.67]	
Tollar 2020	MS	Exergaming or Bal.	WL	28	12	20.7%	-32.00 [-65.03, 1.03]	
Yazgan 2019	MS	Exergaming	WL	27	15	25.4%	-26.47 [-51.28, -1.66]	
Subtotal (95% CI)				106	62	100.0%	-20.72 [-43.70, 2.26]	\bullet
Heterogeneity: Tau ² = 3 Test for overall effect: Z		= 9.80, df = 4 (P = 0.04); l ² = 59% : 0.08)						
<u>Multimodal ex</u>								
Hogan 2014*	MS	PT-led community	Previous	48	15	11.9%	-13.70 [-38.40, 11.00]	
Garret 2012ab*	MS	PT-led community	Previous	63	49	7.0%	-74.00 [-128.62, -19.38]	
Sandroff 2017	MS	PRE+Aerob+Bal	AC Stretch	43	40	8.5%	-28.70 [-73.45, 16.05]	
Sangelaji 2014	MS	PRE+Aerob+Bal	Previous	35	20		-135.70 [-183.80, -87.60]	
Sangelaji 2016	MS	PRE+Aerob	Previous	30	10	9.4%	-55.20 [-93.95, -16.45]	
Ebrahimi 2015	MS	PRE+balance (WBV)	Previous	16	14	9.5%	-75.90 [-114.22, -37.58]	_
Jones 2014a	SCI	PRE+Locomotor+Aquatics	WL	20	21	10.0%	-32.97 [-68.17, 2.23]	_ _
Fosdahl 2019	CP	PRE+Locomotor+Aquatics PRE+Stretch	UC	20 15	16	9.2%		
	MS	PRE+Stretch PRE+Aerob+Bal+Pilates+Stretch			16 43		10.60 [-29.35, 50.55]	+ ¹
Faramarzi 2020				46		13.9%	-68.22 [-78.67, -57.77]	· · ·
Ozkul 2020 Subtotal (95% CI)	MS	Aerob+Pilates	AC	17 333	17 245	12.6% 100.0%	-59.05 [-79.61, -38.49] -51.70 [-71.92, -31.48]	→
· ,	737 25. Chi2	= 42.17, df = 9 (P < 0.00001); l ² = 7	'Q%		2.5		511.0 [1 Hom, 01.40]	▼
Test for overall effect: Z			<i>u 1</i> 0					
				670	500	400.004	20.04 7.0.24 1.0.04	
Total (95% CI)	AD 22. CL 3	= 100.01 df = 07 /D + 0.00004) 12	- 700/	673	523	100.0%	-32.94 [-46.07, -19.81]	▼
Heterogeneity: Tau ² = 8 Test for overall effect: Z		= 122.91, df = 27 (P < 0.00001); l ² =	= /8%					
		= 10.00, df = 3 (P = 0.02), l ² = 70.0 ⁴	%					
oubgroup union	0.000.011							H
								-200 -100 0 100 200 Favors Exercise Favors Control

Figure 29. 6MWT meta-analysis of all randomized controlled trials versus no treatment/usual care

Abbreviations: Δ = change; 6MWT = 6-Minute Walk Test; AC = attention control; Aerob = aerobic exercise; Aqua = aquatic exercise; Bal = balance training; CI = confidence interval; Cond. = condition; CP = cerebral palsy; ex = exercise; MD = mean difference; MS = multiple sclerosis; PL = profile likelihood; PRE = progressive resistance exercise; Previous = continuation of previous activities; PT = physical therapy; SCI = spinal cord injury; Stretch = stretching exercise; UC = usual care (not otherwise specified); WL = waitlist

10-Meter Walk Test

Fourteen RCTs (n=659)^{120,129,143,150,189,200,203,207,215,222,223,225,228,247} were included in the analysis of 10MWT. Nine trials were of participants with MS, ^{120,143,150,200,203,222,223,225,228} two trials were of participants with CP, ^{129,207,215} and two trials enrolled participants with SCI.^{189,247} Ten trials were rated fair quality and three were rated poor quality.^{225,228,247} Strength exercises consisted of Pilates and progressive resistance exercises, balance exercises included CoDuSe and PT along with WBV, and multimodal exercises included strength exercises plus aerobic and/or balance exercises. The physical activity intervention was associated with improved time on the 10MWT by 1.24 seconds compared with controls (MD –1.24, 95% CI –2.04 to –0.44, I²=87%) (Figure 30).

In pooled analysis of the nine MS RCTs, participants in the physical activity groups walked faster than participants in the control groups (MD -1.44, 95% CI -2.74 to -0.13, I²=90%). There were no differences between the intervention and control groups in the pooled analysis of the three CP trials (MD -0.46, 95% CI -1.55 to 0.63) or in pooled analysis of the two trials that enrolled participants with SCI (MD -5.07, 95% CI -13.29 to 3.15, I²=55%).

0	0	E	0	N	N	MILLI	MD ∆ Scores		
Study	Cond.	Exercise	Control	Exercise	Control	Weight	PL [95% CI]		
<u>Aerobic ex</u>									
Ahmadi 2013	MS	Treadmill	WL	10	5	40.5%	-1.92 [-3.24, -0.60]		
Bahrami 2019	CP	Treadmill	PT	15	14	59.5%	-0.77 [-1.65, 0.11]		-
Subtotal (95% CI)				25	19	100.0%	-1.24 [-2.34, -0.13]		•
		^e = 2.03, df = 1 (P = 0.15); l	² = 51%						
Test for overall effect	t: Z = 2.19 (I	P = 0.03)							
Strength ex									
Fox 2016 (AC)	MS	Pilates	AC Relaxation	16	29	2.1%	-1.15 [-3.89, 1.59]		
Fox 2016 (PT)	MS	Pilates	PT	17	32	2.5%	0.39 [-2.14, 2.92]		_
Dalgas 2010	MS	PRE	Previous	16	18	4.9%	-1.70 [-3.49, 0.09]		
Elnaggar 2019	CP	Plyometrics	Standard	19	20	79.7%	-0.46 [-0.70, -0.22]		
Scholtes 2012	CP	PRE	PT	23	23	10.7%	0.36 [-0.82, 1.54]		+
Subtotal (95% CI)				91	122	100.0%	-0.43 [-0.83, -0.02]		•
Test for overall effect Postural Control ex	t: Z = 2.06 (I	² = 4.38, df = 4 (P = 0.36); l P = 0.04)							
Carling 2017	MS	CoDuSe	WL	25	26	3.9%	1.49 [-6.24, 9.22]		
In 2018	SCI	WBV+PT	Placebo+PT	25 14	20 14	3.9 % 13.6%	-2.20 [-5.86, 1.46]	_	
Ahmadi 2013	MS	Yoga	WL	14	5	37.3%	-0.96 [-2.21, 0.29]		-
Amtzen 2020	MS	Bal. Ex	Maintain	39	40	45.2%	0.92 [0.29, 1.55]		
Subtotal (95% CI)	NIC	Dui. Ex	mantein	89	85	100.0%	-0.18 [-1.77, 1.41]		•
, ,							-0.10 [-1.77, 1.41]		
Heterogeneity: Tau ²	= 1.36: Chi ²	= 9.07. df = 3 (P = 0.03); l	² = 67%				-0.10[-1.77, 1.41]		1
• •	,	² = 9.07, df = 3 (P = 0.03); l P = 0.82)	² = 67%				, , , , , , , , , , , , , , , , , , ,		
Test for overall effect	,	, , ,,	² = 67%				-0.10 [-1.77, 1.41]		
Test for overall effect Multimodal ex	,	, , ,,	² = 67% Previous	30	10	25.9%	-1.86 [-3.27, -0.45]		-
Test for overall effect <u>Multimodal ex</u> Sangelaji 2016	t: Z = 0.23 (I	P = 0.82)		30 14	10 9				+
Test for overall effect <u>Multimodal ex</u> Sangelaji 2016	t: Z = 0.23 (I MS	P = 0.82) PRE+Aerob	Previous			25.9%	-1.86 [-3.27, -0.45]	_	+
Test for overall effect <u>Multimodal ex</u> Sangelaji 2016 Cakit 2010 Ebrahimi 2015	t: Z = 0.23 (I MS MS	P = 0.82) PRE+Aerob PRE+Aerob+Bal	Previous Previous	14	9	25.9% 31.0%	-1.86 [-3.27, -0.45] -2.00 [-2.82, -1.18]	-	+ + +
Test for overall effect <u>Multimodal ex</u> Sangelaji 2016 Cakit 2010 Ebrahimi 2015 Tarakci 2013	t: Z = 0.23 (I MS MS MS	P = 0.82) PRE+Aerob PRE+Aerob+Bal PRE+Bal (WBV)	Previous Previous Previous	14 16	9 14	25.9% 31.0% 11.0%	-1.86 [-3.27, -0.45] -2.00 [-2.82, -1.18] -2.53 [-6.13, 1.07]	_ - -	:
Test for overall effec <u>Multimodal ex</u> Sangelaji 2016 Cakit 2010	t: Z = 0.23 (I MS MS MS MS MS	P = 0.82) PRE+Aerob PRE+Aerob+Bal PRE+Bal (WBV) PRE+Bal	Previous Previous Previous Previous	14 16 51	9 14 48	25.9% 31.0% 11.0% 30.6%	-1.86 [-3.27, -0.45] -2.00 [-2.82, -1.18] -2.53 [-6.13, 1.07] -4.18 [-5.05, -3.31]	_ - -	+ + +
Test for overall effect <u>Multimodal ex</u> Sangelaji 2016 Cakit 2010 Ebrahimi 2015 Tarakci 2013 Jones 2014a Subtotal (95% CI)	t: Z = 0.23 (I MS MS MS SCI = 1.58; Chi ²	P = 0.62) PRE+Aerob PRE+Aerob+Bal PRE+Bal (WBV) PRE+Bal PRE+Locomotor+Aqua = 17.14, df = 4 (P = 0.002	Previous Previous Previous Previous WL	14 16 51 20	9 14 48 21	25.9% 31.0% 11.0% 30.6% 1.6%	-1.86 [-3.27, -0.45] -2.00 [-2.82, -1.18] -2.53 [-6.13, 1.07] -4.18 [-5.05, -3.31] -11.20 [-22.44, 0.04]	_ - -	•

Figure 30. 10MWT meta-analysi	sis of all randomized controlled trials	versus no treatment/usual care
-------------------------------	---	--------------------------------

Abbreviations: Δ = change; 10MWT = 10-Meter Walk Test; AC = attention control; Aerob = aerobic exercise; Aqua = aquatic exercise; Bal = balance training; CI = confidence interval; CoDuSe = core stability, dual task and sensorimotor challenges; Cond. = condition; CP = cerebral palsy; ex = exercise; MD = mean difference; MS = multiple sclerosis; PL = profile likelihood; PRE =

progressive resistance exercise; Previous = continuation of previous activities; PT = physical therapy; SCI = spinal cord injury; WBV = whole body vibration; WL = waitlist

Multiple Sclerosis Walking Scale-12

Eight fair-quality RCTs^{52,77,143,144,149,150,175,200} (n=632) assessed the effect of physical activity on walking ability in participants with MS using the MSWS-12 (Figure 31). Cycling was the intervention in the aerobic exercise RCT; strength interventions were Pilates; the balance interventions included CoDuSe, balance and motor control training, and supervised Wii training using virtual reality; and the multimodal intervention consisted of strength and aerobic and/or balance exercises. Physical activity was associated with improved scores on the MSWS-12 (MD –2.88, 95% CI –4.80 to –0.96, I²=33%). Although there were no differences between subgroups based on intervention category (i.e., aerobic vs. strength vs. balance vs. multimodal exercise, p=0.06), pooled analysis of the five RCTs that focused on balance training did show improvement versus control with balance exercise on self-reported walking ability in participants with MS (n=316, MD –4.56, 95% CI –6.51 to –2.60, I²=0%).

			-	Ν	N		MD \triangle Scores	
Study	Cond.	Exercise	Control	Exercise	Control	Weight	PL [95% CI]	1
Aerobic ex								
Baquet 2018	MS	Cycling	WL	34	34	17.2%	0.20 [-2.91, 3.31]	_ _
Test for overall effect: 2	Z = 0.13 (P =	= 0.90)						
Strengh ex								
Kalron 2017	MS	Pilates	PT	22	23	15.1%	0.40 [-3.17, 3.97]	_ _
Fox 2016 (AC)	MS	Pilates	AC Relaxation	16	29	4.2%	-6.44 [-15.18, 2.30]	
Fox 2016 (PT)	MS	Pilates	PT	17	32	4.3%	2.88 [-5.69, 11.45]	
Callesen 2019	MS	PRE	WL	17	9	8.1%	-4.20 [-10.00, 1.60]	
Subtotal (95% CI)				72	93	31.7%	-1.36 [-4.83, 2.10]	
Heterogeneity: Tau ² = 2 Test for overall effect: 2			.26); I ² = 26%					
Postural Control ex								
Carling 2017	MS	CoDuSe	WL	25	26	6.0%	-7.21 [-14.27, -0.15]	
Forsberg 2016	MS	CoDuSe	WL	35	38	21.4%	-3.70 [-6.05, -1.35]	
Nilsagard 2012	MS	PT w/Wii	WL	41	39	3.4%	-1.95 [-11.85, 7.95]	
Callesen 2019	MS	Bal Training	WL	24	9	9.1%	-7.30 [-12.65, -1.95]	
Arntzen 2020 Subtotal (95% CI)	MS	Bal Training	Maintain	39 164	40 152	5.0% 44.8%	-6.58 [-14.46, 1.30] -4.56 [-6.51, -2.60]	•
Heterogeneity: Tau ² = Test for overall effect: 2			.63); I² = 0%					
Multimodal ex								
Sandroff 2017	MS	PRE+Aerob+Ba	AC Stretching	43	40	6.3%	-3.30 [-10.16, 3.56]	
Test for overall effect: 2	Z = 0.94 (P =	= 0.35)						
Total (95% CI)				313	319	100.0%	-2.88 [-4.80, -0.96]	•
Heterogeneity: Tau ² = 3	3.05; Chi² =	14.91, df = 10 (P =	= 0.14); I ² = 33%					-20 -10 0 10 20
Test for overall effect: 2			• -					-20 -10 0 10 20 Favors Exercise Favors Control
Test for subgroup diffe	ences: Chi ²	= 7.36, df = 3 (P =	= 0.06), ² = 59.2%					TAVUIS EXELUISE FAVOIS CUILLOI

Figure 31. MSWS-12 meta-analysis of all RCTs versus no treatment/usual care

Abbreviations: Δ = change; AC = attention control; Aerob = aerobic exercise; Bal = balance training; CI = confidence interval; CoDuSe = core stability, dual task, and sensorimotor challenges; ex = exercise; MD = mean difference; MS = multiple sclerosis; MSWS-12 = Multiple Sclerosis Walking Scale-12; PL = profile likelihood; PRE = progressive resistance exercise; PT = physical therapy; WL = waitlist

Other Function Outcomes

Ten RCTs^{85-87,101,102,161,165,167,209,211,212,234,238} provided evidence for exercise on the GMFM or on the D (standing) and/or E (walking, running, jumping) subscales of the GMFM-66 (Figures 32-34). All trials were conducted in participants with CP. All RCTs enrolled children (8 trials

with mean ages between 8.5 and 14) or young adults (2 trials with mean ages between 18 and 20).^{167,211,212,234-237} Eighteen trials^{50,52-54,95,143,144,151,175,177,185,189,198,206,225,228,242,246,247} examined the effect of physical activity on the TUG (Figure 35).

GMFM-66

Eight RCTs in participants with CP^{85-87,161,165,167,209,211,212,234,238} (n=377) measured gross motor function with the GMFM-66 and provided the total scores pre- and post-exercise (Figure 32). One trial was rated poor quality¹⁶⁵ and the remainder were judged to be fair quality. Aerobic exercises included cycling and treadmill training; strength exercises used progressive resistance; balance training used horses (hippotherapy), and multimodal exercises included strength training along with aerobic activity.

There was no change in GMFM-66 scores attributable to physical exercise (MD -0.58, 95% CI -1.62 to 0.45, p=0.27) (Figure 32). There were subgroup differences based on the exercise category of the intervention (p=0.001). The results from the single trial of strength training²⁰⁹ significantly favored the control group (MD 1.30, 95% CI 0.67 to 1.93, p<0.001). In this trial children in the control group received usual care, which consisted of one to three sessions per week of conventional PT. The intervention group underwent three sessions per week of functional progressive resistance exercise training to improve walking ability. Although strength measures were improved with strength training, GMFM-66 scores were not.

GMFM-66-D

The GMFM-66-D subscale is concerned with standing ability. Two RCTs (n=78), one rated good quality^{211,212} and one poor quality,^{101,102} presented evidence for the D subscale and found no differences between RAGT or muscle strength exercises and usual care (MD –0.89, 95% CI –7.33 to 5.55, p=0.79) (Figure 33). There were no subgroup differences (p=0.11). Excluding the poor-quality RCT did not alter the findings.

GMFM-66-E

Four RCTs^{101,165,167,211,212} (n=175) reported GMFM-66-E subscale scores, which examine walking, running, and jumping ability (Figure 34). One trial was rated good quality,^{211,212} one fair quality,¹⁶⁷ and the other two were considered poor quality.^{102,165} Included interventions were RAGT, muscle strength exercises, and hippotherapy. Pooled analysis found a significant improvement with exercises versus usual care (MD -3.73, 95% CI -5.78 to -1.67, p<0.001).

Figure 32. GMFM-66 meta-analysis of all randomized controlled trials versus no treatment/usual care

				Ν	N		$\textbf{MD} \ \Delta \ \textbf{Scores}$	
Study	Cond.	Exercise	Control	Exercise	Control	Weight	PL [95% CI]	
Aerobic ex								
Fowler 2010/Demuth 2012	CP	Cycling	Previous	29	29	19.9%	-0.70 [-1.69, 0.29]	
Bryant 2012	CP	Bike+Treadmill	PT	20	10	10.9%	-0.93 [-3.25, 1.39]	
Subtotal (95% CI)				49	39	30.8%	-0.74 [-1.97, 0.42]	•
Heterogeneity: Tau ² = 0.00;	Chi ² = 0.03,	df = 1 (P = 0.86);	l² = 0%					
Test for overall effect: Z = 1	.58 (P = 0.1	1)						
<u>Strength ex</u>								
Scholtes 2010	CP	PRE	PT	24	25	22.3%	1.30 [0.67, 1.93]	-
Test for overall effect: Z = 4	.05 (P < 0.00	001)						
Postural Control ex								
Deutz 2017	CP	Hippotherapy	WL	35	38	4.8%	-2.50 [-6.71, 1.71]	
Herrero 2012	CP	Hippotherapy	Placebo	19	19	23.7%	-0.27 [-0.61, 0.07]	-
Mutoh 2019	CP	Hippotherapy	Outdoor Rec	12	12	3.8%	-5.70 [-10.54, -0.86]	· · · · · · · · · · · · · · · · · · ·
Subtotal (95% CI)				66	69	32.3%	-2.12 [-5.27, 1.04]	
Heterogeneity: Tau ² = 5.12;	Chi ² = 5.86,	df = 2 (P = 0.05);	l² = 66%					
Test for overall effect: Z = 1	.32 (P = 0.19	9)						
<u>Multimodal ex</u>								
Slaman 2015	CP	PRE+Aerob	PT	28	27	4.7%	1.59 [-2.68, 5.86]	
Van Wely 2014	CP	PRE+Aerob+PT	PT	25	25	9.8%	-3.10 [-5.65, -0.55]	.
Subtotal (95% CI)				53	52	14.5%	-1.48 [-6.37, 4.66]	
Heterogeneity: Tau ² = 7.78;	Chi ² = 3.41,	df = 1 (P = 0.06);	l² = 71%					
Test for overall effect: Z = 0	.47 (P = 0.64	4)						
Total (95% CI)				192	185	100.0%	-0.58 [-1.62, 0.45]	•
Heterogeneity: Tau ² = 1.14;	Chi ² = 34.06	6, df = 7 (P < 0.000	1); l² = 79%					
Test for overall effect: Z = 1	.11 (P = 0.27	7)						-10 -5 0 5 10 Favors Exercise Favors Control
Test for subgroup difference	es: Chi ² = 16	.34, df = 3 (P = 0.0	010), I ² = 81.60	%				

Abbreviations: Δ = change; Aerob = aerobic exercise; CI = confidence interval; CP = cerebral palsy; ex = exercise; GMFM = gross motor function measure; MD = mean difference; Outdoor Rec = outdoor recreation; PL = profile likelihood; PRE = progressive resistance exercise; Previous = continuation of previous activities; PT = physical therapy; WL = waitlist

Figure 33. GMFM-66-D meta-analysis of all randomized controlled trials versus no intervention/usual care

				N	N		MD A Scores	
Study	Cond.	Exercise	Control	Exercise	Control	Weight	PL [95% CI]	
Aerobic ex								
Wallard 2018	CP	RAGT	PT	14	16	41.9%	-4.76 [-11.65, 2.13]	
Test for overall effect: Z = 1.35 (P = 0.	18)							
<u>Strength ex</u>								
Taylor 2013/Bania 2016	CP	PRE	PT	23	25	58.1%	1.90 [-2.58, 6.38]	
Test for overall effect: Z = 0.83 (P = 0.	41)							
Total (95% CI)				37	41	100.0%	-0.89 [-7.33, 5.55]	
Heterogeneity: Tau ² = 13.38; Chi ² = 2.	52, df = 1 (P = 0.11); l ² = 6	0%				•	
Test for overall effect: Z = 0.27 (P = 0.		,-						-20 -10 0 10 20 Favors Exercise Favors Control
Test for subgroup differences: Chi ² = 2	2.52, df = 1	(P = 0.11), I ² =	60.4%					Tavors Exercise Favors Control

Abbreviations: Δ = change; CI = confidence interval; Cond. = condition; CP = cerebral palsy; ex = exercise; GMFM-D = gross motor function measure, subscale D (standing); MD = mean difference; PL = profile likelihood; PRE = progressive resistance exercise; PT = physical therapy; RAGT = robotic assisted gait training

				Ν	N		MD A Scores	
Study	Cond.	Exercise	Control	Exercise	Control	Weight	PL [95% CI]	
<u>Aerobic ex</u>								
Wallard 2018	CP	RAGT	PT	14	16	10.1%	-7.54 [-14.00, -1.08]	
Test for overall effect: Z = 2	2.29 (P = 0.02	2)						
Strength ex								
Taylor 2013/Bania 2016	CP	PRE	PT	23	25	7.1%	-0.60 [-8.29, 7.09]	·
Test for overall effect: Z = 0	0.15 (P = 0.88	3)						
Postural Control ex								
Deutz 2017	CP	Hippotherapy	WL	35	38	48.4%	-3.34 [-6.29, -0.39]	
Mutoh 2019	CP	Hippotherapy	Outdoor Rec	12	12	34.3%	-3.80 [-7.30, -0.30]	
Subtotal (95% CI)				47	50	82.8%	-3.53 [-5.79, -1.27]	◆
Heterogeneity: Tau ² = 0.00	; Chi ² = 0.04,	df = 1 (P = 0.84);	$ ^2 = 0\%$					
Test for overall effect: Z = 3	3.07 (P = 0.00	02)						
Total (95% CI)				84	91	100.0%	-3.73 [-5.78, -1.67]	-
Heterogeneity: Tau ² = 0.00	; Chi² = 2.04,	df = 3 (P = 0.56);	l ² = 0%					-20 -10 0 10 20
Test for overall effect: Z = 3	3.56 (P = 0.00	004)						Favors Exercise Favors Control
Test for subgroup difference	es: Chi ² = 2.0	00, df = 2 (P = 0.3	7), I ² = 0.2%					

Figure 34. GMFM-66-E meta-analysis of all randomized controlled trials versus no intervention/usual care

Abbreviations: Δ = change; CI = confidence interval; CP = cerebral palsy; ex = exercise; GMFM-E = Gross Motor Function Measure 66, subscale E (walking, running, jumping); MD = mean difference; Outdoor Rec = outdoor recreation; PL = profile likelihood; PRE = progressive resistance exercise; PT = physical therapy; RAGT = robotic assisted gait training; SE = standard error; WL = waitlist

Timed Up and Go Test

Nineteen trials^{50,52-54,95,143,144,151,175,177,185,189,198,206,225,228,230,242,246,247} (n=793) examined the effect of physical activity on the TUG (Figure 35). Two studies enrolled participants with CP,^{50,242} two enrolled participants with SCI,^{189,246,247} and the remainder were conducted in participants with MS. Aerobic interventions included interval exercises, RAGT, and movement to music; balance exercises included motion gaming, WBV, and CoDuSe; and strength and multimodal interventions included Pilates and progressive resistance training, along with aerobic exercise or balance exercises. Physical activity was associated with improvement on the TUG (MD –0.66, 95% CI –1.28 to -0.04, I²=85%). However, the results were no longer statistically significant after the removal of the poor quality trials in a sensitivity analysis (n=15 studies, MD -0.55, 95% CI -1.29 to 0.19, I²=89%). Results were also not significant when the fifteen trials that enrolled participants with MS were pooled (MD –0.30, 95% CI –1.18 to 0.59, I²=89%). There was also no difference between all exercise versus usual care when the two trials in participants with SCI were pooled (MD –10.33, 95% CI –37.10 to 16.45, I²=61%). However, pooled analysis of the two trials in participants with CP found improved TUG with all exercise (MD –1.05, 95% CI –1.35 to –0.76, I²=0%).

				Ν	N		MD \triangle Scores	
Study	Cond.	Exercise	Control	Exercise	Control	Weight	PL [95% CI]	
erobic ex								
Negaresh 2018	MS	Interval Exercises	No exercise	34	27	6.2%	-3.00 [-4.56, -1.44]	-
Russo 2018	MS	RAGT+Conv. Rehab	Conv. Rehab	30	15	2.0%	19.50 [15.40, 23.60]	
oung 2018	MS	Movement to music	WL	20	22	0.7%	2.70 [-4.53, 9.93]	
Subtotal (95% CI)				84	64	8.1%	6.39 [-9.44, 22.23]	
Heterogeneity: Tau ² = 1	89.77; Chi ² =	101.47, df = 2 (P < 0.00001); l ² = 9	98%					
Fest for overall effect: Z	= 0.79 (P = 0	.43)						
Strengh ex								
Duff 2018	MS	Pilates	AC massage	15	15	4.9%	-1.60 [-3.67, 0.47]	
Bulguroglu 2017	MS	Pilates	AC	25	13	8.7%	-0.75 [-1.43, -0.07]	-
Kalron 2017	MS	Pilates	PT	22	23	7.1%	-0.10 [-1.33, 1.13]	+
Subtotal (95% CI)				62	51	19.0%	-0.67 [-1.24, -0.10]	•
-leterogeneity: Tau ² = 0	.00; Chi ² = 1.6	66, df = 2 (P = 0.44); l ² = 0%						
Fest for overall effect: Z	= 2.32 (P = 0	.02)						
Postural Control ex								
Carling 2017	MS	CoDuSe	WL	25	26	0.9%	4.41 [-1.97, 10.79]	
orsberg 2016	MS	CoDuSe	WL	35	38	3.0%	1.40 [-1.70, 4.50]	
Claerbout 2012	MS	WBV-light+PT	PT	38	17	2.9%	-1.15 [-4.33, 2.03]	
Vilsagard 2012	MS	PT w/Wii	WL	41	39	7.8%	-0.90 [-1.89, 0.09]	-
Hsieh 2018	CP	PC games Platform	PC games Mouse	20	20	8.5%	-0.77 [-1.53, -0.01]	-
n 2018	SCI	WBV+PT	Placebo + PT	14	14	8.2%	-1.30 [-2.16, -0.44]	-
Ozkul 2020	MS	Bal+Exergaming	AC	26	13	9.1%	-1.01 [-1.48, -0.54]	-
Yazgan 2019	MS	Exergaming	WL	27	15	9.1%	-1.14 [-1.65, -0.63]	-
Subtotal (95% CI)	MO	Exerganing		226	182	45.5%	-1.01 [-1.29, -0.73]	•
-leterogeneity: Tau ² = 0	.00; Chi ² = 6.2	22, df = 7 (P = 0.51); l ² = 0%						
Test for overall effect: Z	= 7.05 (P < 0	.00001)						
Aultimodal ex								
Cakit 2010	MS	PRE+Aero+Bal	Previous	14	9	8.3%	-1.10 [-1.92, -0.28]	-
Ebrahimi 2015	MS	PRE+Balance(WBV)	Previous	16	14	3.1%	-0.30 [-3.32, 2.72]	_ _ _
lones 2014a	SCI	PRE+Locomotor+Aqua	WL	20	21	0.0%	-31.00 [-67.46, 5.46]	←
Kaya Kara 2019	CP	PRE	Loco+SBWDT+Stret	ch 15	15	9.4%	-1.10 [-1.42, -0.78]	•
Faramarzi 2020	MS	PRE+Aero+Bala+Pilates+Stretch	WL	46	43	8.2%	-2.15 [-2.72, -1.58]	
Subtotal (95% CI)				111	102	27.4%	-1.41 [-2.13, -0.68]	4
leterogeneity: Tau ² = 0	.00; Chi ² = 2.8	85, df = 3 (P = 0.42); l ² = 0%						
Test for overall effect: Z								
otal (95% CI)				483	399	100.0%	-0.66 [-1.28, -0.04]	•
	.15: Chi ² = 11	5.58, df = 17 (P < 0.00001); l ² = 85	5%					
est for overall effect: Z		, , ,						-20 -10 0 10 20
		2.48. df = 3 (P = 0.48), I ² = 0%						Favors Exercise Favors Control

Figure 35. Timed Up and Go Test versus no intervention or usual care

Abbreviations: Δ = change; AC = attention control; Aerob = aerobic exercise; Aqua = aquatics; Bal = balance; Conv Rehab = conventional rehabilitation; CP = cerebral palsy; loco = locomotor; MS = multiple sclerosis; PRE = progressive resistance exercise; PT = physical therapy; RAGT = robot-assisted gait training; SBWDT = weight-bearing symmetry; SCI = spinal cord injury; WBV = whole body vibration; WL = waitlist

Balance

Twenty RCTs^{50,52,66,83,117,120,141,143-146,151,156-158,177,222,223,226,228} (n=1,011) that compared a physical exercise intervention with no activity or low-intensity usual care included the BBS to assess balance prior to the intervention and immediately after treatment (Figure 36). All RCTs enrolled participants with MS except for three trials, one conducted in participants with CP (n=40)⁵⁰ and two conducted in SCI (n=60).^{156,157} One trial was considered good quality,¹⁴⁵ two trials were rated poor quality,^{226,228} and the remainder were rated fair quality. Aerobic interventions included treadmill training and aquatic exercise; balance interventions included CoDuSe, Cawthorne/Cooksey exercises, balance training with sensory integration, computer games using a platform, and hippotherapy; and multimodal interventions included strength plus balance and/or aerobics.

Physical activity was associated with significantly improved scores on the BBS by over 3 points (MD -3.64, 95% CI -4.23 to -3.04, I²=68%). Trials of aerobic exercise, balance (postural control) exercises, and trials of multimodal exercises reported significant effects (MD -3.48,

95% CI –5.68 to –1.28, p=0.002; MD –3.97, 95% CI –5.00 to –2.94, p<0.001; MD –3.45, 95% CI –3.89 to –3.01, p<0.001, respectively) although there was no subgroup effect based on intervention category (i.e., aerobic vs. strength vs. balance vs. multimodal exercise, p=0.06). The overall results were similar when only the MS trials were analyzed (MD –3.56, 95% CI –4.58 to –2.54, I^2 =77%).

Study	Cond.	Exercise	Control	N Exercise	N Control	Weight	MD ∆ Scores PL [95% CI]	
Aerobic ex						~		
Gervasoni 2013	MS	Treadmill	Conv. Rehab	15	15	22.1%	-0.86 [-4.12, 2.40]	
Kargarfard 2018	MS	Aqua	Previous	13	15	35.7%	-3.70 [-5.19, -2.21]	
Ahmadi 2013				17	5	10.8%		• • • • • • • • • • • • • • • • • • •
Tollar 2020	MS	Treadmill	WL				-10.40 [-16.20, -4.60]	,
Subtotal (95% CI)	MS	Cycling	WL	14 56	12 47	31.4% 100.0%	-2.70 [-4.72, -0.68] - 3.48 [-5.68, -1.28]	-
Heterogeneity: Tau ² = 2 Test for overall effect: 2		.52, df = 3 (P = 0.04); l ² 0.002)	= 65%					
Strength ex								
Kalron 2017	MS	Pilates	UC	22	23	43.5%	0.20 [-2.56, 2.96]	_
Tollar 2020	MS	PNF	WL	14	12	56.5%	-1.80 [-4.17, 0.57]	— — — — — — —
Subtotal (95% CI)				36	35	100.0%	-0.93 [-2.87, 1.01]	
Heterogeneity: Tau ² = 0 Test for overall effect: 2	,	.16, df = 1 (P = 0.28); I ² 0.35)	= 14%					
	0.01 (.	0.00)						
Postural Control ex Afrasiabifar 2018	МС	Courthrops Erected	NOS	47	50	10.2%	6 97 [7 05 E 70]	
	MS	Cawthrone+Frankel		47 35	50 38	10.2% 8.8%	-6.87 [-7.95, -5.79]	
Forsberg 2016	MS	CoDuSe	WL				-2.10 [-3.75, -0.45]	
Carling 2017	MS	CoDuSe	WL	25	26	6.1%	-3.65 [-6.47, -0.83]	
Gandolfi 2015	MS	Sensory Bal	Conv. Rehab	39	41	9.3%	-3.50 [-4.97, -2.03]	
Hsieh 2018	MS	Hippotherapy	Previous	20	20	9.2%	-3.09 [-4.60, -1.58]	
Vermohlen 2018	CP	PC games Platform	PC games mouse	30	37	7.3%	-2.33 [-4.63, -0.03]	
Brichetto 2015	MS	Tailored ex	Traditional ex	16	16	7.4%	-4.30 [-6.55, -2.05]	.
Ahmadi 2013	MS	Yoga	WL	11	5	2.5%	-8.89 [-14.59, -3.19]	←
Norouzi 2019	SCI	Vestibular Stimulation		10	10	5.3%	-4.50 [-7.75, -1.25]	
Hota 2020	SCI	Balance Ex	UC	20	20	7.1%	-4.55 [-6.94, -2.16]	
Ozkul 2020	MS	Exergaming	AC	26	13	9.7%	-2.50 [-3.79, -1.21]	
Tollar 2020	MS	Exergaming	WL	28	12	8.3%	-5.20 [-7.08, -3.32]	
Yazgan 2019	MS	Exergaming	WL	27	15	8.8%	-3.47 [-5.12, -1.82]	
Subtotal (95% CI)	0.44.052-4	6.53, df = 12 (P < 0.000	04): 12 - 740/	334	303	100.0%	-3.97 [-5.00, -2.94]	•
Test for overall effect: 2		, ,	01), 1" = 74%					
Multimodal ex								
Sangelaji 2014	MS	PRE+Aerob+Bal	Previous	35	20	59.9%	-3.34 [-3.57, -3.11]	
Sangelaji 2016	MS	PRE+Aerob	Previous	30	10	36.6%	-3.41 [-3.92, -2.90]	+
Ebrahimi 2015	MS	PRE+Bal (WBV)	Previous	16	14	1.2%	-4.21 [-8.32, -0.10]	
Tarakci 2013	MS	, ,	Previous	51	48	2.4%	-6.46 [-9.28, -3.64]	——————————————————————————————————————
Subtotal (95% CI)				132	92	100.0%	-3.45 [-3.89, -3.01]	♦
Heterogeneity: Tau ² = 0 Test for overall effect: 2		85, df = 3 (P = 0.18); I ² < 0.00001)	= 38%					
Total (95% CI)				558	448	100.0%	-3.64 [-4.23, -3.04]	▲
	0.87: Chi² = 6	9.52, df = 22 (P < 0.000	01): l ² = 68%				5.01[▼
Test for overall effect: 2	,	· · · · · ·	//					-10 -5 0 5
Test for subgroup differences: Chi ² = 7.29, df = 3 (P = 0.06), l ² = 58.8%								Favors Exercise Favors Control

Abbreviations: Δ = change; Aerob = aerobic exercise; Aqua = aquatic exercise; BBB = Berg Balance Scale; Bal = balance training; C&C = Cawthorne and Cooksey exercises; CI = confidence interval; CoDuSe = core stability, dual task and sensorimotor challenges; Cond. = condition; Conv. = conventional; CP = cerebral palsy; ex = exercise; MD = mean difference; MS = multiple sclerosis; NOS = not otherwise specified; PC = personal computer; PL = profile likelihood; PNF = proprioceptive neuromuscular facilitation; PRE = progressive resistance exercise; Previous = continuation of previous activities; Rehab = rehabilitation; SCI = spinal cord injury; WL = waitlist

KQ2a: Clinical Outcomes

Cardiometabolic Disease

No studies were identified that assessed the long-term (or short-term) benefits of physical exercise on the primary, secondary, or tertiary prevention of cardiovascular disease and diabetes. Although some studies did examine the effect of exercise on intermediate outcomes such as resting heart rate, lipid levels, and serum glucose (discussed in KQ2b), there were no included studies that reported prevention of myocardial infarction, stroke, or the development of diabetes. A history of cardiovascular or metabolic disorders was often used as exclusion criteria in trials enrolling adults with MS and SCI. This prevented examination of the effects of exercise on improvement in cardiovascular disease or diabetes symptoms. (CP trials were mostly in children and adolescents and did not typically address cardiometabolic disease.)

Obesity

No included studies provided evidence for the development of obesity or overweight or the proportion of patients who were no longer overweight or obese following an intervention.

Depression and Anxiety

While there was a lack of evidence on cardiometabolic disease and exercise, multiple trials addressed mental health and administered validated self-report mental health instruments (e.g., Beck Depression Inventory [BDI], Hospital Anxiety and Depression Scale [HADS]) before and after physical exercise. Most trials were in participants with MS (17 RCTs, 4 quasiexperimental trials, total n=973) (Table 40). Three RCTs enrolled participants with SCI (n=171) (Table 41).

Multiple Sclerosis

The best quality evidence in MS patients was in RAGT (3 good-quality RCTs, $^{96-98}$ 1 fairquality RCT, 95 209 studies), followed by cycling studies (3 fair-quality RCTs, 53,77,80 n=169) and aqua therapy (2 good-quality RCTs, 70,71 n=109). Other interventions in trials with evidence for mental health in participants with MS included treadmill training, calisthenics, Tai Chi, Pilates, aquatics, yoga, and progressive resistance training, and multimodal exercises (Table 40). All but one trial¹¹⁷ enrolled more females than males, with most adults in their 30s and 40s.

In the four RAGT RCTs (one with virtual reality) in participants with MS, two studies used the Hamilton Rating Scale for Depression^{95,96} (HRSD, also called the Hamilton Depression Rating Scale, abbreviated HDRS or HAM-D) and two trials used the Patient Health Questionnaire-9 (PHQ-9).^{97,98} Comparison groups were usual rehabilitation exercises, walking therapy without RAGT, and RAGT without virtual reality. Comparisons between RAGT and control groups indicated improved depression scores after exercise, with no differences between exercise groups.

The instruments used in the three MS cycling RCTs were the Inventory of Depressive Symptomatology Self Report 16 item (IDS-16-SR), the BDI, and the BDI-II. All trials had a usual care or waitlist control arm and one trial also had a vestibular rehabilitation comparison group. In two RCTs^{53,77} exercise was associated with improved baseline to postintervention depression scores that were statistically significant, whereas the usual care arms did not show significant improvement, but between group differences failed to reach significance. The third RCT found no differences between either cycling or vestibular rehabilitation and control.⁸⁰

Author, Year	•	.	nts with multiple sclerosis
Intervention			
Study Design	Intervention		
Study Quality	and Comparison	Population	Results
Ahmadi, 2013 ¹²⁰ Aerobic/ Postural control RCT Fair Aydin, 2014 ⁵⁹	 A. Treadmill, 24 sessions over 8 weeks (n=10) A. Yoga, 24 sessions over 8 weeks (n=11) B. Waitlist control (n=10) A. Callisthenic 	A vs. B vs. C Age: 37 vs. 32 vs. 37 Female: 100% EDSS: 2.40 vs. 2.00 vs. 2.25	A vs. B vs. C, mean (SD), p=between groups: <u>BDI:</u> 8.50 (3.06 to 5.60 (3.40) vs. 17.36 (12.42) to 11.09 (12.46) vs. 11.90 (9.39) to 12.50 (8.1) A vs. B, p=0.11 A vs. C, p=0.11 B. vs. C, p=p=0.001 <u>BAI</u> : 7.90 (5.91) to 6.10 (4.95) vs. 12.45 (4.54) to 6.45 (3.61) vs. 7.50 (6.77) to 8.20 (7.39) A vs. B, p=0.01 A vs. C, p=0.22 B vs. C, p=0.001 A vs. B, mean (SD)
Aerobics	exercises (in clinic): 60 sessions, over 12	Age: 32.6 vs. 33 Female: 56% vs.	HADS-A <u>:</u> 10.63 (7.33) vs. 11.05 (5.73), p=0.762
RCT	weeks, (n=16) B. Callisthenic	55% EDSS: 3.6 vs. 3.4	(baseline) 8.69 (6.11) vs. 10.00 (5.36), p=0.482 (postintervention)
Fair	exercises (home- based): 60 sessions, over 12 weeks, (n=20)		Pre-post exercise intra-group comparison: Difference –1.94 (2.35) –1.05 (1.32), p=0.412 HADS-D:
D 1 004077		A	8.50 (3.74) vs. 6.75 (3.23), p=0.212 (baseline) 6.13 (3.26) vs. 8.60 (2.41), p=0.011 (postintervention) Pre-post exercise intra-group comparison: Difference -1.94 (2.35) vs. 1.85 (1.60), p=<0.001
Baquet, 2018 ⁷⁷ Aerobic	A. Bicycle ergometry, 24-36 sessions over 12 weeks (n=34)	A vs. B Age: 38.2 vs. 39.6 Female: 62% vs.	A vs. B, mean difference between groups: IDS16-SR: 0.5, 95% CI –0.8 to 1.9, p=0.44
exercise	B. Waitlist control	74% EDSS: 1.7 vs. 1.8	10310-31. 0.3, 93 % 01 -0.8 to 1.9, p-0.44
RCT	group (n=34)	RRMS: 100%	
Fair			
Burschka, 2014 ¹⁷³	A. Tai Chi, 48 sessions 6 months (n=15)	A vs. B Age: 42 vs. 43 Female: 66% vs.	A vs. B, mean (SD), p=between groups: <u>CES-D:</u>
Postural	(11-10)	71%	12.21 (6.66) vs. 13.87 (10.82) (baseline)
control	B. Usual care (n=17)	Ambulatory: 100% RRMS: 93% vs. 76%	7.67 (5.12) vs. 16.13 (11.99) (postintervention)
Quasiexperime ntal		SPMS: 0% vs. 24% CIS: 7% vs. 0%	Tai Chi resulted in greater improvement in CES- D scores than usual care, p<0.05
Poor			
Cakit, 2010 ²²⁵	A. Progressive resistance cycling	A vs. B Age: 36.4 vs. 35.5	A vs. B, mean (SD), p=between groups:
Multimodal	plus balance	Female: 64% vs.	BDI:
exercise	exercises (lower extremity	67% RRMS or SPMS:	22.8 (12.7) vs. 27.0 (17.6) (baseline) 17.2 (12.3) vs. 25.4 (22.8) (postintervention)
RCT	strengthening),16 sessions over 8	100% Assistive device:	-5.5 (5.3) vs1.6 (6.0), p=<0.05 (pre-post
Poor	weeks (n=14) B. Usual care (n=9)	28.5% vs. 37.5% Fall frequency last year: 2.0 vs. 2.4	change)

Author, Year			
Intervention Study Design	Intervention		
Study Quality	and Comparison	Population	Results
Calabro,	A. Lokomat-Pros	A vs. B	HRSD median change score, p=between
2017 ⁹⁶	(RAGT + VR), 40	Age: 44 vs. 41	groups:
Aanabia	sessions over 8	Female: 65% vs.	
Aerobic exercise	weeks (n=20)	60% EDSS: 4.40 vs. 4.75	-0.062, 95% CI -4.932 to 4.808, p=0.90
	B. Lokomat-Nanos		
RCT	(RAGT), 40 sessions		
Good	over 8 weeks (n=20)		
Castro-	A. Ai-Chi aqua	A vs. B	A vs. B, median (SD), p-value=between groups:
Sanchez,	therapy with Tai-Chi	Age: 46 vs. 50	A vo. b, median (ob), p-value-between groups.
2012 ⁷¹	music, 40 sessions	Female: 72% vs.	BDI: 14 (7.72) to 5 (3.2) vs. 15 (8.68) to 13
A	over 20 weeks	65%	(5.91), p<0.05
Aerobic Exercise	(n=36)	EDSS: 6.3 vs. 5.9 PPMS: 17% vs. 24%	Differences in depression scores were
Exercise	B. Relaxation	SPMS: 25% vs. 32%	maintained at 24 weeks (4 weeks
RCT	exercises on exercise		postintervention) but there was no difference
Good	mat without music, 40 sessions over 20		between groups at 30 weeks
0000	weeks (n=37)		
Dalgas, 2009 ²⁰²	A. Progressive	A vs. B	A vs. B, mean (SD), p=between groups:
Dalgas, 2010 ²⁰³	resistance, 24	Age: 45 vs. 48	
Strength	sessions over 12 weeks (n=15)	Female: 63% vs. 67%	<u>MDI (</u> 20 to 24, mild depression; 25 to 29, moderate depression; >29, major depression):
ouoligai		Ambulatory to 100m:	10.3, 95% CI 7.0 to 13.5 vs. 8.8, 95% CI 6.4 to
RCT	B. Waitlist control	100%	11.3 (baseline)
Fair	(n=16)	RRMS: 100%	7.9, 95% CI 5.2 to 10.6 vs. 9.9, 95% CI 7.4 to
ган			12.5 (postintervention)
			Mean change between group NR, p=0.01
Gervasoni,	A. 30 minutes	A vs. B	Median change scores, p=between groups:
2014 ¹¹⁷	conventional therapy + 15 minutes	Age: 49.6 vs. 45.7 Female: 40%	PANAS positive:
Aerobic	treadmill training, 12	Able to walk 6 meters	1.0 vs. 5.0, p=0.86
Exercise	sessions over 2	with or without assist	PANAS negative
	weeks (n=15)	device	–5.0 vs. –2.0, p=0.48
RCT	B. 45 minutes	EDSS: 5.25 (3.0 to 6.5)	
Fair	conventional therapy,	RRMS: 47.6%	
	12 sessions over 2	PPMS: 19.0%	
	weeks (n=15)	SPMS: 33.3%	
Hebert, 2011 ⁸⁰	A. Bicycle	A vs. B vs. C	Mean difference between groups:
Aerobic	Ergometry, 12 sessions for 6 weeks	Age: 46.8 vs. 42.6 vs. 50.2	BDI-II:
Exercise	(n=12)	Female: 75% vs.	<u>A vs. B</u> : 4.4, 95% CI –3.0 to 11.9, p=0.431
		85% vs. 85%	
RCT	B. Vestibular rehab	Ambulatory: 100%	<u>A vs. C</u> : 5.0, 95% CI –2.5 to 12.4, p=0.307
Fair	(n=13)		<u>B vs. C:</u> 0.6, 95% CI –6.8 to 7.8, p=1.00
	C. Waitlist control		<u></u>
	(n=13)		

Author, Year			
Intervention			
Study Design	Intervention		
Study Quality	and Comparison	Population	Results
Kara, 2017 ⁶²	A. Pilates, 16	A vs. B	A vs. B, mean (SD), p=between groups:
	sessions over 8	Age: 50 vs. 43 Female: 67% vs.	
Strength	weeks (n=27)	65%	BDI: 11.44 (6.52) vs. 8.92 (6.49), p=0.001 (baseline)
ouongui	B. Multimodal	EDSS: 2.85 vs. 3.2	9.77 (5.26) vs. 7.15 (6.35), p=0.156
Quasiexperime	exercise (focus on		(postintervention)
ntal	aerobic), 16 sessions		, , , , , , , , , , , , , , , , , , ,
	over 8 weeks (n=28)		Mean change between groups:
Poor			0.1, 95% CI –0.4.53 to 4.73, p=0.97
Keser, 201163	A. Calisthenics, 18	A vs. B	A vs. B, p=between groups:
Aanahia	sessions over 6	Age: 36 vs. 35 Female: 53% vs.	HADS Anviety secres not provided
Aerobic exercise	weeks (n=15)	47%	HADS Anxiety: scores not provided
exercise	B. Routine neuro-	EDSS: 2.9 vs. 2.8	HADS Depression: scores not provided
Quasiexperime	rehab (strength,	LD00. 2.0 V3. 2.0	TINDO Depression.
ntal	balance,		Differences between groups were not
	coordination,		significant, p>0.05
Poor	spasticity exercises),		
	18 sessions over 6		
Newswerk	weeks (n=15)		
Negaresh, 2019 ⁵³	A. Normal BMI cycling UE/LE, 24	A vs. B vs. C vs. D Age: 31.2 vs. 29.1 vs.	A vs. B vs. C vs. D (scores are estimates from graph)
2013	sessions over 8	32.1 vs. 2.1	(scores are estimates from graph)
Aerobic	weeks (n=18)	Female: 64% vs.	BDI change score from baseline:
exercise		64% vs. 64% vs.	-4.8 vs. 0.1 vs2.5 vs0.1, p=0.005
DOT	B. Normal BMI	69%	
RCT	control (n=15)	RRMS: 100%	Interaction between Weight and Exercise
Fair	C. Overweight		p=0.14
i uii	cycling UE/LE, 24		
	sessions over 8		
	weeks (n=17)		
	D. Overweight control (n=13)		
Ozkul, 2020b ²³²	A. Aerobic exercise +	A vs. B	A vs. B, mean change (SD), p=between groups
, _0_00	Pilates, 24 sessions	Age: 35.88 vs. 36.76	
Multimodal	over 8 weeks (n=17)	Female: 76% vs.	BDI: Mean change -1.88 (5.35) vs. 3.24 (8.86),
exercise		76%	p=0.05
DOT	B. Relaxation	RRMS: 100%	
RCT	exercises, 24 sessions over 8	EDSS: 1.50 vs. 1.71	
Fair	weeks (n=17)		
Razazian,	A. Aquatic Exercise,	A vs. B vs. C	A vs. B vs. C, mean (SD), p=between groups:
2016 ⁷⁰	24 sessions over 8	Age: 35.4 vs. 33.3 vs.	BDI: 19.17 (7.83) vs. 19.72 (7.04) vs. 20.78
	weeks (n=18)	33.1	(6.22) (baseline)
Aerobic/Postur		Female: 100%	4.78 (3.42) vs. 5.06 (2.92) vs. 21.33 (6.88)
al control	B. Yoga, 24 sessions	EDSS: 3.44 vs. 3.89	(postintervention)
PCT	over 8 weeks (n=18)	VS. 3.25	Mean change in BDI between groups:
RCT	C. Attention control	RRMS: 61% vs. 72% vs. 67%	<u>A vs. C</u> MD 14.94, 95% CI 10.57 to 19.31, p<0.001
Poor	(18)	SPMS: 11% vs. 6%	<u>B vs. C</u>
	()	vs. 11%	MD 15.21, 95% CI 11.06 to 19.36, p<0.001
		Progressive-	<u>A vs. B</u>
		relapsing MS: 28%	MD –0.27, 95% CI –4.50 to 3.96, p=0.90
		vs. 22% vs. 22%	

Author, Year			
Intervention Study Design	Intervention		
Study Quality	and Comparison	Population	Results
Roppolo, 2013 ²³³ Multimodal	A. Aerobic + Strength training, 24 sessions over 12 weeks (n=17)	A vs. B Age: 40 vs. 40 Female: 100% EDSS: 1.5 vs. 2.0	A vs. B, mean (SD), p=between groups <u>BDI:</u> 8.8 (5.8) to 3.4 (2.9) vs. 9.2 (3.7) to 17.0 (7.0), MD 13.2, 95% CI 9.86 to 16.55, p<0.001
Quasiexperime ntal Fair	B. Control group (activity not specified) (n=18)		
Russo, 2018 ⁹⁵	A. RAGT, 18	A vs. B	A vs. B, mean difference, p=between groups
Aerobic exercise RCT	sessions over 6 weeks then 36 sessions of rehab exercises over 12 weeks (n=30)	Age: 42 vs. 41 Female: 53% vs. 67%	<u>HRSD</u> one month postintervention: 10.0 vs. 12.5 (baseline) 7.0 vs. 7.0 (postintervention) Mean difference between groups:
Fair	B. Rehab exercises, 54 sessions over 18 weeks (n=15)		–2.5, 95% CI –7.135 to 2.135, p=0.29
Sadeghi Bahmani, 2019 ⁶¹ Aerobics/ Postural control RCT Fair	A. Endurance training (treadmill, cycling, walking, jogging), 24 sessions over 8 weeks (n=26) B. Balance and coordination exercises, 24 sessions over 8 wooks (n=24)	A vs. B vs. C Age: 38 vs. 39 vs. 38 Female: 100% EDSS: 2.46 vs. 3.38 vs. 2.02	A vs. B vs. C, mean (SD), p=between groups: <u>BDI-FS:</u> 7.92 (5.11) to 5.12 (4.65) vs. 7.96 (6.67) to 5.29 (5.75) vs. 6.24 (4.47) to 6.52 (4.91) <u>A vs. C:</u> MD 3.08, 95% CI 0.33 to 5.84, p=0.028 <u>B vs. C</u> : MD 2.95, 95% CI –0.26 to 6.16, p=0.072
Fair	weeks (n=24) C. Attention control, 24 sessions over 8 weeks (n=21)		<u>A vs. B</u> : MD 0.13, 95% CI –3.00 to 3.26, p=0.935
Sadeghi Bahmani, 2020 Aerobic exercise RCT	A. Aquatic exercise, 16 sessions over 8 weeks (n=20) B. Aquatic exercise, 24 sessions over 8 weeks (n=18)	A vs. B vs. C Age: 39.35 vs. 40.61 vs. 33.77 Female: 100% EDSS (median): 3.0 vs. 1.5 vs. 1.5	Mean (SE) of change scores, p=between all 3 groups BDI-Fast Screen: 4.80 (5.90) vs. 7.83 (4.91) vs. 6.05 (4.49), p<0.001
Fair	C. Active control, (social program) 16 to 24 sessions over 8 weeks (n=22)		
Straudi, 2016 ⁹⁷ Aerobic exercise	A. RAGT, 12 sessions o)ver 6 weeks (n=27)	A vs. B Age: 52 vs. 54 Female: 63% vs. 68%	<u>PHQ-9:</u> T2-T0: –1.7 (3.24) vs. –3.04 (4.66), p=0.213
RCT	B. Walking therapy without RAGT, 12 sessions over 6	EDSS: 6.43 vs. 6.46 PPMS: 33% vs. 28% SPMS: 67% vs. 72%	
Good	weeks (n=25)		

Author, Year Intervention Study Design Study Quality	Intervention and Comparison	Population	Results
Straudi, 201998	A. RAGT, 12	A vs. B	A vs. B, mean difference between groups:
	sessions over 4	Age: 56 vs. 55	
Aerobic	weeks (n=36)	Female: 67% vs.	PHQ-9: -0.4, 95% CI -2.3 to 1.4, p=0.86
exercise		69%	
	B. Overground	EDSS: 6.5 vs. 6.5	
RCT	walking, 12 sessions	PPMS: 50% vs. 45%	
	over 4 weeks (n=36)	SPMS: 50% vs. 55%	
Good	, , ,		

Abbreviations: BDI = Beck Depression Inventory; BDI-FS = Beck Depression Inventory-Fast Screen; BMI = body mass index; CES-D = Center for Epidemiologic Studies Depression Scale; CI = confidence interval; CIS = Clinically Isolated Syndrome; EDSS = Expanded Disability Status Scale; HADS = Hospital Anxiety and Depression Scale; HRSD = Hamilton Rating Scale for Depression; IDS16-SR = 16-item version of Inventory of Depressive Symptomatology Self-Rated; MD = mean difference; MDI = Major Depression Inventory; NR = not reported; PANAS = Positive and Negative Affect Schedule; PHQ-9=Patient Health Questionnaire-9; PPMS = primary progressive multiple sclerosis; RAGT = robot-assisted gait training; RCT = randomized controlled trial; RRMS = relapsing-remitting multiple sclerosis; SD = standard deviation; SE- standard error; SPMS = secondary progressive multiple sclerosis; VR = virtual reality

Results from head-to-head exercise interventions in MS RCTs not already discussed include cycling versus vestibular rehabilitation,^{79,80} treadmill versus yoga,¹²⁰ and aquatic exercise versus yoga⁷⁰ or versus relaxation exercises on a mat.^{70,71} In two trials all exercise arms demonstrated statistically significantly improved depression scores at end of treatment compared with baseline. One good-quality aquatics trial found improved depression scores at end of treatment versus the control group with the differences maintained at 10 weeks postintervention.^{70,71} However, there were no differences between cycling and vestibular rehabilitation or between aquatic exercise and yoga in change in depression scores with exercise. In one RCT, yoga was associated with improved depression and anxiety scores compared with control, but treadmill training was associated with greater improvement than yoga on anxiety scores.¹²⁰

Two poor-quality quasiexperimental studies compared calisthenics with neuro-rehabilitation exercises⁶³ and Pilates with multimodal exercises.⁶² Scores on the HADS anxiety scale were improved with calisthenics and with neuro-rehabilitation exercises, but there were no differences between groups. There were also no differences in pre-post exercise changes on the BDI between Pilates and multimodal exercises (aerobic, strengthening, balance, and walking exercises).

Spinal Cord Injury

Three fair-quality RCTs (n=171) examined the effects of physical exercise on mental health in primarily male participants with SCI, most in their 30s and $40s^{89,138,139,244,245}$ (Table 41). All three RCTs administered instruments to measure depression and two of the three trials administered instruments to assess anxiety.^{89,244,245} Exercise interventions included precision track walking, treadmill walking with body weight support as needed, arm cycling, general exercises, whole body strength plus aerobics, and upper body strength plus aerobics. No RCT utilized a waitlist or no exercise control. Exercise did not improve anxiety or depression scores from baseline in any of the trials, and there were also no differences on mental health measures between exercise groups within trials (p>0.05).

Table 41. Effects of exercise on	depression and anxiet	y in spinal cord injury

Author, Year			
Intervention			
Study Design	Intervention		
Study Quality	and Comparison	Population	Results
Akkurt, 2017 ⁸⁹	A. Arm ergometer,	A vs. B	A vs. B, median:
	36 sessions over 12	Age: 33 vs. 37	
Aerobic exercise	weeks plus 120	Female: 5% vs. 19%	HADS change scores:
	sessions general	Ambulatory:41% vs.	0 vs. 0.5, p>0.05
RCT	exercises over 12	50%	
	weeks (n=17)	Wheelchair user:	CES-D change scores: -3 vs. 3, p>0.05
Fair		59% vs. 50%	
	B. General	Paraplegia:100% vs.	
	exercises, 120	94%	
	sessions over 12		
	weeks (n=16)		
Galea, 2018 ²⁴⁵	A. Whole body	A vs. B	A vs. B, mean (SD), p=between groups:
	strength + aerobics,	Age: 40.1 vs. 42.8	HADS-Anxiety
Multimodal	36 sessions over 12	Female: 15%	10.3 (1.8) vs. 10.5 (1.8) (baseline)
exercise	weeks (n=60)	vs.16%	10.4 (1.6) vs. 10.1 (1.6) (postintervention)
		ASIA A: 48% vs.	MD 0.29, 95% CI –0.25 to 0.83, p=0.291
RCT	B. Upper body	50%	(postintervention)
	strength + aerobics,	ASIA B: 15% vs.	MD –0.14,95% CI –0.89 to 0.60, p=0.701 (24
Fair	36 sessions over 12	14%	weeks—12 weeks postintervention)
	weeks (n=56)	ASIA C: 12% vs. 9%	HADS-Depression
		ASIA D: 25% vs.	10.5 (2) vs. 10.4 (2.1) (baseline)
		27%	10 (1.6) vs. 10.2 (1.3) (postintervention)
		C2-C8: 48% vs. 59%	MD –0.28, 95% CI –0.83 to 0.27, p=0.309
		T1-T6: 30% vs. 23%	(postintervention)
		T7-T12: 22% vs.	10.1 (1.5) vs. 10.2 (1.4)
		18%	MD –0.23 (95% CI –0.81 to 0.35), p=0.428
			(24 weeks—12 weeks postintervention)
Yang, 2014 ¹³⁸	A. Precision track	A vs. B	A vs. B
	walking training, 40	Age: 44 vs. 48	Pre-post change scores (estimated from
Aerobic Exercise	sessions over 8	Female: 30% vs.	graph)
	weeks (n=11)	30%	ČES-D: –2.7 vs. –2.4, p>0.05
RCT (Crossover)		Able to walk > 5	· · · · · · · · · · · · · · · · · · ·
, ,	B. BWS (if needed)	meters with walking	Both groups achieved significant improvement
Fair	treadmill walking, 40	aid or braces	from baseline, p<0.05
	sessions over 8		
	weeks (n=11)		
A11 ' .' ACTA	· · · · · · · · · · · ·		1 DWG 1 1 '1' (1 GL C1

Abbreviations: ASIA = American Spinal Injury Association Impairment Scale; BWS = body weight supported; CI = confidence interval; CES-D = Center for Epidemiologic Studies Depression Scale; HADS = Hospital Anxiety and Depression Scale; MD = mean difference; RCT = randomized controlled trial; SD = standard deviation

Depression Across Interventions and Populations

In order to determine if general physical exercise (e.g., RAGT, cycling, and strength training) has an effect on depression scores, we looked for RCTs that included a low-intensity usual care, waitlist control, or no intervention comparison arm in any included population. Eleven RCTs (9 fair quality^{53,61,72,77,80,83,95,120,203,232} and 2 poor quality^{70,225}) in participants with MS reported data that could be combined in meta-analysis. Interventions included treadmill, cycling, motion gaming, interval exercises, RAGT, and progressive resistance exercises with and without aerobic plus balance exercises. Usual care consisted of waitlist controls, conventional rehabilitation, and continuation of previous activity level. One trial assessed postintervention.⁹⁵ Pooled analysis of these RCTs (n=522) found physical exercise associated with greater improvement in depression

scores compared with usual care (SMD -0.29, 95% CI -0.50 to -0.03, I²=8%, p=0.005) (Figure 37). There were no differences between groups based on type of exercise intervention (p=0.94).

				N	N		SMD Δ Scores			
Study	Cond.	Exercise	Control	Exercise	Control	Weight	PL [95% CI]			
Aerobic										
Baquet 2018	MS	Cycling	WL	34	34	21.1%	-0.12 [-0.60, 0.36]			•+
Hebert 2011*	MS	Cycling	WL	13	13	10.8%	-0.03 [-0.80, 0.74]			
Negaresh 2018	MS	Interval	No Exercise	34	27	19.5%	-0.39 [-0.90, 0.12]			+
Russo 2018	MS	RAGT+Conv. Rehab	Conv. Rehab	30	15	14.9%	0.28 [-0.34, 0.90]			
Razaaian 2015 Aquatic	MS	Aquatics	AC	18	9	9.4%	-1.25 [-2.09, -0.41]	←		
Ahmadi 2013b	MS	Treadmill	WL	10	5	6.1%	-0.32 [-1.40, 0.76]			<u> </u>
Sadeeghi-Bahrami 2019	MS	Treadmill+Cycle+Walk+Jog		26	10	7.5%	-0.37 [-1.33, 0.59]			<u> </u>
Tollar 2020	MS	Cvcling	WL	14	12	10.7%	-0.10 [-0.87, 0.67]			
Bahmani 2020	MS	Aquatics	AC	20	22	0.3%	-1.25 [-4.44, 1.94]	←		
	mo	Aqualoo	110							
Subtotal (95% CI)				199	147	100.0%	-0.24 [-0.51, 0.03]			7
Heterogeneity: Tau ² = 0	.03; Chi ²	= 9.70, df = 8 (P = 0.29); l ² =	17%							
Test for overall effect: Z	= 1.75 (F	P = 0.08)								
Strength ex	1-	1								
Dalgas 2010	MS	PRE	Previous	15	16	54.2%	-0.32 [-1.03, 0.39]	_		<u> </u>
Tollar 2020	MS	PNF	WL	13	10	45.8%	-0.04 [-0.81, 0.73]			
Subtotal (95% CI)				29	28	40.0%	-0.19 [-0.71, 0.33]			
· /	10· Chi² -	0.28, df = 1 (P = 0.60); l ² = 09	6							1
Test for overall effect: Z			U							
resciol overall effect. Z	- 0.72 (P	- 0.+7)								
Postural Control ex										
Razaaian 2015 Yoga	MS	Yoga	AC	18	9	24.2%	-1.34 [-2.18, -0.50]	←∎		
Ahmadi 2013b	MS	Yoga	WL	10	5	19.1%	-0.32 [-1.38, 0.74]			
Sadeeghi-Bahrami 2019		Bal+Coordination	Conv. PT	24	J 11	27.8%	-0.16 [-0.87, 0.55]			
Tollar 2020	MS	Exergaming	WL	24 14	12	28.9%	0.06 [-0.62, 0.74]			
Subtotal (95% CI)				67	37	100.0%	-0.41 [-1.03, 0.20]			
, ,	22. Chi2 =	6.96, df = 3 (P = 0.07); l ² = 57	106			100.070	0.41 [1.00, 0.20]			
Test for overall effect: Z	,	, , , ,	70							
	- 1.02 (1	- 0.13)								
Multimodal ex										
Cakit 2010	MS	PRE+Aerob+Bal	Previous	14	9	39.1%	-0.32 [-1.16, 0.52]			
Ozkul 2020	MS	Aerob+Pilates	AC	14	3 17	60.9%	-0.34 [-1.01, 0.33]	_		
Subtotal (95% CI)	MO	AGOD TIMES		31	26	100.0%	-0.33 [-0.86, 0.19]			
	10· Chi2 -	$0.00 \text{ df} = 1 (P = 0.07) \cdot 12 - 00$	6	•••						
. ,	Ju, Uni ⁻ -		U.							
Heterogeneity: Tau ² = 0.	- 1 24 /P									
Heterogeneity: Tau ² = 0.	= 1.24 (P	- 0.22)								1
Heterogeneity: Tau² = 0. Test for overall effect: Z	= 1.24 (P	- 0.22)		326	238	100.0%	-0.29 [-0.50, -0.03]		-	▶
Heterogeneity: Tau ² = 0. Test for overall effect: Z = Total (95% CI)	,	,	8%	326	238	100.0%	-0.29 [-0.50, -0.03]		•	•
Heterogeneity: Tau ² = 0. Test for overall effect: Z Total (95% CI) Heterogeneity: Tau ² = 0.	01; Chi² =	17.39, df = 16 (P = 0.36); l ² =	8%	326	238	100.0%	-0.29 [-0.50, -0.03]		•	•
Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = Total (95% CI) Heterogeneity: Tau ² = 0.1 Test for overall effect: Z =	01; Chi² = = 2.82cP =	17.39, df = 16 (P = 0.36); l² = = 0.005)		326	238	100.0%	-0.29 [-0.50, -0.03]		•	•
Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = Total (95% CI) Heterogeneity: Tau ² = 0.1 Test for overall effect: Z =	01; Chi² = = 2.82cP =	17.39, df = 16 (P = 0.36); l ² =		326	238	100.0%	-0.29 [-0.50, -0.03]		•	► +
Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = Total (95% CI) Heterogeneity: Tau ² = 0.1 Test for overall effect: Z =	01; Chi² = = 2.82cP =	17.39, df = 16 (P = 0.36); l² = = 0.005)		326	238	100.0%	-0.29 [-0.50, -0.03]		-0.5	0 0.5 1 e Favors Control

Figure 37. Effect of exercise versus usua	l care on depressio	scores in multir	ole sclerosis
Inguio on Enoor of excision versus doud			

Abbreviations: Δ = change; AC = attention control; Aerob = aerobic exercise; Bal = balance training; CI = confidence interval; Cond. = condition; Conv. = conventional; ex = exercise; MD = mean difference; MS = multiple sclerosis; PL = profile likelihood; PNF = proprioceptive neuromuscular facilitation; PRE = progressive resistance exercise; Previous = continuation of previous activities; PT = physical therapy; RAGT = robotic assisted gait training; SMD = standardized mean difference; WL = waitlist

These findings in trials comparing exercise with no exercise or usual care provided moderate-strength evidence of a benefit of exercise versus no exercise or versus low-intensity usual care on depression scores in adult participants with MS. There was much less evidence in SCI (3 trials, n=171)^{89,138,245} where there was no difference in depression with exercise, although data could not be pooled (SOE: low). No studies with depression outcomes that met inclusion criteria were identified in participants with CP (SOE: insufficient).

Only two studies, one in MS⁶³ and one in SCI,^{244,245} reported results from instruments measuring anxiety, resulting in insufficient evidence from which to draw conclusions regarding the benefit of exercise on anxiety.

Sexual Function

One fair-quality study randomized 62 women with MS to aquatic exercise two times weekly, three times weekly, or to an active control (social encounters at hospital) for 8 weeks.⁷² The Female Sexual Function Index contains 19 questions covering sexual desire, sexual arousal, lubrication, orgasm, sexual satisfaction, and pain. Aquatic exercises included warm up, walking, stretching, gymnastics, relay races, strength training, team competitions, and crossing the pool alone. Higher scores indicated greater sexual function. After controlling for baseline values, the highest scores were achieved in the group that exercised two times weekly (52.14) followed by three times weekly (48.80), and active control (42.80) (p<0.001).

KQ2b: Intermediate Outcomes

Forty-two studies (36 RCTs, 5 quasiexperimental studies, and 1 cohort study) evaluated the effect of physical activity on intermediate outcomes. ${}^{53,63,75-78,82,88,89,91-93,117,125,132-137,140,147,186,198,204,206-209,211-213,216-222,224,227,228,230,231,234-237,242,243,246,247,249} Eighteen studies enrolled participants with MS (n=984), <math>{}^{53,63,76-78,117,147,186,198,204,206,220-222,224,227,228,230,231}$ (Table 42), 11 studies enrolled children with CP (n=401), ${}^{88,125,132,207-209,211-213,216,217,234-237,242,243}$ (Table 43), and 13 enrolled participants with SCI (n=519) ${}^{75,82,89,91-93,133-137,140,213,249}$ (Table 44).

Author, Year			
Intervention			
Study Design	Intervention	Population	
Study Quality	and Comparison	(Multiple Sclerosis)	Results
Abbasi, 2019 ¹⁸⁶	A. Whole body	A vs. B	A vs. B, median difference (interquartile
	vibration, 18	Age: 37 vs. 39	range), p-value is between groups
Postural control	sessions over 6	Female: 4.5% vs. 16.7%	Strength:
	weeks (n=22)	EDSS: 1.54 vs. 1.55	<u>Trunk Flexor</u> : 25.83 (8.83 to 46.41) vs. –0.33
RCT			(–5.67 to 6.75), p<0.001
	B. No treatment, no		<u>Trunk Extensor</u> : 38.17 (20.75 to 70) vs. –1.49
Fair	exercise (n=24)		(–11.83 to 3.49), p<0.001
Amiri, 2019 ¹⁴⁷	A. Core stability	A vs. B	Core strength tests (R/L hip abduction, R/L
	training, 30	Age: 32 vs. 31	external rotation) demonstrate significant
Postural control	sessions over 10	Female: 100%	differences in strength based on baseline
	weeks (n=35)	EDSS: 3.56 vs. 3.74	EDSS score (2.5-3.5; 3.5-4.5; 4.5-5.5),
RCT			p<0.001
	B. Conventional		
Fair	care including		Plank test: significant differences between
	stretching and		groups based on EDSS score, p<0.001
	range of motion		Quarall static balance tests domenstrate
	exercises (n=34)		Overall static balance tests demonstrate
			significant differences in strength based on
			baseline EDSS score and significant
			differences compared with the control group, p<0.001
			p = 0.001
			Greatest improvements seen in those with
			greatest disability (least strong)

Table 42. Intermediate outcomes of physical activity in participants with multiple sclerosis

Author, Year			
Intervention			
Study Design	Intervention	Population	
Study Quality	and Comparison	(Multiple Sclerosis)	Results
Baquet, 2018 ⁷⁷	A. Bicycle	A vs. B	A vs. B, mean difference between groups:
Aerobic exercise	ergometry, 24-36 sessions over 12	Age: 38.2 vs. 39.6 Female: 62% vs. 74%	<u>VO₂ peak (ml/min):</u> –51.4, 95% CI –165.2 to
Aerobic exercise	weeks (n=34)	EDSS: 1.7 vs. 1.8	$\frac{VO_2}{100}$ peak (m/mm)51.4, 95% CI = 105.2 to 62.5, p=0.37
RCT		RRMS: 100%	VO ₂ peak (ml/min/kg): -0.9, 95% CI -2.5 to
	B. Waitlist control		0.6, p=0.24
Fair	group (n=34)		
Bulguroglu, 2017 ²⁰⁶	A. Mat Pilates, 16	A vs. B vs. C	A vs. B. vs. C, median:
	sessions over 8	Age: 45 vs. 37 vs. 40	Modified pushup (repetitions/30 seconds):
Strength	weeks (n=12)	Ambulatory: 100%	6.5 to 10 vs. 3 to 10 vs. 7 to 7
RCT	B. Reformer Pilates,	EDSS: 1.8 vs. 2.0 vs. 1.0	Modified sit-up (repetitions/30 seconds): 6 to 7.5 vs. 10 to 15 vs. 4 to 8
	16 sessions over 8	1.0	Trunk flexor test (seconds):
Poor	weeks (n=13)		2.32 to 6 vs. 4.91 to 13.3 vs. 6.46 to 6.4
			Prone bridge (seconds):
	C. Attention control,		18.29 to 25.23 vs. 22.31 to 37.53 vs. 20.68 to
	16 sessions over 8		21.21
	weeks (n=13)		Pilates groups improved significantly over baseline while the control group did not.
Collett, 2011 ⁸²	A. Combined	A vs. B vs. C	Change postintervention: no data provided
001011, 2011	intermittent and	Age: 55 vs. 50 vs. 52	onange posimiervention. no data provided
Aerobic exercise	continuous static	Female: 53% vs. 78%	Leg Power: NS
	cycling, 24 sessions	vs. 80%	
RCT	over 12 weeks	Ambulatory: 100%	
Poor	(n=20)		
1 001	B. Intermittent static		
	cycling, 24 sessions		
	over 12 weeks		
	(n=21)		
	C. Continuous static		
	cycling, 24 sessions		
	over 12 weeks		
	(n=20)		
Dodd, 2011 ²⁰⁴	A. Progressive	A vs. B	A vs. B, mean difference between groups:
Strength	resistance: 20 sessions over 10	Age: 47.7 vs. 50.4 Female: 72% vs. 74%	Max leg press (kg): MD 10.8, 95% CI 4.9 to 16.7, p<0.05
Guengui	weeks (n=39)	Ambulation index	Reverse leg press (kg): MD 5.7, 95% CI 1.9 to
RCT		2 (mild): 47% vs. 54%	9.5, p<0.05
	B. Social program	3 (moderate): 39% vs.	
Good	(attention control),	26%	
	10 sessions x 10	4 (severe): 14% vs. 20%	
	weeks plus usual	Gait aid (yes): 33% vs.	
Duff, 2018 ¹⁹⁸	care (n=37) A. Pilates +	37% A vs. B	A vs. B, mean change:
5011, 2010	massage, 24	Age: 45.7 vs. 45.1	<u>% body fat</u> : -0.2 , 95% CI -1.4 to 1.0 vs. -0.8 ,
Strength	sessions of Pilates	Female: 80% vs. 73%	95% CI –2.0 to 0.4, p=0.51
	and 12 massages	Ambulatory: 100%	
RCT	over 12 weeks	Wheelchair user: 0%	
	(n=15)	RRMS: 93% vs. 73%	
Fair	P Magazza 12	SPMS: 0% vs. 13%	
	B. Massage, 12 massages over 12	PPMS: 7% vs. 13%	
	weeks (n=15)		
		l	

Author, Year			
Intervention			
Study Design	Intervention	Population	
Study Quality	and Comparison	(Multiple Sclerosis)	Results
Ebrahimi, 2015 ²²⁸	A. Whole body	A vs. B	A vs. B, mean (SD)
Lordinini, Loro	vibration + low-	Age: 37.06 vs. 40.75	Modified pushup:
Multimodal exercise	intensity exercise,	Female: 69% vs. 86%	5.31 (4.75) vs. 2.42 (3.99) (baseline)
	30 sessions over 10	Ambulatory: 100%	12.12 (6.54) vs. 2.92 (3.83) (postintervention)
RCT	weeks (n=17)	EDSS: 3.12 vs. 3.10	Time X Group p=0.07
Poor	B. Usual care (n=17)		
Faramarzi, 2020 ²³⁰	A. Resistance +	A vs. B	A vs. B, Positive effect of exercise on:
	cycling or running +	Age criteria: (18 to 50)	Cholesterol: p=0.020, effect of
Banitalebi, 2020 ²³¹	balance exercises +	Female: 100%	disability*exercise p=0.549
Multimodal exercise	Pilates + stretching, 36 sessions over 12	EDSS 0 to 4: 48% to 48%	HDL: p<0.001, effect of disability*exercise p=0.408
RCT	weeks (n=46)	EDSS 4.5 to 6: 27% vs.	<u>LDL</u> : p<0.001, effect of disability*exercise
-		27%	p=0.826
Fair	B. Waitlist control (n=43)	EDSS 6.5 to 8: 23% vs. 23%	<u>TG</u> : $p=0.005$, effect of disability*exercise p=0.982
	(1-10)	2070	VO_2 peak: p=0.004, effect of
			disability*exercise p=0.097
			Body fat %: p=0.001, effect of
			disability*exercise p=0.76
Gervasoni, 2014 ¹¹⁷	A. 30 minutes	A vs. B	A vs. B, mean difference between groups:
	conventional	Age: 49.6 vs. 45.7	
Aerobic	therapy + 15	Female: 40%	Resting HR: 3.76, 95% CI –4.92 to 12.44,
Exercise	minutes treadmill	Able to walk 6 meters	p=0.40
	training, 12	with or without assist	
RCT	sessions over 2	device	
	weeks (n=15)	RRMS: 47.6%	
Fair		PPMS: 19.0%	
	B. 45 minutes	SPMS: 33.3%	
	conventional		
	therapy, 12 sessions over 2		
Heine, 2017 ⁷⁸	weeks (n=15) A. Leg cycling, 48	A vs. B	A vs. B, mean (SD), p=between groups
	sessions over 16	Age: 43.1 vs. 48.2	VO_2 peak (L/min): MD 0.048 (0.082), p=0.561
Aerobic exercise	weeks (n=43)	Female: 74% vs. 72%	VO_2 peak (mL/kg/min): MD 0.040 (0.002), p=0.001 VO_2 peak (mL/kg/min): MD 0.979 (1.075),
		Ambulatory: 100%	p=0.364
RCT	B. MS nurse	EDSS: 2.5 vs. 3.0	F
	consultation, 3	RRMS: 72% vs. 74%	
Fair	consultations over	SPMS: 7% vs. 11%	
	16 weeks (n=46)	PPMS: 21% vs. 15%	

Author, Year			
Intervention			
Study Design	Intervention	Population	Desults
Study Quality Kerling, 2015 ²²⁰	A. Full body	(Multiple Sclerosis) A vs. B	Results A vs. B, postintervention mean (SD)
Multimodal exercise	progressive resistance + aerobic training, 36	A vs. B Age: 42.3 vs. 45.6 Female: 80% vs. 67% EDSS: 2.6 vs. 3.1	$\frac{VO_2 \text{ peak (mL/min):}}{VO_2 \text{ peak (mL/min):}}1756 (599) \text{ vs. } 1676 (494);$ Time X Group p=0.71 VO_2 peak (ml/min/kg): 24.6 (7.4) vs. 23.7
RCT	sessions over 12	2003. 2.0 vs. 3.1	(7.1); Time X Group p=0.72
Fair	weeks (n=30) B. Aerobic training, 36 sessions over 12 weeks (n=30)		Resting HR: 90 (11) vs. 85 (13); Time XGroup p=0.63Right knee extensor: 107.7 (28.0) vs. 99.3(42.3), p=NR; Time X Group p=0.50Left knee extensor: 108.2 (33.1) vs. 95.6(43.8); Time X Group p=0.95Right knee flexor: 61.3 (18.7) vs. 55.9 (24.6);Time X Group p=0.72Left knee flexor: 64.0 (23.7) vs. 51.7 (24.85);Time X Group p=0.31Right extensor shoulder: 51.8 (14.9) vs. 49.9(20.1); Time X Group p=0.85Left extensor shoulder: 50.0 (18.9) vs. 46.9(18.6);Time X Group p=0.98Right flexor shoulder: 36.5 (10.0) vs. 36.9(14.1);Time X Group p=0.67Left flexor shoulder: 36.9 (12.4) vs. 35.9
Keser, 2011 ⁶³	A. Calisthenics, 18	A vs. B	(12.5);Time X Group p=0.60 A vs. B, mean change, p=between groups:
Aerobic exercise	sessions over 6 weeks (15)	Age: 36 vs. 35 Female: 53% vs. 47% EDSS: 2.9 vs. 2.8	<u>UE Right Strength:</u> 8.67 (10.17) vs. 15.19 (7.77), p<0.05 <u>UE Left Strength:</u> 7.86 (11.97) vs. 16.25
Quasiexperimental	B. Neuro- rehabilitation 18	2000. 2.0 13. 2.0	(10.95), p<0.05 LE Right Strength: 15.76 (11.17) vs. 20.66
Poor	sessions over 6 weeks (15)		(6.18), p>0.05 <u>LE Left Strength</u> : 18.54 (7.59) vs. 24.17 (16.69), p>0.05
Negaresh, 2019 ⁵³	A. Normal BMI cycling UE/LE, 24	A vs. B vs. C vs. D Age: 31.2 vs. 29.1 vs.	A vs. B vs. C vs. D, mean difference between groups (scores are estimates from graph)
Aerobic exercise	sessions over 8 weeks (n=18)	32.1 vs. 2.1 Female: 64% vs. 64%	<u>VO₂ peak</u> : 2.7 vs. 0 vs. 1.9 vs. 0.6, p=0.001
RCT	B. Normal BMI	vs. 64% vs. 69% RRMS: 100%	Interaction, p=0.17
Fair	control (n=15)		<u>BMI</u> : -0.10 vs0.15 vs0.45 vs0.20, p=0.53
	C. Overweight cycling UE/LE, 24 sessions over 8 weeks (n=17)		Interaction p=0.38
	D. Overweight control (n=13)		
Sandroff, 2017 ²²¹	A. Resistance + aerobics + balance:	A vs. B Age: 49.8 vs. 51.2	A vs. B, mean (SD) <u>VO₂ Peak (ml/kg/min):</u>
Multimodal exercise	72 sessions over 24 weeks. (n=43)	Female: 83.7% vs. 87.5%	16.5 (6.5) vs. 15.4 (6.2), p=NR (baseline) 17.1 (5.9) vs. 15.9 (5.5), p=NR
RCT	B. Stretching and	EDSS 4-6: 100% Walking difficulties:	(postintervention) Time X Group interaction p>0.20
Fair	toning, 72 sessions over 24 weeks (n=40)	100%	· · · · · · · · · · · · · · · ·

Author, Year			
Intervention			
Study Design	Intervention	Population	
Study Quality	and Comparison	(Multiple Sclerosis)	Results
Sangelaji, 2016 ²²²	A. 1 aerobic + 3	A vs. B vs. C vs. D	Mean difference (SE) vs. control group (Kg):
	resistance training,	Age: 36 vs. 31 vs. 34 vs.	Left Knee flexion:
Multimodal exercise	32 sessions over 8	34	A5.57 (2.09), p=0.01
	weeks (n=10)	Female: 60% vs. 60%	B. –3.17 (2.14), p=0.15
RCT		vs. 60 vs. 60%	C. –5.54 (2.04), p=0.01
	B. 2 aerobic + 2	Baseline EDSS: 1.33 vs.	Right Knee flexion:
Fair	resistance training,	2.06 vs. 1.95 vs. 1.81	A4.61 (1.89), p=0.02
	32 sessions over 8		B5.08 (1.94), p=0.04
	weeks (n=10)		C4.05, 1.85, p=0.01
	(Left Knee Extension:
	C. 3 aerobic + 1		A. –7.77 (2.73, p=0.01
	resistance training,		B5.08 (2.80), p=0.08
	32 sessions over 8		C7.95 (2.68, p=0.01
	weeks (n=10)		Right Knee Extension:
	, , , , , , , , , , , , , , , , , , ,		A4.88 (3.48), p=0.17
	D. No intervention		B. –1.62 (3.56), p=0.65
	control (n=10)		C. –6.30 (3.41), p=0.07
Wens, 2015b ²²⁴	A. Resistance	A vs. B vs. C	Mean (SD) of % change, p=vs. control:
(high intensity)	training + high-	Age: 43 vs. 47 vs. 47	A vs. C
	intensity interval	Female: 42% vs. 45%	VO ₂ max (ml/min): 17.8% (4.6%) vs. 2.5%
Multimodal exercise	training, 30	vs. 82%	(4.1%), p<0.01
	sessions over 12	EDSS: 2.3 vs. 2.7 vs.	VO ₂ max (ml/min/kg):17.8% (4.6%) vs. 2.5%
RCT	weeks (n=12)	2.5	(4.1%), p<0.01
		RRMS: 83% vs. 73% vs.	Resting HR: 12.5% (4.6%) vs. 14.3% (3.8%),
Fair	B. Resistance	73%	p>0.05
	training + high-	CPMS: 17% vs. 27% vs.	<u>% Body fat:</u> −3.9% (2.0%) vs. −2.8% (1.6%),
	intensity continuous	27%	p>0.05
	cardiovascular		B vs. C
	training, 30		<u>VO₂ max (ml/min):</u> 7.5% (5.8%) vs. 2.5%
	sessions over 12		(4.1%), p>0.05
	weeks (n=11)		<u>VO₂ max (ml/min/kg):</u> 7.5% (5.8%) vs. 2.5%
			(4.1%), p>0.05
	C. No intervention –		<u>Resting HR:</u> 7.0% (5.8%) vs. 14.3% (3.8%),
	"sedentary control"		p>0.05
	(n=11)		<u>% Body fat</u> : −2.5% (1.2%) vs. −2.8% (1.6%),
			p>0.05
Wens, 2015a ²²⁷	A. Progressive	A vs. B	A vs. B, mean difference between groups:
(impact of 24)	resistance +	Age: 48 vs. 49	Resting HR: 9.0, 95% CI 6.57 to 11.43,
	aerobics, 60	Female: 59% vs. 53%	p<0.001
Multimodal exercise	sessions over 24	EDSS: 3.25 vs. 3.36	Body weight (kg): 1.9, 95% CI –0.124 to 0.07
DOT	weeks (n=29)		Body fat %: 2.0, 95% CI 0.67 to 3.33, p=0.003
RCT			No differences in glucose and insulin
	B. Nonexercise		Knee extension and flexion improved with
Poor	control (n=15)	1	exercise. Group X Time interaction p<0.05

Abbreviations: BMI = body mass index; CI = confidence interval; CPMS = chronic progressive multiple sclerosis; EDSS = Expanded Disability Status Scale; HR = heart rate; LE = lower extremity; MD = mean difference; NR = not reported; NS = not significant; PPMS = primary progressive multiple sclerosis; RCT = randomized controlled trial; RRMS = relapsing-remitting multiple sclerosis; SD = standard deviation; SPMS = secondary progressive multiple sclerosis; UE = upper extremity; VO₂ max = maximal oxygen uptake

Author, Year			
Intervention	Intervention		
Study Design	and	Population	
Study Quality	Comparison	(Cerebral Palsy)	Results
Cho, 2020 ²¹⁶	A. Progressive	A vs. B	A vs. B, mean (SD) of change, p=between
Ch0, 2020-55	resistance, 18	Age: 5.54 vs. 7.17	
Strongth	sessions over	Female: 69% vs. 33%	groups
Strength		GMFCS: 2.08 vs. 2.33	Knee extensor strength:
RCT	6 weeks (n=13)	GMFM: 69.98 vs. 68.15	Nondominant: -2.196 (0.048) vs2.078
RUI	В.	GIVIFIVI. 09.96 VS. 06.15	(0.062), p=0.436
Poor	D. Conventional		Dominant: -3.065 (0.010) vs590 (0.567),
F001	therapy, 18		p=0.029 (0.010) vs590 (0.007),
	sessions over		ρ=0.029
	6 weeks (n=12)		
Johnston, 2011 ¹²⁵	A. Partial BWS	A vs. B	A vs. B, mean scores (SD)
Acrohic aversion	treadmill	Age: 9.6 vs. 9.5	<u>Knee extension strength</u> : $3.90(3.09)$ to 3.58
Aerobic exercise	training x 20 sessions over	Female: 50% vs. 42% GMFCS II: 7% vs. 8%	(2.82) vs. 3.09 (3.15) to 3.80 (4.22), p>0.05
RCT	2 weeks, then	GMFCS III: 64% vs. 50%	Knee flexion strength: 2.47 (1.45) to 2.43 (1.54) vs. 2.35 (2.04) to 2.98 (3.26), p>0.05
RUI	50 sessions at	GMFCS IV: 29% vs.	Dorsiflexion strength: 0.86 (1.21) to 0.69
Fair	home over 10	42%	(0.78) vs. 0.62 (0.75) to 0.77 (0.66) , p>0.05
Fail	weeks (n=14)	Diplegic CP: 57% vs.	Plantarflexion strength: 3.44 (1.91) to 3.23
	weeks (11–14)	33%	(1.45) vs. 3.06 (3.62) to 3.14 (3.32), p>0.05
	В.	Triplegic CP: 0% vs.	(1.45) vs. 5.00 (5.02) to 5.14 (5.52) , p =0.05
	D. Individualized	17%	
	strength-based	Quadriplegic CP: 43%	
	PT, 20	vs. 50%	
	sessions over	vs. 30 /8	
	2 weeks, then		
	50 session at		
	home over 10		
	weeks (n=12)		
Kaya Kara, 2019 ²⁴²	A. Strength +	A vs. B	A vs. B, mean difference, Effect size, p-
Raya Rafa, 2013	balance	Age: 11.8 vs. 11.3	value is between groups
Multimodal	training, 36	Female: 53% vs. 53%	Affected lower leg 1 RM (kg): 54.33, ES
Multimodal	sessions over	MAC I: 47% vs. 47%	3.23, p<0.001
RCT	12 weeks	MAC II: 33% vs. 27%	Unaffected lower leg 1 RM (kg): 44.33, ES
	(n=15)	MAC III: 20% vs. 28%	2.74, p<0.001
Fair	(11-10)		2.14, p 0.001
	B. Usual care		
	(n=15)		
Kirk, 2016 ²¹⁷	A. Progressive	A vs. B	A, mean (SD):
	resistance, 36	Age: 36.5	Statistically significant Groups X Time
Strength	sessions over	Female: 43%	interaction for all exercises below for the
	12 weeks	Wheelchair user: 17%	most affected leg (kg):
Quasiexperimental	(n=12)		Ankle dorsiflexion 1RM: 5.7 (0.6) to 10.4
	((1.1)
Poor	B. Usual care		Ankle plantarflexion 1RM: 30.3 (4.9) to
··	(n=23)		71.8 (6.7)
	(==)		Knee flexion 1RM: 16.3 (2.0) to 29.5 (3.1)
			Knee extension 1RM: 72.3 (5.8) to 104.5
			(6.7)
	1	1	\~··/

Table 43. Intermediate outcomes of physical activity in participants with cerebral palsy

Author, Year			
Intervention	Intervention		
Study Design		Demulation	
	and	Population	
Study Quality	Comparison	(Cerebral Palsy)	Results
Makhov, 2018 ²⁴³	A. Therapeutic	A vs. B	A vs. B, mean (SD), p-value is between
	gymnastics +	Age: 7-9 years	groups
Multimodal	strength 94	Female:	
	sessions over	Spastic diplegia or	Strength quadriceps femoris: 1.29 (0.49) to
RCT	15 weeks	spastic tetra paresis:	1.92 (0.38) vs. 1.36 (0.56) to 1.61 (0.61),
	(n=18)	100%	p<0.05
Poor			
	B. Therapeutic		
	gymnastics		
	(passive		
	exercises only)		
	(n=17)		
Nsenga, 2013 ⁸⁸	A. Cycle	A vs. B	A vs. B, mean difference between groups:
Nseliga, 2015	ergometry, 24	Age: 14.2 vs. 14.2	A vs. b, mean unerence between groups.
Aerobic exercise	sessions over	Female: 40% vs. 40%	VO ₂ peak (ml/kg/min): 7.00, 95% CI 1.93 to
Aerobic exercise	8 weeks (n=10)		12.07, p=0.007
Quasiaxparimental	0 WEEKS (11-10)		12.07, p=0.007
Quasiexperimental	B. No training	Hemiplegia: 80% vs. 80%	VO ₂ peak (ml/min): graph indicates
		00%	VO_2 peak (m/mm). graph indicates increase in VO ₂ peak after training in
Fair	control (n=10)		
			intervention group (p<0.05) but not in
			control group; between group differences
			not calculable
Nsenga Leunkeu, 2012 ¹³²	A. Treadmill	A vs. B	A vs. B, mean (estimates from bar graph):
	walking, 24	Age: 14.2 vs. 14.2	
Aerobic exercise	sessions over	Female: 50% vs. 50%	VO ₂ peak: 32.5 to 39.0 vs. 32.5 to 32.5, no
	8 weeks,	Hemiplegic CP: 83% vs.	difference in baseline values, significant
Quasiexperimental	(n=12)	83%	difference in postintervention values
		GMFCS I: 67% vs. 67%	favoring treatment, statistical significance
Fair	B. No training,	GMFCS II: 33% vs. 33%	between groups not clear
	(n=12)		
Scholtes, 2010 ²⁰⁹	A. Progressive	A vs. B	A vs. B, Regression effect size
Scholtes, 2012 ²⁰⁷	resistance, 36	Age: 10.33 vs. 10.25	Knee extensors (N/kg): 0.56, 95% CI 0.13
Scholtes, 2008 ²⁰⁸	sessions over	Female: 33% vs. 50%	to 0.99, p=0.01
	12 weeks	Ambulatory: 100%	Knee flexors (N/kg): 0.05, 95% CI –0.25 to
Strength	(n=26)	Bilateral: 71% vs. 60%	0.36, p=0.71
olicingui	(11 20)	GMFM I: 54% vs. 48%	Hip flexor (N/kg): 0.16, 95% CI –0.22 to
RCT	B. Usual care	GMFM II: 33% vs. 36%	0.55, p=0.41
NO1	(n=25)	GMFM III: 13% vs. 16%	Hip abductor (N/kg): 0.27, 95% CI 0.00 to
Fair	(11-23)	GMFM III. 1370 VS. 1070	
	A 04	A	0.54, p=0.05
Slaman, 2014 ²³⁵	A. Strength	A vs. B	A vs. B, mean difference between groups:
Slaman, 2015a ²³⁷	training +	Age: 20 vs. 20	<u>VO2 peak (mL/min):</u> MD 195.2, 95% CI 57.3
Slaman, 2015b ²³⁴	aerobic fitness,	Female: 48.3% vs.	to 333.1, p<0.01
	48 sessions	57.1%	Weight (kg): MD –0.6, 95% CI –2.2 to 0.9,
	over 3 months	Ambulatory: 97% vs.	p=0.46
Multimodal exercise	plus 8-10	89%	<u>Hip flexion:</u> MD 1.4 (95% CI –63.0 to 66.0),
	counseling	Wheelchair user: 3.3%	p=0.97
RCT	sessions on	vs. 10.7%	<u>Hip abduction:</u> MD –38.6, 95% CI –93.1 to
	physical	Unilateral CP: 52% vs.	15.9, p=0.17
Fair	activity and	50%	Knee extension: MD 23.7, 95% CI -58.6 to
	sports	GMFM I: 61% vs. 55%	106.1, p=0.57
		GMFM II: 32% vs. 31%	Total cholesterol: MD –0.50, 95%CI –3.22
	participation		
	participation over 3 months:		to -0.01, p=0.07
	over 3 months:	GMFM III: 7% vs. 10%	to –0.01, p=0.07 HDL : MD 0.01 (95% CI –0.21 to 0.21)
			HDL: MD 0.01 (95% CI -0.21 to 0.21),
	over 3 months: (n=28)	GMFM III: 7% vs. 10%	HDL: MD 0.01 (95% CI –0.21 to 0.21), p=0.38
	over 3 months: (n=28) B. Usual care	GMFM III: 7% vs. 10%	<u>HDL:</u> MD 0.01 (95% CI –0.21 to 0.21), p=0.38 <u>SBP (mmHg):</u> MD 1.5, 95% CI –5.6 to 8.6,
	over 3 months: (n=28)	GMFM III: 7% vs. 10%	<u>HDL:</u> MD 0.01 (95% CI –0.21 to 0.21), p=0.38 <u>SBP (mmHg):</u> MD 1.5, 95% CI –5.6 to 8.6, p=0.68
	over 3 months: (n=28) B. Usual care	GMFM III: 7% vs. 10%	<u>HDL:</u> MD 0.01 (95% CI –0.21 to 0.21), p=0.38 <u>SBP (mmHg):</u> MD 1.5, 95% CI –5.6 to 8.6,

Author, Year Intervention	Intervention and	Population	
Study Design Study Quality	Comparison	(Cerebral Palsy)	Results
Taylor, 2013 ²¹¹	A. Progressive resistance, 24	A vs. B Age: 18.17 vs. 18.58	A vs. B, mean difference between groups:
Strength	sessions over 12 weeks	Female: 44% vs. 48% No gait aid 57% vs. 60%	<u>Max leg press (1Rep Max; kg):</u> 14.8, 95% CI 4.3 to 25.3, p<0.05
RCT	(n=23)	GMFM II: 57% vs. 64% GMFM III: 43% vs. 36%	<u>Reverse leg press (1RepMax; kg):</u> –0.7, 95% CI –4.3 to 2.8), p>0.05
Good	B. Usual care (n=25)		
Tedla, 2014 ²¹³	A. Strength training 18	A vs. B (data are for completers only; n=30	A vs. B, change in scores, p-value is between groups
Strength	sessions over 6 weeks +	vs. 30) Age: 9.1 vs. 8.9 years	Change in Strength of Trunk, Hip, Knee,
RCT	conventional PT 1-2	Female: 33% vs. 33% Gross motor function	Ankle: significantly better in group A than B, p<0.05
Poor	days/week (n=31)	classification system: I: 7% vs. 3% II: 20% vs. 27%	
	B. Conventional PT 3-5	III: 37% vs. 27% IV: 37% vs. 43%	
	sessions/per for 6 weeks (n=31)		

Abbreviations: BWS = body weight supported; CI = confidence interval; CP = cerebral palsy; DBP = diastolic blood pressure; EDSS = Expanded Disability Status Scale; GMFCS = Gross Motor Function Classification System; GMFM = Gross Motor Function Measure; HDL = high-density lipoprotein cholesterol; HR = heart rate; MD = mean difference; NR = not reported; PT = physical therapy; RM = one-repetition maximum; SBP = systolic blood pressure; SD = standard deviation; VO₂ peak = highest value of VO₂ attained

Table 44. Intermediate outcomes of physical activity in participants with spinal cord injury

Author, Year Intervention			
Study Design	Intervention	Population	
Study Quality	and Comparison	(Spinal Cord Injury)	Results
Akkurt, 2017 ⁸⁹	A. Arm ergometer,	A vs. B	A vs. B, median change, p=between
	36 sessions over 12	Age: 33 vs. 37	groups:
Aerobic exercise	weeks plus general	Female: 5% vs. 19%	<u>VO₂ peak (ml/kg/min):</u> 4.30 vs. 1.35, p=0.02
	exercises,120	Ambulatory:41% vs.	FEV1 (ml): -0.14 vs. 0.17, p>0.05
RCT	sessions over 12	50%	FVC (ml): -0.31 vs0.20, p>0.05
	weeks (n=17)	Wheelchair user: 59%	FEV1/FVC, 3.51 vs. –0.50, p>0.05
Fair		vs. 50%	<u>SBP (mmHg):</u> 0 vs. 0, p>0.05
	B. General	Paraplegia:100% vs.	DBP (mmHg): 0 vs. 0, p>0.05
	exercises, 120	94%	<u>T-chol</u> : 10 vs. 2, p>0.05
	sessions over 12		TG: 5.5 vs. 26, p>0.05
	weeks (n=16)		<u>LDL:</u> 0 vs. –3.5, p>0.05
			HDL: 0 vs. 5.5, p>0.05

Author Veer		[1
Author, Year			
Intervention	I	Demodetien	
Study Design	Intervention	Population	
Study Quality	and Comparison	(Spinal Cord Injury)	Results
Alexeeva, 2011 ¹³³	A. BWS treadmill	A vs. B vs. C	A vs. B vs. C, mean (SD)
	training, 39	Age: 43 vs. 36 vs. 35	<u>VO₂ peak (ml/km/min)</u> : 12% nonsignificant
Aerobic exercise	sessions over 13	Female: 11% vs. 14%	increase within groups, but no differences
	weeks (n=9)	vs. 17%	between groups, p>0.05
RCT		ASIA D: 100%	
	B. BWS track	Cervical: 89% vs. 57%	MMT (combined upper and lower limb
Fair	training, 39	vs. 58%	strength): 71.5 (15.1) to 78.1 (15.3) vs. 69.5
	sessions over 13		(12.1) to 73.3 (11.5) vs. 76.3 (11.6) to 81.8
	weeks (n=14)		(11.0) (6-9% significant increase within
			groups; no difference among groups,
	C. Structured PT,		p>0.05)
	39 sessions over 13		
	weeks (n=12)		
Chen, 2016 ²¹⁸	A. Pulmonary	A vs. B	A vs. B, mean (SD), p=postintervention:
	rehabilitation: 365	Age: 62.3 vs. 63.1	FEV1: 1.17 (0.25) to 2.20 (0.45) vs. 1.17
Strength	sessions over 52	Female: 0%	(0.45) to 1.14 (0.44), p<0.05
	weeks (n=49)	T1–2: 35% vs. 35%	FVC: 2.16 (0.36) to 2.98 (0.54) vs. 2.16
RCT		T3–4: 33% vs. 33%	(0.42) to 2.17 (0.42), p<0.05
	B. Usual care	T5–6: 33% vs. 33%	FEV1/FVC: 0.53 (0.17 to 0.75 (0.08) vs.
Fair	(n=49)		0.53 (0.17) to 0.52 (0.15), p<0.05
Giangregorio, 2012 ¹³⁴	A. BWS treadmill	A vs. B	A vs. B, mean (SD), p=between groups
Craven, 2017 ¹³⁷	walking with FES,	Age: 56.6 vs. 54.1	BMD Total Hip: 0.89 (0.20) to 0.88 (0.20)
	48 sessions over 16		vs. 0.86 (0.24) to 0.87 (0.23), p>0.05
Aerobic exercise	weeks (n=17)	Tetraplegia: 82% vs.	BMD Distal Femur: 0.89 (0.16) to 0.87 to
		71%	0.15) vs. 0.81 (0.18) to 0.80 (0.18), p>0.05
RCT	B. Aerobic and	UEMS: 38.3 vs. 37.5	BMD Proximal Tibia: 0.71 (0.18) to 0.71
	resistance training,	LEMS: 30.4 vs. 27.9	(0.15) vs. 0.68 (0.19) to 0.66 (0.19), p>0.05
Fair	48 sessions over 16		Fat mass (kg): 25.4 (9.5) to 24.3 (9.5) vs.
	weeks (n=17)		23.2 (10.8) to 23.0 (10.7), p>0.05
Gorman, 201975	A. RAGT, 36	A vs. B	A vs. B, mean (SD), p=between groups
	sessions over 3	Age: 45.4 vs. 46.9	
Aerobic exercise	months (n=17)	Community Ambulation:	<u>VO₂ peak (ml/kg/min):</u> 16.48 (5.39) to 16.18
		83% vs. 67%	(5.11) vs.13.33 (3.06) to 14.31 (3.88),
RCT	B. Aquatic therapy,	Tetraplegic: 67% vs.	p=0.063
	36 sessions over 3	73%	
Fair	months (n=15)		
Jones, 2014a	A. Activity-based	A vs. B	A vs. B, mean change (SD), p=between
Jones, 2014b ²⁴⁶	therapy, 72	Age: 42 vs. 34	groups:
	sessions over 24	Female: 5% vs. 48%	
Multimodal exercise	weeks (n=20)	Tetraplegia: 75% vs.	<u>BMI</u> : 0.005 (1.15) vs. 0.723 (2.22), p=0.288
		76%	Weight (lbs): -2.0 (8.29) vs. 5.03 (14.05),
RCT	B. Waitlist (n=21)	AIS C: 35% vs. 52%	p=0.314
		AIS D: 65% vs. 48%	
Poor			
Jung, 2014 ⁷⁶	A. Aquatic exercise,		A vs. B, mean change scores, p=between
	24 sessions over 8	Age: 42.1 vs. 51.1	groups:
Aerobic exercise	weeks (n=10)	Female: 30% vs. 50%	<u>FVC(L)</u> : 1.8 (1.3) vs. 0.31 (1.6), p=0.031
DOT			FEV1(L): 1.1 (1.2) vs. 0.21 (0.3); p=0.038
RCT	B. Land exercise,		<u>FER(L/sec):</u> 10.0 (9.7) vs. 5.4 (7.0),
	24 sessions over 8		p=0.238
Fair	weeks (n=10)		<u>FEV1/FVC:</u> 3.7 (2.3) vs. 2.1 (3.4), p=0.243

Author, Year			
Intervention			
Study Design	Intervention	Population	
Study Quality	and Comparison	(Spinal Cord Injury)	Results
Lavado, 2013 ⁹² Aerobic exercise RCT	A. Hand cycling + distance with wheelchair + general exercises, 32-48 sessions over		A vs. B, median: <u>VO₂ peak (mL/min):</u> 939 to 1154 (p=0.009) vs. 896 to 834, p=0.906; Postintervention comparison (no control for baseline values) p<0.001
	16 weeks (n=21)	C5-L2: 100%	
Fair	B. Usual care (n=21)		
Lai, 2010 ⁹¹	A. Functional	A vs. B	A vs. B, mean difference between groups:
Aerobic Exercise	electrical stimulation cycling exercises, 36	Age: 28.9 vs. 28.2 Female: 17% vs. 17% Ambulatory: 0%	BMD Femoral Neck: -0.003, 95% CI -0.12 to 0.11, p=0.96 BMD Distal Femur: -0.05, 95% CI -0.12 to
Quasiexperimental	sessions over 12	Paraplegia: 10 (67%) vs. 10 (67%)	0.03, p=0.21
Fair	weeks (n=12)	10(07%) vs. $10(07%)$	
	B. Control group (n=12)		
Mogharnasi, 2019 ²¹⁹	A. Upper body resistance training:	A vs. B Age: 25.33 vs. 25.50	A vs. B, mean difference between groups: <u>BMI:</u> –0.83, 95% CI –1.85 to 0.19, p=0.11
Strength	24 sessions over 8 weeks (n=10)	Female: 0% Ambulatory: 0%	<u>% Body fat:</u> –1.2, 95% CI –3.11 to 0.71,p=0.22
RCT	B. Usual care	Wheelchair user: 100% T9: 10% vs. 20%	<u>T-chol:</u> –16.00, 95% CI –11.21 to –20.78, p<0.001
Poor	(n=10)	T10: 20% vs. 20% T11: 20% vs. 0% T12: 50% vs. 60%	HDL: 4.2, 95% CI 0.84 to 7.56, p=0.01 LDL: -6.5, 95% CI -9.81 to -3.20, p<0.001 TG: -25.3, 95% CI -32.74 to -17.86, p<0.001
Totosy de Zepetnek, 2015 ²⁴⁹	A. Progressive resistance + aerobic training, 32	A vs. B Age: 39 vs. 42 Female: 0% vs. 18%	A vs. B, mean (SD), p-value between groups: <u>SBP:</u> 116 (18) to 116 (15) vs. 118 (18) to
Multimodal	sessions over 16 weeks (n=12)	AIS A-B: 25% vs. 45% AIS C-D: 75% vs. 55%	116 (17), p>0.05 DBP: 68 (9) to 67 (9) vs. 74 (13) to 72 (11),
RCT			p>0.05
Fair	B. Maintain existing physical activity levels (n=11)	Auto D	$\begin{array}{l} \underline{\text{HR}}: 75 \ (13) \ \text{to} \ 71 \ (13) \ \text{vs}. 75 \ (10) \ \text{to} \ 74 \\ \hline (10), \ p>0.05 \\ \underline{\text{HbA1c} \ (\text{mmol/mol}):} \ 35.7 \ (11.6) \ \text{to} \ 36.6 \\ \hline (11.2) \ \text{vs}. \ 34.9 \ (4.8) \ \text{to} \ 34.7 \ (3.9), \ p>0.05 \\ \hline \underline{\text{TC} \ (\text{mmol/L}):} \ 1.5 \ (0.9) \ \text{to} \ 4.3 \ (1.0) \ \text{vs}. \ 4.1 \\ \hline (0.9) \ \text{to} \ 4.1 \ (0.9), \ p>0.05 \\ \hline \underline{\text{LDL} \ (\text{mmol/L}):} \ 2.9 \ (0.9) \ \text{to} \ 2.7 \ (0.7) \ \text{vs}. \ 2.5 \\ \hline (0.7) \ \text{to} \ 2.4 \ (0.6), \ p>0.05 \\ \hline \underline{\text{HDL} \ (\text{mmol/L}):} \ 1.01 \ (0.2) \ \text{to} \ 1.01 \ (0.3) \ \text{vs}. \\ \hline 1.13 \ (0.2) \ \text{to} \ 1.17 \ (0.3), \ p>0.05 \\ \hline \underline{\text{TG}}: \ 1.3 \ (0.6) \ \text{to} \ 1.4 \ (0.6) \ \text{vs}. \ 1.1 \ (0.7) \ \text{to} \ 1.0 \\ \hline (0.7), \ p>0.05 \\ \hline \underline{\text{BMI}:} \ 27.3 \ (5.2) \ \text{to} \ 27.0 \ (5.0) \ \text{vs}. \ 25.7 \ (4.9) \ \text{to} \ 26.6 \ (4.7), \ p<0.05 \\ \hline \hline 26.6 \ (4.7), \ p<0.05 \\ \hline \hline \end{array}$
Valent, 2010 ⁹³	A. Hand cycle ergometry, 15-72	A vs. B Age: 46 vs. 40	A vs. B, mean change scores <u>FVC%</u> : -9.4 vs7.8, p=0.619
Aerobic exercise	sessions over 9-33 weeks (n=20)	Female: 24% vs. 24% Paraplegia: 10 (59%) vs.	<u>PEF%</u> : –12.6 vs. –10.0, p=0.722
Cohort study	B. Unclear	11 (65%)	<u>VO₂ peak (ml/min):</u> 0.21 vs. 0.13, p=0.356 <u>VO₂ peak (ml/kg/min):</u> 2.9 vs. 1.5, p=0.274
Fair	(matched control) (n=17)		

Author, Year Intervention Study Design Study Quality	Intervention and Comparison	Population (Spinal Cord Injury)	Results
Van der Scheer,	A. Low-intensity	A vs. B	A vs. B, median change, p=between
2016 ¹⁴⁰	wheelchair treadmill	Age: 55 vs. 57	groups:
	training, 32	Female: 14% vs. 33%	
Aerobic exercise	sessions over 16	Paraplegia: 64% vs. 73%	<u>VO₂ peak (L/min):</u> 0.05 to –0.07, p=0.01
	weeks (n=14)		
RCT			
	B. Usual care		
Fair	(n=15)		

Abbreviations: ASIA = American Spinal Injuries Association Impairment Scale; BMD = bone mineral density; BMI = body mass index; CI = confidence interval; DBP = diastolic blood pressure; FER = forced expiratory ratio; FEV1 = forced expiratory volume; FVC = forced vital capacity; HbA1c = hemoglobin A1c; HR = heart rate; LDL = low-density lipoprotein cholesterol; MMT = Maximal Muscle Testing combined upper and lower limb strength; NS = not significant; PEF = peak expiratory flow; PT = physical therapy; RAGT = robot-assisted gait training; SBP = systolic blood pressure; SD = standard deviation; TG = triglyceride; UEMS = Upper Extremity Motor Score

The range of mean ages enrolled in studies of participants with CP was 6.3 years to 38 years, in studies of participants with MS was 29 years to 52 years, and for participants with SCI was 28 years to 63 years. The proportion of females enrolled ranged from a low of none in an SCI study, to a high of 100 percent two studies of participants with MS. Race was not reported in any of these studies. Reporting of characteristics at baseline related to spasticity or overall mobility varied according to condition. In studies of participants with CP, most were in GMFCS level I or II. In the studies of participants with MS, baseline disability ranged from 1.7 to 3.7 on the EDSS (range of scale 0-10 with higher values representing more problems walking), except for one study that enrolled only participants with EDSS scores of 4-6,²²¹ and one with 23 percent of enrolled subjects in the range of 6.5 to 8 points on the EDSS/Wheelchair use was not reported in studies of participants with CP or MS. The studies of participants with SCI varied in the way disability was reported and the level of disability; 59 to 100 percent had paraplegia and wheelchair use ranged from 50 to 100 percent.

Interventions studied and comparisons made also varied widely. Eighteen studies evaluated aerobic interventions (10 vs. usual care), nine evaluated strength interventions (8 vs. usual care, 1 vs. attention control), and fourteen evaluated multimodal interventions (12 vs. usual care). In the 17 of 20 studies categorized as comparing interventions with usual care, the control groups consisted of standard PT regimens, waitlist, "attention control" (nonphysical activity social interactions), and unspecified "usual care" interventions. The two prioritized intermediate outcomes were VO₂ peak, reported in 15 studies, and pulmonary function tests, reported in 4 studies (see Table 42 for more details). Other intermediate outcomes reported included weightbased outcomes, lipids, heart rate, glucose, strength changes, percent body fat, and bone mineral density.

Evidence on the impact of physical activity interventions on intermediate outcomes is mostly insufficient to draw conclusions. There was low-strength evidence that aerobic interventions improve VO₂ peak in participants with CP and SCI, but evidence was inconsistent in patients with MS. For other comparisons and outcomes there were several instances where a single study found a significant benefit of an intervention on one or more outcomes or that there was no difference between groups, but interpretation is limited due to small sample size, methodological limitations, and lack of corroborating evidence.

Comparisons With Usual Care

Aerobic Exercises Versus Usual Care

VO₂ peak was the most commonly reported intermediate outcome in studies of aerobic exercise. Evidence in participants with CP and SCI indicated improved VO₂ peak with exercise (SOE: low), while evidence in participants with MS was inconsistent (SOE: insufficient). In three fair-quality RCTs of participants with MS (Table 42), only one found a significant improvement in VO₂ peak, a study of weight-based upper and lower body cycling training,⁵³ while regular cycling programs versus usual care did not impact VO₂ peak (Table 42).^{77,78} Two fair-quality quasiexperimental studies compared an aerobic exercise with usual care in adolescents with CP over 8 weeks (n=44 total).^{88,132} VO₂ peak measured in ml/kg/min was increased significantly more with cycle-ergometry in one study, and in both studies VO₂ peak measured in ml/min was increased significantly with aerobic exercise (Table 43) (SOE: low). In participants with SCI, three studies reported VO₂ peak, with two fair-quality RCTs (n=71) finding a significant increase with aerobic exercise training,^{92,140} and a small (n=17), fair-quality cohort study not finding a difference, although the endpoint values were higher in the aerobic exercise group (Table 44) (SOE: low).⁹³

Pulmonary function was not improved with aerobic training in a cohort study of participants with SCI (Table 44).⁹³ This is insufficient-strength evidence to draw conclusions due to study limitations, lack of corroborating evidence, and imprecision. Other intermediate outcomes reported in these studies were not found to have significant improvement with aerobic exercise (e.g., pulmonary function tests, bone density, weight, BMI).^{53,91,93,117}

Strength Exercises Versus Usual Care

Nine studies evaluated strength exercise programs and reported intermediate outcomes. Three studies were in participants with MS,^{198,204,206} four in participants with CP,^{207,211,213,217} and two in participants with SCI.^{213,218,219} One of these was a poor-quality quasiexperimental study (Table 43).²¹⁷ None of these RCTs reported on VO₂ peak/max. A fair-quality RCT (n=98) of a pulmonary rehabilitation program in participants with SCI over 52 weeks found all pulmonary function tests measured to be significantly improved with the intervention (Table 44).²¹⁸ For example, forced expiratory volume (FEV1) increased from 1.17 to 2.20 with pulmonary rehabilitation compared with a small decrease (1.17 to 1.14) in the control group (p<0.05).

In participants with MS, three RCTs measured improvement in strength in various ways, comparing strength training compared with usual care or social programs (attention control) (Table 42).^{147,204,206} Each study found one or more measures of strength were significantly improved with strength training over 8 to 12 weeks (Table 42). A single fair-quality RCT compared Pilates plus massage to massage alone and found no impact on percent body fat over 12 weeks.¹⁹⁸

In studies that enrolled participants with CP, results were mixed with improved strength demonstrated on one or more measures in each study^{207,211,213,217} but not on all measures.^{207,211,216} Strength training lasted for 12 weeks in three of these studies^{207,211,217} and 6 weeks in two studies.^{213,216}

Multimodal Exercises Versus Usual Care

Ten RCTs (in 11 publications) evaluated multimodal exercise programs with usual care and reported an intermediate outcome.^{221,224,227,228,230,231,234-237,242,243,246,247,249} Four were poor

quality,^{227,228,243,246,247} and the rest were fair. In participants with MS, three fair-quality RCTs evaluated multimodal exercise programs and reported VO₂ peak²²¹ or VO₂ max.^{224,231} In a study of mostly women with baseline EDSS scores all 4-6 (some walking impairment), resistance training, aerobics, and balance training over 24 weeks did not improve VO₂ peak compared with stretching and toning.²²¹ The second study enrolled participants with mean baseline EDSS of 2.5 (little or no walking impairment), and the intervention groups had less than half women, while the control group had 82 percent women.²²⁴ This study compared resistance training plus either high-intensity interval training (n=12) or plus high-intensity continuous cardio training (n=11) with usual care (n=11) over 12 weeks. The addition of interval training resulted in greater improvement in VO₂ peak than usual care, while the addition of continuous cardio training did not improve VO₂ max or VO₂ peak significantly compared with usual care (Table 42).²²⁴ The disparity in the proportion of women in the intervention versus control arms added to the study limitations. The third study enrolled women only, with 50 percent having EDSS scores of 4 or higher (23% with 6.5 to 8, more significant impairment). A multimodal intervention of resistance training, aerobic training, balance, Pilates, and stretching for 12 weeks resulted significantly improved VO₂ peak in the overall analysis, however when differences between groups in disability at baseline were taken into account the difference was no longer significant.²³¹ In participants with CP, a single fair-quality RCT (n=57) found strength training plus aerobic training and counseling over 12 weeks improved VO₂ peak significantly in young adults (mean age 20 years), most of whom were in GMFM categories I and II at enrollment.²³⁴⁻²³⁷

Changes in strength were measured in four RCTs of multimodal interventions. In three studies of multimodal exercise programs in participants with MS (2 with progressive resistance training and aerobics, 2 with WBV, and 1 with low-intensity exercise), results varied in terms of significance depending on the specific measure reported, but overall there was some benefit seen across the studies (Table 42).^{222,224,227,228} In participants with MS, effect on percent body fat was positive in two studies of progressive resistance training plus aerobic exercise, ^{224,227} but weight or BMI was not significantly different between groups in three RCTs.^{224,227,234-237} In young adults with CP, no improvement was seen (Table 43).²³⁴⁻²³⁷ Resting heart rate, lipids, and glucose were reported in few studies and were not different compared with control groups. In one study of participants with SCI, multimodal exercise maintained BMI, while the control group BMI increased.²⁴⁹ Other intermediate outcomes (blood pressure, heart rate, A1c, and lipids) were not significantly different between groups.

Head-to-Head Comparisons

Aerobic Exercises

Seven fair-quality RCTs^{75,76,82,89,125,133-137} evaluated comparisons of different multimodal interventions. In participants with MS (n=20), 8 weeks of aquatic exercise improved FEV1 and forced vital capacity (FVC) significantly more than land exercises (Table 42); other pulmonary function test measures were not significantly different.⁷⁶ VO₂ peak was reported in three RCTs in participants with SCI, with two studies (n=67) not finding a significant difference between groups (RAGT vs. aquatic therapy and body-weight supported treadmill vs. track training).^{75,133} A third study (n=33) found significantly greater improvement with an arm ergometry training over general exercises over 12 weeks.⁸⁹ Pulmonary function tests showed small changes with

no significant differences between an arm ergometer program compared with a general exercise program over 12 weeks.⁸⁹

Change in strength was measured in three RCTs of participants with SCI,^{89,133-137} and one each of participants with CP¹²⁵ and with MS,⁸² with none finding differences between interventions. Other intermediate outcomes reported in head-to-head comparisons of aerobic exercise programs included resting heart rate, waist circumference, fat mass, blood pressure, and lipids. These were reported in very few studies and no differences were found between interventions.

Multimodal Exercises

Three fair-quality RCTs of participants with MS compared a multimodal exercise program with either another multimodal program (2 studies),^{222,224} or an aerobic exercise program (1 study).²²⁰ One study reported VO₂ peak,^{220,224} and one study reported VO₂ max.²²⁴ In a study comparing resistance training plus high-intensity interval training or plus high-intensity continuous cardio training over 12 weeks, the interval training group had a greater improvement in VO₂ peak (17.8% increase vs. 7.5% increase), but a formal statistical analysis was not undertaken.²²⁴ Resting heart rate increased more with interval training (12.5% vs. 7.0%), and percent body fat (-3.9% vs. -2.5%) was reduced in both groups, slightly more in the interval training group. In the other study resistance training plus aerobic training did not improve VO₂ peak more than aerobic training alone over 12 weeks.²²⁰ This study also reported that resting heart rate and strength changes did not differ between groups. The third study compared three multimodal groups, with varying levels of aerobic and resistance training with control, but did not make statistical comparisons across the interventions groups directly. Strength outcomes were greater in the groups with more resistance or more aerobic training, compared with equal amounts of each, although the differences were small.²²²

A single study of children with CP compared multimodal training with gymnastics and strength training with passive gymnastics only, finding that quadriceps strength was improved more with multimodal training after 15 weeks (Table 43).²⁴³

KQ2c: Harms of Immobility

Reduction of harms due to immobility was rarely studied in trials of physical activity in MS, CP, and SCI. Two RCTs in participants with SCI provided evidence for this subquestion.

Decubitus Ulcer

There were no trials identified that assessed the prevention, formation, or improvement of decubitus ulcer as a function of physical activity.

Urinary Tract Infection

One fair-quality RCT (n=42) in participants with SCI examined the effectiveness of aerobic exercise as treatment for chronic asymptomatic bacteriuria.⁹² All spinal cord lesions were between C8 and T12 segments. The mean age of participants was 36 years and 17 percent were female with a mean time since injury of 4.8 years. The intervention group received 16 weeks of arm cycling, performed distance with a wheelchair, strength exercises, and muscle stretching two to three times a week in addition to usual PT sessions. The control group received only the PT sessions. Urine was collected by catheter or urine jet. The outcome was eradication of bacteriuria or continued negative urine culture versus the need for antibiotics regardless of bacteriuria.

Chronic asymptomatic bacteriuria was identified in 24 patients (57%) before treatment (52% intervention vs. 62% control) and in 18 patients (43%) after treatment (14% intervention vs. 71% control), which was a statistically significant difference between groups (relative risk 0.20, 95% CI 0.07 to 0.54, p<0.001). The authors pointed out that there was no adjustment made for individual fluid intake, which may have impacted the findings. In patients who required antibiotics, the locus of infection was not specified and urinary culture not conducted prior to the initiation of antibiotics. No other trials of urinary tract infection were identified.

Bowel Dysfunction

Twenty-four participants with incomplete T8 to L2 SCI were randomized to RAGT or body weight-supported treadmill training in one fair-quality RCT.¹¹³ Participant mean age was 40 years, 33 percent were female, and all participants had a duration of injury of less than 6 months. Both groups underwent defecation management training before beginning walking training four times weekly for 1 month. Outcomes were enema dose needed and defecation time. After 16 training sessions, the RAGT group required a lower enema dose after training than the treadmill group when compared with baseline dose requirements (–29 mL vs. –11 mL, p<0.05). The RAGT group also had a reduced defecation time compared with defecation times before training (–29 min vs. –15 min, p<0.05), indicating improved bowl function with RAGT. No other trials of bowel dysfunction were identified.

Autonomic Dysreflexia

No study meeting inclusion criteria for this review reported incidence of autonomic dysreflexia as a function of harm reduction with physical activity. Autonomic dysreflexia as potential harm of physical activity is discussed in KQ2e.

KQ2d: Risk of Adverse Outcomes Due to MS, CP, SCI

Nineteen studies (18 RCTs and 1 cohort study) representing 945 participants evaluated the effect of physical activity on spasticity in participants using or at risk for requiring wheelchairs (Tables 45, 46, 47).^{71,73,74,94,96,99,100,111,121,125,134,136,158,159,163,174,204,207-210,223,244,245,267} We did not find eligible studies that reported other relevant outcomes.

Author, Year Intervention Study Design Study Quality	Intervention and Comparison	Population (Multiple Sclerosis)	Results
Calabro, 201796	A. Lokomat-Pros (RAGT +	A vs. B	Effect size, p-value is between
	VR), 40 sessions over 8 weeks	Age: 44 vs. 41	groups:
Aerobic exercise	(n=20)	Female: 65% vs. 60%	<u>MAS</u> : –0.01, 95% CI –0.539 to
		EDSS: 4.40 vs. 4.75	0.539, p=0.40
RCT	B. Lokomat-Nanos (RAGT), 40		
	sessions over 8 weeks (n=20)		
Good	· · · · · ·		

Table 45. Impact of physical activity interventions on spasticity in participants with multiple sclerosis

Author, Year			
Intervention Study Design Study Quality	Intervention and Comparison	Population (Multiple Sclerosis)	Results
Castro-Sanchez, 2012 ⁷¹ Aerobic exercise RCT Good	A. Ai-Chi aqua therapy with Tai-Chi music, 60 sessions over 20 weeks (n=36) B. Relaxation exercises on exercise mat without music, 60 sessions over 20 weeks (n=37)	A vs. B Age: 46 vs. 50 Female: 72% vs. 65% EDSS: 6.3 vs. 5.9 PPMS: 17% vs. 24% SPMS: 25% vs. 32%	Mean (SD) baseline to postintervention, p-value between groups: <u>Spasm VAS</u> : 5 (2.8) to 2 (4.3) vs. 6 (3.1) to 4 (4.5), 91% improvement vs. 10% improvement, p<0.05 The difference on the spasm VAS was maintained at 24 weeks (4 weeks postintervention) but there was no difference between groups
Dodd, 2011 ²⁰⁴	A. Progressive resistance, 20 sessions over 10 weeks	A vs. B Age: 47.7 vs. 50.4	at 30 weeks. Mean difference between groups: <u>MSIS-88 stiffness</u> : –2.4, 95% CI –
Strength RCT	(n=36) B. Social program (attention	Female: 72% vs. 74% Ambulation index 2 (mild): 47% vs. 54%	0.52 to 0.5 <u>MSIS-88</u> muscle spasms: –2.8, 95% CI –5.6 to 0.03)
Good	control), 10 sessions over 10 weeks (n=35)	2 (mild): 47 % vs. 54 % 3 (moderate): 39% vs. 26% 4 (severe): 14% vs. 20%	CI - 5.0 (0 0.03)
Pompa, 2017 ⁹⁴	A. RAGT, 12 sessions over 4 weeks (n=21)	A vs. B Age: 47 vs. 50	A vs. B, mean SD, p=between groups:
Aerobic exercise	B. Conventional walking training, 12 sessions over 4	Female: 48% vs. 55% PPMS: 0% vs. 13.6% EDSS	Spasticity VAS 100mm ranged from <u>"no problem" to "very bad":</u> 5.05 to 3.40 vs. 5.31 to 5.23,
Fair	weeks (n=22)	6.62 vs. 6.50	p=0.048.
Tarakci, 2013 ²²³ Multimodal exercise RCT Fair	 A. Exercise (e.g., range of motion, strength, flexibility, balance, core stability), 36 sessions over 12 weeks (n=51) B. Waitlist control (n=48) 	A vs. B Age: 41.5 vs. 39.7 Female: 67% vs. 63% EDSS: 9.0 vs. 8.4 RRMS: 63% vs. 69%	A vs. B, mean, p-values are between groups, MAS: <u>RHipFlexors</u> : 1.35 to 0.68 vs.1.52 to 1.65, p<0.001 <u>LHipFlexors</u> : 1.29 to 1.00 vs. 1.52 to 1.65, p=0.015 <u>RHamstring</u> : 1.35 to 0.70 vs. 1.28 to 1.47, p<0.001
			LHamstring: 1.01 to 0.54 vs. 1.02 to 1.26, p<0.001 RAchilles: 0.86 to 0.68 vs. 0.94 to 1.10, p=0.014 LAchilles: 0.58 to .27 vs. 0.81 to 0.89, p<0.001
Vermohlen, 2018 ¹⁵⁸	A. Hippotherapy, 12 sessions over 12 weeks plus standard care (n=32)	A vs. B Age (median years): 50 vs. 51	A vs. B, mean difference between groups: <u>Spasticity NRS:</u> -0.9 (95% CI: -1.9 to 0.1) p=0.021
Postural control	B. Standard care (n=38)	Female: 90% vs. 73% EDSS: 5.4 vs. 5.3	to −0.1), p=0.031
Fair			

Abbreviations: CI = confidence interval; EDSS = Expanded Disability Status Scale; MAS = Modified Ashworth Scale; MSIS-88 = Multiple Sclerosis Impact Scale; NRS = numeric rating scale; PPMS = primary progressive multiple sclerosis; RAGT = robotassisted gait training; RCT = randomized controlled trial; RRMS = relapsing-remitting multiple sclerosis; SD = standard deviation; VAS = Visual Analog Scale; VR = virtual reality

Author, Year			
Intervention Study Design	Intervention	Population	
Study Quality	and Comparison	(Cerebral Palsy)	Results
Adar, 2017 ⁷³	A. Aquatic exercise, 30	À vs. B	Median pre-post p-values on MAS
	sessions over 6 weeks	Age:10.1 vs. 9.3	for each treatment arm
Aerobic exercise	(n=17)	Female: 53% vs. 40%	Median pre-post p-values on MAS
			for each treatment arm
RCT	B. Land-based exercise, 30	GMFCS median	<u>RKneeFlexors</u>
	sessions over 6 weeks	(range): 2 (1-4) vs. 2 (1-	Location: Aquatics 0.039, Land
Fair	(n=15)	4)	0.008
			<u>LKneeFlexors</u>
			Location: Aquatics 0.003, Land
			0.003
			RAnkleFlexors
			Location: Aquatics 0.005, Land
			LAnkleFlexors Location: Aquatics 0.046, Land
			0.046
			RHipAdductors
			Location: Aquatics 0.025, Land
			0.083
			LHipAdductors
			Location: Aquatics 0.003, Land
			0.013
Chrysagis,	A. Treadmill training, 36	A vs. B	A vs. B (mean change, p=value)
2012 ¹²¹	sessions over 12 weeks	Age: 15.90 vs. 16.09	MAS:
	(n=11)	Female: 45% vs. 36%	Knee extensors: 0.32 vs. 0.18,
Aerobic exercise		Ambulatory: 100%	p=0.827
DOT	B. Conventional PT, 36		Knee flexors: 0.31 vs. 0.22,
RCT	sessions over 12 weeks		p=0.632
Fair	(n=11)		Foot plantar flexors: 0.32 vs. 0.17, p=0.460
El-Shamy,	A. Robotic upper-limb	A vs. B	Mean difference between groups:
2018 ¹⁸¹	therapy, 36 sessions over 12	Age: 6.9 vs. 6.8	Mean difference between groups.
2010	weeks (n=15)	Female: 40% vs. 27%	Spasticity MAS: -0.4, 95% CI -0.8
Postural control		MACS I: 33% vs. 40%	to -0.1 , p<0.05
	B. Conventional therapy of	MACS II: 53% vs. 40%	,
RCT	stretching and strength	MACS III: 13% vs. 20%	
	exercises, 36 sessions over		
Fair	12 weeks (n=15)		
Johnston,	A. Partial BWS treadmill	A vs. B	Mean difference between groups,
2011 ¹²⁵	training with 20 sessions over	Age: 9.6 vs. 9.5	p=between groups
A 1.' '	2 weeks, then 50 sessions at	Female: 50% vs. 42%	KinCom computerized
Aerobic exercise	home over 10 weeks (n=14)		dynamometer:
DOT	P. Individualized stress th	GMFCS II: 7% vs. 8%	Plantar Flexor Spasticity (J/ ^O /s): -0.0003, p=0.75
RCT	B. Individualized strength- based PT, 20 sessions over	GMFCS III: 64% vs. 50%	_0.0003, p=0.75 Knee flexor spasticity (J/ ⁰ /s):
Fair	2 weeks, then 50 sessions over	GMFCS IV: 29% vs.	-0.0026, p=0.59
	home over 10 weeks (n=12)	42%	0.0020, p=0.00
Lai, 2015 ⁷⁴	A. Aquatic therapy, 24	A vs. B	A vs. B (ANCOVA p-values)
, _0.0	sessions over 12 weeks,	Age: 7.6 vs. 6.6	MAS:
Aerobic exercise	rehab exercises, 24-36	Female: 64% vs.31%	Ankle: 0.614
	sessions over 12 weeks	GMFCS I: 9% vs. 8%	Knee: 1.000
Cohort study	(n=11)	GMFCS II:36 % vs. 46%	Wrist: 1.000
		GMFCS III: 27% vs.	Elbow: 1.000
Fair	B. Rehab exercises, 24-36	23%	
	sessions over 12 weeks	GMFCS IV: 27% vs.	
	(n=13)	23%	

Table 46. Impac	t of physical activi	ty interventions on spas	sticity in children with cere	bral palsy
-----------------	----------------------	--------------------------	-------------------------------	------------

Author, Year			
Intervention			
Study Design	Intervention	Population	
Study Quality	and Comparison	(Cerebral Palsy)	Results
Lucena-Anton, 2018 ¹⁶³	A. Hippotherapy, 12 sessions over 12 weeks plus	A vs. B	A vs. B, mean (baseline to posttreatment), p=between groups
201010	physiotherapy, 24 sessions	Age: 9.5 vs. 8.2 Female: 41% vs. 32%	MAS:
Postural control	over 12 weeks (n=22)	Nonambulatory: 100%	Left Abductors: 2.77 to 2.50 vs.
		Honambulatory: 10070	2.59 to 2.54, p=0.040
RCT	B. PT, 24 sessions over 12		Right Abductors: 2.22 to 1.77 vs.
	weeks (n=22)		2.40 to 2.31, p=0.047
Fair			
Qi, 2018a ²¹⁰	A. Strength exercises +	A vs. B	Mean difference between groups:
1	neuromuscular electrical	Age: 5.8 vs. 6.0	<u>CSS:</u> 1.6, 95% CI 0.33 to 2.87,
Strength	stimulation, 30 sessions over	Female: 48% vs. 46%	p=0.01
DOT	6 weeks (n=50)		
RCT	B. Neuromuscular electrical	Comprehensive Spasticity Scale:	
Fair	stimulation, 30 sessions over	12.0 vs. 12.3	
1 dii	6 weeks (n=50)	12.0 V3. 12.0	
Scholtes,	A. Progressive resistance, 36	A vs. B	A vs. B, mean (SD), p=between
2010 ²⁰⁹	sessions over 12 weeks	Age: 10.33 vs. 10.25	groups
Scholtes,	(n=24):	Female: 33% vs. 50%	Spasticity (0-5, higher=greater
2012 ²⁰⁷		Ambulatory: 100	<u>spasticity</u>): 1.00 (1.32) vs. 2.00
Scholtes,	B. Usual care (n=25)	GMFCS I: 54% vs. 48%	(1.32) (baseline)
2008 ²⁰⁸		GMFCS II: 33% vs. 36% GMFCS III: 13% vs.	2.00 (1.11) vs. 1.50 (1.10)
Strength		16%	(postintervention) Effect Size: 0.46, 95% CI −0.34 to
Otterigti		1070	1.26, p=0.26
RCT			
Fair			
Wu, 2017b ⁹⁹	A. RAGT (resistive force), 18 sessions over 6 weeks	A vs. B	A vs. B, mean (SD)
Aerobic exercise	(n=11)	Age: 11.3 vs. 10.5	MAS (Baseline vs. 6 weeks vs. 8 weeks
Actubic exercise		Female: 45% vs. 40%	followup)
RCT	B. Treadmill only training, 18	Nonwhite: 54.5% vs.	0.62 (0.46) to 0.67 (0.60) to 0.41
	sessions over 6 weeks	50%	(0.38), p=0.18, vs. `
Fair	(n=10)	GMFCS I: 9% vs. 17%	0.65 (0.36) to 0.48 (0.47) to 0.58
		GMFCS II: 55% vs. 25%	(0.44), p=0.19
		GMFCS III: 27.vs. 42%	
Wu, 2017a ¹⁰⁰	A. RAGT with resistance, 18	GMFCS IV: 9% vs. 17% A vs. B	Mean (SD), p=between groups
vvu, 2017a	sessions over 6 weeks	Age: 10.6 vs. 10.8	postintervention:
Aerobic exercise	(n=10)	Female: 50% vs. 45%	MAS
		GMFCS I: 8% vs. 0%	0.65 (0.57) to 0.83 (0.66) to 0.63
RCT	B. RAGT with assistance,18	GMFCS II: 42% vs. 45%	(0.39) followup vs. 0.85 (0.67) to
	sessions over 6 weeks	GMFCS III: 42% vs.	0.68 (0.56) to 0.87 (0.55) followup
Fair	(n=10)	36%	
		GMFCS IV: 8% vs. 18%	MD 0.35, 95% CI –0.19 to 0.89,
			p=0.21

Abbreviations: ANCOVA = analysis of covariance; BWS = body weight supported; CSS = Comprehensive Spasticity Scale; CI = confidence interval; GMFCS = Gross Motor Function Classification System; IQR = interquartile range; MAS=Modified Ashworth Scale; MACS = manual ability classification system; MD = mean difference; PT = physical therapy; RAGT = robot-assisted gait training; RCT = randomized controlled trial; SD = standard deviation; VR = virtual reality

 Table 47. Impact of physical activity interventions on spasticity in participants with spinal cord injury

injury	1		· · · · · · · · · · · · · · · · · · ·
Author, Year			
Intervention			
Study Design	Intervention	Population	
Study Quality	and Comparison	(Spinal Cord Injury)	Results
Galea, 2018 ²⁴⁵	A. Whole body strength +	A vs. B	A vs. B
	aerobics, 36 sessions over 12	Age: 40.1 vs. 42.8	
Multimodal	weeks (n=60)	Female: 15% vs.16%	1.8 (1.1) vs. 1.5 (1) (baseline)
exercise		ASIA A: 48% vs. 50%	1.6 (1.1) vs. 1.8 (1.1), MD –0.25
	B. Upper body strength +	ASIA B: 15% vs. 14%	(95% CI –0.61 to 0.1), p=0.163
RCT	aerobics, 36 sessions over 12	ASIA C: 12% vs. 9%	
	weeks (n=56)	ASIA D: 25% vs. 27%	
Fair			
		C2-C8: 48% vs. 59%	
		T1-T6: 30% vs. 23%	
		T7-T12: 22% vs. 18%	
Kapadia, 2014 ¹³⁶	A. BWS treadmill walking with	A vs. B	MAS: No between group differences
•	FES, 48 sessions over 16	Age: 56.6 vs. 54.1	in MAS involving the hip, knee, and
Aerobic exercise	weeks (n=17)	Female: 18% vs. 29%	ankle joints.
		Tetraplegia: 82% vs. 71%	-
RCT	B. Aerobic and resistance	UEMS: 38.3 vs. 37.5	
	training, 48 sessions over 16	LEMS: 30.4 vs. 27.9	
Fair	weeks (n=17)		
Kumru, 2016 ¹¹¹	A. RAGT with rTMS, 20	A vs. B	A vs. B
	sessions over 4 weeks (n=15)	Age: 51 vs. 49	Mean difference between groups:
Aerobic exercise		Female: 33% vs. 13%	MAS: -0.20, 95% CI -0.94 to 0.54,
	B. RAGT with Sham rTMS, 20	ASIA A; 0%	p=0.59
RCT	sessions over 4 weeks (n=16)	ASIA B: 0%	
		ASIA C: 80% vs. 88%	
Fair		ASIA D: 20% vs. 22%	
		Cervical or Thoracic:	
		100%	
		Cervical: 53% vs. 38%	
11	- American Sminel Inium: Association	I I A I DUIA I	

Abbreviations: ASIA = American Spinal Injury Association Impairment Scale; BWS = bodyweight supported; CI = confidence interval; FES = functional electrical stimulation; LEMS = Lower Extremity Motor Score; MAS = Modified Ashworth Scale; RAGT = robot-assisted gait training; rTMS = transcranial magnetic stimulation; UEMS = Upper Extremety Motor Score

Six studies enrolled participants with MS (n=396) (Table 45), ten enrolled children or adolescents with CP (n=457) (Table 46), and three enrolled participants with SCI (n=181) (Table 47). The range of mean ages enrolled in studies of participants with CP was 4.7 to 16 years, in studies of participants with MS was 39.7 to 51 years, and in participants with SCI was 40.1 years to 56.6 years. The proportion of females enrolled ranged from a low of 15 percent in a SCI study, to a high of 90 percent in a study of participants with MS. Race was reported in only two studies, both of children with CP (nonwhite race 52% and 48%).^{99,100} Reporting of characteristics at baseline related to spasticity or overall mobility varied according to condition. In studies of participants with CP, most were in GMFCS level II or III, with fewer participants in levels I and IV, except for the study of the youngest participants (mean age 4.8 years) where over 73 percent were in GMFCS level V. In the studies of participants with MS, baseline disability ranged from 4.4 to 9 on the EDSS (range of scale 0 to 10 with higher values representing more problems walking). The studies of participants with spinal cord injuries varied in the way disability was reported and the level of disability. Two of the RCTs enrolled mostly participants (100% and 77%) at the ASIA scale C and D level (motor incomplete, motor function preserved at some level),^{111,134-136} while the third enrolled participants at each ASIA score level with more than 60 percent at level A (complete impairment, no sensory or motor function) or B (sensory

incomplete, but motor function complete).^{244,245} The proportion of participants using wheelchairs, full or part-time, was not explicitly reported.

Interventions studied and comparisons made varied widely. Eleven studies evaluated aerobic interventions^{71,73,74,94,96,99,100,111,121,125,136} (2 vs. usual care, including standard PT), four evaluated strength interventions^{181,204,207-210} (1 vs. usual care, 1 vs. attention control), two evaluated balance interventions^{158,163,267} (all vs. usual care), and two evaluated multimodal interventions (1 vs. usual care). In the 8 of 18 studies categorized as comparing interventions with usual care, the control groups consisted of standard PT regimens, waitlist, "attention control" (nonphysical activity social interactions) and unspecified "usual care" interventions. The most commonly reported outcome of spasticity was the Modified Ashworth Scale (MAS) (range 0-4, measure of resistance on passive soft tissue stretching), used in 10 studies.^{73,74,96,99,100,111,121,136,163,181}

Seven of 19 studies found a significant difference between groups. In comparisons to usual care control groups, balance interventions in four RCTs (1 of hippotherapy in participants with CP,¹⁵⁸ 1 of hippotherapy in participants in MS,¹⁶³ 1 of robotic upper-limb therapy in children with CP,¹⁸¹ and 1 of a multimodal therapy in participants with MS²²³) significantly improved spasticity. In head-to-head comparisons, robot-assisted treadmill training improved spasticity more than nonassisted treadmill training,⁹⁹ aquatic Tai Chi with music improved spasticity more than relaxation exercises on land without music,⁷¹ and neuromuscular electrical stimulation with strength training improved spasticity more than neuromuscular electrical stimulation alone.²¹⁰ All other comparisons did not find differences in the effect on spasticity. The details of these studies are summarized below.

Because the studies were small (n=11 to 116), most were fair quality, and for each population-intervention-comparison there was only a single study, the majority of this evidence is insufficient to draw conclusions. The two exceptions were a good-quality RCT of progressive resistance training compared with a social program (attention control) that found no difference in spasticity between groups in participants with MS, providing low-strength evidence of no clear benefit of strength training on spasticity,²⁰⁴ and a good-quality RCT, also in participants with MS, of aquatic-based Ai-Chi versus relaxation exercises on land that provided low-strength evidence of benefit with aquatics on a spasm visual analogue scale.^{71,73,74,94,96,99,100,111,121,125,134,136,158,159,163,174,204,207-210,223,244,245,267}

Comparisons With Usual Care

Aerobic Exercises Versus Usual Care

Two fair-quality studies compared an aerobic exercise with usual care in participants with CP over 12 weeks, with neither finding a significant benefit on measures of spasticity.^{74,121} Both were small studies (n=22 total), with one being an RCT of treadmill training in adolescents with CP.¹²¹ Evaluation of knee extensors and flexors and foot flexors showed small differences (<0.5 difference on a 5-point scale) favoring the intervention numerically, which did not reach statistical significance. The other study was a cohort study that evaluated aquatic therapy compared with standard rehabilitation exercises, with adjusted analysis not finding differences at the ankle, knee, wrist, or elbow.⁷⁴

Strength Exercises Versus Usual Care

Two RCTs evaluated the effect of progressive resistance training on spasticity, with neither finding a significant benefit.^{204,207-209} In a small good-quality RCT of participants with MS

(n=71), an attention control social program was used as the comparison group intervention. Using the Multiple Sclerosis Spasticity Scale-88, muscle stiffness and muscle spasms were not significantly improved with strength training (Table 45).²⁰⁴ A small fair-quality trial (n=49) in children with CP reported small improvement in the intervention group compared with the control group, but the difference between groups was not significant (Table 46). Spasticity was measured using goniometry to identify the joint angle at which a sudden increase in muscle tone occurred during a fast passive stretch (0-5-point scale, 5 being the worst). Another small (n=30) fair-quality RCT in children with CP assessed robotic upper limb therapy over 12 weeks, compared with conventional therapy and found that spasticity was improved with the nintervention,¹⁸¹ based on the MAS (Table 46).

Balance Exercises Versus Usual Care

Two fair-quality RCTs evaluated hippotherapy over 12 weeks. One was of participants with CP (n=44),¹⁶³ and the other in participants with MS (n=70).¹⁵⁸ In the study of children with CP, none of whom were ambulatory, there was a significant difference in spasticity between groups on the MAS on both the left and right adductors.¹⁶³ The magnitude of difference was small (0.22 and 0.36 on a 5-point scale), but the effect size was considered medium to large (Cohen's d = 0.638 and 0.646, respectively). In the other RCT of mostly women (82%) with MS with mean baseline EDSS of 5.4, 12 weeks of hippotherapy also had significantly lower spasticity based on a 0-10 numeric rating scale (numeric rating scale -0.9, 95% CI -1.9 to -0.1, p=0.031).¹⁵⁸ The magnitude of effect is small, but larger than seen in other studies.

Multimodal Exercises Versus Usual Care

A single small fair-quality RCT of participants with MS, whose mean baseline EDSS score was 8.7, evaluated an exercise program that included range of motion, strength, flexibility, balance, and core stability exercises over 12 weeks compared with a waitlist control group.²²³ Based on the MAS, significant improvement was seen at all testing points compared with control (Table 45). The magnitude of difference varied based on the location of testing (e.g. difference of 0.7 at right hip flexor vs. 0.39 at left Achilles-tendon on a 5-point scale), but the control group value deteriorated slightly over the 12-week period.

Head-to-Head Comparisons

Aerobic Exercises

In participants with MS (Table 45), one RCT compared RAGT with a conventional walking program.⁹⁴ In this RCT of participants with baseline EDSS scores of 6.6, using a Visual Analog Scale (VAS) (0-100), RAGT improved spasticity more than conventional walking exercises (-1.65 vs. 0.08, p=0.048), but the difference is small and the spasticity level was low in both groups at baseline (5.05 and 5.31). In another RCT (good quality), the Lokomat[®] RAGT was compared with and without a virtual reality program (n=40).⁹⁶ At baseline, participants' disability was less than the previous study (EDSS 4.6). At 8 weeks, there was not a significant improvement from baseline in either group, nor was the difference between groups significant based on the MAS. In a third study (good quality, n=73), participants with mean EDSS at baseline of 6.1 were assigned to aquatic Ai Chi with music or to land-based relaxation exercises without music. Based on a 0 to 100 VAS scale, spasticity was improved more in the aquatic

group after 20 weeks (Table 46).⁷¹ The difference between groups remained significant at week 24 (4 weeks postintervention) but not at week 30.

In children with CP (Table 46), four fair-quality RCTs compared one form of aerobic exercise with another and reported on spasticity.^{73,99,100,125} Three studies found no benefit of either intervention on measures of spasticity, one comparing partial body weight support-treadmill training with individualized strength training for 12 weeks (n=26),¹²⁵ one comparing RAGT with nonassisted treadmill training over 6 weeks with an 8-week followup (n=21),⁹⁹ and one comparing RAGT with resistance or assistance (Table 46).¹⁰⁰ These studies were very small, such that differences may not have been found due to inadequate statistical power. The fourth RCT compared an aquatic exercise program with a land-based program for 6 weeks (n=32), finding statistically significant improvement in both groups.⁷³ Statistical comparisons were not made between groups, and data were not provided to conduct such calculations.

In participants with incomplete SCI, two fair-quality RCTs compared aerobic interventions with each other, but neither found a difference in the effect on spasticity (Table 47).^{111,134-136} The first compared functional electric stimulation in body weight supported treadmill training with an aerobic and resistance training program over 16 weeks (n=34).¹³⁶ At baseline 78 percent were ambulatory. There was no difference in spasticity at the end of the study in either group, or between groups. In the second RCT (n=31), RAGT with and without rTMS was evaluated over 4 weeks, using a sham rTMS for the control group.¹¹¹ At baseline, 84 percent were ASIA level C for impairment (motor incomplete). Neither group had significant improvements in spasticity at 4 weeks, nor was there a significant difference between groups.

Strength Exercises

A fair-quality RCT in children with CP compared neuromuscular electrical stimulation with and without strength training exercises over 6 weeks (n=100).²¹⁰ Mean age was 6 years, and the Comprehensive Spasticity Scale score was 12.1 (mean) at baseline (scores of 10-12 defined as moderate spasm). After 6 weeks, while the score was reduced to the level of "mild spasm" in both groups, the combined neuromuscular electrical stimulation and strength training group had a significantly greater reduction, resulting in a mean score of 7.6 compared with a mean score of 9.5 in the control group (p<0.05).

Multimodal Exercises

A fair-quality RCT of participants with incomplete SCI (n=116) compared whole body strength and aerobic training (locomotor training, functional electrical stimulation-assisted leg cycling, and trunk and lower extremity exercises) with upper body strength and aerobic training only.^{244,245} In this study, 49 percent of participants had ASIA scale level A impairment at baseline (complete SCI). Spasticity was measured using the self-reported Penn Spasm Frequency Score, rated 0 (no spasms) to 4 (4 being spontaneous spasms occurring >10/hour) over the past week. The baseline mean score for whole body strength and aerobic training was 1.8, and for upper body strength and aerobic training was 1.5. There was no improvement and no difference between groups after 12 weeks (p=0.163).

KQ2e: Physical Activity Harms

Most included studies of physical activity in participants with MS, CP, and SCI did not assess or did not report adverse events or harms experienced by study participants. This included greater than 60 percent of studies in participants with SCI and CP and greater than 40 percent of studies in participants with MS. A small proportion of trials (11%) reported that there were no harms, adverse events, serious adverse events, and/or study withdrawals due to adverse events.

In studies that reported adverse events, sometimes the events were not broken down into intervention versus control groups. That is, some studies reported that many or most study participants experienced "sore muscles" or "aches and pains," contributing to the challenge of determining which interventions are associated with which harms. Overuse injuries were rarely described as an "overuse" injury but musculoskeletal issues (i.e., joint pain, muscle soreness, sprains, muscle cramps) were frequently cited without being associated with a particular intervention.

Other potential harms that may be associated with physical exercise and that are especially concerning include autonomic dysreflexia (that could be fatal), fractures, and falls.

One fair-quality RCT (n=116) in participants with C2 to T12 SCI (49% ASIA Impairment Scale [AIS]-A, 26% AIS-D) randomized participants to intensive whole-body exercises versus intensive upper-body exercise for 12 weeks (36 sessions).^{244,245} Whole-body exercises included locomotor training, FES-assisted leg cycling, and assisted and resisted exercises to strengthen the trunk, upper limbs, and lower limbs. Upper-body exercises involved arm cycling and upper-body strength exercises, such as chest press and biceps/triceps curls.

This trial²⁴⁵ systematically monitored participants for adverse events and recorded 719 total such events (404 with full-body exercise and 309 with upper-body exercise). In the full-body exercise group (n=60), there were 26 instances of autonomic dysreflexia (3 were considered serious) and 5 episodes of dizziness/nausea (possibly related to autonomic dysreflexia). In the upper-body exercise group (n=56), there were 7 episodes of autonomic dysreflexia and 15 episodes of headache (possibly related to autonomic dysreflexia). Data on the number of participants who experienced each adverse event were not provided. Although only three episodes of autonomic dysreflexia were rated as serious by study personnel, this trial demonstrates the need for cardiovascular monitoring of exercise participants, especially participants with SCI and those experiencing intense interventions to minimize cardiovascular risk. This trial provides low-strength evidence of increased episodes of dysreflexia with more intense exercise versus less intense exercise, in this case whole body exercise versus upper body exercises.

In addition to episodes of autonomic dysreflexia, one participant in the full-body intervention group above experienced bilateral insufficiency fractures of the medial femoral condyle and tibial plateau.²⁴⁵ Across all included studies reporting adverse events, fracture was one of the most commonly cited specific harms and occurred in at least eight trials. However, not all fractures were study related; fractures also occurred in participants assigned to various exercise groups (e.g., aerobics, aquatics, cycling, hippotherapy) in addition to control groups. There was no indication of increased fracture risk with any particular exercise intervention versus another intervention or versus a control intervention, but evidence was limited.

Six trials reported the occurrence of one or more falls. Falls were reported in hippotherapy,^{158,164,165} Pilates,^{200,201} balance training,^{141,143} and usual physiotherapy.^{200,201} Although one fall from a horse resulted in a fractured humerus,¹⁶⁵ data were too sparse to determine if falls were more strongly associated or if the consequences of falls were more severe

with one intervention versus a no exercise or usual care control (RR 3.74, 95% CI 0.80 to 17.45, p=0.093) (SOE: Insufficient).

KQ2f: Physical Activity Characteristics

Three RCTs provided evidence for this KQ and all studies enrolled participants with MS (n=397).^{59,192,193,197} Details for each RCT are provided below.

Hospital-Based Versus Home-Based Calisthenics

Two fair-quality RCTs (n=83) enrolled participants with MS and compared hospital or center-based exercise with home-based exercise.^{59,229} In one trial, participants were, on average, 33 years old (range 18 to 50 years), were 56 percent female, and had a mean EDSS score of 3.5.⁵⁹ All participants received a 12-week, 36-session exercise program that consisted of calisthenics 3 days per week and relaxation 2 days per week. Sessions included 15 minutes of warmup, 20 minutes of intensive calisthenics, and 15 minutes of cool down and relaxation. In the hospital group, exercises were conducted by a physiatrist. Participants in the control group were to conduct the same exercises at home with daily telephone followup. Both groups significantly improved on the 10MWT from baseline with no differences between groups (p=0.442). Quality of life was also significantly improved in both groups but was not different between groups (p=0.146). Both the hospital-based and the home-based group improved significantly on the BBS compared with baseline, but the hospital-based group saw a greater improvement (p=0.031). At baseline, 62.5 percent of participants had depressive symptoms and 52.7 percent had symptoms of anxiety. At the conclusion of the 12-week exercise program, both groups saw statistically significant improvement on both the HADS-D (depression) and the HADS-A (anxiety) scales, but the hospital-based exercise group improved to a greater degree than the home-based exercise group (p<0.001).

In the second trial, participants were 51 years of age on average, 76 percent were female, and most required unilateral (36%) or bilateral (22%) ambulation aids.²²⁹ The intervention group received sixteen 60-minute group exercise sessions aimed at improving gait and balance. Sessions were led by physiotherapists and exercises were performed at moderate to high intensity. The control group performed similar exercises at home. Gait speed, walking endurance, and balance did not improve over time and there were no statistically significant differences between the groups on the 10MWT, 6MWT, or the BBS (p>0.05 for all comparisons).

Findings from these trials are mixed and suggest that for some outcomes, home exercise with close followup may yield similar improvements as hospital-based interventions. In one trial,⁵⁹ depression scores improved to a greater degree with hospital-based exercises, but confirmation of these findings are needed to determine when home-based, unobserved activity provides similar benefits to clinic or hospital-based physical activity interventions.

Physiotherapist-Led Versus Fitness-Instructor-Led Exercise

One poor-quality RCT in participants with MS randomized individuals with minimal gait impairment (Guy's Neurological Disability Scale [GNDS] mobility section score of 0 to 2) to group exercise led by a physiotherapist (n=63) or by a fitness instructor (n=67).^{192,193} The mean age of participants was 51 years, 73 percent were female, and 52 percent had RRMS. Only the physiotherapist-led exercise program was predefined and consisted of aerobic and strength exercises weekly for 10 weeks. Participants were also advised to continue walking, cycling,

swimming, or running at home for 30 minutes twice a week, and from week 6 on, an additional self-directed strength and aerobic session was added.

The fitness instructor-led program was not predefined and was conducted at 11 different sites across Ireland to reflect typical community programs available to MS patients. Most weekly sessions consisted of a combination of aerobic and strength training with no additional, self-directed training at home specified.

Both groups saw statistically significant improvement on the MSIS-29 physical and psychological components and on the 6MWT from baseline measurements. However, the groups were not compared with each other but were each compared with a control group (n=49) that was instructed not to change exercise habits. Both the physiotherapist-led and the fitness instructor-led groups saw greater improvement over the control group on all measures. Due to high attrition, this trial provides limited support for the effectiveness of aerobic and strength focused community-based programs in MS patients with no or low levels of gait impairment.

Group Versus Individual Physiotherapy

One poor-quality RCT randomized participants with MS who needed bilateral support for gait and possibility a wheelchair for longer distances (GNDS mobility section 3 or 4) to group versus individual physiotherapy.¹⁹⁷ The mean age of participants was 55 years, 60 percent were female, and 43 percent were diagnosed with secondary-progressive MS. Both groups received 10 weekly sessions of group or individual physiotherapy.

The group physiotherapy program was self-paced and consisted of strength and balance exercises to reduce falls and improve balance and mobility. Progression was based on individual ability. Participants in the individual physiotherapy group received treatment based on the individual's problem list and goals.

Both group physiotherapy and individual physiotherapy were associated with improved scores from baseline on the MSIS-29 physical component and on the BBS. Group physiotherapy was also associated with improved scores from baseline on the MSIS-29 psychological component, while individual physiotherapy was associated with improved walking distance on the 6MWT. Due to breaking of randomization and attrition greater than 20 percent, this study provided limited evidence for similar benefits of group versus individual physiotherapy in MS patients with reduced mobility.

Other Comparisons

No included studies utilized telehealth or varied the level of training provided to study participants. Physical activity in trials of home-based exercise were typically not observed and therefore did not meet inclusion criteria for this review. Analysis across trials to further examine the effects of intervention location, amount of instruction, or level of supervision was not feasible due to significant heterogeneity in study populations, interventions, and comparators.

KQ3: Patient Factors and Physical Activity

This KQ evaluates the benefits and harms of the interventions according to patient characteristics, subgroups, demographics, condition, and intervention variations reported in the included studies.

Key Points

- In participants with incomplete SCI, having better function and more recent injury at baseline was associated with better response to aerobic interventions than those with worse function and longer time since injury (2 RCTs). A study of women with MS found more improvement in strength and balance with core stability training in those whose baseline disability was worse. Other subgroup analyses (3 RCTs) did not find evidence of variation in effects based on baseline function or spasticity in children with CP (total body vibration), or based on weight category in participants with MS (cycling).
- Comparisons of findings across studies of participants with CP did not suggest differences in results on walking outcomes by age group (children, adolescents, adults). This finding required confirmation from direct evidence based on subgroup analyses of age within studies. Data were too homogeneous to compare outcomes by age in MS or SCI. Evaluations of differences by sex or race/ethnicity were not possible.
- Comparisons of findings according to condition (CP, MS, SCI) across studies was limited by small numbers of studies in each comparison. With aerobic interventions, VO₂ peak was significantly improved in participants with SCI (2 RCTs) and CP (2 RCTs), but not in participants with MS (2 RCTs). No other differences were identified. These findings required confirmation from direct evidence based on subgroup analyses of participant diagnosis within studies.

Detailed Synthesis

Few studies evaluated the effect of the interventions according to patient characteristics or other subgroups. Only one study¹⁶⁸ undertook analysis of the effects of the exercise intervention according to demographic characteristics (KQs 3a), and no study evaluated harms according to baseline patient characteristics. Six studies (2 in SCI,^{138,247} 3 in MS^{53,147,231} and 1 in CP¹⁶⁸) evaluated the effects of interventions according to patient characteristics or factors such as baseline functional ability, recency of onset of condition, and weight (Table 48).

In participants with incomplete SCI, two small studies found that those with better function or more recent injury had better response to physical activity interventions. In a small (n=22) crossover RCT in participants with incomplete SCI (>7 months since injury), two methods of walking retraining were compared (endurance and precision training) over 2 months¹³⁸

Improvement on the 6MWT was significant with endurance training among participants with better walking speed at enrollment (>0.5 meters per second; p=0.03), while for those with lower walking function at baseline, no test was significantly improved with either training method. A secondary analysis of data from a small RCT (n=38) of participants with chronic (>12 months) incomplete SCI who were assigned to activity-based therapy evaluated predictors of response to intervention according to baseline characteristics.^{246,247} Response was defined as improvement of at least 45.1 meters on the 6MWT, 0.13 m/s on the 10MWT, and reduction of at least 25.7 seconds for the TUG test, representing what the authors considered conservative estimates of minimally important differences. Participants having a response on the 6MWT were greatest (statistically significant) among those with AIS grade D (vs. grade C), and in those whose injury occurred less than 3 years before treatment (vs. >3 years). Changes on the 10MWT and the TUG test were not significantly different based on these patient factors. Other patient factors evaluated, including injury level, lower-extremity motor score, and use of a walker prior to study, were not found to impact the likelihood of improvement on any measure. A trial of

women with MS (n=69) compared core stability training with conventional care (including stretching) over 10 weeks and found that improvement in strength and balance outcomes was greater in participants with greater disability at baseline.¹⁴⁷ Specifically, women with worse baseline EDSS (scores ranging from 3.5 to 4.5 and 4.5 to 5.5) improved significantly more than those with better baseline scores (range 2.5 to 3.5). One study of children with CP found hippotherapy associated with improved sitting assessment scores compared with no hippotherapy in children with less disability (GMFCS I), whereas those with GMFCS II did not show improvement.¹⁶⁸

In contrast, analyses in three other studies of physical activity interventions did not find evidence of variation in effects based on baseline function or spasticity in children with CP, baseline function in women with MS, or based on weight category in participants with MS.

A study of participants with RRMS evaluated interval cycling training (upper and lower extremity) for 2 months, stratifying analysis by weight categories (normal BMI <25, overweight >25).⁵³ Although fatigue and depression scores improved in the exercise groups, no interactions were found between weight subgroups on weight status (BMI category), fatigue, or depression. A trial of a multimodal exercise program over 12 weeks adjusted analyses based on disability at baseline (grouped by low, moderate and severe based on EDSS).^{230,231} While improvements were seen on the 6MWT and the TUG and in serum lipids, VO₂, and percent body fat prior to adjustment, none were found to show significant differences between the intervention and control after adjustment.

Author, Year Intervention			
Study Design Study Quality	Intervention	Population	Results
Amiri, 2019 ¹⁴⁷ Postural control	A. Core stability training, 30 sessions over 10 weeks (n=35)	A vs. B Age: 32 vs. 31 Female: 100%	<u>Core strength tests</u> (R/L hip abduction, R/L external rotation) demonstrated significant differences in strength based on baseline
RCT	B. Conventional care including stretching	EDSS: 3.56 vs. 3.74 MS	EDSS score (2.5-3.5; 3.5-4.5; 4.5-5.5), p<0.001
Fair	and range of motion exercises (n=34)		Plank test: significant differences between groups based on EDSS score, p<0.001
			Overall static balance tests demonstrated significant differences in strength based on baseline EDSS score and significant differences compared with the control group, p<0.001
			Greatest improvements seen in those with greatest disability (least strong)

Table 48. Within-study subgroup analyses of effects of exercise in participants with MS, SCI, or CP

Author, Year Intervention Study Design		Demulation	Descrite
Study Quality	Intervention	Population	Results
Faramarzi, 2020 ²³⁰ Banitalebi, 2020 ²³¹ Multimodal exercise RCT Fair	A. Resistance + cycling or running + balance exercises + Pilates + stretching, 36 sessions over 12 weeks (n=46) B. Waitlist control (n=43)	A vs. B Age criteria: (18 to 50) Female: 100% EDSS 0 to 4: 48% to 48% EDSS 4.5 to 6: 27% vs. 27% EDSS 6.5 to 8: 23% vs. 23%	A vs. B, Positive effect of exercise on: Cholesterol: p=0.020, effect of disability*exercise p=0.549 HDL: p<0.001, effect of disability*exercise p=0.408 LDL: p<0.001, effect of disability*exercise p=0.826 TG: p=0.005, effect of disability*exercise p=0.982 VO ₂ peak: p=0.004, effect of disability*exercise p=0.097 Body fat %: p=0.001, effect of disability*exercise p=0.76 <u>TUG:</u> p<0.001, effect of disability*exercise p=0.396 <u>6MWT</u> : p<0.001, effect of disability*exercise p=0.587
Jones, 2014 ²⁴⁶	A. Activity-based therapy	Age: 38 years Female: 29%	6MWT response (>45.1 meters improvement): AIS Grade C vs. D:
Multimodal	(developmental	Motor Incomplete SCI	OR 11.00 (95% CI 1.24 to 7.97)
exercise	sequence activities,	ASIA C or D	3 years since injury:
	resistance training,		OR 4.80 (95% CI 1.04 to 22.10)
Secondary	and locomotor	SCI	Other outcomes (10MWT and TUG): not
analysis of	training) (n=38)		significantly different based on AIS grade or
responders in			time since injury
an RCT	No control for this		No outcome found significantly different in
Poor	analysis		other subgroups (injury level, lower extremity function, use of a walker)
Poor Matusiak- Wieczorek,	A. Hippotherapy, 24 sessions over 12	A vs. B vs. C Age: 7.93 vs. 7.60 vs.	A vs. B vs. C, mean (SD), p=between groups SAS improvement vs. no improvement:
2020Matusiak-	weeks (n=15)	8.13	<u>A vs. C (6-7 year olds):</u> p<0.001
Wieczorek,		Female: 40% vs. 47%	<u>B vs. C (6-7 year olds):</u> $p=0.022$
2020 #19901	B. Hippotherapy, 12	vs. 47%	<u>A vs. B (6-7 year olds):</u> p=0.105
	sessions over 12	GMFCS I: 67% vs. 80%	<u>A vs. C (8-12 year olds):</u> p=0.379
Postural control	weeks (n=15)	vs. 47% GMFCS II: 33% vs. 20%	<u>B vs. C (8-12 year olds):</u> p=0.442 <u>A vs. C (8-12 year olds):</u> p=0.397
RCT	C. No hippotherapy (n=15)	vs. 53%	<u>A vs. C (GMFCS I):</u> p=0.001 <u>B vs. C (GMFCS I):</u> p=0.073
Fair	(11-13)		<u>A vs. B (GMFCS I):</u> p=0.030
			<u>A vs. C (GMFCS II):</u> p=0.326
			<u>B vs. C (GMFCS II):</u> p=0.509
			<u>A vs. B (GMFCS II):</u> p=0.429
Negaresh,	A. Interval cycling	A vs. B	No significant interactions between weight
2019 ⁵³	training of upper and	Age: 31 vs. 31	status and fatigue or depression outcomes
Aerobic	lower extremity 24 sessions over 8	Female: 65% vs. 67% EDSS: 1.65 vs. 1.54	(p>0.05)
Exercise	weeks	LD00. 1.00 V3. 1.04	Training groups improved significantly more
	Normal BMI (n=18)	MS	than control groups, regardless of weight on
RCT	Overweight (n=17)		fatigue, depression, aerobic capacity, and TUG
Fair	B. Control Normal BMI (n=15) Overweight: (n=13)		

Author, Year Intervention Study Design Study Quality	Intervention	Population	Results
Yang, 2014 ¹³⁸	A. BWS (if needed)	A vs. B	A. Precision training: No significant
-	treadmill walking, 40	Age: 48 vs. 44	improvements across groups
Aerobic	sessions over 8	Female: 30% vs. 30%	
Exercise	weeks (n=10)	Able to walk <u>></u> 5 meters with walking aid or	B. Endurance training: 6MWT improved significantly only in those with baseline walking
RCT	B. Precision track	braces: 100%	speed >0.5 m/s
(Crossover)	walking training, 40		
	sessions over 8	SCI	No changes in 10MWT (patient selected speed
Fair	weeks (n=10)		or fast speed) or Spinal Cord Injury–Functional
	. ,		Ambulation Profile

Abbreviations: 6MWT = 6-Minute Walk Test; 10MWT = 10-Meter Walk Test; AIS = ASIA Impairment Scale; ASIA = American Spinal Injury Association Impairment Scale; BMI = body mass index; BWS = body weight supported; CI = confidence interval; CP = cerebral palsy; EDSS = Expanded Disability Status Scale; GMFCS = Gross Motor Function Classification System; GMFM-88 = Gross Motor Function Measure 88; MMAS = Modified Modified Ashworth Scale; MS = multiple sclerosis; OR = odds ratio; RCT = randomized controlled trial; RRMS = relapsing-remitting multiple sclerosis; SCI = spinal cord injury; TUG = Timed Up and Go Test; VO2 max = maximal oxygen uptake

KQ3a: Patient Demographics

One included study conducted subgroup analyses on patient demographics (i.e., age).¹⁶⁸ Qualitative comparison of effects seen in these subgroups (age, sex, or race/ethnicity) may provide some insight into potential variation.

Age

One CP study¹⁶⁸ (n=45) compared the results of 12 weeks of hippotherapy on the Sitting Assessment Scale based on participant age and found that compared to a no hippotherapy control group, younger children aged 6 and 7 years had improved sitting scores, whereas there was no significant improvement on the Sitting Assessment Scale with hippotherapy among children age 8 through 12 years versus no hippotherapy.

Within populations, comparing similar interventions, there was either inadequate variation in age or heterogeneity in outcomes assessed to evaluate impact of age. For example, across seven studies of cycling exercises in participants with MS, mean age varied from 31 to 59 years (with two studies not clearly reporting age of participants), with the study of the youngest cohort evaluating TUG, fatigue, depression, and aerobic capacity,⁵³ and the study of the oldest cohort evaluating disability (using EDSS) and quality of life. Across 15 studies of mainly cycling or treadmill interventions in participants with SCI (that reported age and a prioritized outcome), there was not a wide variation in the age of enrolled participants, with a median of 43 years (range 33 to 56 years).^{75,76,89,90,92,93,107-113,133-136,138-140} Studies of participants in their 30s predominately evaluated oxygen consumption outcomes, where studies of participants in their 50s more commonly evaluated walking tests. The 10MWT was the most commonly reported across these studies, with no apparent differences in findings for younger and older participants, in that improvements were not found.^{111,133-136} Other intervention types had fewer studies, with no ability to evaluate the effect of age.

Across 22 studies of aerobic-type exercise in participants with CP, 13 included children (median age 9 years), 8 included adolescents (median age 16 years), and 1 included adults (median age 27 years).^{73,74,85-88,99-102,105,121-128,131,132,218} Looking at studies of children versus teens, in very global terms, the findings are similar; three of six and four of nine studies reported

positive findings on walking tests, while one of three and one of four reported positive findings in gross motor function in children and adolescents (respectively). The measures reported are too varied to be compared with evaluate any potential differences in magnitude of effects. The single study of adults found improved walking speed on the 6MWT.¹²⁶ Other intervention types had fewer studies, with no ability to evaluate the effect of age.

Sex

As noted above, there were no studies that evaluated males and females as subgroups. In order to evaluate this factor across studies, it would be necessary to compare studies that enrolled largely males (e.g. >75%) with those that enrolled largely females where the other patient characteristics were similar and that studied similar interventions. While there is some variation across conditions in the proportions of females enrolled, we found no instance of studies that would be comparable based on sex alone.

Race/Ethnicity

Race and ethnicity were poorly reported in the included studies. For example, in the 22 studies of aerobic interventions in participants with CP, half did not report race or ethnicity, while in 17 studies of cycling or treadmill exercise interventions in participants with SCI, only one reported on the race of participants. While several studies were conducted in countries outside of the United States (e.g., Iran or China), they were also mostly unclear on the race or ethnicity of the participants enrolled. Because of this poor reporting, and lack of heterogeneous groups to compare, we were unable to evaluate any impact of race/ethnicity on the outcomes of the interventions.

KQ3b: Variations by Condition and Intervention

In evaluating the potential variation of effects of physical activity interventions across the three populations, we compared results where we had adequate data to conduct meta-analysis, where the comparison was some form of usual care, where there was more than one condition with the same outcome measure reported, and measures of balance (e.g., BBS) according to intervention category (aerobic, balance, strength).

Aerobic Interventions

One RCT in adults with CP¹²⁶ and four RCTs in participants with MS reported on the 6MWT for aerobic interventions.^{54,66,77,79,80} None found a significant benefit and there was no clear difference according to population. Two studies each in participants with MS, SCI, and CP reported VO₂ peak. The results appeared to vary by population in these studies. Studies in patients with SCI (2 RCTs, MD –206 mL/min, 95% CI –359 to –53, I² 51%),^{92,140} and with CP (2 studies, MD of 6.5 to 7.0 ml/kg/min, both statistically significant but not combinable)^{88,132} found a benefit with aerobic exercise. In contrast, participants with MS did not show a benefit (2 RCTs, MD 0.20 mL/min, 95% CI –127 to 127, I² 0%).^{77,78} No other outcomes were reported across the different populations.

Strength Interventions

The 6MWT was reported in one RCT of children with CP,^{211,212} and in three RCTs of participants with MS.^{52,198,202,203} None found a significant benefit and there were no clear

difference according to population. No other outcomes were reported across the different populations.

Balance Interventions

One RCT of participants with MS^{143} and one in participants with SCI^{189} reported no effect of the intervention on the 10MWT, and no clear difference according to population. The BBS score was reported in one RCT of participants with CP^{50} and five RCTs in participants with $MS.^{141,143,144,158,159}$ All studies showed improved balance, with variation in the magnitude of benefit, and no clear difference according to population. Results for the TUG test varied by population; one RCT in participants with CP found no benefit,⁵⁰ four RCTs of participants with MS found no benefit but variation in the direction of the nonsignificant effects across studies,^{143,144,175,185} and one RCT in participants with SCI found a small benefit (-1.30 seconds, 95% CI -2.16 to -0.44).¹⁸⁹ No other outcomes were reported across the different populations.

Multimodal Interventions

On the 6MWT, six of seven RCTs of participants with $MS^{192,193,197,221,222,226,228}$ and one of participants with SCI^{247} showed improvements and no clear difference according to population. The seventh study of patients with MS did not find a significant improvement, after adjusting for baseline disability scores.²³¹ In contrast, on the 10MWT, four RCTs of participants with $MS^{222,223,225,228}$ did not find a benefit, while one RCT in participants with SCI found a benefit (-11.20 seconds, 95% CI -22.44 to -0.04).²⁴⁷ The TUG test was not improved in either MS patients (3 RCTs)^{225,228,231} or in SCI patients (1 RCT),²⁴⁷ and there were no clear difference according to population. No other outcomes were reported across the different populations.

KQ4: Methodological Gaps

Key Points

- Conclusions that can be drawn from research on physical activity in patients with MS, CP, and SCI were limited by small sample sizes, inadequate descriptions of population characteristics and control group activities, incomplete data analysis, inadequate reporting of adverse events, and few RCTs rated good quality (low risk of bias). There were few studies in MS and CP that enrolled a more disabled population.
- A few large, well-conducted RCTs of longer duration would greatly strengthen the evidence base. Large, cohort studies could provided data on long-term health outcomes, as well as potential harms from the intervention

Detailed Synthesis

Methodological weakness not discussed in subquestions below included inadequate description of control groups, inadequate reporting of baseline data, inadequate reporting of harms or adverse events, and inadequate between group analysis. Gaps in the evidence included fewer studies in CP and SCI than in MS with less evidence available for MS in males, SCI in females, and CP in adults. The lack of harms data is also a research gap, as is the relative lack of studies in MS and CP that enrolled a more disabled population.

Although interventions received in the intervention groups were generally well described, in many cases participants in the control groups were described as maintaining their usual level of activity without comment on what that usual level of activity was (e.g., no physical activity at all, daily walk to the mailbox, balance exercises). The control group was also described as continuing their usual physiotherapy without comment on what that physiotherapy entailed (e.g., 2 hourly sessions of free weights, 3 sets of 12 reps biceps curls and triceps extensions plus walking on a treadmill at 1.5 miles per hour for 15 minutes plus leg lifts and abdominal crunches on mat). In order to minimize across-study heterogeneity, it is important to pool trials with not just similar interventions, but also similar control groups, which was challenging at times when control group participation was not well described.

Participant baseline data were also not always well presented. Most studies provided mean age and the proportion of males and females per study arms, but often data were lacking in characteristics that may predict a better or worse outcome. For example, studies often gave no indication of the level of impairment of participants per treatment arms. The EDSS was the characteristic most often provided to indicate degree of impairment. But many studies did not provide that information or the type of MS with which MS participants were diagnosed (e.g., RRMS, PPMS), the specific level of injury in patients with SCI, or the GMFCS and degree of spasticity in patients with CP. Baseline participant data was also often provided for only the participants who were analyzed rather than all patients randomized. Many studies also did not provide disease severity or use of assistive technology (including use of wheelchairs) and did not control for these factors, although some trials did limit eligibility to patients with a range of disease severity.

Another methodological weakness was how data were analyzed in trials. Many studies did not fully take baseline data into account when comparing the performance between intervention and control groups. In some cases, the intervention group improved significantly from baseline whereas the control group had not. This was given as evidence of the superiority of the intervention. Another data analysis method that can yield misleading results occurred when studies compared baseline data and found no difference between groups and then measured postintervention data and found a statistically significant difference between groups favoring the intervention. Neither of these methods considered the difference between the *changes* in outcome measure before and after the intervention which can lead to faulty conclusions.

Another weakness, which is also a gap, is the lack of information on harms of the intervention. Many trials did not report any harms or adverse events and did not report that there were no harms or adverse events. In this case, it is impossible to determine whether adverse events occurred but were not reported in the publication, whether adverse events occurred but were not captured by the researchers, or whether no adverse events occurred. In trials designed to demonstrate that a treatment is effective, harms are often not adequately addressed but all trials should have an adequate means to document harms and adverse events experienced by study participants and report all of them in publications.

Another research gap is the limited information in certain populations based on the lower prevalence of disease (i.e., MS in males, SCI in females). Evidence in CP is largely limited to trials of children. Expanding the sample size would assist in capturing a broader range of individuals and provide information to fill in research gaps.

KQ4a: Types of Studies

Out of the 168 included studies in this review, 44 percent enrolled participants with MS, 38 percent were conducted in participants with CP, and 18 percent were in participants with SCI. Most of these studies were RCTs (n=146, 87%), a few were quasiexperimental trials where participants were not randomized into groups (n=15, 9%), and the remainder were cohort studies with at least two groups of participants (n=7, 4%). Most studies were rated fair quality, however most of the nonrandomized studies (quasiexperimental and cohort studies) were rated poor quality (n=12, 55%) and were primarily conducted in participants with CP (n=11, 50%).

KQ4b: Weaknesses in Study Design

Within the included studies, multiple weakness in study design were identified. These involved sample size, study duration, and inclusion/exclusion criteria.

One weakness in study design concerned small sample sizes. Sample size cutoffs for eligibility in this review were at least n=20 in CP and SCI and n=30 in MS. These sample sizes are actually rather small and reflect the difficulty in recruiting large numbers of participants. This could be due to the prevalence of the diseases included (i.e., MS, CP, and SCI), potentially reduced mobility of the patient sample, other patient comorbidities, and/or logistical difficulties that may make participation in research less likely. Small sample sizes (vs. larger sample sizes) increase the difficulty in demonstrating a treatment effect as it is harder to achieve statistical significance with fewer numbers. Small sample sizes also increase the likelihood that even a RCT will have differences in prognostic factors between treatment and control groups that may render findings unreliable. In this review, only a few studies enrolled more than 100 participants.

An additional study design weakness regarded study duration. Most studies were terminated immediately postintervention, which ran typically 12 or 16 weeks. Without longitudinal followup, it is impossible to determine if the intervention is associated with prevention of detrimental clinical health outcomes (e.g., stroke or development of diabetes). To determine a treatment effect, some studies included intermediate health outcomes such as heart rate, blood pressure, and blood glucose. Extrapolation from these intermediate outcomes to long-term health benefit is not ideal. Also, since most studies excluded individuals with known cardiovascular or metabolic disease, it is impossible to comment on the benefit of the intervention regarding secondary prevention (e.g., preventing a second heart attack) or tertiary prevention (e.g., reducing angina or heart failure symptoms).

KQ4c: Future Research

An ideal study would be a RCT that includes a no treatment arm, such as waitlist control or attention control group. This would provide the information needed to determine if the intervention worked or not in the included patient population. Including a usual care arm as a comparator would provide additional information but only if what usual care entails is adequately described. The intervention(s) should use standard methods, when possible, that also need to be well described, either in the publication or in a cited or included protocol. In order to

maintain the statistical power needed to demonstrate a difference between groups, the number of intervention groups would be limited to that supported by the sample size.

An ideal study would also be large enough to permit subgroup analyses. For example, a study that enrolled sufficient males and females would be able to demonstrate if there is a difference in treatment effect that could be attributed to gender. A trial that enrolled individuals with varying degrees of disability could suggest whether the intervention has a greater effect in those with greater versus lesser impairment. A trial that enrolled participants across a spectrum of ages could comment on the impact of age on the treatment effect. A large study (RCT or cohort study) would also be more likely to retain sufficient numbers of participants to facilitate a longitudinal analysis. This would enable the investigation of clinical outcomes that take time to develop (e.g., coronary artery disease) as well as potential harms of the intervention.

An ideal study would have a prespecified and consistent method for identifying harms and adverse events experienced during the study. Any data collection forms should be available for review. Assessors should be blinded. The number of study participants who experienced a specific adverse event should be provided for each study group, not just the number of total adverse events, as any participant may have multiple or repeated adverse events. All adverse events should be specified, not just those experienced by more than 5 or 10 percent—the death of only one participant could be due to the intervention and is important to report, even if fewer than 5 percent died.

An ideal study would also receive a good-quality rating or demonstrate low risk of bias. Studies with low risk of bias tend to generate conservative estimates of effect compared with studies rated medium or high risk of bias (fair or poor quality). Requirements for low risk of bias include appropriate methods of randomization (e.g., computer generated random numbers) and concealment of the allocation (e.g., centrally managed), and successful randomization, that is, baseline characteristics of participants, especially those known to be prognostic factors (e.g., participant BMI on the development of diabetes). Other criteria for low risk of bias (high quality) include blinding of all involved when possible, especially blinding of outcome assessors, analyzing all participants in the groups to which they were randomized with minimum attrition, and no or minimal difference in attrition between groups. Two or more larger, well-conducted RCTs typically generate more reliable and stable estimates of effect than would a greater number of smaller studies rated fair or poor quality.

Discussion

Key Findings and Strength of Evidence

We included 168 studies (n=7,511), of which 146 were randomized controlled trials (RCTs). Key findings and strength of evidence are summarized in Table 49. Overall strength of evidence grades and detailed domain assessments appear in Appendix H.

The average sample size was 45 (range 20 to 242), with only 3 studies with samples sizes of 100 or more. Most studies were rated moderate risk of bias. The bulk of the evidence was in participants with multiple sclerosis (MS). In participants with MS, walking ability may be improved with treadmill training and multimodal exercise regimens that include strength training; function may be improved with treadmill training, balance exercises, and motion gaming; balance is likely improved with postural control exercises (that may also reduce risk of falls) and may be improved with aquatic exercises, robot-assisted gait training (RAGT), treadmill training, motion gaming, and multimodal exercises; activities of daily living (ADL) may be improved with aquatic therapy; sleep may be improved with aerobic exercises; female sexual function may be improved with aquatic exercise; and cardiovascular fitness (VO₂ peak) may be improved with multimodal exercises. In participants with cerebral palsy (CP), balance may be improved with hippotherapy and motion gaming and function may be improved with cycling, hippotherapy, and treadmill training. In participants with spinal cord injury (SCI), evidence suggests that ADL may be improved with RAGT. When RCTs were pooled across types of exercise, physical activity interventions were found to improve walking in MS, to likely improve balance and depression in MS, and may improve aerobic fitness and function in participants with CP or with SCI. When populations were combined, dance may improve function in participants with MS and CP. The majority of this evidence is low strength. Evidence on long-term health outcomes was not found. For intermediate outcomes such as blood pressure, lipid profile, and blood glucose, there was insufficient evidence from which to draw conclusions. There was inadequate reporting of adverse events in many trials. However, physical activity was associated with low-strength evidence of increased autonomic dysreflexia episodes in SCI.

Intervention Category	Multiple Sclerosis Studies	Cerebral Palsy Studies	Spinal Cord Injury Studies
Intervention	Strength of Evidence ^b (Direction of Finding)	Strength of Evidence ^b (Direction of Finding)	Strength of Evidence ^b (Direction of Finding)
Aerobic Exercise Dance (1 RCT in MS and 1 RCT in CP) ^a	Low (function improvement)	Low (function improvement)	Insufficient
Aerobic Exercise Aerobics	Low (sleep improvement)	Insufficient	Insufficient
Aerobic Exercise Aquatics	Low (balance, ADL improvement, female sexual function)	Insufficient	Insufficient
Aerobic Exercise Cycling	Low (no clear benefit on walking)	Low (function improvement)	Insufficient

Table 49. Effects of physical activity interventions compared with usual care^a

Intervention Category	Multiple Sclerosis Studies	Cerebral Palsy Studies	Spinal Cord Injury Studies
Intervention	Strength of Evidence ^b (Direction of Finding)	Strength of Evidence ^b (Direction of Finding)	Strength of Evidence ^b (Direction of Finding)
Aerobic Exercise Robot-Assisted Gait Training	Low (balance improvement) Low (no clear benefit in function)	Insufficient	Low (ADL improvement) Low (no clear benefit on walking, function)
Aerobic Exercise Treadmill	Low (walking, function, and balance improvement)	Low (function improvement)	Insufficient
Postural Control Balance Exercises	Moderate (balance improvement)	Insufficient	Insufficient
Postural Control Balance Exercises	Low (fall risk improvement)	Insufficient	Insufficient
Postural Control Balance Exercises	Low (function improvement)	Insufficient	Insufficient
Postural Control Hippotherapy	Insufficient	Low (balance and function improvement)	Insufficient
Postural Control Tai Chi	Insufficient	Insufficient	Insufficient
Postural Control Motion Gaming	Low (function, balance improvement)	Low (balance improvement)	Insufficient
Postural Control Whole Body Vibration	Insufficient	Insufficient	Insufficient
Postural Control Yoga	Low (no clear benefit on function)	Insufficient	Insufficient
Strength Interventions Muscle Strength Exercise	Low (no clear benefit in walking, function, balance, quality of life, spasticity)	Low (no clear benefit in walking and function)	Insufficient
Multimodal Exercise Progressive Resistance or Strength Exercise Plus Aerobic or Balance	Low (walking, balance, VO ₂ improvement)	Low (no clear benefit in function, quality of life)	Insufficient

Intervention Category Intervention	Multiple Sclerosis Studies Strength of Evidence ^b (Direction of Finding)	Cerebral Palsy Studies Strength of Evidence ^b (Direction of Finding)	Spinal Cord Injury Studies Strength of Evidence ^b (Direction of Finding)
	High (walking improvement)	Low (function)	Low (function)
All Types of Exercise	Moderate (balance, depression improvement, no clear benefit on function)	Low (VO ₂ improvement)	Low (VO ₂ improvement, increased episodes of autonomic dysreflexia ^c , no clear benefit on depression)

Abbreviations: ADL = activities of daily living; CP = cerebral palsy; MS = multiple sclerosis; RCT = randomized controlled trial ^a Strength of evidence color shading: blue=high strength of evidence, green=moderate, yellow=low, white=insufficient ^b Strength of evidence based on combining the two populations, multiple sclerosis and cerebral palsy

^c Whole-body exercise versus exercise limited to upper body

Findings in Relationship to What Is Already Known

The 2018 Physical Activity Guideline Advisory Committee Scientific Report²⁶⁸ found strong evidence that within the general population, sedentariness is linked to increased risk of all-cause mortality and cardiovascular mortality, in a dose-response fashion. Additionally, there was strong evidence of an association between sedentary behavior and increased risk of developing type 2 diabetes and cardiovascular disease. The committee also found moderate evidence that moderate to vigorous exercise of any duration was associated with health benefits, such as improved blood pressure and lipid profile.

Unfortunately, we identified no evidence in people with MS, CP, and SCI concerning risk of mortality, the development of diabetes, or the development of cardiovascular disease in relation to physical exercise as defined in this review. The evidence for improvement in intermediate outcomes was limited to low-strength evidence for improvement in VO₂ peak with exercise in participants with CP and SCI. Evidence for other intermediate health outcomes such as blood pressure and lipid profile was too sparse to draw conclusions.

We were also not able to draw general conclusions regarding potential harms of physical exercise; all trials were designed to assess benefits and only one trial in participants with SCI appeared to systematically monitor participants for adverse events, recording over 700 adverse events.²⁴⁵ This trial demonstrated the need for cardiovascular monitoring during aerobic exercise, especially in people with SCI, as out of 33 episodes of autonomic dysreflexia, three were considered serious. While a 2014 systematic review²⁶⁹ of adverse events in cardiovascular-related training programs in SCI (n=38 studies) reported no serious episodes of autonomic dysreflexia, this review found functional electrical stimulation ambulation associated with a 4 percent fracture rate, although there were few adverse events reported in studies of volitional exercise in SCI.

A 2014 systematic review²⁷⁰ examined the safety of exercise training in MS (n=26 studies) and found no increased risk for relapse between exercise and control groups (4.6% vs. 6.3%) or the risk of experiencing any adverse event (2.0% vs. 1.2%).

We identified no systematic reviews of safety in people with CP.

Multiple Sclerosis

A 2013 systematic review was conducted to inform guideline development on the effects of exercise on fitness, mobility, fatigue, and health-related quality of life in adults with MS.²⁷¹ This review included 54 studies published before December 2011 and found that in people with mild to moderate MS, physical exercise improved aerobic capacity and muscle strength. The authors also concluded that exercise may improve mobility and health-related quality of life. These findings are largely consistent with our review, which determined that physical exercise improved walking ability, balance, and depression in participants with MS, although support for improvement in health-related quality of life and aerobic fitness was limited. The evidence for strength was mixed but the sole good-quality trial found a strength benefit in participants with MS.

A 2017 systematic review of 18 studies (n=290) that enrolled participants with MS and severe mobility disability (e.g., Expanded Disability Status EDSS score \geq 6) concluded that limited evidence suggests conventional resistance exercise and adapted exercise training may improve physical fitness and function in this population.²⁷² The authors also note that adapted exercise may not be feasible due to cost and accessibility.

Cerebral Palsy

2016 guidelines from The Netherlands were based on a systematic review that included five RCTs to determine physical activity recommendations for people with CP.⁴⁶ The included interventions consisted of cardiorespiratory endurance training, which was compared with no intervention. Some of the included trials indicated improved aerobic capacity after training and some showed improved strength. These results are similar to this review, which found evidence for improved aerobic fitness with exercise, although the evidence for strength outcomes was mixed. The current review also found evidence for improved balance and function with physical activity that was not identified in the Dutch review.

Spinal Cord Injury

A 2017 systematic review²⁷³ conducted as the foundation for exercise guidelines for people with SCI included 211 studies, 189 studies in chronic SCI. Search dates were between 1980 and 2016 and included RCTs, non-RCTs, pre-post series, case series, and cross-sectional cohort studies (in chronic SCI most were pre-post studies, 16 RCTs). The review concluded that upper body aerobic exercise at moderate to vigorous intensity plus upper body strength exercises can improve cardiorespiratory fitness, power, strength, and body composition in participants with SCI. The current review has similar conclusions for improved aerobic fitness with physical exercise and improved walking and function with RAGT, but there was insufficient evidence from trials meeting inclusion criteria for improved body composition with physical exercises in participants with SCI.

This current systematic review has stricter criteria for study inclusion than other systematic reviews. For example, case series and single-arm pre-post studies were not included. Additionally, the physical exercise intervention had to include at least 10 sessions on 10 different days and the activity had to be observed by a researcher or healthcare provider. Sample sizes also had to be met (n=20 in CP and SCI, n=30 in MS). These stricter criteria alone may explain any differences between previous systematic reviews and this review. The current review was also limited to studies published in 2008 and beyond; the other reviews included studies published in

the 1980s and 1990s, which may not have the methodological rigor as trials conducted more recently.

Applicability and Generalizability

Due to the strict criteria for trial inclusion in this review and because participants in trials received extra attention, training, and supervision and may have been healthier and more mobile than individuals not participating in trials, applicability to individual patients with MS, CP, and SCI and generalizability to other populations may be reduced.

Factors that could impact the applicability of our findings include the trial setting. Some trials were conducted in a rehabilitation facility, a special school, university, hospital or other location, but often the setting was not specified. Additionally, the cost of equipment may limit the ability of patients to participate in some types of exercise evaluated in clinical trials. For example, a treadmill with body weight support or the robotic equipment needed to engage in RAGT may be cost prohibitive for many patients, making these interventions less applicable to patients seen in primary care.

Another factor concerns the selection of participants. Patients were often excluded from trials if they had known cardiovascular disease, metabolic disease, or mental illness. Children with CP were typically excluded for recent surgery, an uncontrolled seizure disorder, contractures or significant spasticity in addition to a lack of other major medical or cognitive problems. This could reduce applicability to primary care patients who may have a medical, psychological, or cognitive issue not represented in clinical trials. Most studies enrolled participants with less disability, rather than the full spectrum of ability, although across studies the distribution of ability was wide. Additionally, this review included patients with MS, CP, or SCI and the findings may not be as applicable to primary care patients with a different disease or condition, although disabilities may be similar across conditions (e.g., Parkinson's disease with MS, severe arthritis with SCI) that would increase applicability.

Exercise dose may also influence applicability. We required a minimum of 10 exercise sessions on 10 different days of any intensity, for any duration, and over any period of time for a trial to be eligible for inclusion. No trials included identical training arms where only the duration of the exercise session or the period of time over which the exercise occurred varied. Four trials in this review varied intensity of exercise (two in MS, two in CP). In MS, downhill treadmill training was associated with significantly better results on mobility and function than uphill treadmill training,¹¹⁹ but there was no difference on mobility or balance with whole body vibration (WBV) versus whole body light vibration.¹⁸⁵ In CP, there was no difference on function between RAGT with resistance compared with RAGT with assistance¹⁰⁰ but improved sitting scores with 24 hippotherapy sessions over 12 weeks compared with 12 sessions.¹⁶⁸ A 2019 systematic review²⁷⁴ of trials that enrolled participants with CP found that improvement in Gross Motor Function Measure scores was positively related to the number of hours trained daily. Additionally, this report focused on supervised exercise training and excluded all leisure-time and lifestyle physical activity interventions, which may have greater and more sustained short- as well as long-term health effects.

Limitations of the Evidence Base

Interventions tended to vary by population. For example, most hippotherapy trials were conducted in participants with CP, whereas most trials with a strength component were in participants with MS, while RAGT trials were well dispersed across the three included

populations. However, there were few trials or no trials of several interventions conducted in participants with SCI, limiting the ability to draw firm conclusions on benefits of these particular training modalities. Even when trials of various interventions were pooled in meta-analyses, few trials were conducted in an SCI population, resulting in insufficient evidence for several outcomes. For some of the interventions, there was also little evidence in participants with CP.

Another limitation is the rather large proportion of included studies that were rated poor quality (25%). This rating was given because of serious methodological limitations in trials such as high attrition or lack of similarity of patient characteristics between groups at baseline, which could jeopardize the reliability of the findings. Additionally, it is often impossible to blind participants to exercise category, particularly if they are in the no exercise, attention control, or a waitlist control group. We conducted sensitivity analyses excluding poor-quality trials to determine if pooled results depended on the inclusion of poor-quality studies and reported both results. Additionally, studies were usually less than 6 months in duration, which did not permit assessment of clinical health outcomes that take time to develop, such as coronary artery disease. Few studies conducted subgroup analysis, which was often not possible because sample sizes of trials were so small, often less than 40 participants. Although some studies reported the physical activity to be low, moderate, or high intensity, most studies did not include a description of involved effort and studies often did not include a measure of intensity of the intervention (e.g., perceived effort or degree of energy expenditure) making it impossible to compare studies based on intensity, or describe the activities the control group experienced, making it difficult to determine which studies could be pooled in a meta-analysis. Many studies did not report harms or did not report that there were no harms or adverse events. Without adequate assessment and reporting of adverse events, the potential harms of a particular physical exercise regime are unknown. See Key Question 4 results for additional information on weakness and gaps in the evidence base. Additionally, many studies did not include a usual care or no treatment arm. Without a usual care comparator, it is difficult to be certain if a particular intervention is effective, even if postintervention assessment values are statistically improved from baseline values. It could be that just being in a study results in improvement unrelated to the intervention. Most of the RAGT studies in CP and SCI included in this review did not have a usual care arm, limiting the ability to draw conclusions regarding RAGT effectiveness in these populations. Below is a discussion of the limitations stratified by the effort needed to overcome major limitations of the evidence base.

Addressing Limitations: Minimal Effort

Studies often did not describe the activities the control group experienced, making it difficult to determine which studies could be pooled in a meta-analysis. In studies that did not use a waitlist control or a no-treatment control (including no usual care physical activities), it is important to specify the nature of the control intervention. This includes number of sessions, length of sessions, and specifics of physical activities involved, rather than just stating "usual care," "routine physiotherapy," or "conventional rehabilitation," since what is usual care in one medical center, geographic area, or country may be very different from another.

Studies often did not report harms or did not report that there were no harms or adverse events. Without adequate assessment and reporting of adverse events, the potential harms of a particular physical exercise regime are unknown. Studies should report that "adverse events were not assessed" or indicate how adverse events and harms were systematically identified (e.g., by questionnaire, by standardized interview) and provide documentation of any questionnaire or list of interview questions used.

Another limitation is the rather large proportion of included studies that were rated poor quality. Straightforward ways to improve study quality ratings are to report the specifics of randomization (e.g., random numbers table, cite randomization website used) and to report how the allocation was concealed (e.g., opaque, sealed, sequentially-numbered envelopes; central, Web-based reporting of allocation). Reporting who was blinded in the study is also an important aspect of trial design that should be mentioned (and blinding those who can be blinded, especially the outcome assessor, improves the reliability of the results).

These are simple additions to reporting how a given trial was actually conducted and require little or no additional work.

Addressing Limitations: Moderate to Large Effort

Not all the elements assessed in quality rating a trial are as easy to improve upon. Studies rated poor quality usually have other flaws in addition to inadequate reporting of study methodology. Serious methodological limitations in trials such as high attrition and/or lack of similarity of patient characteristics between groups at baseline could also jeopardize the reliability of the findings.

To reduce baseline differences in patient characteristics between treatment groups in trials with small sample sizes, the technique of minimization can decrease the risk of bias that happens when the two groups being compared are dissimilar on prognostic participant characteristics such as age, gender, or comorbidities. Low quality ratings due to large or unequal attrition between groups is more difficult to remedy without anticipating why participants are likely to leave the study.

Addressing Limitations: Large Effort

Small sample size is perhaps the most difficult limitation to overcome and this has no easy remedy given the populations we have included in this review. The cost of conducting studies with larger sample sizes are generally higher and larger studies may be more time-consuming to complete, especially if study enrollment is slow. Crossover studies reduce the required sample size needed to demonstrate a treatment effect, but are associated with their own potential bias due to potentially inadequate washout from the previous treatment(s). Several smaller studies can be pooled to demonstrate a treatment effect, but require standardized methodology across trials.

Another technique to increase sample size would be to broaden the definition of the study population. For example, the population could be wheelchair users without mobility due to lower limb dysfunction. This could include participants with limb paralysis, weakness, or absence, broadening the population to individuals with MS, CP, SCI, as well as stroke, amputation, amyotrophic lateral sclerosis, and others. In addition to reporting overall findings, results could be stratified by condition or by category of condition (e.g., MS or neurological disease) or some other method of grouping populations that would be meaningful.

Implications for Clinical and Policy Decision Making

This review has implications for clinical and policy decision making for patients using a wheelchair or patients who may potentially benefit from using a wheelchair in the future. This review provides evidence for the necessity of implementing physical activity programs for

people with disability and/or chronic conditions. Not only is physical activity in general associated with improved physical function, but it is also associated with improved mental health as well. This review also provides limited evidence that physical activity may help prevent negative consequences of sustained sedentariness, such as increased spasticity. Physical activity should be a prescribed element in overall healthcare for those with disabilities and not just an afterthought. Findings of this review are consistent with previous reviews and support current guidelines that advise regular exercise in people with MS, CP, and SCI. Exercise interventions that are strength focused should include aerobic elements (and balance exercises as needed). Exercise interventions that consist primarily of cycling should include strength and/or balance exercises as well for optimum improvement in function. In general, evidence supports physical exercise to improve walking ability, function, balance, depression, strength, and aerobic fitness.

Implications for All Providers

It is important for providers to understand the barriers to physical exercise for their patients. This may include lack of accessibility,^{275,276} lack of time,^{275,277-279} lack of enjoyment with prescribed exercise,^{275,279} and lack of adequate social support.^{275,278,280,281} Other potential barriers to exercise include lack of transportation,^{276,279,281} lack of awareness of the relationship between exercise and health,^{277,279} and high cost.^{276,277,281} All providers should address these and any other potential barriers that may exist with their patients when prescribing physical activity. Motivational interviewing may be helpful.²⁸²⁻²⁸⁴ Providers need to take the individual patient into account. The exercise modality with the greatest evidence for benefit in MS may not be the best choice for their particular patient with MS.

Implications for Primary Care Providers with MS, CP, and SCI Patients

Broadly speaking, in patients with MS, CP, and SCI, moving the body in an effort to improve cardiovascular fitness is desired. In patients with SCI, consideration should be given to monitoring the patient's cardiovascular and thermodynamic response to ensure a particular cardiovascular activity at a specific intensity is safe for the patient, so as to avoid serious episodes of autonomic dysreflexia, which may be life threatening. We found benefits in all three included populations with aerobic exercise.

Strength exercises should also be an included part of any exercise routine for patients with MS, CP, and SCI. Although this review found support for improved walking with combined strength and aerobic exercises in study participants with MS but insufficient evidence for benefit in CP and SCI, a 2019 systematic review²⁸⁵ found improved function (Gross Motor Function Measure [GMFM] scores) in children with CP. Cardiovascular fitness and muscle strength may be improved with aerobic and resistance training, based on a 2019 systematic review of systematic reviews in people with SCI.

Balance exercises may also prove beneficial additions to a physical exercise program for people with MS, CP, and SCI. This review found that balance training may improve balance, function, and/or quality of life in MS and CP. While the evidence was too sparse to draw a conclusion regarding balance training in SCI, a 2019 RCT²⁴⁸ that enrolled people with chronic SCI reported improved balance with a combination of aerobic, strength, and core stability training.

Implications for Primary Care Providers With Patients With Disabilities Other than MS, CP, or SCI

Although we limited this review to evidence in MS, CP, and SCI, other medical illnesses and injuries may respond similarly to physical activity as our included populations. For instance, patients with Parkinson's disease or Lyme disease may have similar issues and challenges as patients with MS. Patients with intellectual disability and motor impairment due to other neurological disease or inborn errors of metabolism may face similar challenges as patients with stroke, arthritis, or the wheelchair-using elderly may have issues and challenges similar to those with SCI. As long as physical exercise can be performed safely, aerobic, strength, and balance training may benefit these populations as well.

Several systematic reviews of the effects of physical exercise on the health of people with other conditions have found benefits to exercise. For example, a 2016 review²⁸⁶ found gait performance improved with gait and strength training in people with lower limb amputation using a prosthesis. A 2019 systematic review²⁸⁷ found that home-based exercise improved balance and gait speed in people with Parkinson's disease and that the improvement was similar to that seen in center-based exercise. A 2019 systematic review²⁸⁸ in stroke patients reported improved walking speed and endurance with a combination of aerobic and strength exercises. A 2015 systematic²⁸⁹ review of elderly patients reported a large effect of Pilates in improving muscle strength, walking, ADL, and quality of life. A 2015 systematic review²⁹⁰ found improved depression scores with exercise in adult patients with arthritis.

Similar to able-bodied people, physical exercise has the potential to benefit those with various disabilities.

Implications for Physical Activity During a Pandemic

Life during a pandemic may present unique challenges to those with mobility constraints. Quarantined individuals may be less likely to exercise and frailty may increase without regular physical activity. A rapid review concerning those who are now housebound due to COVID-19 concluded that people should continue to engage in strength, resistance, and balance training, that adding a social element may help with motivation and decrease mental distress, and that technology that supports physical activity such as use of the internet or video games may be helpful.²⁹¹ The Multiple Sclerosis Association of America has a Webinar on dealing with the COVID-19 pandemic and recommends continuing to keep physically active.²⁹² An article in Frontiers in Neurology recommends accelerating the use of telemedicine to care for patients with CP during a pandemic indicating that telemedicine can enable healthcare personnel to manage medication and provide exercises for the patient in a home environment.²⁹³ A Department of Veterans Affairs tip sheet for veterans with SCI recommends continuing to care for oneself and move the body during the pandemic.²⁹⁴ There are several online resources that patients with MS, CP, SCI, and other conditions may find useful to modify or jumpstart an exercise routine. One such website provides a chair-based 10-minute workout for those whose exercise routines have been upended by COVID-19.²⁹⁵ Results from this report can also inform efforts to maintain physical activity during the COVID-19 pandemic. Exercise activities that can be done at home and were found to have benefits include dance, stationary cycling, treadmill, motion gaming and multimodal progressive training activities for children with CP and adults with MS. Balance exercises can be done at home, and were found beneficial for patients with MS. Combining the evidence on all aerobic activities, many of which can be done at home, showed beneficial results

for patients with CP, MS, or SCI. Even though keeping physically active may be more of a challenge during a pandemic, it is important to continue to do so.

Limitations of the Systematic Review Process

We excluded non-English language articles and studies published only as abstracts. Additionally we did not check for publication bias due to insufficient number of trials available for most meta-analyses and the heterogeneity in physical exercise interventions, comparisons groups, and patient populations evaluated in trials. Statistical heterogeneity was present in a number of meta-analyses. We used a random effects model and conducted stratified analysis based on the intervention. Due to scope limitations, we did not include leisure-time physical activity or physical activity conducted outside of the research study, which is the bulk of physical activity in all populations; it is also difficult to compare the results between different leisure-time physical activities without well-defined physical activity parameters that exists in trials.

Research Recommendations

Larger, well-conducted RCTs are needed in patients with MS, CP, and SCI to address evidence gaps and to confirm current findings. Large, controlled cohort studies could also provide data on long-term outcomes and harms of the intervention. Larger sample sizes would enable subgroup analyses based on patient characteristics and comorbidities. Longer duration studies would enable identification of interventions that demonstrate reduced cardiovascular and metabolic adverse events and improved mortality, fitness, function, and quality of life over the long term. Studies providing data on the intensity of physical activity are needed. Studies that enroll participants with high degrees of disability are also needed. Studies, if possible, should have a control arm that receives no treatment, such as a waitlist control, to demonstrate that a particular intervention is effective when compared with no treatment.

Conclusion

Physical activity was associated with improvements in walking ability, general function, balance (including fall risk), depression, sleep, activities of daily living, female sexual function, and aerobic capacity, depending on population enrolled and type of exercise utilized. No studies reported long-term cardiovascular or metabolic disease health outcomes. Future trials could alter these findings, and further research is needed to examine health outcomes and to understand the magnitude and clinical importance of benefits seen in intermediate outcomes.

References

- Physical Activity Guidelines Advisory Committee. 2008 Physical Activity Guidelines for Americans [Archived].
 Washington, DC: U.S. Department of Health and Human Services--National Institutes of Health--Office of Disease Prevention and Health Promotion; 2008. Available at: <u>https://health.gov/paguidelines/2008/</u>.
- 2. U.S. Department of Health and Human Services. Physical Activity Guidelines for Americans, 2nd edition. Washington, DC: U.S. Department of Health and Human Services; 2018. Available at: <u>https://health.gov/paguidelines/secondedition/pdf/Physical_Activity_Guidelines_2</u> <u>nd_edition.pdf</u>.
- Confavreux C, Vukusic S. Natural history of multiple sclerosis: a unifying concept. Brain. 2006 Mar;129(Pt 3):606-16. doi: 10.1093/brain/awl007. PMID: 16415308.
- Okoro CA, Hollis ND, Cyrus AC, et al. Prevalence of Disabilities and Health Care Access by Disability Status and Type Among Adults - United States, 2016. MMWR. Morbidity and mortality weekly report. 2018 Aug 17;67(32):882-7. doi: 10.15585/mmwr.mm6732a3. PMID: 30114005.
- 5. UK Chief Medical Officers' Physical Activity Guidelines. London, England: U.K. Department of Health & Social Care; September 7, 2019. Available at: <u>https://assets.publishing.service.gov.uk/gove</u> <u>rnment/uploads/system/uploads/attachment_data/file/829841/uk-chief-medical-officers-physical-activity-guidelines.pdf</u>.
- Centers for Disease Control and Prevention. Data and Statistics for Cerebral Palsy. National Center on Birth Defects and Developmental Disabilities. 2018. <u>https://www.cdc.gov/ncbddd/cp/data.html</u>. Accessed July 30, 2019.
- 7. Wallin MT, Culpepper WJ, Campbell JD, et al. The prevalence of MS in the United States: A population-based estimate using health claims data. Neurology. 2019 Mar 5;92(10):e1029-e40. doi: 10.1212/wnl.000000000007035. PMID: 30770430.

- National Spinal Cord Injury Statistical Center. Facts and Figures at a Glance. Birmingham, AL: University of Alabama at Birmingham; 2016. <u>https://www.nscisc.uab.edu/Public/Facts%2</u> 02016.pdf. Accessed September 12, 2019.
- SCI-Info-Pages. Spinal Cord Injury Facts & Statistics. <u>https://www.sci-info-pages.com/spinal-cord-injury-facts-and-statistics</u>. Accessed October 22, 2019.
- Kister I, Chamot E, Salter AR, et al. Disability in multiple sclerosis: a reference for patients and clinicians. Neurology. 2013 Mar 12;80(11):1018-24. doi: 10.1212/WNL.0b013e3182872855. PMID: 23427319.
- Hernandez Clares R, Carreon Guarnizo E, Sanchez Galvez RM, et al. A change in multiple sclerosis morbidity spectrum [abstract]. In: Thompson, AJ, ed. Poster Session 1. MSParis2017. 7th Joint ECTRIMS-ACTRIMS Meeting; 2017 Oct 25-28; Paris, France. Newbury Park, California: SAGE Publishing; 2017. Mult Scler. 2017;23(S3):85-426. doi: 10.1177/1352458517731404. PMID: 29065758.
- Sweis R, Biller J. Systemic Complications of Spinal Cord Injury. Curr Neurol Neurosci Rep. 2017 Feb;17(2):8. doi: 10.1007/s11910-017-0715-4. PMID: 28188542.
- Froehlich-Grobe K, Washburn RA. Exploring obesity among wheelchair users: BMI vs body compositon. International Journal of Excercise Science: Conference Proceedings; 2010 Nov 18-19; Houston. 2010;6(1):Article 28.
- Gupta N, White KT, Sandford PR. Body mass index in spinal cord injury -- a retrospective study. Spinal Cord. 2006 Feb;44(2):92-4. doi: 10.1038/sj.sc.3101790. PMID: 16030513.
- Khurana SR, Bamer AM, Turner AP, et al. The prevalence of overweight and obesity in veterans with multiple sclerosis. Am J Phys Med Rehabil. 2009 Feb;88(2):83-91. doi: 10.1097/PHM.0b013e318194f8b5. PMID: 19169174.

- McPhee PG, Gorter JW, Cotie LM, et al. Descriptive data on cardiovascular and metabolic risk factors in ambulatory and non-ambulatory adults with cerebral palsy. Data in brief. 2015 Dec;5:967-70. doi: 10.1016/j.dib.2015.10.045. PMID: 26759816.
- 17. Whitney DG, Hurvitz EA, Ryan JM, et al. Noncommunicable disease and multimorbidity in young adults with cerebral palsy. Clinical epidemiology. 2018;10:511-9. doi: 10.2147/clep.s159405. PMID: 29750055.
- Mincu RI, Magda LS, Florescu M, et al. Cardiovascular dysfunction in multiple sclerosis. Maedica. 2015 Sep;10(4):364-70. PMID: 28465741.
- 19. Peterson MD, Ryan JM, Hurvitz EA, et al. Chronic conditions in adults with cerebral palsy. Jama. 2015 Dec 1;314(21):2303-5. doi: 10.1001/jama.2015.11025. PMID: 26624831.
- 20. Wu CW, Huang SW, Lin JW, et al. Risk of stroke among patients with cerebral palsy: a population-based cohort study. Dev Med Child Neurol. 2017 Jan;59(1):52-6. doi: 10.1111/dmcn.13180. PMID: 27346658.
- 21. National Academies of Sciences E, Medicine, Health, et al. The Promise of Assistive Technology to Enhance Activity and Work Participation. Washington (DC): National Academies Press (US) Copyright 2017 by the National Academy of Sciences. All rights reserved.; 2017.
- 22. Dionne CD, Gainforth HL, Malley DA, et al. Examining implicit attitudes towards exercisers with a physical disability. ScientificWorldJournal. 2013;621596:1-8. doi: 10.1155/2013/621596. PMID: 23710142.
- 23. Backus D. Increasing physical activity and participation in people with multiple sclerosis: a review. Arch Phys Med Rehabil. 2016 Sep;97(9 Suppl):S210-7. doi: 10.1016/j.apmr.2015.09.027. PMID: 27211007.

- 24. Casey B, Coote S, Shirazipour C, et al. Modifiable psychosocial constructs associated with physical activity participation in people with multiple sclerosis: a systematic review and metaanalysis. Arch Phys Med Rehabil. 2017 07;98(7):1453-75. doi: 10.1016/j.apmr.2017.01.027. PMID: 28254635.
- 25. de Groot S, van der Scheer JW, Bakkum AJ, et al. Wheelchair-specific fitness of persons with a long-term spinal cord injury: cross-sectional study on effects of time since injury and physical activity level. Disabil Rehabil. 2016;38(12):1180-6. doi: 10.3109/09638288.2015.1076072. PMID: 26308969.
- Phang SH, Martin Ginis KA, Routhier F, et al. The role of self-efficacy in the wheelchair skills-physical activity relationship among manual wheelchair users with spinal cord injury. Disabil Rehabil. 2012;34(8):625-32. doi: 10.3109/09638288.2011.613516. PMID: 21981243.
- Mezini S, Soundy A. A thematic synthesis considering the factors which influence multiple sclerosis related fatigue during physical activity. Behav Sci (Basel). 2019 Jul 1;9(7):70. doi: 10.3390/bs9070070. PMID: 31266231.
- Usuba K, Oddson B, Gauthier A, et al. Leisure-time physical activity in adults with Cerebral Palsy. Disabil Health J. 2015 Oct;8(4):611-8. doi: 10.1016/j.dhjo.2015.05.006. PMID: 26141088.
- Claydon VE, Hol AT, Eng JJ, et al. Cardiovascular responses and postexercise hypotension after arm cycling exercise in subjects with spinal cord injury. Arch Phys Med Rehabil. 2006 Aug;87(8):1106-14. doi: 10.1016/j.apmr.2006.05.011. PMID: 16876557.
- Myers JN, Hsu L, Hadley D, et al. Postexercise heart rate recovery in individuals with spinal cord injury. Spinal Cord. 2010 Aug;48(8):639-44. doi: 10.1038/sc.2009.196. PMID: 20125108.

- 31. Get the Facts! Birmingham, AL: National Center on Health, Physical Activity and Disability. <u>https://www.nchpad.org/fppics/GettheFactsF</u> <u>INAL.pdf</u>. Accessed September 21, 2019.
- Best KL, Arbour-Nicitopoulos KP, Sweet SN. Community-based physical activity and wheelchair mobility programs for individuals with spinal cord injury in Canada: current reflections and future directions. J Spinal Cord Med. 2017 Nov;40(6):777-82. doi: 10.1080/10790268.2017.1367363. PMID: 28872428.
- 33. North Carolina Office on Disability and Health. Removing Barriers to Health Clubs and Fitness Facilities: A Guide for Accommodating All Members, Including People With Disabilities and Older Adults. Chapel Hill: The University of North Carolina, Frank Porter Graham Child Development Institute; 2008. <u>https://fpg.unc.edu/node/4110</u>. Accessed September, 21, 2019.
- Martin Ginis KA, Papathomas A, Perrier MJ, et al. Psychosocial factors associated with physical activity in ambulatory and manual wheelchair users with spinal cord injury: a mixed-methods study. Disabil Rehabil. 2017 01;39(2):187-92. doi: 10.3109/09638288.2015.1045991. PMID: 26104107.
- 35. de Groot S, van der Scheer JW, Bakkum AJ, et al. Wheelchair-specific fitness of persons with a long-term spinal cord injury: cross-sectional study on effects of time since injury and physical activity level. Disabil Rehabil. 2016;38(12):1180-6. doi: 10.3109/09638288.2015.1076072. PMID: 26308969.
- Requejo PS, Furumasu J, Mulroy SJ. Evidence-based strategies for preserving mobility for elderly and aging manual wheelchair users. Top Geriatr Rehabil. 2015 Jan-Mar;31(1):26-41. doi: 10.1097/TGR.00000000000042. PMID: 26366040.

- Bradbury KE, Guo W, Cairns BJ, et al. Association between physical activity and body fat percentage, with adjustment for BMI: a large cross-sectional analysis of UK Biobank. BMJ Open. 2017 Mar 24;7(3):e011843. doi: 10.1136/bmjopen-2016-011843. PMID: 28341684.
- Hu G, Jousilahti P, Barengo NC, et al. Physical activity, cardiovascular risk factors, and mortality among Finnish adults with diabetes. Diabetes Care. 2005 Apr;28(4):799-805. PMID: 15793176.
- Salonen MK, Wasenius N, Kajantie E, et al. Physical activity, body composition and metabolic syndrome in young adults. PLoS One. 2015;10(5):e0126737. doi: 10.1371/journal.pone.0126737. PMID: 25992848.
- Angevaren M, Aufdemkampe G, Verhaar HJJ, et al. Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. The Cochrane database of systematic reviews. 2008(3):CD005381-CD. doi: 10.1002/14651858.CD005381.pub3. PMID: 18646126.
- Helmrich SP, Ragland DR, Leung RW, et al. Physical activity and reduced occurrence of non-insulin-dependent diabetes mellitus. N Engl J Med. 1991 Jul 18;325(3):147-52. doi: 10.1056/nejm199107183250302. PMID: 2052059.
- Jeon CY, Lokken RP, Hu FB, et al. Physical activity of moderate intensity and risk of type 2 diabetes: a systematic review.
 Diabetes Care. 2007 Mar;30(3):744-52. doi: 10.2337/dc06-1842. PMID: 17327354.
- 43. Mann S, Beedie C, Jimenez A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports Med. 2014 Feb;44(2):211-21. doi: 10.1007/s40279-013-0110-5. PMID: 24174305.
- 44. Wen CP, Wai JP, Tsai MK, et al. Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet. 2011 Oct 1;378(9798):1244-53. doi: 10.1016/s0140-6736(11)60749-6. PMID: 21846575.

- 45. Herring MP, Fleming KM, Hayes SP, et al. Moderators of exercise effects on depressive symptoms in multiple sclerosis: a metaregression. Am J Prev Med. 2017 Oct;53(4):508-18. doi: 10.1016/j.amepre.2017.04.011. PMID: 28602542.
- Verschuren O, Peterson MD, Balemans AC, et al. Exercise and physical activity recommendations for people with cerebral palsy. Dev Med Child Neurol. 2016 08;58(8):798-808. doi: 10.1111/dmcn.13053. PMID: 26853808.
- 47. Halabchi F, Alizadeh Z, Sahraian MA, et al. Exercise prescription for patients with multiple sclerosis; potential benefits and practical recommendations. BMC Neurol. 2017 Sep 16;17(1):185. doi: 10.1186/s12883-017-0960-9. PMID: 28915856.
- Dalgas U. Rehabilitation and multiple sclerosis: hot topics in the preservation of physical functioning. J Neurol Sci. 2011 Dec;311 Suppl 1:S43-7. doi: 10.1016/s0022-510x(11)70008-9. PMID: 22206766.
- 49. Methods Guide for Effectiveness and Comparative Effectiveness Reviews. Rockville, MD: Agency for Healthcare Research and Quality. <u>https://effectivehealthcare.ahrq.gov/topics/ce</u> <u>r-methods-guide/overview</u>. Accessed September 12, 2019.
- 50. Hsieh HC. Effects of a gaming platform on balance training for children with cerebral palsy. Pediatr Phys Ther. 2018 Oct;30(4):303-8. doi: 10.1097/PEP.000000000000521. PMID: 30199515.
- 51. Kalron A, Fonkatz I, Frid L, et al. The effect of balance training on postural control in people with multiple sclerosis using the CAREN virtual reality system: a pilot randomized controlled trial. J Neuroengineering Rehabil. 2016 Mar 1;13:13. doi: 10.1186/s12984-016-0124-y. PMID: 26925955.

- 52. Kalron A, Rosenblum U, Frid L, et al. Pilates exercise training vs. physical therapy for improving walking and balance in people with multiple sclerosis: a randomized controlled trial. Clin Rehabil. 2017 Mar;31(3):319-28. doi: 10.1177/0269215516637202. PMID: 26951348.
- 53. Negaresh R, Motl R, Mokhtarzade M, et al. Effect of short-term interval excercise training on fatigue, depression, and fitness in normal weight vs. overweight person with multiple sclerosis. Explore (NY). 2019 Mar-Apr;15(2):134-41. doi: 10.1016/j.explore.2018.07.007. PMID: 30122328.
- 54. Young HJ, Mehta TS, Herman C, et al. The effects of M2M and adapted yoga on physical and psychosocial outcomes in people wth multiple sclerosis. Arch Phys Med Rehabil. 2019 Aug 6;100(3):391-400. doi: 10.1016/j.apmr.2018.06.032. PMID: 30092206.
- 55. Nelson HD. Systematic Reviews to Answer Health Care Questions. In: Gaertner R, editor. Philadelphia, PA: Wolters Kluwer; 2014.
- 56. Methods Guide for Effectiveness and Comparative Effectiveness Reviews. AHRQ Publication No. 10(14)-EHC063-EF. Rockville, MD: Agency for Healthcare Research and Quality; January 2014. Current chapters available at <u>https://effectivehealthcare.ahrq.gov/topics/ce</u> <u>r-methods-guide/overview/</u>.
- 57. Force USPST. U.S. Preventative Services Task Force Procedure Manual. Rockville, MD: 2017. <u>https://www.uspreventiveservicestaskforce.o</u> <u>rg/Page/Name/procedure-manual</u>.
- 58. Higgins JPT, Green S, editors. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration; 2011. Available at www.cochrane-handbook.org.
- 59. Aydin T, Akif Sariyildiz M, Guler M, et al. Evaluation of the effectiveness of home based or hospital based calisthenic exercises in patients with multiple sclerosis. Eur Rev Med Pharmacol Sci. 2014;18(8):1189-98. PMID: 24817294.

- Al-Sharman A, Khalil H, El-Salem K, et al. The effects of aerobic exercise on sleep quality measures and sleep-related biomarkers in individuals with Multiple Sclerosis: a pilot randomised controlled trial. NeuroRehabilitation. 2019;45(1):107-15. doi: 10.3233/NRE-192748. PMID: 31403958.
- Sadeghi Bahmani D, Razazian N, Farnia V, et al. Compared to an active control condition, in persons with multiple sclerosis two different types of exercise training improved sleep and depression, but not fatigue, paresthesia, and intolerance of uncertainty. Mult Scler Relat Disord. 2019 Nov;36:101356. doi: 10.1016/j.msard.2019.07.032. PMID: 31521917.
- Kara B, Kucuk F, Poyraz EC, et al. Different types of exercise in multiple sclerosis: aerobic exercise or pilates, a single-blind clinical study. J Back Musculoskeletal Rehabil. 2017;30(3):565-73. doi: 10.3233/BMR-150515. PMID: 27911284.
- Keser I, Meric A, Kirdi N, et al. Comparing routine neurorehabilitation programme with callisthenic exercises in multiple sclerosis. NeuroRehabilitation. 2011;29(1):91-8. doi: 10.3233/NRE-2011-0682. PMID: 21876301.
- 64. Teixeira-Machado L, Azevedo-Santos I, Desantana JM. Dance improves functionality and psychosocial adjustment in cerebral palsy: a randomized controlled clinical trial. Am J Phys Med Rehabil. 2017 Jun;96(6):424-9. doi: 10.1097/PHM.00000000000646. PMID: 27820729.
- 65. Gibson N, Chappell A, Blackmore AM, et al. The effect of a running intervention on running ability and participation in children with cerebral palsy: a randomized controlled trial. Disabil Rehabil. 2018 Dec;40(25):3041-49. doi: 10.1080/09638288.2017.1367426. PMID: 28826274.

- 66. Kargarfard M, Shariat A, Ingle L, et al. Randomized controlled trial to examine the impact of aquatic exercise training on functional capacity, balance, and perceptions of fatigue in female patients with multiple sclerosis. Arch Phys Med Rehabil. 2018 Feb;99(2):234-41. doi: 10.1016/j.apmr.2017.06.015. PMID: 28735720.
- Kooshiar H, Moshtagh M, Sardar MA, et al. Fatigue and quality of life of women with multiple sclerosis: a randomized controlled clinical trial. J Sports Med Phys Fitness. 2015 Jun;55(6):668-74. PMID: 25303070.
- Marandi SM, Nejad VS, Shanazari Z, et al. A comparison of 12 weeks of pilates and aquatic training on the dynamic balance of women with mulitple sclerosis. Int J Prev Med. 2013 Apr;4(Suppl 1):S110-7. PMID: 23717760.
- Marandi SM, Shahnazari Z, Minacian V, et al. A comparison between pilates exercise and aquatic training effects on mascular strength in women with mulitple sclerosis. Pak J Med Sci. 2013;29(1 Suppl):285-9. doi: 10.12669/pjms.291(Suppl).3518.
- Razazian N, Yavari Z, Farnia V, et al. Exercising impacts on fatigue, depression, and paresthesia in female patients with multiple sclerosis. Med Sci Sports Exerc. 2016 May;48(5):796-803. doi: 10.1249/MSS.000000000000834. PMID: 26656775.
- Castro-Sanchez AM, Mataran-Penarrocha GA, Lara-Palomo I, et al. Hydrotherapy for the treatment of pain in people with multiple sclerosis: a randomized controlled trial. Evid Based Complement Alternat Med. 2012;473963:1-8. doi: 10.1155/2012/473963. PMID: 21785645.
- Sadeghi Bahmani D, Motl RW, Razazian N, et al. Aquatic exercising may improve sexual function in females with multiple sclerosis an exploratory study. Mult Scler Relat Disord. 2020 Apr 26;43:102106. doi: 10.1016/j.msard.2020.102106. PMID: 32428843.

- 73. Adar S, Dundar U, Demirdal ÜS, et al. The effect of aquatic exercise on spasticity, quality of life, and motor function in cerebral palsy. Turk J Phys Med Rehab. 2017 Aug 14;63(3):239-48. doi: 10.5606/tftrd.2017.280. PMID: 31453460.
- 74. Lai CJ, Liu WY, Yang TF, et al. Pediatric aquatic therapy on motor function and enjoyment in children diagnosed with cerebral palsy of various motor severities. J Child Neurol. 2015 Feb;30(2):200-8. doi: 10.1177/0883073814535491. PMID: 24907137.
- 75. Gorman PH, Scott W, VanHiel L, et al. Comparison of peak oxygen consumption response to aquatic and robotic therapy in individuals with chronic motor incomplete spinal cord injury: a randomized controlled trial. Spinal Cord. 2019 Jun;57(6):471-81. doi: 10.1038/s41393-019-0239-7. PMID: 30659286.
- 76. Jung J, Chung E, Kim K, et al. The effects of aquatic exercise on pulmonary function in patients with spinal cord injury. J Phys Ther Sci. 2014 May;26(5):707-9. doi: 10.1589/jpts.26.707. PMID: 24926136.
- 77. Baquet L, Hasselmann H, Patra S, et al. Short-term interval aerobic exercise training does not improve memory functioning in relapsing-remitting multiple sclerosis-a randomized controlled trial. PeerJ. 2018 Dec 12;6:e6037. doi: 10.7717/peerj.6037. PMID: 30581662.
- Heine M, Verschuren O, Hoogervorst EL, et al. Does aerobic training alleviate fatigue and improve societal participation in patients with multiple sclerosis? A randomized controlled trial. Mult Scler. 2017 Oct;23(11):1517-26. doi: 10.1177/1352458517696596. PMID: 28528566.
- 79. Hebert JR. Effects of vestibular rehabilitation on MS-related fatigue: Randomized control trial. Dissertation Abstracts International: Section B: The Sciences and Engineering. 2009;70(6-B):3470.

- Hebert JR, Corboy JR, Manago MM, et al. Effects of vestibular rehabilitation on multiple sclerosis-related fatigue and upright postural control: a randomized controlled trial. Phys Ther. 2011 Aug;91(8):1166-83. doi: 10.2522/ptj.20100399. PMID: 21680771.
- Hochsprung A, Granja Dominguez A, Magni E, et al. Effect of visual biofeedback cycling training on gait in patients with multiple sclerosis. Neurologia. 2017 Sep 6 doi: 10.1016/j.nrl.2017.07.008. PMID: 28888468.
- 82. Collett J, Dawes H, Meaney A, et al. Exercise for multiple sclerosis: a singleblind randomized trial comparing three exercise intensities. Mult Scler. 2011 May;17(5):594-603. doi: 10.1177/1352458510391836. PMID: 21247971.
- Tollar J, Nagy F, Toth BE, et al. Exercise effects on multiple sclerosis quality of life and clinical-motor symptoms. Med Sci Sports Exerc. 2020 May;52(5):1007-14. doi: 10.1249/MSS.00000000002228. PMID: 31876670.
- 84. Niwald M, Redlicka J, Miller E. The effects of aerobic training on the functional status, quality of life, the level of fatigue and disability in patients with multiple sclerosisa preliminary report. Aktualnosci Neurologiczne. 2017;17(1):15-22. doi: 10.15557/AN.2017.0002.
- Fowler EG, Knutson LM, Demuth SK, et al. Pediatric endurance and limb strengthening (PEDALS) for children with cerebral palsy using stationary cycling: a randomized controlled trial. Phys Ther. 2010 Mar;90(3):367-81. doi: 10.2522/ptj.20080364. PMID: 20093327.
- 86. Demuth SK, Knutson LM, Fowler EG. The PEDALS stationary cycling intervention and health-related quality of life in children with cerebral palsy: a randomized controlled trial. Dev Med Child Neurol. 2012 Jul;54(7):654-61. doi: 10.1111/j.1469-8749.2012.04321.x. PMID: 22582760.

- 87. Bryant E, Pountney T, Williams H, et al. Can a six-week exercise intervention improve gross motor function for nonambulant children with cerebral palsy? A pilot randomized controlled trial. Clin Rehabil. 2013 Feb;27(2):150-9. doi: 10.1177/0269215512453061. PMID: 22850757.
- Nsenga AL, Shephard RJ, Ahmaidi S. Aerobic training in children with cerebral palsy. Int J Sports Med. 2013 Jun;34(6):533-7. doi: 10.1055/s-0032-1321803. PMID: 23184482.
- Akkurt H, Karapolat HU, Kirazli Y, et al. The effects of upper extremity aerobic exercise in patients with spinal cord injury: a randomized controlled study. Eur J Phys Rehabil Med. 2017 Apr;53(2):219-27. doi: 10.23736/S1973-9087.16.03804-1. PMID: 27824234.
- 90. Sadowsky CL, Hammond ER, Strohl AB, et al. Lower extremity functional electrical stimulation cycling promotes physical and functional recovery in chronic spinal cord injury. J Spinal Cord Med. 2013 Nov;36(6):623-31. doi: 10.1179/2045772313Y.0000000101. PMID: 24094120.
- 91. Lai CH, Chang WH, Chan WP, et al. Effects of functional electrical stimulation cycling exercise on bone mineral density loss in the early stages of spinal cord injury. J Rehabil Med. 2010 Feb;42(2):150-4. doi: 10.2340/16501977-0499. PMID: 20140411.
- 92. Lavado EL, Cardoso JR, Silva LG, et al. Effectiveness of aerobic physical training for treatment of chronic asymptomatic bacteriuria in subjects with spinal cord injury: a randomized controlled trial. Clin Rehabil. 2013 Feb;27(2):142-9. doi: 10.1177/0269215512450522. PMID: 22837545.
- 93. Valent L, Dallmeijer A, Houdijk H, et al. Effects of hand cycle training on wheelchair capacity during clinical rehabilitation in persons with a spinal cord injury. Disabil Rehabil. 2010;32(26):2191-200. doi: 10.3109/09638288.2010.509461. PMID: 20726737.

- 94. Pompa A, Morone G, Iosa M, et al. Does robot-assisted gait training improve ambulation in highly disabled multiple sclerosis people? A pilot randomized control trial. Mult Scler. 2017 Apr;23(5):696-703. doi: 10.1177/1352458516663033. PMID: 27486219.
- 95. Russo M, Dattola V, De Cola MC, et al. The role of robotic gait training coupled with virtual reality in boosting the rehabilitative outcomes in patients with multiple sclerosis. Int J Rehabil Res. 2018 Jun;41(2):166-72. doi: 10.1097/MRR.00000000000270. PMID: 29384762.
- 96. Calabro RS, Russo M, Naro A, et al. Robotic gait training in multiple sclerosis rehabilitation: can virtual reality make the difference? Findings from a randomized controlled trial. J Neurol Sci. 2017 Jun 15;377:25-30. doi: 10.1016/j.jns.2017.03.047. PMID: 28477702.
- 97. Straudi S, Fanciullacci C, Martinuzzi C, et al. The effects of robot-assisted gait training in progressive multiple sclerosis: a randomized controlled trial. Mult Scler. 2016 Mar;22(3):373-84. doi: 10.1177/1352458515620933. PMID: 26658817.
- 98. Straudi S, Manfredini F, Lamberti N, et al. Robot-assisted gait training is not superior to intensive overground walking in multiple sclerosis with severe disability (the RAGTIME study): a randomized controlled trial. Mult Scler. 2019 Mar 4 doi: 10.1177/1352458519833901. PMID: 30829117.
- 99. Wu M, Kim J, Arora P, et al. Effects of the integration of dynamic weight shifting training into treadmill training on walking function of children with cerebral palsy: a randomized controlled study. Am J Phys Med Rehabil. 2017 Nov;96(11):765-72. doi: 10.1097/PHM.000000000000776. PMID: 28644244.
- 100. Wu M, Kim J, Gaebler-Spira DJ, et al. Robotic resistance treadmill training improves locomotor function in children with cerebral palsy: a randomized controlled pilot study. Arch Phys Med Rehabil. 2017 Nov;98(11):2126-33. doi: 10.1016/j.apmr.2017.04.022. PMID: 28576629.

- 101. Wallard L, Dietrich G, Kerlirzin Y, et al. Robotic-assisted gait training improves walking abilities in diplegic children with cerebral palsy. Europ J Paediatr Neurol. 2017 May;21(3):557-64. doi: 10.1016/j.gaitpost.2017.11.007. PMID: 28188024.
- 102. Wallard L, Dietrich G, Kerlirzin Y, et al. Effect of robotic-assisted gait rehabilitation on dynamic equilibrium control in the gait of children with cerebral palsy. Gait Posture. 2018 Feb;60:55-60. doi: 10.1016/j.gaitpost.2017.11.007. PMID: 29156378.
- 103. Aras B, Yasar E, Kesikburun S, et al. Comparison of the effectiveness of partial body weight-supported treadmill exercises, robotic-assisted treadmill exercises, and anti-gravity treadmill exercises in spastic cerebral palsy. Turk J Phys Med Rehabil. 2019 Jun;65(4):361-70. doi: 10.5606/tftrd.2019.3078. PMID: 31893273.
- 104. Klobucka S, Klobucky R, Kollar B. Effect of robot-assisted gait training on motor functions in adolescent and young adult patients with bilateral spastic cerebral palsy: A randomized controlled trial. NeuroRehabilitation. 2020 Oct 29;29:29. doi: 10.3233/NRE-203102. PMID: 33136072.
- Peri E, Turconi AC, Biffi E, et al. Effects of dose and duration of Robot-Assisted Gait Training on walking ability of children affected by cerebral palsy. Technol Health Care. 2017 Aug 9;25(4):671-81. doi: 10.3233/THC-160668. PMID: 28436398.
- Yazici M, Livanelioglu A, Gucuyener K, et al. Effects of robotic rehabilitation on walking and balance in pediatric patients with hemiparetic cerebral palsy. Gait Posture. 2019 May;70:397-402. doi: 10.1016/j.gaitpost.2019.03.017. PMID: 30974395.
- 107. Esclarin-Ruz A, Alcobendas-Maestro M, Casado-Lopez R, et al. A comparison of robotic walking therapy and conventional walking therapy in individuals with upper versus lower motor neuron lesions: a randomized controlled trial. Arch Phys Med Rehabil. 2014 Jun;95(6):1023-31. doi: 10.1016/j.apmr.2013.12.017. PMID: 24393781.

- 108. Field-Fote EC, Roach KE. Influence of a locomotor training approach on walking speed and distance in people with chronic spinal cord injury: a randomized clinical trial. Phys Ther. 2011 Jan;91(1):48-60. doi: 10.2522/ptj.20090359. PMID: 21051593.
- 109. Sandler EB, Roach KE, Field-Fote EC. Dose-response outcomes associated with different forms of locomotor training in persons with chronic motor-incomplete spinal cord injury. J Neurotrauma. 2017 May 15;34(10):1903-8. doi: 10.1089/neu.2016.4555. PMID: 27901413.
- 110. Kressler J, Nash MS, Burns PA, et al. Metabolic responses to 4 different body weight-supported locomotor training approaches in persons with incomplete spinal cord injury. Arch Phys Med Rehabil. 2013 Aug;94(8):1436-42. doi: 10.1016/j.apmr.2013.02.018. PMID: 23473703.
- 111. Kumru H, Benito-Penalva J, Valls-Sole J, et al. Placebo-controlled study of rTMS combined with Lokomat® gait training for treatment in subjects with motor incomplete spinal cord injury. Exp Brain Res. 2016 Dec;234(12):3447-55. doi: 10.1007/s00221-016-4739-9. PMID: 27469242.
- Shin JC, Kim JY, Park HK, et al. Effect of robotic-assisted gait training in patients with incomplete spinal cord injury. Ann Rehabil Med. 2014 Dec;38(6):719-25. doi: 10.5535/arm.2014.38.6.719. PMID: 25566469.
- Huang Q, Yu L, Gu R, et al. Effects of robot training on bowel function in patients with spinal cord injury. J Phys Ther Sci. 2015 May;27(5):1377-8. doi: 10.1589/jpts.27.1377. PMID: 26157223.
- 114. Duffell LD, Niu X, Brown G, et al. Variability in responsiveness to interventions in people with spinal cord injury: do some respond better than others? Conf Proc IEEE Eng Med Biol Soc. 2014;2014:5872-5. doi: 10.1109/EMBC.2014.6944964. PMID: 25571332.

- 115. Yildirim MA, Ones K, Goksenoglu G. Early term effects of robotic assisted gait training on ambulation and functional capacity in patients with spinal cord injury. Turk J Med Sci. 2019 Jun 18;49(3):838-43. doi: 10.3906/sag-1809-7. PMID: 31134784.
- 116. Midik M, Paker N, Bugdayci D, et al. Effects of robot-assisted gait training on lower extremity strength, functional independence, and walking function in men with incomplete traumatic spinal cord injury. Turk J Phys Med Rehabil. 2020 Mar;66(1):54-9. doi: 10.5606/tftrd.2020.3316. PMID: 32318675.
- 117. Gervasoni E, Cattaneo D, Jonsdottir J. Effect of treadmill training on fatigue in multiple sclerosis: a pilot study. Int J Rehabil Res. 2014 Mar;37(1):54-60. doi: 10.1097/MRR.00000000000034. PMID: 24220224.
- 118. Jonsdottir J, Gervasoni E, Bowman T, et al. Intensive multimodal training to improve gait resistance, mobility, balance and cognitive function in persons with multiple sclerosis: a pilot randomized controlled trial. Front Neurol. 2018 Sep 28;9:800. doi: 10.3389/fneur.2018.00800. PMID: 30323787.
- Samaei A, Bakhtiary AH, Hajihasani A, et al. Uphill and downhill walking in multiple sclerosis: a randomized controlled trial. Int J MS Care. 2016 Jan-Feb;18(1):34-41. doi: 10.7224/1537-2073.2014-072. PMID: 26917996.
- 120. Ahmadi A, Arastoo AA, Nikbakht M, et al. Comparison of the effect of 8 weeks aerobic and yoga training on ambulatory function, fatigue and mood status in MS patients. Iran Red Crescent Med J. 2013 Jun;15(6):449-54. doi: 10.5812/ircmj.3597. PMID: 24349740.
- 121. Chrysagis N, Skordilis EK, Stavrou N, et al. The effect of treadmill training on gross motor function and walking speed in ambulatory adolescents with cerebral palsy: a randomized controlled trial. Am J Phys Med Rehabil. 2012 Sep;91(9):747-60. doi: 10.1097/PHM.0b013e3182643eba. PMID: 22902937.

- 122. Emara HA, El-Gohary TM, Al-Johany AA. Effect of body-weight suspension training versus treadmill training on gross motor abilities of children with spastic diplegic cerebral palsy. Eur J Phys Rehabil Med. 2016 Jun;52(3):356-63. PMID: 26845668.
- 123. Grecco LA, de Almeida Carvalho Duarte N, Mendonca ME, et al. Transcranial direct current stimulation during treadmill training in children with cerebral palsy: a randomized controlled double-blind clinical trial. Res Dev Disabil. 2014 Nov;35(11):2840-8. doi: 10.1016/j.ridd.2014.07.030. PMID: 25105567.
- 124. Grecco LA, Zanon N, Sampaio LM, et al. A comparison of treadmill training and overground walking in ambulant children with cerebral palsy: randomized controlled clinical trial. Clin Rehabil. 2013 Aug;27(8):686-96. doi: 10.1177/0269215513476721. PMID: 23503736.
- 125. Johnston TE, Watson KE, Ross SA, et al. Effects of a supported speed treadmill training exercise program on impairment and function for children with cerebral palsy. Dev Med Child Neurol. 2011 Aug;53(8):742-50. doi: 10.1111/j.1469-8749.2011.03990.x. PMID: 21679357.
- 126. Kim OY, Shin YK, Yoon YK, et al. The effect of treadmill exercise on gait efficiency during overground walking in adults with cerebral palsy. Ann Rehabil Med. 2015 Feb;39(1):25-31. doi: 10.5535/arm.2015.39.1.25. PMID: 25750868.
- 127. Willoughby KL, Dodd KJ, Shields N, et al. Efficacy of partial body weight-supported treadmill training compared with overground walking practice for children with cerebral palsy: a randomized controlled trial. Arch Phys Med Rehabil. 2010 Mar;91(3):333-9. doi: 10.1016/j.apmr.2009.10.029. PMID: 20298820.

- Swe NN, Sendhilnnathan S, van Den Berg M, et al. Over ground walking and body weight supported walking improve mobility equally in cerebral palsy: a randomised controlled trial. Clin Rehabil. 2015 Nov;29(11):1108-16. doi: 10.1177/0269215514566249. PMID: 25636992.
- 129. Bahrami F, Noorizadeh Dehkordi S, Dadgoo M. The efficacy of treadmill training on walking and quality of life of adults with spastic cerebral palsy: a randomized controlled trial. Iran J Child Neurol. 2019 Fall;13(4):121-33. PMID: 31645872.
- 130. Duarte Nde A, Grecco LA, Galli M, et al. Effect of transcranial direct-current stimulation combined with treadmill training on balance and functional performance in children with cerebral palsy: a double-blind randomized controlled trial. PLoS One. 2014 Aug 29;9(8):e105777. doi: 10.1371/journal.pone.0105777. PMID: 25171216.
- Aviram R, Harries N, Namourah I, et al. Effects of a group circuit progressive resistance training program compared with a treadmill training program for adolescents with cerebral palsy. Dev Neurorehabil. 2017 Aug;20(6):347-54. doi: 10.1080/17518423.2016.1212946. PMID: 27536805.
- 132. Nsenga Leunkeu A, Shephard RJ, Ahmaidi S. Six-minute walk test in children with cerebral palsy gross motor function classification system levels I and II: reproducibility, validity, and training effects. Arch Phys Med Rehabil. 2012 Dec;93(12):2333-9. doi: 10.1016/j.apmr.2012.06.005. PMID: 22721868.
- 133. Alexeeva N, Sames C, Jacobs PL, et al. Comparison of training methods to improve walking in persons with chronic spinal cord injury: a randomized clinical trial. J Spinal Cord Med. 2011;34(4):362-79. doi: 10.1179/2045772311Y.0000000018. PMID: 21903010.

- 134. Giangregorio L, Craven C, Richards K, et al. A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: effects on body composition. J Spinal Cord Med. 2012 Sep;35(5):351-60. doi: 10.1179/2045772312Y.0000000041. PMID: 23031172.
- 135. Hitzig SL, Craven BC, Panjwani A, et al. Randomized trial of functional electrical stimulation therapy for walking in incomplete spinal cord injury: effects on quality of life and community participation. Top Spinal Cord Inj Rehabil. 2013 Fall;19(4):245-58. doi: 10.1310/sci1904-245. PMID: 24244090.
- 136. Kapadia N, Masani K, Catharine Craven B, et al. A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: effects on walking competency. J Spinal Cord Med. 2014 Sep;37(5):511-24. doi: 10.1179/2045772314Y.0000000263. PMID: 25229735.
- 137. Craven BC, Giangregorio LM, Alavinia SM, et al. Evaluating the efficacy of functional electrical stimulation therapy assisted walking after chronic motor incomplete spinal cord injury: effects on bone biomarkers and bone strength. J Spinal Cord Med. 2017 Nov;40(6):748-58. doi: 10.1080/10790268.2017.1368961. PMID: 28929919.
- 138. Yang JF, Musselman KE, Livingstone D, et al. Repetitive mass practice or focused precise practice for retraining walking after incomplete spinal cord injury? A pilot randomized clinical trial. Neurorehabil Neural Repair. 2014 May;28(4):314-24. doi: 10.1177/1545968313508473. PMID: 24213960.
- Musselman KE, Yang JF. Spinal cord injury functional ambulation profile: a preliminary look at responsiveness. Phys Ther. 2014 Feb;94(2):240-50. doi: 10.2522/ptj.20130071. PMID: 24114437.
- 140. van der Scheer JW, de Groot S, Tepper M, et al. Low-intensity wheelchair training in inactive people with long-term spinal cord injury: a randomized controlled trial on fitness, wheelchair skill performance and physical activity levels. J Rehabil Med. 2016 Jan;48(1):33-42. doi: 10.2340/16501977-2037. PMID: 26660337.

- 141. Gandolfi M, Munari D, Geroin C, et al. Sensory integration balance training in patients with multiple sclerosis: a randomized, controlled trial. Mult Scler. 2015 Oct;21(11):1453-62. doi: 10.1177/1352458514562438. PMID: 25583852.
- Salci Y, Fil A, Armutlu K, et al. Effects of different exercise modalities on ataxia in multiple sclerosis patients: a randomized controlled study. Disabil Rehabil. 2017 Dec;39(26):2626-32. doi: 10.1080/09638288.2016.1236411. PMID: 27794631.
- 143. Carling A, Forsberg A, Gunnarsson M, et al. CoDuSe group exercise programme improves balance and reduces falls in people with multiple sclerosis: a multi-centre, randomized, controlled pilot study. Mult Scler. 2017 Sep;23(10):1394-404. doi: 10.1177/1352458516677591. PMID: 27834736.
- 144. Forsberg A, von Koch L, Nilsagard Y. Effects on balance and walking with the CoDuSe balance exercise program in people with multiple sclerosis: a multicenter randomized controlled trial. Mult Scler Int. 2016;2016 doi: 10.1155/2016/7076265. PMID: 28042485.
- 145. Afrasiabifar A, Karami F, Najafi Doulatabad S. Comparing the effect of Cawthorne-Cooksey and Frenkel exercises on balance in patients with multiple sclerosis: a randomized controlled trial. Clin Rehabil. 2018 Jan;32(1):57-65. doi: 10.1177/0269215517714592. PMID: 28629268.
- Brichetto G, Piccardo E, Pedulla L, et al. Tailored balance exercises on people with multiple sclerosis: a pilot randomized, controlled study. Mult Scler. 2015 Jul;21(8):1055-63. doi: 10.1177/1352458514557985. PMID: 25392337.
- 147. Amiri B, Sahebozamani M, Sedighi B. The effects of 10-week core stability training on balance in women with multiple sclerosis according to Expanded Disability Status Scale: a single-blinded randomized controlled trial. Eur J Phys Rehabil Med. 2019 Apr;55(2):199-208. doi: 10.23736/S1973-9087.18.04778-0. PMID: 29307152.

- 148. Arntzen EC, Straume BK, Odeh F, et al. Group-based individualized comprehensive core stability intervention improves balance in persons with multiple sclerosis: a randomized controlled trial. Phys Ther. 2019 Aug 1;99(8):1027-38. doi: 10.1093/ptj/pzz017. PMID: 30722036.
- 149. Callesen J, Cattaneo D, Brincks J, et al. How do resistance training and balance and motor control training affect gait performance and fatigue impact in people with multiple sclerosis? A randomized controlled multicenter study. Mult Scler. 2019 Jul 24 doi: 10.1177/1352458519865740. PMID: 31339460.
- 150. Arntzen EC, Straume B, Odeh F, et al. Group-based, individualized, comprehensive core stability and balance intervention provides immediate and long-term improvements in walking in individuals with multiple sclerosis: A randomized controlled trial. Physiother Res Int. 2020 Jan;25(1):e1798. doi: 10.1002/pri.1798. PMID: 31268223.
- 151. Ozkul C, Guclu-Gunduz A, Yazici G, et al. Effect of immersive virtual reality on balance, mobility, and fatigue in patients with multiple sclerosis: A single-blinded randomized controlled trial. European Journal of Integrative Medicine. 2020;35 doi: 10.1016/j.eujim.2020.101092.
- 152. Curtis DJ, Woollacott M, Bencke J, et al. The functional effect of segmental trunk and head control training in moderate-to-severe cerebral palsy: a randomized controlled trial. Dev Neurorehabil. 2018 Feb;21(2):91-100. doi: 10.1080/17518423.2016.1265603. PMID: 28045553.
- 153. Bleyenheuft Y, Ebner-Karestinos D, Surana B, et al. Intensive upper- and lowerextremity training for children with bilateral cerebral palsy: a quasi-randomized trial. Dev Med Child Neurol. 2017 Jun;59(6):625-33. doi: 10.1111/dmcn.13379. PMID: 28133725.
- 154. Lorentzen J, Greve LZ, Kliim-Due M, et al. Twenty weeks of home-based interactive training of children with cerebral palsy improves functional abilities. BMC Neurol. 2015 May 10;15:75. doi: 10.1186/s12883-015-0334-0. PMID: 25956055.

- 155. Kim BJ, Kim SM, Kwon HY. The effect of group exercise program on the self-efficacy and activities of daily living in adults with cerebral palsy. J Phys Ther Sci. 2017 Dec;29(12):2184-9. doi: 10.1589/jpts.29.2184. PMID: 29643601.
- 156. Norouzi E, Vaezmousavi M. Neurofeedback training and physical training differentially impacted on reaction time and balance skills among Iranian veterans with spinal cord injury. J Mil Veterans Health. 2019 Jul;27(3):11-8.
- 157. Hota D, Das S, Joseph NM. Effect of dual task exercise to develop body balance, movement co-ordination and walking speed among post cervical injury clients. International Journal of Research in Pharmaceutical Sciences. 2020;11(1):1117-22. doi: 10.26452/ijrps.v11i1.1944.
- 158. Vermohlen V, Schiller P, Schickendantz S, et al. Hippotherapy for patients with multiple sclerosis: a multicenter randomized controlled trial (MS-HIPPO). Mult Scler. 2018 Sep;24(10):1375-82. doi: 10.1177/1352458517721354. PMID: 28770664.
- 159. Wollenweber V, Drache M, Schickendantz S, et al. Study of the effectiveness of hippotherapy on the symptoms of multiple sclerosis outline of a randomised controlled multicentre study (MS-HIPPO). Contemp Clin Trials Commun. 2016 Aug 15;3:6-11. doi: 10.1016/j.conetc.2016.02.001. PMID: 29736452.
- 160. Moraes AG, Neri SGR, Motl RW, et al. Effect of hippotherapy on walking performance and gait parameters in people with multiple sclerosis. Mult Scler Relat Disord. 2020 May 26;43:102203. doi: 10.1016/j.msard.2020.102203. PMID: 32485633.
- 161. Herrero P, Gomez-Trullen EM, Asensio A, et al. Study of the therapeutic effects of a hippotherapy simulator in children with cerebral palsy: a stratified single-blind randomized controlled trial. Clin Rehabil. 2012 Dec;26(12):1105-13. doi: 10.1177/0269215512444633. PMID: 22610128.

- 162. Silva e Borges MB, Werneck MJ, da Silva Mde L, et al. Therapeutic effects of a horse riding simulator in children with cerebral palsy. Arq Neuropsiquiatr. 2011 Oct;69(5):799-804. doi: 10.1590/s0004-282x2011000600014. PMID: 22042184.
- Lucena-Anton D, Rosety-Rodriguez I, Moral-Munoz JA. Effects of a hippotherapy intervention on muscle spasticity in children with cerebral palsy: a randomized controlled trial. Complement Ther Clin Pract. 2018 May;31:188-92. doi: 10.1016/j.ctcp.2018.02.013. PMID: 29705454.
- 164. Kwon JY, Chang HJ, Yi SH, et al. Effect of hippotherapy on gross motor function in children with cerebral palsy: a randomized controlled trial. J Altern Complement Med. 2015 Jan;21(1):15-21. doi: 10.1089/acm.2014.0021. PMID: 25551626.
- 165. Deutz U, Heussen N, Weigt-Usinger K, et al. Impact of hippotherapy on gross motor function and quality of life in children with bilateral cerebral palsy: a randomized openlabel crossover study. Neuropediatrics. 2018 Jun;49(3):185-92. doi: 10.1055/s-0038-1635121. PMID: 29486504.
- 166. Lee CW, Kim SG, Na SS. The effects of hippotherapy and a horse riding simulator on the balance of children with cerebral palsy. J Phys Ther Sci. 2014 Mar;26(3):423-5. doi: 10.1589/jpts.26.423. PMID: 24707098.
- 167. Mutoh T, Mutoh T, Tsubone H, et al. Impact of long-term hippotherapy on the walking ability of children with cerebral palsy and quality of life of their caregivers. Frontiers in neurology 2019 Aug 13;10:834. doi: 10.3389/fneur.2019.00834. PMID: 31456733.
- 168. Matusiak-Wieczorek E, Dziankowska-Zaborszczyk E, Synder M, et al. The Influence of Hippotherapy on the Body Posture in a Sitting Position among Children with Cerebral Palsy. Int J Environ Res Public Health. 2020 Sep 19;17(18):19. doi: 10.3390/ijerph17186846. PMID: 32961681.

- 169. Kwon JY, Chang HJ, Lee JY, et al. Effects of hippotherapy on gait parameters in children with bilateral spastic cerebral palsy. Arch Phys Med Rehabil. 2011 May;92(5):774-9. doi: 10.1016/j.apmr.2010.11.031. PMID: 21530725.
- Matusiak-Wieczorek E, Malachowska-Sobieska M, Synder M. Influence of hippotherapy on body balance in the sitting position among children with cerebral palsy. Ortop Traumatol Rehabil. 2016 Mar 23;18(2):165-75. doi: 10.5604/15093492.1205024. PMID: 28155825.
- 171. Park ES, Rha DW, Shin JS, et al. Effects of hippotherapy on gross motor function and functional performance of children with cerebral palsy. Yonsei Med J. 2014 Nov;55(6):1736-42. doi: 10.3349/ymj.2014.55.6.1736. PMID: 25323914.
- Azimzadeh E, Hosseini MA, Nourozi K, et al. Effect of Tai Chi Chuan on balance in women with multiple sclerosis. Complement Ther Clin Pract. 2015 Feb;21(1):57-60. doi: 10.1016/j.ctcp.2014.09.002. PMID: 25534298.
- Burschka JM, Keune PM, Oy UH, et al. Mindfulness-based interventions in multiple sclerosis: beneficial effects of Tai Chi on balance, coordination, fatigue and depression. BMC Neurol. 2014 Aug 23;14:165. doi: 10.1186/s12883-014-0165-4. PMID: 25145392.
- 174. Qi Y, Zhang X, Zhao Y, et al. The effect of wheelchair Tai Chi on balance control and quality of life among survivors of spinal cord injuries: a randomized controlled trial. Complement Ther Clin Pract. 2018 Nov;33:7-11. doi: 10.1016/j.ctcp.2018.07.004. PMID: 30396629.
- 175. Nilsagard YE, Forsberg AS, von Koch L. Balance exercise for persons with multiple sclerosis using Wii games: a randomised, controlled multi-centre study. Mult Scler. 2013 Feb;19(2):209-16. doi: 10.1177/1352458512450088. PMID: 22674972.

- 176. Khalil H, Al-Sharman A, El-Salem K, et al. The development and pilot evaluation of virtual reality balance scenarios in people with multiple sclerosis (MS): a feasibility study. NeuroRehabilitation. 2018;43(4):473-82. doi: 10.3233/NRE-182471. PMID: 30400117.
- 177. Yazgan YZ, Tarakci E, Tarakci D, et al. Comparison of the effects of two different exergaming systems on balance, functionality, fatigue, and quality of life in people with multiple sclerosis: A randomized controlled trial. Mult Scler Relat Disord. 2019 Dec 21;39:101902. doi: 10.1016/j.msard.2019.101902. PMID: 31924591.
- 178. Tarakci D, Ersoz Huseyinsinoglu B, Tarakci E, et al. Effects of Nintendo Wii-Fit® video games on balance in children with mild cerebral palsy. Pediatr Int. 2016 Oct;58(10):1042-50. doi: 10.1111/ped.12942. PMID: 26858013.
- Acar G, Altun GP, Yurdalan S, et al. Efficacy of neurodevelopmental treatment combined with the Nintendo® Wii in patients with cerebral palsy. J Phys Ther Sci. 2016 Mar;28(3):774-80. doi: 10.1589/jpts.28.774. PMID: 27134357.
- 180. Zoccolillo L, Morelli D, Cincotti F, et al. Video-game based therapy performed by children with cerebral palsy: a cross-over randomized controlled trial and a crosssectional quantitative measure of physical activity. Eur J Phys Rehabil Med. 2015 Dec;51(6):669-76. PMID: 25653079.
- 181. El-Shamy SM. Efficacy of Armeo® Robotic Therapy versus conventional therapy on upper limb function in children with hemiplegic cerebral palsy. Am J Phys Med Rehabil. 2018 Mar;97(3):164-69. doi: 10.1097/PHM.000000000000852. PMID: 29059068.
- 182. Hsieh H-C. Preliminary study of the effect of training with a gaming balance board on balance control in children with cerebral palsy: a randomized controlled trial. Am J Phys Med Rehabil. 2020;99(2):142-8. doi: 10.1097/PHM.000000000001300. PMID: 31464757.

- 183. Pourazar M, Bagherzadeh F, Mirakhori F. Virtual reality training improves dynamic balance in children with cerebral palsy. International Journal of Developmental Disabilities. 2019 doi: 10.1080/20473869.2019.1679471.
- 184. Tak S, Choi W, Lee S. Game-based virtual reality training improves sitting balance after spinal cord injury: a single-blinded, randomized controlled trial. Med Sci Technol. 2015;56:53-9.
- 185. Claerbout M, Gebara B, Ilsbroukx S, et al. Effects of 3 weeks' whole body vibration training on muscle strength and functional mobility in hospitalized persons with multiple sclerosis. Mult Scler. 2012 Apr;18(4):498-505. doi: 10.1177/1352458511423267. PMID: 22084490.
- 186. Abbasi M, Kordi Yoosefinejad A, Poursadeghfard M, et al. Whole body vibration improves core muscle strength and endurance in ambulant individuals with multiple sclerosis: a randomized clinical trial. Mult Scler Relat Disord. 2019 Jul;32:88-93. doi: 10.1016/j.msard.2019.04.028. PMID: 31071658.
- 187. Lee BK, Chon SC. Effect of whole body vibration training on mobility in children with cerebral palsy: a randomized controlled experimenter-blinded study. Clin Rehabil. 2013 Jul;27(7):599-607. doi: 10.1177/0269215512470673. PMID: 23411791.
- 188. Ahmadizadeh Z, Khalili MA, Ghalam MS, et al. Effect of whole body vibration with stretching exercise on active and passive range of motion in lower extremities in children with cerebral palsy: A randomized clinical trial. Iranian Journal of Pediatrics. 2019;29(5) doi: 10.5812/ijp.84436.
- 189. In T, Jung K, Lee MG, et al. Whole-body vibration improves ankle spasticity, balance, and walking ability in individuals with incomplete cervical spinal cord injury. NeuroRehabilitation. 2018;42(4):491-7. doi: 10.3233/NRE-172333. PMID: 29660953.

- 190. Doulatabad SN, Nooreyan K, Doulatabad AN, et al. The effects of pranayama, hatha and raja yoga on physical pain and the quality of life of women with multiple sclerosis. Afr J Tradit Complement Altern Med. 2012 Oct 1;10(1):49-52. PMID: 24082325.
- 191. Najafidoulatabad S, Mohebbi Z, Nooryan K. Yoga effects on physical activity and sexual satisfaction among the Iranian women with multiple sclerosis: a randomized controlled trial. Afr J Tradit Complement Altern Med. 2014 Aug 23;11(5):78-82. doi: 10.4314/ajtcam.v11i5.13. PMID: 25395709.
- 192. Garrett M, Hogan N, Larkin A, et al. Exercise in the community for people with multiple sclerosis--a follow-up of people with minimal gait impairment. Mult Scler. 2013 May;19(6):790-8. doi: 10.1177/1352458512461390. PMID: 23132904.
- 193. Garrett M, Hogan N, Larkin A, et al. Exercise in the community for people with minimal gait impairment due to MS: an assessor-blind randomized controlled trial. Mult Scler. 2013 May;19(6):782-9. doi: 10.1177/1352458512461966. PMID: 23128667.
- 194. Hasanpour-Dehkordi A. Influence of yoga and aerobics exercise on fatigue, pain and psychosocial status in patients with multiple sclerosis: a randomized trial. J Sports Med Phys Fitness. 2016 Nov;56(11):1417-22. PMID: 26223004.
- 195. Hasanpour-Dehkordi A, Jivad N, Solati K. Effects of yoga on physiological indices, anxiety and social functioning in multiple sclerosis patients: a randomized trial. J Clin Diagn Res. 2016 Jun;10(6):VC01-VC5. doi: 10.7860/JCDR/2016/18204.7916. PMID: 27504387.
- 196. Hasanpour-Dehkordi A, Jivad N. Comparison of regular aerobic and yoga on the quality of life in patients with multiple sclerosis. Med J Islam Repub Iran. 2014 Dec 6;28:141. PMID: 25694999.
- Hogan N, Kehoe M, Larkin A, et al. The effect of community exercise interventions for people with MS who use bilateral support for gait. Mult Scler Int. 2014 Jan;2014 doi: 10.1155/2014/109142. PMID: 24575302.

- Duff WRD, Andrushko JW, Renshaw DW, et al. Impact of pilates exercise in multiple sclerosis: a randomized controlled trial. Int J MS Care. 2018 Mar-Apr;20(2):92-100. doi: 10.7224/1537-2073.2017-066. PMID: 29670495.
- 199. Kjolhede T, Dalgas U, Gade AB, et al. Acute and chronic cytokine responses to resistance exercise and training in people with multiple sclerosis. Scand J Med Sci Sports. 2016 Jul;26(7):824-34. doi: 10.1111/sms.12504. PMID: 26105554.
- 200. Fox EE, Hough AD, Creanor S, et al. Effects of pilates-based core stability training in ambulant people with multiple sclerosis: multicenter, assessor-blinded, randomized controlled trial. Phys Ther. 2016 Aug;96(8):1170-8. doi: 10.2522/ptj.20150166. PMID: 26893507.
- 201. Freeman J, Fox E, Gear M, et al. Pilates based core stability training in ambulant individuals with multiple sclerosis: protocol for a multi-centre randomised controlled trial. BMC Neurol. 2012 Apr 5;12:19. doi: 10.1186/1471-2377-12-19. PMID: 22480437.
- 202. Dalgas U, Stenager E, Jakobsen J, et al. Resistance training improves muscle strength and functional capacity in multiple sclerosis. Neurology. 2009 Nov 3;73(18):1478-84. doi: 10.1212/WNL.0b013e3181bf98b4. PMID: 19884575.
- 203. Dalgas U, Stenager E, Jakobsen J, et al. Fatigue, mood and quality of life improve in MS patients after progressive resistance training. Mult Scler. 2010 Apr;16(4):480-90. doi: 10.1177/1352458509360040. PMID: 20194584.
- 204. Dodd KJ, Taylor NF, Shields N, et al. Progressive resistance training did not improve walking but can improve muscle performance, quality of life and fatigue in adults with multiple sclerosis: a randomized controlled trial. Mult Scler. 2011 Nov;17(11):1362-74. doi: 10.1177/1352458511409084. PMID: 21677021.

- 205. Ortiz-Rubio A, Cabrera-Martos I, Rodriguez-Torres J, et al. Effects of a homebased upper limb training program in patients with multiple sclerosis: a randomized controlled trial. Arch Phys Med Rehabil. 2016 Dec;97(12):2027-33. doi: 10.1016/j.apmr.2016.05.018. PMID: 27343343.
- 206. Bulguroglu I, Guclu-Gunduz A, Yazici G, et al. The effects of mat pilates and reformer pilates in patients with multiple sclerosis: a randomized controlled study. NeuroRehabilitation. 2017;41(2):413-22. doi: 10.3233/NRE-162121. PMID: 28946576.
- 207. Scholtes VA, Becher JG, Janssen-Potten YJ, et al. Effectiveness of functional progressive resistance exercise training on walking ability in children with cerebral palsy: a randomized controlled trial. Res Dev Disabil. 2012 Jan-Feb;33(1):181-8. doi: 10.1016/j.ridd.2011.08.026. PMID: 22093663.
- 208. Scholtes VA, Dallmeijer AJ, Rameckers EA, et al. Lower limb strength training in children with cerebral palsy--a randomized controlled trial protocol for functional strength training based on progressive resistance exercise principles. BMC Pediatr. 2008 Oct 8;8:41. doi: 10.1186/1471-2431-8-41. PMID: 18842125.
- 209. Scholtes VA, Becher JG, Comuth A, et al. Effectiveness of functional progressive resistance exercise strength training on muscle strength and mobility in children with cerebral palsy: a randomized controlled trial. Dev Med Child Neurol. 2010 Jun;52(6):e107-13. doi: 10.1111/j.1469-8749.2009.03604.x. PMID: 20132136.
- 210. Qi YC, Niu XL, Gao YR, et al. Therapeutic effect evaluation of neuromuscular electrical stimulation with or without strengthening exercise on spastic cerebral palsy. Clin Pediatr (Phila). 2018 May;57(5):580-3. doi: 10.1177/0009922817732619. PMID: 28990434.
- 211. Taylor NF, Dodd KJ, Baker RJ, et al. Progressive resistance training and mobilityrelated function in young people with cerebral palsy: a randomized controlled trial. Dev Med Child Neurol. 2013 Sep;55(9):806-12. doi: 10.1111/dmcn.12190. PMID: 23789741.

- 212. Bania TA, Dodd KJ, Baker RJ, et al. The effects of progressive resistance training on daily physical activity in young people with cerebral palsy: a randomised controlled trial. Disabil Rehabil. 2016;38(7):620-6. doi: 10.3109/09638288.2015.1055376. PMID: 26056856.
- 213. Tedla JS. Strength training effects on balance in spastic diplegia subjects: a randomized controlled trial. J Pediatr Neurol. 2014;12(1):15-28. doi: 10.3233/JPN-140634.
- 214. Kara OK, Yardimci BN, Sahin S, et al. Combined effects of mirror therapy and exercises on the upper extremities in children with unilateral cerebral palsy: A randomized controlled trial. Dev Neurorehabil. 2020 May;23(4):253-64. doi: 10.1080/17518423.2019.1662853. PMID: 31514564.
- 215. Elnaggar RK, Elbanna MF, Mahmoud WS, et al. Plyometric exercises: subsequent changes of weight-bearing symmetry, muscle strength and walking performance in children with unilateral cerebral palsy. J Musculoskelet Neuronal Interact. 2019 12 01;19(4):507-15. PMID: 31789302.
- 216. Cho HJ, Lee BH. Effect of Functional Progressive Resistance Exercise on Lower Extremity Structure, Muscle Tone, Dynamic Balance and Functional Ability in Children with Spastic Cerebral Palsy. Children (Basel). 2020 Jul 31;7(8):31. doi: 10.3390/children7080085. PMID: 32751813.
- 217. Kirk H, Geertsen SS, Lorentzen J, et al. Explosive resistance training increases rate of force development in ankle dorsiflexors and gait function in adults with cerebral palsy. J Strength Cond Res. 2016 Oct;30(10):2749-60. doi: 10.1519/JSC.000000000001376. PMID: 26890969.
- 218. Chen X, Wei K, Miao F, et al. Improvement of pulmonary function and life quality on high paraplegia patients through pulmonary rehabilitation. Int J Clin Exp Med. 2016;9(11):22275-81.

- 219. Mogharnasi M, TaheriChadorneshin H, Papoli-Baravati SA, et al. Effects of upperbody resistance exercise training on serum nesfatin-1 level, insulin resistance, and body composition in obese paraplegic men. Disabil Health J. 2019 Jan;12(1):29-34. doi: 10.1016/j.dhjo.2018.07.003. PMID: 30061073.
- 220. Kerling A, Keweloh K, Tegtbur U, et al. Effects of a short physical excercise intervention on patients with multiple sclerosis (MS). Int J Mol Sci. 2015 Jul 10;16(7):15761-75. doi: 10.3390/ijms160715761. PMID: 26184173.
- 221. Sandroff BM, Bollaert RE, Pilutti LA, et al. Multimodal exercise training in multiple sclerosis: a randomized controlled trial in persons with substantial mobility disability. Contemp Clin Trials. 2017 Oct;61:39-47. doi: 10.1016/j.cct.2017.07.016. PMID: 28732757.
- 222. Sangelaji B, Kordi M, Banihashemi F, et al. A combined exercise model for improving muscle strength, balance, walking distance, and motor agility in multiple sclerosis patients: a randomized clinical trial. Iran J Neurol. 2016 Jul 6;15(3):111-20. PMID: 27648171.
- 223. Tarakci E, Yeldan I, Huseyinsinoglu BE, et al. Group exercise training for balance, functional status, spasticity, fatigue and quality of life in multiple sclerosis: a randomized controlled trial. Clin Rehabil. 2013 Sep;27(9):813-22. doi: 10.1177/0269215513481047. PMID: 23543341.
- Wens I, Dalgas U, Vandenabeele F, et al. High intensity excercise in multiple sclerosis: effects on muscle contractile characteristics and excercise capacity, a randomised controlled trial. PLoS One. 2015 Oct;10(9) doi: 10.1371/journal.pone.0133697. PMID: 26418222.
- 225. Cakit BD, Nacir B, Genc H, et al. Cycling progressive resistance training for people with multiple sclerosis: a randomized controlled study. Am J Phys Med Rehabil. 2010 Jun;89(6):446-57. doi: 10.1097/PHM.0b013e3181d3e71f. PMID: 20216060.

- 226. Sangelaji B, Nabavi SM, Estebsari F, et al. Effect of combination exercise therapy on walking distance, postural balance, fatigue and quality of life in multiple sclerosis patients: a clinical trial study. Iran Red Crescent Med J. 2014 Jun;16(6):e17173. doi: 10.5812/ircmj.17173. PMID: 25068045.
- Wens I, Hansen D, Verboven K, et al. Impact of 24 weeks of resistance and endurance excercise on glucose tolerance in persons with multiple sclerosis. Am J Phys Med Rehabil. 2015 Oct;94(10 Suppl 1):838-47. doi: 10.1097/PHM.000000000000257. PMID: 25768064.
- 228. Ebrahimi A, Eftekhari E, Etemadifar M. Effects of whole body vibration on hormonal & functional indices in patients with multiple sclerosis. Indian J Med Res. 2015 Oct;142(4):450-8. doi: 10.4103/0971-5916.169210. PMID: 26609037.
- 229. Williams KL, Low Choy NL, Brauer SG. Center-Based Group and Home-Based Individual Exercise Programs Have Similar Impacts on Gait and Balance in People With Multiple Sclerosis: A Randomized Trial. Pm R. 2020 Apr 06;06:06. doi: 10.1002/pmrj.12377. PMID: 32249509.
- 230. Faramarzi M, Banitalebi E, Raisi Z, et al. Effect of combined exercise training on pentraxins and pro- inflammatory cytokines in people with multiple sclerosis as a function of disability status. Cytokine. 2020 Jul 16;134:155196. doi: 10.1016/j.cyto.2020.155196. PMID: 32683106.
- 231. Banitalebi E, Ghahfarrokhi MM, Negaresh R, et al. Exercise improves neurotrophins in multiple sclerosis independent of disability status. Mult Scler Relat Disord. 2020 May 13;43:102143. doi: 10.1016/j.msard.2020.102143. PMID: 32473563.
- 232. Ozkul C, Guclu-Gunduz A, Eldemir K, et al. Combined exercise training improves cognitive functions in multiple sclerosis patients with cognitive impairment: A single-blinded randomized controlled trial. Mult Scler Relat Disord. 2020 Jul 23;45:102419. doi: 10.1016/j.msard.2020.102419. PMID: 32736216.

- 233. Roppolo M, Mulasso A, Gollin M, et al. The role of fatigue in the associations between exercise and psychological health in multiple sclerosis: direct and indirect effects. Ment Health Phys Act. 2013 Jun;6(2):87-94. doi: 10.1016/j.mhpa.2013.05.002.
- 234. Slaman J, Roebroeck M, Dallmijer A, et al. Can a lifestyle intervention programme improve physical behaviour among adolescents and young adults with spastic cerebral palsy? A randomized controlled trial. Dev Med Child Neurol. 2015 Feb;57(2):159-66. doi: 10.1111/dmcn.12602. PMID: 25303096.
- 235. Slaman J, Roebroeck M, van der Slot W, et al. Can a lifestyle intervention improve physical fitness in adolescents and young adults with spastic cerebral palsy? A randomized controlled trial. Arch Phys Med Rehabil. 2014 Sep;95(9):1646-55. doi: 10.1016/j.apmr.2014.05.011. PMID: 25067790.
- 236. Slaman J, Roebroeck ME, van Meeteren J, et al. Learn 2 Move 16-24: effectiveness of an intervention to stimulate physical activity and improve physical fitness of adolescents and young adults with spastic cerebral palsy; a randomized controlled trial. BMC Pediatr. 2010 Nov 5;10:79. doi: 10.1186/1471-2431-10-79. PMID: 21054829.
- 237. Slaman J, van den Berg-Emons HJ, van Meeteren J, et al. A lifestyle intervention improves fatigue, mental health and social support among adolescents and young adults with cerebral palsy: focus on mediating effects. Clin Rehabil. 2015 Jul;29(7):717-27. doi: 10.1177/0269215514555136. PMID: 25352613.
- 238. Van Wely L, Balemans AC, Becher JG, et al. Physical activity stimulation program for children with cerebral palsy did not improve physical activity: a randomised trial. J Physiother. 2014 Mar;60(1):40-9. doi: 10.1016/j.jphys.2013.12.007. PMID: 24856939.

- 239. Van Wely L, Balemans AC, Becher JG, et al. The effectiveness of a physical activity stimulation programme for children with cerebral palsy on social participation, self-perception and quality of life: a randomized controlled trial. Clin Rehabil. 2014 Oct;28(10):972-82. doi: 10.1177/0269215513500971. PMID: 24047644.
- 240. Van Wely L, Becher JG, Reinders-Messelink HA, et al. LEARN 2 MOVE 7-12 years: a randomized controlled trial on the effects of a physical activity stimulation program in children with cerebral palsy. BMC Pediatr. 2010 Nov 2;10:77. doi: 10.1186/1471-2431-10-77. PMID: 21044314.
- 241. Fosdahl MA, Jahnsen R, Kvalheim K, et al. Effect of a combined stretching and strength training program on gait function in children with cerebral palsy, GMFCS level I & II: a randomized controlled trial. Medicina. 2019 Jun 6;55(6) doi: 10.3390/medicina55060250. PMID: 31174397.
- 242. Kaya Kara O, Livanelioglu A, Yardimci BN, et al. The effects of functional progressive strength and power training in children with unilateral cerebral palsy. Pediatr Phys Ther. 2019 Jul;31(3):286-95. doi: 10.1097/PEP.0000000000000628. PMID: 31220015.
- 243. Makhov AS, Medvedev IN. The ability to reduce the severity of motor disorders in children with cerebral palsy. Res J Pharm Biol Chem Sci. 2018;9(2):991-6.
- 244. Galea MP, Dunlop SA, Davis GM, et al. Intensive exercise program after spinal cord injury ("Full-On"): study protocol for a randomized controlled trial. Trials. 2013 Sep 11;14:291. doi: 10.1186/1745-6215-14-291. PMID: 24025260.
- 245. Galea MP, Dunlop SA, Geraghty T, et al. SCIPA Full-On: a randomized controlled trial comparing intensive whole-body exercise and upper body exercise after spinal cord injury. Neurorehabil Neural Repair. 2018 Jun;32(6-7):557-67. doi: 10.1177/1545968318771213.

- 246. Jones ML, Evans N, Tefertiller C, et al. Activity-based therapy for recovery of walking in chronic spinal cord injury: results from a secondary analysis to determine responsiveness to therapy. Arch Phys Med Rehabil. 2014 Dec;95(12):2247-52. doi: 10.1016/j.apmr.2014.07.401. PMID: 25102385.
- 247. Jones ML, Evans N, Tefertiller C, et al. Activity-based therapy for recovery of walking in individuals with chronic spinal cord injury: results from a randomized clinical trial. Arch Phys Med Rehabil. 2014 Dec;95(12):2239-46.e2. doi: 10.1016/j.apmr.2014.07.400. PMID: 25102384.
- 248. Liu H, Li J, Du L, et al. Short-term effects of core stability training on the balance and ambulation function of individuals with chronic spinal cord injury: a pilot randomized controlled trial. Minerva Med. 2019 Jun;110(3):216-23. doi: 10.23736/S0026-4806.19.05952-4. PMID: 30809995.
- 249. Totosy de Zepetnek JO, Pelletier CA, Hicks AL, et al. Following the physical activity guidelines for adults with spinal cord injury for 16 weeks does not improve vascular health: a randomized controlled trial. Arch Phys Med Rehabil. 2015 Sep;96(9):1566-75. doi: 10.1016/j.apmr.2015.05.019. PMID: 26070976.
- Harness ET, Yozbatiran N, Cramer SC.
 Effects of intense exercise in chronic spinal cord injury. Spinal Cord. 2008
 Nov;46(11):733-7. doi: 10.1038/sc.2008.56.
 PMID: 18521094.
- 251. Brochetti AM, Brose SW, Kuemmel AM, et al. Interdisciplinary bodyweight management program for persons with SCI. J Spinal Cord Med. 2018 Dec 1-7. doi: 10.1080/10790268.2018.1547860. PMID: 30517834.
- 252. de Groot S, Kouwijzer I, Baauw M, et al. Effect of self-guided training for the HandbikeBattle on body composition in people with spinal cord injury. Spinal Cord Ser Cases. 2018 Aug 24;4(79) doi: 10.1038/s41394-018-0103-6. PMID: 30155275.

- 253. de Rossi G, Matos-Souza JR, Costa ESAD, et al. Physical activity and improved diastolic function in spinal cord-injured subjects. Med Sci Sports Exerc. 2014;46(5):887-92. doi: 10.1249/MSS.00000000000187. PMID: 24126969.
- Gibbons RS, Shave RE, Gall A, et al. FESrowing in tetraplegia: a preliminary report. Spinal Cord. 2014 Dec;52(12):880-6. doi: 10.1038/sc.2014.159. PMID: 25266698.
- 255. Gibbons RS, Stock CG, Andrews BJ, et al. The effect of FES-rowing training on cardiac structure and function: pilot studies in people with spinal cord injury. Spinal Cord. 2016 Oct;54(10):822-9. doi: 10.1038/sc.2015.228. PMID: 26754476.
- 256. Hubli M, Currie KD, West CR, et al. Physical exercise improves arterial stiffness after spinal cord injury. J Spinal Cord Med. 2014 Nov;37(6):782-5. doi: 10.1179/2045772314Y.0000000232. PMID: 24976366.
- 257. Jorissen W, Vanmierlo T, Wens I, et al. Twelve weeks of medium-intensity exercise therapy affects the lipoprotein profile of multiple sclerosis patients. Int J Mol Sci. 2018 Jan 8;19(1) doi: 10.3390/ijms19010193. PMID: 29316715.
- 258. Keytsman C, Hansen D, Wens I, et al. Impact of high-intensity concurrent training on cardiovascular risk factors in persons with multiple sclerosis - pilot study. Disabil Rehabil. 2017 Oct 27;41(4):430-5. doi: 10.1080/09638288.2017.1395086. PMID: 29076386.
- 259. Lauglo R, Vik T, Lamvik T, et al. Highintensity interval training to improve fitness in children with cerebral palsy. BMJ Open Sport Exerc Med. 2016;2(1) doi: 10.1136/bmjsem-2016-000111. PMID: 27900177.
- 260. Magnani S, Olla S, Pau M, et al. Effects of six months training on physical capacity and metaboreflex activity in patients with multiple sclerosis. Front Physiol. 2016;7:531. doi: 10.3389/fphys.2016.00531. PMID: 27895592.

- 261. Myers J, Gopalan R, Shahoumian T, et al. Effects of customized risk reduction program on cardiovascular risk in males with spinal cord injury. J Rehabil Res Dev. 2012;49(9):1355-64. PMID: 23408217.
- 262. Zabay Neiro C, Martínez Lerín N. How to decrease cardiovascular risk factors in people with multiple sclerosis. Revista Cientifica de la Sociedad Espanola de Enfermeria Neurologica. 2018;47:11-7. doi: 10.1016/j.sedene.2017.10.003. PMID: 8112704
- 263. Orban A, Garg B, Sammi MK, et al. Effect of high-intensity exercise on multiple sclerosis function and 31P MRS outcomes. Med Sci Sports Exerc. 2019 Jan 30;30:30. doi: 10.1249/MSS.000000000001914. PMID: 30707115.
- 264. Lokomat®. Hocoma. <u>https://www.hocoma.com/us/solutions/loko</u> <u>mat/</u>. Accessed September 17, 2019.
- 265. Stergiou A, Tzoufi M, Ntzani E, et al. Therapeutic effects of horseback riding interventions: a systematic review and metaanalysis. Am J Phys Med Rehabil. 2017 Oct;96(10):717-25. doi: 10.1097/PHM.00000000000726. PMID: 28252520.
- 266. What is Exergaming? South Dakota Department of Health,. <u>https://healthysd.gov/what-is-exergaming-5/</u>. Accessed Sept. 15, 2019.
- 267. Katusic A, Alimovic S, Mejaski-Bosnjak V. The effect of vibration therapy on spasticity and motor function in children with cerebral palsy: a randomized controlled trial. NeuroRehabilitation. 2013;32(1):1-8. doi: 10.3233/NRE-130817. PMID: 23422453.
- 268. 2018 Physical Activity Guidelines Advisory Committee. 2018 Physical Activity Guidelines Advisory Committee Scientific Report. Washington, DC: U.S. Department of Health and Human Services; February 2018. Available at: <u>https://health.gov/paguidelines/secondedition/report/pdf/PAG_Advisory_Committ</u> <u>ee_Report.pdf</u>.

- 269. Warms CA, Backus D, Rajan S, et al. Adverse events in cardiovascular-related training programs in people with spinal cord injury: a systematic review. J Spinal Cord Med. 2014 Nov;37(6):672-92. doi: 10.1179/2045772313Y.0000000115. PMID: 24090603.
- 270. Pilutti LA, Platta ME, Motl RW, et al. The safety of exercise training in multiple sclerosis: a systematic review. J Neurol Sci. 2014 Aug 15;343(1-2):3-7. doi: 10.1016/j.jns.2014.05.016. PMID: 24880538.
- 271. Latimer-Cheung AE, Pilutti LA, Hicks AL, et al. Effects of exercise training on fitness, mobility, fatigue, and health-related quality of life among adults with multiple sclerosis: a systematic review to inform guideline development. Arch Phys Med Rehabil. 2013 Sep;94(9):1800-28.e3. doi: 10.1016/j.apmr.2013.04.020. PMID: 23669008.
- 272. Edwards T, Pilutti LA. The effect of exercise training in adults with multiple sclerosis with severe mobility disability: A systematic review and future research directions. Mult Scler Relat Disord. 2017 Aug;16:31-9. doi: 10.1016/j.msard.2017.06.003. PMID: 28755682.
- 273. van der Scheer JW, Martin Ginis KA, Ditor DS, et al. Effects of exercise on fitness and health of adults with spinal cord injury: a systematic review. Neurology. 2017 Aug 15;89(7):736-45. doi: 10.1212/WNL.000000000004224. PMID: 28733344.
- 274. Hsu CW, Kang YN, Tseng SH. Effects of therapeutic exercise intensity on cerebral palsy outcomes: a systematic review with meta-regression of randomized clinical trials. Front Neurol. 2019;10:657. doi: 10.3389/fneur.2019.00657. PMID: 31293501.
- 275. Wright A, Roberts R, Bowman G, et al. Barriers and facilitators to physical activity participation for children with physical disability: comparing and contrasting the views of children, young people, and their clinicians. Disabil Rehabil. 2019 Jun;41(13):1499-507. doi: 10.1080/09638288.2018.1432702. PMID: 29382235.

- 276. Vanner EA, Block P, Christodoulou CC, et al. Pilot study exploring quality of life and barriers to leisure-time physical activity in persons with moderate to severe multiple sclerosis. Disabil Health J. 2008 Jan;1(1):58-65. doi: 10.1016/j.dhjo.2007.11.001. PMID: 21122712.
- 277. Ige-Elegbede J, Pilkington P, Gray S, et al. Barriers and facilitators of physical activity among adults and older adults from Black and Minority Ethnic groups in the UK: A systematic review of qualitative studies. Prev Med Rep. 2019 Sep;15:100952. doi: 10.1016/j.pmedr.2019.100952. PMID: 31367514.
- 278. Cadmus-Bertram LA, Gorzelitz JS, Dorn DC, et al. Understanding the physical activity needs and interests of inactive and active rural women: a cross-sectional study of barriers, opportunities, and intervention preferences. J Behav Med. 2019 Jun 13 doi: 10.1007/s10865-019-00070-z. PMID: 31197537.
- 279. Verschuren O, Wiart L, Hermans D, et al. Identification of facilitators and barriers to physical activity in children and adolescents with cerebral palsy. J Pediatr. 2012 Sep;161(3):488-94. doi: 10.1016/j.jpeds.2012.02.042. PMID: 22494875.
- 280. Vader K, Doulas T, Patel R, et al. Experiences, barriers, and facilitators to participating in physical activity and exercise in adults living with chronic pain: a qualitative study. Disabil Rehabil. 2019 Oct 15:1-9. doi: 10.1080/09638288.2019.1676834. PMID: 31613655.
- 281. Jackson S, Mercer C, Singer BJ. An exploration of factors influencing physical activity levels amongst a cohort of people living in the community after stroke in the south of England. Disabil Rehabil. 2018 Feb;40(4):414-24. doi: 10.1080/09638288.2016.1258437. PMID: 28029070.

- 282. Bennett JA, Lyons KS, Winters-Stone K, et al. Motivational interviewing to increase physical activity in long-term cancer survivors: a randomized controlled trial. Nurs Res. 2007 Jan-Feb;56(1):18-27. doi: 10.1097/00006199-200701000-00003. PMID: 17179870.
- 283. Falahee M, Benkert R, George N, et al. Motivational interviewing to increase physical activity in underserved women. Journal for Nurse Practitioners. 2016 Nov-Dec;12(10):704-9. doi: 10.1016/j.nurpra.2016.11.002.
- 284. Sjoling M, Lundberg K, Englund E, et al. Effectiveness of motivational interviewing and physical activity on prescription on leisure exercise time in subjects suffering from mild to moderate hypertension. BMC Res Notes. 2011 Sep 12;4:352. doi: 10.1186/1756-0500-4-352. PMID: 21906404.
- 285. Collado-Garrido L, Paras-Bravo P, Calvo-Martin P, et al. Impact of Resistance Therapy on Motor Function in Children with Cerebral Palsy: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health. 2019 Nov 15;16(22) doi: 10.3390/ijerph16224513. PMID: 31731636.
- 286. Wong CK, Ehrlich JE, Ersing JC, et al. Exercise programs to improve gait performance in people with lower limb amputation: A systematic review. Prosthet Orthot Int. 2016 Feb;40(1):8-17. doi: 10.1177/0309364614546926. PMID: 25261490.
- 287. Flynn A, Allen NE, Dennis S, et al. Homebased prescribed exercise improves balancerelated activities in people with Parkinson's disease and has benefits similar to centrebased exercise: a systematic review. J Physiother. 2019 Oct;65(4):189-99. doi: 10.1016/j.jphys.2019.08.003. PMID: 31521554.
- 288. Pogrebnoy D, Dennett A. Exercise Programs Delivered According to Guidelines Improve Mobility in People With Stroke: A Systematic Review and Meta-analysis. Arch Phys Med Rehabil. 2019 Aug 8 doi: 10.1016/j.apmr.2019.06.015. PMID: 31400308.

- 289. Bullo V, Bergamin M, Gobbo S, et al. The effects of Pilates exercise training on physical fitness and wellbeing in the elderly: A systematic review for future exercise prescription. Prev Med. 2015 Jun;75:1-11. doi: 10.1016/j.ypmed.2015.03.002. PMID: 25773473.
- 290. Kelley GA, Kelley KS, Hootman JM. Effects of exercise on depression in adults with arthritis: a systematic review with meta-analysis of randomized controlled trials. Arthritis Res Ther. 2015 Feb 3;17:21. doi: 10.1186/s13075-015-0533-5. PMID: 25645739.
- 291. Hartmann-Boyce J, Davies N, Frost R, et al. Maximising mobility in older people when isolated with COVID-19. March 2020. <u>https://www.cebm.net/covid-19/maximising-</u> <u>mobility-in-the-older-people-when-isolated-</u> <u>with-covid-19/</u>. Accessed September 21, 2020.
- 292. What You Need to Know About COVID-19 and MS – Program 6. 2020. <u>https://mymsaa.org/videos/what-you-need-</u> <u>to-know-covid-and-ms-6/</u>. Accessed September 21, 2020.
- 293. Ben-Pazi H, Beni-Adani L, Lamdan R. Accelerating Telemedicine for Cerebral Palsy During the COVID-19 Pandemic and Beyond. Front Neurol. 2020 Jun 26;11:746. doi: 10.3389/fneur.2020.00746. PMID: 32670193.
- 294. Department of Veterans Affairs (VA) Spinal Cord Injuries and Disorders (SCI/D) System of Care: Information for Veterans with SCI/D During the COVID-19 Public Health Emergency. <u>https://www.sci.va.gov/docs/COVIDTipsFor</u> <u>VeteransWithSCID.pdf</u>. Accessed September 21, 2020.
- 295. NHS Chair based Exercises. <u>https://www.youtube.com/watch?v=EJgZyg</u> <u>WBKaE&feature=emb_title</u>. Accessed September 21, 2020.

Abbreviations and Acronyms

Abbreviation	Definition
1MWT	1-Minute Walk Test
2MWT	2-Minute Walk Test
6MWT	6-Minute Walk Test
10MWT	10-Meter Walk Test
25FWT	25-Foot Walk Test
ABCS	Activities-specific Balance Confidence Scale
AC	attention control
ADL	Activities of Daily Living
AE	adverse event
AHRQ	Agency for Healthcare Research and Quality
AIS	Asia Impairment Scale
ANCOVA	analysis of covariance
ARAT	Action Research Arm tests
ASIA	American Spinal Injury Association Impairment Scale
ASIA-LEMS	American Spinal Injuries Association Impairment Scale - Lower Extremity Motor Score
ASIA-UEMS	American Spinal Injuries Association Impairment Scale - Upper Extremity Motor Score
BBS	Berg Balance Scale
BDI	Beck Depression Inventory
BDI-FS	Beck Depression Inventory-Fast Screen
BMD	bone mineral density
BMI	body mass index
BWS	body weight supported
CES-D	Center for Epidemiologic Studies Depression Scale
CHART	Craig Handicap and Assessment Reporting Technique
CI	confidence interval
CIS	Clinically Isolated Syndrome
CoDuSe	core stability, dual tasking, sensory strategies
CP	cerebral palsy
CPMS	chronic progressive multiple sclerosis
CPQoL	Cerebral Palsy Quality of Life scale
CV	Cardiovascular
CVD	cardiovascular disease
DBP	diastolic blood pressure
DGI	Dynamic Gait Index
EDSS	Expanded Disability Status Scale
EPC	Evidence-based Practice Center
EQ-5D	EuroQOL-5 Dimension Questionnaire
FABS	Fullerton Advanced Balance Scale
FAC	functional ambulation category

Abbreviation	Definition
FAP	Functional Ambulation Profile
FER	forced expiratory ratio
FES	functional electrical stimulation
FEV1	forced expiratory volume
FIM	Functional Independence Measure
FPRE	functional progressive resistance exercise
FVC	forced vital capacity
GMFCS	Gross Motor Function Classification System
GMFM	Gross Motor Function Measure
GMFM-66	Gross Motor Function Measure 66
GMFM-66-D	Gross Motor Function Measure 66 (standing)
GMFM-66-E	Gross Motor Function Measure 66 (walking, running, jumping)
GMFM-88	Gross Motor Function Measure 88
GMFM-88-D	Gross Motor Function Measure 88 (standing)
GMFM-88-E	Gross Motor Function Measure 88 (walking, running, jumping)
GNDS	Guy's Neurological Disability Scale
HADS	Hospital Anxiety and Depression Scale
HAQUAMS	Hamburg Quality of Life Questionnaire in Multiple Sclerosis questionnaire
HbA1c	Hemoglobin A1c
HiMAT	High-level Mobility Assessment Tool
HOMA	homeostatic model assessment
HR	heart rate
HRSD	Hamilton Rating Scale for Depression
ICF	International Classification of Functioning
IDS16-SR	16-item version of Inventory of Depressive Symptomatology Self-Rated
IPA	Impact on Participation and Autonomy
IQR	interquartile range
KQ	Key Question
LEMS	Lower Extremity Motor Score
LMN	lower motor neuron
MACS	manual ability classification system
MAS	Modified Ashworth Scale
MD	mean difference
MDI	Major Depression Inventory
MiniBEST	Mini Balance Evaluation System Test
MMAS	Modified Modified Ashworth Scale
MMT	Maximal Muscle Testing combined upper and lower limb strength
MQLIM	Multicultural Quality of Life Index
MS	multiple sclerosis
MSFC	multiple sclerosis functional composite
MSIS-29	Multiple Sclerosis Impact Scale-29
MSIS-88	Multiple Sclerosis Impact Scale-88

Abbreviation	Definition
MSQOL	Multiple Sclerosis Quality of Life
MSWS-12	Multiple Sclerosis Walking Scale-12
MusiQoL	Multiple Sclerosis International Quality of Life questionnaire
NIH	National Institutes of Health
NR	not reported
NRS	numeric rating scale
NS	not significant
PA	previous activity
PANAS	Positive and Negative Affect Schedule
PBS	Pediatric Balance Scale
PDDS	Patient Determined Disease Steps
PEDI	Pediatric Evaluation Disability Inventory
PEF	peak expiratory flow
PHQ-9	Patient Health Questionnaire-9
PICOTS	Population, Intervention, Comparator, Outcome, Timing, Setting
PL	profile likelihood
PODCI	Pediatric Outcomes Data Collection Instrument
PPMS	primary progressive multiple sclerosis
PRE	progressive resistance exercise
PT	physical therapy
QLS	Questionnaire of Life Satisfaction
QOL	quality of life
RAGT	robot-assisted gait training
RCT	randomized controlled trial
RRMS	relapsing-remitting multiple sclerosis
rTMS	transcranial magnetic stimulation
SAWS	Satisfaction with Abilities and Well-Being Scale
SBP	systolic blood pressure
SCI	spinal cord injury
SCIM	Spinal Cord Independence Measure
SCiM3-M	Spinal Cord Independence Measurement III mobility section
SD	standard deviation
SE	standard error
SF-12	Short Form (12) Health Survey
SF-36 MCS	Short-Form 36 Mental Component Score
SF-36 PCS	Short-Form 36 Physical Component Score
SIQR	semi-interquartile range
SOE	strength of evidence
SPMS	secondary progressive multiple sclerosis
SSST	Six Spot Step Test
STATA	Software for Statistics and Data Science

Abbreviation	Definition
TBS	Tinetti Balance Scale
tDCS	transcranial direct current stimulation
TEP	Technical Expert Panel
TG	triglyceride
ТОР	task-oriented physical therapy
ТОО	Task Order Officer
TUG	Timed Up and Go Test
UEMS	Upper Extremity Motor Score
UMN	upper motor neuron
VAS	visual analog scale
VO ₂ max	maximal oxygen uptake
VO ₂ peak	highest value of VO2 attained upon an incremental or other high-intensity exercise test
VR	virtual reality
WBV	whole body vibration
WeeFIM	Wee-Functional Independence Measure for children
WHOQOL	World Health Organization Quality of Life
WISCI	Walking Index for Spinal Cord Injury

Appendixes

Appendix A. Literature Search StrategiesA-1
Appendix B. Included Studies ListB-1
Appendix C. Excluded Studies ListC-1
Table C-1. Study exclusion reasons
Appendix D. Included and Excluded Study Details and Systematic Reviews Evaluated D-1 Table D-1. Included and excluded study definitions and characteristics
Appendix E. Criteria for Assessing Quality and Internal Validity of Individual Studies . E-1 Quality Assessment Criteria: Randomized Controlled Trials
Quality Assessment Criteria: Nonrandomized StudiesE-2 Table E-2. Nonrandomized studies: guidance for quality assessmentE-2
Appendix E ReferencesE-4
Appendix F. Evidence Tables
Appendix G. Quality Assessment
Table G-3. Quality assessment of cohort studiesG-9
Appendix H. Strength of Evidence H-1 Table H-1. Strength of evidence for Key Question 2: aerobic exercise for multiple sclerosis H-1
Table H-2. Strength of evidence for Key Question 2: aerobic exercise for cerebralpalsyTable H-3. Strength of evidence for Key Question 2: aerobic exercise for cerebral palsy
and multiple sclerosis
Table H-4. Strength of evidence for Key Question 2: aerobic exercise for spinal cord injury H-20
Table H-5. Strength of evidence for Key Question 2: balance exercise for multiple sclerosis H-24
Table H-6. Strength of evidence for Key Question 2: balance exercise for cerebral palsy H-32
Table H-7. Strength of evidence for Key Question 2: balance exercise for spinal cord injury H-38
Table H-8. Strength of evidence for Key Question 2: muscle strength exercise for multiple sclerosis H-39

Table H-9. Strength of evidence for Key Question 2: muscle strength exercise for cerebral palsy H-42
Table H-10. Strength of evidence for Key Question 2: muscle strength exercise for spinal cord injury
Table H-11. Strength of evidence for Key Question 2: Progressive resistance or strength exercise plus aerobic or balance exercise that includes strengthening for multiple sclerosis
Table H-12. Strength of evidence for Key Question 2: multimodal exercise that includes strengthening for cerebral palsy
Table H-13. Strength of evidence for Key Question 2: multimodal exercise that includes strengthening for spinal cord injury
Table H-14. Strength of evidence for Key Question 2a clinical outcomes: mental health
Table H-15. Strength of evidence for Key Question 2: general exercise effect across interventions and populations H-56
Table H-16. Strength of evidence for Key Question 2b intermediate outcomes: effect of physical activity interventions on VO ₂ peak and VO ₂ max
Table H-17. Strength of evidence for Key Question 2b intermediate outcomes: effect ofphysical activity interventions on pulmonary function tests
Table H-18. Strength of evidence for Key Question 2c: reduction of harms of immobility
Table H-19. Strength of evidence for Key Question 2d decreased risk of adverse outcomes of mobility devices: effect of physical activity interventions on spasticity . H-67
Table H-20. Strength of evidence for Key Question 2e: harms of physical activity H-70

Appendix A. Literature Search Strategies

Database: Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Daily and Versions(R) 1946 to November 3, 2020

Search: RCTs and controlled observational studies

- 1. Spinal Cord Injuries/
- 2. ("spinal cord injury" or "SCI" or (spin* adj2 injur*)).ti,ab.
- 3. exp Multiple Sclerosis/
- 4. "multiple sclerosis".ti,ab.
- 5. Cerebral Palsy/
- 6. "cerebral palsy".ti,ab.
- 7. Disabled Persons/
- 8. Paraplegia/ or Quadriplegia/
- 9. (wheelchair or quadripleg* or parapleg* or tetrapleg*).ti,ab.

10. or/1-9

- 11. exp Exercise/
- 12. exp Exercise Therapy/
- 13. exp Physical Fitness/
- 14. Weight Lifting/
- 15. Yoga/
- 16. exp Martial Arts/
- 17. Equine-Assisted Therapy/
- 18. Bicycling/
- 19. Hydrotherapy/
- 20. exp Balneology/
- 21. Swimming/
- 22. Vibration/
- 23. sports/ or sports for persons with disabilities/

24. (exercise or "standing frame" or vibration or stretch* or flexibility or yoga or "martial art*" or "tai chi" or "tai ji" or hippotherapy or (equine adj2 therapy) or resistance or "weight lift*" or "weight train*" or ergometry or bicycl* or "strength train*" or treadmill or "gait train*" or swim* or aquatherapy or hydrotherapy or sport*).ti,ab.

- 26. or/11-25
- 27. 10 and 26
- 28. limit 27 to randomized controlled trial
- 29. 27 and (random* or control* or trial or cohort or group* or arm*).ti,ab.
- 30. 28 or 29
- 31. limit 30 to yr="2008 -Current"
- 32. limit 31 to english language

Search: Systematic reviews

- 1. Spinal Cord Injuries/
- 2. ("spinal cord injury" or "SCI" or (spin* adj2 injur*)).ti,ab.
- 3. exp Multiple Sclerosis/
- 4. "multiple sclerosis".ti,ab.
- 5. Cerebral Palsy/
- 6. "cerebral palsy".ti,ab.
- 7. Disabled Persons/
- 8. Paraplegia/ or Quadriplegia/
- 9. (wheelchair or quadripleg* or parapleg* or tetrapleg*).ti,ab.

10. or/1-9

- 11. exp Exercise/
- 12. exp Exercise Therapy/
- 13. exp Physical Fitness/
- 14. Weight Lifting/
- 15. Yoga/
- 16. exp Martial Arts/
- 17. Equine-Assisted Therapy/
- 18. Bicycling/
- 19. Hydrotherapy/
- 20. exp Balneology/
- 21. Swimming/
- 22. Vibration/
- 23. sports/ or sports for persons with disabilities/

24. (exercise or "standing frame" or vibration or stretch* or flexibility or yoga or "martial art*" or "tai chi" or "tai ji" or hippotherapy or (equine adj2 therapy) or resistance or "weight lift*" or "weight train*" or ergometry or bicycl* or "strength train*" or treadmill or "gait train*" or swim* or aquatherapy or hydrotherapy or sport*).ti,ab.

- 26. or/11-25
- 27. 10 and 26
- 28. 27 and (systematic or meta*).ti,ab.
- 29. limit 27 to (meta analysis or systematic reviews)
- 30. 28 or 29
- 31. limit 30 to yr="2008 -Current"

Search: Evaluation studies

- 1. Spinal Cord Injuries/
- 2. ("spinal cord injury" or "SCI" or (spin* adj2 injur*)).ti,ab.
- 3. exp Multiple Sclerosis/
- 4. "multiple sclerosis".ti,ab.
- 5. Cerebral Palsy/
- 6. "cerebral palsy".ti,ab.
- 7. Disabled Persons/
- 8. Paraplegia/ or Quadriplegia/
- 9. (wheelchair or quadripleg* or parapleg* or tetrapleg*).ti,ab.

10. or/1-9

- 11. exp Exercise/
- 12. exp Exercise Therapy/
- 13. exp Physical Fitness/
- 14. Weight Lifting/
- 15. Yoga/
- 16. exp Martial Arts/
- 17. Equine-Assisted Therapy/
- 18. Bicycling/
- 19. Hydrotherapy/
- 20. exp Balneology/
- 21. Swimming/
- 22. Vibration/
- 23. sports/ or sports for persons with disabilities/

24. (exercise or "standing frame" or vibration or stretch* or flexibility or yoga or "martial art*" or "tai chi" or "tai ji" or hippotherapy or (equine adj2 therapy) or resistance or "weight lift*" or "weight train*" or ergometry or bicycl* or "strength train*" or treadmill or "gait train*" or swim* or aquatherapy or hydrotherapy or sport*).ti,ab.

- 26. or/11-25
- 27. 10 and 26
- 28. (pre or before).ti,ab.
- 29. (post or after).ti,ab.
- 30. limit 27 to (comparative study or evaluation studies)
- 31. 27 and (28 or 29)
- 32. Pilot Projects/
- 33. pilot.ti,ab.
- 34. 27 and (32 or 33)
- 35. 30 or 31 or 34
- 36. limit 35 to yr="2008 -Current"
- 37. limit 36 to english language
- 38. limit 37 to randomized controlled trial
- 39. 37 and (random* or control* or trial or cohort or group* or arm*).ti,ab.
- 40. 37 not (38 or 39)

Database: EBM Reviews - Cochrane Central Register of Controlled Trials November 3, 2020

- 1. Spinal Cord Injuries/
- 2. ("spinal cord injury" or "SCI" or (spin* adj2 injur*)).ti,ab.
- 3. exp Multiple Sclerosis/
- 4. "multiple sclerosis".ti,ab.
- 5. Cerebral Palsy/
- 6. "cerebral palsy".ti,ab.
- 7. Disabled Persons/
- 8. Paraplegia/ or Quadriplegia/
- 9. (wheelchair or quadripleg* or parapleg* or tetrapleg*).ti,ab.
- 10. or/1-9
- 11. exp Exercise/
- 12. exp Exercise Therapy/
- 13. exp Physical Fitness/
- 14. Weight Lifting/
- 15. Yoga/
- 16. exp Martial Arts/
- 17. Equine-Assisted Therapy/
- 18. Bicycling/
- 19. Hydrotherapy/
- 20. exp Balneology/
- 21. Swimming/
- 22. Vibration/
- 23. sports/ or sports for persons with disabilities/
- 24. (exercise or "standing frame" or vibration or stretch* or flexibility or yoga or "martial art*" or "tai chi" or "tai ji" or hippotherapy or (equine adj2 therapy) or resistance or "weight lift*" or "weight train*" or ergometry or bicycl* or "strength train*" or treadmill or "gait train*" or swim* or aquatherapy or hydrotherapy or sport*).ti,ab.
- 25. ("physical fitness" or "physical activity").ti,ab.
- 26. or/11-25
- 27. 10 and 26
- 28. limit 27 to randomized controlled trial
- 29. 27 and (random* or control* or trial or cohort or group* or arm*).ti,ab.
- 30. 28 or 29
- 31. limit 30 to yr="2008 -Current"
- 32. limit 31 to english language
- 33. limit 32 to medline records
- 34. 32 not 33

Database: EBM Reviews - Cochrane Database of Systematic Reviews 2005 to November 3, 2020

1. ("spinal cord injury" or "SCI" or (spin* adj2 injur*)).ti,ab.

- 2. "multiple sclerosis".ti,ab.
- 3. "cerebral palsy".ti,ab.
- 4. (wheelchair or quadripleg* or parapleg* or tetrapleg*).ti,ab.

5. (exercise or "standing frame" or vibration or stretch* or flexibility or yoga or "martial art*" or "tai chi" or "tai ji" or hippotherapy or (equine adj2 therapy) or resistance or "weight lift*" or "weight train*" or ergometry or bicycl* or "strength train*" or treadmill or "gait train*" or swim* or aquatherapy or hydrotherapy or sport*).ti,ab.

6. ("physical fitness" or "physical activity").ti,ab.

- 7. (1 or 2 or 3 or 4) and (5 or 6)
- 8. limit 7 to full systematic reviews

Database: PsycINFO 1806 to November Week 1 2020

- 1. spinal cord injuries/
- 2. ("spinal cord injury" or "SCI" or (spin* adj2 injur*)).ti,ab.
- 3. multiple sclerosis/
- 4. "multiple sclerosis".ti,ab.
- 5. exp paralysis/
- 6. ("cerebral palsy" or wheelchair or quadripleg* or parapleg* or tetrapleg*).ti,ab.
- 7. or/1-6
- 8. physical activity/ or exp exercise/
- 9. physical fitness/
- 10. yoga/
- 11. recreation/ or athletic participation/ or martial arts/ or weightlifting/ or sports/
- 12. vibration/

13. (exercise or "standing frame" or vibration or stretch* or flexibility or yoga or "martial art*" or "tai chi" or "tai ji" or hippotherapy or (equine adj2 therapy) or resistance or "weight lift*" or "weight train*" or ergometry or bicycl* or "strength train*" or treadmill or "gait train*" or swim* or aquatherapy or hydrotherapy or sport*).ti,ab.

- 15. or/8-14
- 16. 7 and 15
- 17. limit 16 to yr="2008 -Current"
- 18. limit 17 to english language
- 19. 18 and (random* or control* or trial or cohort or group* or arm*).ti,ab.
- 20. limit 18 to ("0300 clinical trial" or 2100 treatment outcome)
- 21. 19 or 20

Database: EBSCO CINAHL Plus with Full Text to November 3, 2020

- 1. (MH "spinal cord injuries")
- 2. TI "spinal cord injur*" OR TI sci
- 3. (MH "Multiple Sclerosis")
- 4. TI multiple sclerosis
- 5. (MH "Cerebral Palsy")
- 6. TI cerebral palsy
- 7. (MH "Paraplegia") OR (MH "Quadriplegia")
- 8. TI wheelchair OR TI parapleg* OR TI quadripleg* OR TI tetrapleg*
- 9. S1 OR S2 OR S3 OR S4 OR S5 OR S6 OR S7 OR S8

10. (MH "Exercise+") OR (MH "Leisure Activities+") OR (MH "Physical Fitness+") OR (MH "Physical Activity") OR (MH "Sports+")

- 11. (MH "Weight Lifting") OR (MH "Resistance Training")
- 12. (MH "Yoga")
- 13. (MH "Vibration")

14. TI exercise OR TI "standing frame" OR TI vibration OR TI stretch* OR TI flexibility OR TI yoga OR TI "martial art*" OR TI "tai chi" OR TI "tai ji" OR TI hippotherapy OR TI "equine therapy" OR TI "resistance train*"

15. TI "weight train*" OR TI ergometry OR TI bicycl* OR TI "strength train*" OR TI treadmill OR TI "gait train*" OR TI swim* OR TI aquatherapy OR TI hydrotherapy OR TI sport*

- 16. TI "physical fitness" OR TI "physical activity"
- 17. S10 OR S11 OR S12 OR S13 OR S14 OR S15 OR S16
- 18. S9 AND S17
- 19. TI random* or TI control* or TI trial or TI cohort or TI group* or TI arm*
- 20. AB random* or AB control* or AB trial or AB cohort or AB group* or AB arm*
- 21. S19 OR S20
- 22. S18 AND S21
- 23. S18 AND S21 Limiters Published Date: 20080101-20191231; Exclude MEDLINE records

Database: Elsevier Embase Web to February 6, 2019

('spinal cord injury'/exp OR 'spinal cord injury' OR 'multiple sclerosis'/exp OR 'multiple sclerosis' OR 'cerebral palsy' OR 'disabled person' OR 'paraplegia' OR 'quadriplegia' OR 'tetraplegia') AND ('exercise' OR 'kinesiotherapy' OR 'fitness' OR 'physical activity' OR 'sport' OR 'weight lifting' OR 'yoga' OR 'martial art' OR 'hippotherapy' OR 'cycling' OR 'swimming' OR 'hydrotherapy' OR 'vibration' OR 'resistance training') AND 'article'/it AND (2008:py OR 2009:py OR 2010:py OR 2011:py OR 2012:py OR 2013:py OR 2014:py OR 2015:py OR 2016:py OR 2017:py OR 2018:py OR 2019:py) AND [english]/lim AND [embase]/lim NOT ([embase]/lim AND [medline]/lim)

Database: EBSCO Rehabilitation & Sports Medicine Source to November 3, 2020

- 1. (MH "spinal cord injuries")
- 2. TI "spinal cord injur*" OR TI sci
- 3. (MH "Multiple Sclerosis")
- 4. TI multiple sclerosis
- 5. (MH "Cerebral Palsy")
- 6. TI cerebral palsy
- 7. (MH "Paraplegia") OR (MH "Quadriplegia")
- 8. TI wheelchair OR TI parapleg* OR TI quadripleg* OR TI tetrapleg*
- 9. S1 OR S2 OR S3 OR S4 OR S5 OR S6 OR S7 OR S8
- 10. (MH "Exercise+") OR (MH "Leisure Activities+") OR (MH "Physical Fitness+") OR (MH "Physical Activity") OR (MH "Sports+")
- 11. (MH "Weight Lifting") OR (MH "Resistance Training")
- 12. (MH "Yoga")
- 13. (MH "Vibration")

14. TI exercise OR TI "standing frame" OR TI vibration OR TI stretch* OR TI flexibility OR TI yoga OR TI "martial art*" OR TI "tai chi" OR TI "tai ji" OR TI hippotherapy OR TI "equine therapy" OR TI "resistance train*"

15. TI "weight train*" OR TI ergometry OR TI bicycl* OR TI "strength train*" OR TI treadmill OR TI "gait train*" OR TI swim* OR TI aquatherapy OR TI hydrotherapy OR TI sport*

- 16. TI "physical fitness" OR TI "physical activity"
- 17. S10 OR S11 OR S12 OR S13 OR S14 OR S15 OR S16
- 18. S9 AND S17
- 19. TI random* or TI control* or TI trial or TI cohort or TI group* or TI arm*
- 20. AB random* or AB control* or AB trial or AB cohort or AB group* or AB arm*
- 21. S19 OR S20
- 22. S18 AND S21
- 23. S18 AND S21 Limiters Published Date: 20080101-2019123

Appendix B. Included Studies List

- Abbasi M, Kordi Yoosefinejad A, Poursadeghfard M, et al. Whole body vibration improves core muscle strength and endurance in ambulant individuals with multiple sclerosis: a randomized clinical trial. Mult Scler Relat Disord. 2019 Jul;32:88-93. doi: 10.1016/j.msard.2019.04.028. PMID: 31071658.
- Acar G, Altun GP, Yurdalan S, et al. Efficacy of neurodevelopmental treatment combined with the Nintendo® Wii in patients with cerebral palsy. J Phys Ther Sci. 2016 Mar;28(3):774-80. doi: 10.1589/jpts.28.774. PMID: 27134357.
- Adar S, Dundar U, Demirdal ÜS, et al. The effect of aquatic exercise on spasticity, quality of life, and motor function in cerebral palsy. Turk J Phys Med Rehab. 2017 Aug 14;63(3):239-48. doi: 10.5606/tftrd.2017.280. PMID: 31453460.
- Afrasiabifar A, Karami F, Najafi Doulatabad S. Comparing the effect of Cawthorne-Cooksey and Frenkel exercises on balance in patients with multiple sclerosis: a randomized controlled trial. Clin Rehabil. 2018 Jan;32(1):57-65. doi: 10.1177/0269215517714592. PMID: 28629268.
- Ahmadi A, Arastoo AA, Nikbakht M, et al. Comparison of the effect of 8 weeks aerobic and yoga training on ambulatory function, fatigue and mood status in MS patients. Iran Red Crescent Med J. 2013 Jun;15(6):449-54. doi: 10.5812/ircmj.3597. PMID: 24349740.
- Ahmadizadeh Z, Khalili MA, Ghalam MS, et al. Effect of whole body vibration with stretching exercise on active and passive range of motion in lower extremities in children with cerebral palsy: A randomized clinical trial. Iranian Journal of Pediatrics. 2019;29(5) doi: 10.5812/ijp.84436.

- Akkurt H, Karapolat HU, Kirazli Y, et al. The effects of upper extremity aerobic exercise in patients with spinal cord injury: a randomized controlled study. Eur J Phys Rehabil Med. 2017 Apr;53(2):219-27. doi: 10.23736/S1973-9087.16.03804-1. PMID: 27824234.
- Al-Sharman A, Khalil H, El-Salem K, et al. The effects of aerobic exercise on sleep quality measures and sleep-related biomarkers in individuals with Multiple Sclerosis: a pilot randomised controlled trial. NeuroRehabilitation. 2019;45(1):107-15. doi: 10.3233/NRE-192748. PMID: 31403958.
- Alexeeva N, Sames C, Jacobs PL, et al. Comparison of training methods to improve walking in persons with chronic spinal cord injury: a randomized clinical trial. J Spinal Cord Med. 2011;34(4):362-79. doi: 10.1179/2045772311Y.0000000018. PMID: 21903010.
- Amiri B, Sahebozamani M, Sedighi B. The effects of 10-week core stability training on balance in women with multiple sclerosis according to Expanded Disability Status Scale: a single-blinded randomized controlled trial. Eur J Phys Rehabil Med. 2019 Apr;55(2):199-208. doi: 10.23736/S1973-9087.18.04778-0. PMID: 29307152.
- Aras B, Yasar E, Kesikburun S, et al. Comparison of the effectiveness of partial body weight-supported treadmill exercises, robotic-assisted treadmill exercises, and anti-gravity treadmill exercises in spastic cerebral palsy. Turk J Phys Med Rehabil. 2019 Jun;65(4):361-70. doi: 10.5606/tftrd.2019.3078. PMID: 31893273.
- Arntzen EC, Straume B, Odeh F, et al. Group-based, individualized, comprehensive core stability and balance intervention provides immediate and long-term improvements in walking in individuals with multiple sclerosis: A randomized controlled trial. Physiother Res Int. 2020 Jan;25(1):e1798. doi: 10.1002/pri.1798. PMID: 31268223.

- Arntzen EC, Straume BK, Odeh F, et al. Group-based individualized comprehensive core stability intervention improves balance in persons with multiple sclerosis: a randomized controlled trial. Phys Ther. 2019 Aug 1;99(8):1027-38. doi: 10.1093/ptj/pzz017. PMID: 30722036.
- Aviram R, Harries N, Namourah I, et al. Effects of a group circuit progressive resistance training program compared with a treadmill training program for adolescents with cerebral palsy. Dev Neurorehabil. 2017 Aug;20(6):347-54. doi: 10.1080/17518423.2016.1212946. PMID: 27536805.
- 15. Aydin T, Akif Sariyildiz M, Guler M, et al. Evaluation of the effectiveness of home based or hospital based calisthenic exercises in patients with multiple sclerosis. Eur Rev Med Pharmacol Sci. 2014;18(8):1189-98. PMID: 24817294.
- Azimzadeh E, Hosseini MA, Nourozi K, et al. Effect of Tai Chi Chuan on balance in women with multiple sclerosis. Complement Ther Clin Pract. 2015 Feb;21(1):57-60. doi: 10.1016/j.ctcp.2014.09.002. PMID: 25534298.
- Bahrami F, Noorizadeh Dehkordi S, Dadgoo M. The efficacy of treadmill training on walking and quality of life of adults with spastic cerebral palsy: a randomized controlled trial. Iran J Child Neurol. 2019 Fall;13(4):121-33. PMID: 31645872.
- Bania TA, Dodd KJ, Baker RJ, et al. The effects of progressive resistance training on daily physical activity in young people with cerebral palsy: a randomised controlled trial. Disabil Rehabil. 2016;38(7):620-6. doi: 10.3109/09638288.2015.1055376. PMID: 26056856.
- Banitalebi E, Ghahfarrokhi MM, Negaresh R, et al. Exercise improves neurotrophins in multiple sclerosis independent of disability status. Mult Scler Relat Disord. 2020 May 13;43:102143. doi: 10.1016/j.msard.2020.102143. PMID: 32473563.

- 20. Baquet L, Hasselmann H, Patra S, et al. Short-term interval aerobic exercise training does not improve memory functioning in relapsing-remitting multiple sclerosis-a randomized controlled trial. PeerJ. 2018 Dec 12;6:e6037. doi: 10.7717/peerj.6037. PMID: 30581662.
- Bleyenheuft Y, Ebner-Karestinos D, Surana B, et al. Intensive upper- and lowerextremity training for children with bilateral cerebral palsy: a quasi-randomized trial. Dev Med Child Neurol. 2017 Jun;59(6):625-33. doi: 10.1111/dmcn.13379. PMID: 28133725.
- Brichetto G, Piccardo E, Pedulla L, et al. Tailored balance exercises on people with multiple sclerosis: a pilot randomized, controlled study. Mult Scler. 2015 Jul;21(8):1055-63. doi: 10.1177/1352458514557985. PMID: 25392337.
- Bryant E, Pountney T, Williams H, et al. Can a six-week exercise intervention improve gross motor function for nonambulant children with cerebral palsy? A pilot randomized controlled trial. Clin Rehabil. 2013 Feb;27(2):150-9. doi: 10.1177/0269215512453061. PMID: 22850757.
- Bulguroglu I, Guclu-Gunduz A, Yazici G, et al. The effects of mat pilates and reformer pilates in patients with multiple sclerosis: a randomized controlled study. NeuroRehabilitation. 2017;41(2):413-22. doi: 10.3233/NRE-162121. PMID: 28946576.
- Burschka JM, Keune PM, Oy UH, et al. Mindfulness-based interventions in multiple sclerosis: beneficial effects of Tai Chi on balance, coordination, fatigue and depression. BMC Neurol. 2014 Aug 23;14:165. doi: 10.1186/s12883-014-0165-4. PMID: 25145392.
- 26. Cakit BD, Nacir B, Genc H, et al. Cycling progressive resistance training for people with multiple sclerosis: a randomized controlled study. Am J Phys Med Rehabil. 2010 Jun;89(6):446-57. doi: 10.1097/PHM.0b013e3181d3e71f. PMID: 20216060.

- 27. Calabro RS, Russo M, Naro A, et al. Robotic gait training in multiple sclerosis rehabilitation: can virtual reality make the difference? Findings from a randomized controlled trial. J Neurol Sci. 2017 Jun 15;377:25-30. doi: 10.1016/j.jns.2017.03.047. PMID: 28477702.
- Callesen J, Cattaneo D, Brincks J, et al. How do resistance training and balance and motor control training affect gait performance and fatigue impact in people with multiple sclerosis? A randomized controlled multicenter study. Mult Scler. 2019 Jul 24 doi: 10.1177/1352458519865740. PMID: 31339460.
- 29. Carling A, Forsberg A, Gunnarsson M, et al. CoDuSe group exercise programme improves balance and reduces falls in people with multiple sclerosis: a multi-centre, randomized, controlled pilot study. Mult Scler. 2017 Sep;23(10):1394-404. doi: 10.1177/1352458516677591. PMID: 27834736.
- Castro-Sanchez AM, Mataran-Penarrocha GA, Lara-Palomo I, et al. Hydrotherapy for the treatment of pain in people with multiple sclerosis: a randomized controlled trial. Evid Based Complement Alternat Med. 2012;473963:1-8. doi: 10.1155/2012/473963. PMID: 21785645.
- 31. Chen X, Wei K, Miao F, et al. Improvement of pulmonary function and life quality on high paraplegia patients through pulmonary rehabilitation. Int J Clin Exp Med. 2016;9(11):22275-81.
- Cho HJ, Lee BH. Effect of Functional Progressive Resistance Exercise on Lower Extremity Structure, Muscle Tone, Dynamic Balance and Functional Ability in Children with Spastic Cerebral Palsy. Children (Basel). 2020 Jul 31;7(8):31. doi: 10.3390/children7080085. PMID: 32751813.
- 33. Chrysagis N, Skordilis EK, Stavrou N, et al. The effect of treadmill training on gross motor function and walking speed in ambulatory adolescents with cerebral palsy: a randomized controlled trial. Am J Phys Med Rehabil. 2012 Sep;91(9):747-60. doi: 10.1097/PHM.0b013e3182643eba. PMID: 22902937.

- 34. Claerbout M, Gebara B, Ilsbroukx S, et al. Effects of 3 weeks' whole body vibration training on muscle strength and functional mobility in hospitalized persons with multiple sclerosis. Mult Scler. 2012 Apr;18(4):498-505. doi: 10.1177/1352458511423267. PMID: 22084490.
- 35. Collett J, Dawes H, Meaney A, et al. Exercise for multiple sclerosis: a singleblind randomized trial comparing three exercise intensities. Mult Scler. 2011 May;17(5):594-603. doi: 10.1177/1352458510391836. PMID: 21247971.
- 36. Craven BC, Giangregorio LM, Alavinia SM, et al. Evaluating the efficacy of functional electrical stimulation therapy assisted walking after chronic motor incomplete spinal cord injury: effects on bone biomarkers and bone strength. J Spinal Cord Med. 2017 Nov;40(6):748-58. doi: 10.1080/10790268.2017.1368961. PMID: 28929919.
- 37. Curtis DJ, Woollacott M, Bencke J, et al. The functional effect of segmental trunk and head control training in moderate-to-severe cerebral palsy: a randomized controlled trial. Dev Neurorehabil. 2018 Feb;21(2):91-100. doi: 10.1080/17518423.2016.1265603. PMID: 28045553.
- 38. Dalgas U, Stenager E, Jakobsen J, et al. Resistance training improves muscle strength and functional capacity in multiple sclerosis. Neurology. 2009 Nov 3;73(18):1478-84. doi: 10.1212/WNL.0b013e3181bf98b4. PMID: 19884575.
- Dalgas U, Stenager E, Jakobsen J, et al. Fatigue, mood and quality of life improve in MS patients after progressive resistance training. Mult Scler. 2010 Apr;16(4):480-90. doi: 10.1177/1352458509360040. PMID: 20194584.
- Demuth SK, Knutson LM, Fowler EG. The PEDALS stationary cycling intervention and health-related quality of life in children with cerebral palsy: a randomized controlled trial. Dev Med Child Neurol. 2012 Jul;54(7):654-61. doi: 10.1111/j.1469-8749.2012.04321.x. PMID: 22582760.

- Deutz U, Heussen N, Weigt-Usinger K, et al. Impact of hippotherapy on gross motor function and quality of life in children with bilateral cerebral palsy: a randomized openlabel crossover study. Neuropediatrics. 2018 Jun;49(3):185-92. doi: 10.1055/s-0038-1635121. PMID: 29486504.
- 42. Dodd KJ, Taylor NF, Shields N, et al. Progressive resistance training did not improve walking but can improve muscle performance, quality of life and fatigue in adults with multiple sclerosis: a randomized controlled trial. Mult Scler. 2011 Nov;17(11):1362-74. doi: 10.1177/1352458511409084. PMID: 21677021.
- 43. Doulatabad SN, Nooreyan K, Doulatabad AN, et al. The effects of pranayama, hatha and raja yoga on physical pain and the quality of life of women with multiple sclerosis. Afr J Tradit Complement Altern Med. 2012 Oct 1;10(1):49-52. PMID: 24082325.
- 44. Duarte Nde A, Grecco LA, Galli M, et al. Effect of transcranial direct-current stimulation combined with treadmill training on balance and functional performance in children with cerebral palsy: a double-blind randomized controlled trial. PLoS One. 2014 Aug 29;9(8):e105777. doi: 10.1371/journal.pone.0105777. PMID: 25171216.
- Duff WRD, Andrushko JW, Renshaw DW, et al. Impact of pilates exercise in multiple sclerosis: a randomized controlled trial. Int J MS Care. 2018 Mar-Apr;20(2):92-100. doi: 10.7224/1537-2073.2017-066. PMID: 29670495.
- 46. Duffell LD, Niu X, Brown G, et al. Variability in responsiveness to interventions in people with spinal cord injury: do some respond better than others? Conf Proc IEEE Eng Med Biol Soc. 2014;2014:5872-5. doi: 10.1109/EMBC.2014.6944964. PMID: 25571332.
- 47. Ebrahimi A, Eftekhari E, Etemadifar M. Effects of whole body vibration on hormonal & functional indices in patients with multiple sclerosis. Indian J Med Res. 2015 Oct;142(4):450-8. doi: 10.4103/0971-5916.169210. PMID: 26609037.

- El-Shamy SM. Efficacy of Armeo® Robotic Therapy versus conventional therapy on upper limb function in children with hemiplegic cerebral palsy. Am J Phys Med Rehabil. 2018 Mar;97(3):164-69. doi: 10.1097/PHM.000000000000852. PMID: 29059068.
- 49. Elnaggar RK, Elbanna MF, Mahmoud WS, et al. Plyometric exercises: subsequent changes of weight-bearing symmetry, muscle strength and walking performance in children with unilateral cerebral palsy. J Musculoskelet Neuronal Interact. 2019 12 01;19(4):507-15. PMID: 31789302.
- 50. Emara HA, El-Gohary TM, Al-Johany AA. Effect of body-weight suspension training versus treadmill training on gross motor abilities of children with spastic diplegic cerebral palsy. Eur J Phys Rehabil Med. 2016 Jun;52(3):356-63. PMID: 26845668.
- 51. Esclarin-Ruz A, Alcobendas-Maestro M, Casado-Lopez R, et al. A comparison of robotic walking therapy and conventional walking therapy in individuals with upper versus lower motor neuron lesions: a randomized controlled trial. Arch Phys Med Rehabil. 2014 Jun;95(6):1023-31. doi: 10.1016/j.apmr.2013.12.017. PMID: 24393781.
- 52. Faramarzi M, Banitalebi E, Raisi Z, et al. Effect of combined exercise training on pentraxins and pro- inflammatory cytokines in people with multiple sclerosis as a function of disability status. Cytokine. 2020 Jul 16;134:155196. doi: 10.1016/j.cyto.2020.155196. PMID: 32683106.
- 53. Field-Fote EC, Roach KE. Influence of a locomotor training approach on walking speed and distance in people with chronic spinal cord injury: a randomized clinical trial. Phys Ther. 2011 Jan;91(1):48-60. doi: 10.2522/ptj.20090359. PMID: 21051593.
- 54. Forsberg A, von Koch L, Nilsagard Y. Effects on balance and walking with the CoDuSe balance exercise program in people with multiple sclerosis: a multicenter randomized controlled trial. Mult Scler Int. 2016;2016 doi: 10.1155/2016/7076265. PMID: 28042485.

- 55. Fosdahl MA, Jahnsen R, Kvalheim K, et al. Effect of a combined stretching and strength training program on gait function in children with cerebral palsy, GMFCS level I & II: a randomized controlled trial. Medicina. 2019 Jun 6;55(6) doi: 10.3390/medicina55060250. PMID: 31174397.
- 56. Fowler EG, Knutson LM, Demuth SK, et al. Pediatric endurance and limb strengthening (PEDALS) for children with cerebral palsy using stationary cycling: a randomized controlled trial. Phys Ther. 2010 Mar;90(3):367-81. doi: 10.2522/ptj.20080364. PMID: 20093327.
- 57. Fox EE, Hough AD, Creanor S, et al. Effects of pilates-based core stability training in ambulant people with multiple sclerosis: multicenter, assessor-blinded, randomized controlled trial. Phys Ther. 2016 Aug;96(8):1170-8. doi: 10.2522/ptj.20150166. PMID: 26893507.
- 58. Freeman J, Fox E, Gear M, et al. Pilates based core stability training in ambulant individuals with multiple sclerosis: protocol for a multi-centre randomised controlled trial. BMC Neurol. 2012 Apr 5;12:19. doi: 10.1186/1471-2377-12-19. PMID: 22480437.
- Galea MP, Dunlop SA, Davis GM, et al. Intensive exercise program after spinal cord injury ("Full-On"): study protocol for a randomized controlled trial. Trials. 2013 Sep 11;14:291. doi: 10.1186/1745-6215-14-291. PMID: 24025260.
- Galea MP, Dunlop SA, Geraghty T, et al. SCIPA Full-On: a randomized controlled trial comparing intensive whole-body exercise and upper body exercise after spinal cord injury. Neurorehabil Neural Repair. 2018 Jun;32(6-7):557-67. doi: 10.1177/1545968318771213.
- 61. Gandolfi M, Munari D, Geroin C, et al. Sensory integration balance training in patients with multiple sclerosis: a randomized, controlled trial. Mult Scler. 2015 Oct;21(11):1453-62. doi: 10.1177/1352458514562438. PMID: 25583852.

- 62. Garrett M, Hogan N, Larkin A, et al. Exercise in the community for people with multiple sclerosis--a follow-up of people with minimal gait impairment. Mult Scler. 2013 May;19(6):790-8. doi: 10.1177/1352458512461390. PMID: 23132904.
- 63. Garrett M, Hogan N, Larkin A, et al. Exercise in the community for people with minimal gait impairment due to MS: an assessor-blind randomized controlled trial. Mult Scler. 2013 May;19(6):782-9. doi: 10.1177/1352458512461966. PMID: 23128667.
- 64. Gervasoni E, Cattaneo D, Jonsdottir J. Effect of treadmill training on fatigue in multiple sclerosis: a pilot study. Int J Rehabil Res. 2014 Mar;37(1):54-60. doi: 10.1097/MRR.00000000000034. PMID: 24220224.
- 65. Giangregorio L, Craven C, Richards K, et al. A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: effects on body composition. J Spinal Cord Med. 2012 Sep;35(5):351-60. doi: 10.1179/2045772312Y.0000000041. PMID: 23031172.
- 66. Gibson N, Chappell A, Blackmore AM, et al. The effect of a running intervention on running ability and participation in children with cerebral palsy: a randomized controlled trial. Disabil Rehabil. 2018 Dec;40(25):3041-49. doi: 10.1080/09638288.2017.1367426. PMID: 28826274.
- 67. Gorman PH, Scott W, VanHiel L, et al. Comparison of peak oxygen consumption response to aquatic and robotic therapy in individuals with chronic motor incomplete spinal cord injury: a randomized controlled trial. Spinal Cord. 2019 Jun;57(6):471-81. doi: 10.1038/s41393-019-0239-7. PMID: 30659286.
- 68. Grecco LA, de Almeida Carvalho Duarte N, Mendonca ME, et al. Transcranial direct current stimulation during treadmill training in children with cerebral palsy: a randomized controlled double-blind clinical trial. Res Dev Disabil. 2014 Nov;35(11):2840-8. doi: 10.1016/j.ridd.2014.07.030. PMID: 25105567.

- 69. Grecco LA, Zanon N, Sampaio LM, et al. A comparison of treadmill training and overground walking in ambulant children with cerebral palsy: randomized controlled clinical trial. Clin Rehabil. 2013 Aug;27(8):686-96. doi: 10.1177/0269215513476721. PMID: 23503736.
- Harness ET, Yozbatiran N, Cramer SC.
 Effects of intense exercise in chronic spinal cord injury. Spinal Cord. 2008
 Nov;46(11):733-7. doi: 10.1038/sc.2008.56.
 PMID: 18521094.
- 71. Hasanpour-Dehkordi A. Influence of yoga and aerobics exercise on fatigue, pain and psychosocial status in patients with multiple sclerosis: a randomized trial. J Sports Med Phys Fitness. 2016 Nov;56(11):1417-22. PMID: 26223004.
- 72. Hasanpour-Dehkordi A, Jivad N. Comparison of regular aerobic and yoga on the quality of life in patients with multiple sclerosis. Med J Islam Repub Iran. 2014 Dec 6;28:141. PMID: 25694999.
- Hasanpour-Dehkordi A, Jivad N, Solati K. Effects of yoga on physiological indices, anxiety and social functioning in multiple sclerosis patients: a randomized trial. J Clin Diagn Res. 2016 Jun;10(6):VC01-VC5. doi: 10.7860/JCDR/2016/18204.7916. PMID: 27504387.
- Hebert JR. Effects of vestibular rehabilitation on MS-related fatigue: Randomized control trial. Dissertation Abstracts International: Section B: The Sciences and Engineering. 2009;70(6-B):3470.
- 75. Hebert JR, Corboy JR, Manago MM, et al. Effects of vestibular rehabilitation on multiple sclerosis-related fatigue and upright postural control: a randomized controlled trial. Phys Ther. 2011 Aug;91(8):1166-83. doi: 10.2522/ptj.20100399. PMID: 21680771.
- 76. Heine M, Verschuren O, Hoogervorst EL, et al. Does aerobic training alleviate fatigue and improve societal participation in patients with multiple sclerosis? A randomized controlled trial. Mult Scler. 2017 Oct;23(11):1517-26. doi: 10.1177/1352458517696596. PMID: 28528566.

- 77. Herrero P, Gomez-Trullen EM, Asensio A, et al. Study of the therapeutic effects of a hippotherapy simulator in children with cerebral palsy: a stratified single-blind randomized controlled trial. Clin Rehabil. 2012 Dec;26(12):1105-13. doi: 10.1177/0269215512444633. PMID: 22610128.
- Hitzig SL, Craven BC, Panjwani A, et al. Randomized trial of functional electrical stimulation therapy for walking in incomplete spinal cord injury: effects on quality of life and community participation. Top Spinal Cord Inj Rehabil. 2013 Fall;19(4):245-58. doi: 10.1310/sci1904-245. PMID: 24244090.
- 79. Hochsprung A, Granja Dominguez A, Magni E, et al. Effect of visual biofeedback cycling training on gait in patients with multiple sclerosis. Neurologia. 2017 Sep 6 doi: 10.1016/j.nrl.2017.07.008. PMID: 28888468.
- Hogan N, Kehoe M, Larkin A, et al. The effect of community exercise interventions for people with MS who use bilateral support for gait. Mult Scler Int. 2014 Jan;2014 doi: 10.1155/2014/109142. PMID: 24575302.
- Hota D, Das S, Joseph NM. Effect of dual task exercise to develop body balance, movement co-ordination and walking speed among post cervical injury clients. International Journal of Research in Pharmaceutical Sciences. 2020;11(1):1117-22. doi: 10.26452/ijrps.v11i1.1944.
- 82. Hsieh H-C. Preliminary study of the effect of training with a gaming balance board on balance control in children with cerebral palsy: a randomized controlled trial. Am J Phys Med Rehabil. 2020;99(2):142-8. doi: 10.1097/PHM.000000000001300. PMID: 31464757.
- 83. Hsieh HC. Effects of a gaming platform on balance training for children with cerebral palsy. Pediatr Phys Ther. 2018 Oct;30(4):303-8. doi: 10.1097/PEP.000000000000521. PMID: 30199515.

- Huang Q, Yu L, Gu R, et al. Effects of robot training on bowel function in patients with spinal cord injury. J Phys Ther Sci. 2015 May;27(5):1377-8. doi: 10.1589/jpts.27.1377. PMID: 26157223.
- 85. In T, Jung K, Lee MG, et al. Whole-body vibration improves ankle spasticity, balance, and walking ability in individuals with incomplete cervical spinal cord injury. NeuroRehabilitation. 2018;42(4):491-7. doi: 10.3233/NRE-172333. PMID: 29660953.
- 86. Johnston TE, Watson KE, Ross SA, et al. Effects of a supported speed treadmill training exercise program on impairment and function for children with cerebral palsy. Dev Med Child Neurol. 2011 Aug;53(8):742-50. doi: 10.1111/j.1469-8749.2011.03990.x. PMID: 21679357.
- Jones ML, Evans N, Tefertiller C, et al. Activity-based therapy for recovery of walking in chronic spinal cord injury: results from a secondary analysis to determine responsiveness to therapy. Arch Phys Med Rehabil. 2014 Dec;95(12):2247-52. doi: 10.1016/j.apmr.2014.07.401. PMID: 25102385.
- Jones ML, Evans N, Tefertiller C, et al. Activity-based therapy for recovery of walking in individuals with chronic spinal cord injury: results from a randomized clinical trial. Arch Phys Med Rehabil. 2014 Dec;95(12):2239-46.e2. doi: 10.1016/j.apmr.2014.07.400. PMID: 25102384.
- Jonsdottir J, Gervasoni E, Bowman T, et al. Intensive multimodal training to improve gait resistance, mobility, balance and cognitive function in persons with multiple sclerosis: a pilot randomized controlled trial. Front Neurol. 2018 Sep 28;9:800. doi: 10.3389/fneur.2018.00800. PMID: 30323787.
- 90. Jung J, Chung E, Kim K, et al. The effects of aquatic exercise on pulmonary function in patients with spinal cord injury. J Phys Ther Sci. 2014 May;26(5):707-9. doi: 10.1589/jpts.26.707. PMID: 24926136.

- 91. Kalron A, Fonkatz I, Frid L, et al. The effect of balance training on postural control in people with multiple sclerosis using the CAREN virtual reality system: a pilot randomized controlled trial. J Neuroengineering Rehabil. 2016 Mar 1;13:13. doi: 10.1186/s12984-016-0124-y. PMID: 26925955.
- 92. Kalron A, Rosenblum U, Frid L, et al. Pilates exercise training vs. physical therapy for improving walking and balance in people with multiple sclerosis: a randomized controlled trial. Clin Rehabil. 2017 Mar;31(3):319-28. doi: 10.1177/0269215516637202. PMID: 26951348.
- 93. Kapadia N, Masani K, Catharine Craven B, et al. A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: effects on walking competency. J Spinal Cord Med. 2014 Sep;37(5):511-24. doi: 10.1179/2045772314Y.0000000263. PMID: 25229735.
- 94. Kara B, Kucuk F, Poyraz EC, et al. Different types of exercise in multiple sclerosis: aerobic exercise or pilates, a single-blind clinical study. J Back Musculoskeletal Rehabil. 2017;30(3):565-73. doi: 10.3233/BMR-150515. PMID: 27911284.
- 95. Kara OK, Yardimci BN, Sahin S, et al. Combined effects of mirror therapy and exercises on the upper extremities in children with unilateral cerebral palsy: A randomized controlled trial. Dev Neurorehabil. 2020 May;23(4):253-64. doi: 10.1080/17518423.2019.1662853. PMID: 31514564.
- 96. Kargarfard M, Shariat A, Ingle L, et al. Randomized controlled trial to examine the impact of aquatic exercise training on functional capacity, balance, and perceptions of fatigue in female patients with multiple sclerosis. Arch Phys Med Rehabil. 2018 Feb;99(2):234-41. doi: 10.1016/j.apmr.2017.06.015. PMID: 28735720.

- 97. Kaya Kara O, Livanelioglu A, Yardimci BN, et al. The effects of functional progressive strength and power training in children with unilateral cerebral palsy. Pediatr Phys Ther. 2019 Jul;31(3):286-95. doi: 10.1097/PEP.000000000000628. PMID: 31220015.
- 98. Kerling A, Keweloh K, Tegtbur U, et al. Effects of a short physical excercise intervention on patients with multiple sclerosis (MS). Int J Mol Sci. 2015 Jul 10;16(7):15761-75. doi: 10.3390/ijms160715761. PMID: 26184173.
- 99. Keser I, Meric A, Kirdi N, et al. Comparing routine neurorehabilitation programme with callisthenic exercises in multiple sclerosis. NeuroRehabilitation. 2011;29(1):91-8. doi: 10.3233/NRE-2011-0682. PMID: 21876301.
- 100. Khalil H, Al-Sharman A, El-Salem K, et al. The development and pilot evaluation of virtual reality balance scenarios in people with multiple sclerosis (MS): a feasibility study. NeuroRehabilitation. 2018;43(4):473-82. doi: 10.3233/NRE-182471. PMID: 30400117.
- 101. Kim BJ, Kim SM, Kwon HY. The effect of group exercise program on the self-efficacy and activities of daily living in adults with cerebral palsy. J Phys Ther Sci. 2017 Dec;29(12):2184-9. doi: 10.1589/jpts.29.2184. PMID: 29643601.
- 102. Kim OY, Shin YK, Yoon YK, et al. The effect of treadmill exercise on gait efficiency during overground walking in adults with cerebral palsy. Ann Rehabil Med. 2015 Feb;39(1):25-31. doi: 10.5535/arm.2015.39.1.25. PMID: 25750868.
- 103. Kirk H, Geertsen SS, Lorentzen J, et al. Explosive resistance training increases rate of force development in ankle dorsiflexors and gait function in adults with cerebral palsy. J Strength Cond Res. 2016 Oct;30(10):2749-60. doi: 10.1519/JSC.000000000001376. PMID: 26890969.
- 104. Kjolhede T, Dalgas U, Gade AB, et al. Acute and chronic cytokine responses to resistance exercise and training in people with multiple sclerosis. Scand J Med Sci Sports. 2016 Jul;26(7):824-34. doi: 10.1111/sms.12504. PMID: 26105554.

- 105. Klobucka S, Klobucky R, Kollar B. Effect of robot-assisted gait training on motor functions in adolescent and young adult patients with bilateral spastic cerebral palsy: A randomized controlled trial. NeuroRehabilitation. 2020 Oct 29;29:29. doi: 10.3233/NRE-203102. PMID: 33136072.
- 106. Kooshiar H, Moshtagh M, Sardar MA, et al. Fatigue and quality of life of women with multiple sclerosis: a randomized controlled clinical trial. J Sports Med Phys Fitness. 2015 Jun;55(6):668-74. PMID: 25303070.
- 107. Kressler J, Nash MS, Burns PA, et al. Metabolic responses to 4 different body weight-supported locomotor training approaches in persons with incomplete spinal cord injury. Arch Phys Med Rehabil. 2013 Aug;94(8):1436-42. doi: 10.1016/j.apmr.2013.02.018. PMID: 23473703.
- 108. Kumru H, Benito-Penalva J, Valls-Sole J, et al. Placebo-controlled study of rTMS combined with Lokomat® gait training for treatment in subjects with motor incomplete spinal cord injury. Exp Brain Res. 2016 Dec;234(12):3447-55. doi: 10.1007/s00221-016-4739-9. PMID: 27469242.
- 109. Kwon JY, Chang HJ, Lee JY, et al. Effects of hippotherapy on gait parameters in children with bilateral spastic cerebral palsy. Arch Phys Med Rehabil. 2011 May;92(5):774-9. doi: 10.1016/j.apmr.2010.11.031. PMID: 21530725.
- 110. Kwon JY, Chang HJ, Yi SH, et al. Effect of hippotherapy on gross motor function in children with cerebral palsy: a randomized controlled trial. J Altern Complement Med. 2015 Jan;21(1):15-21. doi: 10.1089/acm.2014.0021. PMID: 25551626.
- Lai CH, Chang WH, Chan WP, et al. Effects of functional electrical stimulation cycling exercise on bone mineral density loss in the early stages of spinal cord injury. J Rehabil Med. 2010 Feb;42(2):150-4. doi: 10.2340/16501977-0499. PMID: 20140411.

- 112. Lai CJ, Liu WY, Yang TF, et al. Pediatric aquatic therapy on motor function and enjoyment in children diagnosed with cerebral palsy of various motor severities. J Child Neurol. 2015 Feb;30(2):200-8. doi: 10.1177/0883073814535491. PMID: 24907137.
- Lavado EL, Cardoso JR, Silva LG, et al. Effectiveness of aerobic physical training for treatment of chronic asymptomatic bacteriuria in subjects with spinal cord injury: a randomized controlled trial. Clin Rehabil. 2013 Feb;27(2):142-9. doi: 10.1177/0269215512450522. PMID: 22837545.
- 114. Lee BK, Chon SC. Effect of whole body vibration training on mobility in children with cerebral palsy: a randomized controlled experimenter-blinded study. Clin Rehabil. 2013 Jul;27(7):599-607. doi: 10.1177/0269215512470673. PMID: 23411791.
- 115. Lee CW, Kim SG, Na SS. The effects of hippotherapy and a horse riding simulator on the balance of children with cerebral palsy. J Phys Ther Sci. 2014 Mar;26(3):423-5. doi: 10.1589/jpts.26.423. PMID: 24707098.
- Liu H, Li J, Du L, et al. Short-term effects of core stability training on the balance and ambulation function of individuals with chronic spinal cord injury: a pilot randomized controlled trial. Minerva Med. 2019 Jun;110(3):216-23. doi: 10.23736/S0026-4806.19.05952-4. PMID: 30809995.
- 117. Lorentzen J, Greve LZ, Kliim-Due M, et al. Twenty weeks of home-based interactive training of children with cerebral palsy improves functional abilities. BMC Neurol. 2015 May 10;15:75. doi: 10.1186/s12883-015-0334-0. PMID: 25956055.
- 118. Lucena-Anton D, Rosety-Rodriguez I, Moral-Munoz JA. Effects of a hippotherapy intervention on muscle spasticity in children with cerebral palsy: a randomized controlled trial. Complement Ther Clin Pract. 2018 May;31:188-92. doi: 10.1016/j.ctcp.2018.02.013. PMID: 29705454.

- 119. Makhov AS, Medvedev IN. The ability to reduce the severity of motor disorders in children with cerebral palsy. Res J Pharm Biol Chem Sci. 2018;9(2):991-6.
- 120. Marandi SM, Nejad VS, Shanazari Z, et al. A comparison of 12 weeks of pilates and aquatic training on the dynamic balance of women with mulitple sclerosis. Int J Prev Med. 2013 Apr;4(Suppl 1):S110-7. PMID: 23717760.
- 121. Marandi SM, Shahnazari Z, Minacian V, et al. A comparison between pilates exercise and aquatic training effects on mascular strength in women with mulitple sclerosis. Pak J Med Sci. 2013;29(1 Suppl):285-9. doi: 10.12669/pjms.291(Suppl).3518.
- 122. Matusiak-Wieczorek E, Dziankowska-Zaborszczyk E, Synder M, et al. The Influence of Hippotherapy on the Body Posture in a Sitting Position among Children with Cerebral Palsy. Int J Environ Res Public Health. 2020 Sep 19;17(18):19. doi: 10.3390/ijerph17186846. PMID: 32961681.
- Matusiak-Wieczorek E, Malachowska-Sobieska M, Synder M. Influence of hippotherapy on body balance in the sitting position among children with cerebral palsy. Ortop Traumatol Rehabil. 2016 Mar 23;18(2):165-75. doi: 10.5604/15093492.1205024. PMID: 28155825.
- Midik M, Paker N, Bugdayci D, et al. Effects of robot-assisted gait training on lower extremity strength, functional independence, and walking function in men with incomplete traumatic spinal cord injury. Turk J Phys Med Rehabil. 2020 Mar;66(1):54-9. doi: 10.5606/tftrd.2020.3316. PMID: 32318675.
- Mogharnasi M, TaheriChadorneshin H, Papoli-Baravati SA, et al. Effects of upperbody resistance exercise training on serum nesfatin-1 level, insulin resistance, and body composition in obese paraplegic men. Disabil Health J. 2019 Jan;12(1):29-34. doi: 10.1016/j.dhjo.2018.07.003. PMID: 30061073.

- 126. Moraes AG, Neri SGR, Motl RW, et al. Effect of hippotherapy on walking performance and gait parameters in people with multiple sclerosis. Mult Scler Relat Disord. 2020 May 26;43:102203. doi: 10.1016/j.msard.2020.102203. PMID: 32485633.
- Musselman KE, Yang JF. Spinal cord injury functional ambulation profile: a preliminary look at responsiveness. Phys Ther. 2014 Feb;94(2):240-50. doi: 10.2522/ptj.20130071. PMID: 24114437.
- 128. Mutoh T, Mutoh T, Tsubone H, et al. Impact of long-term hippotherapy on the walking ability of children with cerebral palsy and quality of life of their caregivers. Frontiers in neurology 2019 Aug 13;10:834. doi: 10.3389/fneur.2019.00834. PMID: 31456733.
- 129. Najafidoulatabad S, Mohebbi Z, Nooryan K. Yoga effects on physical activity and sexual satisfaction among the Iranian women with multiple sclerosis: a randomized controlled trial. Afr J Tradit Complement Altern Med. 2014 Aug 23;11(5):78-82. doi: 10.4314/ajtcam.v11i5.13. PMID: 25395709.
- Negaresh R, Motl R, Mokhtarzade M, et al. Effect of short-term interval excercise training on fatigue, depression, and fitness in normal weight vs. overweight person with multiple sclerosis. Explore (NY). 2019 Mar-Apr;15(2):134-41. doi: 10.1016/j.explore.2018.07.007. PMID: 30122328.
- 131. Nilsagard YE, Forsberg AS, von Koch L. Balance exercise for persons with multiple sclerosis using Wii games: a randomised, controlled multi-centre study. Mult Scler. 2013 Feb;19(2):209-16. doi: 10.1177/1352458512450088. PMID: 22674972.
- 132. Niwald M, Redlicka J, Miller E. The effects of aerobic training on the functional status, quality of life, the level of fatigue and disability in patients with multiple sclerosisa preliminary report. Aktualnosci Neurologiczne. 2017;17(1):15-22. doi: 10.15557/AN.2017.0002.

- 133. Norouzi E, Vaezmousavi M. Neurofeedback training and physical training differentially impacted on reaction time and balance skills among Iranian veterans with spinal cord injury. J Mil Veterans Health. 2019 Jul;27(3):11-8.
- 134. Nsenga AL, Shephard RJ, Ahmaidi S. Aerobic training in children with cerebral palsy. Int J Sports Med. 2013 Jun;34(6):533-7. doi: 10.1055/s-0032-1321803. PMID: 23184482.
- 135. Nsenga Leunkeu A, Shephard RJ, Ahmaidi S. Six-minute walk test in children with cerebral palsy gross motor function classification system levels I and II: reproducibility, validity, and training effects. Arch Phys Med Rehabil. 2012 Dec;93(12):2333-9. doi: 10.1016/j.apmr.2012.06.005. PMID: 22721868.
- 136. Ortiz-Rubio A, Cabrera-Martos I, Rodriguez-Torres J, et al. Effects of a homebased upper limb training program in patients with multiple sclerosis: a randomized controlled trial. Arch Phys Med Rehabil. 2016 Dec;97(12):2027-33. doi: 10.1016/j.apmr.2016.05.018. PMID: 27343343.
- 137. Ozkul C, Guclu-Gunduz A, Eldemir K, et al. Combined exercise training improves cognitive functions in multiple sclerosis patients with cognitive impairment: A single-blinded randomized controlled trial. Mult Scler Relat Disord. 2020 Jul 23;45:102419. doi: 10.1016/j.msard.2020.102419. PMID: 32736216.
- 138. Ozkul C, Guclu-Gunduz A, Yazici G, et al. Effect of immersive virtual reality on balance, mobility, and fatigue in patients with multiple sclerosis: A single-blinded randomized controlled trial. European Journal of Integrative Medicine. 2020;35 doi: 10.1016/j.eujim.2020.101092.
- 139. Park ES, Rha DW, Shin JS, et al. Effects of hippotherapy on gross motor function and functional performance of children with cerebral palsy. Yonsei Med J. 2014 Nov;55(6):1736-42. doi: 10.3349/ymj.2014.55.6.1736. PMID: 25323914.

- Peri E, Turconi AC, Biffi E, et al. Effects of dose and duration of Robot-Assisted Gait Training on walking ability of children affected by cerebral palsy. Technol Health Care. 2017 Aug 9;25(4):671-81. doi: 10.3233/THC-160668. PMID: 28436398.
- 141. Pompa A, Morone G, Iosa M, et al. Does robot-assisted gait training improve ambulation in highly disabled multiple sclerosis people? A pilot randomized control trial. Mult Scler. 2017 Apr;23(5):696-703. doi: 10.1177/1352458516663033. PMID: 27486219.
- 142. Pourazar M, Bagherzadeh F, Mirakhori F. Virtual reality training improves dynamic balance in children with cerebral palsy. International Journal of Developmental Disabilities. 2019 doi: 10.1080/20473869.2019.1679471.
- 143. Qi Y, Zhang X, Zhao Y, et al. The effect of wheelchair Tai Chi on balance control and quality of life among survivors of spinal cord injuries: a randomized controlled trial. Complement Ther Clin Pract. 2018 Nov;33:7-11. doi: 10.1016/j.ctcp.2018.07.004. PMID: 30396629.
- 144. Qi YC, Niu XL, Gao YR, et al. Therapeutic effect evaluation of neuromuscular electrical stimulation with or without strengthening exercise on spastic cerebral palsy. Clin Pediatr (Phila). 2018 May;57(5):580-3. doi: 10.1177/0009922817732619. PMID: 28990434.
- 145. Razazian N, Yavari Z, Farnia V, et al. Exercising impacts on fatigue, depression, and paresthesia in female patients with multiple sclerosis. Med Sci Sports Exerc. 2016 May;48(5):796-803. doi: 10.1249/MSS.00000000000834. PMID: 26656775.
- 146. Roppolo M, Mulasso A, Gollin M, et al. The role of fatigue in the associations between exercise and psychological health in multiple sclerosis: direct and indirect effects. Ment Health Phys Act. 2013 Jun;6(2):87-94. doi: 10.1016/j.mhpa.2013.05.002.

- 147. Russo M, Dattola V, De Cola MC, et al. The role of robotic gait training coupled with virtual reality in boosting the rehabilitative outcomes in patients with multiple sclerosis. Int J Rehabil Res. 2018 Jun;41(2):166-72. doi: 10.1097/MRR.00000000000270. PMID: 29384762.
- 148. Sadeghi Bahmani D, Motl RW, Razazian N, et al. Aquatic exercising may improve sexual function in females with multiple sclerosis - an exploratory study. Mult Scler Relat Disord. 2020 Apr 26;43:102106. doi: 10.1016/j.msard.2020.102106. PMID: 32428843.
- 149. Sadeghi Bahmani D, Razazian N, Farnia V, et al. Compared to an active control condition, in persons with multiple sclerosis two different types of exercise training improved sleep and depression, but not fatigue, paresthesia, and intolerance of uncertainty. Mult Scler Relat Disord. 2019 Nov;36:101356. doi: 10.1016/j.msard.2019.07.032. PMID: 31521917.
- 150. Sadowsky CL, Hammond ER, Strohl AB, et al. Lower extremity functional electrical stimulation cycling promotes physical and functional recovery in chronic spinal cord injury. J Spinal Cord Med. 2013 Nov;36(6):623-31. doi: 10.1179/2045772313Y.0000000101. PMID: 24094120.
- 151. Salci Y, Fil A, Armutlu K, et al. Effects of different exercise modalities on ataxia in multiple sclerosis patients: a randomized controlled study. Disabil Rehabil. 2017 Dec;39(26):2626-32. doi: 10.1080/09638288.2016.1236411. PMID: 27794631.
- Samaei A, Bakhtiary AH, Hajihasani A, et al. Uphill and downhill walking in multiple sclerosis: a randomized controlled trial. Int J MS Care. 2016 Jan-Feb;18(1):34-41. doi: 10.7224/1537-2073.2014-072. PMID: 26917996.
- 153. Sandler EB, Roach KE, Field-Fote EC. Dose-response outcomes associated with different forms of locomotor training in persons with chronic motor-incomplete spinal cord injury. J Neurotrauma. 2017 May 15;34(10):1903-8. doi: 10.1089/neu.2016.4555. PMID: 27901413.

- 154. Sandroff BM, Bollaert RE, Pilutti LA, et al. Multimodal exercise training in multiple sclerosis: a randomized controlled trial in persons with substantial mobility disability. Contemp Clin Trials. 2017 Oct;61:39-47. doi: 10.1016/j.cct.2017.07.016. PMID: 28732757.
- 155. Sangelaji B, Kordi M, Banihashemi F, et al. A combined exercise model for improving muscle strength, balance, walking distance, and motor agility in multiple sclerosis patients: a randomized clinical trial. Iran J Neurol. 2016 Jul 6;15(3):111-20. PMID: 27648171.
- 156. Sangelaji B, Nabavi SM, Estebsari F, et al. Effect of combination exercise therapy on walking distance, postural balance, fatigue and quality of life in multiple sclerosis patients: a clinical trial study. Iran Red Crescent Med J. 2014 Jun;16(6):e17173. doi: 10.5812/ircmj.17173. PMID: 25068045.
- 157. Scholtes VA, Becher JG, Comuth A, et al. Effectiveness of functional progressive resistance exercise strength training on muscle strength and mobility in children with cerebral palsy: a randomized controlled trial. Dev Med Child Neurol. 2010 Jun;52(6):e107-13. doi: 10.1111/j.1469-8749.2009.03604.x. PMID: 20132136.
- 158. Scholtes VA, Becher JG, Janssen-Potten YJ, et al. Effectiveness of functional progressive resistance exercise training on walking ability in children with cerebral palsy: a randomized controlled trial. Res Dev Disabil. 2012 Jan-Feb;33(1):181-8. doi: 10.1016/j.ridd.2011.08.026. PMID: 22093663.
- 159. Scholtes VA, Dallmeijer AJ, Rameckers EA, et al. Lower limb strength training in children with cerebral palsy--a randomized controlled trial protocol for functional strength training based on progressive resistance exercise principles. BMC Pediatr. 2008 Oct 8;8:41. doi: 10.1186/1471-2431-8-41. PMID: 18842125.
- Shin JC, Kim JY, Park HK, et al. Effect of robotic-assisted gait training in patients with incomplete spinal cord injury. Ann Rehabil Med. 2014 Dec;38(6):719-25. doi: 10.5535/arm.2014.38.6.719. PMID: 25566469.

- 161. Silva e Borges MB, Werneck MJ, da Silva Mde L, et al. Therapeutic effects of a horse riding simulator in children with cerebral palsy. Arq Neuropsiquiatr. 2011 Oct;69(5):799-804. doi: 10.1590/s0004-282x2011000600014. PMID: 22042184.
- 162. Slaman J, Roebroeck M, Dallmijer A, et al. Can a lifestyle intervention programme improve physical behaviour among adolescents and young adults with spastic cerebral palsy? A randomized controlled trial. Dev Med Child Neurol. 2015 Feb;57(2):159-66. doi: 10.1111/dmcn.12602. PMID: 25303096.
- 163. Slaman J, Roebroeck M, van der Slot W, et al. Can a lifestyle intervention improve physical fitness in adolescents and young adults with spastic cerebral palsy? A randomized controlled trial. Arch Phys Med Rehabil. 2014 Sep;95(9):1646-55. doi: 10.1016/j.apmr.2014.05.011. PMID: 25067790.
- 164. Slaman J, Roebroeck ME, van Meeteren J, et al. Learn 2 Move 16-24: effectiveness of an intervention to stimulate physical activity and improve physical fitness of adolescents and young adults with spastic cerebral palsy; a randomized controlled trial. BMC Pediatr. 2010 Nov 5;10:79. doi: 10.1186/1471-2431-10-79. PMID: 21054829.
- 165. Slaman J, van den Berg-Emons HJ, van Meeteren J, et al. A lifestyle intervention improves fatigue, mental health and social support among adolescents and young adults with cerebral palsy: focus on mediating effects. Clin Rehabil. 2015 Jul;29(7):717-27. doi: 10.1177/0269215514555136. PMID: 25352613.
- Straudi S, Fanciullacci C, Martinuzzi C, et al. The effects of robot-assisted gait training in progressive multiple sclerosis: a randomized controlled trial. Mult Scler. 2016 Mar;22(3):373-84. doi: 10.1177/1352458515620933. PMID: 26658817.
- Straudi S, Manfredini F, Lamberti N, et al. Robot-assisted gait training is not superior to intensive overground walking in multiple sclerosis with severe disability (the RAGTIME study): a randomized controlled trial. Mult Scler. 2019 Mar 4 doi: 10.1177/1352458519833901. PMID: 30829117.

- 168. Swe NN, Sendhilnnathan S, van Den Berg M, et al. Over ground walking and body weight supported walking improve mobility equally in cerebral palsy: a randomised controlled trial. Clin Rehabil. 2015 Nov;29(11):1108-16. doi: 10.1177/0269215514566249. PMID: 25636992.
- 169. Tak S, Choi W, Lee S. Game-based virtual reality training improves sitting balance after spinal cord injury: a single-blinded, randomized controlled trial. Med Sci Technol. 2015;56:53-9.
- 170. Tarakci D, Ersoz Huseyinsinoglu B, Tarakci E, et al. Effects of Nintendo Wii-Fit® video games on balance in children with mild cerebral palsy. Pediatr Int. 2016 Oct;58(10):1042-50. doi: 10.1111/ped.12942. PMID: 26858013.
- 171. Tarakci E, Yeldan I, Huseyinsinoglu BE, et al. Group exercise training for balance, functional status, spasticity, fatigue and quality of life in multiple sclerosis: a randomized controlled trial. Clin Rehabil. 2013 Sep;27(9):813-22. doi: 10.1177/0269215513481047. PMID: 23543341.
- 172. Taylor NF, Dodd KJ, Baker RJ, et al. Progressive resistance training and mobilityrelated function in young people with cerebral palsy: a randomized controlled trial. Dev Med Child Neurol. 2013 Sep;55(9):806-12. doi: 10.1111/dmcn.12190. PMID: 23789741.
- Tedla JS. Strength training effects on balance in spastic diplegia subjects: a randomized controlled trial. J Pediatr Neurol. 2014;12(1):15-28. doi: 10.3233/JPN-140634.
- 174. Teixeira-Machado L, Azevedo-Santos I, Desantana JM. Dance improves functionality and psychosocial adjustment in cerebral palsy: a randomized controlled clinical trial. Am J Phys Med Rehabil. 2017 Jun;96(6):424-9. doi: 10.1097/PHM.00000000000646. PMID: 27820729.

- 175. Tollar J, Nagy F, Toth BE, et al. Exercise effects on multiple sclerosis quality of life and clinical-motor symptoms. Med Sci Sports Exerc. 2020 May;52(5):1007-14. doi: 10.1249/MSS.00000000002228. PMID: 31876670.
- 176. Totosy de Zepetnek JO, Pelletier CA, Hicks AL, et al. Following the physical activity guidelines for adults with spinal cord injury for 16 weeks does not improve vascular health: a randomized controlled trial. Arch Phys Med Rehabil. 2015 Sep;96(9):1566-75. doi: 10.1016/j.apmr.2015.05.019. PMID: 26070976.
- 177. Valent L, Dallmeijer A, Houdijk H, et al. Effects of hand cycle training on wheelchair capacity during clinical rehabilitation in persons with a spinal cord injury. Disabil Rehabil. 2010;32(26):2191-200. doi: 10.3109/09638288.2010.509461. PMID: 20726737.
- 178. van der Scheer JW, de Groot S, Tepper M, et al. Low-intensity wheelchair training in inactive people with long-term spinal cord injury: a randomized controlled trial on fitness, wheelchair skill performance and physical activity levels. J Rehabil Med. 2016 Jan;48(1):33-42. doi: 10.2340/16501977-2037. PMID: 26660337.
- 179. Van Wely L, Balemans AC, Becher JG, et al. Physical activity stimulation program for children with cerebral palsy did not improve physical activity: a randomised trial. J Physiother. 2014 Mar;60(1):40-9. doi: 10.1016/j.jphys.2013.12.007. PMID: 24856939.
- Van Wely L, Balemans AC, Becher JG, et al. The effectiveness of a physical activity stimulation programme for children with cerebral palsy on social participation, selfperception and quality of life: a randomized controlled trial. Clin Rehabil. 2014 Oct;28(10):972-82. doi: 10.1177/0269215513500971. PMID: 24047644.
- 181. Van Wely L, Becher JG, Reinders-Messelink HA, et al. LEARN 2 MOVE 7-12 years: a randomized controlled trial on the effects of a physical activity stimulation program in children with cerebral palsy. BMC Pediatr. 2010 Nov 2;10:77. doi: 10.1186/1471-2431-10-77. PMID: 21044314.

- 182. Vermohlen V, Schiller P, Schickendantz S, et al. Hippotherapy for patients with multiple sclerosis: a multicenter randomized controlled trial (MS-HIPPO). Mult Scler. 2018 Sep;24(10):1375-82. doi: 10.1177/1352458517721354. PMID: 28770664.
- 183. Wallard L, Dietrich G, Kerlirzin Y, et al. Robotic-assisted gait training improves walking abilities in diplegic children with cerebral palsy. Europ J Paediatr Neurol. 2017 May;21(3):557-64. doi: 10.1016/j.gaitpost.2017.11.007. PMID: 28188024.
- 184. Wallard L, Dietrich G, Kerlirzin Y, et al. Effect of robotic-assisted gait rehabilitation on dynamic equilibrium control in the gait of children with cerebral palsy. Gait Posture. 2018 Feb;60:55-60. doi: 10.1016/j.gaitpost.2017.11.007. PMID: 29156378.
- 185. Wens I, Dalgas U, Vandenabeele F, et al. High intensity excercise in multiple sclerosis: effects on muscle contractile characteristics and excercise capacity, a randomised controlled trial. PLoS One. 2015 Oct;10(9) doi: 10.1371/journal.pone.0133697. PMID: 26418222.
- 186. Wens I, Hansen D, Verboven K, et al. Impact of 24 weeks of resistance and endurance excercise on glucose tolerance in persons with multiple sclerosis. Am J Phys Med Rehabil. 2015 Oct;94(10 Suppl 1):838-47. doi: 10.1097/PHM.00000000000257. PMID: 25768064.
- 187. Williams KL, Low Choy NL, Brauer SG. Center-Based Group and Home-Based Individual Exercise Programs Have Similar Impacts on Gait and Balance in People With Multiple Sclerosis: A Randomized Trial. Pm R. 2020 Apr 06;06:06. doi: 10.1002/pmrj.12377. PMID: 32249509.
- 188. Willoughby KL, Dodd KJ, Shields N, et al. Efficacy of partial body weight-supported treadmill training compared with overground walking practice for children with cerebral palsy: a randomized controlled trial. Arch Phys Med Rehabil. 2010 Mar;91(3):333-9. doi: 10.1016/j.apmr.2009.10.029. PMID: 20298820.

- 189. Wollenweber V, Drache M, Schickendantz S, et al. Study of the effectiveness of hippotherapy on the symptoms of multiple sclerosis outline of a randomised controlled multicentre study (MS-HIPPO). Contemp Clin Trials Commun. 2016 Aug 15;3:6-11. doi: 10.1016/j.conetc.2016.02.001. PMID: 29736452.
- 190. Wu M, Kim J, Arora P, et al. Effects of the integration of dynamic weight shifting training into treadmill training on walking function of children with cerebral palsy: a randomized controlled study. Am J Phys Med Rehabil. 2017 Nov;96(11):765-72. doi: 10.1097/PHM.000000000000776. PMID: 28644244.
- 191. Wu M, Kim J, Gaebler-Spira DJ, et al. Robotic resistance treadmill training improves locomotor function in children with cerebral palsy: a randomized controlled pilot study. Arch Phys Med Rehabil. 2017 Nov;98(11):2126-33. doi: 10.1016/j.apmr.2017.04.022. PMID: 28576629.
- 192. Yang JF, Musselman KE, Livingstone D, et al. Repetitive mass practice or focused precise practice for retraining walking after incomplete spinal cord injury? A pilot randomized clinical trial. Neurorehabil Neural Repair. 2014 May;28(4):314-24. doi: 10.1177/1545968313508473. PMID: 24213960.
- 193. Yazgan YZ, Tarakci E, Tarakci D, et al. Comparison of the effects of two different exergaming systems on balance, functionality, fatigue, and quality of life in people with multiple sclerosis: A randomized controlled trial. Mult Scler Relat Disord. 2019 Dec 21;39:101902. doi: 10.1016/j.msard.2019.101902. PMID: 31924591.
- 194. Yazici M, Livanelioglu A, Gucuyener K, et al. Effects of robotic rehabilitation on walking and balance in pediatric patients with hemiparetic cerebral palsy. Gait Posture. 2019 May;70:397-402. doi: 10.1016/j.gaitpost.2019.03.017. PMID: 30974395.

- 195. Yildirim MA, Ones K, Goksenoglu G. Early term effects of robotic assisted gait training on ambulation and functional capacity in patients with spinal cord injury. Turk J Med Sci. 2019 Jun 18;49(3):838-43. doi: 10.3906/sag-1809-7. PMID: 31134784.
- 196. Young HJ, Mehta TS, Herman C, et al. The effects of M2M and adapted yoga on physical and psychosocial outcomes in people wth multiple sclerosis. Arch Phys Med Rehabil. 2019 Aug 6;100(3):391-400. doi: 10.1016/j.apmr.2018.06.032. PMID: 30092206.
- 197. Zoccolillo L, Morelli D, Cincotti F, et al. Video-game based therapy performed by children with cerebral palsy: a cross-over randomized controlled trial and a crosssectional quantitative measure of physical activity. Eur J Phys Rehabil Med. 2015 Dec;51(6):669-76. PMID: 25653079.

Appendix C. Excluded Studies List

Table C-1. Study exclusion reasons

Full Text Exclusion Reason	Exclusion Code
Ineligible population (not multiple sclerosis, cerebral palsy or spinal cord injury)	3
Ineligible intervention (e.g., < than 10 sessions and or < than 10 days, only family/caregiver observed)	4
Ineligible comparator	5
Ineligible outcomes	6
Ineligible design (i.e., case reports, case series)	7
Pre-post studies	8
Studies outside of search dates (before January 2008 or for systematic reviews 2014 or older)	9
Not a study (letter, editorial, nonsystematic review)	10
Inadequate samples size (MS and SCI n<30 and CP n<20)	11
Systematic review, not used, but checked for includable studies	12
Not English language	13
Non-U.S. applicable study setting	14
Nonhuman population (animal study)	15
Note: Codes 1-2 used for included studies and background	

Note: Codes 1-2 used for included studies and background

- 1. Abasiyanik Z, Ertekin O, Kahraman T, et al. The effects of clinical pilates training on walking, balance, fall risk, respiratory and cognitive functions in persons with multiple sclerosis: a randomized controlled trial. Mult Scler. 2018;Conference: 23rd annual RIMS conference. 2018. Netherlands 24(6):862. Exclusion: 10.
- Abasiyanik Z, Ertekin O, Kahraman T, et al. The effects of Clinical Pilates training on walking, balance, fall risk, respiratory, and cognitive functions in persons with multiple sclerosis: A randomized controlled trial. Explore (NY). 2019 Jul 17;17:17. doi: 10.1016/j.explore.2019.07.010. PMID: 31377306. Exclusion: 4.
- Abbaspoor E, Zolfaghari M, Ahmadi B, et al. The effect of combined functional training on BDNF, IGF-1, and their association with health-related fitness in the multiple sclerosis women. Growth Horm IGF Res. 2020 Jun;52:101320. doi: 10.1016/j.ghir.2020.101320. PMID: 32305012. Exclusion: 11.

- Abd-Elmonem AM, Elhady HSA. Effect of rebound exercises on balance in children with spastic diplegia. Int J Ther Rehabil. 2018 Sep;25(9):467-74. doi: 10.12968/ijtr.2018.25.9.467. Exclusion: 14.
- Abdel Gawad HA, Abdel Karim AE, Mohammed AH. Shock wave therapy for spastic plantar flexor muscles in hemiplegic cerebral palsy children. Egypt J Med Hum Genet. 2015;16(3):269-75. doi: 10.1016/j.ejmhg.2014.12.007. Exclusion: 14.
- Abdel-Aziem AA, El-Basatiny HM. Effectiveness of backward walking training on walking ability in children with hemiparetic cerebral palsy: a randomized controlled trial. Clin Rehabil. 2017 Jun;31(6):790-7. doi: 10.1177/0269215516656468. PMID: 27356944. Exclusion: 14.

- Abouelkheir RAA, Khalil ME, Abd-Elfattah HM. Hippotherapy versus traditional physiotherapy on gait in spastic diaplegic children. Indian J Public Health Res Dev. 2019;10(12):1472-5. doi: 10.37506/v10/i12/2019/ijphrd/192416. Exclusion: 6.
- Aburub A, Khalil H, Al-Sharman A, et al. The association between physical activity and sleep characteristics in people with multiple sclerosis. Mult Scler Relat Disord. 2017 Feb;12:29-33. doi: 10.1016/j.msard.2016.12.010. PMID: 28283102. Exclusion: 4.
- Adamson BC, Ensari I, Motl RW. Effect of exercise on depressive symptoms in adults with neurologic disorders: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2015 Jul;96(7):1329-38. doi: 10.1016/j.apmr.2015.01.005. PMID: 25596001. Exclusion: 12.
- Adepoju F, Hamzat T, Akinyinka O. Comparative efficacy of progressive resistance exercise and biomechanical ankle platform system on functional indices of children with cerebral palsy. Ethiop. 2017 Jan;27(1):11-6. doi: 10.4314/ejhs.v27i1.3. PMID: 28458486. Exclusion: 14.
- Afkar A, Ashouri A, Rahmani M, et al. Effect of exercise therapy on quality of life of patients with multiple sclerosis in Iran: a systematic review and meta-analysis. Neurol Sci. 2017 Nov;38(11):1901-11. doi: 10.1007/s10072-017-3047-x. PMID: 28687973. Exclusion: 12.
- Aguirre-Guemez AV, Perez-Sanpablo AI, Quinzanos-Fresnedo J, et al. Walking speed is not the best outcome to evaluate the effect of robotic assisted gait training in people with motor incomplete spinal cord injury: a systematic review with meta-analysis. J Spinal Cord Med. 2017 Oct 25;42(2):142-54. doi: 10.1080/10790268.2017.1390644. PMID: 29065788. Exclusion: 12.
- Aidar FJ, Carneiro AL, Costa Moreira O, et al. Effects of resistance training on the physical condition of people with multiple sclerosis. J Sports Med Phys Fitness. 2018 Jul-Aug;58(7-8):1127-34. doi: 10.23736/S0022-4707.17.07621-6. PMID: 28944644. Exclusion: 11.

- Aidar FJ, Gama de Matos D, de Souza RF, et al. Influence of aquatic exercises in physical condition in patients with multiple sclerosis. J Sports Med Phys Fitness. 2018 May;58(5):684-9. doi: 10.23736/S0022-4707.17.07151-1. PMID: 28462574. Exclusion: 11.
- Akbar M, Brunner M, Ewerbeck V, et al. Do overhead sports increase risk for rotator cuff tears in wheelchair users? Arch Phys Med Rehabil. 2015 Mar;96(3):484-8. doi: 10.1016/j.apmr.2014.09.032. PMID: 25449196. Exclusion: 4.
- Akbar N, Sandroff BM, Wylie GR, et al. Progressive resistance exercise training and changes in resting-state functional connectivity of the caudate in persons with multiple sclerosis and severe fatigue: a proof-of-concept study. Neuropsychol. 2018 Apr 2018:1-13. doi: 10.1080/09602011.2018.1449758. PMID: 29618280. Exclusion: 11.
- Akkurt H, Kirazli Y, Karapolat H, et al. The effects of aerobic exercise on cardiopulmonary functions, quality of life, psychological state, disability and metabolic syndrome parameters in patients with spinal cord injury. Turk J Phys Med Rehabil 2013;59:409. doi: 10.4274/tftr.24.59.1. Exclusion: 10.
- Alabdulwahab SS. Electrical stimulation improves gait in children with spastic diplegic cerebral palsy. NeuroRehabilitation. 2011;29(1):37-43. doi: 10.3233/NRE-2011-0675. PMID: 21876294. Exclusion: 4.
- Alashram AR, Padua E, Annino G. Effects of whole body vibration on motor impairments in patients with neurological disorders: a systematic review. Am J Phys Med Rehabil. 2019 Jun 21;21:21. doi: 10.1097/PHM.000000000001252. PMID: 31246611. Exclusion: 12.
- Alemdaroglu E, Yanikoglu I, Oken O, et al. Horseback riding therapy in addition to conventional rehabilitation program decreases spasticity in children with cerebral palsy: a small sample study. Complement Ther Clin Pract. 2016 May;23:26-9. doi: 10.1016/j.ctcp.2016.02.002. PMID: 27157954. Exclusion: 11.

- Ali MS, Awad AS, Elassal MI. The effect of two therapeutic interventions on balance in children with spastic cerebral palsy: a comparative study. J Taibah Univ Med Sci. 2019 Aug;14(4):350-6. doi: 10.1016/j.jtumed.2019.05.005. PMID: 31488967. Exclusion: 14.
- 22. Ali MSM, Elazem FHA, Anwar GM. Effect of core stabilizing program on balance in spastic diplegic cerebral palsy children. Int J Pharmtech Res. 2016;9(5):129-36. Exclusion: 14.
- Alphonsus KB, Su Y, D'Arcy C. The effect of exercise, yoga and physiotherapy on the quality of life of people with multiple sclerosis: systematic review and meta-analysis. Complement Ther Med. 2019 Apr;43:188-95. doi: 10.1016/j.ctim.2019.02.010. PMID: 30935529. Exclusion: 12.
- 24. AlSaif AA, Alsenany S. Effects of interactive games on motor performance in children with spastic cerebral palsy. J Phys Ther Sci. 2015 Jun;27(6):2001-3. doi: 10.1589/jpts.27.2001. PMID: 26180367. Exclusion: 4.
- Alvarenga-Filho H, Sacramento PM, Ferreira TB, et al. Combined exercise training reduces fatigue and modulates the cytokine profile of T-cells from multiple sclerosis patients in response to neuromediators. J Neuroimmunol. 2016 Apr 15;293:91-9. doi: 10.1016/j.jneuroim.2016.02.014. PMID: 27049568. Exclusion: 11.
- Ameer MA, Fayez ES, Elkholy HH. Improving spatiotemporal gait parameters in spastic diplegic children using treadmill gait training. J Bodywork Mov Ther. 2019;23(4):937-42. doi: 10.1016/j.jbmt.2019.02.003. Exclusion: 14.
- 27. Ammann-Reiffer C, Bastiaenen CH, Meyer-Heim AD, et al. Effectiveness of robot-assisted gait training in children with cerebral palsy: a bicenter, pragmatic, randomized, cross-over trial (PeLoGAIT). BMC Pediatr. 2017 Mar 2;17(1):64. doi: 10.1186/s12887-017-0815-y. PMID: 28253887. Exclusion: 10.

- Andreu L, Ramos-Campo DJ, Avila-Gandia V, et al. Acute effects of whole-body vibration training on neuromuscular performance and mobility in hypoxia and normoxia in persons with multiple sclerosis: A crossover study. Mult Scler Relat Disord. 2020 Jan;37:101454. doi: 10.1016/j.msard.2019.101454. PMID: 31670008. Exclusion: 11.
- Angeli CA, Boakye M, Morton RA, et al. Recovery of over-ground walking after chronic motor complete spinal cord injury. N Engl J Med. 2018 Sep 27;379(13):1244-50. doi: 10.1056/NEJMoa1803588. PMID: 30247091. Exclusion: 5.
- 30. Angsupaisal M, Visser B, Alkema A, et al. Therapist-designed adaptive riding in children with cerebral palsy: results of a feasibility study. Phys Ther. 2015 Aug;95(8):1151-62. doi: 10.2522/ptj.20140146. PMID: 25908525. Exclusion: 7.
- Anonymous. Erratum. Mult Scler. 2016 Oct;22(12):9-11. PMID: 26041800. Exclusion: 10.
- 32. Antonelli CBB, Hartz CS, da Silva Santos S, et al. Effects of inspiratory muscle training with progressive loading on respiratory muscle function and sports performance in high-performance wheelchair basketball athletes: a randomized clinical trial. Int J Sports Physiol Perform. 2019 Oct 28:1-5. doi: 10.1123/ijspp.2018-0979. PMID: 31172823. Exclusion: 3.
- 33. Antunes FN, Pinho ASD, Kleiner AFR, et al. Different horse's paces during hippotherapy on spatio-temporal parameters of gait in children with bilateral spastic cerebral palsy: a feasibility study. Res Dev Disabil. 2016 Dec;59:65-72. doi: 10.1016/j.ridd.2016.07.015. PMID: 27518920. Exclusion: 4.
- Aravind N, Harvey LA, Glinsky JV. Physiotherapy interventions for increasing muscle strength in people with spinal cord injuries: a systematic review. Spinal Cord. 2019 Jun;57(6):449-60. doi: 10.1038/s41393-019-0242-z. PMID: 30723256. Exclusion: 12.

- 35. Arbour-Nicitopoulos K, Sweet S, Lamontagne ME, et al. A randomized controlled trial to test the effects of the SCI get fit toolkit on physical activity behavior and cognitions in adults with spinal cord injury: a preliminary analysis. J Spinal Cord Med. 2014 Sep;37(5):650. doi: 10.1179/1079026814Z.00000000315. PMID: 25229743. Exclusion: 10.
- 36. Armstrong EL, Spencer S, Kentish MJ, et al. Efficacy of cycling interventions to improve function in children and adolescents with cerebral palsy: a systematic review and meta-analysis. Clin Rehabil. 2019 Jul;33(7):1113-29. doi: 10.1177/0269215519837582. PMID: 30935240. Exclusion: 12.
- 37. Arntzen EC. Does a combination of individualised physiotherapy treatment and gait training on a treadmill influence gait in persons with multiple sclerosis? Physiotherapy. 2011;97(Supplement 1):18-1415. Exclusion: 10.
- Ashe MC, Eng JJ, Krassioukov AV, et al. Response to functional electrical stimulation cycling in women with spinal cord injuries using dual-energy X-ray absorptiometry and peripheral quantitative computed tomography: a case series. J Spinal Cord Med. 2010;33(1):68-72. doi: 10.1080/10790268.2010.11689676. PMID: 20397446. Exclusion: 7.
- 39. Astorino TA, Thum JS. Within-session responses to high-intensity interval training in spinal cord injury. Disabil Rehabil. 2018 Feb;40(4):444-9. doi: 10.1080/09638288.2016.1260648. PMID: 27930890. Exclusion: 5.
- Awan WA, Masood T. Role of stretching exercises in the management of constipation in spastic cerebral palsy. J Ayub Med Coll Abbottabad. 2016 Oct-Dec;28(4):798-801. PMID: 28586619. Exclusion: 4.
- 41. Aye T, Thein S, Hlaing T. Effects of strength training program on hip extensors and knee extensors strength of lower limb in children with spastic diplegic cerebral palsy. J Phys Ther Sci. 2016 Jan;28(2):671-6. doi: 10.1589/jpts.28.671. PMID: 27065561. Exclusion: 14.

- Azizi S, Marzbani H, Raminfard S, et al. The impact of an anti-gravity treadmill (AlterG) training on walking capacity and corticospinal tract structure in children with cerebral palsy. Conf Proc IEEE Eng Med Biol Soc. 2017 Jul;2017:1150-3. doi: 10.1109/EMBC.2017.8037033. PMID: 29060079. Exclusion: 4.
- Bach Baunsgaard C, Vig Nissen U, Katrin Brust A, et al. Gait training after spinal cord injury: safety, feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso Bionics. Spinal Cord. 2018 Feb;56(2):106-16. doi: 10.1038/s41393-017-0013-7. PMID: 29105657. Exclusion: 8.
- 44. Backus D, Berry A. Commentary on: "Calling Out MS Fatigue: Feasibility and Preliminary Effects of a Pilot Randomized Telephone-Delivered Exercise Intervention for Multiple Sclerosis Fatigue". J Neurol Phys Ther. 2020 Jan;44(1):32-3. doi: 10.1097/NPT.000000000000304. PMID: 31834218. Exclusion: 4.
- 45. Backus D, Burdett B, Hawkins L, et al. Outcomes after functional electrical stimulation cycle training in individuals with multiple sclerosis who are nonambulatory. Int J MS Care. 2017 May-Jun;19(3):113-21. doi: 10.7224/1537-2073.2015-036. PMID: 28603459. Exclusion: 11.
- Baek J-H, Kim J-W, Kim S-Y, et al. Acute effect of repeated passive motion exercise on shoulder position sense in patients with hemiplegia: a pilot study. NeuroRehabilitation. 2009;25(2):101-6. doi: 10.3233/NRE-2009-0504. PMID: 19822940. Exclusion: 3.
- 47. Bakkum AJ, de Groot S, Onderwater MQ, et al. Metabolic rate and cardiorespiratory response during hybrid cycling versus handcycling at equal subjective exercise intensity levels in people with spinal cord injury. J Spinal Cord Med. 2014 Nov;37(6):758-64. doi: 10.1179/2045772313Y.0000000164. PMID: 24621028. Exclusion: 4.

- Bania T, Todd K, Taylor N. Effects of strength training on the habitual physical activity and sedentary behaviour of young people with diplegic cerebral palsy. Abstracts of the European Academy of Childhood Disability 25th Annual Meeting, 10-12 October 2013, Newcastle-Gateshead, UK. Dev Med Child Neurol. 2013 Oct;55(S2):19. doi: 10.1111/dmcn.12258. Exclusion: 10.
- Bansi J, Bloch W, Gamper U, et al. Training in MS: influence of two different endurance training protocols (aquatic versus overland) on cytokine and neurotrophin concentrations during three week randomized controlled trial. Mult Scler. 2013 Apr;19(5):613-21. doi: 10.1177/1352458512458605. PMID: 22936334. Exclusion: 4.
- 50. Bansi J, Bloch W, Gamper U, et al. Cycling under immersion affects growth factor BDNF, cardiorespiratory fitness, fatigue and health-related quality of life in persons with multiple sclerosis. A randomized controlled study. Mult Scler J Exp Transl Clin. 2014 START: 2014 Jun 6 CONFERENCE END: 2014 Jun 7, 19th Annual Rehabilitation in Multiple Sclerosis Conference, RIMS 2014 Brighton United Kingdom;20(7):979-80. doi: 10.1177/1352458514533628. Exclusion: 4.
- 51. Bansi J, Bloch W, Gamper U, et al. Endurance training in MS: short-term immune responses and their relation to cardiorespiratory fitness, health-related quality of life, and fatigue. J Neurol. 2013 Dec;260(12):2993-3001. doi: 10.1007/s00415-013-7091-z. PMID: 24036849. Exclusion: 4.
- Barati AA, Rajabi R, Shahrbanian S, et al. Investigation of the effect of sensorimotor exercises on proprioceptive perceptions among children with spastic hemiplegic cerebral palsy. J Hand Ther. 2020 Mar 10;10:10. doi: 10.1016/j.jht.2019.12.003. PMID: 32169259. Exclusion: 4.
- 53. Barbarulo AM, Lus G, Signoriello E, et al. Integrated cognitive and neuromotor rehabilitation in multiple sclerosis: a pragmatic study. Front Behav Neurosci. 2018 Sep 5;12(196) doi: 10.3389/fnbeh.2018.00196. PMID: 30271331. Exclusion: 5.

- 54. Barclay A, Paul L, MacFarlane N, et al. The effect of cycling using active-passive trainers on spasticity, cardiovascular fitness, function and quality of life in people with moderate to severe Multiple Sclerosis (MS); a feasibility study. Mult Scler Relat Disord. 2019 Sep;34:128-34. doi: 10.1016/j.msard.2019.06.019. PMID: 31260943. Exclusion: 11.
- 55. Barfield JP, Malone LA. Perceived exercise benefits and barriers among power wheelchair soccer players. J Rehabil Res Dev. 2013;50(2):231-8. PMID: 23761004. Exclusion: 7.
- 56. Barfield JP, Newsome L, Malone LA. Exercise intensity during power wheelchair soccer. Arch Phys Med Rehabil. 2016 Nov;97(11):1938-44. doi: 10.1016/j.apmr.2016.05.012. PMID: 27288710. Exclusion: 3.
- 57. Barry A, Cronin O, Ryan AM, et al. Impact of short-term cycle ergometer training on quality of life, cognition and depressive symptomatology in multiple sclerosis patients: a pilot study. Neurol Sci. 2018 Mar;39(3):461-9. doi: 10.1007/s10072-017-3230-0. PMID: 29280019. Exclusion: 5.
- 58. Barthelemy A, Gagnon DH, Duclos C. Gaitlike vibration training improves gait abilities: a case report of a 62-year-old person with a chronic incomplete spinal cord injury. Spinal Cord Ser Cases. 2016 Jul 21;2:16012. doi: 10.1038/scsandc.2016.12. PMID: 28053756. Exclusion: 7.
- Bauerfeind J, Koper M, Wieczorek J, et al. Sports injuries in wheelchair rugby - A pilot study. J Hum Kinet. 2015 Nov 22;48:123-32. doi: 10.1515/hukin-2015-0098. PMID: 26834880. Exclusion: 11.
- Baunsgaard CB, Nissen UV, Brust AK, et al. Exoskeleton gait training after spinal cord injury: an exploratory study on secondary health conditions. J Rehabil Med. 2018 Sep 28;50(9):806-13. doi: 10.2340/16501977-2372. PMID: 30183055. Exclusion: 8.

- 61. Baxter K. The effect of core strengthening versus extremity strengthening on mobility measures in patients with multiple sclerosis. Dissertation Abstracts International: Section B: The Sciences and Engineering. 2018;78(10-B(E)):No Pagination Specified. Exclusion: 12.
- Bayon C, Martin-Lorenzo T, Moral-Saiz B, et al. A robot-based gait training therapy for pediatric population with cerebral palsy: goal setting, proposal and preliminary clinical implementation. J Neuroengineering Rehabil. 2018 Jul 27;15(1):69. doi: 10.1186/s12984-018-0412-9. PMID: 30053857. Exclusion: 11.
- 63. Beani E, Menici V, Ferrari A, et al. Feasibility of a home-based action observation training for children with unilateral cerebral palsy: An explorative study. Front Neurol. 2020;11 doi: 10.3389/fneur.2020.00016. Exclusion: 4.
- 64. Bedair R, Al-Talawy H, Shoukry K, et al. Impact of virtual reality games as an adjunct treatment tool on upper extremity function of spastic hemiplegic children. Int J Pharmtech Res. 2016;9(6):1-8. Exclusion: 14.
- 65. Bernhardt L, Marziniak M. Specific resistance training for patients with multiple sclerosis. Mult Scler J Exp Transl Clin. START: 2011 Oct 19 CONFERENCE END: 2011 Oct 22, 5th Joint Triennial Congress of the European and Americas Committees for Treatment and Research in Multiple Sclerosis Amsterdam Netherlands;17(10 SUPPL. 1):S465. Exclusion: 10.
- Biasotto-Gonzalez DA, Grecco LC, Neto HP, et al. Effect of treadmill gait training on static and functional balance in children with cerebral palsy: randomized controlled clinical trial. Gait Posture. 2013;38:S69-S70. doi: 10.1016/j.gaitpost.2013.07.150. Exclusion: 10.
- 67. Bickel CS, Yarar-Fisher C, Mahoney ET, et al. Neuromuscular electrical stimulation-induced resistance training after SCI: A review of the dudley protocol. Top Spinal Cord Inj Rehabil. 2015;21(4):294-302. doi: 10.1310/sci2104-294. PMID: 26689694. Exclusion: 8.

- 68. Birgani PM, Ashtiyani M, Rasooli A, et al. Can an anti-gravity treadmill improve stability of children with cerebral palsy? Conf Proc IEEE Eng Med Biol Soc. 2016 08;2016:5465-8. doi: 10.1109/EMBC.2016.7591963. PMID: 28269494. Exclusion: 11.
- 69. Bisson EJ, Fakolade A, Petrin J, et al. Exercise interventions in multiple sclerosis rehabilitation need better reporting on comorbidities: a systematic scoping review. Clin Rehabil. 2017 Oct;31(10):1305-12. doi: 10.1177/0269215517698734. PMID: 28933610. Exclusion: 12.
- Blackmore AM, Gibson N, Cooper MS, et al. Interventions for management of respiratory disease in young people with cerebral palsy: a systematic review. Child Care Health Dev. 2019 Sep;45(5):754-71. doi: 10.1111/cch.12703. PMID: 31276598. Exclusion: 4.
- 71. Bloemen M, Van Wely L, Mollema J, et al. Evidence for increasing physical activity in children with physical disabilities: a systematic review. Dev Med Child Neurol. 2017 10;59(10):1004-10. doi: 10.1111/dmcn.13422. PMID: 28374442. Exclusion: 12.
- 72. Bochkezanian V, Newton RU, Trajano GS, et al. Effects of neuromuscular electrical stimulation in people with spinal cord injury. Med Sci Sports Exerc. 2018 Sep;50(9):1733-9. doi: 10.1249/MSS.00000000001637. PMID: 29634640. Exclusion: 11.
- Bochkezanian V, Raymond J, de Oliveira CQ, et al. Can combined aerobic and muscle strength training improve aerobic fitness, muscle strength, function and quality of life in people with spinal cord injury? A systematic review. Spinal Cord. 2015 Jun;53(6):418-31. doi: 10.1038/sc.2015.48. PMID: 25823799. Exclusion: 12.
- 74. Booth ATC, Buizer AI, Meyns P, et al. The efficacy of functional gait training in children and young adults with cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2018 Sep;60(9):866-83. doi: 10.1111/dmcn.13708. PMID: 29512110. Exclusion: 12.

- 75. Booth S. Aquatic exercise rehabilitation for the paediatric Cerebral Palsied client group specifically children aged 10-12 yrs, presenting with Spastic Diplegia and classified as GMFCS-E&R Level III Aqualines: The Journal of the Hydrotherapy Association of Chartered Physiotherapists. 2014;26(2):14-22. Exclusion: 10.
- 76. Borel B, Lacroix J, Daviet JC, et al. Intensity level and on-court role of wheelchair rugby players during competition. J Sports Med Phys Fitness. 2018 May 29;29:29. doi: 10.23736/S0022-4707.18.08214-2. PMID: 29845832. Exclusion: 3.
- 77. Borggraefe I, Schaefer JS, Klaiber M, et al. Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Europ J Paediatr Neurol. 2010 Nov;14(6):496-502. doi: 10.1016/j.ejpn.2010.01.002. PMID: 20138788. Exclusion: 8.
- Boyd RN. Functional progressive resistance training improves muscle strength but not walking ability in children with cerebral palsy. J Physiother. 2012;58(3):197. doi: 10.1016/S1836-9553(12)70111-X. PMID: 22884187. Exclusion: 10.
- 79. Braendvik SM, Koret T, Helbostad JL, et al. Treadmill training or progressive strength training to improve walking in people with multiple sclerosis? A randomized parallel group trial. Physiother Res Int. 2016 Dec;21(4):228-36. doi: 10.1002/pri.1636. PMID: 26110230. Exclusion: 11.
- Brazg G, Fahey M, Holleran CL, et al. Effects of training intensity on locomotor performance in individuals with chronic spinal cord injury: a randomized crossover study. Neurorehabil Neural Repair. 2017 Oct-Nov;31(10-11):944-54. doi: 10.1177/1545968317731538. PMID: 29081250. Exclusion: 11.
- Brochetti AM, Brose SW, Kuemmel AM, et al. Interdisciplinary bodyweight management program for persons with SCI. J Spinal Cord Med. 2018 Dec 1-7. doi: 10.1080/10790268.2018.1547860. PMID: 30517834. Exclusion: 11.

- 82. Broekmans T, Roelants M, Alders G, et al. Exploring the effects of a 20-week wholebody vibration training programme on leg muscle performance and function in persons with multiple sclerosis. J Rehabil Med. 2010 Oct;42(9):866-72. doi: 10.2340/16501977-0609. PMID: 20878048. Exclusion: 11.
- Broekmans T, Roelants M, Feys P, et al. Effects of long-term resistance training and simultaneous electro-stimulation on muscle strength and functional mobility in multiple sclerosis. Mult Scler. 2010 Apr;17(4):468-77. doi: 10.1177/1352458510391339.
 PMID: 21148266. Exclusion: 11.
- Brown SH, Lewis CA, McCarthy JM, et al. The effects of internet-based home training on upper limb function in adults with cerebral palsy. Neurorehabil Neural Repair. 2010 Jul-Aug;24(6):575-83. doi: 10.1177/1545968310361956. PMID: 20581338. Exclusion: 11.
- Brurok B. Effect from lower extremity vascular occlusion during arm cycling on Vo2peak in persons with SCI. Med Sci Sports Exerc. 2011 May;43(5):84. doi: 10.1249/01.MSS.0000402927.14509.8c. Exclusion: 11.
- Brurok B, Helgerud J, Karlsen T, et al. Effect of aerobic high-intensity hybrid training on stroke volume and peak oxygen consumption in men with spinal cord injury. Am J Phys Med Rehabil. 2011 May;90(5):407-14. doi: 10.1097/PHM.0b013e31820f960f. PMID: 21389841. Exclusion: 11.
- Brurok B, Torhaug T, Leivseth G, et al. Effect of leg vascular occlusion on arm cycling peak oxygen uptake in spinal cordinjured individuals. Spinal Cord. 2012 Apr;50(4):298-302. doi: 10.1038/sc.2011.129. PMID: 22124351. Exclusion: 11.
- 88. Buehner JJ, Forrest GF, Schmidt-Read M, et al. Relationship between ASIA examination and functional outcomes in the NeuroRecovery Network Locomotor Training Program. Arch Phys Med Rehabil. 2012 Sep;93(9):1530-40. doi: 10.1016/j.apmr.2012.02.035. PMID: 22920450. Exclusion: 8.

- Buhroo AM, Hussain SA. Role of IFT in rehabilitation of neurogenic bladder in patients with traumatic spinal cord injuries. JK Practitioner. 2011 Jan-Jun;16(1-2):24-6. Exclusion: 11.
- 90. Buker DB, Oyarce CC, Plaza RS. Effects of spinal cord injury in heart rate variability after acute and chronic exercise: a systematic review. Top Spinal Cord Inj Rehabil. 2018;24(2):167-76. doi: 10.1310/sci17-00028. PMID: 29706761. Exclusion: 12.
- 91. Burdea GC, Cioi D, Kale A, et al. Robotics and gaming to improve ankle strength, motor control, and function in children with cerebral palsy--a case study series. IEEE Trans Neural Syst Rehabil Eng. 2013 Mar;21(2):165-73. doi: 10.1109/TNSRE.2012.2206055. PMID: 22773059. Exclusion: 7.
- 92. Bures AK, Kuld S, Weiland AC, et al. Efficacy of an internet-based program (MS Intakt) to promote physical activity after inpatient rehabilitation in persons with multiple sclerosis-a randomized controlled study. Mult Scler. 2017 Oct;Conference: 7th joint ECTRIMS-ACTRIMS, MSPARIS2017. France. 23(S3):413. doi: 10.1177/1352458517731404. Exclusion: 10.
- 93. Burnfield JM, Buster TW, Pfeifer CM, et al. Adapted motor-assisted elliptical for rehabilitation of children with physical disabilities. J Med Device. 2019;13(1) doi: 10.1115/1.4041588. Exclusion: 11.
- 94. Burns AS, Marino RJ, Kalsi-Ryan S, et al. Type and timing of rehabilitation following acute and subacute spinal cord injury: a systematic review. Global Spine J. 2017 Sep;7(3):175S-94S. doi: 10.1177/2192568217703084. PMID: 29164023. Exclusion: 12.
- 95. Byrnes K, Wu PJ, Whillier S. Is pilates an effective rehabilitation tool? A systematic review. J Bodywork Mov Ther. 2018 Jan;22(1):192-202. doi: 10.1016/j.jbmt.2017.04.008. PMID: 29332746. Exclusion: 12.

- 96. Calabro RS, Naro A, Leo A, et al. Usefulness of robotic gait training plus neuromodulation in chronic spinal cord injury: a case report. J Spinal Cord Med. 2017 Jan;40(1):118-21. doi: 10.1080/10790268.2016.1153275. PMID: 27077568. Exclusion: 7.
- 97. Callesen J, Cattaneo D, Brincks J, et al. How does strength training and balance training affect gait and fatigue in patients with multiple sclerosis? A study protocol of a randomized controlled trial. NeuroRehabilitation. 2018;42(2):131-42. doi: 10.3233/NRE-172238. PMID: 29562556. Exclusion: 10.
- 98. Camerota F, Celletti C, Di Sipio E, et al. Focal muscle vibration, an effective rehabilitative approach in severe gait impairment due to multiple sclerosis. J Neurol Sci. 2017 Jan 15;372:33-9. doi: 10.1016/j.jns.2016.11.025. PMID: 28017240. Exclusion: 4.
- 99. Campbell E, Coulter EH, Mattison PG, et al. Physiotherapy rehabilitation for people with progressive multiple sclerosis: a systematic review. Arch Phys Med Rehabil. 2016 Jan;97(1):141-51. doi: 10.1016/j.apmr.2015.07.022. PMID: 26281954. Exclusion: 12.
- Canning KL, Hicks AL. Benefits of adhering to the Canadian physical activity guidelines for adults with multiple sclerosis beyond aerobic fitness and strength. Int J MS Care. 2020 Jan-Feb;22(1):15-21. doi: 10.7224/1537-2073.2018-061. PMID: 32123524. Exclusion: 6.
- 101. Canori A, Amiri AM, Thapa-Chhetry B, et al. Relationship between pain, fatigue, and physical activity levels during a technology-based physical activity intervention. J Spinal Cord Med. 2020 Jun 04:1-8. doi: 10.1080/10790268.2020.1766889. PMID: 32496966. Exclusion: 4.
- 102. Cardenas DD, Felix ER, Cowan R, et al. Effects of home exercises on shoulder pain and pathology in chronic spinal cord injury: A randomized controlled trial. Am J Phys Med Rehabil. 2020 Jun;99(6):504-13. doi: 10.1097/PHM.000000000001362. PMID: 31851011. Exclusion: 4.

- 103. Carlon SL, Taylor NF, Shields N, et al. Aerobic training for young people with cerebral palsy in specialist schools: a pilot randomised controlled trial. Dev Med Child Neurol. 2014;56(12). Exclusion: 10.
- 104. Carter AM. The effects of a pragmatic exercise intervention in people with multiple sclerosis. Dissertation Abstracts International Section C: Worldwide. 2018 Apr;75(4-C):No Pagination Specified. doi: 10.1177/1352458513519354. PMID: 24421303. Exclusion: 12.
- 105. Carter AM, Daley AJ, Kesterton SW, et al. Pragmatic exercise intervention in people with mild to moderate multiple sclerosis: a randomised controlled feasibility study. Contemp Clin Trials. 2013 Jul;35(2):40-7. doi: 10.1016/j.cct.2013.04.003. PMID: 23612222. Exclusion: 11.
- 106. Carty A, McCormack K, Coughlan GF, et al. Increased aerobic fitness after neuromuscular electrical stimulation training in adults with spinal cord injury. Arch Phys Med Rehabil. 2012 May;93(5):790-5. doi: 10.1016/j.apmr.2011.10.030. PMID: 22444027. Exclusion: 4.
- 107. Carvalho A, Santos M, Maciel P, et al. T-1237C polymorphism of TLR9 gene is not associated with multiple sclerosis in the Portuguese population. Mult Scler. 2008 May;14(4):550-2. doi: 10.1177/1352458507084594. PMID: 18208876. Exclusion: 4.
- Carvalho I, Pinto SM, Chagas DDV, et al. Robotic gait training for individuals with cerebral palsy: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2017 11;98(11):2332-44. doi: 10.1016/j.apmr.2017.06.018. PMID: 28751254. Exclusion: 12.
- 109. Castillo-Bueno I, Ramos-Campo DJ, Rubio-Arias JA. Effects of whole-body vibration training in patients with multiple sclerosis: a systematic review. Neurologia. 2018 Oct;33(8):534-48. doi: 10.1016/j.nrl.2016.04.007. PMID: 27448520. Exclusion: 13.

- Castro O, Ng K, Novoradovskaya E, et al. A scoping review on interventions to promote physical activity among adults with disabilities. Disabil Health J. 2018 Apr;11(2):174-83. doi: 10.1016/j.dhjo.2017.10.013. PMID: 29132847. Exclusion: 12.
- 111. Cattaneo D, Gervasoni E, Pupillo E, et al. Educational and exercise intervention to prevent falls and improve participation in subjects with neurological conditions: The NEUROFALL randomized controlled trial. Front Neurol. 2019;10:865. doi: 10.3389/fneur.2019.00865. PMID: 31572282. Exclusion: 3.
- 112. Chaikhot D, Reed K, Petroongrad W, et al. Effects of an Upper-Body Training Program Involving Resistance Exercise and High-Intensity Arm Cranking on Peak Handcycling Performance and Wheelchair Propulsion Efficiency in Able-Bodied Men. J Strength Cond Res. 2018 Jul 17;17:17. doi: 10.1519/JSC.00000000002738. PMID: 30024482. Exclusion: 3.
- 113. Champagne D, Corriveau H, Dugas C. Effect of hippotherapy on motor proficiency and function in children with cerebral palsy who walk. Phys Occup Ther Pediatr. 2017 Feb;37(1):51-63. doi: 10.3109/01942638.2015.1129386. PMID: 26930110. Exclusion: 11.
- 114. Chamudot R, Parush S, Rigbi A, et al. Effectiveness of modified constraintinduced movement therapy compared with bimanual therapy home programs for infants with hemiplegia: A randomized controlled trial. Am J Occup Ther. 2018;72(6):1-9. doi: 10.5014/ajot.2018.025981. PMID: 30760393. Exclusion: 4.
- 115. Chang HJ, Kwon J-Y, Lee J-Y, et al. The effects of hippotherapy on the motor function of children with spastic bilateral cerebral palsy. J Phys Ther Sci. 2012;24(12):1277-80. Exclusion: 8.
- 116. Chang SH, Afzal T, Group TSCE, et al. Exoskeleton-assisted gait training to improve gait in individuals with spinal cord injury: a pilot randomized study. Pilot feasibility stud. 2018 Mar 5;4:62. doi: 10.1186/s40814-018-0247-y. PMID: 29556414. Exclusion: 11.

- 117. Chappell A, Allison G, Gibson N, et al. Functional leg stiffness in children with cerebral palsy: Can it be optimised? Dev Med Child Neurol. 2020;62:19. doi: 10.1111/dmcn.14469. Exclusion: 10.
- 118. Chappell A, Allison GT, Williams G, et al. The effect of a running training intervention on ankle power generation in children and adolescents with cerebral palsy: A randomized controlled trial. Clin Biomech. 2020;76:N.PAG-N.PAG. doi: 10.1016/j.clinbiomech.2020.105024. Exclusion: 6.
- 119. Charron S, McKay KA, Tremlett H. Physical activity and disability outcomes in multiple sclerosis: a systematic review (2011-2016). Mult Scler Relat Disord. 2018 Feb;20:169-77. doi: 10.1016/j.msard.2018.01.021. PMID: 29414293. Exclusion: 12.
- 120. Chen CL, Chen CY, Liaw MY, et al. Efficacy of home-based virtual cycling training on bone mineral density in ambulatory children with cerebral palsy. Osteoporos Int. 2013 Apr;24(4):1399-406. doi: 10.1007/s00198-012-2137-0. PMID: 23052930. Exclusion: 4.
- 121. Chen CL, Hong WH, Cheng HY, et al. Muscle strength enhancement following home-based virtual cycling training in ambulatory children with cerebral palsy. Res Dev Disabil. 2012 Jul-Aug;33(4):1087-94. doi: 10.1016/j.ridd.2012.01.017. PMID: 22502833. Exclusion: 4.
- 122. Cheng HY, Ju YY, Chen CL, et al. Managing lower extremity muscle tone and function in children with cerebral palsy via eight-week repetitive passive knee movement intervention. Res Dev Disabil. 2013 Jan;34(1):554-61. doi: 10.1016/j.ridd.2012.09.020. PMID: 23123868. Exclusion: 4.
- 123. Cheng HY, Ju YY, Chen CL, et al. Effects of whole body vibration on spasticity and lower extremity function in children with cerebral palsy. Hum Mov Sci. 2015 Feb;39:65-72. doi: 10.1016/j.humov.2014.11.003. PMID: 25461434. Exclusion: 11.

- 124. Cheng HY, Ju YY, Chen CL, et al. Managing spastic hypertonia in children with cerebral palsy via repetitive passive knee movements. J Rehabil Med. 2012 Mar;44(3):235-40. doi: 10.2340/16501977-0937. PMID: 22366894. Exclusion: 4.
- 125. Cheng HY, Yu YC, Wong AM, et al. Effects of an eight-week whole body vibration on lower extremity muscle tone and function in children with cerebral palsy. Res Dev Disabil. 2015 Mar;38:256-61. doi: 10.1016/j.ridd.2014.12.017. PMID: 25575288. Exclusion: 11.
- 126. Cherni Y, Ballaz L, Lemaire J, et al. Effect of low dose robotic-gait training on walking capacity in children and adolescents with cerebral palsy. Neurophysiol Clin. 2020 Sep 30;30:30. doi: 10.1016/j.neucli.2020.09.005. PMID: 33011059. Exclusion: 8.
- 127. Chinniah H, Natarajan M, Ramanathan R, et al. Effects of horse riding simulator on sitting motor function in children with spastic cerebral palsy. Physiother Res Int. e1870 p. 2020 Oct;25(4):e1870. doi: 10.1002/pri.1870. PMID: 32808394. Exclusion: 14.
- 128. Chiu HC, Ada L, Lee HM. Upper limb training using Wii Sports Resort for children with hemiplegic cerebral palsy: a randomized, single-blind trial. Clin Rehabil. 2014 Oct;28(10):1015-24. doi: 10.1177/0269215514533709. PMID: 24849793. Exclusion: 4.
- 129. Cho C, Hwang W, Hwang S, et al. Treadmill training with virtual reality improves gait, balance, and muscle strength in children with cerebral palsy. Tohoku J Exp Med. 2016 Mar;238(3):213-8. doi: 10.1620/tjem.238.213. PMID: 26947315. Exclusion: 11.
- Chochowska M, Zgorzalewicz-Stachowiak M, Sereda-Wiszowaty E. Influence of chosen factors on efficiency of NDB-Bobath method in rehabilitation of children with cerebral palsy. Fizjoterapia. 2008;16(3):8-24. doi: 10.2478/v10109-009-0024-9. Exclusion: 8.

- 131. Chong HJ, Cho SR, Jeong E, et al. Finger exercise with keyboard playing in adults with cerebral palsy: a preliminary study. J Exerc Rehabil. 2013;9(4):420-5. doi: 10.12965/jer.130050. PMID: 24278895. Exclusion: 4.
- 132. Chou RC, Taylor JA, Solinsky R. Effects of hybrid-functional electrical stimulation (FES) rowing whole-body exercise on neurologic improvement in subacute spinal cord injury: secondary outcomes analysis of a randomized controlled trial. Spinal Cord. 2020 Aug;58(8):914-20. doi: 10.1038/s41393-020-0445-3. PMID: 32094516. Exclusion: 4.
- 133. Choudhary A, Gulati S, Kabra M, et al. Efficacy of modified constraint induced movement therapy in improving upper limb function in children with hemiplegic cerebral palsy: a randomized controlled trial. Brain Dev. 2013 Oct;35(9):870-6. doi: 10.1016/j.braindev.2012.11.001. PMID: 23238223. Exclusion: 4.
- 134. Christy JB, Chapman CG, Murphy P. The effect of intense physical therapy for children with cerebral palsy. J Pediatr Rehabil Med. 2012;5(3):159-70. doi: 10.3233/PRM-2012-0208. PMID: 23023248. Exclusion: 11.
- 135. Cichon R, Maszczyk A, Stastny P, et al. Effects of krankcycle training on performance and body composition in wheelchair users. J Hum Kinet. 2015 Nov 22;48:71-8. doi: 10.1515/hukin-2015-0093. PMID: 26834875. Exclusion: 11.
- 136. Cimino V, Chisari CG, Raciti G, et al. Objective evaluation of Nintendo Wii Fit Plus balance program training on postural stability in Multiple Sclerosis patients: a pilot study. Int J Rehabil Res. 2020 May 02;02:02. doi: 10.1097/MRR.000000000000408. PMID: 32371848. Exclusion: 11.
- 137. Clapham ED, Lamont LS, Shim M, et al. Effectiveness of surf therapy for children with disabilities. Disabil Health J. 2019 Aug 2:100828. doi: 10.1016/j.dhjo.2019.100828. PMID: 31422168. Exclusion: 3.

- 138. Cleary SL, Taylor NF, Dodd KJ, et al. An aerobic exercise program for young people with cerebral palsy in specialist schools: a phase I randomized controlled trial. Dev Neurorehabil. 2017 Aug;20(6):331-8. doi: 10.1080/17518423.2016.1265602. PMID: 28045554. Exclusion: 11.
- 139. Clutterbuck G, Auld M, Johnston L. Active exercise interventions improve gross motor function of ambulant/semi-ambulant children with cerebral palsy: a systematic review. Disabil Rehabil. 2019 Jan 05;41(10):1131-51. doi: 10.1080/09638288.2017.1422035. PMID: 29303007. Exclusion: 12.
- 140. Clutterbuck GL, Auld ML, Johnston LM. SPORTS STARS: a practitioner-led, peergroup sports intervention for ambulant children with cerebral palsy. Activity and participation outcomes of a randomised controlled trial. Disabil Rehabil. 2020 Jun 30;30:1-9. doi: 10.1080/09638288.2020.1783376 PMID: 32603238. Exclusion: 4.
- 141. Clutterbuck GL, Auld ML, Johnston LM. SPORTS STARS: a practitioner-led, peergroup sports intervention for ambulant, school-aged children with cerebral palsy. Parent and physiotherapist perspectives. Disabil Rehabil. 2020 Jul 7;7:1-10. doi: 10.1080/09638288.2020.1785558. PMID: 32633156. Exclusion: 4.
- 142. Cohen ET, Kietrys D, Fogerite SG, et al. Feasibility and impact of an 8-week integrative yoga program in people with moderate multiple sclerosis-related disability: a pilot study. Int J MS Care. 2017 Jan-Feb;19(1):30-9. doi: 10.7224/1537-2073.2015-046. PMID: 28243184. Exclusion: 11.
- 143. Cohen ET, Kietrys D, Gould Fogerite S, et al. Feasibility and impact of an 8-week integrative yoga program in people with moderate multiple sclerosis- related disability. Int J MS Care. 2017;19(1):30-9. doi: 10.7224/1537-2073.2015-046. Exclusion: 11.
- 144. Cohen L, Delafontaine A. Impact of pectoralis major stretching on vital capacity in patients with low tetraplegia: randomized controlled study. Kinesitherapie. 2018;18(195):3-9. doi: 10.1016/j.kine.2017.11.008. Exclusion: 13.

- 145. Cohen M, Wetzel J, Pohle-Krauza RJ, et al. Impact of locomotor training and level of injury on ventilatory function in persons' with motor-incomplete spinal cord injury. Physiotherapy. 2011 Jun;97:eS1338. doi: 10.1016/j.physio.2011.04.002. PMID: 29339898. Exclusion: 10.
- 146. Cohen-Holzer M, Katz-Leurer M, Meyer S, et al. The effect of bimanual training with or without constraint on hand functions in children with unilateral cerebral palsy: a non-randomized clinical trial. Phys Occup Ther Pediatr. 2017 Oct 20;37(5):516-27. doi: 10.1080/01942638.2017.1280871. PMID: 28266881. Exclusion: 11.
- 147. Cohen-Holzer M, Katz-Leurer M, Reinstein R, et al. The effect of combining daily restraint with bimanual intensive therapy in children with hemiparetic cerebral palsy: a self-control study. NeuroRehabilitation. 2011;29(1):29-36. doi: 10.3233/NRE-2011-0674. PMID: 21876293. Exclusion: 4.
- 148. Cohen-Holzer M, Sorek G, Kerem J, et al. The impact of combined constraint-induced and bimanual arm training program on the perceived hand-use experience of children with unilateral cerebral palsy. Dev Neurorehabil. 2017 Aug;20(6):355-60. doi: 10.1080/17518423.2016.1238017. PMID: 27739919. Exclusion: 4.
- 149. Cohen-Holzer M, Sorek G, Schweizer M, et al. The influence of a constraint and bimanual training program using a variety of modalities on endurance and on the cardiac autonomic regulation system of children with unilateral cerebral palsy: a self-control clinical trial. NeuroRehabilitation. 2017;41(1):119-26. doi: 10.3233/NRE-171463. PMID: 28505992. Exclusion: 4.
- 150. Collett J, Meaney A, Howells K, et al. Acute recovery from exercise in people with multiple sclerosis: an exploratory study on the effect of exercise intensities. Disabil Rehabil. 2017 Mar;39(6):551-8. doi: 10.3109/09638288.2016.1152604. PMID: 26972274. Exclusion: 4.

- 151. Conklyn D, Stough D, Novak E, et al. A home-based walking program using rhythmic auditory stimulation improves gait performance in patients with multiple sclerosis: a pilot study. Neurorehabil Neural Repair. 2010 Nov-Dec;24(9):835-42. doi: 10.1177/1545968310372139. PMID: 20643882. Exclusion: 4.
- 152. Cook O, Frost G, Twose D, et al. CAN-flip: A pilot gymnastics program for children with cerebral palsy. Adapt Phys Act Q. 2015 Oct;32(4):349-70. doi: 10.1123/APAQ.2015-0026. PMID: 26485738. Exclusion: 11.
- 153. Coote S, Hayes S, Uszynski M, et al. Group aerobic and strength training combined with social cognitive theory based education, results of the step it up RCT. Arch Phys Med Rehabil. 2016;Conference:. 2016 american congress of rehabilitation medicine annual conference, ACRM 2016. United states. Conference start: 20161030. Conference end: 20161104 97(12):e4. Exclusion: 10.
- 154. Coote S, Hayes S, Uszynski M, et al. Group Aerobic and Strength Training Combined With Social Cognitive Theory Based Education, Results of The Step it up RCT...2016 ACRM / American Congress of Rehabilitation Medicine Annual Conference 30 October - 4 November 2016, Chicago, IL. Arch Phys Med Rehabil. 2016;97(12):e4-e. doi: 10.1016/j.apmr.2016.09.009. Exclusion: 10.
- 155. Coote S, Hughes L, Rainsford G, et al. Pilot randomized trial of progressive resistance exercise augmented by neuromuscular electrical stimulation for people with multiple sclerosis who use walking aids. Arch Phys Med Rehabil. 2015 Feb;96(2):197-204. doi: 10.1016/j.apmr.2014.09.021. PMID: 25308884. Exclusion: 4.
- 156. Coote S, Uszynski M, Herring MP, et al. Effect of exercising at minimum recommendations of the multiple sclerosis exercise guideline combined with structured education or attention control education secondary results of the step it up randomised controlled trial. BMC Neurol. 2017 Jun 24;17(1):119. doi: 10.1186/s12883-017-0898-y. PMID: 28646860. Exclusion: 4.

- 157. Corsi C, Santos MM, Moreira RFC, et al. Effect of physical therapy interventions on spatiotemporal gait parameters in children with cerebral palsy: a systematic review. Disabil Rehabil. 2019 Oct 7:1-10. doi: 10.1080/09638288.2019.1671500. PMID: 31588810. Exclusion: 12.
- 158. Corvillo I, Varela E, Armijo F, et al. Efficacy of aquatic therapy for multiple sclerosis: a systematic review. Eur J Phys Rehabil Med. 2017 Dec;53(6):944-52. doi: 10.23736/S1973-9087.17.04570-1. PMID: 28215060. Exclusion: 12.
- 159. Costantino C, Pedrini MF, Licari O. Neuromuscular taping versus sham therapy on muscular strength and motor performance in multiple sclerosis patients. Disabil Rehabil. 2016;38(3):277-81. doi: 10.3109/09638288.2015.1038365. PMID: 25893397 Exclusion: 4.
- 160. Coulter EH, McLean AN, Hasler JP, et al. The effectiveness and satisfaction of webbased physiotherapy in people with spinal cord injury: a pilot randomised controlled trial. Spinal Cord. 2017 Apr;55(4):383-9. doi: 10.1038/sc.2016.125. PMID: 27596027. Exclusion: 4.
- 161. Covarrubias-Escudero F, Rivera-Lillo G, Torres-Castro R, et al. Effects of body weight-support treadmill training on postural sway and gait independence in patients with chronic spinal cord injury. J Spinal Cord Med. 2019;42(1):57-64. doi: 10.1080/10790268.2017.1389676. PMID: 29058553. Exclusion: 11.
- 162. Crane DA, Hoffman JM, Reyes MR. Benefits of an exercise wellness program after spinal cord injury. J Spinal Cord Med. 2017 03;40(2):154-8. doi: 10.1179/2045772315Y.0000000038. PMID: 26108561. Exclusion: 8.
- 163. Cratsenberg KA, Deitrick CE, Harrington TK, et al. Effectiveness of exercise programs for management of shoulder pain in manual wheelchair users with spinal cord injury. J Neurol Phys Ther. 2015 Oct;39(4):197-203. doi: 10.1097/NPT.00000000000103. PMID: 26308939. Exclusion: 3.

- 164. Credeur DP, Stoner L, Dolbow DR, et al. Increasing physical activity in spinal cord injury: upper-body exercise alone not enough? Arch Phys Med Rehabil. 2016;97(1):171-3. doi: 10.1016/j.apmr.2015.09.009. PMID: 26710856. Exclusion: 10.
- 165. Cruickshank TM, Reyes AR, Ziman MR. A systematic review and meta-analysis of strength training in individuals with multiple sclerosis or Parkinson disease. Medicine (Baltimore). 2015 Jan;94(4):e411. doi: 10.1097/MD.000000000000411. PMID: 25634170. Exclusion: 12.
- 166. D'Ancona CA, Clilclet A, Ikari LY, et al. Impact of treadmill gait training with neuromuscular electrical stimulation on the urodynamic profile of patients with high cervical spinal cord injury. Einstein. 2010 Sep;8(3):325-8. doi: 10.1590/S1679-45082010AO1691. PMID: 26760148. Exclusion: 11.
- 167. D'Hooghe M, Van Gassen G, Kos D, et al. Improving fatigue in multiple sclerosis by smartphone-supported energy management: the MS TeleCoach feasibility study. Mult Scler Relat Disord. 2018 May;22:90-6. doi: 10.1016/j.msard.2018.03.020. PMID: 29649789. Exclusion: 4.
- 168. D'Hooghe M B, Feys P, Deltour S, et al. Impact of a 5-day expedition to machu picchu on persons with multiple sclerosis. Mult Scler Int. 2014;2014:761210. doi: 10.1155/2014/761210. PMID: 24967103. Exclusion: 4.
- 169. D'Oliveira GL, Figueiredo FA, Passos MC, et al. Physical exercise is associated with better fat mass distribution and lower insulin resistance in spinal cord injured individuals. J Spinal Cord Med. 2014 Jan;37(1):79-84. doi: 10.1179/2045772313Y.0000000147. PMID: 24090139. Exclusion: 11.
- D'Orio VL, Foley FW, Armentano F, et al. Cognitive and motor functioning in patients with multiple sclerosis: neuropsychological predictors of walking speed and falls. J Neurol Sci. 2012 May 15;316(1-2):42-6. doi: 10.1016/j.jns.2012.02.003. PMID: 22353853. Exclusion: 4.

- 171. Dalgas U, Stenager E, Jakobsen J, et al. Effects of resistance training in relapsingremitting multiple sclerosis-a randomised controlled trial. Mult Scler. 2009 Sep;15(9):S13. doi: 10.1177/1352458509106961. Exclusion: 8.
- 172. Dalgas U, Stenager E, Lund C, et al. Maximal EMG activity increases following resistance training in patients with multiple sclerosis (#140). Mult Scler J Exp Transl Clin. START: 2012 May 31 CONFERENCE END: 2012 Jun 2, 17th Annual Conference of Rehabilitation in Multiple Sclerosis, RIMS 2012 Hamburg Germany;18(5):S24. Exclusion: 10.
- 173. Dalgas U, Stenager E, Sloth M, et al. The effect of exercise on depressive symptoms in multiple sclerosis based on a meta-analysis and critical review of the literature. Eur J Neurol. 2015 Mar;22(3):443-e34. doi: 10.1111/ene.12576. PMID: 25327395. Exclusion: 12.
- 174. Darrah J, Law M. Focus on function: a clinical trial of two intervention approaches for children with cerebral palsy. Physiotherapy. 2011 Jun;97 doi: 10.1016/j.physio.2011.04.002. PMID: 17900362 Exclusion: 10.
- 175. Das SP, Ganesh GS. Evidence-based approach to physical therapy in cerebral palsy. Indian J Orthop. 2019 Jan-Feb;53(1):20-34. doi: 10.4103/ortho.IJOrtho_241_17. PMID: 30905979. Exclusion: 7.
- 176. Dauwan M, Begemann MJH, Slot MIE, et al. Physical exercise improves quality of life, depressive symptoms, and cognition across chronic brain disorders: a transdiagnostic systematic review and metaanalysis of randomized controlled trials. J Neurol. 2019 Aug 14;14:14. doi: 10.1007/s00415-019-09493-9. PMID: 31414194. Exclusion: 12.
- 177. Davies BL, Arpin DJ, Liu M, et al. Two different types of high-frequency physical therapy promote improvements in the balance and mobility of persons with multiple sclerosis. Arch Phys Med Rehabil. 2016 Dec;97(12):2095-101. doi: 10.1016/j.apmr.2016.05.024. PMID: 27373745. Exclusion: 11.

- de Freitas GR, Szpoganicz C, Ilha J. Does neuromuscular electrical stimulation therapy increase voluntary muscle strength after spinal cord injury? A systematic review. Top Spinal Cord Inj Rehabil. 2018;24(1):6-17. doi: 10.1310/sci16-00048. PMID: 29434456. Exclusion: 12.
- de Groot S, de Bruin M, Noomen SP, et al. Mechanical efficiency and propulsion technique after 7 weeks of low-intensity wheelchair training. Clin Biomech. 2008 May;23(4):434-41. doi: 10.1016/j.clinbiomech.2007.11.001. PMID: 18077065. Exclusion: 11.
- 180. de Groot S, Kouwijzer I, Baauw M, et al. Effect of self-guided training for the HandbikeBattle on body composition in people with spinal cord injury. Spinal Cord Ser Cases. 2018 Aug 24;4(79) doi: 10.1038/s41394-018-0103-6. PMID: 30155275. Exclusion: 8.
- 181. De Keersmaecker E, Lefeber N, Geys M, et al. Virtual reality during gait training: does it improve gait function in persons with central nervous system movement disorders? A systematic review and meta-analysis. NeuroRehabilitation. 2019;44(1):43-66. doi: 10.3233/NRE-182551. PMID: 30814368. Exclusion: 12.
- 182. de Oliveira BI, Howie EK, Dunlop SA, et al. SCIPA Com: outcomes from the spinal cord injury and physical activity in the community intervention. Spinal Cord. 2016 Oct;54(10):855-60. doi: 10.1038/sc.2015.235. PMID: 26782840. Exclusion: 8.
- 183. de Oliveira G, Tavares Mda C, de Faria Oliveira JD, et al. Yoga training has positive effects on postural balance and its influence on activities of daily living in people with multiple sclerosis: a pilot study. Explore (NY). 2016 Sep-Oct;12(5):325-32. doi: 10.1016/j.explore.2016.06.005. PMID: 27426024. Exclusion: 11.
- 184. de Paz RH, Serrano-Munoz D, Perez-Nombela S, et al. Combining transcranial direct-current stimulation with gait training in patients with neurological disorders: a systematic review. J Neuroengineering Rehabil. 2019 Sep 14;16(1):114. doi: 10.1186/s12984-019-0591-z. PMID: 31521179. Exclusion: 12.

- 185. de Rossi G, Matos-Souza JR, Costa ESAD, et al. Physical activity and improved diastolic function in spinal cord-injured subjects. Med Sci Sports Exerc. 2014;46(5):887-92. doi: 10.1249/MSS.00000000000187. PMID: 24126969. Exclusion: 8.
- 186. de Souza JA, Corrêa JCF, Agnol LD, et al. Effects of transcranial direct current stimulation on the rehabilitation of painful shoulder following a stroke: protocol for a randomized, controlled, double-blind, clinical trial. Trials. 2019 Mar 15;20(1):165. doi: 10.1186/s13063-019-3266-y. PMID: 30876431. Exclusion: 3.
- 187. de Souza-Teixeira F, Costilla S, Ayan C, et al. Effects of resistance training in multiple sclerosis. Int J Sports Med. 2009 Apr;30(4):245-50. doi: 10.1055/s-0028-1105944. PMID: 19199197. Exclusion: 11.
- 188. Declerck M, Verheul M, Daly D, et al. Benefits and enjoyment of a swimming intervention for youth with cerebral palsy: an RCT study. Pediatr Phys Ther. 2016;28(2):162-9. doi: 10.1097/PEP.000000000000235. PMID: 26871379. Exclusion: 11.
- 189. Dehghansai N, Lemez S, Wattie N, et al. A systematic review of influences on development of athletes with disabilities. Adapt Phys Act Q. 2017 Jan;34(1):72-90. doi: 10.1123/APAQ.2016-0030. PMID: 28218871. Exclusion: 12.
- 190. Dehghansai N, Lemez S, Wattie N, et al. Training and development of Canadian wheelchair basketball players. EJSS (Champaign). 2017 Jun;17(5):511-8. doi: 10.1080/17461391.2016.1276636. PMID: 28099092. Exclusion: 4.
- 191. Del Rosario-Montejo O, Molina-Rueda F, Munoz-Lasa S, et al. Effectiveness of equine therapy in children with psychomotor impairment. Neurologia. 2015 Sep;30(7):425-32. doi: 10.1016/j.nrl.2013.12.023. PMID: 24656851. Exclusion: 13.

- 192. Deley G, Denuziller J, Casillas JM, et al. One year of training with FES has impressive beneficial effects in a 36-yearold woman with spinal cord injury. J Spinal Cord Med. 2017 Jan;40(1):107-12. doi: 10.1080/10790268.2015.1117192. PMID: 26832125. Exclusion: 7.
- 193. Demaneuf T, Aitken Z, Karahalios A, et al. Effectiveness of exercise interventions for pain reduction in people with multiple sclerosis: a systematic review and metaanalysis of randomized controlled trials. Arch Phys Med Rehabil. 2019 Jan;100(1):128-39. doi: 10.1016/j.apmr.2018.08.178. PMID: 30240593. Exclusion: 6.
- 194. Dennett R, Hendrie W, Jarrett L, et al. "I'm in a very good frame of mind": a qualitative exploration of the experience of standing frame use in people with progressive multiple sclerosis. BMJ Open. 2020 Oct 28;10(10):e037680. doi: 10.1136/bmjopen-2020-037680. PMID: 33115893. Exclusion: 4.
- 195. Depiazzi J, Smith N, Gibson N, et al. Aquatic high intensity interval training to improve aerobic capacity is feasible in adolescents with cerebral palsy: pilot randomised controlled trial. Clin Rehabil. 2020 Sep 09:269215520956499. doi: 10.1177/0269215520956499. PMID: 32907375. Exclusion: 11.
- 196. Dettmers C, Sulzmann M, Ruchay-Plossl A, et al. Endurance exercise improves walking distance in MS patients with fatigue. Acta Neurol Scand. 2009 Oct;120(4):251-7. doi: 10.1111/j.1600-0404.2008.01152.x. PMID: 19178385. Exclusion: 4.
- 197. Deutsch JE, Guarrera-Bowlby P, Myslinski MJ, et al. Is there evidence that active videogames increase energy expenditure and exercise intensity for people poststroke and with cerebral palsy? Games Health J. 2015 Feb;4(1):31-7. doi: 10.1089/g4h.2014.0082. PMID: 26181678. Exclusion: 12.
- 198. Devasahayam AJ, Downer MB, Ploughman M. The effects of aerobic exercise on the recovery of walking ability and neuroplasticity in people with multiple sclerosis: a systematic review of animal and clinical studies. Mult Scler Int. 2017;2017 doi: 10.1155/2017/4815958. PMID: 29181199. Exclusion: 12.

- 199. Dewar R, Love S, Johnston LM. Exercise interventions improve postural control in children with cerebral palsy: a systematic review. Dev Med Child Neurol. 2015 Jun;57(6):504-20. doi: 10.1111/dmcn.12660. PMID: 25523410. Exclusion: 12.
- 200. Dingley AA, Pyne DB, Youngson J, et al. Effectiveness of a dry-land resistance training program on strength, power, and swimming performance in paralympic swimmers. J Strength Cond Res. 2015 Mar;29(3):619-26. doi: 10.1519/JSC.000000000000684. PMID: 25226306. Exclusion: 11.
- 201. Diong J, Boswell-Ruys C. Exercise training programmes to improve hand-rim wheelchair propulsion capacity: PEDro systematic review update. Br J Sports Med. 2015 Oct;49(19):1284-5. doi: 10.1136/bjsports-2015-094583. PMID: 25645117. Exclusion: 10.
- 202. DiPiro ND, Embry AE, Fritz SL, et al. Effects of aerobic exercise training on fitness and walking-related outcomes in ambulatory individuals with chronic incomplete spinal cord injury. Spinal Cord. 2016 Sep;54(9):675-81. doi: 10.1038/sc.2015.212. PMID: 26666508. Exclusion: 11.
- 203. DiPiro ND, Holthaus KD, Morgan PJ, et al. Lower extremity strength is correlated with walking function after incomplete SCI. Top Spinal Cord Inj Rehabil. 2015;21(2):133-9. doi: 10.1310/sci2102-133. PMID: 26364282. Exclusion: 11.
- 204. Ditunno JF, Scivoletto G, Patrick M, et al. Validation of the walking index for spinal cord injury in a US and European clinical population. Spinal Cord. 2008 Mar;46(3):181-8. PMID: 17502878. Exclusion: 4.
- 205. Divanoglou A, Georgiou M. Perceived effectiveness and mechanisms of community peer-based programmes for spinal cord injuries-a systematic review of qualitative findings. Spinal Cord. 2017 Mar;55(3):225-34. doi: 10.1038/sc.2016.147. PMID: 27845356. Exclusion: 7.

- 206. Dlugonski D, Motl RW, Mohr DC, et al. Internet-delivered behavioral intervention to increase physical activity in persons with multiple sclerosis: sustainability and secondary outcomes. Psychol Health Med. 2012;17(6):636-51. doi: 10.1080/13548506.2011.652640. PMID: 22313192. Exclusion: 4.
- 207. Do J-H, Yoo E-Y, Jung M-Y, et al. The effects of virtual reality-based bilateral arm training on hemiplegic children's upper limb motor skills. NeuroRehabilitation.
 2016;38(2):115-27. doi: 10.3233/NRE-161302. PMID: 26923353. Exclusion: 11.
- 208. Dodd K, Taylor NF, Shields N, et al. Strength training can improve muscle performance, quality of life and fatigue in adults with multiple sclerosis: a randomised controlled trial. Physiotherapy. 2011 Jun;97:eS293-4. doi: 10.1016/j.physio.2011.04.002. Exclusion: 10.
- 209. Dolbow DR, Gorgey AS, Khalil RK, et al. Effects of a fifty-six month electrical stimulation cycling program after tetraplegia: case report. J Spinal Cord Med. 2017 Jul;40(4):485-8. doi: 10.1080/10790268.2016.1234750. PMID: 27808003. Exclusion: 7.
- 210. Dolbow DR, Gorgey AS, Recio AC, et al. Activity-based restorative therapies after spinal cord injury: inter-institutional conceptions and perceptions. Aging Dis. 2015 Aug;6(4):254-61. doi: 10.14336/AD.2014.1105. PMID: 26236547. Exclusion: 10.
- 211. Dolbow JD, Dolbow DR, Stevens SL, et al. Restorative effects of aquatic exercise therapies on motor, gait, and cardiovascular function in children with cerebral palsy: a review of literature. Journal of Aquatic Physical Therapy. 2017 Summer;25(1):22-9. Exclusion: 12.
- 212. Domagalska-Szopa M, Szopa A, Czamara A. Dependence of gait deviation on weightbearing asymmetry and postural instability in children with unilateral cerebral palsy. PLoS One. 2016;11(10):e0165583. doi: 10.1371/journal.pone.0165583. PMID: 27788247. Exclusion: 4.

- 213. Donati AR, Shokur S, Morya E, et al. Longterm training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients. Sci Rep. 2016 Aug 11;6 doi: 10.1038/srep30383. PMID: 27513629. Exclusion: 11.
- 214. Donenberg JG, Fetters L, Johnson R. The effects of locomotor training in children with spinal cord injury: a systematic review. Dev Neurorehabil. 2019 Jun 19;22(4):272-87. doi: 10.1080/17518423.2018.1487474. PMID: 29920126. Exclusion: 12.
- 215. Dong VA, Fong KN, Chen YF, et al. 'Remind-to-move' treatment versus constraint-induced movement therapy for children with hemiplegic cerebral palsy: a randomized controlled trial. Dev Med Child Neurol. 2017 Feb;59(2):160-7. doi: 10.1111/dmcn.13216. PMID: 27503605. Exclusion: 4.
- 216. Dong VA, Tung IH, Siu HW, et al. Studies comparing the efficacy of constraint-induced movement therapy and bimanual training in children with unilateral cerebral palsy: a systematic review. Dev Neurorehabil. 2013;16(2):133-43. doi: 10.3109/17518423.2012.702136. PMID: 22946588. Exclusion: 9.
- 217. Dost G, Dulgeroglu D, Yildirim A, et al. The effects of upper extremity progressive resistance and endurance exercises in patients with spinal cord injury. J Back Musculoskeletal Rehabil. 2014;27(4):419-26. doi: 10.3233/BMR-140462. PMID: 24614829. Exclusion: 11.
- 218. Dowling AV, Eberly V, Maneekobkunwong S, et al. Telehealth monitor to measure physical activity and pressure relief maneuver performance in wheelchair users. Assist Technol. 2017;29(4):202-9. doi: 10.1080/10400435.2016.1220993. PMID: 27687753. Exclusion: 4.
- 219. Druzbicki M, Rusek W, Snela S, et al. Functional effects of robotic-assisted locomotor treadmill thearapy in children with cerebral palsy. J Rehabil Med. 2013 Apr;45(4):358-63. doi: 10.2340/16501977-1114. PMID: 23450428. Exclusion: 6.

- 220. Druzbicki M, Rusek W, Szczepanik M, et al. Assessment of the impact of orthotic gait training on balance in children with cerebral palsy. Acta Bioeng. 2010;12(3):53-8. PMID: 21243970. Exclusion: 11.
- 221. Duffell LD, Brown GL, Mirbagheri MM. Facilitatory effects of anti-spastic medication on robotic locomotor training in people with chronic incomplete spinal cord injury. J Neuroengineering Rehabil. 2015 Mar 20;12:29. doi: 10.1186/s12984-015-0018-4. PMID: 25881322. Exclusion: 4.
- 222. Duffell LD, Brown GL, Mirbagheri MM. Interventions to reduce spasticity and improve function in people with chronic incomplete spinal cord injury: distinctions revealed by different analytical methods. Neurorehabil Neural Repair. 2015 Jul;29(6):566-76. doi: 10.1177/1545968314558601. PMID: 25398727. Exclusion: 6.
- 223. Duffell LD, Rowlerson AM, Donaldson Nde N, et al. Effects of endurance and strength-directed electrical stimulation training on the performance and histological properties of paralyzed human muscle: a pilot study.[Erratum appears in Muscle Nerve. 2011 Jan;43(1):154]. Muscle Nerve. 2010 Nov;42(5):756-63. doi: 10.1002/mus.21746. PMID: 20976779. Exclusion: 11.
- 224. Duncan B, Shen K, Zou LP, et al. Evaluating intense rehabilitative therapies with and without acupuncture for children with cerebral palsy: a randomized controlled trial. Arch Phys Med Rehabil. 2012 May;93(5):808-15. doi: 10.1016/j.apmr.2011.12.009. PMID: 22541308. Exclusion: 4.
- 225. Dunne AC, Allan DB, Hunt KJ. Characterisation of oxygen uptake response to linearly increasing work rate during robotics-assisted treadmill exercise in incomplete spinal cord injury. Biomed Signal Process Control. 2010;5(1):70-5. doi: 10.1016/j.bspc.2009.09.003. Exclusion: 4.
- Duquette SA, Guiliano AM, Starmer DJ. Whole body vibration and cerebral palsy: a systematic review. J Can Chiropractic Assoc. 2015 Sep;59(3):245-52. PMID: 26500358. Exclusion: 12.

- 227. Dybesland AR, Normann B. Group physiotherapy targeting core stability and balance in individuals with multiple sclerosis. 'Movement analyses and individualisations: potent change-making tools'. Eur J Physiother. 2019;21(2):98-106. doi: 10.1080/21679169.2018.1496473. Exclusion: 7.
- 228. Edwards KA, Molton IR, Smith AE, et al. Relative importance of baseline pain, fatigue, sleep, and physical activity: predicting change in depression in adults with multiple sclerosis. Arch Phys Med Rehabil. 2016 Aug;97(8):1309-15. doi: 10.1016/j.apmr.2016.02.025. PMID: 27016262. Exclusion: 4.
- 229. Edwards T, Barfield JP, Niemiro GM, et al. Physiological responses during a 25-km time trial in elite wheelchair racing athletes. Spinal Cord Ser Cases. 2018 Aug 14;4(77) doi: 10.1038/s41394-018-0114-3. PMID: 30131876. Exclusion: 11.
- 230. Edwards T, Motl RW, Pilutti LA. Cardiorespiratory demand of acute voluntary cycling with functional electrical stimulation in individuals with multiple sclerosis with severe mobility impairment. Appl Physiol Nutr Metab. 2018 Jan;43(1):71-6. doi: 10.1139/apnm-2017-0397. PMID: 28881147. Exclusion: 11.
- 231. Edwards T, Motl RW, Sebastiao E, et al. Pilot randomized controlled trial of functional electrical stimulation cycling exercise in people with multiple sclerosis with mobility disability. Mult Scler Relat Disord. 2018 Nov 8;26:103-11. doi: 10.1016/j.msard.2018.08.020. PMID: 30243234. Exclusion: 11.
- 232. Edwards T, Pilutti LA. The effect of exercise training in adults with multiple sclerosis with severe mobility disability: a systematic review and future research directions. Mult Scler Relat Disord. 2017 Aug;16:31-9. doi: 10.1016/j.msard.2017.06.003. PMID: 28755682. Exclusion: 12.

- 233. Eerden S, Dekker R, Hettinga FJ. Maximal and submaximal aerobic tests for wheelchair-dependent persons with spinal cord injury: a systematic review to summarize and identify useful applications for clinical rehabilitation. Disabil Rehabil. 2018 Mar;40(5):497-521. doi: 10.1080/09638288.2017.1287623. PMID: 28637157. Exclusion: 12.
- 234. Eftekhari E, Etemadifar M. Impact of clinical mat pilates on body composition and functional indices in female patients with multiple sclerosis. Crescent Journal of Medical and Biological Sciences. 2018 Oct;5(4):297-305. Exclusion: 11.
- 235. Eftekhari E, Etemadifar M. Interleukin-10 and brain-derived neurotrophic factor responses to the mat pilates training in women with multiple sclerosis. Scientia Medica. 2018;28(4) doi: 10.15448/1980-6108.2018.4.31668. Exclusion: 11.
- 236. Eftekhari E, Mostahfezian M, Etemadifar M, et al. Resistance training and vibration improve muscle strength and functional capacity in female patients with multiple sclerosis. Asian J Sports Med. 2012 Dec;3(4):279-84. PMID: 23342227. Exclusion: 11.
- 237. Ehling R, Edlinger M, Hermann K, et al. Successful long-term management of spasticity in patients with multiple sclerosis using a software application (APP): a pilot study. Mult Scler Relat Disord. 2017 Oct;17:15-21. doi: 10.1016/j.msard.2017.06.013. PMID: 29055449. Exclusion: 11.
- 238. El Shemy SA. Trunk endurance and gait changes after core stability training in children with hemiplegic cerebral palsy: a randomized controlled trial. J Back Musculoskeletal Rehabil. 2018 Nov 28;31(6):1159-67. doi: 10.3233/BMR-181123. PMID: 30056415. Exclusion: 14.
- 239. El-Basatiny HM, Abdel-Aziem AA. Effect of backward walking training on postural balance in children with hemiparetic cerebral palsy: a randomized controlled study. Clin Rehabil. 2015 May;29(5):457-67. doi: 10.1177/0269215514547654. PMID: 25258425. Exclusion: 14.

- 240. El-Kader SMA. Impact of respiratory muscle training on blood gases and pulmonary function among patients with cervical spinal cord injury. Electron J Gen Med. 2018;15(3) doi: 10.29333/ejgm/85190. Exclusion: 14.
- 241. El-Meniawy GH, Thabet NS. Modulation of back geometry in children with spastic diplegic cerebral palsy via hippotherapy training. Egypt J Med Hum Genet. 2012;13(1):63-71. doi: 10.1016/j.ejmhg.2011.10.004. Exclusion: 14.
- 242. El-Shamy SM. Effect of whole-body vibration on muscle strength and balance in diplegic cerebral palsy: a randomized controlled trial. Am J Phys Med Rehabil. 2014 Feb;93(2):114-21. doi: 10.1097/PHM.0b013e3182a541a4. PMID: 24434887. Exclusion: 14.
- 243. El-Shamy SM. Effects of antigravity treadmill training on gait, balance, and fall risk in children with diplegic cerebral palsy. Am J Phys Med Rehabil. 2017 Nov;96(11):809-15. doi: 10.1097/PHM.000000000000752. PMID: 28410250. Exclusion: 14.
- 244. El-Shamy SM, Abd El Kafy EM. Effect of balance training on postural balance control and risk of fall in children with diplegic cerebral palsy. Disabil Rehabil. 2014;36(14):1176-83. doi: 10.3109/09638288.2013.833312. PMID: 24032716. Exclusion: 14.
- 245. El-Shamy SM, Abdelaal AA. WalkAide efficacy on gait and energy expenditure in children with hemiplegic cerebral palsy: a randomized controlled trial. Am J Phys Med Rehabil. 2016 Sep;95(9):629-38. doi: 10.1097/PHM.000000000000514. PMID: 27149586. Exclusion: 14.
- 246. El-Shamy SM, Eid MA, El-Banna MF. Effect of extracorporeal shock wave therapy on gait pattern in hemiplegic cerebral palsy: a randomized controlled trial. Am J Phys Med Rehabil. 2014 Dec;93(12):1065-72. doi: 10.1097/PHM.00000000000133. PMID: 24879552. Exclusion: 4.

- 247. El-Shamy SM, El-Banna MF. Effect of Wii training on hand function in children with hemiplegic cerebral palsy. Physiother Theory Pract. 2020;36(1):38-44. doi: 10.1080/09593985.2018.1479810. PMID: 29792556. Exclusion: 14.
- 248. Ellapen TJ, Hammill HV, Swanepoel M, et al. The health benefits and constraints of exercise therapy for wheelchair users: a clinical commentary. Afr J Disabil. 2017;6:337. doi: 10.4102/ajod.v6i0.337. PMID: 28936414. Exclusion: 12.
- 249. Ellapen TJ, Hammill HV, Swanepoel M, et al. The benefits of hydrotherapy to patients with spinal cord injuries. Afr J Disabil. 2018 May 16;7(0):450. doi: 10.4102/ajod.v7i0.450. PMID: 29850439. Exclusion: 12.
- 250. Elnaggar RK, Elbanna MF. Evaluation of independent versus integrated effects of reciprocal electrical stimulation and botulinum toxin-A on dynamic limits of postural stability and ankle kinematics in spastic diplegia: a single-blinded randomized trial. Eur J Phys Rehabil Med. 2019 Apr;55(2):241-9. doi: 10.23736/S1973-9087.18.05196-1. PMID: 29904047. Exclusion: 4.
- 251. Elnahhas AM, Elshennawy S, Aly MG. Effects of backward gait training on balance, gross motor function, and gait in children with cerebral palsy: a systematic review. Clin Rehabil. 2018 Jul 25;33(1):3-12. doi: 10.1177/0269215518790053. PMID: 30043634. Exclusion: 12.
- 252. Elshafey MA, Abd-Elaziem A, Gouda RE. Corrigendum to "functional stretching exercise submitted for spastic diplegic children: a randomized control study". Rehabil Res Pract. 2016;2016 doi: 10.1155/2016/1615024. PMID: 27721993 Exclusion: 10.
- 253. Elsworth C, Winward C, Sackley C, et al. Supported community exercise in people with long-term neurological conditions: a phase II randomized controlled trial. Clin Rehabil. 2011 Jul;25(7):588-98. doi: 10.1177/0269215510392076. PMID: 21382866. Exclusion: 3.

- 254. Elvrum AK, Braendvik SM, Saether R, et al. Effectiveness of resistance training in combination with botulinum toxin-A on hand and arm use in children with cerebral palsy: a pre-post intervention study. BMC Pediatr. 2012 Jul 2;12:91. doi: 10.1186/1471-2431-12-91. PMID: 22747635. Exclusion: 11.
- 255. Emara H. Effect of a new physical therapy concept on dynamic balance in children with spastic diplegic cerebral palsy. Egypt J Med Hum Genet. 2015 Jan;16(1):77-83. doi: 10.1016/j.ejmhg.2014.09.001. Exclusion: 14.
- English C. Patients spend an alarmingly high proportion of the day sedentary. Int J Ther Rehabil. 2011 Feb;18(2):117. doi: 10.12968/ijtr.2011.18.2.117. Exclusion: 10.
- 257. Ensari I, Motl RW, Pilutti LA. Exercise training improves depressive symptoms in people with multiple sclerosis: results of a meta-analysis. J Psychosom Res. 2014 Jun;76(6):465-71. doi: 10.1016/j.jpsychores.2014.03.014. PMID: 24840141. Exclusion: 9.
- 258. Ensari I, Sandroff BM, Motl RW. Effects of single bouts of walking exercise and yoga on acute mood symptoms in people with multiple sclerosis. Int J MS Care. 2016 Jan-Feb;18(1):1-8. doi: 10.7224/1537-2073.2014-104. PMID: 26917992. Exclusion: 11.
- 259. Ensari I, Sandroff BM, Motl RW. Intensity of treadmill walking exercise on acute mood symptoms in persons with multiple sclerosis. Anxiety Stress Coping. 2017 Jan;30(1):15-25. doi: 10.1080/10615806.2016.1146710. PMID: 26828264. Exclusion: 11.
- 260. Erickson ML, Ryan TE, Backus D, et al. Endurance neuromuscular electrical stimulation training improves skeletal muscle oxidative capacity in individuals with motor-complete spinal cord injury. Muscle Nerve. 2017 May;55(5):669-75. doi: 10.1002/mus.25393. PMID: 27576602. Exclusion: 11.

- 261. Eriks-Hoogland I, de Groot S, Snoek G, et al. Association of shoulder problems in persons with spinal cord injury at discharge from inpatient rehabilitation with activities and participation 5 years later. Arch Phys Med Rehabil. 2016 Jan;97(1):84-91. doi: 10.1016/j.apmr.2015.08.432. PMID: 26376446. Exclusion: 8.
- 262. Ertekin O, Özakbaş S, Idiman E, et al. The effects of low and severe disability on walking abilities and quality of life in multiple sclerosis patients: 6-month follow-up study. Noropsikiyatri Arsivi.
 2013;50(1):23-9. doi: 10.4274/npa.y6213. Exclusion: 11.
- 263. ErtekIn O, Özakbaş S, Idiman E, et al. Quality of life, fatigue and balance improvements after home-based exercise program in multiple sclerosis patients. Noropsikiyatri Arsivi. 2012;49(1):33-8. doi: 10.4274/npa.y6091. Exclusion: 4.
- 264. Esclarin-De Ruz A, Alcobendas-Maestro M, Casado-Lopez R, et al. [A robotic system for gait re-education in patients with an incomplete spinal cord injury]. Rev Neurol. 2009 Dec 16-31;49(12):617-22. PMID: 20013712. Exclusion: 13.
- 265. Esnouf JE, Taylor PN, Mann GE, et al. Impact on activities of daily living using a functional electrical stimulation device to improve dropped foot in people with multiple sclerosis, measured by the Canadian Occupational Performance Measure. Mult Scler. 2010 Sep;16(9):1141-7. doi: 10.1177/1352458510366013. PMID: 20601398. Exclusion: 4.
- 266. Espinosa IB, Platas MG, Chavez JJR, et al. Randomized and blinded study to assess the complementary therapies contribution to treat MS. Mult Scler. 2015;Conference:. 2015 progress in MS research conference. Melbourne, VIC australia. Conference start: 20151029. Conference end: 20151030. Conference publication:(var.pagings) 21(14):21. Exclusion: 10.
- 267. Estes S, Iddings JA, Ray S, et al. Comparison of single-session dose response effects of whole body vibration on spasticity and walking speed in persons with spinal cord injury. Neurother. 2018 Jul;15(3):684-96. doi: 10.1007/s13311-018-0644-1. PMID: 29959653. Exclusion: 4.

- 268. Estes SP, Iddings JA, Field-Fote EC.
 Priming neural circuits to modulate spinal reflex excitability. Front Neurol. 2017 Feb 3;8:17. doi: 10.3389/fneur.2017.00017.
 PMID: 28217104. Exclusion: 4.
- 269. Etoom M, Khraiwesh Y, Lena F, et al. Effectiveness of physiotherapy interventions on spasticity in people with multiple sclerosis: a systematic review and metaanalysis. Am J Phys Med Rehabil. 2018 Nov;97(11):793-807. doi: 10.1097/PHM.000000000000970. PMID: 29794531. Exclusion: 12.
- 270. Eugster-Buesch F, de Bruin ED, Boltshauser E, et al. Forced-use therapy for children with cerebral palsy in the community setting: a single-blinded randomized controlled pilot trial. J Pediatr Rehabil Med. 2012;5(2):65-74. doi: 10.3233/PRM-2012-0198. PMID: 22699097. Exclusion: 4.
- 271. Evans N, Hartigan C, Kandilakis C, et al. Acute cardiorespiratory and metabolic responses during exoskeleton-assisted walking overground among persons with chronic spinal cord injury. Top Spinal Cord Inj Rehabil. 2015 Spring;21(2):122-32. doi: 10.1310/sci2102-122. PMID: 26364281. Exclusion: 11.
- 272. Faes Y, Banz N, Buscher N, et al. Acute effects of partial-body vibration in sitting position. World J Orthop. 2018 Sep 18;9(9):156-64. doi: 10.5312/wjo.v9.i9.156. PMID: 30254972. Exclusion: 3.
- 273. Fakolade A, Bisson EJ, Petrin J, et al. Effect of comorbidities on outcomes of neurorehabilitation interventions in multiple sclerosis: A scoping review. Int J MS Care. 2016 Nov-Dec;18(6):282-90. doi: 10.7224/1537-2073.2016-015. PMID: 27999522. Exclusion: 12.
- 274. Fakolade A, Finlayson M, Plow M. Using telerehabilitation to support people with multiple sclerosis: a qualitative analysis of interactions, processes, and issues across three interventions. Br J Occup Ther. 2017;80(4):259-68. doi: 10.1177/0308022617690405. Exclusion: 4.

- 275. Fang Y, Morse LR, Nguyen N, et al. Functional electrical stimulation (FES)assisted rowing combined with zoledronic acid, but not alone, preserves distal femur strength and stiffness in people with chronic spinal cord injury. Osteoporos Int. 2020 Sep 04;04:04. doi: 10.1007/s00198-020-05610x. PMID: 32888047. Exclusion: 4.
- 276. Fasoli SE, Fragala-Pinkham M, Hughes R, et al. Upper limb robotic therapy for children with hemiplegia. Am J Phys Med Rehabil. 2008 Nov;87(11):929-36. doi: 10.1097/PHM.0b013e31818a6aa4. PMID: 18936558. Exclusion: 11.
- 277. Fasoli SE, Fragala-Pinkham M, Hughes R, et al. Robotic therapy and botulinum toxin type A: a novel intervention approach for cerebral palsy. Am J Phys Med Rehabil. 2008 Dec;87(12):1022-5. doi: 10.1097/PHM.0b013e31817fb346. PMID: 18617860. Exclusion: 7.
- 278. Federici S, Meloni F, Bracalenti M, et al. The effectiveness of powered, active lower limb exoskeletons in neurorehabilitation: a systematic review. NeuroRehabilitation. 2015;37(3):321-40. doi: 10.3233/NRE-151265. PMID: 26529583. Exclusion: 12.
- 279. Fehlings D, Switzer L, Findlay B, et al. Interactive computer play as "motor therapy" for individuals with cerebral palsy. Semin Pediatr Neurol. 2013 Jun;20(2):127-38. doi: 10.1016/j.spen.2013.06.003. PMID: 23948687. Exclusion: 9.
- 280. Feitosa LC, Muzzolon SRB, Rodrigues DCB, et al. The effect of adapted sports in quality of life and biopsychosocial profile of children and adolescents with cerebral palsy. Rev Paul Pediatr. 2017 Oct-Dec;35(4):429-35. doi: 10.1590/1984-0462/;2017;35;4;00001. PMID: 29185624. Exclusion: 11.
- 281. Felippe LA, Salgado PR, de Souza Silvestre D, et al. A controlled clinical trial on the effects of exercise on cognition and mobility in adults with multiple sclerosis. Am J Phys Med Rehabil. 2019 Feb;98(2):97-102. doi: 10.1097/PHM.000000000000987. PMID: 29927751. Exclusion: 11.

- 282. Felippe LA, Salgado PR, Silvestre DS, et al. A controlled clinical trial on the effects of exercise on cognition and mobility in adults with multiple sclerosis. Am J Phys Med Rehabil. 2019 Feb;98(2):97-102. doi: 10.1097/PHM.000000000000987. PMID: 29927751. Exclusion: 11.
- 283. Feltham MG, Collett J, Izadi H, et al. Cardiovascular adaptation in people with multiple sclerosis following a twelve week exercise programme suggest deconditioning rather than autonomic dysfunction caused by the disease. Results from a randomized controlled trial. Eur J Phys Rehabil Med. 2013 Dec;49(6):765-74. PMID: 23877228. Exclusion: 11.
- 284. Fenuta AM, Hicks AL. Metabolic demand and muscle activation during different forms of bodyweight supported locomotion in men with incomplete SCI. Biomed Res Int. 2014;2014 doi: 10.1155/2014/632765. PMID: 24971340. Exclusion: 11.
- 285. Fernandes LC, Chitra J, Metgud D, et al. Effectiveness of artifical [sic] horse riding on postural control in spastic diplegics -RCT. Indian J Physiother Occup Ther. 2008;2(4):36-40. Exclusion: 3.
- 286. Ferre CL, Brandao M, Surana B, et al. Caregiver-directed home-based intensive bimanual training in young children with unilateral spastic cerebral palsy: a randomized trial. Dev Med Child Neurol. 2017 May;59(5):497-504. doi: 10.1111/dmcn.13330. PMID: 27864822. Exclusion: 4.
- 287. Ferreira AP, Pegorare AB, Salgado PR, et al. Impact of a pelvic floor training program among women with multiple sclerosis: a controlled clinical trial. Am J Phys Med Rehabil. 2016 Jan;95(1):1-8. doi: 10.1097/PHM.000000000000302. PMID: 25888662. Exclusion: 11.
- 288. Feys P, Coninx K, Kerkhofs L, et al. Robotsupported upper limb training in a virtual learning environment : a pilot randomized controlled trial in persons with MS. J Neuroengineering Rehabil. 2015 Jul 23;12:60. doi: 10.1186/s12984-015-0043-3. PMID: 26202325. Exclusion: 11.

- 289. Feys P, Moumdjian L, Van Halewyck F, et al. Effects of an individual 12-week community-located "start-to-run" program on physical capacity, walking, fatigue, cognitive function, brain volumes, and structures in persons with multiple sclerosis. Mult Scler. 2019 Nov 1;25(1):92-103. doi: 10.1177/1352458517740211. PMID: 29113572. Exclusion: 4.
- 290. Field T. Yoga research review. Complement Ther Clin Pract. 2016 Aug;24:145-61. doi: 10.1016/j.ctcp.2016.06.005. PMID: 27502816. Exclusion: 3.
- 291. Filipi ML, Kucera DL, Filipi EO, et al. Improvement in strength following resistance training in MS patients despite varied disability levels. NeuroRehabilitation. 2011;28(4):373-82. doi: 10.3233/NRE-2011-0666. PMID: 21725171. Exclusion: 8.
- 292. Filipi ML, Leuschen MP, Huisinga J, et al. Impact of resistance training on balance and gait in multiple sclerosis. Int J MS Care. 2010;12(1):6-12. doi: 10.7224/1537-2073-12.1.6. Exclusion: 8.
- 293. Fischer M, Vialleron T, Laffaye G, et al. Long-term effects of whole-body vibration on human gait: a systematic review and meta-analysis. Front Neurol. 2019;10:627. doi: 10.3389/fneur.2019.00627. PMID: 31316447. Exclusion: 12.
- 294. Fisher-Pipher SPD, Kenyon LKPDPP, Westman MPD. Improving balance, mobility, and dual-task performance in an adolescent with cerebral palsy: a case report. Physiother Theory Pract. 2017 Jul;33(7):586-95. doi: 10.1080/09593985.2017.1323359. PMID: 28509631. Exclusion: 7.
- 295. Flachenecker P, Bures AK, Gawlik A, et al. Efficacy of an Internet-Based Program to Promote Physical Activity and Exercise after Inpatient Rehabilitation in Persons with Multiple Sclerosis: A Randomized, Single-Blind, Controlled Study. Int J Environ Res Public Health. 2020 Jun 24;17(12):24. doi: 10.3390/ijerph17124544. PMID: 32599767. Exclusion: 4.

- 296. Fleerkotte BM, Koopman B, Buurke JH, et al. The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study. J Neuroengineering Rehabil. 2014 Mar 4;11:26. doi: 10.1186/1743-0003-11-26. PMID: 24594284. Exclusion: 11.
- 297. Fluet GG, Qiu Q, Kelly D, et al. Interfacing a haptic robotic system with complex virtual environments to treat impaired upper extremity motor function in children with cerebral palsy. Dev Neurorehabil. 2010;13(5):335-45. doi: 10.3109/17518423.2010.501362. PMID: 20828330. Exclusion: 11.
- 298. Fornusek C, Davis GM, Russold MF. Pilot study of the effect of low-cadence functional electrical stimulation cycling after spinal cord injury on thigh girth and strength. Arch Phys Med Rehabil. 2013 May;94(5):990-3. doi: 10.1016/j.apmr.2012.10.010. PMID: 23123504. Exclusion: 11.
- 299. Fornusek C, Hoang P. Neuromuscular electrical stimulation cycling exercise for persons with advanced multiple sclerosis. J Rehabil Med. 2014 Jul;46(7):698-702. doi: 10.2340/16501977-1792. PMID: 24763902. Exclusion: 11.
- 300. Forrest GF, Lorenz DJ, Hutchinson K, et al. Ambulation and balance outcomes measure different aspects of recovery in individuals with chronic, incomplete spinal cord injury. Arch Phys Med Rehabil. 2012 Sep;93(9):1553-64. doi: 10.1016/j.apmr.2011.08.051. PMID: 22920452. Exclusion: 7.
- 301. Forsberg AS, Von Koch L, Nilsagard YE. Effects of a balance programme focusing on core stability exercises and dual-task activities in persons with multiple sclerosis: a randomized controlled trial. Mult Scler J Exp Transl Clin. 2013 Oct;19(11):62-3. doi: 10.1177/1352458513502433. Exclusion: 10.
- 302. Fosdahl M, Holm I, Jahnsen R. The effect of progressive resistance exercise training and stretching of the hamstrings muscle in ambulant children with cerebral palsy - a randomized controlled trial. Dev Med Child Neurol. 2017;59:48. doi: 10.1111/dmcn.71_13511. Exclusion: 10.

- 303. Fosdahl MA, Jahnsen R, Kvalheim K, et al. Stretching and progressive resistance exercise in children with cerebal palsy: a randomised controlled trial. Pediatr Phys Ther. 2019 Jul;31(3):264-71. doi: 10.1097/PEP.000000000000616. PMID: 31220010. Exclusion: 6.
- 304. Foster H, DeMark L, Spigel PM, et al. The effects of backward walking training on balance and mobility in an individual with chronic incomplete spinal cord injury: a case report. Physiother Theory Pract. 2016 Oct;32(7):536-45. doi: 10.1080/09593985.2016.1206155. PMID: 27482619. Exclusion: 7.
- 305. Fox EE, Hough AD, Creanor S, et al. The effects of pilates-based core stability training in ambulant people with multiple sclerosis: a multicentre, block randomised, double blinded placebo controlled trial. Mult Scler J Exp Transl Clin. 2013 Oct;19(11):40. doi: 10.1177/1352458513502433. Exclusion: 10.
- 306. Fox EJ, Tester NJ, Butera KA, et al. Retraining walking adaptability following incomplete spinal cord injury. Spinal Cord Ser Cases. 2017;3 doi: 10.1038/s41394-017-0003-10. PMID: 29449967. Exclusion: 7.
- 307. Foy T, Perritt G, Thimmaiah D, et al. The SCIRehab project: treatment time spent in SCI rehabilitation. Occupational therapy treatment time during inpatient spinal cord injury rehabilitation. J Spinal Cord Med. 2011;34(2):162-75. doi: 10.1179/107902611X12971826988093. PMID: 21675355. Exclusion: 3.
- Fragala-Pinkham MA, Smith HJ, Lombard KA, et al. Aquatic aerobic exercise for children with cerebral palsy: a pilot intervention study. Physiother Theory Pract. 2014 Feb;30(2):69-78. doi: 10.3109/09593985.2013.825825. PMID: 24328930. Exclusion: 11.
- 309. Fragoso YD, Santana DL, Pinto RC. The positive effects of a physical activity program for multiple sclerosis patients with fatigue. NeuroRehabilitation. 2008;23(2):153-7. PMID: 18525136. Exclusion: 11.

- Francisco GE, Yozbatiran N, Berliner J, et al. Robot-assisted training of arm and hand movement shows functional improvements for incomplete cervical spinal cord injury. Am J Phys Med Rehabil. 2017 Oct;96(10 Suppl 1):S171-S7. doi: 10.1097/PHM.000000000000815. PMID: 28857769. Exclusion: 11.
- Frank R, Larimore J. Yoga as a method of symptom management in multiple sclerosis. Front Neurosci. 2015;9:133. doi: 10.3389/fnins.2015.00133. PMID: 25983675. Exclusion: 12.
- 312. Freeman J, Hendrie W, Jarrett L, et al. Assessment of a home-based standing frame programme in people with progressive multiple sclerosis (SUMS): a pragmatic, multi-centre, randomised, controlled trial and cost-effectiveness analysis. Lancet neurol. 2019 Aug;18(8):736-47. doi: 10.1016/S1474-4422(19)30190-5. PMID: 31301748. Exclusion: 4.
- Freeman JA, Gear M, Pauli A, et al. The effect of core stability training on balance and mobility in ambulant individuals with multiple sclerosis: a multi-centre series of single case studies. Mult Scler. 2010 Nov;16(11):1377-84. doi: 10.1177/1352458510378126. PMID: 20699285. Exclusion: 7.
- Freeman JA, Hendrie W, Creanor S, et al. Standing up in multiple sclerosis (SUMS): protocol for a multi-centre randomised controlled trial evaluating the clinical and cost effectiveness of a home-based selfmanagement standing frame programme in people with progressive multiple sclerosis. BMC Neurol. 2016 May 5;16:62. doi: 10.1186/s12883-016-0581-8. PMID: 27149954. Exclusion: 10.
- 315. Frevel D, Maurer M. Internet-based home training is capable to improve balance in multiple sclerosis: a randomized controlled trial. Eur J Phys Rehabil Med. 2015 Feb;51(1):23-30. PMID: 24755773. Exclusion: 11.
- Frisk RF, Jensen P, Kirk H, et al. Contribution of sensory feedback to plantar flexor muscle activation during push-off in adults with cerebral palsy. J Neurophysiol. 2017 Dec 1;118(6):3165-74. doi: 10.1152/jn.00508.2017. PMID: 28904105. Exclusion: 4.

- Froehlich-Grobe K, Aaronson LS, Washburn RA, et al. An exercise trial for wheelchair users: project workout on wheels. Contemp Clin Trials. 2012 Mar;33(2):351-63. doi: 10.1016/j.cct.2011.10.014. PMID: 22101206. Exclusion: 4.
- 318. Froehlich-Grobe K, Lee J, Aaronson L, et al. Exercise for everyone: a randomized controlled trial of project workout on wheels in promoting exercise among wheelchair users. Arch Phys Med Rehabil. 2014 Jan;95(1):20-8. doi: 10.1016/j.apmr.2013.07.006. PMID: 23872080. Exclusion: 4.
- Fundaro C, Giardini A, Maestri R, et al. Motor and psychosocial impact of robotassisted gait training in a real-world rehabilitation setting: a pilot study. PLoS One. 2018;13(2):e0191894. doi: 10.1371/journal.pone.0191894. PMID: 29444172. Exclusion: 5.
- 320. Gagliardi C, Turconi AC, Biffi E, et al. Immersive virtual reality to improve walking abilities in cerebral palsy: a pilot study. Ann Biomed Eng. 2018 Sep;46(9):1376-84. doi: 10.1007/s10439-018-2039-1. PMID: 29704186. Exclusion: 11.
- 321. Galea M, Dunlop S, Geraghty T, et al. Intensive exercise program after spinal cord injury (SCIPA full-on): a randomized controlled trial. Ann Phys Rehabil Med. 2018 Jul;61:e42. doi: 10.1016/j.rehab.2018.05.094. Exclusion: 10.
- 322. Galea MP, Panisset MG, El-Ansary D, et al. SCIPA Switch-On: a randomized controlled trial investigating the efficacy and safety of functional electrical stimulation-assisted cycling and passive cycling initiated early after traumatic spinal cord injury. Neurorehabil Neural Repair. 2017;31(6):540-51. doi: 10.1177/1545968317697035. Exclusion: 3.
- 323. Gandhi P, Chan K, Verrier MC, et al. Training to improve walking after pediatric spinal cord injury: a systematic review of parameters and walking outcomes. J Neurotrauma. 2017 May 1;34(9):1713-25. doi: 10.1089/neu.2016.4501. PMID: 27869534. Exclusion: 12.

- 324. Gandolfi M, Geroin C, Picelli A, et al. Robot-assisted vs. sensory integration training in treating gait and balance dysfunctions in patients with multiple sclerosis: a randomized controlled trial. Front Hum Neurosci. 2014;8:318. doi: 10.3389/fnhum.2014.00318. PMID: 24904361. Exclusion: 11.
- 325. Gant KL, Nagle KG, Cowan RE, et al. Body system effects of a multi-modal training program targeting chronic, motor complete thoracic spinal cord injury. J Neurotrauma. 2018 Feb 1;35(3):411-23. doi: 10.1089/neu.2017.5105. PMID: 28795657. Exclusion: 11.
- 326. Gao J, He L, Yu X, et al. Rehabilitation with a combination of scalp acupuncture and exercise therapy in spastic cerebral palsy. Complement Ther Clin Pract. 2019 May;35:296-300. doi: 10.1016/j.ctcp.2019.03.002. PMID: 31003673. Exclusion: 4.
- 327. Garcia-Gomez S, Perez-Tejero J, Hoozemans M, et al. Effect of a home-based exercise program on shoulder pain and range of motion in elite wheelchair basketball players: a non-randomized controlled trial. Sports (Basel). 2019 Jul 24;7(8):24. doi: 10.3390/sports7080180. PMID: 31344871. Exclusion: 4.
- 328. Garcia-Mendez Y, Pearlman JL, Boninger ML, et al. Health risks of vibration exposure to wheelchair users in the community. J Spinal Cord Med. 2013 Jul;36(4):365-75. doi: 10.1179/2045772313Y.0000000124. PMID: 23820152. Exclusion: 7.
- 329. Garshick E, Mulroy S, Graves DE, et al. Active lifestyle is associated with reduced dyspnea and greater life satisfaction in spinal cord injury. Arch Phys Med Rehabil. 2016 10;97(10):1721-7. doi: 10.1016/j.apmr.2016.02.010. PMID: 26951870. Exclusion: 4.
- 330. Gaspard L, Tombal B, Castille Y, et al. Pelvic floor muscles training, electrical stimulation, bladder training and lifestyle interventions to manage lower urinary tract dysfunction in multiple sclerosis: a systematic review. Prog Urol. 2014 Mar;24(4):222-8. doi: 10.1016/j.purol.2013.11.004. PMID: 24560290. Exclusion: 13.

- 331. Gaspard L, Tombal B, Opsomer RJ, et al. [Physiotherapy and neurogenic lower urinary tract dysfunction in multiple sclerosis patients: a randomized controlled trial]. Prog Urol. 2014 Sep;24(11):697-707. doi: 10.1016/j.purol.2014.05.003. PMID: 25214451. Exclusion: 13.
- 332. Gates PE, Banks D, Johnston TE, et al. Randomized controlled trial assessing participation and quality of life in a supported speed treadmill training exercise program vs. a strengthening program for children with cerebral palsy. J Pediatr Rehabil Med. 2012;5(2):75-88. doi: 10.3233/PRM-2012-0199. PMID: 22699098. Exclusion: 4.
- 333. Gatica-Rojas V, Cartes-Velasquez R, Guzman-Munoz E, et al. Effectiveness of a Nintendo Wii balance board exercise programme on standing balance of children with cerebral palsy: a randomised clinical trial protocol. Contemp Clin Trials Commun. 2017 Jun;6:17-21. doi: 10.1016/j.conctc.2017.02.008. PMID: 29740634. Exclusion: 10.
- 334. Gatica-Rojas V, Cartes-Velasquez R, Mendez-Rebolledo G, et al. Effects of a Nintendo Wii exercise program on spasticity and static standing balance in spastic cerebral palsy. Dev Neurorehabil. 2017 Aug;20(6):388-91. doi: 10.1080/17518423.2016.1211770. PMID: 27538127. Exclusion: 11.
- 335. Gatica-Rojas V, Cartes-Velasquez R, Mendez-Rebolledo G, et al. Change in functional balance after an exercise program with Nintendo Wii in Latino patients with cerebral palsy: a case series. J Phys Ther Sci. 2016 Aug;28(8):2414-7. doi: 10.1589/jpts.28.2414. PMID: 27630446. Exclusion: 7.
- 336. Gatica-Rojas V, Mendez-Rebolledo G, Guzman-Munoz E, et al. Does Nintendo Wii balance board improve standing balance? A randomized controlled trial in children with cerebral palsy. Eur J Phys Rehabil Med. 2017 Aug;53(4):535-44. doi: 10.23736/S1973-9087.16.04447-6. PMID: 27882910. Exclusion: 11.

- 337. Gauthier C, Brosseau R, Hicks AL, et al. Feasibility, safety, and preliminary effectiveness of a home-based self-managed high-intensity interval training program offered to long-term manual wheelchair users. Rehabil Res Pract. 2018;2018:8209360. doi: 10.1155/2018/8209360. PMID: 29888007. Exclusion: 4.
- 338. Geddes EL, Costello E, Raivel K, et al. The effects of a twelve-week home walking program on cardiovascular parameters and fatigue perception of individuals with multiple sclerosis: a pilot study. Cardiopulm Phys Ther J. 2009 Mar;20(1):5-12. PMID: 20467528 Exclusion: 11.
- 339. Ghai S, Ghai I, Effenberg AO. Effects of dual tasks and dual-task training on postural stability: a systematic review and metaanalysis. Clin Interv Aging. 2017;12:557-77. doi: 10.2147/CIA.S125201. PMID: 28356727. Exclusion: 12.
- 340. Gharib NM, El-Maksoud GM, Rezk-Allah SS. Efficacy of gait trainer as an adjunct to traditional physical therapy on walking performance in hemiparetic cerebral palsied children: a randomized controlled trial. Clin Rehabil. 2011 Oct;25(10):924-34. doi: 10.1177/0269215511400768. PMID: 21427153. Exclusion: 14.
- 341. Giacobbi PR, Jr., Dietrich F, Larson R, et al. Exercise and quality of life in women with multiple sclerosis. Adapt Phys Act Q. 2012 Jul;29(3):224-42. PMID: 22811564. Exclusion: 11.
- 342. Gibbons RS, Stock CG, Andrews BJ, et al. The effect of FES-rowing training on cardiac structure and function: pilot studies in people with spinal cord injury. Spinal Cord. 2016 Oct;54(10):822-9. doi: 10.1038/sc.2015.228. PMID: 26754476. Exclusion: 11.
- 343. Gibbs JC, Gagnon DH, Bergquist AJ, et al. Rehabilitation interventions to modify endocrine-metabolic disease risk in individuals with chronic spinal cord injury living in the community (RIISC): a systematic review and scoping perspective. J Spinal Cord Med. 2017 Nov;40(6):733-47. doi: 10.1080/10790268.2017.1350341. PMID: 28703038. Exclusion: 12.

- 344. Giesser B, Herlihy E, Plummer D'Amato P, et al. Randomised, controlled trial of robotic locomotor training in persons with multiple sclerosis. Mult Scler J Exp Transl Clin. 2011 Oct;17(10 SUPPL. 1):S480-S1. doi: 10.1177/1352458511422301. Exclusion: 10.
- 345. Gilbertson RM, Klatt MD. Mindfulness in motion for people with multiple sclerosis: a feasibility study. Int J MS Care. 2017 Sep-Oct;19(5):225-31. doi: 10.7224/1537-2073.2015-095. PMID: 29070962. Exclusion: 4.
- 346. Gillett JG, Boyd RN, Carty CP, et al. The impact of strength training on skeletal muscle morphology and architecture in children and adolescents with spastic cerebral palsy: a systematic review. Res Dev Disabil. 2016 Sep;56:183-96. doi: 10.1016/j.ridd.2016.06.003. PMID: 27337690. Exclusion: 12.
- 347. Gillett JG, Lichtwark GA, Boyd RN, et al. Functional anaerobic and strength training in young adults with cerebral palsy. Med Sci Sports Exerc. 2018 Aug;50(8):1549-57. doi: 10.1249/MSS.000000000001614. PMID: 29557839. Exclusion: 11.
- 348. Giray E, Karadag-Saygi E, Ozsoy T, et al. The effects of vest type dynamic elastomeric fabric orthosis on sitting balance and gross manual dexterity in children with cerebral palsy: a single-blinded randomised controlled study. Disabil Rehabil. 2020 Oct 7;42(3):410-8. doi: 10.1080/09638288.2018.1501098. PMID: 30293457. Exclusion: 4.
- 349. Glinsky J, Harvey L, Korten M, et al. Shortterm progressive resistance exercise may not be effective at increasing wrist strength in people with tetraplegia: a randomised controlled trial. Aust J Physiother. 2008;54(2):103-8. PMID: 18492001. Exclusion: 4.
- 350. Glinsky J, Harvey L, van Es P, et al. The addition of electrical stimulation to progressive resistance training does not enhance the wrist strength of people with tetraplegia: a randomized controlled trial. Clin Rehabil. 2009 Aug;23(8):696-704. doi: 10.1177/0269215509104171. PMID: 19470552. Exclusion: 4.

- 351. Gollie JM, Guccione AA, Panza GS, et al. Effects of overground locomotor training on walking performance in chronic cervical motor incomplete spinal cord injury: a pilot study. Arch Phys Med Rehabil. 2017 Jun;98(6):1119-25. doi: 10.1016/j.apmr.2016.10.022. PMID: 27965006. Exclusion: 11.
- 352. Golzari Z, Shabkhiz F, Soudi S, et al. Combined exercise training reduces IFNgamma and IL-17 levels in the plasma and the supernatant of peripheral blood mononuclear cells in women with multiple sclerosis. Int Immunopharmacol. 2010 Nov;10(11):1415-9. doi: 10.1016/j.intimp.2010.08.008. PMID: 20797460. Exclusion: 11.
- 353. Gomes-Osman J, Tibbett JA, Poe BP, et al. Priming for improved hand strength in persons with chronic tetraplegia: a comparison of priming-augmented functional task practice, priming alone, and conventional exercise training. Front Neurol. 2017;7(JAN) doi: 10.3389/fneur.2016.00242. Exclusion: 4.
- 354. Gonzales B, Chopard G, Charry B, et al. Effects of a training program involving body cooling on physical and cognitive capacities and quality of life in multiple sclerosis patients: a pilot study. Eur Neurol. 2017;78(1-2):71-7. doi: 10.1159/000477580. PMID: 28697504. Exclusion: 11.
- 355. Goosey-Tolfrey V, Foden E, Perret C, et al. Effects of inspiratory muscle training on respiratory function and repetitive sprint performance in wheelchair basketball players. Br J Sports Med. 2010 Jul;44(9):665-8. doi: 10.1136/bjsm.2008.049486. PMID: 18603575. Exclusion: 11.
- 356. Gorgey AS, Dolbow DR, Cifu DX, et al. Neuromuscular electrical stimulation attenuates thigh skeletal muscles atrophy but not trunk muscles after spinal cord injury. J Electromyogr Kinesiol. 2013 Aug;23(4):977-84. doi: 10.1016/j.jelekin.2013.04.007. PMID: 23683374. Exclusion: 11.

- 357. Gorgey AS, Khalil RE, Gill R, et al. Effects of testosterone and evoked resistance exercise after spinal cord injury (TEREX-SCI): study protocol for a randomised controlled trial. BMJ Open. 2017 Apr 4;7(4) doi: 10.1136/bmjopen-2016-014125. PMID: 28377392. Exclusion: 11.
- 358. Gorgey AS, Martin H, Metz A, et al. Longitudinal changes in body composition and metabolic profile between exercise clinical trials in men with chronic spinal cord injury. J Spinal Cord Med. 2016 Nov;39(6):699-712. doi: 10.1080/10790268.2016.1157970. PMID: 27077574. Exclusion: 11.
- 359. Gorgey AS, Poarch HJ, Dolbow DD, et al. Effect of adjusting pulse durations of functional electrical stimulation cycling on energy expenditure and fatigue after spinal cord injury. J Rehabil Res Dev. 2014;51(9):1455-68. doi: 10.1682/JRRD.2014.02.0054. PMID: 25803753. Exclusion: 4.
- 360. Gorgey AS, Timmons MK, Dolbow DR, et al. Electrical stimulation and blood flow restriction increase wrist extensor crosssectional area and flow meditated dilatation following spinal cord injury. Eur J Appl Physiol. 2016 Jun;116(6):1231-44. doi: 10.1007/s00421-016-3385-z. PMID: 27155846. Exclusion: 11.
- 361. Gorgey AS, Wade R, Sumrell R, et al. Exoskeleton training may improve level of physical activity after spinal cord injury: a case series. Top Spinal Cord Inj Rehabil. 2017;23(3):245-55. doi: 10.1310/sci16-00025. PMID: 29339900. Exclusion: 7.
- 362. Gorla JI, Costa e Silva Ade A, Borges M, et al. Impact of wheelchair rugby on body composition of subjects with tetraplegia: a pilot study. Arch Phys Med Rehabil. 2016 Jan;97(1):92-6. doi: 10.1016/j.apmr.2015.09.007. PMID: 26433046. Exclusion: 11.
- 363. Gorman P, Scott W, York H, et al. Robotic treadmill training does not improve timed measures of ambulatory function in chronic motor incomplete spinal cord injury: a pilot controlled clinical trial. Top Spinal Cord Inj Rehabil. 2011 Jun;16:63. doi: 10.1310/sci16S1-53. Exclusion: 10.

- 364. Gorman PH, Geigle PR, Chen K, et al. Reliability and relatedness of peak VO2 assessments during body weight supported treadmill training and arm cycle ergometry in individuals with chronic motor incomplete spinal cord injury. Spinal Cord. 2014 Apr;52(4):287-91. doi: 10.1038/sc.2014.6. PMID: 24534779. Exclusion: 4.
- 365. Gorman PH, Scott W, York H, et al. Robotically assisted treadmill exercise training for improving peak fitness in chronic motor incomplete spinal cord injury: a randomized controlled trial. J Spinal Cord Med. 2016;39(1):32-44. doi: 10.1179/2045772314Y.0000000281. PMID: 25520035. Exclusion: 11.
- 366. Govil K, Noohu MM. Effect of EMG biofeedback training of gluteus maximus muscle on gait parameters in incomplete spinal cord injury. NeuroRehabilitation. 2013;33(1):147-52. doi: 10.3233/NRE-130939. PMID: 23949032. Exclusion: 14.
- 367. Granja Dominguez A, Magni E, Hochsprung A. Gait and physiotherapy: effectiveness of a physiotherapy circuit training on the ability to walk and quality of live in a multiple sclerosis's patients. Mult Scler. 2017;Conference: 7th joint ECTRIMS-ACTRIMS, MSPARIS2017. France. 23(3 Supplement 1):970. Exclusion: 10.
- 368. Grasmucke D, Zieriacks A, Jansen O, et al. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level. Neurosurg Focus. 2017 May;42(5):15. doi: 10.3171/2017.2.FOCUS171. PMID: 28463613. Exclusion: 8.
- 369. Grazioli E, Tranchita E, Borriello G, et al. The effects of concurrent resistance and aerobic exercise training on functional dtatus in patients with multiple sclerosis. Curr Sports Med Rep. 2019 Dec;18(12):452-7. doi: 10.1249/JSR.000000000000661. PMID: 31834177. Exclusion: 11.

- 370. Grecco LA, de Freitas TB, Satie J, et al. Treadmill training following orthopedic surgery in lower limbs of children with cerebral palsy. Pediatr Phys Ther. 2013;25(2):187-92; discussion 93. doi: 10.1097/PEP.0b013e3182888495. PMID: 23542199. Exclusion: 11.
- 371. Grecco LA, Oliveira CS, Duarte NA, et al. Cerebellar transcranial direct current stimulation in children with ataxic cerebral palsy: a sham-controlled, crossover, pilot study. Dev Neurorehabil. 2017 Apr;20(3):142-8. doi: 10.3109/17518423.2016.1139639. PMID: 27003795. Exclusion: 11.
- 372. Grecco LA, Tomita SM, Christovao TC, et al. Effect of treadmill gait training on static and functional balance in children with cerebral palsy: a randomized controlled trial. Braz J Phys Ther. 2013 Jan-Feb;17(1):17-23. PMID: 23538455. Exclusion: 11.
- 373. Griffin L, Decker MJ, Hwang JY, et al. Functional electrical stimulation cycling improves body composition, metabolic and neural factors in persons with spinal cord injury. J Electromyogr Kinesiol. 2009 Aug;19(4):614-22. doi: 10.1016/j.jelekin.2008.03.002. PMID: 18440241. Exclusion: 11.
- 374. Guclu-Gunduz A, Citaker S, Irkec C, et al. The effects of pilates on balance, mobility and strength in patients with multiple sclerosis. NeuroRehabilitation. 2014;34(2):337-42. doi: 10.3233/NRE-130957. PMID: 23949064. Exclusion: 11.
- 375. Guillamo E, Cobo-Calvo A, Oviedo GR, et al. Feasibility and effects of structured physical exercise interventions in adults with relapsing-remitting multiple sclerosis: a pilot study. J Sports Sci Med. 2018 Sep;17(3):426-36. PMID: 30116116. Exclusion: 11.
- 376. Gültekin Ö, Öneş K, Harman H, et al. The effects of respiratory exercises on respiratory functions and the quality of life in patients with thoracal spinal cord injury. Nobel Medicus. 2013;9(3):82-7. Exclusion: 8.

- 377. Gunn H, Andrade J, Paul L, et al. A selfmanagement programme to reduce falls and improve safe mobility in people with secondary progressive MS: the BRiMS feasibility RCT. Health Technol Assess. 2019 Jun;23(27):1-166. doi: 10.3310/hta23270. PMID: 31217069. Exclusion: 4.
- 378. Gunn H, Markevics S, Haas B, et al. Systematic review: The effectiveness of interventions to reduce falls and improve balance in adults with multiple sclerosis. Arch Phys Med Rehabil. 2015 Oct;96(10):1898-912. doi: 10.1016/j.apmr.2015.05.018. PMID: 26070975. Exclusion: 2.
- 379. Gurpinar B, Kara B, Idiman E. Effects of aquatic exercises on postural control and hand function in Multiple Sclerosis: Halliwick versus Aquatic Plyometric Exercises: a randomised trial. J Musculoskelet Neuronal Interact. 2020 Jun 01;20(2):249-55. PMID: 32481240. Exclusion: 11.
- 380. Hakansson NA, Hull ML. The effects of stimulating lower leg muscles on the mechanical work and metabolic response in functional electrically stimulated pedaling. IEEE Trans Neural Syst Rehabil Eng. 2010 Oct;18(5):498-504. doi: 10.1109/TNSRE.2010.2052132. PMID: 20529755. Exclusion: 4.
- 381. Hale LA, Mulligan HF, Treharne GJ, et al. The feasibility and short-term benefits of Blue Prescription: a novel intervention to enable physical activity for people with multiple sclerosis. Disabil Rehabil. 2013 Jul;35(14):1213-20. doi: 10.3109/09638288.2012.723787. PMID: 23025293. Exclusion: 4.
- 382. Hameau S, Bensmail D, Roche N, et al. Adaptations of fatigue and fatigability after a short intensive, combined rehabilitation program in patients with multiple sclerosis. J Rehabil Med. 2018 Jan 10;50(1):59-66. doi: 10.2340/16501977-2277. PMID: 28980009. Exclusion: 11.

- 383. Hamed NS, Abd-elwahab MS. Pedometerbased gait training in children with spastic hemiparetic cerebral palsy: a randomized controlled study. Clin Rehabil. 2011 Feb;25(2):157-65. doi: 10.1177/0269215510382147. PMID: 20943714. Exclusion: 14.
- 384. Hamed SA, El-Negamy TE, Waked NM. Effect of functional electrical stimulation on trunk curvature in spastic quadriplegic cerebral palsied children. Int J Pharmtech Res. 2016;9(5):31-6. Exclusion: 6.
- 385. Hammond ER, Recio AC, Sadowsky CL, et al. Functional electrical stimulation as a component of activity-based restorative therapy may preserve function in persons with multiple sclerosis. J Spinal Cord Med. 2015 Jan;38(1):68-75. doi: 10.1179/2045772314Y.0000000238. PMID: 24976037. Exclusion: 8.
- 386. Han DS, Hsiao MY, Wang TG, et al. Association of serum myokines and aerobic exercise training in patients with spinal cord injury: an observational study. BMC Neurol. 2016 Aug 17;16(1):142. doi: 10.1186/s12883-016-0661-9. PMID: 27534935. Exclusion: 5.
- 387. Han EY, Choi JH, Kim SH, et al. The effect of weight bearing on bone mineral density and bone growth in children with cerebral palsy: a randomized controlled preliminary trial. Medicine (Baltimore). 2017 Mar;96(10) doi: 10.1097/MD.000000000005896. PMID: 28272197. Exclusion: 11.
- 388. Hansen D, Wens I, Keytsman C, et al. Is long-term exercise intervention effective to improve cardiac autonomic control during exercise in subjects with multiple sclerosis? A randomized controlled trial. Eur J Phys Rehabil Med. 2015 Apr;51(2):223-31. PMID: 24603938. Exclusion: 11.
- 389. Hansen D, Wens I, Keytsman C, et al. Ventilatory function during exercise in multiple sclerosis and impact of training intervention: cross-sectional and randomized controlled trial. Eur J Phys Rehabil Med. 2015 Oct;51(5):557-68. PMID: 25366519. Exclusion: 11.

- 390. Harkema SJ, Schmidt-Read M, Lorenz DJ, et al. Balance and ambulation improvements in individuals with chronic incomplete spinal cord injury using locomotor trainingbased rehabilitation. Arch Phys Med Rehabil. 2012 Sep;93(9):1508-17. doi: 10.1016/j.apmr.2011.01.024. PMID: 21777905. Exclusion: 11.
- 391. Hartley S. Developing a self-management and exercise model for people with multiple sclerosis...including commentary by Plummer-D'Amato P and Giesser B. Int J Ther Rehabil. 2009;16(1):34-42. doi: 10.12968/ijtr.2009.16.1.37938. Exclusion: 8.
- 392. Harvey L, Fornusek C, Bowden J, et al. Electrical stimulation combined with progressive resistance training increases strength in people with spinal cord injury. Physiotherapy. 2011;97. Exclusion: 10.
- 393. Harvey LA, Dunlop SA, Churilov L, et al. Early intensive hand rehabilitation is not more effective than usual care plus one-toone hand therapy in people with sub-acute spinal cord injury ('Hands On'): a randomised trial. J Physiother. 2016 Apr;62(2):88-95. doi: 10.1016/j.jphys.2016.02.013. PMID: 27008910. Exclusion: 4.
- 394. Harvey LA, Dunlop SA, Churilov L, et al. Early intensive hand rehabilitation is not more effective than usual care plus one-toone hand therapy in people with sub-acute spinal cord injury ('Hands On'): a randomised trial. J Physiother. 2017 Oct;63(4):197-204. doi: 10.1016/j.jphys.2017.08.005. PMID: 28970100. Exclusion: 4.
- 395. Harvey LA, Fornusek C, Bowden JL, et al. Electrical stimulation plus progressive resistance training for leg strength in spinal cord injury: a randomized controlled trial. Spinal Cord. 2010 Jul;48(7):570-5. doi: 10.1038/sc.2009.191. PMID: 20065991. Exclusion: 4.
- 396. Harvey LA, Glinsky JV, Bowden JL. The effectiveness of 22 commonly administered physiotherapy interventions for people with spinal cord injury: a systematic review. Spinal Cord. 2016 Nov;54(11):914-23. doi: 10.1038/sc.2016.95. PMID: 27349607. Exclusion: 2.

- 397. Harvey LA, Herbert RD, Glinsky J, et al. Effects of 6 months of regular passive movements on ankle joint mobility in people with spinal cord injury: a randomized controlled trial. Spinal Cord. 2009 Jan;47(1):62-6. doi: 10.1038/sc.2008.71. PMID: 18574489. Exclusion: 4.
- 398. Harvey LA, Katalinic OM, Herbert RD, et al. Stretch for the treatment and prevention of contractures. Cochrane Database Syst Rev. 2017 Jan 9;1 doi: 10.1002/14651858.CD007455.pub3. PMID: 28146605. Exclusion: 4.
- 399. Harvey LA, Lin CW, Glinsky JV, et al. The effectiveness of physical interventions for people with spinal cord injuries: a systematic review. Spinal Cord. 2009 Mar;47(3):184-95. doi: 10.1038/sc.2008.100. PMID: 18725889. Exclusion: 2.
- 400. Hasnan N, Ektas N, Tanhoffer AI, et al. Exercise responses during functional electrical stimulation cycling in individuals with spinal cord injury. Med Sci Sports Exerc. 2013 Jun;45(6):1131-8. doi: 10.1249/MSS.0b013e3182805d5a. PMID: 23685444. Exclusion: 11.
- 401. Hassani S, Joseph K, Ann F, et al. Assessment of strength and function in ambulatory children with cerebral palsy by GMFCS level and age: a cross-sectional study. Crit Rev Phys Rehabil Med. 2011;23(1-4):1-14. doi: 10.1615/CritRevPhysRehabilMed.v23.i1-4.10. Exclusion: 4.
- 402. Hayes HA, Gappmaier E, LaStayo PC. Effects of high-intensity resistance training on strength, mobility, balance, and fatigue in individuals with multiple sclerosis: a randomized controlled trial. J Neurol Phys Ther. 2011 Mar;35(1):2-10. doi: 10.1097/NPT.0b013e31820b5a9d. PMID: 21475078. Exclusion: 11.
- 403. Hayes HB, Jayaraman A, Herrmann M, et al. Daily intermittent hypoxia enhances walking after chronic spinal cord injury: a randomized trial. Neurology. 2014 Jan 14;82(2):104-13. doi: 10.1212/01.WNL.0000437416.34298.43. PMID: 24285617. Exclusion: 11.

- 404. Hayes SC, James Wilcox CR, Forbes White HS, et al. The effects of robot assisted gait training on temporal-spatial characteristics of people with spinal cord injuries: a systematic review. J Spinal Cord Med. 2018 Sep;41(5):529-43. doi: 10.1080/10790268.2018.1426236. PMID: 29400988. Exclusion: 2.
- 405. Hebert JR, Corboy JR, Manago MM, et al. Effects of vestibular rehabilitation on multiple sclerosis-related fatigue and upright postural control: a randomized controlled trial. Ann Neurol. 2012 Dec;72(S16):S34-5. doi: 10.1002/ana.23769. Exclusion: 10.
- 406. Hebert JR, Corboy JR, Vollmer T, et al. Efficacy of balance and eye-movement exercises for persons with multiple sclerosis (BEEMS). Neurology. 2018 Feb 27;90(9):797-807. doi: 10.1212/wnl.000000000005013. PMID: 29386274. Exclusion: 4.
- 407. Hegarty AK, Kurz MJ, Stuberg W, et al. Changes in mobility and muscle function of children with cerebral palsy after gait training: a pilot study. J Appl Biomech. 2016 Oct;32(5):469-86. doi: 10.1123/jab.2015-0311. PMID: 27348240. Exclusion: 7.
- 408. Heine M, van de Port I, Rietberg MB, et al. Exercise therapy for fatigue in multiple sclerosis. Cochrane Database Syst Rev. 2015 Sep 11(9) doi: 10.1002/14651858.CD009956.pub2. PMID: 26358158. Exclusion: 6.
- 409. Hemachithra C, Meena N, Ramanathan R, et al. Immediate effect of horse riding simulator on adductor spasticity in children with cerebral palsy: A randomized controlled trial. Physiother Res Int. 2020 Jan;25(1) doi: 10.1002/pri.1809. PMID: 31502387. Exclusion: 4.
- Heneidy WE, Eltalawy HA, Kassem HI, et al. Impact of task-oriented training on balance in spastic hemiplegic cerebral palsied children. Physiotherapy quarterly. 2020;28(2):52-6. Exclusion: 14.

- 411. Hernandez ME, Holtzer R, Chaparro G, et al. Brain activation changes during locomotion in middle-aged to older adults with multiple sclerosis. J Neurol Sci. 2016 Nov 15;370:277-83. doi: 10.1016/j.jns.2016.10.002. PMID: 27772776. Exclusion: 11.
- 412. Herring MP, Fleming KM, Hayes SP, et al. Moderators of exercise effects on depressive symptoms in multiple sclerosis: a metaregression. Am J Prev Med. 2017 Oct;53(4):508-18. doi: 10.1016/j.amepre.2017.04.011. PMID: 28602542. Exclusion: 12.
- 413. Hilderley AJ, Fehlings D, Lee GW, et al. Comparison of a robotic-assisted gait training program with a program of functional gait training for children with cerebral palsy: design and methods of a two group randomized controlled cross-over trial. Springerplus. 2016;5(1):1886. doi: 10.1186/s40064-016-3535-0. PMID: 27843743. Exclusion: 10.
- 414. Hilderley AJ, Fehlings D, Taylor M, et al. BeFAST or BeSTRONG: a randomized control trial comparing sports skill training to lower extremity strength training for children who have cerebral palsy. Dev Med Child Neurol. 2018 Oct;60:30-. doi: 10.1111/dmcn.44 14017. Exclusion: 10.
- 415. Hilgers C, Mundermann A, Riehle H, et al. Effects of whole-body vibration training on physical function in patients with multiple sclerosis. NeuroRehabilitation. 2013;32(3):655-63. doi: 10.3233/NRE-130888. PMID: 23648620. Exclusion: 4.
- 416. Hiremath SV, Amiri AM, Thapa-Chhetry B, et al. Mobile health-based physical activity intervention for individuals with spinal cord injury in the community: A pilot study. PLoS One. 2019;14(10):e0223762. doi: 10.1371/journal.pone.0223762. PMID: 31613909. Exclusion: 7.
- 417. Hiremath SV, Amiri AM, Thapa-Chhetry B, et al. Correction: Mobile health-based physical activity intervention for individuals with spinal cord injury in the community: A pilot study. PLoS One. 2019;14(11) doi: 10.1371/journal.pone.0225490. PMID: 31725792. Exclusion: 10.

- 418. Hoang P, Lord S, Gandevia S, et al. Effects of a home-based step training program on balance, stepping, cognition and functional performance in people with multiple sclerosis-a randomized controlled trial. Mult Scler J Exp Transl Clin. 2015 Oct 21(14):11. doi: 10.1177/1352458515616527. Exclusion: 4.
- 419. Hoang P, Schoene D, Gandevia S, et al. Effects of a home-based step training programme on balance, stepping, cognition and functional performance in people with multiple sclerosis--a randomized controlled trial. Mult Scler. 2016 Jan;22(1):94-103. doi: 10.1177/1352458515579442. PMID: 25921035. Exclusion: 4.
- 420. Hoare B, Imms C, Villanueva E, et al. Intensive therapy following upper limb botulinum toxin A injection in young children with unilateral cerebral palsy: a randomized trial. Dev Med Child Neurol. 2013 Mar;55(3):238-47. doi: 10.1111/dmcn.12054. PMID: 23236956. Exclusion: 4.
- 421. Hobbs D. Can a novel 'serious gaming' technology improve upper limb sensation and function in children with cerebral palsy? A population-based cohort study and pilot randomised controlled trial. Dev Med Child Neurol. 2020 or 2018?;62:74. doi: 10.1111/dmcn.14469. Exclusion: 11.
- 422. Hoekstra F, van Nunen MP, Gerrits KH, et al. Effect of robotic gait training on cardiorespiratory system in incomplete spinal cord injury. J Rehabil Res Dev. 2013;50(10):1411-22. doi: 10.1682/JRRD.2012.10.0186. PMID: 24699976. Exclusion: 11.
- Hoekstra S, Valent L, Gobets D, et al. Effects of four-month handbike training under free-living conditions on physical fitness and health in wheelchair users. Disabil Rehabil. 2017 Aug;39(16):1581-8. doi: 10.1080/09638288.2016.1200677. PMID: 27385560. Exclusion: 8.
- 424. Holleran CL, Hennessey PW, Leddy AL, et al. High-intensity variable stepping training in patients with motor incomplete spinal cord Injury: a case series. J Neurol Phys Ther. 2018 Apr;42(2):94-101. doi: 10.1097/NPT.00000000000217. PMID: 29547484. Exclusion: 7.

- 425. Horner-Johnson W, Drum CE, Abdullah N. A randomized trial of a health promotion intervention for adults with disabilities. Disabil Health J. 2011 Oct;4(4):254-61. doi: 10.1016/j.dhjo.2011.06.003. PMID: 22014673. Exclusion: 3.
- 426. Hosl M, Bohm H, Eck J, et al. Effects of backward-downhill treadmill training versus manual static plantarflexor stretching on muscle-joint pathology and function in children with spastic cerebral palsy. Gait Posture. 2018 Sep;65:121-8. doi: 10.1016/j.gaitpost.2018.07.171. PMID: 30055388. Exclusion: 11.
- 427. Hosseini SS, Rajabi H, Sahraian MA, et al. Effects of 8-week home-based yoga and resistance training on muscle strength, functional capacity and balance in patients with multiple sclerosis: a randomized controlled study. Asian J Sports Med. 2018;9(3):1-7. doi: 10.5812/asjsm.68807. Exclusion: 11.
- 428. Hou J, Nelson R, Mohammad N, et al. Effect of Simultaneous Combined Treadmill Training and Magnetic Stimulation on Spasticity and Gait Impairments after Cervical Spinal Cord Injury. J Neurotrauma. 2020 Jul 20;20:20. doi: 10.1089/neu.2019.6961. PMID: 32340533. Exclusion: 15.
- 429. Hoyme D. Body weight supported treadmill training versus gait trainer in young children with cerebral palsy. Dissertation Abstracts International: Section B: The Sciences and Engineering. 2017;78(4-B(E)):No Pagination Specified. Exclusion: 12.
- Hsieh YL, Yang CC, Sun SH, et al. Effects of hippotherapy on body functions, activities and participation in children with cerebral palsy based on ICF-CY assessments. Disabil Rehabil. 2017 Aug;39(17):1703-13. doi: 10.1080/09638288.2016.1207108. PMID: 27440177. Exclusion: 11.
- 431. Hsu CW, Kang YN, Tseng SH. Effects of therapeutic exercise intensity on cerebral palsy outcomes: a systematic review with meta-regression of randomized clinical trials. Front Neurol. 2019;10:657. doi: 10.3389/fneur.2019.00657. PMID: 31293501. Exclusion: 12.

- 432. Huang M, Liao LR, Pang MY. Effects of whole body vibration on muscle spasticity for people with central nervous system disorders: a systematic review. Clin Rehabil. 2017 Jan;31(1):23-33. doi: 10.1177/0269215515621117. PMID: 26658333. Exclusion: 12.
- 433. Hubbard EA. The acute effects of highintensity interval and continuous aerobic exercise on physiological and functional outcomes in persons with multiple sclerosis. Dissertation abstracts International: Section B: The Sciences and Engineering. 2019;80(5-B(E)):No Pagination Specified. Exclusion: 10.
- 434. Hubli M, Currie KD, West CR, et al. Physical exercise improves arterial stiffness after spinal cord injury. J Spinal Cord Med. 2014 Nov;37(6):782-5. doi: 10.1179/2045772314Y.0000000232. PMID: 24976366. Exclusion: 6.
- 435. Hughes L, Donnelly A, Rainsford G, et al. The clinical outcomes of augmenting an exercise programme with neuromuscular electrical stimulation in people with multiple sclerosis. Physiotherapy. 2011;97. Exclusion: 10.
- Hughes L, Donnelly A, Rainsford G, et al. Augmenting an exercise programme with neuromuscular electrical stimulation for people with multiple sclerosis-the effect on strength and fatigue. Physiotherapy. 2011;97. Exclusion: 10.
- 437. Hugos CL, Bourdette D, Chen Y, et al. A group-delivered self-management program reduces spasticity in people with multiple sclerosis: a randomized, controlled pilot trial. Mult Scler J Exp Transl Clin. 2017 Mar 23;3(1) doi: 10.1177/2055217317699993. PMID: 28607753. Exclusion: 4.
- 438. Hugos CL, Cameron MH. MS Spasticity: Take Control (STC) for ambulatory adults: protocol for a randomized controlled trial. BMC Neurol. 2020 Oct 07;20(1):368. doi: 10.1186/s12883-020-01902-1. PMID: 33028236. Exclusion: 4.

- 439. Hugos CL, Cameron MH, Chen Y, et al. Effects of a group spasticity management program versus usual care in people with multiple sclerosis: a randomized controlled pilot trial. Multiple sclerosis. Conference. 2017 Feb;23(1):88-9. doi: 10.1177/1352458517693959. Exclusion: 10.
- 440. Hugos CL, Chen Z, Chen Y, et al. A multicenter randomized controlled trial of two group education programs for fatigue in multiple sclerosis: Short- and medium-term benefits. Mult Scler. 2019 02;25(2):275-85. doi: 10.1177/1352458517745723. PMID: 29226778. Exclusion: 4.
- 441. Hugos CL, Frankel D, Tompkins SA, et al. Community delivery of a comprehensive fall-prevention program in people with multiple sclerosis: A retrospective observational study. Int J MS Care. 2016 Jan-Feb;18(1):42-8. doi: 10.7224/1537-2073.2014-086. PMID: 26917997. Exclusion: 4.
- 442. Huisinga JM, Filipi ML, Stergiou N. Elliptical exercise improves fatigue ratings and quality of life in patients with multiple sclerosis. J Rehabil Res Dev. 2011;48(7):881-90. PMID: 21938671. Exclusion: 11.
- 443. Huisinga JM, Filipi ML, Stergiou N. Supervised resistance training results in changes in postural control in patients with multiple sclerosis. Motor Control. 2012 Jan;16(1):50-63. PMID: 22402220. Exclusion: 11.
- Huisinga JM, Schmid KK, Filipi ML, et al. Persons with multiple sclerosis show altered joint kinetics during walking after participating in elliptical exercise. J Appl Biomech. 2012 Jul;28(3):249-57. PMID: 21975419. Exclusion: 11.
- 445. Hung Y-C, Spingarn A, Friel KM, et al. Intensive Unimanual Training Leads to Better Reaching and Head Control than Bimanual Training in Children with Unilateral Cerebral Palsy. Phys Occup Ther Pediatr. 2020;40(5):491-505. doi: 10.1080/01942638.2020.1712513. Exclusion: 4.

- 446. Hussein ZA, Abd-Elwahab MS, El-Shennawy SAW. Effect of arm cycling on gait of children with hemiplegic cerebral palsy. Egypt J Med Hum Genet. 2014 Jul;15(3):273-9. doi: 10.1016/j.ejmhg.2014.02.008. Exclusion: 14.
- 447. Hussein ZA, Salem IA, Ali MS. Effect of simultaneous proprioceptive-visual feedback on gait of children with spastic diplegic cerebral palsy. J Musculoskelet Neuronal Interact. 2019 12 01;19(4):500-6. PMID: 31789301. Exclusion: 14.
- 448. Hutchinson MJ, MacDonald MJ, Eston R, et al. Peak oxygen uptake measured during a perceptually-regulated exercise test is reliable in community-based manual wheelchair users. J Sports Sci. 2019 Mar;37(6):701-7. doi: 10.1080/02640414.2018.1522941. PMID: 30547732. Exclusion: 4.
- 449. Hutchinson MJ, Valentino SE, Totosy de Zepetnek JO, et al. Perceptually regulated training does not influence the differentiated RPE response following 16-weeks of aerobic exercise in adults with spinal cord injury. Appl Physiol Nutr Metab. 2019 Jun 28;28:28. doi: 10.1139/apnm-2019-0062. PMID: 31251892. Exclusion: 6.
- 450. Hutzler Y, Lamela Rodriguez B, Mendoza Laiz N, et al. The effects of an exercise training program on hand and wrist strength, and function, and activities of daily living, in adults with severe cerebral palsy. Res Dev Disabil. 2013 Dec;34(12):4343-54. doi: 10.1016/j.ridd.2013.09.015. PMID: 24145046. Exclusion: 11.
- 451. Hwang J, Shin Y, Park JH, et al. Effects of Walkbot gait training on kinematics, kinetics, and clinical gait function in paraplegia and quadriplegia. NeuroRehabilitation. 2018;42(4):481-9. doi: 10.3233/NRE-172226. PMID: 29660947. Exclusion: 3.
- 452. Hwang S, Kim HR, Han ZA, et al. Improved gait speed after robot-assisted gait training in patients with motor incomplete spinal cord injury: a preliminary study. Ann Rehabil Med. 2017 Feb;41(1):34-41. doi: 10.5535/arm.2017.41.1.34. PMID: 28289633. Exclusion: 11.

- 453. Hwang YS, Kwon JY. Effects of modified constraint-induced movement therapy in real-world arm use in young children with unilateral cerebral palsy: A single-blind randomized trial. Neuropediatrics. 2020 Mar 06;06:06. doi: 10.1055/s-0040-1702220. PMID: 32143221. Exclusion: 4.
- 454. Hyungkyu K, Jinhwa J, Jaeho Y. Effects of hippotherapy on the sitting balance of children with cerebral palsy: a randomized control trial. J Phys Ther Sci. 2012;24(9):833-6. doi: 10.1589/jpts.24.833. Exclusion: 6.
- 455. Ibitoye MO, Hamzaid NA, Hasnan N, et al. Strategies for rapid muscle fatigue reduction during FES exercise in individuals with spinal cord injury: a systematic review. PLoS One. 2016;11(2) doi: 10.1371/journal.pone.0149024. PMID: 26859296. Exclusion: 6.
- 456. Ibrahim MM, Eid MA, Moawd SA. Effect of whole-body vibration on muscle strength, spasticity, and motor performance in spastic diplegic cerebral palsy children. Egypt J Med Hum Genet. 2014 Apr;15(2):173-9. doi: 10.1016/j.ejmhg.2014.02.007. Exclusion: 14.
- 457. Ishihara M, Higuchi Y, Yonetsu R, et al. Plantarflexor training affects propulsive force generation during gait in children with spastic hemiplegic cerebral palsy: a pilot study. J Phys Ther Sci. 2015 May;27(5):1283-6. doi: 10.1589/jpts.27.1283. PMID: 26157201. Exclusion: 7.
- 458. Iturricastillo A, Yanci J, Granados C. Neuromuscular responses and physiological changes during small-sided games in wheelchair basketball. Adapt Phys Act Q. 2018 Jan 1;35(1):20-35. doi: 10.1123/apaq.2016-0139. PMID: 29256634. Exclusion: 11.
- 459. Jackel N, Tallner A, Virsevci O, et al. Effects of internet-based exercise (etraining) on fatigue and other patient reported behavioural outcomes (PRO) in patients with relapsing-remitting multiple sclerosis (RRMS). Mult Scler J Exp Transl Clin. 2015 Oct;21(S11):616. doi: 10.1177/1352458515602642. Exclusion: 7.

- 460. Jackson K, Bigelow KE, Cooper C, et al. Effectiveness of group kickboxing as a means to improve gait and balance in individuals with multiple sclerosis. Int J MS Care. 2011 Winter;13(4):201. Exclusion: 7.
- 461. Jackson K, Edginton-Bigelow K, Bowsheir C, et al. Feasibility and effects of a group kickboxing program for individuals with multiple sclerosis: a pilot report. J Bodywork Mov Ther. 2012 Jan;16(1):7-13. doi: 10.1016/j.jbmt.2010.09.002. PMID: 22196421. Exclusion: 11.
- Jackson KJ, Merriman HL, Vanderburgh PM, et al. Acute effects of whole-body vibration on lower extremity muscle performance in persons with multiple sclerosis. J Neurol Phys Ther. 2008 Dec;32(4):171-6. doi: 10.1097/NPT.0b013e31818ee760. PMID: 19265758. Exclusion: 11.
- 463. Jacobs PL. Effects of resistance and endurance training in persons with paraplegia. Med Sci Sports Exerc. 2009 May;41(5):992-7. doi: 10.1249/MSS.0b013e318191757f. PMID: 19346989. Exclusion: 11.
- 464. James S, Ziviani J, Ware RS, et al. Randomized controlled trial of web-based multimodal therapy for unilateral cerebral palsy to improve occupational performance. Dev Med Child Neurol. 2015 Jun;57(6):530-8. doi: 10.1111/dmcn.12705. PMID: 25955443. Exclusion: 4.
- 465. Jang CH, Joo MC, Noh SE, et al. Effects of hippotherapy on psychosocial aspects in children with cerebral palsy and their caregivers: a pilot study. Ann Rehabil Med. 2016 Apr;40(2):230-6. doi: 10.5535/arm.2016.40.2.230. PMID: 27152272. Exclusion: 11.
- 466. Jansen O, Grasmuecke D, Meindl RC, et al. Hybrid assistive limb exoskeleton HAL in the rehabilitation of chronic spinal cord injury: proof of concept; the results in 21 patients. World Neurosurg. 2018 Feb;110:73-8. doi: 10.1016/j.wneu.2017.10.080. PMID: 29081392. Exclusion: 8.

- 467. Jansen O, Schildhauer TA, Meindl RC, et al. Functional outcome of neurologic-controlled HAL-exoskeletal neurorehabilitation in chronic spinal cord injury: a pilot with one year treatment and variable treatment frequency. Global Spine J. 2017 Dec;7(8):735-43. doi: 10.1177/2192568217713754. PMID: 29238636. Exclusion: 11.
- 468. Jaume-i-Capo A, Martinez-Bueso P, Moya-Alcover B, et al. Interactive rehabilitation system for improvement of balance therapies in people with cerebral palsy. IEEE Trans Neural Syst Rehabil Eng. 2014 Mar;22(2):419-27. doi: 10.1109/TNSRE.2013.2279155. PMID: 24122561. Exclusion: 11.
- 469. Jayaraman A, Thompson CK, Rymer WZ, et al. Short-term maximal-intensity resistance training increases volitional function and strength in chronic incomplete spinal cord injury: a pilot study. J Neurol Phys Ther. 2013 Sep;37(3):112-7. doi: 10.1097/NPT.0b013e31828390a1. PMID: 23673372. Exclusion: 11.
- 470. Jayaraman P, Puckree T. The effects of a 12week program of static upper extremity weight bearing exercises on weight bearing in children with hemiplegic type of cerebral palsy. S Afr J Physiother. 2010;66(2):22-9. Exclusion: 11.
- 471. Jayaraman P, Puckree T. The effect of upper extremity weight bearing on upper extremity function in children with hemiplegic type of cerebral palsy. S Afr J Physiother. 2010;66(1):15-20. doi: 10.4102/sajp.v66i1.58. Exclusion: 11.
- Jelsma J, Pronk M, Ferguson G, et al. The effect of the Nintendo Wii Fit on balance control and gross motor function of children with spastic hemiplegic cerebral palsy. Dev Neurorehabil. 2013;16(1):27-37. doi: 10.3109/17518423.2012.711781. PMID: 23030836. Exclusion: 11.
- 473. Jeng SC, Yeh KK, Liu WY, et al. A physical fitness follow-up in children with cerebral palsy receiving 12-week individualized exercise training. Res Dev Disabil. 2013 Nov;34(11):4017-24. doi: 10.1016/j.ridd.2013.08.032. PMID: 24036390. Exclusion: 11.

- 474. Jeong JH, Yoo WG. Effects of air stacking on pulmonary function and peak cough flow in patients with cervical spinal cord injury. J Phys Ther Sci. 2015 Jun;27(6):1951-2. doi: 10.1589/jpts.27.1951. PMID: 26180355. Exclusion: 11.
- 475. Ji YH, Sun BD, Zhang J, et al. Therapeutic effect of scalp-acupuncture combined with exercise therapy on spastic cerebral palsy of the child. Zhongguo zhenjiu. 2008 Oct;28(10):723-6. PMID: 18972727. Exclusion: 13.
- 476. Jimenez-Morales RM, Herrera-Jimenez LF, Macias-Delgado Y, et al. Cognitive training combined with aerobic exercises in multiple sclerosis patients: a pilot study. Rev Neurol. 2017 Jun 1;64(11):489-95. PMID: 28555454. Exclusion: 13.
- 477. Jo HJ, Perez MA. Corticospinal-motor neuronal plasticity promotes exercisemediated recovery in humans with spinal cord injury. Brain. 2020 May 01;143(5):1368-82. doi: 10.1093/brain/awaa052. PMID: 32355959. Exclusion: 6.
- 478. Johnston TE, Betz RR, Lauer RT. Impact of cycling on hip subluxation in children with spinal cord injury. J Pediatr Orthop. 2009 Jun;29(4):402-5. doi: 10.1097/BPO.0b013e3181a5ec3b. PMID: 19461385. Exclusion: 4.
- 479. Johnston TE, Marino RJ, Oleson CV, et al. Musculoskeletal effects of 2 functional electrical stimulation cycling paradigms conducted at different cadences for people with spinal cord Injury: a pilot study. Arch Phys Med Rehabil. 2016 Sep;97(9):1413-22. doi: 10.1016/j.apmr.2015.11.014. PMID: 26705884. Exclusion: 11.
- 480. Johnston TE, Modlesky CM, Betz RR, et al. Muscle changes following cycling and/or electrical stimulation in pediatric spinal cord injury. Arch Phys Med Rehabil. 2011 Dec;92(12):1937-43. doi: 10.1016/j.apmr.2011.06.031. PMID: 22133240. Exclusion: 4.

- 481. Johnston TE, Smith BT, Mulcahey MJ, et al. A randomized controlled trial on the effects of cycling with and without electrical stimulation on cardiorespiratory and vascular health in children with spinal cord injury. Arch Phys Med Rehabil. 2009 Aug;90(8):1379-88. doi: 10.1016/j.apmr.2009.02.018. PMID: 19651272. Exclusion: 4.
- 482. Jolk C, Alcantara R, Bernhardt L, et al. Effects of different physical activities on the walking capacity for people with MS. Mult Scler J Exp Transl Clin. 2012 Oct;18(S4):482-3. doi: 10.1177/1352458512459021. Exclusion: 7.
- 483. Jolk C, Alcantara R, Bernhardt L, et al. Effects of 24 weeks progressive resistance training in comparison to core and stability training performed in groups on muscle performance, balance and spasticity in people with multiple sclerosis. Mult Scler J Exp Transl Clin. 2012 Oct;18(4 SUPPL. 1):250-1. doi: 10.1177/1352458512459019. Exclusion: 7.
- 484. Jonsdottir J, Bertoni R, Lawo M, et al. Serious games for arm rehabilitation of persons with multiple sclerosis. A randomized controlled pilot study. Mult Scler Relat Disord. 2018 Jan;19:25-9. doi: 10.1016/j.msard.2017.10.010. PMID: 29112939. Exclusion: 11.
- 485. Jorgensen ML, Dalgas U, Kjolhede T, et al. Serum brain-derived neurotrophic factor is not a mediator of neuroplasticity induced by resistance training in persons with multiple sclerosis. Mult Scler. 2018;Conference: 23rd annual RIMS conference. 2018. Netherlands 24(6):874. doi: 10.1016/j.exger.2017.03.019. PMID: 28392271. Exclusion: 10.
- 486. Jorissen W, Vanmierlo T, Wens I, et al. Twelve weeks of medium-intensity exercise therapy affects the lipoprotein profile of multiple sclerosis patients. Int J Mol Sci. 2018 Jan 8;19(1) doi: 10.3390/ijms19010193. PMID: 29316715. Exclusion: 8.

- 487. Juckes FM, Marceniuk G, Seary C, et al. A cohort study of functional electrical stimulation in people with multiple sclerosis demonstrating improvements in quality of life and cost-effectiveness. Clin Rehabil. 2019 Jul;33(7):1163-70. doi: 10.1177/0269215519837326. PMID: 30971113. Exclusion: 4.
- 488. Jung JW, Her JG, Ko J. Effect of strength training of ankle plantarflexors on selective voluntary motor control, gait parameters, and gross motor function of children with cerebral palsy. J Phys Ther Sci. 2013 Oct;25(10):1259-63. doi: 10.1589/jpts.25.1259. PMID: 24259771. Exclusion: 11.
- 489. Kahraman T, Ozdogar AT, Yigit P, et al. Feasibility of a 6-Month yoga program to improve the physical and psychosocial status of persons with multiple sclerosis and their family members. Explore (NY). 2018 Jan - Feb;14(1):36-43. doi: 10.1016/j.explore.2017.07.006. PMID: 29174060. Exclusion: 11.
- 490. Kahraman T, Savci S, Coskuner-Poyraz E, et al. Determinants of physical activity in minimally impaired people with multiple sclerosis. Clin Neurol Neurosurg. 2015;138:20-4. doi: 10.1016/j.clineuro.2015.07.018. PMID: 26264722. Exclusion: 4.
- 491. Kakade NY, Kanase SB. Effect of core stability and functional mobility exercises on muscle strength after lumbar spinal cord injury. Indian J Public Health Res Dev. 2020;11(3):996-1001. Exclusion: 8.
- 492. Kalron A, Frid L, Berkowitz S, et al. Changes in gait and balance in people with multiple sclerosis attending a 12-week pilates exercise program. Multiple sclerosis. Conference: 32nd congress of the european committee for treatment and research in multiple sclerosis, ECTRIMS. 2016 Sep;22(S3):396. Exclusion: 10.
- 493. Kannan M, Hildebrand A, Hugos CL, et al. Evaluation of a web-based fall prevention program among people with multiple sclerosis. Mult Scler Relat Disord. 2019 Jun;31:151-6. doi: 10.1016/j.msard.2019.04.015. PMID: 31004969. Exclusion: 4.

- 494. Karami F, Afrasiabifar A, Doulatabad SN. Comparing the effectiveness of vestibular rehabilitation and frenkel exercise on fatigue reduction in patients with multiple sclerosis: a randomized controlled trial. Iran Red Crescent Med J. 2018;20(12) doi: 10.5812/ircmj.68913. Exclusion: 6.
- 495. Karbandi S, Gorji MA, Mazloum SR, et al. Effectiveness of group versus individual yoga exercises on fatigue of patients with multiple sclerosis. N Am J Med Sci. 2015 Jun;7(6):266-70. doi: 10.4103/1947-2714.159332. PMID: 26199923. Exclusion: 6.
- 496. Karelis AD, Carvalho LP, Castillo MJ, et al. Effect on body composition and bone mineral density of walking with a robotic exoskeleton in adults with chronic spinal cord injury. J Rehabil Med. 2017 Jan 19;49(1):84-7. doi: 10.2340/16501977-2173. PMID: 27973679. Exclusion: 11.
- 497. Kargarfard M, Etemadifar M, Baker P, et al. Effect of aquatic exercise training on fatigue and health-related quality of life in patients with multiple sclerosis. Arch Phys Med Rehabil. 2012 Oct;93(10):1701-8. doi: 10.1016/j.apmr.2012.05.006. PMID: 22609300. Exclusion: 11.
- 498. Karpatkin H, Cohen ET, Rzetelny A, et al. Effects of intermittent versus continuous walking on distance walked and fatigue in persons with multiple sclerosis: a randomized crossover trial. J Neurol Phys Ther. 2015 Jul;39(3):172-8. doi: 10.1097/NPT.000000000000091. PMID: 26050076. Exclusion: 11.
- 499. Karpatkin HI, Cohen ET, Klein S, et al. The effect of maximal strength training on strength, walking, and balance in people with multiple sclerosis: a pilot study. Mult Scler Int. 2016;2016:5235971. doi: 10.1155/2016/5235971. PMID: 28116161. Exclusion: 11.
- 500. Kassee C, Hunt C, Holmes MWR, et al. Home-based Nintendo Wii training to improve upper-limb function in children ages 7 to 12 with spastic hemiplegic cerebral palsy. J Pediatr Rehabil Med. 2017 May 17;10(2):145-54. doi: 10.3233/PRM-170439. PMID: 28582885. Exclusion: 4.

- 501. Kasser SL, Jacobs JV, Ford M, et al. Effects of balance-specific exercises on balance, physical activity and quality of life in adults with multiple sclerosis: a pilot investigation. Disabil Rehabil. 2015;37(24):2238-49. doi: 10.3109/09638288.2015.1019008. PMID: 25738911. Exclusion: 11.
- 502. Katusic A, Alimovic S, Mejaski-Bosnjak V. The effect of vibration therapy on spasticity and motor function in children with cerebral palsy: a randomized controlled trial. NeuroRehabilitation. 2013;32(1):1-8. doi: 10.3233/NRE-130817. PMID: 23422453. Exclusion: 4.
- 503. Katz-Leurer M, Rotem H, Keren O, et al. The effects of a 'home-based' task-oriented exercise programme on motor and balance performance in children with spastic cerebral palsy and severe traumatic brain injury. Clin Rehabil. 2009 Aug;23(8):714-24. doi: 10.1177/0269215509335293. PMID: 19506005. Exclusion: 3.
- 504. Keles MN, Elbasan B, Apaydin U, et al. Effects of inspiratory muscle training in children with cerebral palsy: a randomized controlled trial. Braz J Phys Ther. 2018 Nov;22(6):493-501. doi: 10.1016/j.bjpt.2018.03.010. PMID: 29636305. Exclusion: 4.
- 505. Kemp BJ, Bateham AL, Mulroy SJ, et al. Effects of reduction in shoulder pain on quality of life and community activities among people living long-term with SCI paraplegia: a randomized control trial. J Spinal Cord Med. 2011;34(3):278-84. doi: 10.1179/107902611X12972448729486. PMID: 21756566. Exclusion: 4.
- 506. Kenyon LKPDPP, Westman MPD, Hefferan APD, et al. A home-based body weight supported treadmill training program for children with cerebral palsy: a case series. Physiother Theory Pract. 2017 Jul;33(7):576-85. doi: 10.1080/09593985.2017.1325956. PMID: 28557625. Exclusion: 11.
- 507. Kersten S, Mahli M, Drosselmeyer J, et al. A pilot study of an exercise-based patient education program in people with multiple sclerosis. Mult Scler Int. 2014;2014:306878. doi: 10.1155/2014/306878. PMID: 25587449. Exclusion: 11.

- 508. Keser I, Kirdi N, Meric A, et al. Comparing routine neurorehabilitation program with trunk exercises based on Bobath concept in multiple sclerosis: pilot study. J Rehabil Res Dev. 2013;50(1):133-40. PMID: 23516089. Exclusion: 11.
- 509. Keytsman C, Hansen D, Wens I, et al. Impact of high-intensity concurrent training on cardiovascular risk factors in persons with multiple sclerosis - pilot study. Disabil Rehabil. 2017 Oct 27;41(4):430-5. doi: 10.1080/09638288.2017.1395086. PMID: 29076386. Exclusion: 11.
- 510. Keytsman C, Van Noten P, Spaas J, et al. Periodized home-based training: a new strategy to improve high intensity exercise therapy adherence in mildly affected patients with multiple sclerosis. Mult Scler Relat Disord. 2019;28:91-7. doi: 10.1016/j.msard.2018.12.018. PMID: 30576848. Exclusion: 7.
- 511. Khan AS, Patrick SK, Roy FD, et al. Training-specific neural plasticity in spinal reflexes after incomplete spinal cord injury. Neural Plast. 2016;2016:6718763. doi: 10.1155/2016/6718763. PMID: 27725887. Exclusion: 11.
- 512. Khanal D. Effectiveness of pelvic proprioceptive neuromuscular facilitation technique on facilitation of trunk movement in hemiparetic stroke patients. 4th Euro-Global Physiotherapy Congress 2017. December 07-08, 2017. Rome, Italy. J Phys Ther Sports Med. 2017. Exclusion: 10.
- 513. Khichadiya PM, Kanase SB. Effect of specific transverse abdominal muscle strengthening and conventional therapy for trunk control in paraplegic subjects. Indian J Physiother Occup Ther. 2017;11(2):184-9. doi: 10.5958/0973-5674.2017.00058.2. Exclusion: 6.
- 514. Khurana M, Walia S, Noohu MM. Study on the effectiveness of virtual reality gamebased training on balance and functional performance in individuals with paraplegia. Top Spinal Cord Inj Rehabil. 2017;23(3):263-70. doi: 10.1310/sci16-00003. PMID: 29339902. Exclusion: 14.

- 515. Khurana S, Singh P, Razdan S. Effect of diaphragmatic breathing techniques on perceived exertion and cardiovascular variables during resistance exercises performed by tetraplegic rugby athletes. Arch Phys Med Rehabil. 2016;Conference:. 2016 american congress of rehabilitation medicine annual conference, ACRM 2016. United states. Conference start: 20161030. Conference end: 20161104 97(12):e34. Exclusion: 10.
- 516. Kierkegaard M, Lundberg IE, Olsson T, et al. High-intensity resistance training in multiple sclerosis - An exploratory study of effects on immune markers in blood and cerebrospinal fluid, and on mood, fatigue, health-related quality of life, muscle strength, walking and cognition. J Neurol Sci. 2016 Mar 15;362:251-7. doi: 10.1016/j.jns.2016.01.063. PMID: 26944158. Exclusion: 11.
- 517. Kim CY, Lee JS, Kim HD, et al. Short-term effects of respiratory muscle training combined with the abdominal drawing-in maneuver on the decreased pulmonary function of individuals with chronic spinal cord injury: a pilot randomized controlled trial. J Spinal Cord Med. 2017 Jan;40(1):17-25. doi: 10.1080/10790268.2016.1198576. PMID: 27463071. Exclusion: 4.
- 518. Kim DA, Lee JA, Hwang PW, et al. The effect of comprehensive hand repetitive intensive strength training (CHRIST) using motion analysis in children with cerebral palsy. Ann Rehabil Med. 2012 Feb;36(1):39-46. doi: 10.5535/arm.2012.36.1.39. PMID: 22506234. Exclusion: 11.
- 519. Kim DI, Lee H, Lee BS, et al. Effects of a 6-Week indoor hand-bike exercise program on health and fitness levels in people with spinal cord injury: a randomized controlled trial study. Arch Phys Med Rehabil. 2015 Nov;96(11):2033-40.e1. doi: 10.1016/j.apmr.2015.07.010. PMID: 26254953. Exclusion: 11.

- 520. Kim MR, Lee BH, Park DS. Effects of combined Adeli suit and neurodevelopmental treatment in children with spastic cerebral palsy with gross motor function classification system levels I and II. Hong Kong Physiother J. 2016 Jun;34:10-8. doi: 10.1016/j.hkpj.2015.09.036. PMID: 30931022. Exclusion: 11.
- 521. Kimoto M, Yonetsu R, Okada K, et al. Effect of home-based training focused on increasing maximum step length in walking function of children with cerebral palsy. Physical Therapy Reviews. 2019;24(6):358-65. doi: 10.1080/10833196.2019.1664083. Exclusion: 4.
- 522. Kinnett-Hopkins D, Motl R. Results of a feasibility study of a patient informed, racially tailored home-based exercise program for black persons with multiple sclerosis. Contemp Clin Trials. 2018 Oct 17;17:17. doi: 10.1016/j.cct.2018.10.009. PMID: 30342254. Exclusion: 11.
- 523. Kjolhede T, Dalgas U, Gade AB, et al. Progressive resistance training improves muscle strength and function, but does not affect circulating cytokines for people with multiple sclerosis treated with interferonbeta. Mult Scler J Exp Transl Clin. Apr 10 21(4):526. Exclusion: 10.
- 524. Kjolhede T, Siemonsen S, Wenzel D, et al. Can resistance training impact MRI outcomes in relapsing-remitting multiple sclerosis? Mult Scler. 2018 Sep;24(10):1356-65. doi: 10.1177/1352458517722645. PMID: 28752800. Exclusion: 11.
- 525. Kjolhede T, Vissing K, de Place L, et al. Neuromuscular adaptations to long-term progressive resistance training translates to improved functional capacity for people with multiple sclerosis and is maintained at follow-up. Mult Scler. 2015 Apr;21(5):599-611. doi: 10.1177/1352458514549402. PMID: 25257612. Exclusion: 11.
- 526. Kjolhede T, Vissing K, Stenager E, et al. Long-term progressive resistance training improves functional capacity for people with mild-moderate multiple sclerosis: preliminary data. Mult Scler J Exp Transl Clin. 2013 Oct;19(11 SUPPL. 1):556-7. doi: 10.1177/1352458513502429. Exclusion: 7.

- 527. Klaren RE, Hubbard EA, Motl RW. Efficacy of a behavioral intervention for reducing sedentary behavior in persons with multiple sclerosis: a pilot examination. Am J Prev Med. 2014 Nov;47(5):613-6. doi: 10.1016/j.amepre.2014.05.036. PMID: 25070271. Exclusion: 4.
- 528. Klingels K, Feys H, Molenaers G, et al. Randomized trial of modified constraintinduced movement therapy with and without an intensive therapy program in children with unilateral cerebral palsy. Neurorehabil Neural Repair. 2013 Nov-Dec;27(9):799-807. doi: 10.1177/1545968313496322. PMID: 23901061. Exclusion: 4.
- 529. Knight S, Fetters L. Clinical bottom line. Intensive motor skills training program combining group and individual sessions for children with cerebral palsy. Pediatr Phys Ther. 2010;22(2):160. doi: 10.1097/PEP.0b013e3181dced27. PMID: 20473098. Exclusion: 11.
- 530. Knights S, Graham N, Switzer L, et al. An innovative cycling exergame to promote cardiovascular fitness in youth with cerebral palsy. Dev Neurorehabil. 2016;19(2):135-40. doi: 10.3109/17518423.2014.923056. PMID: 24950349. Exclusion: 11.
- 531. Knikou M, Mummidisetty CK. Locomotor training improves premotoneuronal control after chronic spinal cord injury. J Neurophysiol. 2014 Jun 1;111(11):2264-75. doi: 10.1152/jn.00871.2013. PMID: 24598526. Exclusion: 11.
- 532. Knikou M, Smith AC, Mummidisetty CK. Locomotor training improves reciprocal and nonreciprocal inhibitory control of soleus motoneurons in human spinal cord injury. J Neurophysiol. 2015 Apr 1;113(7):2447-60. doi: 10.1152/jn.00872.2014. PMID: 25609110. Exclusion: 11.
- 533. Ko M-S, Doo J-H, Kim J-S, et al. Effect of whole body vibration training on gait function and activities of daily living in children with cerebral palsy. Int J Ther Rehabil. 2015;22(7):321-8. doi: 10.12968/ijtr.2015.22.7.321. Exclusion: 4.
- 534. Ko Y, Kim H, Chio E, et al. Do virtual reality sports games improve sports specific skills in unilateral cerebral palsy patients? Dev Med Child Neurol. 2013 Oct;55:12-3. doi: 10.1111/dmcn.12258. Exclusion: 7.

- 535. Kobetic R, To CS, Schnellenberger JR, et al. Development of hybrid orthosis for standing, walking, and stair climbing after spinal cord injury. J Rehabil Res Dev. 2009;46(3):447-62. PMID: 19675995. Exclusion: 10.
- 536. Kooijmans H, Post MWM, Stam HJ, et al. Effectiveness of a self-management intervention to promote an active lifestyle in persons with long-term spinal cord injury: the HABITS randomized clinical trial. Neurorehabil Neural Repair. 2017 Dec;31(12):991-1004. doi: 10.1177/1545968317736819. PMID: 29256337. Exclusion: 4.
- 537. Koontz AM, Garfunkel CE, Crytzer TM, et al. Feasibility, acceptability, and preliminary efficacy of a handcycling high-intensity interval training program for individuals with spinal cord injury. Spinal Cord. 2020 Sep 09;09:09. doi: 10.1038/s41393-020-00548-7. PMID: 32908194. Exclusion: 4.
- 538. Koopman AD, Eken MM, van Bezeij T, et al. Does clinical rehabilitation impose sufficient cardiorespiratory strain to improve aerobic fitness? J Rehabil Med. 2013 Jan;45(1):92-8. doi: 10.2340/16501977-1072. PMID: 23096222. Exclusion: 4.
- 539. Kordi MR, Anooshe L, Khodadade S, et al. Comparing the effect of three methods of combined training on serum levels of Ghrelin, pro and anti-inflammatory cytokines in multiple sclerosis (MS) patients. Journal of Zanjan University of Medical Sciences and Health Services. 2013;22(91):39-51. Exclusion: 13.
- 540. Kott K, Lesher K, DeLeo G. Combining a virtual reality system with treadmill training for children with cerebral palsy. J Cyber Ther Rehabil. 2009;2(1):35-42. doi: 10.1186/1471-2431-13-168. PMID: 24112817 Exclusion: 11.
- 541. Kowalczewski J, Chong SL, Galea M, et al. In-home tele-rehabilitation improves tetraplegic hand function. Neurorehabil Neural Repair. 2011 Jun;25(5):412-22. doi: 10.1177/1545968310394869. PMID: 21372246. Exclusion: 11.

- 542. Kramer A, Dettmers C, Gruber M. Exergaming with additional postural demands improves balance and gait in patients with multiple sclerosis as much as conventional balance training and leads to high adherence to home-based balance training. Arch Phys Med Rehabil. 2014 Oct;95(10):1803-9. doi: 10.1016/j.apmr.2014.04.020. PMID: 24823959. Exclusion: 4.
- 543. Kratz AL, Atalla M, Whibley D, et al. Calling Out MS Fatigue: Feasibility and Preliminary Effects of a Pilot Randomized Telephone-Delivered Exercise Intervention for Multiple Sclerosis Fatigue. J Neurol Phys Ther. 2020 Jan;44(1):23-31. doi: 10.1097/NPT.000000000000296. PMID: 31738192. Exclusion: 11.
- 544. Kratz AL, Ehde DM, Bombardier CH. Affective mediators of a physical activity intervention for depression in multiple sclerosis. Rehabil Psychol. 2014 Feb;59(1):57-67. doi: 10.1037/a0035287. PMID: 24611925. Exclusion: 4.
- 545. Kratz AL, Molton IR, Jensen MP, et al. Further evaluation of the motivational model of pain self-management: coping with chronic pain in multiple sclerosis. Ann Behav Med. 2011 Jun;41(3):391-400. doi: 10.1007/s12160-010-9249-6. PMID: 21213092. Exclusion: 4.
- 546. Krause A, Schonau E, Duran I, et al. High frequency whole body vibration improves motor control in subjects with spastic cerebral palsy. Dev Med Child Neurol. 2016 Oct;58:44. doi: 10.1111/dmcn.94_13241. Exclusion: 6.
- 547. Krebs HI, Fasoli SE, Dipietro L, et al. Motor learning characterizes habilitation of children with hemiplegic cerebral palsy. Neurorehabil Neural Repair. 2012 Sep;26(7):855-60. doi: 10.1177/1545968311433427. PMID: 22331211. Exclusion: 11.
- 548. Kressler J, Burns PA, Betancourt L, et al. Circuit training and protein supplementation in persons with chronic tetraplegia. Med Sci Sports Exerc. 2014 Jul;46(7):1277-84. doi: 10.1249/MSS.000000000000250. PMID: 24389521. Exclusion: 11.

- 549. Kressler J, Jacobs K, Burns P, et al. Effects of circuit resistance training and timely protein supplementation on exercise-induced fat oxidation in tetraplegic adults. Top Spinal Cord Inj Rehabil. 2014;20(2):113-22. doi: 10.1310/sci2002-113. PMID: 25477733. Exclusion: 11.
- 550. Kruse A, Schranz C, Svehlik M, et al. The effect of functional home-based strength training programs on the mechanomorphological properties of the plantar flexor muscle-tendon unit in children with spastic cerebral palsy. Pediatr Exerc Sci. 2019 Feb 1;31(1):67-76. doi: 10.1123/pes.2018-0106. PMID: 30424684. Exclusion: 4.
- 551. Kruse A, Schranz C, Tilp M, et al. Effects of progressive resistance or high-intensity strength training on muscle function and achilles tendon mechanical properties in children with cerebral palsy. Gait Posture. 2017;Conference: 26th annual meeting of the european society for movement analysis in adults and children, ESMAC. 2017. Norway 57(Supplement 1):6. Exclusion: 10.
- 552. Kubsik A, Klimkiewicz P, Klimkiewicz R, et al. The influence of high-tone power therapy on the functional status of patients with multiple sclerosis. Pol Merkuriusz Lek. 2014 Jul;37(217):24-9. PMID: 25154195. Exclusion: 13.
- 553. Kucuk F, Kara B, Poyraz EC, et al. Improvements in cognition, quality of life, and physical performance with clinical pilates in multiple sclerosis: a randomized controlled trial. J Phys Ther Sci. 2016 Mar;28(3):761-8. doi: 10.1589/jpts.28.761. PMID: 27134355. Exclusion: 11.
- 554. Kuhn D, Leichtfried V, Schobersberger W. Four weeks of functional electrical stimulated cycling after spinal cord injury: a clinical cohort study. Int J Rehabil Res. 2014 Sep;37(3):243-50. doi: 10.1097/MRR.00000000000062. PMID: 24802976. Exclusion: 3.
- 555. Kumaresan A, Rabha D. Effects of quadriceps femoris muscle strengthening exercises on gait parameters in spastic diplegia with children with cerebral palsy. Biomedicine (India). 2017;37(4):501-5. Exclusion: 14.

- 556. Kumari R, Verma M, Gupta A. To determine effectiveness of closed-kinetic chain exercise on motor control and function as compared to open-kinetic chain exercise in children with spastic diplegic CP. Indian J Physiother Occup Ther. 2014;8(2):33-7. Exclusion: 6.
- 557. Kurz MJ, Stuberg W, DeJong SL. Body weight supported treadmill training improves the regularity of the stepping kinematics in children with cerebral palsy. Dev Neurorehabil. 2011;14(2):87-93. doi: 10.3109/17518423.2011.552459. PMID: 21410400. Exclusion: 11.
- 558. Kusumoto Y, Nitta O, Takaki K. Impact of loaded sit-to-stand exercises at different speeds on the physiological cost of walking in children with spastic diplegia: a singleblind randomized clinical trial. Res Dev Disabil. 2016 Oct;57:85-91. doi: 10.1016/j.ridd.2016.06.006. PMID: 27394691. Exclusion: 11.
- 559. Kwon HY, Kim BJ. Effects of task-specific movement patterns during resistance exercise on the respiratory functions and thickness of abdominal muscles of children with cerebral palsy: randomized placebocontrolled double-blinded clinical trial. J Phys Ther Sci. 2018 Aug;30(8):1073-80. doi: 10.1589/jpts.30.1073. PMID: 30154603. Exclusion: 11.
- 560. Kwon JY, Chang WH, Chang HJ, et al. Changes in diffusion tensor tractographic findings associated with constraint-induced movement therapy in young children with cerebral palsy. Clin Neurophysiol. 2014 Dec;125(12):2397-403. doi: 10.1016/j.clinph.2014.02.025. PMID: 24746686. Exclusion: 4.
- 561. Labaf S, Shamsoddini A, Taghi Hollisaz M, et al. Effects of neurodevelopmental therapy on gross motor function in children with cerebral palsy. Iran J Child Neurol. 2015;9(2):36-41. PMID: 26221161. Exclusion: 4.
- 562. Labruyere R, van Hedel HJ. Instrument validity and reliability of a choice response time test for subjects with incomplete spinal cord injury: relationship with function. Arch Phys Med Rehabil. 2011 Sep;92(9):1443-9. doi: 10.1016/j.apmr.2011.04.006. PMID: 21878215. Exclusion: 4.

- 563. Labruyere R, van Hedel HJ. Curve walking is not better than straight walking in estimating ambulation-related domains after incomplete spinal cord injury. Arch Phys Med Rehabil. 2012 May;93(5):796-801. doi: 10.1016/j.apmr.2011.11.009. PMID: 22386212. Exclusion: 4.
- 564. Labruyere R, van Hedel HJ. Strength training versus robot-assisted gait training after incomplete spinal cord injury: a randomized pilot study in patients depending on walking assistance. J Neuroengineering Rehabil. 2014 Jan 9;11:4. doi: 10.1186/1743-0003-11-4. PMID: 24401143. Exclusion: 11.
- 565. Lahelle AF, Oberg GK, Normann B. A group-based, individualized physiotherapy intervention for people with multiple sclerosis-a qualitative study. Physiother Res Int. 2018 Jul 23;23 doi: 10.1002/pri.1734. PMID: 30039598. Exclusion: 3.
- 566. Lahelle Af Pt MP, Oberg Gk Pt P, Normann B Pt P. Physiotherapy assessment of individuals with multiple sclerosis prior to a group intervention - a qualitative observational and interview study. Physiother Theory Pract. 2018 Jul 9:1-11. doi: 10.1080/09593985.2018.1488022. PMID: 29985730. Exclusion: 4.
- 567. Lai B, Cederberg K, Vanderbom KA, et al. Characteristics of adults with neurologic disability recruited for exercise trials: a secondary analysis. Adapt Phys Act Q. 2018;35(4):476-97. doi: 10.1123/apaq.2017-0109. Exclusion: 12.
- 568. Lai B, Rimmer J, Barstow B, et al. Teleexercise for persons with spinal cord injury: a mixed-methods feasibility case series. JMIR Rehabil Assist Technol. 2016 Jul 14;3(2) doi: 10.2196/rehab.5524. PMID: 28582252. Exclusion: 11.
- 569. Lai B, Young HJ, Bickel CS, et al. Current trends in exercise intervention research, technology, and behavioral change strategies for people with disabilities: a scoping review. Am J Phys Med Rehabil. 2017 Oct;96(10):748-61. doi: 10.1097/PHM.00000000000743. PMID: 28398967. Exclusion: 12.

- 570. Lai BH, Wu JB, Gao ZW, et al. Strategy by stages for preventing respiratory complications of acute cervical spinal cord injury. Zhongguo Gu Shang. 2015 Aug;28(8):690-4. PMID: 26502516. Exclusion: 13.
- 571. Lajeunesse V, Vincent C, Routhier F, et al. Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury. Disabil Rehabil Assist Technol. 2016 Oct;11(7):535-47. doi: 10.3109/17483107.2015.1080766. PMID: 26340538. Exclusion: 12.
- 572. Lakomy-Gawryszewska AA, Józefowicz K, Raniszewska A, et al. The impact of hippotherapy on the quality of trunk stabilisation, evaluated by EMG biofeedback, in children with infantile cerebral palsy. Polish Annals of Medicine. 2017;24(1):9-12. doi: 10.1016/j.poamed.2016.06.001. Exclusion: 8.
- 573. Lam T, Pauhl K, Ferguson A, et al. A new training paradigm using robot-applied resistance to enhance skilled walking in people with spinal cord injury. Physiotherapy. 2015;101(1). Exclusion: 10.
- 574. Lam T, Pauhl K, Ferguson A, et al. Training with robot-applied resistance in people with motor-incomplete spinal cord injury: pilot study. J Rehabil Res Dev. 2015;52(1):113-29. doi: 10.1682/JRRD.2014.03.0090. PMID: 26230667. Exclusion: 11.
- 575. Lamberti N, Straudi S, Donadi M, et al. Effectiveness of blood flow-restricted slow walking on mobility in severe multiple sclerosis: A pilot randomized trial. Scand J Med Sci Sports. 2020 Jul 09;09:09. doi: 10.1111/sms.13764. PMID: 32645227. Exclusion: 11.
- 576. Lan C, Chen SY, Lai JS, et al. Tai Chi Chuan in medicine and health promotion. Evid Based Complement Alternat Med. 2013;2013 doi: 10.1155/2013/502131. Exclusion: 10.

- 577. Langeskov-Christensen M, Heine M, Kwakkel G, et al. Aerobic capacity in persons with multiple sclerosis: a systematic review and meta-analysis. Sports Med. 2015 Jun;45(6):905-23. doi: 10.1007/s40279-015-0307-x. PMID: 25739555. Exclusion: 12.
- 578. Larson RD, McCully KK, Larson DJ, et al. Bilateral differences in lower-limb performance in individuals with multiple sclerosis. J Rehabil Res Dev. 2013;50(2):215-22. PMID: 23761002. Exclusion: 5.
- 579. Larson RD, McCully KK, Larson DJ, et al. Lower-limb performance disparities: implications for exercise prescription in multiple sclerosis. J Rehabil Res Dev. 2014;51(10):1537-44. doi: 10.1682/JRRD.2013.09.0191. PMID: 25855905. Exclusion: 4.
- 580. Latimer-Cheung AE, Arbour-Nicitopoulos KP, Brawley LR, et al. Developing physical activity interventions for adults with spinal cord injury. Part 2: motivational counseling and peer-mediated interventions for people intending to be active. Rehabil Psychol. 2013 Aug;58(3):307-15. doi: 10.1037/a0032816. PMID: 23978086. Exclusion: 4.
- 581. Lau SCL, Fong M, Lenze E, et al. Psychometric evaluation of the center for epidemiologic studies depression scale (CES-D) for patients after stroke. Arch Phys Med Rehabil. 2019 Oct;100(10):26. doi: 10.1016/j.apmr.2019.08.060. Exclusion: 9.
- 582. Lauer RT, Johnston TE, Smith BT, et al. Lower extremity muscle activity during cycling in adolescents with and without cerebral palsy. Clin Biomech. 2008 May;23(4):442-9. doi: 10.1016/j.clinbiomech.2007.11.004. PMID: 18082920. Exclusion: 4.
- 583. Lauer RT, Smith BT, Mulcahey MJ, et al. Effects of cycling and/or electrical stimulation on bone mineral density in children with spinal cord injury. Spinal Cord. 2011 Aug;49(8):917-23. doi: 10.1038/sc.2011.19. PMID: 21423253. Exclusion: 4.

- 584. Lauglo R, Vik T, Lamvik T, et al. Highintensity interval training to improve fitness in children with cerebral palsy. BMJ Open Sport Exerc Med. 2016;2(1) doi: 10.1136/bmjsem-2016-000111. PMID: 27900177. Exclusion: 11.
- 585. Lauruschkus K, Hallstrom I, Westbom L, et al. Participation in physical activities for children with cerebral palsy: feasibility and effectiveness of physical activity on prescription. Arch Physiother. 2017;7:13. doi: 10.1186/s40945-017-0041-9. PMID: 29340207. Exclusion: 4.
- 586. Lawrence H, Hills S, Kline N, et al. Effectiveness of exercise on functional mobility in adults with cerebral palsy: a systematic review. Physiother Can. 2016;68(4):398-407. doi: 10.3138/ptc.2015-38LHC. PMID: 27904240. Exclusion: 12.
- 587. Lazzari RD, Politti F, Belina SF, et al. Effect of transcranial direct current stimulation combined with virtual reality training on balance in children with cerebral palsy: a randomized, controlled, double-blind, clinical trial. J Mot Behav. 2017 May-Jun;49(3):329-36. doi: 10.1080/00222895.2016.1204266. PMID: 27644454. Exclusion: 4.
- 588. Learmonth Y, Miller LJ, Paul L, et al. Excercise therapy for those moderately affected by multiple sclerosis: results of a 12-week community-based excercise programme. Mult Scler J Exp Transl Clin. 2011 Oct;17(10 SUPPL. 1):S477-S8. doi: 10.1177/1352458511422301. PMID: 21984532 Exclusion: 7.
- 589. Learmonth YC, Marshall-McKenna R, Paul L, et al. A qualitative exploration of the impact of a 12-week group exercise class for those moderately affected with multiple sclerosis. Disabil Rehabil. 2013 Jan;35(1):81-8. doi: 10.3109/09638288.2012.688922. PMID: 22656959. Exclusion: 6.
- 590. Learmonth YC, Paul L, Miller L, et al. The effects of a 12-week leisure centre-based, group exercise intervention for people moderately affected with multiple sclerosis: a randomized controlled pilot study. Clin Rehabil. 2012 Jul;26(7):579-93. doi: 10.1177/0269215511423946. PMID: 21984532. Exclusion: 11.

- 591. Leavitt VM, Cirnigliaro C, Cohen A, et al. Aerobic exercise increases hippocampal volume and improves memory in multiple sclerosis: preliminary findings. Neurocase. 2014;20(6):695-7. doi: 10.1080/13554794.2013.841951. PMID: 24090098. Exclusion: 6.
- 592. Lee BH. Clinical usefulness of augmented reality using infrared camera based real-time feedback on gait function in cerebral palsy: a case study. J Phys Ther Sci. 2016 Apr;28(4):1387-91. doi: 10.1589/jpts.28.1387. PMID: 27190489. Exclusion: 7.
- 593. Lee DR, Kim YH, Kim DA, et al. Innovative strength training-induced neuroplasticity and increased muscle size and strength in children with spastic cerebral palsy: an experimenter-blind case study-three-month follow-up. NeuroRehabilitation. 2014;35(1):131-6. doi: 10.3233/NRE-131036. PMID: 24419014. Exclusion: 7.
- 594. Lee JH, Sung IY, Yoo JY. Therapeutic effects of strengthening exercise on gait function of cerebral palsy. Disabil Rehabil. 2008;30(19):1439-44. PMID: 19230216. Exclusion: 11.
- 595. Lee Y, Chen K, Ren Y, et al. Robot-guided ankle sensorimotor rehabilitation of patients with multiple sclerosis. Mult Scler Relat Disord. 2017 Jan;11:65-70. doi: 10.1016/j.msard.2016.12.006. PMID: 28104260. Exclusion: 11.
- 596. Lee YH, Lee JH, Kim SH, et al. Hemodynamic adaptations to regular exercise in people with spinal cord injury. Ann Rehabil Med. 2017 Feb;41(1):25-33. doi: 10.5535/arm.2017.41.1.25. PMID: 28289632. Exclusion: 4.
- 597. Lee YH, Oh KJ, Kong ID, et al. Effect of regular exercise on cardiopulmonary fitness in males with spinal cord injury. Ann Rehabil Med. 2015 Feb;39(1):91-9. doi: 10.5535/arm.2015.39.1.91. PMID: 25750877. Exclusion: 4.
- 598. Lee YS, Kim WB, Park JW. The effect of exercise using a sliding rehabilitation machine on the gait function of children with cerebral palsy. J Phys Ther Sci. 2014 Nov;26(11):1667-9. doi: 10.1589/jpts.26.1667. PMID: 25435673. Exclusion: 11.

- 599. Leech KA, Hornby TG. High-intensity locomotor exercise increases brain-derived neurotrophic factor in individuals with incomplete spinal cord injury. J Neurotrauma. 2017 Mar 15;34(6):1240-8. doi: 10.1089/neu.2016.4532. PMID: 27526567. Exclusion: 4.
- 600. Leech KA, Kinnaird CR, Holleran CL, et al. Effects of locomotor exercise intensity on gait performance in individuals with incomplete spinal cord injury. Phys Ther. 2016 Dec;96(12):1919-29. doi: 10.2522/ptj.20150646. PMID: 27313241. Exclusion: 11.
- 601. Lefmann S, Russo R, Hillier S. The effectiveness of robotic-assisted gait training for paediatric gait disorders: systematic review. J Neuroengineering Rehabil. 2017 Jan 5;14(1):1. doi: 10.1186/s12984-016-0214-x. PMID: 28057016. Exclusion: 12.
- 602. Legg Ditterline BE, Aslan SC, Randall DC, et al. Effects of respiratory training on heart rate variability and baroreflex sensitivity in individuals with chronic spinal cord injury. Arch Phys Med Rehabil. 2018;99(3):423-32. doi: 10.1016/j.apmr.2017.06.033. Exclusion: 4.
- 603. Lenze EJ, Host HH, Hildebrand MW, et al. Enhanced medical rehabilitation increases therapy intensity and engagement and improves functional outcomes in postacute rehabilitation of older adults: a randomizedcontrolled trial. J Am Med Dir Assoc. 2012 Oct;13(8):708-12. doi: 10.1016/j.jamda.2012.06.014. PMID: 22863663. Exclusion: 3.
- 604. Lerma-Castaño PR, Rodríguez-Laiseca YA, Falla JD, et al. Effects of hippotherapy on gross motor function in children with spastic cerebral palsy: quasi-experimental study. Revista Mexicana de Pediatria. 2017 Jul-Aug;84(4):143-8. doi: 10.3109/01942638.2015.1129386. Exclusion: 13.
- 605. Leving MT, Vegter RJ, Hartog J, et al. Effects of visual feedback-induced variability on motor learning of handrim wheelchair propulsion. PLoS One. 2015;10(5) doi: 10.1371/journal.pone.0127311. PMID: 25992626. Exclusion: 3.

- 606. Lewis J. A progressive running program for an adolescent with cerebral palsy. Pediatr Phys Ther. 2017 07;29(3):E12-E6. doi: 10.1097/PEP.000000000000429. PMID: 28654506. Exclusion: 7.
- 607. Li C, Khoo S, Adnan A. Effects of aquatic exercise on physical function and fitness among people with spinal cord injury: a systematic review. Medicine (Baltimore). 2017 Mar;96(11) doi: 10.1097/MD.00000000006328. PMID: 28296754. Exclusion: 12.
- 608. Li J, Polston KFL, Eraslan M, et al. A highprotein diet or combination exercise training to improve metabolic health in individuals with long-standing spinal cord injury: a pilot randomized study. Physiol Rep. 2018 Aug 28;6(16) doi: 10.14814/phy2.13813. PMID: 30156033. Exclusion: 11.
- 609. Li W, Lam-Damji S, Chau T, et al. The development of a home-based virtual reality therapy system to promote upper extremity movement for children with hemiplegic cerebral palsy. Technol Disabil. 2009;21(3):107-13. doi: 10.3233/TAD-2009-0277. Exclusion: 11.
- 610. Lin C-Y, Chang Y-M. Increase in physical activities in kindergarten children with cerebral palsy by employing MaKey-MaKey-based task systems. Res Dev Disabil. 2014 Sep;35(9):1963-9. doi: 10.1016/j.ridd.2014.04.028. Exclusion: 4.
- 611. Lin KC, Wang TN, Wu CY, et al. Effects of home-based constraint-induced therapy versus dose-matched control intervention on functional outcomes and caregiver wellbeing in children with cerebral palsy. Res Dev Disabil. 2011 Sep-Oct;32(5):1483-91. doi: 10.1016/j.ridd.2011.01.023. PMID: 21429706. Exclusion: 4.
- 612. Lins C, Castro A, Medina GIS, et al. Alternative scapular stabilization exercises to target strength, endurance and function of shoulders in tetraplegia: a prospective noncontrolled intervention study. J Spinal Cord Med. 2019 Nov 16;42(1):65-76. doi: 10.1080/10790268.2017.1398943. PMID: 29141513. Exclusion: 4.

- 613. Litchke L, Lloyd L, Schmidt E, et al. Comparison of two concurrent respiratory resistance devices on pulmonary function and time trial performance of wheel chair athletes. Ther Recreation J. 2010;44(1):51-62. Exclusion: 4.
- 614. Litchke LG, Lloyd LK, Schmidt EA, et al. Effects of concurrent respiratory resistance training on health-related quality of life in wheelchair rugby athletes: a pilot study. Top Spinal Cord Inj Rehabil. 2012;18(3):264-72. doi: 10.1310/sci1803-264. PMID: 23459144. Exclusion: 4.
- 615. Litchke LG, Russian CJ, Lloyd LK, et al. Effects of respiratory resistance training with a concurrent flow device on wheelchair athletes. J Spinal Cord Med. 2008;31(1):65-71. doi: 10.1080/10790268.2008.11753983. PMID: 18533414. Exclusion: 9.
- 616. Liu L, Chen K, Yang C, et al. Home- and lab-based robotic passive and active movement training of ankle impairments in cerebral palsy. Dev Med Child Neurol. 2013;55(25). Exclusion: 10.
- 617. Lopes S, Magalhaes P, Pereira A, et al. Games used with serious purposes: a systematic review of interventions in patients with cerebral palsy. Front Psychol. 2018 Sep 19;9(1712) doi: 10.3389/fpsyg.2018.01712. PMID: 30283377. Exclusion: 12.
- 618. Lorentzen J, Kirk H, Fernandez-Lago H, et al. Randomized controlled clinical trial of the effect of gait training on muscle function and gait kinematics in adults with cerebral palsy. Dev Med Child Neurol. 2016;58:44. doi: 10.1111/dmcn.93_13241. Exclusion: 10.
- 619. Lorentzen J, Kirk H, Fernandez-Lago H, et al. Treadmill training with an incline reduces ankle joint stiffness and improves active range of movement during gait in adults with cerebral palsy. Disabil Rehabil. 2017 May;39(10):987-93. doi: 10.1080/09638288.2016.1174745. PMID: 27237772. Exclusion: 4.

- 620. Lorentzen J, Kirk H, Lago Fernandez H, et al. Randomized controlled clinical trial of the effect of gait training in adults with cerebral palsy on ankle joint stiffness and kinematics. Dev Med Child Neurol. 2015;57:98. doi: 10.1111/dmcn.39_12886. Exclusion: 10.
- 621. Lorenz DJ, Datta S, Harkema SJ. Longitudinal patterns of functional recovery in patients with incomplete spinal cord injury receiving activity-based rehabilitation. Arch Phys Med Rehabil. 2012 Sep;93(9):1541-52. doi: 10.1016/j.apmr.2012.01.027. PMID: 22920451. Exclusion: 7.
- 622. Lotfian M, Kharazi MR, Mirbagheri A, et al. Therapeutic effects of an anti-gravity treadmill (AlterG) training on gait and lower limbs kinematics and kinetics in children with cerebral palsy. IEEE Int. 2017 Jul;2017:170-4. doi: 10.1109/ICORR.2017.8009241. PMID: 28813813. Exclusion: 11.
- 623. Lotter JK, Henderson CE, Plawecki A, et al. Task-specific versus impairment-based training on locomotor performance in Individuals with chronic spinal cord injury: A randomized crossover study. Neurorehabil Neural Repair. 2020 Jun 01 doi: 10.1177/1545968320927384. PMID: 32476619. Exclusion: 11.
- 624. Louie J, Baquie K, Offerman J, et al. Selfmanagement and multiple sclerosis: the impact of a community-based exercise and education program. Mult Scler J Exp Transl Clin. Oct 30;21(14):11-2. Exclusion: 10.
- 625. Louie J, Baquie KA, Offerman J, et al. Maximising abilities, negotiating and generating exercise options (manage) program: a pilot randomised controlled trial in persons with multiple sclerosis. Physiotherapy. 2015;101(1). Exclusion: 10.
- 626. Low DA, da Nobrega AC, Mathias CJ. Exercise-induced hypotension in autonomic disorders. Auton Neurosci. 2012 Nov 2;171(1-2):66-78. doi: 10.1016/j.autneu.2012.07.008. PMID: 23040841. Exclusion: 10.

- 627. Lu AL, Zhang XJ, Xu MF. Cohort study of hyperbaric oxygention (HBO) in controlling hypermyotonia caused by spinal cord injury. Zhongguo Gu Shang. 2012 Sep;25(9):743-6. PMID: 23256362. Exclusion: 13.
- 628. Lu X, Battistuzzo CR, Zoghi M, et al. Effects of training on upper limb function after cervical spinal cord injury: a systematic review. Clin Rehabil. 2015 Jan;29(1):3-13. doi: 10.1177/0269215514536411. PMID: 25575932. Exclusion: 12.
- 629. Lucio A, D'Ancona C A, Perissinotto MC, et al. Pelvic floor muscle training with and without electrical stimulation in the treatment of lower urinary tract symptoms in women with multiple sclerosis. J Wound Ostomy Continence Nurs. 2016 Jul-Aug;43(4):414-9. doi: 10.1097/WON.00000000000223. PMID: 27014935. Exclusion: 4.
- 630. Lucio AC, Campos RM, Perissinotto MC, et al. Pelvic floor muscle training in the treatment of lower urinary tract dysfunction in women with multiple sclerosis. Neurourol Urodyn. 2010 Nov;29(8):1410-3. doi: 10.1002/nau.20941. PMID: 20976816. Exclusion: 4.
- 631. Lucio AC, D'Ancona CA, Lopes MH, et al. The effect of pelvic floor muscle training alone or in combination with electrostimulation in the treatment of sexual dysfunction in women with multiple sclerosis. Mult Scler. 2014 Nov;20(13):1761-8. doi: 10.1177/1352458514531520. PMID: 24876156. Exclusion: 4.
- 632. Lucio AC, Perissinoto MC, Natalin RA, et al. A comparative study of pelvic floor muscle training in women with multiple sclerosis: its impact on lower urinary tract symptoms and quality of life. Clinics. 2011;66(9):1563-8. doi: 10.1590/s1807-59322011000900010. PMID: 22179160. Exclusion: 4.
- 633. Luu K, Hall PA. Hatha yoga and executive function: a systematic review. J Altern Complement Med. 2016 Feb;22(2):125-33. doi: 10.1089/acm.2014.0091. PMID: 26398441. Exclusion: 6.

- 634. Lyp M, Stanislawska I, Witek B, et al. Robot-assisted body-weight-supported treadmill training in gait impairment in multiple sclerosis patients: a pilot study. Adv Exp Med Biol. 2018 Feb 13;1070:111-5. doi: 10.1007/5584_2018_158. PMID: 29435956. Exclusion: 11.
- 635. M Piovesana A, Ross S, Lloyd O, et al. Randomized controlled trial of a web-based multi-modal therapy program for executive functioning in children and adolescents with unilateral cerebral palsy. Disabil Rehabil. 2017 Oct;39(20):2021-8. doi: 10.1080/09638288.2016.1213899. PMID: 27665941. Exclusion: 6.
- 636. Ma DN, Zhang XQ, Ying J, et al. Efficacy and safety of 9 nonoperative regimens for the treatment of spinal cord injury: a network meta-analysis. Medicine (Baltimore). 2017 Nov;96(47):e8679. doi: 10.1097/MD.00000000008679. PMID: 29381946. Exclusion: 12.
- 637. Ma JK, West CR, Martin Ginis KA. The effects of a patient and provider codeveloped, behavioral physical activity intervention on physical activity, psychosocial predictors, and fitness in individuals with spinal cord injury: a randomized controlled trial. Sports Med. 2019 Jul;49(7):1117-31. doi: 10.1007/s40279-019-01118-5. PMID: 31119717. Exclusion: 4.
- 638. Maas JC, Dallmeijer AJ, Huijing PA, et al. Splint: the efficacy of orthotic management in rest to prevent equinus in children with cerebral palsy, a randomised controlled trial. BMC Pediatr. 2012 Mar 26;12:38. doi: 10.1186/1471-2431-12-38. PMID: 22448907. Exclusion: 4.
- 639. Macias-Merlo L, Bagur-Calafat C, Girabent-Farres M, et al. Effects of the standing program with hip abduction on hip acetabular development in children with spastic diplegia cerebral palsy. Disabil Rehabil. 2016;38(11):1075-81. doi: 10.3109/09638288.2015.1100221. PMID: 26517269. Exclusion: 6.

- 640. MacIntosh A, Switzer L, Hwang S, et al. Ability-based balancing using the gross motor function measure in exergaming for youth with cerebral palsy. Games Health J. 2017 Dec;6(6):379-85. doi: 10.1089/g4h.2017.0053. PMID: 29016199. Exclusion: 11.
- 641. Mackow A, Malachowska-Sobieska M, Demczuk-Wlodarczyk E, et al. Influence of neurophysiological hippotherapy on the transference of the centre of gravity among children with cerebral palsy. Ortop Traumatol Rehabil. 2014 Nov-Dec;16(6):581-93. doi: 10.5604/15093492.1135048. PMID: 25694373. Exclusion: 4.
- 642. Madhusmita M, Ebnezar J, Srinivasan TM, et al. Efficacy of yoga as an add-on to physiotherapy in the management of patients with paraplegia: randomised controlled trial. J Clin Diagn Res. 2019;13(3):KC01-KC6. Exclusion: 14.
- 643. Madhusmita M, Srinivasan TM, Ebnezar J, et al. Effect of integrated yoga as an add-on to physiotherapy on walking index, esr, pain, and spasticity among subjects with traumatic spinal cord injury: a randomized control study. J Stem Cells. 2018;13(1):58-66. Exclusion: 14.
- 644. Magalhães R, Martins EW, Marocolo M, et al. Profile of the cardiac repolarization in cervical spinal cord injury subjects performing physical exercise. Acta Scientiarum Health Sciences. 2017;39(2):141-8. doi: 10.4025/actascihealthsci.v39i2.33468. Exclusion: 4.
- 645. Magia F, Bhise A, Prabhakar M, et al. Effect of pranayama (yogic breathing) on lung function in traumatic thoracic spinal cord injury patients: an interventional study. Physiotherapy. 2015;101. Exclusion: 10.
- 646. Magnani S, Olla S, Pau M, et al. Effects of six months training on physical capacity and metaboreflex activity in patients with multiple sclerosis. Front Physiol. 2016;7:531. doi: 10.3389/fphys.2016.00531. PMID: 27895592. Exclusion: 11.

- 647. Maher CA, Williams MT, Olds T, et al. An internet-based physical activity intervention for adolescents with cerebral palsy: a randomized controlled trial. Dev Med Child Neurol. 2010 May;52(5):448-55. doi: 10.1111/j.1469-8749.2009.03609.x. PMID: 20132138. Exclusion: 4.
- 648. Maira B, Sholpan B. Effectiveness of the combined use of robotic kinesiotherapy and botulinum therapy in the complex rehabilitation of children with cerebral palsy. Asian J Pharm Clin Res. 2018;11(9):360-4. doi: 10.22159/ajpcr.2018.v11i9.26541. Exclusion: 4.
- 649. Mak C, Whittingham K, Boyd R, et al. Miyoga-a randomized controlled trial of a novel mindfulness yoga program to enhance attention for child-parent dyads with unilateral and bilateral cerebral palsy. Developmental medicine and child neurology. Conference: 71st annual meeting of the american academy for cerebral palsy and developmental medicine, AACPDM. 2017;59:20-1. Exclusion: 10.
- 650. Mak C, Whittingham K, Cunnington R, et al. MiYoga: cognitive effects of a mindfulness yoga program targeting attention for children with cerebral palsy: a randomised controlled trial. Conference: 9th biennial conference of the australasian academy of cerebral palsy and developmental medicine, ausacpdm. 2018. New zealand 60. Dev Med Child Neurol. 2018 Mar;60(Supplement 1):14-5. doi: 10.1111/dmcn.13665. Exclusion: 10.
- 651. Mak C, Whittingham K, Cunnington R, et al. MiYoga: a randomised controlled trial of a mindfulness movement programme based on hatha yoga principles for children with cerebral palsy: a study protocol. BMJ Open. 2017 Jul 10;7(7):e015191. doi: 10.1136/bmjopen-2016-015191. PMID: 28698326. Exclusion: 4.
- 652. Mak C, Whittingham K, Cunnington R, et al. Effect of mindfulness yoga programme MiYoga on attention, behaviour, and physical outcomes in cerebral palsy: a randomized controlled trial. Dev Med Child Neurol. 2018 Sep;60(9):922-32. doi: 10.1111/dmcn.13923. PMID: 29869333. Exclusion: 4.

- 653. Mak C, Whittingham K, Cunnington R, et al. Six-month follow-up of a mindfulness yoga program, MiYoga, on attention, executive function, behaviour and physical outcomes in cerebral palsy. Disabil Rehabil. 2020 Jun 26:1-7. doi: 10.1080/09638288.2020.1783582. PMID: 32589851. Exclusion: 4.
- 654. Mak CK, Whittingham K, Boyd RN. Experiences of children and parents in MiYoga, an embodied mindfulness yoga program for cerebral palsy: a mixed method study. Complement Ther Clin Pract. 2019 Feb;34:208-16. doi: 10.1016/j.ctcp.2018.12.006. PMID: 30712729. Exclusion: 4.
- 655. Mak CK, Whittingham K, Cunnington R, et al. MiYoga: a randomized controlled trial of an embodied mindfulness yoga program to enhance attention for child-parent dyads with unilateral and bilateral cerebral palsy. Developmental medicine and child neurology. Conference: 29th annual meeting of the european academy of childhood disability, EACD. 2017;59:26-7. Exclusion: 10.
- 656. Makhov AS, Medvedev IN. The effectiveness of static exercises in the rehabilitation of cerebral palsy. Res J Pharm Biol Chem Sci. 2018;9(6):603-8. doi: 10.1097/PEP.0b013e3180302111. PMID: 17304099 Exclusion: 6.
- 657. Malin SK, Cotugna N, Fang CS. Effect of creatine supplementation on muscle capacity in individuals with multiple sclerosis. J Diet Suppl. 2008;5(1):20-32. doi: 10.1080/19390210802328974. PMID: 22433042. Exclusion: 4.
- Manago MM, Glick S, Hebert JR, et al. Strength training to improve gait in people with multiple sclerosis: a critical review of exercise parameters and intervention approaches. Int J MS Care. 2019 Mar-Apr;21(2):47-56. doi: 10.7224/1537-2073.2017-079. PMID: 31049034. Exclusion: 12.

- 659. Manca A, Cabboi MP, Dragone D, et al. Resistance training for muscle weakness in multiple sclerosis: direct versus contralateral approach in individuals with ankle dorsiflexors' disparity in strength. Arch Phys Med Rehabil. 2017 Jul;98(7):1348-56.e1. doi: 10.1016/j.apmr.2017.02.019. PMID: 28342828. Exclusion: 4.
- 660. Manca A, Dvir Z, Deriu F. Meta-analytic and scoping study on strength training in people with multiple sclerosis. J Strength Cond Res. 2019 Mar;33(3):874-89. doi: 10.1519/JSC.000000000002381. PMID: 30192317. Exclusion: 12.
- Manca A, Dvir Z, Dragone D, et al. Time course of strength adaptations following high-intensity resistance training in individuals with multiple sclerosis. Eur J Appl Physiol. 2017 Apr;117(4):731-43. doi: 10.1007/s00421-017-3534-z. PMID: 28251398. Exclusion: 4.
- Manella KJ, Roach KE, Field-Fote EC. Operant conditioning to increase ankle control or decrease reflex excitability improves reflex modulation and walking function in chronic spinal cord injury. J Neurophysiol. 2013 Jun;109(11):2666-79. doi: 10.1152/jn.01039.2011. PMID: 23468393. Exclusion: 11.
- 663. Manfredini F, Straudi S, Lamberti N, et al. Rehabilitation Improves Mitochondrial Energetics in Progressive Multiple Sclerosis: The Significant Role of Robot-Assisted Gait Training and of the Personalized Intensity. Diagnostics. 2020 Oct 17;10(10):17. doi: 10.3390/diagnostics10100834. PMID: 33080806. Exclusion: 6.
- 664. Manning KY, Menon RS, Gorter JW, et al. Neuroplastic sensorimotor resting state network reorganization in children with hemiplegic cerebral palsy treated with constraint-induced movement therapy. J Child Neurol. 2016 Feb;31(2):220-6. doi: 10.1177/0883073815588995. PMID: 26078420. Exclusion: 11.
- 665. Mansour WT, Atya AM, Aboumousa AM. Improving gait and balance in multiple sclerosis using partial body weight supported treadmill training. Egypt J Neurol Psychiatr Neurosurg. 2013;50(3):271-6. Exclusion: 14.

- 666. Marck CH, De Livera AM, Brown CR, et al. Health outcomes and adherence to a healthy lifestyle after a multimodal intervention in people with multiple sclerosis: three year follow-up. PLoS One. 2018;13(5):e0197759. doi: 10.1371/journal.pone.0197759. PMID: 29791509. Exclusion: 4.
- 667. Marcucci A, Edouard P, Loustalet E, et al. Efficiency of flexible derotator in walking cerebral palsy children. Ann Phys Rehabil Med. 2011 Sep;54(6):337-47. doi: 10.1016/j.rehab.2011.07.960. PMID: 21868301. Exclusion: 4.
- 668. Marinho-Buzelli AR, Bonnyman AM, Verrier MC. The effects of aquatic therapy on mobility of individuals with neurological diseases: a systematic review. Clin Rehabil. 2015 Aug;29(8):741-51. doi: 10.1177/0269215514556297. PMID: 25394397. Exclusion: 12.
- 669. Marques Catelli A, Ferreira Gattino LA, da Campo LA, et al. Cycle ergometer in the improvement of gross motor function of children with cerebral palsy: a systematic review with meta-analysis. Fisioterapia e Pesquisa. 2019;26(1):101-9. doi: 10.1590/1809-2950/18011026012019. Exclusion: 12.
- 670. Marryam M, Umar M, ul Ain SQ. Effectiveness of task specific training in improving functional independence after spinal cord injury. Rawal Medical Journal. 2018;43(2):245-7. Exclusion: 14.
- 671. Marsh AP, Applegate WB, Guralnik JM, et al. Hospitalizations during a physical activity intervention in older adults at risk of mobility disability: analyses from the lifestyle interventions and independence for elders randomized clinical trial. J Am Geriatr Soc. 2016 May;64(5):933-43. doi: 10.1111/jgs.14114. PMID: 27225353. Exclusion: 3.
- 672. Martakis K, Stark C, Rehberg M, et al. Oneminute walk test in children with cerebral palsy GMFCS Level 1 and 2: reference values to identify therapeutic effects after rehabilitation. Dev Neurorehabil. 2019 Jun 10:1-9. doi: 10.1080/17518423.2019.1625981. PMID: 31177878. Exclusion: 4.

- 673. Martin Ginis KA, van der Scheer JW, Latimer-Cheung AE, et al. Evidence-based scientific exercise guidelines for adults with spinal cord injury: an update and a new guideline. Spinal Cord. 2018 Apr;56(4):308-21. doi: 10.1038/s41393-017-0017-3. PMID: 29070812. Exclusion: 12.
- 674. Martinez SA, Nguyen ND, Bailey E, et al. Multimodal cortical and subcortical exercise compared with treadmill training for spinal cord injury. PLoS One. 2018 Aug 9;13(8):e0202130. doi: 10.1371/journal.pone.0202130. PMID: 30092092. Exclusion: 11.
- 675. Martini DN, Zeeboer E, Hildebrand A, et al. ADSTEP: preliminary investigation of a multicomponent walking aid program in people with multiple sclerosis. Arch Phys Med Rehabil. 2018 Oct;99(10):2050-8. doi: 10.1016/j.apmr.2018.05.023. PMID: 29958906. Exclusion: 4.
- 676. Martins E, Cordovil R, Oliveira R, et al. Efficacy of suit therapy on functioning in children and adolescents with cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2016 Apr;58(4):348-60. doi: 10.1111/dmcn.12988. PMID: 26613800. Exclusion: 12.
- 677. Marvi-Esfahani M, Karimi MT, Etemadifar M, et al. Comparison of energy consumption in different clinical forms multiple sclerosis with normal subjects (cohort study). Mult Scler Relat Disord. 2016 Mar;6:97-101. doi: 10.1016/j.msard.2016.02.007. PMID: 27063632. Exclusion: 4.
- 678. Mat Rosly M, Mat Rosly H, Davis Oam GM, et al. Exergaming for individuals with neurological disability: a systematic review. Disabil Rehabil. 2017 04;39(8):727-35. doi: 10.3109/09638288.2016.1161086. PMID: 27108475. Exclusion: 12.
- 679. Mathes S, Wahl P. Reply to: Could superimposed electromyostimulation be an effective training to improve aerobic and anaerobic capacity? Methodological considerations for its development. Eur J Appl Physiol. 2017 Jul;117(7):1517-8. doi: 10.1007/s00421-017-3626-9. PMID: 28477075. Exclusion: 10.

- 680. Mathevon L, Bonan I, Barnais JL, et al. Adjunct therapies to improve outcomes after botulinum toxin injection in children: a systematic review. Ann Phys Rehabil Med. 2019 Jul 29;62(4):283-90. doi: 10.1016/j.rehab.2018.06.010. PMID: 30063979. Exclusion: 12.
- 681. Matos-Souza JR, de Rossi G, Costa ESAA, et al. Impact of adapted sports activities on the progression of carotid atherosclerosis in subjects with spinal cord injury. Arch Phys Med Rehabil. 2016 Jun;97(6):1034-7. doi: 10.1016/j.apmr.2015.11.002. PMID: 26625710. Exclusion: 4.
- 682. Mattern-Baxter K. Effects of a group-based treadmill program on children with neurodevelopmental impairment who are not yet ambulating. Pediatr Phys Ther. 2016;28(3):312-9. doi: 10.1097/PEP.000000000000250. PMID: 27008580. Exclusion: 11.
- 683. Mattern-Baxter K, McNeil S, Mansoor JK. Effects of home-based locomotor treadmill training on gross motor function in young children with cerebral palsy: a quasirandomized controlled trial. Arch Phys Med Rehabil. 2013 Nov;94(11):2061-7. doi: 10.1016/j.apmr.2013.05.012. PMID: 23747646. Exclusion: 4.
- 684. Mattioli F, Bellomi F, Stampatori C, et al. Neuroenhancement through cognitive training and anodal tDCS in multiple sclerosis. Mult Scler. 2016 Feb;22(2):222-30. doi: 10.1177/1352458515587597. PMID: 26014600. Exclusion: 4.
- 685. Maurer M. Telerehabilitation in multiple sclerosis. Mult Scler J Exp Transl Clin. START: 2015 Oct 7 CONFERENCE END: 2015 Oct 10, 31st Congress of the European Committee for Treatment and Research in Multiple Sclerosis, ECTRIMS 2015 Barcelona Spain;23(11 SUPPL. 1):41. Exclusion: 10.
- 686. Maurer M, Kallmann B, Hofmann WE, et al. A 6-month, multicenter, randomized, controlled study to evaluate the effect of physical training on fatigue in patients with relapsing-remitting multiple sclerosis treated with Fingolimod (Gilenya)-first results of the PACE study. Mult Scler J Exp Transl Clin. 2011 Oct;21(11 SUPPL. 1):405. doi: 10.1177/1352458515602642. PMID: 29479457. Exclusion: 10.

- 687. Maurer M, Schuh K, Seibert S, et al. A randomized study to evaluate the effect of exercise on fatigue in people with relapsing-remitting multiple sclerosis treated with fingolimod. Mult Scler J Exp Transl Clin. 2018 Jan-Mar;4(1) doi: 10.1177/2055217318756688. PMID: 29479457. Exclusion: 4.
- 688. Mayo NE, Mate KK, Reid R, et al. Participation in and outcomes from a 12month tailored exercise programme for people with multiple sclerosis (MSTEP©): a randomized trial. Clin Rehabil. 2020 May 21 doi: 10.1177/0269215520923089. PMID: 32438828. Exclusion: 4.
- 689. Mayson TA, Harris SR. Functional electrical stimulation cycling in youth with spinal cord injury: a review of intervention studies. J Spinal Cord Med. 2014 May;37(3):266-77. doi: 10.1179/2045772313Y.0000000183. PMID: 24621033. Exclusion: 9.
- 690. Mazzoleni S, Battini E, Rustici A, et al. An integrated gait rehabilitation training based on functional electrical stimulation cycling and overground robotic exoskeleton in complete spinal cord injury patients: preliminary results. IEEE Int. 2017 Jul;2017:289-93. doi: 10.1109/ICORR.2017.8009261. PMID: 28813833. Exclusion: 11.
- 691. Mazzoleni S, Boldrini E, Laschi C, et al. Changes on EMG activation in healthy subjects and incomplete SCI patients following a robot-assisted locomotor training. IEEE Int. 2011;2011:5975467. doi: 10.1109/ICORR.2011.5975467. PMID: 22275665. Exclusion: 5.
- 692. McAuley E, Wojcicki TR, Learmonth YC, et al. Effects of a DVD-delivered exercise intervention on physical function in older adults with multiple sclerosis: a pilot randomized controlled trial. Mult Scler J Exp Transl Clin. 2015 Jan-Dec;1:2055217315584838. doi: 10.1177/2055217315584838. PMID: 28607692. Exclusion: 4.
- 693. McClurg D, Lowe-Strong A, Ashe RG. The benefits of pelvic floor muscle training in people with multiple sclerosis and lower urinary tract dysfunction. Journal of the Association of Chartered Physiotherapists in Women's Health. 2008(103):21-8. Exclusion: 4.

- 694. McCullagh R, Fitzgerald AP, Murphy RP, et al. Long-term benefits of exercising on quality of life and fatigue in multiple sclerosis patients with mild disability: a pilot study. Clin Rehabil. 2008 Mar;22(3):206-14. doi: 10.1177/0269215507082283. PMID: 18285430. Exclusion: 11.
- 695. McDaniel J, Lombardo LM, Foglyano KM, et al. Setting the pace: insights and advancements gained while preparing for an FES bike race. J Neuroengineering Rehabil. 2017 Nov 17;14(1):118. doi: 10.1186/s12984-017-0326-y. PMID: 29149885. Exclusion: 10.
- 696. McGibbon CA, Sexton A, Jayaraman A, et al. Evaluation of the Keeogo exoskeleton for assisting ambulatory activities in people with multiple sclerosis: an open-label, randomized, cross-over trial. J Neuroengineering Rehabil. 2018 Dec 12;15(1):117. doi: 10.1186/s12984-018-0468-6. PMID: 30541585. Exclusion: 11.
- 697. McGibbon NH, Benda W, Duncan BR, et al. Immediate and long-term effects of hippotherapy on symmetry of adductor muscle activity and functional ability in children with spastic cerebral palsy. Arch Phys Med Rehabil. 2009 Jun;90(6):966-74. doi: 10.1016/j.apmr.2009.01.011. PMID: 19480872. Exclusion: 8.
- 698. McLeod JC, Diana H, Hicks AL. Sprint interval training versus moderate-intensity continuous training during inpatient rehabilitation after spinal cord injury: a randomized trial. Spinal Cord. 2019 Aug 28;28:28. doi: 10.1038/s41393-019-0345-6. PMID: 31462757. Exclusion: 3.
- 699. McLoughlin JV, Lord SR, Barr CJ, et al. Dorsiflexion assist orthosis reduces the physiological cost and mitigates deterioration in strength and balance associated with walking in people with multiple sclerosis. Arch Phys Med Rehabil. 2015 Feb;96(2):226-32.e1. doi: 10.1016/j.apmr.2014.09.005. PMID: 25264109. Exclusion: 4.
- 700. McNee AE, Gough M, Morrissey MC, et al. Increases in muscle volume after plantarflexor strength training in children with spastic cerebral palsy. Dev Med Child Neurol. 2009 Jun;51(6):429-35. doi: 10.1111/j.1469-8749.2008.03230.x. PMID: 19170722. Exclusion: 11.

- 701. McPhee PG, Wong-Pack M, Obeid J, et al. Differences in cardiovascular health in ambulatory persons with cerebral palsy. J Rehabil Med. 2018 Oct 9;09:09. doi: 10.2340/16501977-2491. PMID: 30299522. Exclusion: 6.
- 702. Medina-Perez C, de Souza-Teixeira F, Fernandez-Gonzalo R, et al. Effects of a resistance training program and subsequent detraining on muscle strength and muscle power in multiple sclerosis patients. NeuroRehabilitation. 2014;34(3):523-30. doi: 10.3233/NRE-141062. PMID: 24463236. Exclusion: 4.
- 703. Medina-Perez C, de Souza-Teixeira F, Fernandez-Gonzalo R, et al. Effects of highspeed power training on muscle strength and power in patients with multiple sclerosis. J Rehabil Res Dev. 2016;53(3):359-68. doi: 10.1682/JRRD.2014.08.0186. PMID: 27270470. Exclusion: 11.
- 704. Mehrholz J, Harvey LA, Thomas S, et al. Is body-weight-supported treadmill training or robotic-assisted gait training superior to overground gait training and other forms of physiotherapy in people with spinal cord injury? A systematic review. Spinal Cord. 2017 Aug;55(8):722-9. doi: 10.1038/sc.2017.31. PMID: 28398300. Exclusion: 12.
- 705. Mehrvar K, Ghorbanian B, Mahmoudpoor A. The effect of pilates training and massage therapy on plasma serum levels of IL-17 and IFNbeta as pro- inflammatory cytokines in patients with multiple sclerosis (MS). Mult Scler. 2017;Conference: 7th joint ECTRIMS-ACTRIMS, MSPARIS2017. France. 23(3 Supplement 1):951-2. Exclusion: 10.
- 706. Mei-Ying Poon D. Effects of transcutaneous electrical nerve stimulation and body-weight-supported treadmill training on motor functions in children with spastic cerebral palsy. Dissertation Abstracts International: Section B: The Sciences and Engineering. 2008;68(11):7296. Exclusion: 9.
- 707. Meiner Z, Fisher I, Karussis D, et al. Robotassisted gait training by using the lokomat system in patients with multiple sclerosis: a pilot randomized trial. PM and R. 2011 Nov;3(10 SUPPL. 1):265. doi: 10.1016/j.pmrj.2011.08.297. Exclusion: 10.

- Melo FCM, de Lima KKF, Silveira A, et al. Physical training and upper limb strength of people with paraplegia: a systematic review. J Sport Rehabil. 2018 Mar 1;28(3):288-93. doi: 10.1123/jsr.2017-0062. PMID: 29364066. Exclusion: 12.
- 709. Methajarunon P, Eitivipart C, Diver CJ, et al. Systematic review of published studies on aquatic exercise for balance in patients with multiple sclerosis, Parkinson's disease, and hemiplegia. Hong Kong Physiother J. 2016 Dec;35:12-20. doi: 10.1016/j.hkpj.2016.03.002. PMID: 30931029. Exclusion: 12.
- 710. Meyer C, Weissland T, Watelain E, et al. Physiological responses in handcycling. Preliminary study. Ann Phys Rehabil Med. 2009 May;52(4):311-8. doi: 10.1016/j.rehab.2009.04.001. PMID: 19467942. Exclusion: 7.
- 711. Meyer-Heim A, Ammann-Reiffer C, Schmartz A, et al. Improvement of walking abilities after robotic-assisted locomotion training in children with cerebral palsy. Arch Dis Child. 2009 Aug;94(8):615-20. doi: 10.1136/adc.2008.145458. PMID: 19208675. Exclusion: 8.
- 712. Meyns P, Bras C, Harlaar J, et al. Does video game-based balance-training improve gait stability in children with cerebral palsy? Gait Posture. 2018;65:105-6. doi: 10.1016/j.gaitpost.2018.06.078. Exclusion: 11.
- 713. Meyns P, Harlaar J, Van De Pol L, et al. Can virtual reality games improve scores on clinical balance scales in children with cerebral palsy: preliminary results of a randomized controlled clinical trial. Gait Posture. 2017 Sep;57 Conference: 26th annual meeting of the european society for movement analysis in adults and children, ESMAC. 2017. Norway 204. doi: 10.1016/j.gaitpost.2017.06.390. Exclusion: 10.
- 714. Meyns P, Van de Walle P, Hoogkamer W, et al. Coordinating arms and legs on a hybrid rehabilitation tricycle: the metabolic benefit of asymmetrical compared to symmetrical arm movements. Eur J Appl Physiol. 2014 Apr;114(4):743-50. doi: 10.1007/s00421-013-2814-5. PMID: 24384984. Exclusion: 3.

- 715. Mignardot JB, Le Goff CG, van den Brand R, et al. A multidirectional gravity-assist algorithm that enhances locomotor control in patients with stroke or spinal cord injury. Sci Transl Med. 2017 Jul 19;9(399):19. doi: 10.1126/scitranslmed.aah3621. PMID: 28724575. Exclusion: 10.
- 716. Mikuľáková W, Klímová E, Kendrová L, et al. Effect of rehabilitation on fatigue level in patients with multiple sclerosis. Med Sci Monit. 2018;24:5761-70. doi: 10.12659/MSM.909183. PMID: 30120829. Exclusion: 6.
- 717. Millar PJ, Rakobowchuk M, Adams MM, et al. Effects of short-term training on heart rate dynamics in individuals with spinal cord injury. Auton Neurosci. 2009 Oct 5;150(1-2):116-21. doi: 10.1016/j.autneu.2009.03.012. PMID: 19406691. Exclusion: 11.
- 718. Miller E. [Cryostimulation factor supporting rehabilitation patients with multiple sclerosis and fatigue syndrome]. Wiad Lek. 2010;63(2):41-5. PMID: 20941916. Exclusion: 13.
- 719. Miller L, McFadyen A, Lord AC, et al. Functional electrical stimulation for foot drop in multiple sclerosis: a systematic review and meta-analysis of the effect on gait speed. Arch Phys Med Rehabil. 2017 Jul;98(7):1435-52. doi: 10.1016/j.apmr.2016.12.007. PMID: 28088382. Exclusion: 12.
- 720. Millett R. Group exercise proves its worth in multiple sclerosis. Frontline (20454910). 2012;18(16):13. Exclusion: 10.
- 721. Mirbagheri MM, Kindig MW, Niu X. Effects of robotic-locomotor training on stretch reflex function and muscular properties in individuals with spinal cord injury. Clin Neurophysiol. 2015 May;126(5):997-1006. doi: 10.1016/j.clinph.2014.09.010. PMID: 25449559. Exclusion: 6.
- 722. Moghadasi A, Ghasemi G, Sadeghi-Demneh E, et al. The effect of total body resistance exercise on mobility, proprioception and muscle strength of the knee in people with multiple sclerosis. J Sport Rehabil. 2019 Apr 27:1-8. doi: 10.1123/jsr.2018-0303. PMID: 30676232. Exclusion: 11.

- 723. Mohamed AS, Kamal HM, Elsied AO, et al. Universal exercise unit versus functional resisted training effect on muscle strength in spastic diaplegia. Indian J Public Health Res Dev. 2020;11(4):1139-44. Exclusion: 4.
- 724. Mohamed El-Shamy S. Effect of wholebody vibration on muscle strength and balance in diplegic cerebral palsy. Am J Phys Med Rehabil. 2014 Feb;93(2):114-21. doi: 10.1097/PHM.0b013e3182a541a4. PMID: 24434887. Exclusion: 14.
- 725. Mohammadi G, Naghibzade A, Rezaee Namjoo F, et al. The effects of massage and aqua training on Interleukin-6 levels of multiple sclerosis patients. Gazzetta Medica Italiana Archivio per le Scienze Mediche. 2016;175(10):408-12. Exclusion: 6.
- 726. Mokhtarzade M, Ranjbar R, Majdinasab N, et al. Effect of aerobic interval training on serum IL-10, TNFalpha, and adipokines levels in women with multiple sclerosis: possible relations with fatigue and quality of life. Endocrine. 2017 Aug;57(2):262-71. doi: 10.1007/s12020-017-1337-y. PMID: 28616851. Exclusion: 6.
- Moore PD, Gorgey AS, Wade RC, et al. Neuromuscular electrical stimulation and testosterone did not influence heterotopic ossification size after spinal cord injury: a case series. World J Clin Cases. 2016 Jul 16;4(7):172-6. doi: 10.12998/wjcc.v4.i7.172. PMID: 27458592. Exclusion: 7.
- Moradi M, Sahraian MA, Aghsaie A, et al. Effects of eight-week resistance training program in men with multiple sclerosis. Asian J Sports Med. 2015 Jun;6(2) doi: 10.5812/asjsm.6(2)2015.22838. PMID: 26448834. Exclusion: 11.
- Moraes AG, Copetti F, Angelo VR, et al. The effects of hippotherapy on postural balance and functional ability in children with cerebral palsy. J Phys Ther Sci. 2016 Aug;28(8):2220-6. doi: 10.1589/jpts.28.2220. PMID: 27630401. Exclusion: 11.

- Moraes AG, Copetti FP, Angelo VB, et al. Hippotherapy on postural balance in the sitting position of children with cerebral palsy - Longitudinal study. Physiother Theory Pract. 2018 Jun 11:1-8. doi: 10.1080/09593985.2018.1484534. PMID: 29889590. Exclusion: 11.
- Moreau NG, Bodkin AW, Bjornson K, et al. Effectiveness of rehabilitation interventions to improve gait speed in children with cerebral palsy: systematic review and metaanalysis. Phys Ther. 2016 Dec;96(12):1938-54. doi: 10.2522/ptj.20150401. PMID: 27313240. Exclusion: 12.
- Moreau NG, Holthaus K, Marlow N. Differential adaptations of muscle architecture to high-velocity versus traditional strength training in cerebral palsy. Neurorehabil Neural Repair. 2013 May;27(4):325-34. doi: 10.1177/1545968312469834. PMID: 23292847. Exclusion: 11.
- Moreau NG, Marlow N, Holthaus K. Muscle architectural plasticity of the quadriceps in response to high velocity vs. traditional strength training in cerebral palsy: a randomized clinical. Pediatr Phys Ther. 2012 Spring;24(1):91. Exclusion: 10.
- Morgan D, Holbrook E, Stevens SL, et al. Impact of underwater treadmill training on walking performance in youth with cerebral palsy. Dev Med Child Neurol. 2012 Sep;54:43-4. doi: 10.1111/j.1469-8749.2012.04388.x. Exclusion: 10.
- 735. Morrison SA, Lorenz D, Eskay CP, et al. Longitudinal recovery and reduced costs after 120 sessions of locomotor training for motor incomplete spinal cord injury. Arch Phys Med Rehabil. 2018 Mar;99(3):555-62. doi: 10.1016/j.apmr.2017.10.003. PMID: 29107040. Exclusion: 8.
- 736. Mosalanejad F, Afrasiabifar A, Zoladl M. Investigating the combined effect of pelvic floor muscle exercise and mindfulness on sexual function in women with multiple sclerosis: a randomized controlled trial. Clin Rehabil. 2018 Oct;32(10):1340-7. doi: 10.1177/0269215518777877. PMID: 29843529. Exclusion: 4.

- 737. Motl RW, Backus D, Neal WN, et al. Rationale and design of the STEP for MS Trial: comparative effectiveness of Supervised versus telerehabilitation exercise programs for multiple sclerosis. Contemp Clin Trials. 2019 Jun;81:110-22. doi: 10.1016/j.cct.2019.04.013. PMID: 31022481. Exclusion: 10.
- Motl RW, McAuley E, Snook EM, et al. Does the relationship between physical activity and quality of life differ based on generic versus disease-targeted instruments? Ann Behav Med. 2008 Aug;36(1):93-9. doi: 10.1007/s12160-008-9049-4. PMID: 18719976. Exclusion: 4.
- 739. Motl RW, Sandroff BM. Randomized controlled trial of physical activity intervention effects on fatigue and depression in multiple sclerosis: Secondary analysis of data from persons with elevated symptom status. Contemp Clin Trials Commun. 2020 Mar;17:100521. doi: 10.1016/j.conetc.2020.100521. PMID: 32211556. Exclusion: 4.
- 740. Mueller G, Hopman MT, Perret C. Comparison of respiratory muscle training methods in individuals with motor complete tetraplegia. Top Spinal Cord Inj Rehabil. 2012;18(2):118-21. doi: 10.1310/sci1802-118. PMID: 23459602. Exclusion: 4.
- 741. Mulroy S, Haubert LL, Eberly V, et al. Effectiveness of two intervention programs to prevent shoulder pain after spinal cord injury. Arch Phys Med Rehabil. 2017;Conference:. 2017 american congress of rehabilitation medicine annual conference, ACRM 2017. United states 98(12):e174. Exclusion: 10.
- 742. Mulroy SJ, Thompson L, Kemp B, et al. Strengthening and optimal movements for painful shoulders (STOMPS) in chronic spinal cord injury: a randomized controlled trial. Phys Ther. 2011 Mar;91(3):305-24. doi: 10.2522/ptj.20100182. PMID: 21292803. Exclusion: 4.
- 743. Munoz-Lasa S, Ferriero G, Valero R, et al. Effect of therapeutic horseback riding on balance and gait of people with multiple sclerosis. G Ital Med Lav Ergon. 2011 Oct-Dec;33(4):462-7. PMID: 22452106. Exclusion: 11.

- 744. Munoz-Lasa S, Lopez de Silanes C, Atin-Arratibel MA, et al. Effects of hippotherapy in multiple sclerosis: pilot study on quality of life, spasticity, gait, pelvic floor, depression and fatigue. Med Clin (Barc). 2018 Jan 18;152(2):55-8. doi: 10.1016/j.medcli.2018.02.015. PMID: 29680460. Exclusion: 11.
- 745. Mutluay FK, Tekeoğlu A, Saip S, et al. Group exercise training approach to multiple sclerosis rehabilitation. Nobel Medicus. 2008;4(3):20-6. Exclusion: 4.
- 746. Mutoh T, Mutoh T, Takada M, et al. Application of a tri-axial accelerometrybased portable motion recorder for the quantitative assessment of hippotherapy in children and adolescents with cerebral palsy. J Phys Ther Sci. 2016 Oct;28(10):2970-4. doi: 10.1589/jpts.28.2970. PMID: 27821971. Exclusion: 11.
- 747. Mutoh T, Mutoh T, Tsubone H, et al. Impact of serial gait analyses on long-term outcome of hippotherapy in children and adolescents with cerebral palsy. Complement Ther Clin Pract. 2018 Feb;30:19-23. doi: 10.1016/j.ctcp.2017.11.003. PMID: 29389473. Exclusion: 8.
- 748. Myers J, Gopalan R, Shahoumian T, et al. Effects of customized risk reduction program on cardiovascular risk in males with spinal cord injury. J Rehabil Res Dev. 2012;49(9):1355-64. PMID: 23408217. Exclusion: 11.
- 749. Najafi P, Moghadasi M. The effect of yoga training on enhancement of Adrenocorticotropic hormone (ACTH) and cortisol levels in female patients with multiple sclerosis. Complement Ther Clin Pract. 2017 Feb;26:21-5. doi: 10.1016/j.ctcp.2016.11.006. PMID: 28107844. Exclusion: 11.
- Nam KY, Kim HJ, Kwon BS, et al. Robotassisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review. J Neuroengineering Rehabil. 2017 Mar 23;14(1):24. doi: 10.1186/s12984-017-0232-3. PMID: 28330471. Exclusion: 12.

- 751. Nardone R, Orioli A, Golaszewski S, et al. Passive cycling in neurorehabilitation after spinal cord injury: a review. J Spinal Cord Med. 2017 01;40(1):8-16. doi: 10.1080/10790268.2016.1248524. PMID: 27841091. Exclusion: 12.
- 752. Narimani A, Kalantari M, Dalvand H, et al. Effect of mirror therapy on dexterity and hand grasp in children aged 9-14 years with hemiplegic cerebral palsy. Iran J Child Neurol. 2019;13(4):135-42. PMID: 31645873. Exclusion: 4.
- 753. Nasseri NN, Ghezelbash E, Zhai Y, et al. Feasibility of a smartphone app to enhance physical activity in progressive MS: a pilot randomized controlled pilot trial over three months. PeerJ. 2020;6. Exclusion: 4.
- 754. Navarrete-Opazo A, Alcayaga JJ, Sepulveda O, et al. Intermittent hypoxia and locomotor training enhances dynamic but not standing balance in patients with incomplete spinal cord injury. Arch Phys Med Rehabil. 2017 03;98(3):415-24. doi: 10.1016/j.apmr.2016.09.114. PMID: 27702556. Exclusion: 4.
- 755. Nedeljkovic U, Dackovic J, Basuroski ID, et al. Influence of rehabilitation on fatigue and physical activity of patients with relapse of multiple sclerosis. Mult Scler J Exp Transl Clin. 2014 Jun;20(7):983-4. doi: 10.1177/1352458514533628. Exclusion: 10.
- 756. Nedeljkovic U, Raspopovic ED, Ilic N, et al. Effectiveness of rehabilitation in multiple sclerosis relapse on fatigue, self-efficacy and physical activity. Acta Neurol Belg. 2016 Sep;116(3):309-15. doi: 10.1007/s13760-015-0563-4. PMID: 26563405. Exclusion: 4.
- 757. Neefkes-Zonneveld CR, Bakkum AJ, Bishop NC, et al. Effect of long-term physical activity and acute exercise on markers of systemic inflammation in persons with chronic spinal cord injury: a systematic review. Arch Phys Med Rehabil. 2015 Jan;96(1):30-42. doi: 10.1016/j.apmr.2014.07.006. PMID: 25064781. Exclusion: 12.

- Negahban H, Monjezi S, Mehravar M, et al. Responsiveness of postural performance measures following balance rehabilitation in multiple sclerosis patients. J Bodywork Mov Ther. 2018 Apr;22(2):502-10. doi: 10.1016/j.jbmt.2017.06.008. PMID: 29861258. Exclusion: 8.
- 759. Negahban H, Rezaie S, Goharpey S. Massage therapy and exercise therapy in patients with multiple sclerosis: a randomized controlled pilot study. Clin Rehabil. 2013 Dec;27(12):1126-36. doi: 10.1177/0269215513491586. PMID: 23828184. Exclusion: 5.
- Negaresh R, Motl RW, Zimmer P, et al. Effects of exercise training on multiple sclerosis biomarkers of central nervous system and disease status: a systematic review of intervention studies. Eur J Neurol. 2019 May;26(5):711-21. doi: 10.1111/ene.13929. PMID: 30734989. Exclusion: 12.
- 761. Newsome S, Zackowski K, Calabresi P, et al. Evaluating the effects of functional electrical stimulation on ambulation in individuals with secondary progressive multiple sclerosis. Mult Scler J Exp Transl Clin. START: 2012 Oct 10 CONFERENCE END: 2012 Oct 13, 28th Congress of the European Committee for Treatment and Research in Multiple Sclerosis Lyon France;18(4 SUPPL. 1):484-5. Exclusion: 10.
- 762. Nguyen V. Efficacy of body weight supported treadmill training in a child with cerebral palsy. Dissertation Abstracts International: Section B: The Sciences and Engineering. 2018;79(4-B(E)). Exclusion: 7.
- Nightingale TE, Bilzon J. Cardiovascular health benefits of exercise in people with spinal cord injury: more complex than a prescribed exercise intervention? Arch Phys Med Rehabil. 2016;97(6):1038. doi: 10.1016/j.apmr.2016.02.020. PMID: 27233990. Exclusion: 7.
- Nightingale TE, Rouse PC, Walhin JP, et al. Home-based exercise enhances healthrelated quality of life in persons with spinal cord injury: a randomized controlled trial. Arch Phys Med Rehabil. 2018 Oct;99(10):1998-2006.e1. doi: 10.1016/j.apmr.2018.05.008. PMID: 29902472. Exclusion: 4.

- 765. Nightingale TE, Walhin J-P, Thompson D, et al. Impact of exercise on cardiometabolic component risks in spinal cord--injured humans. Med Sci Sports Exerc. 2017;49(12):2469-77. doi: 10.1249/MSS.00000000001390. Exclusion: 4.
- 766. Nikityuk IE, Moshonkina TR, Shcherbakova NA, et al. Effects of locomotor training and functional electrical stimulation on postural function in children with severe cerebral palsy. Fiziol Cheloveka. 2016 May-Jun;42(3):37-46. doi: 10.17116/kurort2016523-27. PMID: 29446895. Exclusion: 6.
- 767. Nilsagard YE, von Koch LK, Nilsson M, et al. Balance exercise program reduced falls in people with multiple sclerosis: a single-group, pretest-posttest trial. Arch Phys Med Rehabil. 2014 Dec;95(12):2428-34. doi: 10.1016/j.apmr.2014.06.016. PMID: 25004466. Exclusion: 8.
- 768. Nimmy A, Shanmugam S, Shilna Rani P. Effectiveness of pelvic proprioceptive neuromuscular facilitation on trunk control in children with spastic diplegia: A randomized controlled trial. Indian J Public Health Res Dev. 2020;11(2):571-6. doi: 10.37506/v11/i2/2020/ijphrd/194867. Exclusion: 4.
- 769. Nithiatthawanon T, Amatachaya P, Thaweewannakij T, et al. Immediate effects of lower limb loading exercise during stepping with and without augmented loading feedback on mobility of ambulatory individuals with spinal cord injury: a singleblinded, randomized, cross-over trial. Spinal Cord. 2020 Jul 06;06:06. doi: 10.1038/s41393-020-0498-3. PMID: 32632173. Exclusion: 4.
- 770. Niu X, Varoqui D, Kindig M, et al. The effect of robot-assisted locomotor training on walking speed. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:3858-61. doi: 10.1109/EMBC.2012.6346809. PMID: 23366770. Exclusion: 10.
- 771. Nooijen CF, de Groot S, Postma K, et al. A more active lifestyle in persons with a recent spinal cord injury benefits physical fitness and health. Spinal Cord. 2012 Apr;50(4):320-3. doi: 10.1038/sc.2011.152. PMID: 22143679. Exclusion: 8.

- Nooijen CF, Stam HJ, Schoenmakers I, et al. Working mechanisms of a behavioural intervention promoting physical activity in persons with subacute spinal cord injury. J Rehabil Med. 2016 Jul 18;48(7):583-8. doi: 10.2340/16501977-2110. PMID: 27346837. Exclusion: 4.
- 773. Novotna K, Janatova M, Hana K, et al. Biofeedback Based Home Balance Training can Improve Balance but Not Gait in People with Multiple Sclerosis. Mult Scler Int. 2019;2019:2854130. doi: 10.1155/2019/2854130. PMID: 31934450. Exclusion: 4.
- 774. Novotna K, Sucha L, Kalincik T, et al. Positive impact of regular circuit training on muscle strength, stability, depression and fatigue in multiple sclerosis patients. Mult Scler J Exp Transl Clin. 2015 Apr;21(4):533. doi: 10.1177/1352458515573128. Exclusion: 10.
- 775. Nuara A, Avanzini P, Rizzolatti G, et al. Efficacy of a home-based platform for childto-child interaction on hand motor function in unilateral cerebral palsy. Dev Med Child Neurol. 2019 Nov;61(11):1314-22. doi: 10.1111/dmcn.14262. PMID: 31115046. Exclusion: 8.
- 776. Nurova B, Kurtuncu M, Coban A, et al. Computer assisted cognitive rehabilitation in patients with multiple sclerosis and parenchymal neuro-Behcet's disease. J Neurol. 2014;261(31). Exclusion: 10.
- 777. O'Brien TD, Noyes J, Spencer LH, et al. Systematic review of physical activity and exercise interventions to improve health, fitness and well-being of children and young people who use wheelchairs. BMJ Open Sport Exerc Med. 2016 Nov 15;2(1):e000109. doi: 10.1136/bmjsem-2016-000109. PMID: 27900176. Exclusion: 12.
- 778. O'Neil ME, Fragala-Pinkham M, Lennon N, et al. Reliability and validity of objective measures of physical activity in youth with cerebral palsy who are ambulatory. Phys Ther. 2016 Jan;96(1):37-45. doi: 10.2522/ptj.20140201. PMID: 26089043. Exclusion: 4.

- 779. Oftedal S, Bell KL, Stevenson RD, et al. Prospective cohort study of relationship between growth and diet, physical activity and time spent sedentary in preschool aged children with cerebral palsy. Dev Med Child Neurol. 2016;58:27-8. doi: 10.1111/dmcn.53 13241. Exclusion: 10.
- 780. Oftedal S, Davies PS, Boyd RN, et al. Body composition, diet, and physical activity: a longitudinal cohort study in preschoolers with cerebral palsy. Am J Clin Nutr. 2017 Feb;105(2):369-78. doi: 10.3945/ajcn.116.137810. PMID: 28077375. Exclusion: 4.
- 781. Ogata H, Ogata T, Hoshikawa S, et al. Hypoventilation during passive leg movement in spinal cord-injured humans. Clin Auton Res. 2010 Apr;20(2):101-3. doi: 10.1007/s10286-009-0042-1. PMID: 19924465. Exclusion: 6.
- 782. Ogonowska-Slodownik A, Geigle PR, Gorman PH, et al. Aquatic, deep water peak VO2 testing for individuals with spinal cord injury. J Spinal Cord Med. 2019 Sep;42(5):631-8. doi: 10.1080/10790268.2018.1559494. PMID: 30632946. Exclusion: 4.
- 783. Ogwumike OO, Badaru UM, Adeniyi AF. Effect of task-oriented training on balance and motor function of ambulant children with cerebral palsy. Rehabilitacion. 2019;53(4):276-83. doi: 10.1016/j.rh.2019.07.003. Exclusion: 4.
- 784. Olama KA. Endurance exercises versus treadmill training in improving muscle strength and functional activities in hemiparetic cerebral palsy. Egypt J Med Hum Genet. 2011 Nov;12(2):193-9. doi: 10.1016/j.ejmhg.2011.07.002. Exclusion: 14.
- 785. Olama KA, Thabit NS. Effect of vibration versus suspension therapy on balance in children with hemiparetic cerebral palsy. Egypt J Med Hum Genet. 2012;13(2):219-26. doi: 10.1016/j.ejmhg.2011.11.001. Exclusion: 14.

- 786. Oliveira AC, Freitas C, Eras-Garcia R, et al. Cerebral palsy in adult patients: constraintinduced movement therapy is effective to reverse the nonuse of the affected upper limb. Arq Neuropsiquiatr. 2016 Jan;74(1):18-21. doi: 10.1590/0004-282X20150195. PMID: 26690842. Exclusion: 11.
- 787. Orban A, Garg B, Sammi MK, et al. Effect of high-intensity exercise on multiple sclerosis function and 31P MRS outcomes. Med Sci Sports Exerc. 2019 Jan 30;30:30. doi: 10.1249/MSS.000000000001914. PMID: 30707115. Exclusion: 11.
- 788. Ordonez FJ, Rosety MA, Camacho A, et al. Arm-cranking exercise reduced oxidative damage in adults with chronic spinal cord injury. Arch Phys Med Rehabil. 2013 Dec;94(12):2336-41. doi: 10.1016/j.apmr.2013.05.029. PMID: 23811316. Exclusion: 11.
- 789. Ozdogar AT, Ertekin O, Kahraman T, et al. Effect of videogame-based physical activity training in persons with multiple sclerosis: a randomised controlled trial. Mult Scler. 2017;Conference: 7th joint ECTRIMS-ACTRIMS, MSPARIS2017. France. 23(3 Supplement 1):674. Exclusion: 10.
- 790. Ozgen G, Karapolat H, Akkoc Y, et al. Effect of vestibular rehabilitation on balance, quality of life and depression in patients with multiple sclerosis, Multipl Skleroz Hastalarinda Vestibuler Rehabilitasyonun Denge Bozuklutu, Yasam Kalitesi ve Depresyon Uzerine Etkilerinin Deterlendirilmesi. [Turkish, English]. Turkiye Fiziksel Tip ve Rehabilitasyon Dergisi. 2013;59:229. doi: 10.4274/tftr.24.59.1. Exclusion: 10.
- 791. Ozgen G, Karapolat H, Akkoc Y, et al. Is customized vestibular rehabilitation effective in patients with multiple sclerosis? A randomized controlled trial. Eur J Phys Rehabil Med. 2016 Aug;52(4):466-78. PMID: 27050082. Exclusion: 4.
- 792. Ozkan F, Zincir H. Opinions and observations of caregivers of children with cerebral palsy about changes seen after reflexology: a qualitative study. Complement Ther Clin Pract. 2018 May;31:242-7. doi: 10.1016/j.ctcp.2018.03.011. PMID: 29705462. Exclusion: 4.

- 793. Ozkul C, Guclu-Gunduz A, Irkec C, et al. Effect of combined exercise training on serum brain-derived neurotrophic factor, suppressors of cytokine signaling 1 and 3 in patients with multiple sclerosis. J Neuroimmunol. 2018 Mar 15;316:121-9. doi: 10.1016/j.jneuroim.2018.01.002. PMID: 29329698. Exclusion: 6.
- 794. Ozturk ED, Lapointe MS, Kim DI, et al. Impact of 6-Month Exercise Training on Neurovascular Function in Spinal Cord Injury. Med Sci Sports Exerc. 2020 Aug 21;21:21. doi: 10.1249/MSS.000000000002452. PMID: 32826631. Exclusion: 7.
- 795. Paleg G, Livingstone R. Outcomes of gait trainer use in home and school settings for children with motor impairments: a systematic review. Clin Rehabil. 2015 Nov;29(11):1077-91. doi: 10.1177/0269215514565947. PMID: 25636993. Exclusion: 12.
- Paltiel AD, Ingvarsson E, Lee DK, et al. Demographic and clinical features of inclusion body myositis in North America. Muscle Nerve. 2015 Oct;52(4):527-33. doi: 10.1002/mus.24562. PMID: 25557419. Exclusion: 3.
- 797. Panisset MG, El-Ansary D, Dunlop SA, et al. Factors influencing thigh muscle volume change with cycling exercises in acute spinal cord injury a secondary analysis of a randomized controlled trial. J Spinal Cord Med. 2020 Sep 24:1-12. doi: 10.1080/10790268.2020.1815480. PMID: 32970970. Exclusion: 6.
- 798. Panisset MG, Galea MP, El-Ansary D. Does early exercise attenuate muscle atrophy or bone loss after spinal cord injury? Spinal Cord. 2016 Feb;54(2):84-92. doi: 10.1038/sc.2015.150. PMID: 26345485. Exclusion: 12.
- 799. Panza GS, Guccione AA. Effect of repeated locomotor training on ventilatory measures, perceived exertion and walking endurance in persons with motor incomplete spinal cord injury. Spinal Cord Ser Cases. 2020 10 12;6(1):94. doi: 10.1038/s41394-020-00346-6. PMID: 33046694. Exclusion: 7.

- 800. Panza GS, Guccione AA, Chin LM, et al. Effects of overground locomotor training on the ventilatory response to volitional treadmill walking in individuals with incomplete spinal cord injury: a pilot study. Spinal Cord Ser Cases. 2017;3:17011. doi: 10.1038/scsandc.2017.11. PMID: 28435743. Exclusion: 11.
- 801. Paramonova DB, Mugerman BI. The role of therapeutic physical training and massage in the restoration of static and dynamic functions in the children presenting with the atonic-astatic form of infantile cerebral paralysis. Vopr Kurortol Fizioter Lech Fiz Kult. 2012 Sep-Oct(5):37-40. PMID: 23210361. Exclusion: 13.
- 802. Parent A, Raison M, Pouliot-Laforte A, et al. Impact of a short walking exercise on gait kinematics in children with cerebral palsy who walk in a crouch gait. Clin Biomech. 2016 May;34:18-21. doi: 10.1016/j.clinbiomech.2016.03.003. PMID: 27038653. Exclusion: 11.
- 803. Parra-Moreno M, Rodriguez-Juan JJ, Ruiz-Cardenas JD. Use of commercial video games to improve postural balance in patients with multiple sclerosis: a systematic review and meta-analysis of randomised controlled clinical trials. Neurologia. 2017 doi: 10.1016/j.nrl.2017.12.001. PMID: 29525396. Exclusion: 13.
- 804. Pascoe J, Thomason P, Graham HK, et al. Body mass index in ambulatory children with cerebral palsy: a cohort study. J Paediatr Child Health. 2016 Apr;52(4):417-21. doi: 10.1111/jpc.13097. PMID: 27145505. Exclusion: 7.
- 805. Patatoukas D, Farmakides A, Aggeli V, et al. Disability-related injuries in athletes with disabilities. Folia Med (Plovdiv). 2011 Jan-Mar;53(1):40-6. PMID: 21644404. Exclusion: 7.
- 806. Patritti B, Sicari M, Deming L, et al. Enhancing robotic gait training via augmented feedback. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:2271-4. doi: 10.1109/IEMBS.2010.5627707. PMID: 21097013. Exclusion: 10.

- 807. Patrocinio de Oliveira CE, Moreira OC, Carrion-Yagual ZM, et al. Effects of classic progressive resistance training versus eccentric-enhanced resistance training in people with multiple sclerosis. Arch Phys Med Rehabil. 2018 May;99(5):819-25. doi: 10.1016/j.apmr.2017.10.021. PMID: 29191417. Exclusion: 4.
- 808. Patzer D, Vu P, Pardo V, et al. Immediate effect of whole-body vibration on gait in patients with incomplete spinal cord injury. J Spinal Cord Med. START: 2014 Oct 2 CONFERENCE END: 2014 Oct 3, 6th National Canadian Spinal Cord Injury Conference: Bioinformatics Informs SCI Toronto, ON Canada;37(5):624-5. Exclusion: 10.
- 809. Paul L, Coulter EH, Miller L, et al. Physiotherapy-led web-based rehabilitation for people with multiple sclerosis. Mult Scler J Exp Transl Clin. 2013 Oct;19(11 SUPPL. 1):555-6. doi: 10.1177/1352458513502429. Exclusion: 10.
- Paul L, Coulter EH, Miller L, et al. Webbased physiotherapy for people moderately affected with multiple sclerosis; quantitative and qualitative data from a randomized, controlled pilot study. Clin Rehabil. 2014 Sep;28(9):924-35. doi: 10.1177/0269215514527995. PMID: 24691218. Exclusion: 4.
- 811. Paul L, Rafferty D, Young S, et al. The effect of functional electrical stimulation on the physiological cost of gait in people with multiple sclerosis. Mult Scler. 2008 Aug;14(7):954-61. doi: 10.1177/1352458508090667. PMID: 18573839. Exclusion: 11.
- Paul L, Renfrew L, Freeman J, et al. Webbased physiotherapy for people affected by multiple sclerosis: a single blind, randomized controlled feasibility study. Clin Rehabil. 2019 Mar;33(3):473-84. doi: 10.1177/0269215518817080. PMID: 30514108. Exclusion: 4.
- Pawik M, Kowalska J, Rymaszewska J. The effectiveness of whole-body cryotherapy and physical exercises on the psychological well-being of patients with multiple sclerosis: a comparative analysis. Adv Clin Exp Med. 2019 Apr 5;5:5. doi: 10.17219/acem/104529. PMID: 30968613. Exclusion: 5.

- 814. Pearson M, Dieberg G, Smart N. Exercise as a therapy for improvement of walking ability in adults with multiple sclerosis: a meta-analysis. Arch Phys Med Rehabil. 2015 Jul;96(7):1339-48.e7. doi: 10.1016/j.apmr.2015.02.011. PMID: 25712347. Exclusion: 12.
- 815. Pelletier CA. Incorporating physical activity into the rehabilitation process after spinal cord injury. Appl Physiol Nutr Metab. 2014 Apr;39(4):513. doi: 10.1139/apnm-2013-0482. Exclusion: 10.
- 816. Pelletier CA, Totosy de Zepetnek JO, MacDonald MJ, et al. A 16-week randomized controlled trial evaluating the physical activity guidelines for adults with spinal cord injury. Spinal Cord. 2015 May;53(5):363-7. doi: 10.1038/sc.2014.167. PMID: 25266695. Exclusion: 11.
- 817. Perrochon A, Borel B, Istrate D, et al. Exercise-based games interventions at home in individuals with a neurological disease: a systematic review and meta-analysis. Ann Phys Rehabil Med. 2019 Sep;62(5):366-78. doi: 10.1016/j.rehab.2019.04.004. PMID: 31078706. Exclusion: 4.
- 818. Peruzzi A, Cereatti A, Della Croce U, et al. Effects of a virtual reality and treadmill training on gait of subjects with multiple sclerosis: a pilot study. Mult Scler Relat Disord. 2016 Jan;5:91-6. doi: 10.1016/j.msard.2015.11.002. PMID: 26856951. Exclusion: 11.
- 819. Peruzzi A, Zarbo IR, Cereatti A, et al. An innovative training program based on virtual reality and treadmill: effects on gait of persons with multiple sclerosis. Disabil Rehabil. 2017 Jul;39(15):1557-63. doi: 10.1080/09638288.2016.1224935. PMID: 27808596. Exclusion: 11.
- Petersen JL. Effects of brief aquatic exercise in multiple sclerosis on mobility and function. Dissertation Abstracts International: Section B: The Sciences and Engineering. 2016;77(5-B(E)). Exclusion: 10.

- Peungsuwan P, Parasin P, Siritaratiwat W, et al. Effects of Combined Exercise Training on Functional Performance in Children With Cerebral Palsy: A Randomized-Controlled Study. Pediatr Phys Ther. 2017 01;29(1):39-46. doi: 10.1097/PEP.00000000000338. PMID: 27984466. Exclusion: 11.
- Pfalzer L, Fry D. Effects of a 10-week inspiratory muscle training program on lower-extremity mobility in people with multiple sclerosis: a randomized controlled trial. Int J MS Care. 2011;13(1):32-42. doi: 10.7224/1537-2073-13.1.32. PMID: 24453703. Exclusion: 4.
- Phadke C, Veira L, Mathur S, et al. Impact of passive leg cycling in persons with spinal cord injury. Arch Phys Med Rehabil. 2017;Conference: 94th annual conference of the american congress of rehabilitation medicine, ACRM. 2017. United states 98(10):e135. Exclusion: 10.
- Phadke CP, Vierira L, Mathur S, et al. Impact of passive leg cycling in persons with spinal cord injury: a systematic review. Top Spinal Cord Inj Rehabil. 2019;25(1):83-96. doi: 10.1310/sci18-00020. PMID: 30774292. Exclusion: 10.
- Pham HP, Eidem A, Hansen G, et al. Validity and responsiveness of the trunk impairment scale and trunk control measurement scale in young individuals with cerebral palsy. Phys Occup Ther Pediatr. 2016 Nov;36(4):440-52. doi: 10.3109/01942638.2015.1127867. PMID: 26890372. Exclusion: 8.
- Phillips AA, Squair JR, Currie KD, et al. 2015 ParaPan American games: autonomic function, but not physical activity, is associated with vascular-cognitive impairment in spinal cord injury. J Neurotrauma. 2017 Mar 15;34(6):1283-8. doi: 10.1089/neu.2016.4751. PMID: 27998205. Exclusion: 4.
- Pickering D, Horrocks LM, Visser KS, et al. 'Every picture tells a story': interviews and diaries with children with cerebral palsy about adapted cycling. J Paediatr Child Health. 2013 Dec;49(12):1040-4. doi: 10.1111/jpc.12289. PMID: 23781924. Exclusion: 7.

- Piira A, Lannem AM, Gjesdal K, et al. Quality of life and psychological outcomes of body-weight supported locomotor training in spinal cord injured persons with long-standing incomplete lesions. Spinal Cord. 2020 May;58(5):560-9. doi: 10.1038/s41393-019-0401-2. PMID: 31848443. Exclusion: 11.
- Piira A, Lannem AM, Sorensen M, et al. Robot-assisted locomotor training did not improve walking function in patients with chronic incomplete spinal cord injury: a randomized clinical trial. J Rehabil Med. 2019 May 13;51(5):385-9. doi: 10.2340/16501977-2547. PMID: 30895326. Exclusion: 11.
- Piira A, Lannem AM, Sorensen M, et al. Manually assisted body-weight supported locomotor training does not re-establish walking in non-walking subjects with chronic incomplete spinal cord injury: a randomized clinical trial. J Rehabil Med. 2019 Feb 1;51(2):113-9. doi: 10.2340/16501977-2508. PMID: 30483724. Exclusion: 7.
- 831. Pillastrini P, Mugnai R, Bonfiglioli R, et al. Evaluation of an occupational therapy program for patients with spinal cord injury. Spinal Cord. 2008 Jan;46(1):78-81. doi: 10.1038/sj.sc.3102072. PMID: 17453011. Exclusion: 4.
- 832. Pilutti LA, Dlugonski D, Sandroff BM, et al. Randomized controlled trial of a behavioral intervention targeting symptoms and physical activity in multiple sclerosis. Mult Scler. 2014 Apr;20(5):594-601. doi: 10.1177/1352458513503391. PMID: 24009162. Exclusion: 4.
- 833. Pilutti LA, Dlugonski D, Sandroff BM, et al. Internet-delivered lifestyle physical activity intervention improves body composition in multiple sclerosis: preliminary evidence from a randomized controlled trial. Arch Phys Med Rehabil. 2014 Jul;95(7):1283-8. doi: 10.1016/j.apmr.2014.03.015. PMID: 24699237. Exclusion: 4.
- 834. Pilutti LA, Edwards TA. Is Exercise Training Beneficial in Progressive Multiple Sclerosis? Int J MS Care. 2017;19(2):105-12. doi: 10.7224/1537-2073.2016-034. Exclusion: 10.

- 835. Pilutti LA, Motl RW. Functional Electrical Stimulation Cycling Exercise for People with Multiple Sclerosis. Curr Treat Options Neurol. 2019 Nov 08;21(11):54. doi: 10.1007/s11940-019-0597-7. PMID: 31705304. Exclusion: 12.
- 836. Pilutti LA, Paulseth JE, Dove C, et al. Exercise training in progressive multiple sclerosis: a comparison of recumbent stepping and body weight-supported treadmill training. Int J MS Care. 2016 Sep-Oct;18(5):221-9. doi: 10.7224/1537-2073.2015-067. PMID: 27803637. Exclusion: 11.
- 837. Pilutti LA, Sandroff BM, Klaren RE, et al. Physical fitness assessment across the disability spectrum in persons with multiple sclerosis: a comparison of testing modalities. J Neurol Phys Ther. 2015 Oct;39(4):241-9. doi: 10.1097/NPT.00000000000099. PMID: 26247510. Exclusion: 4.
- 838. Platta ME, Ensari I, Motl RW, et al. Effect of exercise training on fitness in multiple sclerosis: a meta-analysis. Arch Phys Med Rehabil. 2016 Sep;97(9):1564-72. doi: 10.1016/j.apmr.2016.01.023. PMID: 26896750. Exclusion: 12.
- 839. Ploughman M, Shears J, Harris C, et al. Effectiveness of a novel community exercise transition program for people with moderate to severe neurological disabilities. NeuroRehabilitation. 2014;35(1):105-12. doi: 10.3233/NRE-141090. PMID: 24990000. Exclusion: 3.
- Plow M, Bethoux F, Mai K, et al. A formative evaluation of customized pamphlets to promote physical activity and symptom self-management in women with multiple sclerosis. Health Educ Res. 2014 Oct;29(5):883-96. doi: 10.1093/her/cyu034. PMID: 24989822. Exclusion: 4.
- Plow M, Bethoux F, McDaniel C, et al. Randomized controlled pilot study of customized pamphlets to promote physical activity and symptom self-management in women with multiple sclerosis. Clin Rehabil. 2014 Feb;28(2):139-48. doi: 10.1177/0269215513494229. PMID: 23864516. Exclusion: 4.

- Plow M, Finlayson M. Potential benefits of nintendo wii fit among people with multiple sclerosis: a longitudinal pilot study. Int J MS Care. 2011;13(1):21-30. doi: 10.7224/1537-2073-13.1.21. PMID: 24453702. Exclusion: 8.
- 843. Plow M, Motl RW, Finlayson M, et al. Intervention Mediators in a Randomized Controlled Trial to Increase Physical Activity and Fatigue Self-management Behaviors Among Adults With Multiple Sclerosis. Ann Behav Med. 2019 Oct 09;09:09. doi: 10.1093/abm/kaz033. PMID: 31595300. Exclusion: 4.
- 844. Plow M, Motl RW, Finlayson M, et al. Response heterogeneity in a randomized controlled trial of telerehabilitation interventions among adults with multiple sclerosis. J Telemed Telecare. 2020 Oct 25:1357633X20964693. doi: 10.1177/1357633X20964693. PMID: 33100184. Exclusion: 4.
- 845. Plow MA, Mathiowetz V, Lowe DA. Comparing individualized rehabilitation to a group wellness intervention for persons with multiple sclerosis. Am J Health Promot. 2009 Sep-Oct;24(1):23-6. doi: 10.4278/ajhp.071211128. PMID: 19750959. Exclusion: 4.
- 846. Plow MA, Mathiowetz V, Resnik L. Multiple sclerosis: impact of physical activity on psychosocial constructs. Am J Health Behav. 2008 Nov-Dec;32(6):614-26. doi: 10.5555/ajhb.2008.32.6.614. PMID: 18442341. Exclusion: 4.
- 847. Plummer P. Critical appraisal of evidence for improving gait speed in people with multiple sclerosis: dalfampridine versus gait training. Int J MS Care. 2016 May-Jun;18(3):105-15. doi: 10.7224/1537-2073.2014-114. PMID: 27252597. Exclusion: 12.
- 848. Poehlau D, Drache M, Gerber-Grothe A, et al. Hippotherapy improves symptoms of multiple sclerosis-results of a randomised controlled multicentre study. Mult Scler J Exp Transl Clin. 2015 START: 2015 Oct 7 CONFERENCE END: 2015 Oct 10, 31st Congress of the European Committee for Treatment and Research in Multiple Sclerosis, ECTRIMS 2015 Barcelona Spain;21(11 SUPPL. 1):795-6. doi: 10.1177/1352458515604791. Exclusion: 10.

- 849. Poettgen J, Moss-Morris R, Wendebourg JM, et al. Online fatigue management program for patients with multiple sclerosisa randomized controlled trial. Mult Scler J Exp Transl Clin. START: 2015 Oct 7 CONFERENCE END: 2015 Oct 10, 31st Congress of the European Committee for Treatment and Research in Multiple Sclerosis, ECTRIMS 2015 Barcelona Spain;23(11 SUPPL. 1):41-2. Exclusion: 10.
- 850. Poirot I, Laudy V, Rabilloud M, et al. Rehabilitation of 190 non-ambulatory children with cerebral palsy in structures of care or in liberal sector. Ann Phys Rehabil Med. 2013 Oct;56(7-8):551-60. doi: 10.1016/j.rehab.2013.08.002. PMID: 24120244. Exclusion: 7.
- 851. Pool D, Blackmore AM, Bear N, et al. Effects of short-term daily community walk aide use on children with unilateral spastic cerebral palsy. Pediatr Phys Ther. 2014;26(3):308-17. doi: 10.1097/PEP.0000000000000057. PMID: 24979083. Exclusion: 8.
- 852. Popovic-Maneski L, Aleksic A, Metani A, et al. Assessment of spasticity by a pendulum test in SCI patients who exercise FES cycling or receive only conventional therapy. IEEE Trans Neural Syst Rehabil Eng. 2018 Jan;26(1):181-7. doi: 10.1109/TNSRE.2017.2771466. PMID: 29324409. Exclusion: 5.
- 853. Possover M. The LION procedure to the pelvic nerves for recovery of locomotion in 18 spinal cord injured peoples A case series. Surg Technol Int. 2016 Oct 26;29:19-25. PMID: 27728946. Exclusion: 4.
- 854. Postma K, Haisma JA, de Groot S, et al. Changes in pulmonary function during the early years after inpatient rehabilitation in persons with spinal cord injury: a prospective cohort study. Arch Phys Med Rehabil. 2013 Aug;94(8):1540-6. doi: 10.1016/j.apmr.2013.02.006. PMID: 23416767. Exclusion: 4.
- 855. Pountney T, Williams H, Bryant E. Effectiveness of an intensive six week graded exercise programmes for non ambulant children and young people with cerebral palsy. Physiotherapy. 2011;97(S1):eS1016-7. doi: 10.1016/j.physio.2011.04.002. Exclusion: 10.

- 856. Pourazar M, Mirakhori F, Hemayattalab R, et al. Use of virtual reality intervention to improve reaction time in children with cerebral palsy: a randomized controlled trial. Dev Neurorehabil. 2018;21(8):515-20. doi: 10.1080/17518423.2017.1368730. Exclusion: 6.
- 857. Prakash RS, Snook EM, Kramer AF, et al. Correlation of physical activity with perceived cognitive deficits in relapsingremitting multiple sclerosis. Int J MS Care. 2010;12(1):1-5. Exclusion: 6.
- 858. Prakash RS, Snook EM, Motl RW, et al. Aerobic fitness is associated with gray matter volume and white matter integrity in multiple sclerosis. Brain Res. 2010 Jun 23;1341:41-51. doi: 10.1016/j.brainres.2009.06.063. PMID: 19560443. Exclusion: 6.
- 859. Preede L, Saebu M, Perrin PB, et al. Oneyear trajectories of mental and physical functioning during and after rehabilitation among individuals with disabilities. Health Qual Life Outcomes. 2015 Aug 28;13:135. doi: 10.1186/s12955-015-0328-z. PMID: 26315445. Exclusion: 3.
- 860. Prenton S, Hollands KL, Kenney LPJ, et al. Functional electrical stimulation and ankle foot orthoses provide equivalent therapeutic effects on foot drop: a meta-analysis providing direction for future research. J Rehabil Med. 2018 Feb 13;50(2):129-39. doi: 10.2340/16501977-2289. PMID: 29227525. Exclusion: 11.
- 861. Priya MS, Kalpana AP. Effect of strengthening of inspiratory muscles using inspiratory muscle trainer on pulmonary function among patients with spinal cord injury-a quasi-experimental study. Indian J Physiother Occup Ther. 2018;12(1):64-9. doi: 10.5958/0973-5674.2018.00012.6. Exclusion: 14.
- 862. Proctor BJ, Moghaddam N, Vogt W, et al. Telephone psychotherapy in multiple sclerosis: a systematic review and metaanalysis. Rehabil Psychol. 2018 Feb;63(1):16-28. doi: 10.1037/rep0000182. PMID: 29553780. Exclusion: 4.

- 863. Prosperini L, Fortuna D, Gianni C, et al. Home-based balance training using the Wii balance board: a randomized, crossover pilot study in multiple sclerosis. Neurorehabil Neural Repair. 2013 Jul-Aug;27(6):516-25. doi: 10.1177/1545968313478484. PMID: 23478168. Exclusion: 4.
- 864. Prosperini L, Leonardi L, De Carli P, et al. Visuo-proprioceptive training reduces risk of falls in patients with multiple sclerosis. Mult Scler. 2010 Apr;16(4):491-9. doi: 10.1177/1352458509359923. PMID: 20150396. Exclusion: 3.
- 865. Qiu S, Alzhab S, Picard G, et al. Ventilation limits aerobic capacity after functional electrical stimulation row training in high spinal cord injury. Med Sci Sports Exerc. 2016 Jun;48(6):1111-8. doi: 10.1249/MSS.00000000000880. PMID: 26784276. Exclusion: 11.
- 866. Quel de Oliveira C, Refshauge K, Middleton J, et al. Effects of activity-based therapy interventions on mobility, independence, and quality of life for people with spinal cord injuries: a systematic review and meta-analysis. J Neurotrauma. 2017 May 1;34(9):1726-43. doi: 10.1089/neu.2016.4558. PMID: 27809702. Exclusion: 12.
- 867. Raab AM, Krebs J, Perret C, et al. Evaluation of a clinical implementation of a respiratory muscle training group during spinal cord injury rehabilitation. Spinal Cord Ser Cases. 2018;4:40. doi: 10.1038/s41394-018-0069-4. PMID: 29736265. Exclusion: 4.
- 868. Raab AM, Krebs J, Pfister M, et al. Respiratory muscle training in individuals with spinal cord injury: effect of training intensity and -volume on improvements in respiratory muscle strength. Spinal Cord. 2019;57(6):482-9. doi: 10.1038/s41393-019-0249-5. Exclusion: 8.
- 869. Rafeeyan Z, Azarbarzin M, Moosa FM, et al. Effect of aquatic exercise on the multiple sclerosis patients' quality of life. Iran J Nurs Midwifery Res. 2010;15(1):43-7. PMID: 21589749. Exclusion: 11.

- 870. Rahnama N, Namazizadeh M, Etemadifar M, et al. Effects of yoga on depression in women with multiple sclerosis. Journal of isfahan medical school. 2011 Jun;29(136) doi: 10.1016/j.ejmhg.2014.02.007. Exclusion: 13.
- 871. Raithatha R, Carrico C, Powell ES, et al. Non-invasive brain stimulation and robotassisted gait training after incomplete spinal cord injury: a randomized pilot study. NeuroRehabilitation. 2016;38(1):15-25. doi: 10.3233/NRE-151291. PMID: 26889794. Exclusion: 11.
- 872. Rameckers EA, Duysens J, Speth LA, et al. Effect of addition of botulinum toxin-A to standardized therapy for dynamic manual skills measured with kinematic aiming tasks in children with spastic hemiplegia. J Rehabil Med. 2010 Apr;42(4):332-8. doi: 10.2340/16501977-0521. PMID: 20461335. Exclusion: 5.
- 873. Rameckers EA, Janssen-Potten YJ, Essers IM, et al. Efficacy of upper limb strengthening in children with cerebral palsy: a critical review. Res Dev Disabil. 2015 Jan;36C:87-101. doi: 10.1016/j.ridd.2014.09.024. PMID: 25462469. Exclusion: 12.
- 874. Rameckers EA, Speth LA, Duysens J, et al. Botulinum toxin-a in children with congenital spastic hemiplegia does not improve upper extremity motor-related function over rehabilitation alone: a randomized controlled trial. Neurorehabil Neural Repair. 2009 Mar-Apr;23(3):218-25. doi: 10.1177/1545968308326629. PMID: 19106252. Exclusion: 5.
- 875. Rasooli AH, Birgani PM, Azizi S, et al. Therapeutic effects of an anti-gravity locomotor training (AlterG) on postural balance and cerebellum structure in children with cerebral palsy. IEEE Int. 2017 Jul;2017:101-5. doi: 10.1109/ICORR.2017.8009229. PMID: 28813801. Exclusion: 11.
- 876. Ray AD, Udhoji S, Mashtare TL, et al. A combined inspiratory and expiratory muscle training program improves respiratory muscle strength and fatigue in multiple sclerosis. Arch Phys Med Rehabil. 2013 Oct;94(10):1964-70. doi: 10.1016/j.apmr.2013.05.005. PMID: 23714277. Exclusion: 11.

- 877. Rayegani SM, Shojaee H, Sedighipour L, et al. The effect of electrical passive cycling on spasticity in war veterans with spinal cord injury. Front Neurol. 2011;2:39. doi: 10.3389/fneur.2011.00039. PMID: 21734906. Exclusion: 4.
- 878. Reedman S, Boyd RN, Sakzewski L. The efficacy of interventions to increase physical activity participation of children with cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2017 Oct;59(10):1011-8. doi: 10.1111/dmcn.13413. PMID: 28318009. Exclusion: 6.
- 879. Reedman SE, Boyd RN, Trost SG, et al. Efficacy of participation-focused therapy on performance of physical activity participation goals and habitual phsical activity in children with cerebral palsy: a randomized controlled trial. Arch Phys Med Rehabil. 2019 Dec 11;100(4):676-86. doi: 10.1016/j.apmr.2018.11.012. PMID: 30543803. Exclusion: 4.
- 880. Reedman SE, Boyd RN, Trost SG, et al. Efficacy of Participation-Focused Therapy on Performance of Physical Activity Participation Goals and Habitual Physical Activity in Children With Cerebral Palsy: A Randomized Controlled Trial. Arch Phys Med Rehabil. 2019 04;100(4):676-86. doi: 10.1016/j.apmr.2018.11.012. PMID: 30543803. Exclusion: 4.
- 881. Reichenfelser W, Hackl H, Hufgard J, et al. Monitoring of spasticity and functional ability in individuals with incomplete spinal cord injury with a functional electrical stimulation cycling system. J Rehabil Med. 2012 May;44(5):444-9. doi: 10.2340/16501977-0979. PMID: 22549654. Exclusion: 8.
- 882. Reid S, Hamer P, Alderson J, et al. Neuromuscular adaptations to eccentric strength training in children and adolescents with cerebral palsy. Dev Med Child Neurol. 2010 Apr;52(4):358-63. doi: 10.1111/j.1469-8749.2009.03409.x. PMID: 19737297. Exclusion: 11.

- 883. Rejc E, Angeli CA, Bryant N, et al. Effects of stand and step training with epidural stimulation on motor function for standing in chronic complete paraplegics. J Neurotrauma. 2017 May 1;34(9):1787-802. doi: 10.1089/neu.2016.4516. PMID: 27566051. Exclusion: 11.
- 884. Reyes ML, Hernandez M, Holmgren LJ, et al. High-frequency, low-intensity vibrations increase bone mass and muscle strength in upper limbs, improving autonomy in disabled children. J Bone Miner Res. 2011 Aug;26(8):1759-66. doi: 10.1002/jbmr.402. PMID: 21491486. Exclusion: 3.
- 885. Rice IM, Rice LA, Motl RW. Promoting physical activity through a manual wheelchair propulsion intervention in persons with multiple sclerosis. Arch Phys Med Rehabil. 2015 Oct;96(10):1850-8. doi: 10.1016/j.apmr.2015.06.011. PMID: 26150167. Exclusion: 11.
- 886. Richardson EJ, McKinley EC, Rahman A, et al. Effects of virtual walking on spinal cord injury-related neuropathic pain: a randomized, controlled trial. Rehabil Psychol. 2019 Feb;64(1):13-24. doi: 10.1037/rep0000246. PMID: 30407030. Exclusion: 4.
- 887. Richter WM, Kwarciak AM, Guo L, et al. Effects of single-variable biofeedback on wheelchair handrim biomechanics. Arch Phys Med Rehabil. 2011 Apr;92(4):572-7. doi: 10.1016/j.apmr.2010.11.001. PMID: 21440701. Exclusion: 4.
- 888. Riener R, Dislaki E, Keller U, et al. Virtual reality aided training of combined arm and leg movements of children with CP. Stud Health Technol Inform. 2013;184:349-55. PMID: 23400183. Exclusion: 7.
- 889. Rietberg MB, Van Wegen EEH, Eyssen ICJM, et al. Effects of multidisciplinary rehabilitation on chronic fatigue in multiple sclerosis: a randomized controlled trial. PLoS One. 2014;9(9) doi: 10.1371/journal.pone.0107710. PMID: 25232955 Exclusion: 4.
- Rietberg MB, Veerbeek JM, Gosselink R, et al. Respiratory muscle training for multiple sclerosis. Cochrane Database Syst Rev. 2017 Dec 21;12:CD009424. doi: 10.1002/14651858.CD009424.pub2. PMID: 29267988. Exclusion: 4.

- 891. Rigby BR, Gloeckner AR, Sessums S, et al. Changes in cardiorespiratory responses and kinematics with hippotherapy in youth with and without cerebral palsy. Res Q Exerc Sport. 2017 Mar;88(1):26-35. doi: 10.1080/02701367.2016.1266458. PMID: 28075704. Exclusion: 11.
- 892. Rigby BR, Grandjean PW. The efficacy of equine-assisted activities and therapies on improving physical function. J Altern Complement Med. 2016 Jan;22(1):9-24. doi: 10.1089/acm.2015.0171. PMID: 26654868. Exclusion: 12.
- 893. Rigot S, Worobey L, Boninger ML. Gait training in acute spinal cord injury rehabilitation-utilization and outcomes among nonambulatory individuals: findings from the SCIRehab project. Arch Phys Med Rehabil. 2018 Aug;99(8):1591-8. doi: 10.1016/j.apmr.2018.01.031. PMID: 29510092. Exclusion: 4.
- 894. Riksfjord SM, Braendvik SM, Roksund OD, et al. Ventilatory efficiency and aerobic capacity in people with multiple sclerosis: a randomized study. SAGE Open Med. 2017;5:2050312117743672. doi: 10.1177/2050312117743672. PMID: 29276588. Exclusion: 11.
- 895. Rimmer JH, Herman C, Wingo B, et al. Methodological and clinical implications of a three-in-one Russian doll design for tracking health trajectories and improving health and function through innovative exercise treatments in adults with disability. BMC Med Res Methodol. 2018 Mar 14;18(1):28. doi: 10.1186/s12874-018-0480-3. PMID: 29540164. Exclusion: 10.
- 896. Rimmer JH, Thirumalai M, Young HJ, et al. Rationale and design of the tele-exercise and multiple sclerosis (TEAMS) study: a comparative effectiveness trial between a clinic- and home-based telerehabilitation intervention for adults with multiple sclerosis (MS) living in the deep south. Contemp Clin Trials. 2018 Aug;71:186-93. doi: 10.1016/j.cct.2018.05.016. PMID: 29859267. Exclusion: 4.

- 897. Rimmer JH, Wang E, Pellegrini CA, et al. Telehealth weight management intervention for adults with physical disabilities: a randomized controlled trial. Am J Phys Med Rehabil. 2013 Dec;92(12):1084-94. doi: 10.1097/PHM.0b013e31829e780e. PMID: 24257266. Exclusion: 3.
- 898. Rintala A, Hakala S, Paltamaa J, et al. Effectiveness of technology-based distance physical rehabilitation interventions on physical activity and walking in multiple sclerosis: a systematic review and metaanalysis of randomized controlled trials. Disabil Rehabil. 2018 Feb;40(4):373-87. doi: 10.1080/09638288.2016.1260649. PMID: 27973919. Exclusion: 4.
- 899. Rios DC, Gilbertson T, McCoy SW, et al. NeuroGame Therapy to improve wrist control in children with cerebral palsy: a case series. Dev Neurorehabil. 2013 Dec;16(6):398-409. doi: 10.3109/17518423.2013.766818. PMID: 23617243. Exclusion: 11.
- 900. Riquelme I, Zamorano A, Montoya P. Reduction of pain sensitivity after somatosensory therapy in adults with cerebral palsy. Front Hum Neurosci. 2013;7:276. doi: 10.3389/fnhum.2013.00276. PMID: 23805086. Exclusion: 4.
- 901. Ritzmann R, Stark C, Krause A. Vibration therapy in patients with cerebral palsy: a systematic review. Neuropsychiatr. 2018;14:1607-25. doi: 10.2147/NDT.S152543. PMID: 29950843. Exclusion: 8.
- 902. Robert M, Ballaz L, Hart R, et al. Exercise intensity levels in children with cerebral palsy while playing with an active video game console. Phys Ther. 2013 Aug;93(8):1084-91. doi: 10.2522/ptj.20120204. PMID: 23580626. Exclusion: 11.
- 903. Robertson EK. The bottom line. On 'Effects of hand cycle training on physical capacity in individuals with tetraplegia: a clinical trial'. Phys Ther. 2009 Oct;89(10):1014-5. doi: 10.2522/ptj.20080340. Exclusion: 10.

- 904. Robinson AG, Dennett AM, Snowdon DA. Treadmill training may be an effective form of task-specific training for improving mobility in people with Parkinson's disease and multiple sclerosis: a systematic review and meta-analysis. Physiotherapy. 2019 06;105(2):174-86. doi: 10.1016/j.physio.2018.11.007. PMID: 30876717. Exclusion: 12.
- 905. Robinson J, Dixon J, Macsween A, et al. The effects of exergaming on balance, gait, technology acceptance and flow experience in people with multiple sclerosis: a randomized controlled trial. BMC Sports Sci Med Rehabil. 2015;7:8. doi: 10.1186/s13102-015-0001-1. PMID: 25969739. Exclusion: 4.
- 906. Rocca MA, Filippi M, Deiva K. Promoting physical activity to control multiple sclerosis from childhood. Neurology. 2015 Nov 10;85(19):1644-5. doi: 10.1212/WNL.000000000001941. PMID: 26268902. Exclusion: 2.
- 907. Rocchi MA, Robichaud Lapointe T, Gainforth HL, et al. Delivering a tele-health intervention promoting motivation and leisure-time physical activity among adults with spinal cord injury: An implementation evaluation. Sport Exerc Perform Psychol. 2020 Mar:No Pagination Specified. doi: http://dx.doi.org/10.1037/spy0000207. PMID: 2020-17702-001. Exclusion: 11.
- 908. Rodrigues TA, Fischer DA, Cyrillo FN, et al. Effectiveness of virtual reality using Wii gaming in the treatment of cerebral palsy. Neurorehabil Neural Repair. START: 2012 May 16 CONFERENCE END: 2012 May 19, 7th World Congress for NeuroRehabilitation, WCNR 2012 Melbourne, VIC Australia;26(6):NP8. Exclusion: 10.
- 909. Roeh A, Kirchner SK, Malchow B, et al. Depression in somatic disorders: is there a beneficial effect of exercise? Front Psychiatr. 2019;10:141. doi: 10.3389/fpsyt.2019.00141. PMID: 30949079. Exclusion: 12.

- 910. Roels EH, Aertgeerts B, Ramaekers D, et al. Hospital- and community-based interventions enhancing (re)employment for people with spinal cord injury: a systematic review. Spinal Cord. 2016 Jan;54(1):2-7. doi: 10.1038/sc.2015.133. PMID: 26305872. Exclusion: 4.
- 911. Rooney S, Moffat F, Wood L, et al. Effectiveness of fatigue management interventions in reducing severity and impact of fatigue in people with progressive multiple sclerosis: a systematic review. Int J MS Care. 2019 Jan-Feb;21(1):35-46. doi: 10.7224/1537-2073.2018-019. PMID: 30833871. Exclusion: 12.
- 912. Roostaei M, Baharlouei H, Azadi H, et al. Effects of aquatic intervention on gross motor skills in children with cerebral palsy: a systematic review. Phys Occup Ther Pediatr. 2017 Oct 20;37(5):496-515. doi: 10.1080/01942638.2016.1247938. PMID: 27967298. Exclusion: 12.
- 913. Rosenbaum P. A randomized controlled trial of the impact of therapeutic horse riding on the quality of life, health, and function of children with cerebral palsy. Dev Med Child Neurol. 2009 Feb;51(2):88. doi: 10.1111/j.1469-8749.2008.03259.x. Exclusion: 10.
- 914. Rosety-Rodriguez M, Camacho A, Rosety I, et al. Low-grade systemic inflammation and leptin levels were improved by arm cranking exercise in adults with chronic spinal cord injury. Arch Phys Med Rehabil. 2014 Feb;95(2):297-302. doi: 10.1016/j.apmr.2013.08.246. PMID: 24060491. Exclusion: 11.
- 915. Rosety-Rodriguez M, Rosety I, Fornieles G, et al. A short-term arm-crank exercise program improved testosterone deficiency in adults with chronic spinal cord injury. Int Braz J Urol. 2014 May-Jun;40(3):367-72. doi: 10.1590/S1677-5538.IBJU.2014.03.10. PMID: 25010302. Exclusion: 11.
- 916. Ross SA, Yount M, Ankarstad S, et al. Effects of participation in sports programs on walking ability and endurance over time in children with cerebral palsy. Am J Phys Med Rehabil. 2017 Dec;96(12):843-51. doi: 10.1097/PHM.000000000000767. PMID: 28644242. Exclusion: 8.

- 917. Rostami HR, Arastoo AA, Nejad SJ, et al. Effects of modified constraint-induced movement therapy in virtual environment on upper-limb function in children with spastic hemiparetic cerebral palsy: a randomised controlled trial. NeuroRehabilitation. 2012;31(4):357-65. doi: 10.3233/NRE-2012-00804. PMID: 23232158. Exclusion: 11.
- 918. Roth EJ, Stenson KW, Powley S, et al. Expiratory muscle training in spinal cord injury: a randomized controlled trial. Arch Phys Med Rehabil. 2010 Jun;91(6):857-61. doi: 10.1016/j.apmr.2010.02.012. PMID: 20510974. Exclusion: 4.
- 919. Ruck J, Chabot G, Rauch F. Vibration treatment in cerebral palsy: a randomized controlled pilot study. J Musculoskelet Neuronal Interact. 2010 Mar;10(1):77-83. PMID: 20190383. Exclusion: 11.
- 920. Ruiz J, Labas MP, Triche EW, et al. Combination of robot-assisted and conventional body-weight-supported treadmill training improves gait in persons with multiple sclerosis: a pilot study. J Neurol Phys Ther. 2013 Dec;37(4):187-93. doi: 10.1097/NPT.000000000000018. PMID: 24189336. Exclusion: 11.
- 921. Rupp R, Schliesmann D, Plewa H, et al. Safety and efficacy of at-home robotic locomotion therapy in individuals with chronic incomplete spinal cord injury: a prospective, pre-post intervention, proof-ofconcept study.[Erratum appears in PLoS One. 2015;10(4):e0126999; PMID: 25894511]. PLoS One. 2015;10(3):e0119167. doi: 10.1371/journal.pone.0119167. PMID: 25803577. Exclusion: 8.
- 922. Ryan JM, Cassidy EE, Noorduyn SG, et al. Exercise interventions for cerebral palsy. Cochrane Database Syst Rev. 2017 Jun 11;6:CD011660. doi: 10.1002/14651858.CD011660.pub2. PMID: 28602046. Exclusion: 12.

- 923. Ryan JM, Fortune J, Stennett A, et al. Safety, feasibility, acceptability and effects of a behaviour-change intervention to change physical activity behaviour among people with multiple sclerosis: results from the iStep-MS randomised controlled trial. Mult Scler. 2019 Oct 31:1352458519886231. doi: 10.1177/1352458519886231. PMID: 31668138. Exclusion: 4.
- 924. Ryan JM, Lavelle G, Theis N, et al. Progressive resistance training for adolescents with cerebral palsy: the STAR randomized controlled trial. Dev Med Child Neurol. 2020 Jun 26 doi: 10.1111/dmcn.14601. PMID: 32588919. Exclusion: 4.
- 925. Ryan TE, Brizendine JT, Backus D, et al. Electrically induced resistance training in individuals with motor complete spinal cord injury. Arch Phys Med Rehabil. 2013 Nov;94(11):2166-73. doi: 10.1016/j.apmr.2013.06.016. PMID: 23816921. Exclusion: 11.
- 926. Ryu K, Ali A, Kwon M, et al. Effects of assisted aquatic movement and horseback riding therapies on emotion and brain activation in patients with cerebral palsy. J Phys Ther Sci. 2016;28(12):3283-7. PMID: 28174435. Exclusion: 4.
- 927. Sa-Caputo DC, Costa-Cavalcanti R, Carvalho-Lima RP, et al. Systematic review of whole body vibration exercises in the treatment of cerebral palsy: brief report. Dev Neurorehabil. 2016 Oct;19(5):327-33. doi: 10.3109/17518423.2014.994713. PMID: 25826535. Exclusion: 12.
- 928. Sabapathy NM, Minahan CL, Turner GT, et al. Comparing endurance- and resistanceexercise training in people with multiple sclerosis: a randomized pilot study. Clin Rehabil. 2011 Jan;25(1):14-24. doi: 10.1177/0269215510375908. PMID: 20713434. Exclusion: 11.
- 929. Sadeghi Bahmani D, Farnia V, Shakeri J, et al. The comparison of the effect of yoga and aquatic exercises on depression and fatigue in patients with multiple sclerosis.
 Pharmacopsychiatry. Conference: 29th symposium of the AGNP. Germany. Conference start. 2015;25(6). Exclusion: 10.

- 930. Sadeghi Bahmani D, Kesselring J, Papadimitriou M, et al. In patients with multiple sclerosis, both objective and subjective sleep, depression, fatigue, and paresthesia improved after 3 weeks of regular exercise. Front Psychiatr. 2019;10:265. doi: 10.3389/fpsyt.2019.00265. PMID: 31130879. Exclusion: 8.
- 931. Sadeghi Bahmani D, Razazian N, Alikhani M, et al. Regular exercise program impacts positively on sleep disturbances, depression and fatigue in female patients with multiple sclerosis. J Sleep Res. 2018 Sep;Conference: 24th congress of the european sleep research society, ESRS. 2018. Switzerland 27(Supplement 1):309. doi: 10.1111/jsr.12751. PMID: 30203880. Exclusion: 10.
- 932. Sadeghi Bahmani D, Razazian N, Motl RW, et al. Physical activity interventions can improve emotion regulation and dimensions of empathy in persons with multiple sclerosis: An exploratory study. Mult Scler Relat Disord. 2020 Jan;37:101380. doi: 10.1016/j.msard.2019.101380. PMID: 32173007. Exclusion: 6.
- 933. Sadeghi M, Ghasemi G, Karimi M. Effect of 12-week- rebound therapy exercise on static stability of patients with spinal cord injury. J Sport Rehabil. 2018 Feb 6:1-16. doi: 10.1123/jsr.2017-0303. PMID: 29405819. Exclusion: 11.
- 934. Sadeghi M, Sawatzky B. Effects of vibration on spasticity in individuals with spinal cord injury: a scoping systematic review. Am J Phys Med Rehabil. 2014 Nov;93(11):995-1007. doi: 10.1097/PHM.000000000000098. PMID: 24743464. Exclusion: 9.
- 935. Sadowska-Krepa E, Zwierzchowska A, Glowacz M, et al. Blood metabolic response to a long-term wheelchair rugby training. Spinal Cord. 2016 May;54(5):371-5. doi: 10.1038/sc.2015.178. PMID: 26481699. Exclusion: 4.

- 936. Sah A, Balaji G, Agrahara S. Effects of task-oriented activities based on neurodevelopmental therapy principles on trunk control, balance, and gross motor function in children with spastic diplegic cerebral palsy: a single-blinded randomized clinical trial. J Pediatr Neurosci. 2019;14(3):120-6. doi: 10.4103/jpn.JPN_35_19. Exclusion: 14.
- 937. Sajan JE, John JA, Grace P, et al. Wii-based interactive video games as a supplement to conventional therapy for rehabilitation of children with cerebral palsy: a pilot, randomized controlled trial. Dev Neurorehabil. 2017 Aug;20(6):361-7. doi: 10.1080/17518423.2016.1252970. PMID: 27846366. Exclusion: 11.
- 938. Sakzewski L. Bimanual therapy and constraint-induced movement therapy are equally effective in improving hand function in children with congenital hemiplegia. J Physiother. 2012;58(1):59. doi: 10.1016/S1836-9553(12)70075-9. PMID: 22341385. Exclusion: 4.
- 939. Sakzewski L, Provan K, Ziviani J, et al. Comparison of dosage of intensive upper limb therapy for children with unilateral cerebral palsy: how big should the therapy pill be? Res Dev Disabil. 2015 Feb;37:9-16. doi: 10.1016/j.ridd.2014.10.050. PMID: 25460215. Exclusion: 4.
- 940. Sakzewski L, Ziviani J, Boyd RN. Best responders after intensive upper-limb training for children with unilateral cerebral palsy. Arch Phys Med Rehabil. 2011 Apr;92(4):578-84. doi: 10.1016/j.apmr.2010.12.003. PMID: 21440702. Exclusion: 6.
- 941. Salbach NM, Howe JA, Brunton K, et al. Partnering to increase access to community exercise programs for people with stroke, acquired brain injury, and multiple sclerosis. J Phys Act Health. 2014 May;11(4):838-45. doi: 10.1123/jpah.2012-0183. PMID: 23676952. Exclusion: 3.
- 942. Salem Y, Godwin EM. Effects of taskoriented training on mobility function in children with cerebral palsy. NeuroRehabilitation. 2009;24(4):307-13. doi: 10.3233/NRE-2009-0483. PMID: 19597267. Exclusion: 11.

- 943. Salem Y, Scott AH, Karpatkin H, et al. Community-based group aquatic programme for individuals with multiple sclerosis: a pilot study. Disabil Rehabil. 2011;33(9):720-8. doi: 10.3109/09638288.2010.507855. PMID: 20726740. Exclusion: 11.
- 944. Salvador AF, Schubert KR, Cruz RS, et al. Bilateral muscle strength symmetry and performance are improved following walk training with restricted blood flow in an elite paralympic sprint runner: case study. Phys Ther Sport. 2016 Jul;20:1-6. doi: 10.1016/j.ptsp.2015.10.004. PMID: 27325532. Exclusion: 7.
- 945. Sanchez-Lastra MA, Martinez-Aldao D, Molina AJ, et al. Pilates for people with multiple sclerosis: A systematic review and meta-analysis. Mult Scler Relat Disord. 2019 Jan 03;28:199-212. doi: 10.1016/j.msard.2019.01.006. PMID: 30623859. Exclusion: 12.
- 946. Sandroff BM. Exercise and cognition in multiple sclerosis: the importance of acute exercise for developing better interventions. Neurosci Biobehav Rev. 2015 Dec;59:173-83. doi: 10.1016/j.neubiorev.2015.10.012. PMID: 26584548. Exclusion: 4.
- 947. Sandroff BM, Baird JF, Silveira SL, et al. Response heterogeneity in fitness, mobility and cognition with exercise-training in MS. Acta Neurol Scand. 2019 Feb;139(2):183-91. doi: 10.1111/ane.13041. PMID: 30372515. Exclusion: 8.
- 948. Sandroff BM, Balto JM, Klaren RE, et al. Systematically developed pilot randomized controlled trial of exercise and cognition in persons with multiple sclerosis. Neurocase. 2016 10;22(5):443-50. doi: 10.1080/13554794.2016.1237658. PMID: 27671243. Exclusion: 4.
- 949. Sandroff BM, Hillman CH, Benedict RH, et al. Acute effects of walking, cycling, and yoga exercise on cognition in persons with relapsing-remitting multiple sclerosis without impaired cognitive processing speed. J Clin Exp Neuropsychol. 2015;37(2):209-19. doi: 10.1080/13803395.2014.1001723. PMID: 25658772. Exclusion: 4.

- 950. Sandroff BM, Hillman CH, Benedict RH, et al. Acute effects of varying intensities of treadmill walking exercise on inhibitory control in persons with multiple sclerosis: a pilot investigation. Physiol Behav. 2016 Feb 01;154:20-7. doi: 10.1016/j.physbeh.2015.11.008. PMID: 26569451. Exclusion: 4.
- 951. Sandroff BM, Klaren RE, Pilutti LA, et al. Randomized controlled trial of physical activity, cognition, and walking in multiple sclerosis. J Neurol. 2014 Feb;261(2):363-72. doi: 10.1007/s00415-013-7204-8. PMID: 24323244. Exclusion: 4.
- 952. Sandroff BM, Motl RW, Scudder MR, et al. Systematic, evidence-based review of exercise, physical activity, and physical fitness effects on cognition in persons with multiple sclerosis. Neuropsychol Rev. 2016 Sep;26(3):271-94. doi: 10.1007/s11065-016-9324-2. PMID: 27447980. Exclusion: 4.
- 953. Sangelaji B, Estebsari F, Nabavi SM, et al. The effect of exercise therapy on cognitive functions in multiple sclerosis patients: a pilot study. Med J Islam Repub Iran. 2015;29:205. PMID: 26157723. Exclusion: 11.
- 954. Sangelaji B, Smith CM, Paul L, et al. The effectiveness of behaviour change interventions to increase physical activity participation in people with multiple sclerosis: a systematic review and meta-analysis. Clin Rehabil. 2016 Jun;30(6):559-76. doi: 10.1177/0269215515595274. PMID: 26198892. Exclusion: 12.
- 955. Santhosh Kanna BS, Balabaskar K. A study on efficacy of respiratory exercises coupled with neuro developmental treatment on pulmonary function of children with spastic quadriplegic cerebral palsy. Biomed Pharmacol J. 2019;12(3):1519-24. doi: 10.13005/bpj/1782. Exclusion: 14.
- 956. Saquetto M, Carvalho V, Silva C, et al. The effects of whole body vibration on mobility and balance in children with cerebral palsy: a systematic review with meta-analysis. J Musculoskelet Neuronal Interact. 2015 Jun;15(2):137-44. PMID: 26032205. Exclusion: 12.

- 957. Sattelmayer M, Chevalley O, Steuri R, et al. Over-ground walking or robot-assisted gait training in people with .multiple sclerosis: does the effect depend on baseline walking speed and disease related disabilities? A systematic review and meta-regression. BMC Neurol. 2019 May 08;19(1):93. doi: 10.1186/s12883-019-1321-7. PMID: 31068151. Exclusion: 12.
- 958. Saxton JM, Carter A, Daley A, et al. Pragmatic exercise for people with MS: a randomized controlled trial. Mult Scler J Exp Transl Clin. 2013 May;19(10):1402. doi: 10.1177/1352458513498690. Exclusion: 10.
- 959. Sayenko DG, Alekhina MI, Masani K, et al. Positive effect of balance training with visual feedback on standing balance abilities in people with incomplete spinal cord injury. Spinal Cord. 2010 Dec;48(12):886-93. doi: 10.1038/sc.2010.41. PMID: 20404833. Exclusion: 11.
- 960. Schasfoort F, Dallmeijer A, Pangalila R, et al. Value of botulinum toxin injections preceding a comprehensive rehabilitation period for children with spastic cerebral palsy: a cost-effectiveness study. J Rehabil Med. 2018 Jan 10;50(1):22-9. doi: 10.2340/16501977-2267. PMID: 28949368. Exclusion: 4.
- 961. Schindelholz M, Stoller O, Hunt KJ. A software module for cardiovascular rehabilitation in robotics-assisted treadmill exercise. Biomed Signal Process Control. 2014;10(1):296-307. doi: 10.1016/j.bspc.2012.12.006. Exclusion: 3.
- 962. Schmidt S, Wonneberger M. Long-term endurance exercise improves aerobic capacity in patients with relapsing-remitting multiple sclerosis: impact of baseline fatigue. J Neurol Sci. 2014 Jan 15;336(1-2):29-35. doi: 10.1016/j.jns.2013.09.035. PMID: 24139841. Exclusion: 4.
- 963. Schneiberg S, McKinley PA, Sveistrup H, et al. The effectiveness of task-oriented intervention and trunk restraint on upper limb movement quality in children with cerebral palsy. Dev Med Child Neurol. 2010 Nov;52(11):e245-53. doi: 10.1111/j.1469-8749.2010.03768.x. PMID: 20813019. Exclusion: 11.

- 964. Schranz C, Kruse A, Belohlavek T, et al. Does home-based progressive resistance or high-intensity circuit training improve strength, function, activity or participation in children with Cerebral Palsy? Arch Phys Med Rehabil. 2018 Dec;99(12):2457-64. doi: 10.1016/j.apmr.2018.06.010. PMID: 30473019. Exclusion: 4.
- 965. Schranz C, Kruse A, Belohlavek T, et al. High intensity circuit training and progressive resistance training improve intervention-specific functional performance in children with cerebral palsy. Dev Med Child Neurol. 2018;Conference: 30th annual meeting of the european academy of childhood disability, EACD. 2018. Georgia 60(Supplement 2):54. Exclusion: 10.
- 966. Schranz C, Kruse A, Belohlavek T, et al. High intensity circuit training and progressive resistance training improve functional performance but not the gait profile score. Gait Posture. 2017;Conference: 26th annual meeting of the european society for movement analysis in adults and children, ESMAC. 2017. Norway 57(Supplement 1):364-5. Exclusion: 10.
- 967. Schreiber R, Souza CM, Paim LR, et al. Impact of regular physical activity on adipocytokines and cardiovascular characteristics in spinal cord-injured subjects. Arch Phys Med Rehabil. 2018 Aug;99(8):1561-7.e1. doi: 10.1016/j.apmr.2018.02.010. PMID: 29548578. Exclusion: 4.
- 968. Schroeder AS, Von Kries R, Riedel C, et al. Patient-specific determinants of responsiveness to robot-enhanced treadmill therapy in children and adolescents with cerebral palsy. Dev Med Child Neurol. 2014 12;56(12):1172-9. doi: 10.1111/dmcn.12564. PMID: 25154424. Exclusion: 8.
- 969. Schwartz I, Sajin A, Moreh E, et al. Robotassisted gait training in multiple sclerosis patients: a randomized trial. Mult Scler. 2012 Jun;18(6):881-90. doi: 10.1177/1352458511431075. PMID: 22146609. Exclusion: 11.

- 970. Scott W, Geigle P, Chen K, et al. Relationship among physical activity scale for individuals with disability (PASID), body mass index (BMI), and maximum oxygen consumption (V0MAX) in persons with motor incomplete spinal cord injury. Top Spinal Cord Inj Rehabil. START: 2013 May 6 CONFERENCE END: 2013 May 8, 40th Anniversary Annual Scientific Meeting of the American Spinal Injury Association, ASIA 2013 Chicago, IL United States;19(1):7. Exclusion: 10.
- 971. Sebastiao E, McAuley E, Shigematsu R, et al. Home-based, square-stepping exercise program among older adults with multiple sclerosis: results of a feasibility randomized controlled study. Contemp Clin Trials. 2018 Oct;73:136-44. doi: 10.1016/j.cct.2018.09.008. PMID: 30243811. Exclusion: 4.
- 972. Sebastiao E, McAuley E, Shigematsu R, et al. Feasibility study design and methods for a home-based, square-stepping exercise program among older adults with multiple sclerosis: The SSE-MS project. Contemp Clin Trials Commun. 2017 Sep;7:200-7. doi: 10.1016/j.conctc.2017.07.012. PMID: 29696187. Exclusion: 10.
- 973. Seco J, Rodriguez-Perez V, Lopez-Rodriguez AF, et al. Effects of vibration therapy on hormone response and stress in severely disabled patients: a double-blind randomized placebo-controlled clinical trial. Rehabil Nurs. 2015 May-Jun;40(3):166-78. doi: 10.1002/rnj.116. PMID: 23922258. Exclusion: 11.
- 974. Seebacher B, Kuisma R, Glynn A, et al. The effect of rhythmic-cued motor imagery on walking, fatigue and quality of life in people with multiple sclerosis: a randomised controlled trial. Mult Scler. 2017 Feb;23(2):286-96. doi: 10.1177/1352458516644058. PMID: 27055804. Exclusion: 4.
- 975. Sexton A, McGibbon CA, Jayaraman A, et al. Evaluation of the Keeogo exoskeleton for assisting ambulatory activities in people with multiple sclerosis: an open-label, randomized, cross-over trial. J Neuroeng Rehabil. 2018;15(1) doi: 10.1186/s12984-018-0468-6. Exclusion: 11.

- 976. Shaffer RF, Picard G, Taylor JA. Relationship of spinal cord injury level and duration to peak aerobic capacity with armsonly and hybrid functional electrical stimulation rowing. Am J Phys Med Rehabil. 2018 Jul;97(7):488-91. doi: 10.1097/PHM.0000000000000903. PMID: 29406401. Exclusion: 4.
- 977. Shahrbanian S. Virtual reality training or physical activity? Which one is more effective in reducing pain among persons with multiple sclerosis? A randomized controlled trial. Mult Scler.
 2017;Conference: 7th joint ECTRIMS-ACTRIMS, MSPARIS2017. France. 23(3 Supplement 1):959-60. Exclusion: 10.
- 978. Sharan D, Ajeesh PS, Rameshkumar R, et al. Virtual reality based therapy for post operative rehabilitation of children with cerebral palsy. Work. 2012;41 Suppl 1:3612-5. doi: 10.3233/WOR-2012-0667-3612. PMID: 22317271. Exclusion: 7.
- 979. Sharif H, Gammage K, Chun S, et al. Effects of FES-ambulation training on locomotor function and health-related quality of life in individuals with spinal cord injury. Top Spinal Cord Inj Rehabil. 2014;20(1):58-69. doi: 10.1310/sci2001-58. PMID: 24574823. Exclusion: 11.
- 980. Shehata H, Elmazny A, Shalaby N. Effects of high frequency repetitive transcranial magnetic stimulation on gait and balance in patients with relapsing remitting multiple sclerosis. Mult Scler. 2017;Conference: 7th joint ECTRIMS-ACTRIMS, MSPARIS2017. France. 23(3 Supplement 1):58. Exclusion: 10.
- 981. Shehata HS, Shalaby NM, Elmazny A. Effects of high frequency repetitive transcranial magnetic stimulation on gait and balance in patients with chronic multiple sclerosis. Multiple sclerosis. Conference: 32nd congress of the european committee for treatment and research in multiple sclerosis, ECTRIMS. 2016;22(389). Exclusion: 10.
- 982. Shem K, Karasik D, Carufel P, et al. Seated Tai Chi to alleviate pain and improve quality of life in individuals with spinal cord disorder. J Spinal Cord Med. 2016 May;39(3):353-8. doi: 10.1080/10790268.2016.1148895. PMID: 26914968. Exclusion: 11.

- 983. Sherief A, Abo Gazya AA, Abd El Gafaar MA. Integrated effect of treadmill training combined with dynamic ankle foot orthosis on balance in children with hemiplegic cerebral palsy. Egypt J Med Hum Genet. 2015;16(2):173-9. Exclusion: 4.
- 984. Sherrington C, Pamphlett PI, Jacka JA, et al. Group exercise can improve participants' mobility in an outpatient rehabilitation setting: a randomized controlled trial. Clin Rehabil. 2008 Jun;22(6):493-502. doi: 10.1177/0269215508087994. PMID: 18511529. Exclusion: 3.
- 985. Shimizu Y, Kadone H, Kubota S, et al. Voluntary ambulation by upper limbtriggered HAL in patients with complete quadri/paraplegia due to chronic spinal cord injury. Front Neurosci. 2017;11:649. doi: 10.3389/fnins.2017.00649. PMID: 29209163. Exclusion: 11.
- 986. Shojaei MH, Alavinia SM, Craven BC. Management of obesity after spinal cord injury: a systematic review. J Spinal Cord Med. 2017 Nov;40(6):783-94. doi: 10.1080/10790268.2017.1370207. PMID: 28929907. Exclusion: 12.
- 987. Shuai L, Yu GH, Feng Z, et al. Application of a paraplegic gait orthosis in thoracolumbar spinal cord injury. Nerual Regen. 2016 Dec;11(12):1997-2003. doi: 10.4103/1673-5374.197144. PMID: 28197198. Exclusion: 4.
- 988. Shurtleff TL, Engsberg JR. Changes in trunk and head stability in children with cerebral palsy after hippotherapy: a pilot study. Phys Occup Ther Pediatr. 2010 May;30(2):150-63. doi: 10.3109/01942630903517223. PMID: 20367519. Exclusion: 5.
- 989. Siemonsen S, Stellmann JP, Kjolhede T, et al. Resistance training increases cortical thickness in RRMS-results of a pilot RCT. Mult Scler J Exp Transl Clin. START: 2015 Oct 7 CONFERENCE END: 2015 Oct 10, 31st Congress of the European Committee for Treatment and Research in Multiple Sclerosis, ECTRIMS 2015 Barcelona Spain;23(11 SUPPL. 1):504. Exclusion: 10.

- 990. Silkwood-Sherer DJ, McGibbon NH. Can hippotherapy make a difference in the quality of life of children with cerebral palsy? A pragmatic study. Physiother Theory Pract. 2020 May 14:1-11. doi: 10.1080/09593985.2020.1759167. PMID: 32406798. Exclusion: 11.
- 991. Silva Ferreira AP, de Souza Pegorare ABG, Miotto Junior A, et al. A controlled clinical trial on the effects of exercise on lower uirnary tract symptoms in women with multiple sclerosis. Am J Phys Med Rehabil. 2019 Sep;98(9):777-82. doi: 10.1097/PHM.000000000001189. PMID: 30932917. Exclusion: 4.
- 992. Silverman EP, Miller S, Zhang Y, et al. Effects of expiratory muscle strength training on maximal respiratory pressure and swallow-related quality of life in individuals with multiple sclerosis. Mult Scler J Exp Transl Clin. 2017 Apr-Jun;3(2):2055217317710829. doi: 10.1177/2055217317710829. PMID: 28607760. Exclusion: 4.
- 993. Simis M, Uygur-Kucukseymen E, Pacheco-Barrios K, et al. Beta-band oscillations as a biomarker of gait recovery in spinal cord injury patients: A quantitative electroencephalography analysis. Clin Neurophysiol. 2020 May 22;131(8):1806-14. doi: 10.1016/j.clinph.2020.04.166. PMID: 32540720. Exclusion: 6.
- 994. Slaman J, Roebroeck M, Van Der Slot WM, et al. Effectiveness of a lifestyle program among adolescents and young adults with cerebral palsy: a randomized controlled trial. Dev Med Child Neurol. 2014 Sep;56(S5):65-6. doi: 10.1111/dmcn.12540. Exclusion: 10.
- 995. Slaman J, Roebroek M, Stam H, et al. Effectiveness of a lifestyle program on daily physical activity and fitness in adolescents and young adults with cerebral palsy: a randomized controlled trial. Dev Med Child Neurol. 2013;55(S2):30-1. doi: 10.1111/dmcn.12259. Exclusion: 10.
- 996. Slaman J, van den Berg-Emons R, Tan SS, et al. Cost-utility of a lifestyle intervention in adolescents and young adults with spastic cerebral palsy. J Rehabil Med. 2015 Apr;47(4):338-45. doi: 10.2340/16501977-1929. PMID: 25678311. Exclusion: 6.

- 997. Smith M, Barker R, Williams G, et al. The effect of exercise on high-level mobility in individuals with neurodegenerative disease: a systematic literature review.
 Physiotherapy. 2019 May 02;02:02. doi: 10.1016/j.physio.2019.04.003. PMID: 31477333. Exclusion: 12.
- 998. Soleyman-Jahi S, Yousefian A, Maheronnaghsh R, et al. Evidence-based prevention and treatment of osteoporosis after spinal cord injury: a systematic review. Eur Spine J. 2018 Aug;27(8):1798-814. doi: 10.1007/s00586-017-5114-7. PMID: 28497215. Exclusion: 3.
- 999. Solinsky R, Mercier H, Picard G, et al. Cardiometabolic effects of high-intensity hybrid functional electrical stimulation exercise after Spinal Cord Injury. Pm R. 2020 Oct 07;07:07. doi: 10.1002/pmrj.12507. PMID: 33027550. Exclusion: 8.
- Solinsky R, Vivodtzev I, Hamner JW, et al. The effect of heart rate variability on blood pressure is augmented in spinal cord injury and is unaltered by exercise training. Clin Auton Res. 2020 Mar 12;12:12. doi: 10.1007/s10286-020-00677-2. PMID: 32166421. Exclusion: 11.
- 1001. Sorsdahl AB, Moe-Nilssen R, Kaale HK, et al. Change in basic motor abilities, quality of movement and everyday activities following intensive, goal-directed, activityfocused physiotherapy in a group setting for children with cerebral palsy. BMC Pediatr. 2010 Apr 27;10:26. doi: 10.1186/1471-2431-10-26. PMID: 20423507. Exclusion: 8.
- 1002. Sosnoff JJ, Moon Y, Wajda DA, et al. Fall risk and incidence reduction in high risk individuals with multiple sclerosis: a pilot randomized control trial. Clin Rehabil. 2015 Oct;29(10):952-60. doi: 10.1177/0269215514564899. PMID: 25540170. Exclusion: 4.
- 1003. Sosnoff JJ, Sandroff BM, Pula JH, et al. Falls and physical activity in persons with multiple sclerosis. Mult Scler Int. 2012;2012:315620. doi: 10.1155/2012/315620. PMID: 22966459. Exclusion: 4.

- Sosnoff JJ, Sung J. Reducing falls and improving mobility in multiple sclerosis. Expert Rev Neurother. 2015 Jun;15(6):655-66. doi: 10.1586/14737175.2015.1046377. PMID: 25973774. Exclusion: 12.
- 1005. Souto DO, Cruz TKF, Coutinho K, et al. Effect of motor imagery combined with physical practice on upper limb rehabilitation in children with hemiplegic cerebral palsy. NeuroRehabilitation. 2020;46(1):53-63. doi: 10.3233/NRE-192931. Exclusion: 4.
- 1006. Spencer T, Aldous S, Williams G, et al. Systematic review of high-level mobility training in people with a neurological impairment. Brain Inj. 2018;32(4):403-15. doi: 10.1080/02699052.2018.1429656. PMID: 29393688. Exclusion: 12.
- Spina E, Carotenuto A, Aceto MG, et al. The effects of mechanical focal vibration on walking impairment in multiple sclerosis patients: a randomized, double-blinded vs placebo study. Restor Neurol Neurosci. 2016 Sep 21;34(5):869-76. doi: 10.3233/RNN-160665. PMID: 27567760. Exclusion: 11.
- 1008. Stampacchia G, Olivieri M, Rustici A, et al. Gait rehabilitation in persons with spinal cord injury using innovative technologies: an observational study. Spinal Cord. 2020 Apr 06;06:06. doi: 10.1038/s41393-020-0454-2. PMID: 32251368. Exclusion: 8.
- 1009. Stark C, Herkenrath P, Hollmann H, et al. Early vibration assisted physiotherapy in toddlers with cerebral palsy - a randomized controlled pilot trial. J Musculoskelet Neuronal Interact. 2016 Sep 7;16(3):183-92. PMID: 27609033. Exclusion: 4.
- Steimer J, Weissert R. Effects of sport climbing on multiple sclerosis. Front Physiol. 2017;8:1021. doi: 10.3389/fphys.2017.01021. PMID: 29311957. Exclusion: 12.
- Stergiou A, Tzoufi M, Ntzani E, et al. Therapeutic effects of horseback riding interventions: a systematic review and metaanalysis. Am J Phys Med Rehabil. 2017 Oct;96(10):717-25. doi: 10.1097/PHM.000000000000726. PMID: 28252520. Exclusion: 12.

- 1012. Stone WJ, Stevens SL, Fuller DK, et al. Ambulation and physical function after eccentric resistance training in adults with incomplete spinal cord injury: a feasibility study. J Spinal Cord Med. 2019 Jan 23;42(4):526-33. doi: 10.1080/10790268.2017.1417804. PMID: 29360000. Exclusion: 11.
- 1013. Straudi S, Benedetti MG, Venturini E, et al. Does robot-assisted gait training ameliorate gait abnormalities in multiple sclerosis? A pilot randomized-control trial. NeuroRehabilitation. 2013;33(4):555-63. doi: 10.3233/NRE-130990. PMID: 24018369. Exclusion: 11.
- 1014. Straudi S, Martinuzzi C, Pavarelli C, et al. A task-oriented circuit training in multiple sclerosis: a feasibility study. BMC Neurol. 2014 Jun 7;14:124. doi: 10.1186/1471-2377-14-124. PMID: 24906545. Exclusion: 11.
- 1015. Streber R, Peters S, Pfeifer K. Systematic review of correlates and determinants of physical activity in persons with multiple sclerosis. Arch Phys Med Rehabil. 2016 Apr;97(4):633-45.e29. doi: 10.1016/j.apmr.2015.11.020. PMID: 26751247. Exclusion: 12.
- 1016. Street T, Singleton C. A clinically meaningful training effect in walking speed using functional electrical stimulation for motor-incomplete spinal cord injury. J Spinal Cord Med. 2018 May;41(3):361-6. doi: 10.1080/10790268.2017.1392106. PMID: 29108487. Exclusion: 4.
- Stribling K, Christy J. Dance practice improves postural control in a child with cerebral palsy. Pediatr Phys Ther. 2011 Spring;23(1):129-30. doi: 10.1097/PEP.000000000000450. PMID: 28953185 Exclusion: 7.
- 1018. Sucuoglu H. Effects of robot-assisted gait training alongside conventional therapy on the development of walking in children with cerebral palsy. J Pediatr Rehabil Med. 2020 May 09;09:09. doi: 10.3233/PRM-180541. PMID: 32444570. Exclusion: 8.

- 1019. Suder R, Fu MJ, Knutson J, et al. Contralaterally controlled functional electrical stimulation and hand therapy video games for cerebral palsy. Am J Occup Ther. 2016 Aug;70(4):1. doi: 10.5014/ajot.2016.70S1-PO5113. Exclusion: 7.
- 1020. Sukal-Moulton T, Clancy T, Zhang LQ, et al. Clinical application of a robotic ankle training program for cerebral palsy compared to the research laboratory application: does it translate to practice? Arch Phys Med Rehabil. 2014 Aug;95(8):1433-40. doi: 10.1016/j.apmr.2014.04.010. PMID: 24792141. Exclusion: 4.
- 1021. Sung YH, Ha SY. The Vojta approach changes thicknesses of abdominal muscles and gait in children with spastic cerebral palsy: a randomized controlled trial, pilot study. Technol Health Care. 2019 Oct 16;16:16. doi: 10.3233/THC-191726. PMID: 31658070. Exclusion: 11.
- 1022. Surana BK, Ferre CL, Dew AP, et al. Effectiveness of lower-extremity functional training (LIFT) in young children with unilateral spastic cerebral palsy: a randomized controlled trial. Neurorehabil Neural Repair. 2019;33(10):862-72. doi: 10.1177/1545968319868719. Exclusion: 4.
- 1023. Swank C, Thompson M, Medley A. Aerobic exercise in people with multiple sclerosis: its feasibility and secondary benefits. Int J MS Care. 2013;15(3):138-45. doi: 10.7224/1537-2073.2012-037. PMID: 24453776. Exclusion: 11.
- 1024. Swank C, Trammell M, Bennett M, et al. The utilization of an overground robotic exoskeleton for gait training during inpatient rehabilitation-single-center retrospective findings. Int J Rehabil Res. 2020 Apr 08;08:08. doi: 10.1097/MRR.0000000000000409. PMID: 32282573. Exclusion: 4.
- 1025. Syed UE, Kamal A. Video game-based and conventional therapies in patients of neurological deficits: an experimental study. Disabil Rehabil Assist Technol. 2019 Nov 05:1-8. doi:
 10.1080/17483107.2019.1679266. PMID: 31684776. Exclusion: 11.

- 1026. Tafreshi AS, Riener R, Klamroth-Marganska V. Distinctive steady-state heart rate and blood pressure responses to passive robotic leg exercise during head-up tilt: a pilot study in neurological patients. Front Physiol. 2017;8(JUN) doi: 10.3389/fphys.2017.00327. Exclusion: 3.
- 1027. Tallner A, Maeurer M, Pfeifer K. An internet-based at home training protocol enhances muscle strength and lung function in multiple sclerosis patients (#133). Mult Scler J Exp Transl Clin. 2012 May;18(5):S23-S4. doi: 10.1177/1352458512444209. PMID: 28071271. Exclusion: 10.
- 1028. Tallner A, Streber R, Hentschke C, et al. Internet-supported physical exercise training for persons with multiple sclerosis-a randomised, controlled study. Int J Mol Sci. 2016 Sep 30;17(10):30. doi: 10.3390/ijms17101667. PMID: 27706046. Exclusion: 4.
- 1029. Tamburella F, Scivoletto G, Molinari M. Balance training improves static stability and gait in chronic incomplete spinal cord injury subjects: a pilot study. Eur J Phys Rehabil Med. 2013 Jun;49(3):353-64. PMID: 23486301. Exclusion: 11.
- 1030. Tan C, Battaglino R, Gupta R, et al. FESrowing training improves bone strength of the paralyzed legs in a dose-dependent fashion. J Bone Miner Res. Conference. 2015;30(Supplement 1). Exclusion: 10.
- 1031. Tanabe S, Koyama S, Saitoh E, et al. Clinical feasibility of gait training with a robotic exoskeleton (WPAL) in an individual with both incomplete cervical and complete thoracic spinal cord injury: a case study. NeuroRehabilitation. 2017;41(1):85-95. doi: 10.3233/NRE-171460. PMID: 28527225. Exclusion: 7.
- 1032. Taspinar O, Aydin T, Celebi A, et al. Psychological effects of calisthenic exercises on neuroinflammatory and rheumatic diseases. Z Rheumatol. 2015 Oct;74(8):722-7. doi: 10.1007/s00393-015-1570-9. PMID: 26115762. Exclusion: 4.

- 1033. Taylor E, Taylor-Piliae RE. The effects of Tai Chi on physical and psychosocial function among persons with multiple sclerosis: a systematic review. Complement Ther Med. 2017 Apr;31:100-8. doi: 10.1016/j.ctim.2017.03.001. PMID: 28434462. Exclusion: 12.
- 1034. Taylor N, Dodd KJ, Baker R, et al. The effect of individualized progressive resistance training on mobility in adolescents and young adults with cerebral palsy. Dev Med Child Neurol. 2013 Oct;55(S3):25-6. doi: 10.1111/dmcn.12247. Exclusion: 10.
- 1035. Taylor P, Barrett C, Mann G, et al. A feasibility study to investigate the effect of functional electrical stimulation and physiotherapy exercise on the quality of gait of people with multiple sclerosis. Neuromodulation. 2014 Jan;17(1):75-84; discussion doi: 10.1111/ner.12048. PMID: 23601128. Exclusion: 11.
- 1036. Taylor P, Humphreys L, Swain I. The longterm cost-effectiveness of the use of Functional Electrical Stimulation for the correction of dropped foot due to upper motor neuron lesion. J Rehabil Med. 2013 Feb;45(2):154-60. doi: 10.2340/16501977-1090. PMID: 23303521. Exclusion: 5.
- 1037. Taylor SM, Cheung EO, Sun R, et al. Applications of complementary therapies during rehabilitation for individuals with traumatic spinal cord injury: findings from the SCIRehab project. J Spinal Cord Med. 2019 Sep;42(5):571-8. doi: 10.1080/10790268.2018.1481693. PMID: 29883300. Exclusion: 4.
- 1038. Taylor-Schroeder S, LaBarbera J, McDowell S, et al. The SCIRehab project: treatment time spent in SCI rehabilitation. Physical therapy treatment time during inpatient spinal cord injury rehabilitation. J Spinal Cord Med. 2011;34(2):149-61. doi: 10.1179/107902611X12971826988057. PMID: 21675354. Exclusion: 4.
- 1039. Tefertiller C, Hays K, Jones J, et al. Initial outcomes from a multicenter study utilizing the indego powered exoskeleton in spinal cord injury. Top Spinal Cord Inj Rehabil. 2018;24(1):78-85. doi: 10.1310/sci17-00014. PMID: 29434463. Exclusion: 8.

- 1040. Temcharoensuk P, Lekskulchai R, Akamanon C, et al. Effect of horseback riding versus a dynamic and static horse riding simulator on sitting ability of children with cerebral palsy: a randomized controlled trial. J Phys Ther Sci. 2015 Jan;27(1):273-7. doi: 10.1589/jpts.27.273. PMID: 25642090. Exclusion: 4.
- 1041. Terson de Paleville D, McKay W, Aslan S, et al. Locomotor step training with body weight support improves respiratory motor function in individuals with chronic spinal cord injury. Respir Physiolo Neurobiol. 2013 Dec 1;189(3):491-7. doi: 10.1016/j.resp.2013.08.018. PMID: 23999001. Exclusion: 11.
- 1042. Theis N, Korff T, Mohagheghi AA. Does long-term passive stretching alter muscletendon unit mechanics in children with spastic cerebral palsy? Clin Biomech. 2015 Dec;30(10):1071-6. doi: 10.1016/j.clinbiomech.2015.09.004. PMID: 26403361. Exclusion: 11.
- 1043. Thomas S, Fazakarley L, Thomas PW, et al. Mii-vitaliSe: a pilot randomised controlled trial of a home gaming system (Nintendo Wii) to increase activity levels, vitality and well-being in people with multiple sclerosis. BMJ Open. 2017 Sep 27;7(9):e016966. doi: 10.1136/bmjopen-2017-016966. PMID: 28954791. Exclusion: 4.
- 1044. Thongsumrit L, Nana A, Limroongreungrat W, et al. Effects of wheelchair Tai-Chi training on sitting balance of individuals with spinal cord injury. J Sci Med Sport. 2011 Dec;14(S1):e110-1. doi: 10.1016/j.jsams.2011.11.231. Exclusion: 10.
- 1045. To CS, Kobetic R, Bulea TC, et al. Sensorbased stance control with orthosis and functional neuromuscular stimulation for walking after spinal cord injury. J Prosthet Orthot. 2012;24(3):124-32. doi: 10.1097/JPO.0b013e3182627a13. Exclusion: 7.
- 1046. To CS, Kobetic R, Bulea TC, et al. Sensorbased hip control with hybrid neuroprosthesis for walking in paraplegia. J Rehabil Res Dev. 2014;51(2):229-44. doi: 10.1682/JRRD.2012.10.0190. PMID: 24933721. Exclusion: 7.

- 1047. Torhaug T, Brurok B, Hoff J, et al. The effect from maximal bench press strength training on work economy during wheelchair propulsion in men with spinal cord injury. Spinal Cord. 2016 Oct;54(10):838-42. doi: 10.1038/sc.2016.27. PMID: 26976530. Exclusion: 11.
- 1048. Tornberg AB, Lauruschkus K. Nonambulatory children with cerebral palsy: effects of four months of static and dynamic standing exercise on passive range of motion and spasticity in the hip. PeerJ. 2020;8:e8561. doi: 10.7717/peerj.8561. PMID: 32211225. Exclusion: 4.
- 1049. Tosh J, Dixon S, Carter A, et al. Cost effectiveness of a pragmatic exercise intervention (EXIMS) for people with multiple sclerosis: economic evaluation of a randomised controlled trial. Mult Scler. 2014 Jul;20(8):1123-30. doi: 10.1177/1352458513515958. PMID: 24421304. Exclusion: 6.
- 1050. Totosy de Zepetnek JO, Au JS, Ditor DS, et al. Lower limb conduit artery endothelial responses to acute upper limb exercise in spinal cord injured and able-bodied men. Physiol Rep. 2015 Apr;3(4) doi: 10.14814/phy2.12367. PMID: 25847920. Exclusion: 4.
- 1051. Totosy de Zepetnek JO, Au JS, Hol AT, et al. Predicting peak oxygen uptake from submaximal exercise after spinal cord injury. Appl Physiol Nutr Metab. 2016 Jul;41(7):775-81. doi: 10.1139/apnm-2015-0670. PMID: 27363732. Exclusion: 4.
- 1052. Totosy de Zepetnek JO, Miyatani M, Szeto M, et al. The effects of whole body vibration on pulse wave velocity in men with chronic spinal cord injury. J Spinal Cord Med. 2017 Nov;40(6):795-802. doi: 10.1080/10790268.2017.1369248. PMID: 28868990. Exclusion: 11.
- 1053. Tramontano M, Cinnera AM, Manzari L, et al. Vestibular rehabilitation has positive effects on balance, fatigue and activities of daily living in highly disabled multiple sclerosis people: a preliminary randomized controlled trial. Restor Neurol Neurosci. 2018;36(6):709-18. doi: 10.3233/RNN-180850. Exclusion: 11.

- 1054. Troy KL. Biomechanical validation of upper extremity exercise in wheelchair users: design considerations and improvements in a prototype device. Disabil Rehabil Assist Technol. 2011;6(1):22-8. doi: 10.3109/17483107.2010.509883. PMID: 20726741. Exclusion: 4.
- 1055. Troy KL, Munce TA, Longworth JA. An exercise trial targeting posterior shoulder strength in manual wheelchair users: pilot results and lessons learned. Disabil Rehabil Assist Technol. 2015;10(5):415-20. doi: 10.3109/17483107.2014.905644. PMID: 24694062. Exclusion: 11.
- 1056. Truchon C, Fallah N, Santos A, et al. Impact of therapy on recovery during rehabilitation in patients with traumatic spinal cord injury. J Neurotrauma. 2017 Oct 15;34(20):2901-9. doi: 10.1089/neu.2016.4932. PMID: 28493787. Exclusion: 7.
- 1057. Tsai C-Y, Delgado AD, Weinrauch WJ, et al. Exoskeletal-Assisted Walking During Acute Inpatient Rehabilitation Leads to Motor and Functional Improvement in Persons With Spinal Cord Injury: A Pilot Study. Arch Phys Med Rehabil. 2020;101(4):607-12. doi: 10.1016/j.apmr.2019.11.010. Exclusion: 4.
- 1058. Tsai LC, Ren Y, Gaebler-Spira DJ, et al. Effects of an off-axis pivoting elliptical training program on gait function in persons with spastic cerebral palsy: a preliminary study. Am J Phys Med Rehabil. 2017 Jul;96(7):515-22. doi: 10.1097/PHM.000000000000632. PMID: 28628539. Exclusion: 11.
- 1059. Tupimai T, Peungsuwan P, Prasertnoo J, et al. Effect of combining passive muscle stretching and whole body vibration on spasticity and physical performance of children and adolescents with cerebral palsy. J Phys Ther Sci. 2016 Jan;28(1):7-13. doi: 10.1589/jpts.28.7. PMID: 26957720. Exclusion: 11.
- 1060. Turbanski S, Schmidtbleicher D. Effects of heavy resistance training on strength and power in upper extremities in wheelchair athletes. J Strength Cond Res. 2010 Jan;24(1):8-16. doi: 10.1519/JSC.0b013e3181bdddda. PMID: 19996772. Exclusion: 11.

- 1061. Turconi AC, Biffi E, Maghini C, et al. Can new technologies improve upper limb performance in grown-up diplegic children? Eur J Phys Rehabil Med. 2016 Oct;52(5):672-81. PMID: 26554345. Exclusion: 11.
- 1062. Tyler ME, Kaczmarek KA, Rust KL, et al. Non-invasive neuromodulation to improve gait in chronic multiple sclerosis: a randomized double blind controlled pilot trial. J Neuroengineering Rehabil. 2014 May 1;11:79. doi: 10.1186/1743-0003-11-79. PMID: 24885412. Exclusion: 11.
- 1063. Ukhanova TA, Gorbunov FE. [Efficacy of reflexology in the combination with neuroprotective treatment in hemiparetic form of children cerebral palsy]. Zh Nevrol Psikhiatr Im S S Korsakova. 2012;112(7):28-31. PMID: 23011423. Exclusion: 13.
- 1064. Ukhanova TA, Noivikova EE, Dement'eva EV. The role of microcurrent reflexotherapy in combination with neuroprotector in the rehabilitation of the patients with infantile cerebral palsy. Vopr Kurortol Fizioter Lech Fiz Kult. 2012 Sep-Oct(5):33-6. PMID: 23210360. Exclusion: 13.
- 1065. Unger M, Jelsma J. Effect of a trunktargeted intervention on pelvic positioning and lower limb function in children with spastic type cerebral palsy. Physiotherapy. 2011 Jun;97(S1):eS1267. doi: 10.1016/j.physio.2011.04.002. Exclusion: 10.
- 1066. Unger M, Jelsma J, Stark C. Effect of a trunk-targeted intervention using vibration on posture and gait in children with spastic type cerebral palsy: a randomized control trial. Dev Neurorehabil. 2013;16(2):79-88. doi: 10.3109/17518423.2012.715313. PMID: 23477461. Exclusion: 8.
- 1067. Valent LJ, Dallmeijer AJ, Houdijk H, et al. Effects of hand cycle training on physical capacity in individuals with tetraplegia: a clinical trial. Phys Ther. 2009 Oct;89(10):1051-60. doi: 10.2522/ptj.20080340. PMID: 19643834. Exclusion: 11.

- 1068. Valent LJ, Dallmeijer AJ, Houdijk H, et al. Influence of hand cycling on physical capacity in the rehabilitation of persons with a spinal cord injury: a longitudinal cohort study. Arch Phys Med Rehabil. 2008 Jun;89(6):1016-22. doi: 10.1016/j.apmr.2007.10.034. PMID: 18503794. Exclusion: 4.
- 1069. Valentin-Gudiol M, Mattern-Baxter K, Girabent-Farres M, et al. Treadmill interventions in children under six years of age at risk of neuromotor delay. Cochrane Database Syst Rev. 2017 Jul 29;7:CD009242. doi: 10.1002/14651858.CD009242.pub3. PMID: 28755534. Exclusion: 3.
- 1070. Van Campenhout A, Bar-On L, Aertbelien E, et al. Can we unmask features of spasticity during gait in children with cerebral palsy by increasing their walking velocity? Gait Posture. 2014 Mar;39(3):953-7. doi: 10.1016/j.gaitpost.2013.12.024. PMID: 24444653. Exclusion: 4.
- 1071. van den Berg-Emons RJ, Bussmann JB, Haisma JA, et al. A prospective study on physical activity levels after spinal cord injury during inpatient rehabilitation and the year after discharge. Arch Phys Med Rehabil. 2008 Nov;89(11):2094-101. doi: 10.1016/j.apmr.2008.04.024. PMID: 18996237. Exclusion: 4.
- 1072. Van den Broeck C, De Cat J, Molenaers G, et al. The effect of individually defined physiotherapy in children with cerebral palsy (CP). Europ J Paediatr Neurol. 2010 Nov;14(6):519-25. doi: 10.1016/j.ejpn.2010.03.004. PMID: 20434378. Exclusion: 11.
- 1073. van der Scheer JW, de Groot S, Postema K, et al. Design of a randomized-controlled trial on low-intensity aerobic wheelchair exercise for inactive persons with chronic spinal cord injury. Disabil Rehabil. 2013 Jun;35(13):1119-26. doi: 10.3109/09638288.2012.709301. PMID: 22900530. Exclusion: 11.

- 1074. van der Scheer JW, de Groot S, Vegter RJ, et al. Low-intensity wheelchair training in inactive people with long-term spinal cord injury: a randomized controlled trial on propulsion technique. Am J Phys Med Rehabil. 2015 Nov;94(11):975-86. doi: 10.1097/PHM.00000000000289. PMID: 25802961. Exclusion: 11.
- 1075. van der Scheer JW, Martin Ginis KA, Ditor DS, et al. Effects of exercise on fitness and health of adults with spinal cord injury: a systematic review. Neurology. 2017 Aug 15;89(7):736-45. doi:
 10.1212/WNL.00000000004224. PMID: 28733344. Exclusion: 12.
- 1076. van der Woude LH, de Groot S, Postema K, et al. Active LifestyLe Rehabilitation interventions in aging spinal cord injury (ALLRISC): a multicentre research program. Disabil Rehabil. 2013 Jun;35(13):1097-103. doi: 10.3109/09638288.2012.718407. PMID: 23030594. Exclusion: 10.
- 1077. Van Gestel L, Molenaers G, Huenaerts C, et al. Effect of dynamic orthoses on gait: a retrospective control study in children with hemiplegia. Dev Med Child Neurol. 2008 Jan;50(1):63-7. doi: 10.1111/j.1469-8749.2007.02014.x. PMID: 18173633. Exclusion: 4.
- 1078. Van Gestel L, Wambacq H, Aertbelien E, et al. To what extent is mean EMG frequency during gait a reflection of functional muscle strength in children with cerebral palsy? Res Dev Disabil. 2012 May-Jun;33(3):916-23. doi: 10.1016/j.ridd.2011.12.010. PMID: 22245734. Exclusion: 6.
- 1079. van Hedel HJ, Meyer-Heim A, Rusch-Bohtz C. Robot-assisted gait training might be beneficial for more severely affected children with cerebral palsy. Dev Neurorehabil. 2016 Dec;19(6):410-5. doi: 10.3109/17518423.2015.1017661. PMID: 25837449. Exclusion: 4.
- 1080. van Koppenhagen CF, de Groot S, Post MW, et al. Patterns of changes in wheelchair exercise capacity after spinal cord injury. Arch Phys Med Rehabil. 2013 Jul;94(7):1260-7. doi: 10.1016/j.apmr.2013.02.025. PMID: 23510968. Exclusion: 4.

- 1081. van Koppenhagen CF, Post M, de Groot S, et al. Longitudinal relationship between wheelchair exercise capacity and life satisfaction in patients with spinal cord injury: A cohort study in the Netherlands. J Spinal Cord Med. 2014 May;37(3):328-37. doi: 10.1179/2045772313Y.0000000167. PMID: 24621019. Exclusion: 5.
- 1082. van Middendorp JJ, Hosman AJ, Donders AR, et al. A clinical prediction rule for ambulation outcomes after traumatic spinal cord injury: a longitudinal cohort study. Lancet. 2011 Mar 19;377(9770):1004-10. doi: 10.1016/S0140-6736(10)62276-3. PMID: 21377202. Exclusion: 4.
- 1083. van Middendorp JJ, Hosman AJ, Pouw MH, et al. ASIA impairment scale conversion in traumatic SCI: is it related with the ability to walk? A descriptive comparison with functional ambulation outcome measures in 273 patients. Spinal Cord. 2009 Jul;47(7):555-60. doi: 10.1038/sc.2008.162. PMID: 19104512. Exclusion: 7.
- 1084. van Vulpen LF, de Groot S, Rameckers E, et al. Improved walking capacity and muscle strength after functional power-training in young children with cerebral palsy. Neurorehabil Neural Repair. 2017 Sep;31(9):827-41. doi: 10.1177/1545968317723750. PMID: 28786309. Exclusion: 8.
- 1085. van Vulpen LF, de Groot S, Rameckers EA, et al. Improved parent-reported mobility and achievement of individual goals on activity and participation level after functional power-training in young children with cerebral palsy: a double-baseline controlled trial. Eur J Phys Rehabil Med. 2018 Oct;54(5):730-7. doi: 10.23736/S1973-9087.18.04921-3. PMID: 29517188. Exclusion: 8.
- 1086. van Vulpen LF, de Groot S, Rameckers EAA, et al. Effectiveness of functional power training on walking ability in young children with cerebral palsy: study protocol of a double-baseline trial. Pediatr Phys Ther. 2017 Jul;29(3):275-82. doi: 10.1097/PEP.000000000000424. PMID: 28654503. Exclusion: 8.

- 1087. Van Wely L, Balemans A, Becher J, et al. Effectiveness of a 6-month physical activity stimulation program for children with cerebral palsy. Dev Med Child Neurol. 2013 Oct;55(S3):8-9. doi: 10.1111/dmcn.12247. PMID: 24621033. Exclusion: 10.
- 1088. van Wely L, Becher JG, Balemans AC, et al. Ambulatory activity of children with cerebral palsy: which characteristics are important? Dev Med Child Neurol. 2012 May;54(5):436-42. doi: 10.1111/j.1469-8749.2012.04251.x. PMID: 22414202. Exclusion: 4.
- 1089. Vaney C, Gattlen B, Lugon-Moulin V, et al. Robotic-assisted step training (lokomat) not superior to equal intensity of over-ground rehabilitation in patients with multiple sclerosis. Neurorehabil Neural Repair. 2012 Mar-Apr;26(3):212-21. doi: 10.1177/1545968311425923. PMID: 22140197. Exclusion: 4.
- 1090. Veneri D, Gannotti M, Bertucco M, et al. Using the international classification of functioning, disability, and health model to gain perspective of the benefits of yoga in stroke, multiple sclerosis, and children to inform practice for children with cerebral palsy: a meta-analysis. J Altern Complement Med. 2018 May;24(5):439-57. doi: 10.1089/acm.2017.0030. PMID: 29406768. Exclusion: 12.
- 1091. Venturini E, Balugani L, Zarattin F, et al. The effects of robot-assisted gait training on locomotor function in subjects with multiple sclerosis: a three months follow-up study. Gait Posture. 2010;33(4). Exclusion: 10.
- 1092. Verschuren O, Bongers BC, Obeid J, et al. Validity of the muscle power sprint test in ambulatory youth with cerebral palsy. Pediatr Phys Ther. 2013;25(1):25-8. doi: 10.1097/PEP.0b013e3182791459. PMID: 23288003. Exclusion: 4.
- 1093. Verschuren O, Bosma L, Takken T. Reliability of a shuttle run test for children with cerebral palsy who are classified at Gross Motor Function Classification System level III. Dev Med Child Neurol. 2011 May;53(5):470-2. doi: 10.1111/j.1469-8749.2010.03893.x. PMID: 21309762. Exclusion: 4.

- 1094. Verschuren O, Maltais DB, Douma-van Riet D, et al. Anaerobic performance in children with cerebral palsy compared to children with typical development. Pediatr Phys Ther. 2013;25(4):409-13. doi: 10.1097/PEP.0b013e3182a47022. PMID: 23974826. Exclusion: 4.
- 1095. Verschuren O, Zwinkels M, Ketelaar M, et al. Reproducibility and validity of the 10-meter shuttle ride test in wheelchair-using children and adolescents with cerebral palsy. Phys Ther. 2013 Jul;93(7):967-74. doi: 10.2522/ptj.20120513. PMID: 23580630. Exclusion: 6.
- Vikman T, Fielding P, Lindmark B, et al. Effects of inpatient rehabilitation in multiple sclerosis patients with moderate disability. Adv Physiother. 2008;10(2):58-65. doi: 10.1080/14038190701288785. Exclusion: 7.
- 1097. Villiger M, Bohli D, Kiper D, et al. Virtual reality-augmented neurorehabilitation improves motor function and reduces neuropathic pain in patients with incomplete spinal cord injury. Neurorehabil Neural Repair. 2013 Oct;27(8):675-83. doi: 10.1177/1545968313490999. PMID: 23757298. Exclusion: 11.
- 1098. Villiger M, Liviero J, Awai L, et al. Homebased virtual reality-augmented training improves lower limb muscle strength, balance, and functional mobility following chronic incomplete spinal cord injury. Front Neurol. 2017;8(NOV) doi: 10.3389/fneur.2017.00635. Exclusion: 11.
- 1099. Vitiello D, Pochon L, Malatesta D, et al. Walking-induced muscle fatigue impairs postural control in adolescents with unilateral spastic cerebral palsy. Res Dev Disabil. 2016 Jun-Jul;53-54:11-8. doi: 10.1016/j.ridd.2016.01.019. PMID: 26851383. Exclusion: 11.
- 1100. Vogtle LK, Malone LA, Azuero A. Outcomes of an exercise program for pain and fatigue management in adults with cerebral palsy. Disabil Rehabil. 2014;36(10):818-25. doi: 10.3109/09638288.2013.821181. PMID: 23924251. Exclusion: 8.

- 1101. Vore ME, Elgelid S, Bolger S, et al. Impact of a 10-week individualized exercise program on physical function and fatigue of people with multiple sclerosis: a pilot study. Int J MS Care. 2011;13(3):121-6. doi: 10.7224/1537-2073-13.3.121. PMID: 24453715. Exclusion: 11.
- 1102. Wall A, Borg J, Palmcrantz S. Clinical application of the Hybrid Assistive Limb (HAL) for gait training-a systematic review. Front Syst Neurosci. 2015;9:48. doi: 10.3389/fnsys.2015.00048. PMID: 25859191. Exclusion: 12.
- 1103. Wall T, Falvo L, Kesten A. Activity-specific aquatic therapy targeting gait for a patient with incomplete spinal cord injury. Physiother Theory Pract. 2017 Apr;33(4):331-44. doi: 10.1080/09593985.2017.1302026. PMID: 28379060. Exclusion: 7.
- 1104. Wall TE. The effects of the Nintendo(TM) Wii Fit on functional gait, balance and quality of life in ambulatory individuals with incomplete spinal cord injury. 2013. Exclusion: 11.
- 1105. Waltersson L, Rodby-Bousquet E. Physical activity in adolescents and young adults with cerebral palsy. Biomed Res Int. 2017;2017;8080473. doi: 10.1155/2017/8080473. PMID: 29423412. Exclusion: 4.
- 1106. Wang J, Lang YB, Du JH, et al. Effect of suspension exercise training on motor and balance functions in children with spastic cerebral palsy. Zhongguo Dang Dai Er Ke Za Zhi. 2018 Jun;20(6):465-9. PMID: 29972120. Exclusion: 13.
- 1107. Wang RL, Zhou ZH, Xi YC, et al. Preliminary study of robot-assisted ankle rehabilitation for children with cerebral palsy. Beijing Da Xue Xue Bao. 2018 Apr 18;50(2):207-12. PMID: 29643516. Exclusion: 13.
- 1108. Wang S, Wang L, Meijneke C, et al. Design and control of the MINDWALKER exoskeleton. IEEE Trans Neural Syst Rehabil Eng. 2015 Mar;23(2):277-86. doi: 10.1109/TNSRE.2014.2365697. PMID: 25373109. Exclusion: 10.

- 1109. Wang TH, Peng YC, Chen YL, et al. A home-based program using patterned sensory enhancement improves resistance exercise effects for children with cerebral palsy: a randomized controlled trial. Neurorehabil Neural Repair. 2013 Oct;27(8):684-94. doi: 10.1177/1545968313491001. PMID: 23757295. Exclusion: 4.
- 1110. Wang TH, Peng YC, Chen YL, et al. Longterm effects of therapeutic music combined with loaded sit-to-stand resistance exercise on mobility for children with cerebral palsy. Physiotherapy. 2011;97(20). Exclusion: 10.
- 1111. Wang YT, Li Z, Yang Y, et al. Effects of wheelchair Tai Chi on physical and mental health among elderly with disability. Res Sports Med. 2016 Jul-Sep;24(3):157-70. doi: 10.1080/15438627.2016.1191487. PMID: 27248716. Exclusion: 3.
- 1112. Wang YT, Vrongistinos KD, Xu D. The relationship between consistency of propulsive cycles and maximum angular velocity during wheelchair racing. J Appl Biomech. 2008 Aug;24(3):280-7. PMID: 18843158. Exclusion: 4.
- 1113. Warms CA, Whitney JD, Belza B. Measurement and description of physical activity in adult manual wheelchair users. Disabil Health J. 2008 Oct;1(4):236-44. doi: 10.1016/j.dhjo.2008.07.002. PMID: 21122734. Exclusion: 4.
- 1114. Weightman A, Preston N, Levesley M, et al. The nature of arm movement in children with cerebral palsy when using computergenerated exercise games. Disabil Rehabil Assist Technol. 2014 May;9(3):219-25. doi: 10.3109/17483107.2013.782576. PMID: 23597314. Exclusion: 11.
- 1115. Wendebourg MJ, Heesen C, Finlayson M, et al. Patient education for people with multiple sclerosis-associated fatigue: a systematic review. PLoS One. 2017;12(3):e0173025. doi: 10.1371/journal.pone.0173025. PMID: 28267811. Exclusion: 4.

- 1116. Wens I, Dalgas U, Vandenabeele F, et al. High intensity aerobic and resistance exercise can improve glucose tolerance in persons with multiple sclerosis: a randomized controlled trial. Am J Phys Med Rehabil. 2017 Mar;96(3):161-6. doi: 10.1097/PHM.000000000000563. PMID: 27362697. Exclusion: 4.
- 1117. Wens I, Keytsman C, Deckx N, et al. Brain derived neurotrophic factor in multiple sclerosis: effect of 24 weeks endurance and resistance training. Eur J Neurol. 2016 Jun;23(6):1028-35. doi: 10.1111/ene.12976. PMID: 26992038. Exclusion: 11.
- 1118. Wernig A, Wernig S. The trouble with "body weight support" in treadmill training. Arch Phys Med Rehabil. 2010;91(9):1478. doi: 10.1016/j.apmr.2010.05.015. Exclusion: 10.
- 1119. West CR, Romer LM, Krassioukov A. Autonomic function and exercise performance in elite athletes with cervical spinal cord injury. Med Sci Sports Exerc. 2013 Feb;45(2):261-7. doi: 10.1249/MSS.0b013e31826f5099. PMID: 22914247. Exclusion: 11.
- 1120. West CR, Taylor BJ, Campbell IG, et al. Effects of inspiratory muscle training on exercise responses in Paralympic athletes with cervical spinal cord injury. Scand J Med Sci Sports. 2014 Oct;24(5):764-72. doi: 10.1111/sms.12070. PMID: 23530708. Exclusion: 11.
- 1121. West CR, Wong SC, Krassioukov AV. Autonomic cardiovascular control in Paralympic athletes with spinal cord injury. Med Sci Sports Exerc. 2014 Jan;46(1):60-8. doi: 10.1249/MSS.0b013e31829e46f3. PMID: 23739527. Exclusion: 4.
- 1122. Westerdahl E, Wittrin A, Kånåhols M, et al. Deep breathing exercises with positive expiratory pressure in patients with multiple sclerosis – a randomized controlled trial. Clin Respir J. 2016;10(6):698-706. doi: 10.1111/crj.12272. Exclusion: 4.
- 1123. White L, Volfson Z, Faulkner G, et al. Reliability and validity of physical activity instruments used in children and youth with physical disabilities: a systematic review. Pediatr Exerc Sci. 2016 May;28(2):240-63. doi: 10.1123/pes.2015-0123. PMID: 26695088. Exclusion: 4.

- 1124. Wiart L, Rosychuk RJ, Wright FV. Evaluation of the effectiveness of robotic gait training and gait-focused physical therapy programs for children and youth with cerebral palsy: a mixed methods RCT. BMC Neurol. 2016 Jun 2;16:86. doi: 10.1186/s12883-016-0582-7. PMID: 27255908. Exclusion: 10.
- 1125. Widener GL, Allen DD, Gibson-Horn C. Randomized clinical trial of balance-based torso weighting for improving upright mobility in people with multiple sclerosis. Neurorehabil Neural Repair. 2009 Oct;23(8):784-91. doi: 10.1177/1545968309336146. PMID: 19470807. Exclusion: 4.
- 1126. Wier LM, Hatcher MS, Triche EW, et al. Effect of robot-assisted versus conventional body-weight-supported treadmill training on quality of life for people with multiple sclerosis. J Rehabil Res Dev. 2011;48(4):483-92. PMID: 21674396. Exclusion: 11.
- 1127. Wilbanks SR, Rogers R, Pool S, et al. Effects of functional electrical stimulation assisted rowing on aerobic fitness and shoulder pain in manual wheelchair users with spinal cord injury. J Spinal Cord Med. 2016 Nov;39(6):645-54. doi: 10.1179/2045772315Y.0000000052. PMID: 26449780. Exclusion: 11.
- 1128. Willerslev-Olsen M, Andersen JB, Sinkjaer T, et al. Sensory feedback to ankle plantar flexors is not exaggerated during gait in spastic hemiplegic children with cerebral palsy. J Neurophysiol. 2014 Feb;111(4):746-54. doi: 10.1152/jn.00372.2013. PMID: 24225545. Exclusion: 4.
- 1129. Willerslev-Olsen M, Petersen TH, Farmer SF, et al. Gait training facilitates central drive to ankle dorsiflexors in children with cerebral palsy. Brain. 2015 Mar;138(Pt 3):589-603. doi: 10.1093/brain/awu399. PMID: 25623137. Exclusion: 11.
- 1130. Williams SA, Elliott C, Valentine J, et al. Combining strength training and botulinum neurotoxin intervention in children with cerebral palsy: the impact on muscle morphology and strength. Disabil Rehabil. 2013 Apr;35(7):596-605. doi: 10.3109/09638288.2012.711898. PMID: 22928803. Exclusion: 11.

- 1131. Wilroy J, Hibberd E. Evaluation of a shoulder injury prevention program in wheelchair basketball. J Sport Rehabil. 2017 Nov 15;27(6):554-9. doi: 10.1123/jsr.2017-0011. PMID: 29140190. Exclusion: 4.
- 1132. Wilroy JD, Lai B, Davlyatov G, et al. Correlates of adherence in a home-based, self-managed exercise program tailored to wheelchair users with spinal cord injury. Spinal Cord. 2020 Jun 15;15:15. doi: 10.1038/s41393-020-0497-4. PMID: 32541883. Exclusion: 4.
- 1133. Winkels DG, Kottink AI, Temmink RA, et al. Wii[™]-habilitation of upper extremity function in children with cerebral palsy. An explorative study. Dev Neurorehabil. 2013;16(1):44-51. doi: 10.3109/17518423.2012.713401. PMID: 23030054. Exclusion: 11.
- 1134. Wirz M, Bastiaenen C, de Bie R, et al. Effectiveness of automated locomotor training in patients with acute incomplete spinal cord injury: a randomized controlled multicenter trial. BMC Neurol. 2011 May 27;11:60. doi: 10.1186/1471-2377-11-60. PMID: 21619574. Exclusion: 10.
- 1135. Wirz M, Mac HO, Maier D, et al. Effectiveness of automated locomotor training in patients with acute incomplete spinal cord injury: a randomized, controlled, multicenter trial. J Neurotrauma. 2017;34(10):1891-6. doi: 10.1089/neu.2016.4643. PMID: 27750478. Exclusion: 11.
- 1136. Wittry S, Tsao E, Bjornson K. Are clinicbased walking measures associated with community walking activity in children with cerebral palsy? J Pediatr Rehabil Med. 2018;11(1):23-30. doi: 10.3233/PRM-160425. Exclusion: 7.
- 1137. Wohl C, Siebert H, Blattner B. [Interventions for promoting physical activity in nursing homes : Systematic review of the effectiveness of universal prevention]. Z Gerontol Geriatr. 2017 Aug;50(6):475-82. doi: 10.1007/s00391-016-1158-2. PMID: 27966009. Exclusion: 13.

- 1138. Wolfsegger T, Assar H, Topakian R. 3-week whole body vibration does not improve gait function in mildly affected multiple sclerosis patients--a randomized controlled trial. J Neurol Sci. 2014 Dec 15;347(1-2):119-23. doi: 10.1016/j.jns.2014.09.030. PMID: 25439165. Exclusion: 11.
- 1139. Wonneberger M, Schmidt S. Changes of gait parameters following long-term aerobic endurance exercise in mildly disabled multiple sclerosis patients: an exploratory study. Eur J Phys Rehabil Med. 2015 Dec;51(6):755-62. PMID: 25986223. Exclusion: 4.
- 1140. Wood WH, Fields BE. Hippotherapy: a systematic mapping review of peer-reviewed research, 1980 to 2018. Disabil Rehabil. 2019 Sep 6:1-25. doi: 10.1080/09638288.2019.1653997. PMID: 31491353. Exclusion: 12.
- 1141. Woodmansee C, Hahne A, Imms C, et al. Comparing participation in physical recreation activities between children with disability and children with typical development: a secondary analysis of matched data. Res Dev Disabil. 2016 Feb-Mar;49-50:268-76. doi: 10.1016/j.ridd.2015.12.004. PMID: 26741263. Exclusion: 4.
- 1142. Worobey LA, Rigot SK, Hogaboom NS, et al. Investigating the efficacy of web-based transfer training on independent wheelchair transfers through randomized controlled trials. Arch Phys Med Rehabil. 2018 Jan;99(1):9-16.e0. doi: 10.1016/j.apmr.2017.06.025. PMID: 28782541. Exclusion: 4.
- 1143. Wouda MF, Lundgaard E, Becker F, et al. Effects of moderate- and high-intensity aerobic training program in ambulatory subjects with incomplete spinal cord injurya randomized controlled trial. Spinal Cord. 2018 Oct;56(10):955-63. doi: 10.1038/s41393-018-0140-9. PMID: 29795172. Exclusion: 8.
- 1144. Wouda MF, Lundgaard E, Becker F, et al. Changes in cardiorespiratory fitness and activity levels over the first year after discharge in ambulatory persons with recent incomplete spinal cord injury. Spinal Cord. 2020 Jul 09;09:09. doi: 10.1038/s41393-020-0514-7. PMID: 32647328. Exclusion: 4.

- 1145. Wren TA, Dryden JW, Mueske NM, et al. Comparison of 2 orthotic approaches in children with cerebral palsy. Pediatr Phys Ther. 2015;27(3):218-26. doi: 10.1097/PEP.000000000000153. PMID: 26035652. Exclusion: 11.
- 1146. Wren TA, Lee DC, Hara R, et al. Effect of high-frequency, low-magnitude vibration on bone and muscle in children with cerebral palsy. J Pediatr Orthop. 2010 Oct-Nov;30(7):732-8. doi: 10.1097/BPO.0b013e3181efbabc. PMID: 20864862. Exclusion: 4.
- 1147. Wren TA, Lening C, Rethlefsen SA, et al. Impact of gait analysis on correction of excessive hip internal rotation in ambulatory children with cerebral palsy: a randomized controlled trial. Dev Med Child Neurol. 2013 Oct;55(10):919-25. doi: 10.1111/dmcn.12184. PMID: 23738949. Exclusion: 4.
- 1148. Wright V, Fehlings D, Avery L, et al. Walking with my robot: results of a randomized crossover trial evaluating the impact of robotic-assisted gait training on the walking-related gross motor skills and goal accomplishment of children with cerebral palsy. Dev Med Child Neurol. 2017;59:77. doi: 10.1111/dmcn.118_13511. Exclusion: 10.
- 1149. Wu M, Hornby TG, Landry JM, et al. A cable-driven locomotor training system for restoration of gait in human SCI. Gait Posture. 2011 Feb;33(2):256-60. doi: 10.1016/j.gaitpost.2010.11.016. PMID: 21232961. Exclusion: 11.
- 1150. Wu M, Kim J, Arora P, et al. Kinematic and EMG responses to pelvis and leg assistance force during treadmill walking in children with cerebral palsy. Neural Plast. 2016;2016:5020348. doi: 10.1155/2016/5020348. PMID: 27651955. Exclusion: 11.
- 1151. Wu M, Kim J, Gaebler-Spira D, et al. Robotic resistance treadmill training improves locomotor function in children with cerebral palsy: a randomized controlled study. Dev Med Child Neurol. 2015;57:66-7. doi: 10.1111/dmcn.108_12887. Exclusion: 10.

- 1152. Wu M, Kim J, Wei F. Facilitating weight shifting during treadmill training improves walking function in humans with spinal cord injury: a randomized controlled pilot study. Am J Phys Med Rehabil. 2018 Aug;97(8):585-92. doi: 10.1097/PHM.000000000000927. PMID: 29547448. Exclusion: 11.
- 1153. Wu M, Landry JM, Kim J, et al. Repeat exposure to leg swing perturbations during treadmill training induces long-term retention of increased step length in human SCI: a pilot randomized controlled study. Am J Phys Med Rehabil. 2016 Dec;95(12):911-20. doi: 10.1097/PHM.000000000000517. PMID: 27149587. Exclusion: 11.
- 1154. Wu M, Landry JM, Schmit BD, et al. Robotic resistance treadmill training improves locomotor function in human spinal cord injury: a pilot study. Arch Phys Med Rehabil. 2012 May;93(5):782-9. doi: 10.1016/j.apmr.2011.12.018. PMID: 22459697. Exclusion: 11.
- 1155. Wu YN, Hwang M, Ren Y, et al. Combined passive stretching and active movement rehabilitation of lower-limb impairments in children with cerebral palsy using a portable robot. Neurorehabil Neural Repair. 2011 May;25(4):378-85. doi: 10.1177/1545968310388666. PMID: 21343525. Exclusion: 11.
- 1156. Xiang Y, Lu L, Chen X, et al. Does Tai Chi relieve fatigue? A systematic review and meta-analysis of randomized controlled trials. PLoS One. 2017;12(4):e0174872. doi: 10.1371/journal.pone.0174872. PMID: 28380067. Exclusion: 12.
- 1157. Xu K, He L, Mai J, et al. Muscle recruitment and coordination following constraintinduced movement therapy with electrical stimulation on children with hemiplegic cerebral palsy: a randomized controlled trial. PLoS One. 2015;10(10):e0138608. doi: 10.1371/journal.pone.0138608. PMID: 26452230. Exclusion: 4.

- 1158. Xu K, Wang L, Mai J, et al. Efficacy of constraint-induced movement therapy and electrical stimulation on hand function of children with hemiplegic cerebral palsy: a controlled clinical trial. Disabil Rehabil. 2012;34(4):337-46. doi: 10.3109/09638288.2011.607213. PMID: 21961441. Exclusion: 4.
- 1159. Ya L, Petrini MA. Effects of a home-based resistance exercise in Chinese individuals living with physical disability: resistance exercise on PWPD. Rehabil Nurs. 2018 May/Jun;43(3):174-82. doi: 10.1097/rnj.000000000000010. PMID: 29710062. Exclusion: 3.
- 1160. Yamada M, Arai H. Self-management group exercise extends healthy life expectancy in frail community-dwelling older adults. Int J Environ Res Public Health. 2017 May 15;14(5):15. doi: 10.3390/ijerph14050531. PMID: 28505140. Exclusion: 3.
- 1161. Yanci J, Castillo D, Iturricastillo A, et al. Evaluation of the official match external load in soccer players with cerebral palsy. J Strength Cond Res. 2019 Mar;33(3):866-73. doi: 10.1519/JSC.00000000002085. PMID: 28658075. Exclusion: 4.
- 1162. Yang F, Estrada EF, Sanchez MC. Vibration training improves disability status in multiple sclerosis: a pretest-posttest pilot study. J Neurol Sci. 2016 Oct 15;369:96-101. doi: 10.1016/j.jns.2016.08.013. PMID: 27653872. Exclusion: 11.
- 1163. Yang F, Finlayson M, Bethoux F, et al. Effects of controlled whole-body vibration training in improving fall risk factors among individuals with multiple sclerosis: a pilot study. Disabil Rehabil. 2018 Mar;40(5):553-60. doi: 10.1080/09638288.2016.1262466. PMID: 27976932. Exclusion: 11.
- 1164. Yang JF, Norton J, Nevett-Duchcherer J, et al. Volitional muscle strength in the legs predicts changes in walking speed following locomotor training in people with chronic spinal cord injury. Phys Ther. 2011 Jun;91(6):931-43. doi: 10.2522/ptj.20100163. PMID: 21511993. Exclusion: 11.

- 1165. Yarar C. Acute effects of whole body vibration on central and peripheral hemodynamics and oxygen consumption in individuals with spinal cord injury. 2011. Exclusion: 4.
- 1166. Yarar-Fisher C, Pascoe DD, Gladden LB, et al. Acute physiological effects of whole body vibration (WBV) on central hemodynamics, muscle oxygenation and oxygen consumption in individuals with chronic spinal cord injury. Disabil Rehabil. 2014;36(2):136-45. doi: 10.3109/09638288.2013.782358. PMID: 23651125. Exclusion: 11.
- 1167. Yarar-Fisher C, Polston KFL, Eraslan M, et al. Paralytic and nonparalytic muscle adaptations to exercise training versus high-protein diet in individuals with long-standing spinal cord injury. J Appl Physiol. 2018 Jul 1;125(1):64-72. doi: 10.1152/japplphysiol.01029.2017. PMID: 29494292. Exclusion: 11.
- 1168. Yasar E, Yilmaz B, Goktepe S, et al. The effect of functional electrical stimulation cycling on late functional improvement in patients with chronic incomplete spinal cord injury.[Erratum appears in Spinal Cord. 2015 Dec;53(12):900; PMID: 26634319]. Spinal Cord. 2015 Dec;53(12):866-9. doi: 10.1038/sc.2015.19. PMID: 25687513. Exclusion: 11.
- 1169. Yen CL, McHenry CL, Petrie MA, et al. Vibration training after chronic spinal cord injury: evidence for persistent segmental plasticity. Neurosci Lett. 2017 Apr 24;647:129-32. doi: 10.1016/j.neulet.2017.03.019. PMID: 28315725. Exclusion: 11.
- 1170. Yen SC, Schmit BD, Landry JM, et al. Locomotor adaptation to resistance during treadmill training transfers to overground walking in human SCI. Exp Brain Res. 2012 Feb;216(3):473-82. doi: 10.1007/s00221-011-2950-2. PMID: 22108702. Exclusion: 11.
- 1171. Yeo SS, Kwon JW. Wheelchair skills training for functional activity in adults with cervical spinal cord injury. Int J Sports Med. 2018 Sep 11;39(12):924-8. doi: 10.1055/a-0635-0941. PMID: 30206918. Exclusion: 6.

- 1172. Yildirim A, Surucu GD, Karamercan A, et al. Short-term effects of upper extremity circuit resistance training on muscle strength and functional independence in patients with paraplegia. J Back Musculoskeletal Rehabil. 2016 Nov 21;29(4):817-23. doi: 10.3233/BMR-160694. PMID: 27002667. Exclusion: 11.
- 1173. Yildirim Şik B, Çekmece C, Dursun N, et al. Is hyppotherapy beneficial for rehabilitation of children with cerebral palsy? Turkiye Klinikleri Journal of Medical Sciences. 2012;32(3):601-8. doi: 10.5336/medsci.2011-22465. Exclusion: 13.
- 1174. You JS, Kim YL, Lee SM. Effects of a standard transfer exercise program on transfer quality and activities of daily living for transfer-dependent spinal cord injury patients. J Phys Ther Sci. 2017 Mar;29(3):478-83. doi: 10.1589/jpts.29.478. PMID: 28356635. Exclusion: 4.
- 1175. Yu Y, Wang D, Ma K, et al. Research hot spots in the treatment of pediatric cerebral palsy based on bibliometric analysis. Int J Clin Exp Med. 2019;12(7):8239-50. Exclusion: 7.
- 1176. Zabay Neiro C, Martínez Lerín N. How to decrease cardiovascular risk factors in people with multiple sclerosis. Revista Cientifica de la Sociedad Espanola de Enfermeria Neurologica. 2018;47:11-7. doi: 10.1016/j.sedene.2017.10.003. PMID: 8112704 Exclusion: 11.
- 1177. Zackowski KM, Wang JI, McGready J, et al. Quantitative sensory and motor measures detect change overtime and correlate with walking speed in individuals with multiple sclerosis. Mult Scler Relat Disord. 2015 Jan;4(1):67-74. doi: 10.1016/j.msard.2014.11.001. PMID: 25692092. Exclusion: 4.
- 1178. Zaenker P, Favret F, Lonsdorfer E, et al. High-intensity interval training combined with resistance training improves physiological capacities, strength and quality of life in multiple sclerosis patients: a pilot study. Eur J Phys Rehabil Med. 2018 Feb;54(1):58-67. doi: 10.23736/S1973-9087.17.04637-8. PMID: 28681596. Exclusion: 11.

- 1179. Žalienė L, Mockevičienė D, Kreivinienė B, et al. Short-term and long-term effects of riding for children with cerebral palsy gross motor functions. Biomed Res Int. 2018;2018:1-6. doi: 10.1155/2018/4190249. Exclusion: 11.
- 1180. Zamuner AR, Silva E, Teodori RM, et al. Autonomic modulation of heart rate in paraplegic wheelchair basketball players: linear and nonlinear analysis. J Sports Sci. 2013;31(4):396-404. doi: 10.1080/02640414.2012.734917. PMID: 23088300. Exclusion: 11.
- 1181. Zanca JM, Natale A, Labarbera J, et al. Group physical therapy during inpatient rehabilitation for acute spinal cord injury: findings from the SCIRehab Study. Phys Ther. 2011 Dec;91(12):1877-91. doi: 10.2522/ptj.20100392. PMID: 22003169. Exclusion: 7.
- 1182. Zariffa J, Kapadia N, Kramer JL, et al. Feasibility and efficacy of upper limb robotic rehabilitation in a subacute cervical spinal cord injury population. Spinal Cord. 2012 Mar;50(3):220-6. doi: 10.1038/sc.2011.104. PMID: 21912402. Exclusion: 11.
- 1183. Zbogar D, Eng JJ, Miller WC, et al. Reliability and validity of daily physical activity measures during inpatient spinal cord injury rehabilitation. SAGE Open Med. 2016;4 doi: 10.1177/2050312116666941. PMID: 27635252. Exclusion: 4.
- 1184. Zewdie ET, Roy FD, Yang JF, et al. Facilitation of descending excitatory and spinal inhibitory networks from training of endurance and precision walking in participants with incomplete spinal cord injury. Prog Brain Res. 2015;218:127-55. doi: 10.1016/bs.pbr.2014.12.005. PMID: 25890135. Exclusion: 11.
- 1185. Zhang B, Zhu Y, Jiang C, et al. Effects of transcutaneous electrical acupoint stimulation on motor functions and self-care ability in children with cerebral palsy. J Altern Complement Med. 2018 Jan;24(1):55-61. doi: 10.1089/acm.2016.0111. PMID: 28767271. Exclusion: 4.

- 1186. Zhang ZM, Hu XM, Yang CM, et al. Early age at menarche is associated with insulin resistance: a systemic review and metaanalysis. Postgrad Med. 2018 Dec 18;18:18. doi: 10.1080/00325481.2019.1559429. PMID: 30560708. Exclusion: 6.
- 1187. Zhao H, Wu YN, Liu J, et al. Changes of calf muscle-tendon properties due to stretching and active movement of children with cerebral palsy--a pilot study. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:5287-90. doi: 10.1109/IEMBS.2009.5333518. PMID: 19964117. Exclusion: 10.
- 1188. Zhou H, Xu Q, Zhao S, et al. Distinct clinical characteristics of atypical optic neuritis with seronegative aquaporin-4 antibody among Chinese patients. Br J Ophthalmol. 2017 12;101(12):1720-4. doi: 10.1136/bjophthalmol-2017-310157. PMID: 28404667. Exclusion: 3.
- 1189. Zhou R, Alvarado L, Ogilvie R, et al. Non-gait-specific intervention for the rehabilitation of walking after SCI: Role of the arms. J Neurophysiol. 2018;119(6):2194-212. doi: 10.1152/jn.00569.2017. PMID: 29364074 Exclusion: 11.
- 1190. Zhou R, Parhizi B, Assh J, et al. Effect of cervicolumbar coupling on spinal reflexes during cycling after incomplete spinal cord injury. J Neurophysiol. 2018;120(6):3172-86. doi: 10.1152/jn.00509.2017. PMID: 30207867. Exclusion: 6.
- 1191. Zimmer P, Bloch W, Schenk A, et al. Highintensity interval exercise improves cognitive performance and reduces matrix metalloproteinases-2 serum levels in persons with multiple sclerosis: a randomized controlled trial. Mult Scler. 2018 Oct;24(12):1635-44. doi: 10.1177/1352458517728342. PMID: 28825348. Exclusion: 4.
- 1192. Zollinger M, Degache F, Currat G, et al. External mechanical work and pendular energy transduction of overground and treadmill walking in adolescents with unilateral cerebral palsy. Front Physiol. 2016;7(APR) doi: 10.3389/fphys.2016.00121. PMID: 27148062 Exclusion: 5.

- 1193. Zou L, Wang H, Xiao Z, et al. Tai chi for health benefits in patients with multiple sclerosis: a systematic review. PLoS One. 2017;12(2):e0170212. doi: 10.1371/journal.pone.0170212. PMID: 28182629. Exclusion: 12.
- 1194. Zwinkels M, Takken T, Ruyten T, et al. Body mass index and fitness in highfunctioning children and adolescents with cerebral palsy: what happened over a decade? Res Dev Disabil. 2017 Dec;71:70-6. doi: 10.1016/j.ridd.2017.09.021. PMID: 29024824. Exclusion: 4.
- 1195. Zwinkels M, Verschuren O, Lankhorst K, et al. Sport-2-stay-fit study: health effects of after-school sport participation in children and adolescents with a chronic disease or physical disability. BMC Sports Sci Med Rehabil. 2015;7:22. doi: 10.1186/s13102-015-0016-7. PMID: 26445674. Exclusion: 3.

Appendix D. Included and Excluded Study Details and Systematic Reviews Evaluated

Table D-1. Included and excluded study definitions and characteristics

Study Dosign	tudy Design Definition/Characteristics Include/Exclude				
Study Design					
Systematic Reviews	A literature review that uses systematic methods	Include systematic			
	to synthesize, summarize, and grade evidence, on	reviews published since			
	outcomes to address specific research questions.	2014 for examination of reference lists for relevant			
		studies			
Randomized Controlled Trial	Derticipante randomized to two or more groups				
Randomized Controlled Trial	Participants randomized to two or more groups	Include			
O a man a matting of a la ant Otrada	where each group receives a different intervention.	la alcoda			
Comparative Cohort Study	An observational study of 2 groups of participants	Include			
	where one group received an intervention and second group received a control or other				
	intervention and participants are followed forward; participants were not randomized to different				
	· · ·				
Dro Doot Study	groups.	Exclude unless need to			
Pre-Post Study	An observational study of one group of participants				
	where baseline values are compared with values after an intervention and all participants received	include due to limited or no evidence from RCTs			
	· · ·	and cohort studies			
	the same intervention; the study reports results from the group of participants (reporting is not	and conort studies			
	selective).				
Case Series	A publication that reports findings from more than	Exclude			
	one individual; if individuals were involved in a	Exclude			
	study, the publication does not report results from				
	all participants but from those who demonstrate				
	some finding (reporting is selective).				
Case Report	A publication that reports findings from one	Exclude			
	individual (reporting is selective).	Exolutio			

Systematic Reviews: Reference Lists Evaluated for Eligibility for Inclusion in the Review

- Adamson BC, Ensari I, Motl RW. Effect of exercise on depressive symptoms in adults with neurologic disorders: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2015 Jul;96(7):1329-38. doi: 10.1016/j.apmr.2015.01.005. PMID: 25596001.
- Afkar A, Ashouri A, Rahmani M, et al. Effect of exercise therapy on quality of life of patients with multiple sclerosis in Iran: a systematic review and meta-analysis. Neurol Sci. 2017 Nov;38(11):1901-11. doi: 10.1007/s10072-017-3047-x. PMID: 28687973.
- 3. Aguirre-Guemez AV, Perez-Sanpablo AI, Quinzanos-Fresnedo J, et al. Walking speed is not the best outcome to evaluate the effect of robotic assisted gait training in people with motor incomplete spinal cord injury: a systematic review with meta-analysis. J Spinal Cord Med. 2017 Oct 25;42(2):142-54. doi: 10.1080/10790268.2017.1390644. PMID: 29065788.
- Alashram AR, Padua E, Annino G. Effects of whole body vibration on motor impairments in patients with neurological disorders: a systematic review. Am J Phys Med Rehabil. 2019 Jun 21;21:21. doi: 10.1097/PHM.00000000001252. PMID: 31246611.

- Alphonsus KB, Su Y, D'Arcy C. The effect of exercise, yoga and physiotherapy on the quality of life of people with multiple sclerosis: systematic review and metaanalysis. Complement Ther Med. 2019 Apr;43:188-95. doi: 10.1016/j.ctim.2019.02.010. PMID: 30935529.
- Aravind N, Harvey LA, Glinsky JV. Physiotherapy interventions for increasing muscle strength in people with spinal cord injuries: a systematic review. Spinal Cord. 2019 Jun;57(6):449-60. doi: 10.1038/s41393-019-0242-z. PMID: 30723256.
- Armstrong EL, Spencer S, Kentish MJ, et al. Efficacy of cycling interventions to improve function in children and adolescents with cerebral palsy: a systematic review and meta-analysis. Clin Rehabil. 2019 Jul;33(7):1113-29. doi: 10.1177/0269215519837582. PMID: 30935240.
- Baxter K. The effect of core strengthening versus extremity strengthening on mobility measures in patients with multiple sclerosis. Dissertation Abstracts International: Section B: The Sciences and Engineering. 2018;78(10-B(E)):No Pagination Specified.
- Bisson EJ, Fakolade A, Petrin J, et al. Exercise interventions in multiple sclerosis rehabilitation need better reporting on comorbidities: a systematic scoping review. Clin Rehabil. 2017 Oct;31(10):1305-12. doi: 10.1177/0269215517698734. PMID: 28933610.
- Bloemen M, Van Wely L, Mollema J, et al. Evidence for increasing physical activity in children with physical disabilities: a systematic review. Dev Med Child Neurol. 2017 10;59(10):1004-10. doi: 10.1111/dmcn.13422. PMID: 28374442.
- Bochkezanian V, Raymond J, de Oliveira CQ, et al. Can combined aerobic and muscle strength training improve aerobic fitness, muscle strength, function and quality of life in people with spinal cord injury? A systematic review. Spinal Cord. 2015 Jun;53(6):418-31. doi: 10.1038/sc.2015.48. PMID: 25823799.

- Booth ATC, Buizer AI, Meyns P, et al. The efficacy of functional gait training in children and young adults with cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2018 Sep;60(9):866-83. doi: 10.1111/dmcn.13708. PMID: 29512110.
- Buker DB, Oyarce CC, Plaza RS. Effects of spinal cord injury in heart rate variability after acute and chronic exercise: a systematic review. Top Spinal Cord Inj Rehabil. 2018;24(2):167-76. doi: 10.1310/sci17-00028. PMID: 29706761.
- Burns AS, Marino RJ, Kalsi-Ryan S, et al. Type and timing of rehabilitation following acute and subacute spinal cord injury: a systematic review. Global Spine J. 2017 Sep;7(3):175S-94S. doi: 10.1177/2192568217703084. PMID: 29164023.
- Byrnes K, Wu PJ, Whillier S. Is pilates an effective rehabilitation tool? A systematic review. J Bodywork Mov Ther. 2018 Jan;22(1):192-202. doi: 10.1016/j.jbmt.2017.04.008. PMID: 29332746.
- Campbell E, Coulter EH, Mattison PG, et al. Physiotherapy rehabilitation for people with progressive multiple sclerosis: a systematic review. Arch Phys Med Rehabil. 2016 Jan;97(1):141-51. doi: 10.1016/j.apmr.2015.07.022. PMID: 26281954.
- Carter AM. The effects of a pragmatic exercise intervention in people with multiple sclerosis. Dissertation Abstracts International Section C: Worldwide. 2018 Apr;75(4-C):No Pagination Specified. doi: 10.1177/1352458513519354. PMID: 24421303.
- Carvalho I, Pinto SM, Chagas DDV, et al. Robotic gait training for individuals with cerebral palsy: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2017 11;98(11):2332-44. doi: 10.1016/j.apmr.2017.06.018. PMID: 28751254.

- Castro O, Ng K, Novoradovskaya E, et al. A scoping review on interventions to promote physical activity among adults with disabilities. Disabil Health J. 2018 Apr;11(2):174-83. doi: 10.1016/j.dhjo.2017.10.013. PMID: 29132847.
- 20. Charron S, McKay KA, Tremlett H. Physical activity and disability outcomes in multiple sclerosis: a systematic review (2011-2016). Mult Scler Relat Disord. 2018 Feb;20:169-77. doi: 10.1016/j.msard.2018.01.021. PMID: 29414293.
- Clutterbuck G, Auld M, Johnston L. Active exercise interventions improve gross motor function of ambulant/semi-ambulant children with cerebral palsy: a systematic review. Disabil Rehabil. 2019 Jan 05;41(10):1131-51. doi: 10.1080/09638288.2017.1422035. PMID: 29303007.
- Corsi C, Santos MM, Moreira RFC, et al. Effect of physical therapy interventions on spatiotemporal gait parameters in children with cerebral palsy: a systematic review. Disabil Rehabil. 2019 Oct 7:1-10. doi: 10.1080/09638288.2019.1671500. PMID: 31588810.
- 23. Corvillo I, Varela E, Armijo F, et al. Efficacy of aquatic therapy for multiple sclerosis: a systematic review. Eur J Phys Rehabil Med. 2017 Dec;53(6):944-52. doi: 10.23736/S1973-9087.17.04570-1. PMID: 28215060.
- Cruickshank TM, Reyes AR, Ziman MR. A systematic review and meta-analysis of strength training in individuals with multiple sclerosis or Parkinson disease. Medicine (Baltimore). 2015 Jan;94(4):e411. doi: 10.1097/MD.000000000000411. PMID: 25634170.
- Dalgas U, Stenager E, Sloth M, et al. The effect of exercise on depressive symptoms in multiple sclerosis based on a meta-analysis and critical review of the literature. Eur J Neurol. 2015 Mar;22(3):443-e34. doi: 10.1111/ene.12576. PMID: 25327395.

- 26. Dauwan M, Begemann MJH, Slot MIE, et al. Physical exercise improves quality of life, depressive symptoms, and cognition across chronic brain disorders: a transdiagnostic systematic review and meta-analysis of randomized controlled trials. J Neurol. 2019 Aug 14;14:14. doi: 10.1007/s00415-019-09493-9. PMID: 31414194.
- de Freitas GR, Szpoganicz C, Ilha J. Does neuromuscular electrical stimulation therapy increase voluntary muscle strength after spinal cord injury? A systematic review. Top Spinal Cord Inj Rehabil. 2018;24(1):6-17. doi: 10.1310/sci16-00048. PMID: 29434456.
- De Keersmaecker E, Lefeber N, Geys M, et al. Virtual reality during gait training: does it improve gait function in persons with central nervous system movement disorders? A systematic review and meta-analysis. NeuroRehabilitation. 2019;44(1):43-66. doi: 10.3233/NRE-182551. PMID: 30814368.
- 29. de Paz RH, Serrano-Munoz D, Perez-Nombela S, et al. Combining transcranial direct-current stimulation with gait training in patients with neurological disorders: a systematic review. J Neuroengineering Rehabil. 2019 Sep 14;16(1):114. doi: 10.1186/s12984-019-0591-z. PMID: 31521179.
- Dehghansai N, Lemez S, Wattie N, et al. A systematic review of influences on development of athletes with disabilities. Adapt Phys Act Q. 2017 Jan;34(1):72-90. doi: 10.1123/APAQ.2016-0030. PMID: 28218871.
- Deutsch JE, Guarrera-Bowlby P, Myslinski MJ, et al. Is there evidence that active videogames increase energy expenditure and exercise intensity for people poststroke and with cerebral palsy? Games Health J. 2015 Feb;4(1):31-7. doi: 10.1089/g4h.2014.0082. PMID: 26181678.
- 32. Devasahayam AJ, Downer MB, Ploughman M. The effects of aerobic exercise on the recovery of walking ability and neuroplasticity in people with multiple sclerosis: a systematic review of animal and clinical studies. Mult Scler Int. 2017;2017 doi: 10.1155/2017/4815958. PMID: 29181199.

- Dewar R, Love S, Johnston LM. Exercise interventions improve postural control in children with cerebral palsy: a systematic review. Dev Med Child Neurol. 2015 Jun;57(6):504-20. doi: 10.1111/dmcn.12660. PMID: 25523410.
- 34. Dolbow JD, Dolbow DR, Stevens SL, et al. Restorative effects of aquatic exercise therapies on motor, gait, and cardiovascular function in children with cerebral palsy: a review of literature. Journal of Aquatic Physical Therapy. 2017 Summer;25(1):22-9.
- Donenberg JG, Fetters L, Johnson R. The effects of locomotor training in children with spinal cord injury: a systematic review. Dev Neurorehabil. 2019 Jun 19;22(4):272-87. doi: 10.1080/17518423.2018.1487474. PMID: 29920126.
- Duquette SA, Guiliano AM, Starmer DJ. Whole body vibration and cerebral palsy: a systematic review. J Can Chiropractic Assoc. 2015 Sep;59(3):245-52. PMID: 26500358.
- 37. Edwards T, Pilutti LA. The effect of exercise training in adults with multiple sclerosis with severe mobility disability: a systematic review and future research directions. Mult Scler Relat Disord. 2017 Aug;16:31-9. doi: 10.1016/j.msard.2017.06.003. PMID: 28755682.
- Eerden S, Dekker R, Hettinga FJ. Maximal and submaximal aerobic tests for wheelchair-dependent persons with spinal cord injury: a systematic review to summarize and identify useful applications for clinical rehabilitation. Disabil Rehabil. 2018 Mar;40(5):497-521. doi: 10.1080/09638288.2017.1287623. PMID: 28637157.
- 39. Ellapen TJ, Hammill HV, Swanepoel M, et al. The health benefits and constraints of exercise therapy for wheelchair users: a clinical commentary. Afr J Disabil. 2017;6:337. doi: 10.4102/ajod.v6i0.337. PMID: 28936414.
- Ellapen TJ, Hammill HV, Swanepoel M, et al. The benefits of hydrotherapy to patients with spinal cord injuries. Afr J Disabil. 2018 May 16;7(0):450. doi: 10.4102/ajod.v7i0.450. PMID: 29850439.

- Elnahhas AM, Elshennawy S, Aly MG.
 Effects of backward gait training on balance, gross motor function, and gait in children with cerebral palsy: a systematic review.
 Clin Rehabil. 2018 Jul 25;33(1):3-12. doi: 10.1177/0269215518790053. PMID: 30043634.
- 42. Etoom M, Khraiwesh Y, Lena F, et al. Effectiveness of physiotherapy interventions on spasticity in people with multiple sclerosis: a systematic review and metaanalysis. Am J Phys Med Rehabil. 2018 Nov;97(11):793-807. doi: 10.1097/PHM.000000000000970. PMID: 29794531.
- Fakolade A, Bisson EJ, Petrin J, et al. Effect of comorbidities on outcomes of neurorehabilitation interventions in multiple sclerosis: A scoping review. Int J MS Care. 2016 Nov-Dec;18(6):282-90. doi: 10.7224/1537-2073.2016-015. PMID: 27999522.
- Federici S, Meloni F, Bracalenti M, et al. The effectiveness of powered, active lower limb exoskeletons in neurorehabilitation: a systematic review. NeuroRehabilitation. 2015;37(3):321-40. doi: 10.3233/NRE-151265. PMID: 26529583.
- Fischer M, Vialleron T, Laffaye G, et al. Long-term effects of whole-body vibration on human gait: a systematic review and meta-analysis. Front Neurol. 2019;10:627. doi: 10.3389/fneur.2019.00627. PMID: 31316447.
- 46. Frank R, Larimore J. Yoga as a method of symptom management in multiple sclerosis. Front Neurosci. 2015;9:133. doi: 10.3389/fnins.2015.00133. PMID: 25983675.
- 47. Gandhi P, Chan K, Verrier MC, et al. Training to improve walking after pediatric spinal cord injury: a systematic review of parameters and walking outcomes. J Neurotrauma. 2017 May 1;34(9):1713-25. doi: 10.1089/neu.2016.4501. PMID: 27869534.
- Ghai S, Ghai I, Effenberg AO. Effects of dual tasks and dual-task training on postural stability: a systematic review and metaanalysis. Clin Interv Aging. 2017;12:557-77. doi: 10.2147/CIA.S125201. PMID: 28356727.

- Gibbs JC, Gagnon DH, Bergquist AJ, et al. Rehabilitation interventions to modify endocrine-metabolic disease risk in individuals with chronic spinal cord injury living in the community (RIISC): a systematic review and scoping perspective. J Spinal Cord Med. 2017 Nov;40(6):733-47. doi: 10.1080/10790268.2017.1350341. PMID: 28703038.
- Gillett JG, Boyd RN, Carty CP, et al. The impact of strength training on skeletal muscle morphology and architecture in children and adolescents with spastic cerebral palsy: a systematic review. Res Dev Disabil. 2016 Sep;56:183-96. doi: 10.1016/j.ridd.2016.06.003. PMID: 27337690.
- 51. Herring MP, Fleming KM, Hayes SP, et al. Moderators of exercise effects on depressive symptoms in multiple sclerosis: a metaregression. Am J Prev Med. 2017 Oct;53(4):508-18. doi: 10.1016/j.amepre.2017.04.011. PMID: 28602542.
- 52. Hoyme D. Body weight supported treadmill training versus gait trainer in young children with cerebral palsy. Dissertation Abstracts International: Section B: The Sciences and Engineering. 2017;78(4-B(E)):No Pagination Specified.
- 53. Hsu CW, Kang YN, Tseng SH. Effects of therapeutic exercise intensity on cerebral palsy outcomes: a systematic review with meta-regression of randomized clinical trials. Front Neurol. 2019;10:657. doi: 10.3389/fneur.2019.00657. PMID: 31293501.
- 54. Huang M, Liao LR, Pang MY. Effects of whole body vibration on muscle spasticity for people with central nervous system disorders: a systematic review. Clin Rehabil. 2017 Jan;31(1):23-33. doi: 10.1177/0269215515621117. PMID: 26658333.
- Lai B, Cederberg K, Vanderbom KA, et al. Characteristics of adults with neurologic disability recruited for exercise trials: a secondary analysis. Adapt Phys Act Q. 2018;35(4):476-97. doi: 10.1123/apaq.2017-0109.

- 56. Lai B, Young HJ, Bickel CS, et al. Current trends in exercise intervention research, technology, and behavioral change strategies for people with disabilities: a scoping review. Am J Phys Med Rehabil. 2017 Oct;96(10):748-61. doi: 10.1097/PHM.00000000000743. PMID: 28398967.
- 57. Lajeunesse V, Vincent C, Routhier F, et al. Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury. Disabil Rehabil Assist Technol. 2016 Oct;11(7):535-47. doi: 10.3109/17483107.2015.1080766. PMID: 26340538.
- 58. Langeskov-Christensen M, Heine M, Kwakkel G, et al. Aerobic capacity in persons with multiple sclerosis: a systematic review and meta-analysis. Sports Med. 2015 Jun;45(6):905-23. doi: 10.1007/s40279-015-0307-x. PMID: 25739555.
- Lawrence H, Hills S, Kline N, et al. Effectiveness of exercise on functional mobility in adults with cerebral palsy: a systematic review. Physiother Can. 2016;68(4):398-407. doi: 10.3138/ptc.2015-38LHC. PMID: 27904240.
- Lefmann S, Russo R, Hillier S. The effectiveness of robotic-assisted gait training for paediatric gait disorders: systematic review. J Neuroengineering Rehabil. 2017 Jan 5;14(1):1. doi: 10.1186/s12984-016-0214-x. PMID: 28057016.
- 61. Li C, Khoo S, Adnan A. Effects of aquatic exercise on physical function and fitness among people with spinal cord injury: a systematic review. Medicine (Baltimore). 2017 Mar;96(11) doi: 10.1097/MD.000000000006328. PMID: 28296754.
- 62. Lopes S, Magalhaes P, Pereira A, et al. Games used with serious purposes: a systematic review of interventions in patients with cerebral palsy. Front Psychol. 2018 Sep 19;9(1712) doi: 10.3389/fpsyg.2018.01712. PMID: 30283377.

- Lu X, Battistuzzo CR, Zoghi M, et al. Effects of training on upper limb function after cervical spinal cord injury: a systematic review. Clin Rehabil. 2015 Jan;29(1):3-13. doi: 10.1177/0269215514536411. PMID: 25575932.
- 64. Ma DN, Zhang XQ, Ying J, et al. Efficacy and safety of 9 nonoperative regimens for the treatment of spinal cord injury: a network meta-analysis. Medicine (Baltimore). 2017 Nov;96(47):e8679. doi: 10.1097/MD.000000000008679. PMID: 29381946.
- 65. Manago MM, Glick S, Hebert JR, et al. Strength training to improve gait in people with multiple sclerosis: a critical review of exercise parameters and intervention approaches. Int J MS Care. 2019 Mar-Apr;21(2):47-56. doi: 10.7224/1537-2073.2017-079. PMID: 31049034.
- Manca A, Dvir Z, Deriu F. Meta-analytic and scoping study on strength training in people with multiple sclerosis. J Strength Cond Res. 2019 Mar;33(3):874-89. doi: 10.1519/JSC.000000000002381. PMID: 30192317.
- 67. Marinho-Buzelli AR, Bonnyman AM, Verrier MC. The effects of aquatic therapy on mobility of individuals with neurological diseases: a systematic review. Clin Rehabil. 2015 Aug;29(8):741-51. doi: 10.1177/0269215514556297. PMID: 25394397.
- Marques Catelli A, Ferreira Gattino LA, da Campo LA, et al. Cycle ergometer in the improvement of gross motor function of children with cerebral palsy: a systematic review with meta-analysis. Fisioterapia e Pesquisa. 2019;26(1):101-9. doi: 10.1590/1809-2950/18011026012019.
- 69. Martin Ginis KA, van der Scheer JW, Latimer-Cheung AE, et al. Evidence-based scientific exercise guidelines for adults with spinal cord injury: an update and a new guideline. Spinal Cord. 2018 Apr;56(4):308-21. doi: 10.1038/s41393-017-0017-3. PMID: 29070812.

- Martins E, Cordovil R, Oliveira R, et al. Efficacy of suit therapy on functioning in children and adolescents with cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2016 Apr;58(4):348-60. doi: 10.1111/dmcn.12988. PMID: 26613800.
- Mat Rosly M, Mat Rosly H, Davis Oam GM, et al. Exergaming for individuals with neurological disability: a systematic review. Disabil Rehabil. 2017 04;39(8):727-35. doi: 10.3109/09638288.2016.1161086. PMID: 27108475.
- Mathevon L, Bonan I, Barnais JL, et al. Adjunct therapies to improve outcomes after botulinum toxin injection in children: a systematic review. Ann Phys Rehabil Med. 2019 Jul 29;62(4):283-90. doi: 10.1016/j.rehab.2018.06.010. PMID: 30063979.
- 73. Mehrholz J, Harvey LA, Thomas S, et al. Is body-weight-supported treadmill training or robotic-assisted gait training superior to overground gait training and other forms of physiotherapy in people with spinal cord injury? A systematic review. Spinal Cord. 2017 Aug;55(8):722-9. doi: 10.1038/sc.2017.31. PMID: 28398300.
- 74. Melo FCM, de Lima KKF, Silveira A, et al. Physical training and upper limb strength of people with paraplegia: a systematic review. J Sport Rehabil. 2018 Mar 1;28(3):288-93. doi: 10.1123/jsr.2017-0062. PMID: 29364066.
- 75. Methajarunon P, Eitivipart C, Diver CJ, et al. Systematic review of published studies on aquatic exercise for balance in patients with multiple sclerosis, Parkinson's disease, and hemiplegia. Hong Kong Physiother J. 2016 Dec;35:12-20. doi: 10.1016/j.hkpj.2016.03.002. PMID: 30931029.
- 76. Miller L, McFadyen A, Lord AC, et al. Functional electrical stimulation for foot drop in multiple sclerosis: a systematic review and meta-analysis of the effect on gait speed. Arch Phys Med Rehabil. 2017 Jul;98(7):1435-52. doi: 10.1016/j.apmr.2016.12.007. PMID: 28088382.

- Moreau NG, Bodkin AW, Bjornson K, et al. Effectiveness of rehabilitation interventions to improve gait speed in children with cerebral palsy: systematic review and metaanalysis. Phys Ther. 2016 Dec;96(12):1938-54. doi: 10.2522/ptj.20150401. PMID: 27313240.
- Nam KY, Kim HJ, Kwon BS, et al. Robotassisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review. J Neuroengineering Rehabil. 2017 Mar 23;14(1):24. doi: 10.1186/s12984-017-0232-3. PMID: 28330471.
- 79. Nardone R, Orioli A, Golaszewski S, et al. Passive cycling in neurorehabilitation after spinal cord injury: a review. J Spinal Cord Med. 2017 01;40(1):8-16. doi: 10.1080/10790268.2016.1248524. PMID: 27841091.
- Neefkes-Zonneveld CR, Bakkum AJ, Bishop NC, et al. Effect of long-term physical activity and acute exercise on markers of systemic inflammation in persons with chronic spinal cord injury: a systematic review. Arch Phys Med Rehabil. 2015 Jan;96(1):30-42. doi: 10.1016/j.apmr.2014.07.006. PMID: 25064781.
- Negaresh R, Motl RW, Zimmer P, et al. Effects of exercise training on multiple sclerosis biomarkers of central nervous system and disease status: a systematic review of intervention studies. Eur J Neurol. 2019 May;26(5):711-21. doi: 10.1111/ene.13929. PMID: 30734989.
- 82. O'Brien TD, Noyes J, Spencer LH, et al. Systematic review of physical activity and exercise interventions to improve health, fitness and well-being of children and young people who use wheelchairs. BMJ Open Sport Exerc Med. 2016 Nov 15;2(1):e000109. doi: 10.1136/bmjsem-2016-000109. PMID: 27900176.
- Paleg G, Livingstone R. Outcomes of gait trainer use in home and school settings for children with motor impairments: a systematic review. Clin Rehabil. 2015 Nov;29(11):1077-91. doi: 10.1177/0269215514565947. PMID: 25636993.

- Panisset MG, Galea MP, El-Ansary D. Does early exercise attenuate muscle atrophy or bone loss after spinal cord injury? Spinal Cord. 2016 Feb;54(2):84-92. doi: 10.1038/sc.2015.150. PMID: 26345485.
- Pearson M, Dieberg G, Smart N. Exercise as a therapy for improvement of walking ability in adults with multiple sclerosis: a meta-analysis. Arch Phys Med Rehabil. 2015 Jul;96(7):1339-48.e7. doi: 10.1016/j.apmr.2015.02.011. PMID: 25712347.
- 86. Pilutti LA, Motl RW. Functional Electrical Stimulation Cycling Exercise for People with Multiple Sclerosis. Curr Treat Options Neurol. 2019 Nov 08;21(11):54. doi: 10.1007/s11940-019-0597-7. PMID: 31705304.
- Platta ME, Ensari I, Motl RW, et al. Effect of exercise training on fitness in multiple sclerosis: a meta-analysis. Arch Phys Med Rehabil. 2016 Sep;97(9):1564-72. doi: 10.1016/j.apmr.2016.01.023. PMID: 26896750.
- 88. Plummer P. Critical appraisal of evidence for improving gait speed in people with multiple sclerosis: dalfampridine versus gait training. Int J MS Care. 2016 May-Jun;18(3):105-15. doi: 10.7224/1537-2073.2014-114. PMID: 27252597.
- Quel de Oliveira C, Refshauge K, Middleton J, et al. Effects of activity-based therapy interventions on mobility, independence, and quality of life for people with spinal cord injuries: a systematic review and meta-analysis. J Neurotrauma. 2017 May 1;34(9):1726-43. doi: 10.1089/neu.2016.4558. PMID: 27809702.
- 90. Rameckers EA, Janssen-Potten YJ, Essers IM, et al. Efficacy of upper limb strengthening in children with cerebral palsy: a critical review. Res Dev Disabil. 2015 Jan;36C:87-101. doi: 10.1016/j.ridd.2014.09.024. PMID: 25462469.
- 91. Rigby BR, Grandjean PW. The efficacy of equine-assisted activities and therapies on improving physical function. J Altern Complement Med. 2016 Jan;22(1):9-24. doi: 10.1089/acm.2015.0171. PMID: 26654868.

- 92. Robinson AG, Dennett AM, Snowdon DA. Treadmill training may be an effective form of task-specific training for improving mobility in people with Parkinson's disease and multiple sclerosis: a systematic review and meta-analysis. Physiotherapy. 2019 06;105(2):174-86. doi: https://dx.doi.org/10.1016/j.physio.2018.11. 007. PMID: 30876717.
- 93. Roeh A, Kirchner SK, Malchow B, et al. Depression in somatic disorders: is there a beneficial effect of exercise? Front Psychiatr. 2019;10:141. doi: 10.3389/fpsyt.2019.00141. PMID: 30949079.
- 94. Rooney S, Moffat F, Wood L, et al. Effectiveness of fatigue management interventions in reducing severity and impact of fatigue in people with progressive multiple sclerosis: a systematic review. Int J MS Care. 2019 Jan-Feb;21(1):35-46. doi: 10.7224/1537-2073.2018-019. PMID: 30833871.
- 95. Roostaei M, Baharlouei H, Azadi H, et al. Effects of aquatic intervention on gross motor skills in children with cerebral palsy: a systematic review. Phys Occup Ther Pediatr. 2017 Oct 20;37(5):496-515. doi: 10.1080/01942638.2016.1247938. PMID: 27967298.
- 96. Ryan JM, Cassidy EE, Noorduyn SG, et al. Exercise interventions for cerebral palsy. Cochrane Database Syst Rev. 2017 Jun 11;6:CD011660. doi: 10.1002/14651858.CD011660.pub2. PMID: 28602046.
- 97. Sa-Caputo DC, Costa-Cavalcanti R, Carvalho-Lima RP, et al. Systematic review of whole body vibration exercises in the treatment of cerebral palsy: brief report. Dev Neurorehabil. 2016 Oct;19(5):327-33. doi: 10.3109/17518423.2014.994713. PMID: 25826535.
- 98. Sanchez-Lastra MA, Martinez-Aldao D, Molina AJ, et al. Pilates for people with multiple sclerosis: A systematic review and meta-analysis. Mult Scler Relat Disord. 2019 Jan 03;28:199-212. doi: https://dx.doi.org/10.1016/j.msard.2019.01.0 06. PMID: 30623859.

- 99. Sangelaji B, Smith CM, Paul L, et al. The effectiveness of behaviour change interventions to increase physical activity participation in people with multiple sclerosis: a systematic review and meta-analysis. Clin Rehabil. 2016 Jun;30(6):559-76. doi: 10.1177/0269215515595274. PMID: 26198892.
- 100. Saquetto M, Carvalho V, Silva C, et al. The effects of whole body vibration on mobility and balance in children with cerebral palsy: a systematic review with meta-analysis. J Musculoskelet Neuronal Interact. 2015 Jun;15(2):137-44. PMID: 26032205.
- 101. Sattelmayer M, Chevalley O, Steuri R, et al. Over-ground walking or robot-assisted gait training in people with .multiple sclerosis: does the effect depend on baseline walking speed and disease related disabilities? A systematic review and meta-regression. BMC Neurol. 2019 May 08;19(1):93. doi: https://dx.doi.org/10.1186/s12883-019-1321-7. PMID: 31068151.
- Shojaei MH, Alavinia SM, Craven BC. Management of obesity after spinal cord injury: a systematic review. J Spinal Cord Med. 2017 Nov;40(6):783-94. doi: 10.1080/10790268.2017.1370207. PMID: 28929907.
- Smith M, Barker R, Williams G, et al. The effect of exercise on high-level mobility in individuals with neurodegenerative disease: a systematic literature review.
 Physiotherapy. 2019 May 02;02:02. doi: https://dx.doi.org/10.1016/j.physio.2019.04. 003. PMID: 31477333.
- Sosnoff JJ, Sung J. Reducing falls and improving mobility in multiple sclerosis. Expert Rev Neurother. 2015 Jun;15(6):655-66. doi: 10.1586/14737175.2015.1046377. PMID: 25973774.
- 105. Spencer T, Aldous S, Williams G, et al. Systematic review of high-level mobility training in people with a neurological impairment. Brain Inj. 2018;32(4):403-15. doi: 10.1080/02699052.2018.1429656. PMID: 29393688.
- Steimer J, Weissert R. Effects of sport climbing on multiple sclerosis. Front Physiol. 2017;8:1021. doi: 10.3389/fphys.2017.01021. PMID: 29311957.

- Stergiou A, Tzoufi M, Ntzani E, et al. Therapeutic effects of horseback riding interventions: a systematic review and metaanalysis. Am J Phys Med Rehabil. 2017 Oct;96(10):717-25. doi: 10.1097/PHM.00000000000726. PMID: 28252520.
- 108. Streber R, Peters S, Pfeifer K. Systematic review of correlates and determinants of physical activity in persons with multiple sclerosis. Arch Phys Med Rehabil. 2016 Apr;97(4):633-45.e29. doi: 10.1016/j.apmr.2015.11.020. PMID: 26751247.
- Taylor E, Taylor-Piliae RE. The effects of Tai Chi on physical and psychosocial function among persons with multiple sclerosis: a systematic review. Complement Ther Med. 2017 Apr;31:100-8. doi: 10.1016/j.ctim.2017.03.001. PMID: 28434462.
- 110. van der Scheer JW, Martin Ginis KA, Ditor DS, et al. Effects of exercise on fitness and health of adults with spinal cord injury: a systematic review. Neurology. 2017 Aug 15;89(7):736-45. doi: 10.1212/WNL.00000000004224. PMID: 28733344.

- 111. Veneri D, Gannotti M, Bertucco M, et al. Using the international classification of functioning, disability, and health model to gain perspective of the benefits of yoga in stroke, multiple sclerosis, and children to inform practice for children with cerebral palsy: a meta-analysis. J Altern Complement Med. 2018 May;24(5):439-57. doi: 10.1089/acm.2017.0030. PMID: 29406768.
- 112. Wall A, Borg J, Palmcrantz S. Clinical application of the Hybrid Assistive Limb (HAL) for gait training-a systematic review. Front Syst Neurosci. 2015;9:48. doi: 10.3389/fnsys.2015.00048. PMID: 25859191.
- 113. Wood WH, Fields BE. Hippotherapy: a systematic mapping review of peer-reviewed research, 1980 to 2018. Disabil Rehabil. 2019 Sep 6:1-25. doi: 10.1080/09638288.2019.1653997. PMID: 31491353.
- 114. Xiang Y, Lu L, Chen X, et al. Does Tai Chi relieve fatigue? A systematic review and meta-analysis of randomized controlled trials. PLoS One. 2017;12(4):e0174872. doi: 10.1371/journal.pone.0174872. PMID: 28380067.
- 115. Zou L, Wang H, Xiao Z, et al. Tai chi for health benefits in patients with multiple sclerosis: a systematic review. PLoS One. 2017;12(2):e0170212. doi: 10.1371/journal.pone.0170212. PMID: 28182629.

Appendix E. Criteria for Assessing Quality and Internal Validity of Individual Studies

Quality Assessment Criteria: Randomized Controlled Trials

Table E-1. Methods to assess quality of trials: assessment of internal validity			
Vosl			

	Yes/			
Assessment	No/			
Question	Unclear	Description		
1. Was the	Yes	Use of the term "randomized" alone is not sufficient for a judgment of "Yes".		
assignment to		Explicit description of method for sequence generation must be provided.		
the treatment		Adequate approaches include: Computer-generated random numbers, random		
groups really		numbers tables		
random?	No	Randomization was either not attempted or was based on an inferior approach		
		(e.g., alternation, case record number, birth date, or day of week)		
	Unclear	Insufficient detail provided to make a judgment of yes or no.		
2. Was the	Yes	Adequate approaches to concealment of randomization: Centralized or		
treatment		pharmacy-controlled randomization, serially-numbered identical containers, on-		
allocation		site computer based system with a randomization sequence that is not readable		
concealed?		until allocation		
		Note: If a trial did not use adequate allocation concealment methods, the highest		
		rating it can receive is "Fair".		
	No	Inferior approaches to concealment of randomization: Use of alternation, case		
		record number, birth date, or day of week, open random numbers lists, serially		
		numbered envelopes (even sealed opaque envelopes can be subject to		
		manipulation)		
	Unclear	No details about allocation methods. A statement that "allocation was concealed"		
		is not sufficient; details must be provided.		
3. Were	Yes	Parallel design: No clinically important differences		
groups similar	ups similar Crossover design: Comparison of baseline characteristics must be made			
at baseline in		on order of randomization.		
terms of		Note: Determine beforehand which prognostic factors are important to consider.		
prognostic		A statistically significant difference does not automatically constitute a clinically		
factors?		important difference.		
	No	Clinically important differences		
	Unclear	Statement of "no differences at baseline", but data not reported; or data not		
		reported by group, or no mention at all of baseline characteristics. For crossover		
		design, only reported baseline characteristics of the overall group.		
4. Were	Yes	Explicit statement(s) that outcome assessors/care provider/patient were blinded.		
outcome		Double-dummy studies and use of identically-appearing treatments are also		
assessors		considered sufficient blinding methods for patients and care providers.		
blinded to	No	No blinding used, open-label		
treatment	Unclear,	Study described as double-blind but no details provided.		
allocation?	described			
5. Was the as double- blind blind				
blinded?	Not	No information about blinding		
	reported			
6. Was the				
patient				
blinded?				

	Yes/	
Assessment	No/	
Question	Unclear	Description
7. Did the	Yes	All patients that were randomized were included in the analysis. Specify if
article include		imputation methods (e.g., last-observation carried forward) were used.
an intention-		OR
to-treat		Exclusion of 5% of patients or less is acceptable, given that the reasons for
analysis or		exclusion are not related to outcome (e.g., did not take study medication) and
provide the		that the exclusions would not be expected to have an important impact on the
data needed to		effect size
calculate it	No	Exclusion of greater than 5% of patients from analysis OR less than 5%, with
(i.e., number		reasons that may affect the outcome (e.g., adverse events, lack of efficacy) or
assigned to		reasons that may be due to bias (e.g., investigator decision)
each group,	Unclear	Numbers analyzed are not reported
number of		
subjects who		
finished in		
each group,		
and their		
results)?		
		Overall attrition ^a : The overall attrition rate was below the level that was
of overall		established by the review team.
		Differential attrition: The absolute difference between groups in rate of attrition was below 10%.
between	Nie	
groups in attrition withinNoOverall attrition: The overall attrition rate was above the level established by the review team.		
acceptable		Differential attrition: The difference between groups in the overall attrition rate
levels?		or in the rate of attrition for a specific reason (e.g., adverse events, protocol
		violations, etc.) was 10% or more.
	Unclear	Overall attrition: Insufficient information provided to determine the level of
		attrition
		Differential attrition: Insufficient information provided to determine the level of attrition
O H	T1 '	irial avidence to support establishment of a specific level of attrition that is universally

^a **Overall attrition:** There is no empirical evidence to support establishment of a specific level of attrition that is universally considered "important". The level of attrition considered important will vary by review and should be determined a priori by the review teams. Attrition refers to discontinuation for ANY reason, including lost to followup, lack of efficacy, adverse events, investigator decision, protocol violation, consent withdrawal, etc.

Quality Assessment Criteria: Nonrandomized Studies

Assessment Question	Yes/ No/ Unclear	Description
1. Was the selection of patients for inclusion	Yes	 Same pre-specified eligibility criteria for all groups Same strategy for obtaining groups Enroll random or consecutive sample of all patients meeting eligibility criteria Samples drawn from same source and same timeperiod
unbiased? No		One or more of the above were not met
	Unclear	Insufficient detail provided to make a judgment of yes or no.
2. Differences	Yes	 ~10% difference in dichotomous outcomes
in		 Clinically meaningful differences in continuous outcomes
predetermined prognostic factors at baseline?No• Differences above limits set a prioriInsufficient detail provided to make a judgment of yes or no.Insufficient detail provided to make a judgment of yes or no.		 Differences above limits set a priori
		Insufficient detail provided to make a judgment of yes or no.

	Yes/			
Assessment	No/			
Question	Unclear	Description		
3. Was the	Yes	Overall attrition ^a : The overall attrition rate was below the level that was		
rate of overall		established by the review team		
attrition and		,		
the difference		Differential attrition: The absolute difference between groups in rate of attrition		
between		was below 10%		
groups in	No	Overall attrition: The overall attrition rate was above the level that was		
attrition within		established by the review team.		
acceptable		Differential attrition: The difference between groups in the overall attrition rate		
levels?		was 10% or more		
	Unclear	Overall attrition: Insufficient information provided to determine the level of attrition		
		Differential attrition: Insufficient information provided to determine the level of attrition		
4. Were the events	Yes	Events were explicitly defined, including methods for categorizing continuous variables.		
investigated	No			
prespecified				
and defined?				
5. Was there a	Yes	Techniques used to identify the events were clearly described, including who		
clear	Na	ascertained, timing and methods used		
description of the	No			
techniques				
used to				
identify the				
events?				
6. Was there	Yes	Ascertainment was conducted by an independent individual or endpoint		
unbiased and		committee using appropriate data sources and validated techniques with limited		
accurate		reliance on patient recall. Ascertainment should be blinded where possible and		
ascertainment		appropriate.		
of events?	No			
	Unclear	Insufficient detail provided to make a judgment of yes or no		
7. Were	Yes	Use one of the acceptable techniques to address multiple variables considered		
potential		important. Not all variables must be considered to achieve "yes", but multiple should be addressed.		
confounding variables and	No			
risk factors		Insufficient detail provided to make a judgment of year or no, or too for year-		
identified and	Unclear	Insufficient detail provided to make a judgment of yes or no, or too few variables considered, or variables considered not deemed important.		
examined		considered, or variables considered not deemed important.		
using				
acceptable				
statistical				
techniques?				
Such				
techniques				
include:				
stratification,				
multivariable				
regression,				
propensity				
score				
matching.				

Assessment Question	Yes/ No/ Unclear	Description
8. Was the	Yes	
duration of	No	
followup reasonable for investigated events? Should be determined a priori, by outcome – may differ for adverse events, for	Unclear	Insufficient detail provided to make a judgment of yes or no.
example.		

^a **Overall attrition:** The level of attrition considered important will vary by review and should be determined a priori by the review teams. Attrition refers to discontinuation for ANY reason, including lost to followup, lack of efficacy, adverse events, investigator decision, consent withdrawal, etc. Generally $\leq 20\%$ is considered a reasonable cutoff for acceptable attrition, but greater levels may be acceptable depending on the duration of study and population characteristics.

Appendix E References

- 1. Methods Guide for Effectiveness and Comparative Effectiveness Reviews. AHRQ Publication No. 10(14)-EHC063-EF. Rockville, MD: Agency for Healthcare Research and Quality; January 2014. Current chapters available at https://effectivehealthcare.ahrq.gov/topics/ce r-methods-guide/overview/.
- 2. Nelson HD. Systematic Reviews to Answer Health Care Questions. In: Gaertner R, editor. Philadelphia, PA: Wolters Kluwer; 2014.
- 3. U.S. Preventive Services Task Force Procedure Manual. Rockville, MD: Agency for Health Care Research and Quality; 2018. https://www.uspreventiveservicestaskforce.o rg/Page/Name/procedure-manual. Accessed February 27, 2019.

Appendix F. Evidence Tables

Table F-1. Study description and results (continued in Table F-2)

Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Acar, 2016	A. Nintendo	A vs. B	A vs. B, mean (SD)	NA
	Wii gaming plus	Age (mean years): 9.53 vs.	Baseline	
Postural Control	neuro-developmental	9.73	QUEST (Minimum score=0, Maximum score=100)	
Motion gaming	treatment, 12	Female: 7 (47%) vs. 9 (60%)	QUEST Dissociated movements (score): 80.1 (7.73) vs.	
	sessions over 6	Race: NR	81.4 (10.70)	
Postintervention, 6	weeks (n=15)	Ambulatory: NR	QUEST Grasps (score): 42.2 (18.76) vs. 53 (16.45)	
weeks		Wheelchair user: NR	QUEST Weight bearing (score): 69.2 (19.46) vs. 75.4	
	B.		(17.07)	
Poor	Neurodevelopmental	GMFCS I: 40% vs. 40%	QUEST Protective extension (score): 72.9 (14.78) vs. 71	
	treatment, 12	GMFCS II: 60% vs. 60%	(23.52)	
	sessions over 6	Spastic hemiparesis: 100%		
	weeks (n=15)		Postintervention	
		Manual Ability Classification	QUEST (Minimum score=0, Maximum score=100)	
		System median score,	QUEST Dissociated movements: 85.6 (8.54) vs. 86.4	
		(range):	(8.78)	
		2 (range 1–3) vs. 2 (range	QUEST Grasps (score): 47.1 (16.64) vs. 55.7 (15.30)	
		1–3)	QUEST Weight bearing (score): 72.7 (19.60) vs. 77.3	
			(15.43)	
		GMFCS, levels I-V:	QUEST Protective extension (score): 77 (12.66) vs. 74	
		Level 1: 6 cases vs. 6 cases	(23.36)	
		Level 2: 9 cases vs. 9 cases	*Mean Change Data - not included?	
			WeeFIM, (18 items, 7-point scale, 1=total assistance	
			required to 7=complete independence, 7 to 126-point total	
			range)	
			WeeFIM: 46 (8.23) vs. 48.3 (7.27) (baseline)	
			WeeFIM: 46.7 (7.51) vs. 48.9 (7.14) (postintervention)	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Abbasi, 2019 Postural Control Whole body vibration Immediately postintervention, 6 weeks Fair	A. Whole body vibration, 18 sessions over 6 weeks (n=22) B. No treatment, no exercise (n=24)	A vs. B Age: 37 vs. 39 Female: 5% vs. 17% EDSS: 1.54 vs. 1.55	A vs. B, Median (Interquartile range), p-value is between groups MSQOL-54 (PCS): 4.20 (1.73, 8.40) vs. –1.26 (–3.28, 0), p<0.001 MSQOL-54 (MCS): 5.96 (2.71, 11.89) vs. –0.17 (–2.20, 0.07), p<0.001	A vs. B, Median (Interquartile range) followup- baseline scores, p=between groups: Trunk Flexor: Med Diff 25.83 (8.83 to 46.41) vs. –0.33 (–5.67 to 6.75), p<0.001 Trunk Extensor: Med Diff 38.17 (20.75 to 70) vs. –1.49 (–11.83 to 3.49), p<0.001
Adar, 2017 Aerobic Exercise Aquatics Postintervention, 0 weeks		A vs. B Age (mean years): 10.1 vs. 9.3 Female: 9 (53%) vs. 6 (40%) Race: NR	A vs. B, Mean change scores: <u>TUG</u> : -0.13 (0.14) vs0.16 (0.13), p=0.664 <u>GMFM-88</u> : 0.05 (0.05) vs. 0.05 (0.03), p=0.451 <u>WeeFIM motor</u> : 0.04 (0.04) vs. 0.06 (0.06),p=0.860 <u>WeeFIM total</u> : -0.13 (0.14) vs0.16 (0.13), p=0.287	NA
Fair		Ambulatory: NR Wheelchair user: NR Other: A: Spastic Diplegia (65%) vs. Hemiplegia (35%) B: Spastic Diplegia (67%) vs. Hemiplegia (33%)		

Audhan Maan		Demodefier		
Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Afrasiabifar, 2018	A. Cawthorne-	A vs. B vs. C	NA	A vs. B vs. C, mean (SD)
				Balance score (BBS 0-56, higher
Postural Control	sessions, 3 times a	32 vs. 33.6		scores=better balance)
Balance	week, over 12	Female: 20 (83%) vs. 17		A vs. B
	weeks, (n=24)	(74%) vs. 19 (76%)		BBS:
Postintervention,		Race: NR		30.9 (5.6) vs. 31.6 (5.1), (baseline)
12 weeks	B. Frankel exercises:	Ambulatory: NR		33.9 (6.1) vs. 32.5 (5.1), (6 weeks)
	number of sessions	Wheelchair user: NR		39.8 (4.5) vs. 33.9 (5.6), (postintervention)
Good	NR, over 12 weeks,			
	(n=23)	Body mass index (kg/m ² ,		A vs. C
		mean): 23.4 vs. 23.6 vs.		BBS:
	C. Usual care control	23.3		30.9 (5.6) vs. 30.3 (6), (baseline)
	(n=25)			BBS:
		MS subtype		33.9 (6.1) vs. 29.8 (6.2), (6 weeks)
		Relapsing-remitting: 23		BBS:
		(95.8%) vs. 22 (95.7%) vs. 23 (92%)		39.8 (4.5) vs. 29.1 (6.5), (postintervention)
		Primary and secondary		B vs. C
		progressive: 1 (4.2%) vs. 1		BBS:
		(4.3%) vs. 2 (8%)		31.6 (5.1) vs. 30.3 (6), (baseline)
				BBS:
				32.5 (5.1) vs. 29.8 (6.2), (6 weeks)
				BBS:
				33.9 (5.6) vs. 29.1 (6.5), (postintervention)
				Mean differences, paired comparisons
				A + B
				BBS:
				-0.7 (95% CI -4.8 to 3.4), p=0.9, (baseline)
				BBS:
				1.4 (95% CI −2.8 to 5.5), p=0.7, (6 weeks)
				BBS:
				5.9 (95% CI 1.9 to 9.9), p=0.001,
				(postintervention)

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B	Intervention and	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%)		
for Full Citation) Afrasiabifar, 2018	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
(Continued)				BBS: 0.6 (95% CI -3.3 to 4.6), p=0.9, (baseline) BBS: 4.1 (95% CI -0.02 to 8.2), p=0.05, (6 weeks) BBS: (95% CI 10.7 to 6.8 14.6), p=0.001, (postintervention)
				B + C BBS: 1.3 (95% CI -2.7 5.2), p=0.7, (baseline) BBS: 2.7 (95% CI -1.4 to 6.9), p=0.2, (6 weeks) BBS: 4.8 (95% CI 0.9 to 8.8), p=0.01, (postintervention)
Ahmadi, 2013 Aerobic Exercise Treadmill	A. Treadmill, 24 sessions over 8 weeks (n=10) C. Yoga, 24 sessions	A vs. B vs. C Age: 37 vs. 32 vs. 37 Female: 100% EDSS: 2.40 vs. 2.00 vs. 2.25	A vs. B vs. C, Mean (SD), p=between groups: BDI: 8.50 (3.06 to 5.60 (3.40) vs. 17.36 (12.42) to 11.09 (12.46) vs. 11.90 (9.39) to 12.50 (8.1) A vs. B, p=0.11 A vs. C, p=0.11	A vs. B, Mean (SD), p-value between groups: BBS: 47.72 (6.78) to 53.81 (3.40) vs. 44.50 (8.48) to 41.70 (8.48), p=0.07 B vs. C, Mean (SD), p-value between groups:
Postural Control Yoga	over 8 weeks (n=11)		B. vs. C, p=0.001	BBS: 47.72 (6.78) to 53.81 (3.40) vs. 44.50 (8.48) to 41.70 (8.48), p=0.07
Immediately postintervention, 8 weeks	B. Waitlist control (n=10)		BAI: 7.90 (5.91) to 6.10 (4.95) vs. 12.45 (4.54) to 6.45 (3.61) vs. 7.50 (6.77) to 8.20 (7.39) A vs. B, p=0.01 A vs. C, p=0.22 B vs. C, p=0.001	
Fair			A vs. B, Mean (SD), p-value between groups: 10MWT: 12.45 (4.54) to 6.45 (3.61) vs. 7.50 (6.77) to 8.20 (7.39), p=0.01 2MWT: 109 (17.44) to 120.36 (20.62) vs. 121.50 (27.73) to 119.05 (27.12), p=0.11	
			B vs. C, Mean (SD), p-value between groups: 10MWT: 12.45 (4.54) to 6.45 (3.61) vs. 9.16 (1.88) to 9.47 (1.92), p=0.11 2MWT: 109 (17.44) to 120.36 (20.62) vs. 121.50 (27.73) to 119.05 (27.12), p=0.11	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Ahmadizadeh, 2020 Postural Control Whole Body Vibration Postintervention, 6 weeks	18 sessions over 6 weeks (n=10)	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%) A vs. B Age: 6.9 vs. 8.1 Gender: NR Race: NR Hemiplegic: 30% vs. 60% Diplegic: 60% vs. 40% Quadrapletic: 10% vs. 0%	Prioritized Outcomes A vs. B, mean (SD): <u>6MWT:</u> 158.8 (100.24) to 189.45 (115.47) vs. 194 (78.82) to 271.5 (60.81), p=0.04	Other Outcomes NA
Fair				
Akkurt, 2017 Aerobic Exercise Hand cycling Postintervention, 0 weeks Fair	exercises (120 sessions over 12 weeks), 36 sessions over 12 weeks (n=17) B. General exercises,		A vs. B (SD) VO ₂ Peak 19.1(NR) vs. 15.45(NR) (baseline) 23.4(NR) vs. 16.8 (NR); p=0.020 (postintervention at 12 weeks) HAD-S, CES-D, PFTs, FIM, WHOQoL: All NS Calculated A vs. B, Mean change scores: <u>FIM</u> : 0.5 vs0.5, p=1.00 <u>CHART-sf</u> , p>0.05 <u>WHOQOL-Bref</u> , p>0.05	Waist circumference, BP, Lipids: All NS

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Alexeeva 2011	A. Body weight supported treadmill	International Standards for Neurological Classification of	Pre, post	MMT (Maximal Muscle Testing combined upper and lower limb strength)
Aerobic Exercise	training maximum 60	Spinal Cord Injury	10 minute walk test (meters/second)	A. 71.5 (15.1) to 78.1 (15.3)
Treadmill	minutes for 3 days a	C or D	A. 0.30 (0.26) to 0.46 (0.40)	B. 69.5 (12.1) to 73.3 (11.5)
	week for 13 weeks	-	B. 0.22 (0.20) to 0.44 (0.33)	C. 76.3 (11.6) to 81.8 (11.0)
Pre to post	(39 sessions)	Mean age 36.0 years	C. 0.41 ((0.34) to 0.51(0.36)	Overall 6%-9% increase across groups; each
			Combined there was an increase in walking speed	group achieved a significant increase (p<0.05
Fair	B. Body weight	30 males and 5 females	(p=0.001) but no group by time effect (no difference	for each), no difference among groups
	supported track	(86% male)	among groups)	
	training maximum 60 minutes for 3 days a		Tinetti Balance	SAWS (13 components) (lower score is improvement)
	week for 13 weeks		A. 9.8 (5.4) to 19.4 (5.0)	inprovement)
	(39 sessions)		B. 10.5 (3.4) to 11.9 (2.5)	Completed pre, immediately post and 1 month
	()		C. 10.1(3.6) to 12.9 (2.7)	later (28 of 35 participants completed surveys)
	C. Structured		Significant time by group interaction (p<0.05), with post-	
	physical therapy		hoc group C improving (p<0.001) and B improving	A. 39.3 (8.3) to 35.2 (8.7) to 31.2 (7.8)
	maximum 60 minutes		(p<0.01) but not A (p=0.23)	B. 35.9 (6.9) to 32.4 (7.6) to 32.4 (6.4)
	for 3 days a week for		De als annues antalia	C. 36.6 (9.9) to 29.0 (7.9) to 31.4 (5.5)
	13 weeks (39 sessions)		Peak oxygen uptake Baseline ranged from 10 to 26 ml/kg/minute and overall	Across groups significant improvement (p=0.03)
	sessions)		modest 12% increase in each group but no differences	(p=0.03)
			among groups	
Al-Sharman, 2019	A. Moderate intensity	A vs. B	A vs. B, Mean (SD), p-value is between groups:	Total Sleep Time:
	exercise with stair	Age: 39 vs. 32	PSQI:	333.38 (84.6) to 372.4 (59.4) vs. 325.9 (84.5)
Aerobic Exercise	stepper, 18 sessions	Female: 76% vs. 77%	8.0 (3.8) to 4.6 (2.3) vs. 8.9 (4.3) to 7.1 (3.2), p<0.001	to 320 (54), p=0.05
Aerobics	over 6 weeks (n=17)	EDSS: 2.1 vs. 1.9		
Postintervention, 6	B. Home exercises		ISI: 12.8 (5.3) to 6.6 (4.08) vs. 10.3 (3.3) to 8.7 (5.1), p=0.04	
weeks	(n=13)		12.0 (0.0) 10 0.0 (4.00) vs. 10.3 (0.0) 10 0.7 (5.1), p=0.04	
WOONS	(1-10)			
Poor				

Author Veer		Deputation		
Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Amiri, 2019	A. Core Stability	A vs. B	Significant interaction between time and group according	Plank test: significant differences between
	Training, 30 sessions	Age: 32 vs. 31	to baseline EDSS score for core muscle function (i.e.,	groups based on EDSS score, p<0.001
Postural Control	over 10 weeks	Female: 100%	core endurance and core strength tests) and static and	
Balance exercises	(n=35)	EDSS: 3.58 vs. 3.74	dynamic stability (p<0.05)	Overall static balance tests demonstrate
		RRMS: 100%		significant differences in strength based on
Postintervention,	B. Conventional care		Core strength tests (R/L hip abduction, R/L external	baseline EDSS score and significant
10 weeks	including stretching		rotation) demonstrate significant differences in strength	differences compared with the control group, p<0.001
Fair	and range of motion		based on baseline EDSS score (2.5-3.5; 3.5-4.5; 4.5-5.5),	p<0.001
	exercises (n=34)		p<0.001	Greatest improvements seen in those with
				greatest disability (least strong)
Aras, 2019	A. RAGT, 20	A vs. B	A vs. B vs. C, mean change (SD):	NA
Alas, 2019	sessions over 4	Age: NR	<u>6MWT</u> : 39.6 (40.4) vs. 37.6 (20.2) vs. 48.3 (25.1), p>0.05	NA
Aerobic Exercise	weeks (n=10)	Female: 40% vs. 40% vs.	for all pairwise comparisons (20.2) vs. 40.3 (20.1), p=0.05	
Robot-Assisted	weeks (II-10)	33.3%	<u>6MWT (3 mo followup)</u> : 45.2 (44.4) vs. 48.6 (37.8) vs.	
	B Dortiol body	Race: NR	58.2 (22.9), p>0.05 for all pairwise comparisons	
Gait Training	B. Partial body- weight supported	GMFCS II: 90% vs. 70% vs.	GMFM-D: 3.6 (2.5) vs. 4.6 (4.6) vs. 3.5 (2.5), p>0.05 for	
Postintervention,	treadmill training, 20	88.9%	all pairwise comparisons	
4 weeks, and 6	sessions over 4	Hemiplegic: 30% vs. 30% vs.	GMFM-D (3 month	
month followup	weeks (n=10)	33.3%	<u>followup</u>): 3.6 (2.5) vs. 4.6 (4.6) vs. 3.5 (2.5), p>0.05 for	
monuriollowup	weeks (II-10)	55.576	all pairwise comparisons	
Fair	C. Anti-gravity		GMFM-E: 2.4 (2.0) vs. 2.6 (1.7) vs. 3.7 (1.9), p>0.05 for all	
Fall	treadmill training, 20		pairwise comparisons	
	sessions over 4		GMFM-E (3 month followup): 2.6 (1.8) vs. 2.6 (1.7) vs. 3.7	
	weeks (n=9)		(1.9), p>0.05 for all pairwise comparisons	
Arntzen, 2019	A. GroupCoreDIST,	A vs. B	A vs. B, Mean Difference between groups:	NA
Arntzen, 2019 Arntzen, 2020	18 sessions over 6	Age: 52 vs. 48	Mini-BEST:	
7111261, 2020	weeks + home	Female: 69% vs. 73%	MD 1.91, 95% CI 1.07 to 2.76, p<0.001	
Postural Control	exercises (n=39)	EDSS: 2.45 vs. 2.28		
Balance exercises	0,010,000 (11-03)	RRMS: 82% vs. 90%	MWT at 7 weeks: MD 16.7, 95% CI 8.15 to 25.25	
Dalance exercises	B. Usual care (n=40)	PPMS: 13% vs. 5%	2MWT at 30 weeks: MD 16.38, 95% CI 7.65 to 25.12	
7 weeks, plus 18,	D. USual Care (11-40)	SPMS: 5% vs. 5%	10MWT at 7 weeks: MD 10.38, 95% CI 0.11 to 0.85	
and 30 weeks			10MWT at 30 weeks: MD 0.48, 95% CI 0.11 to 0.05	
and JU WEEKS			MSWS-12 at 7 weeks: MD 9.77, 95% CI 3.19 to 16.35	
Good			MSWS-12 at 7 weeks: MD 9.77, 95% CI 3.19 to 10.35 MSWS-12 at 30 weeks: MD 3.87, 95% CI -2.80 to 10.54	
9000			TWO WO- 12 at 30 WEEKS. WD 3.07, 3370 CI -2.00 to 10.34	

Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Aviram 2017	A. Treadmill walking	GMFCS II or III	Pre, post and 6 months after the intervention	NA
	60-minute session	(11/111 70/25)		
Aerobic Exercise	twice a week over 3		6 minute walk test (meters)	
Treadmill	months (total 30	N=95	A. 342 (79) to 370 (65) to 365 (69)	
	sessions)		B. 292 (80) to 325 (79) to 320 (84)	
Postintervention, 6	,	Mean age 16.6 years	Change score pre to post, pre to followup	
months	B. 8 stations circuit		A. 29.1 (6.9), 20.9 (4.0)	
	resistance training,	61 males and 34 females	B. 33.7 (6.0), 29.9 (6.7)	
Fair	including stair	(64% males)	Between group difference NS p=0.31	
	climbing and balance		10 mater welk test (velecity in m/sec)	
	sessions similar		10 meter walk test (velocity in m/sec) A. 0.73 (0.20) to 0.80 (0.26) to 1.0 (0.25)	
	duration and number		B. 0.80 (0.25) to 0.94 (0.32) to 2.0 (0.28)	
	of sessions		B. 0.60 (0.25) 10 0.94 (0.52) 10 2.0 (0.26)	
			Change score pre to post, pre to followup	
			A. 0.072 (0.21), 0.272 (0.45)	
			B. 0.124 (0.27), 0.278 (0.49)	
			Between group difference NS p=0.41	
			Timed Up and Go	
			A. 13.9 (4.4) to 11.3 (3.7) to 10.3 (4.8)	
			B. 1401 (5.3) to 12.8 (3.3) to 11.0 (2.9)	
			Change score pre to post, pre to followup	
			A1.21 (0.40), -2.82 (0.51)	
			B2.72 (0.38), 3.52 (0.61)	
			Between group difference p=0.014 favoring B	
			GMFM-66	
			A. 64.7 (5.4) to 66.5 (5.8) to 66.5 (5.8)	
			B. 68.2 (10.3) to 71.5 (9.9) to 71.0 (10.6)	
			Change score pre to post, pre to followup	
			A. 1.96 (0.41), 1.98 (0.40)	
			B. 3.27 (0.38), 3.10 (0.44)	
			Between group difference p=0.001 favoring B	
			Overall measures improved from pre to post measures	
			and pre to followup measure showed a significant	
			improvement. No significant group by time differences	
	l	1	between groups at followup (ANOVA).	

Postintervention Race (%) Followup Ambulatory (%) Quality Wheelchair User (%) (See Appendix B Intervention and for Full Citation) Comparison Other (%) Prioritized Outcomes Aydin, 2014 A. Callisthenic	
QualityWheelchair User (%)(See Appendix B for Full Citation)Intervention and ComparisonWheelchair User (%) Condition Specific (%) Other (%)Prioritized OutcomesOther Outcomes	
for Full Citation) Comparison Other (%) Prioritized Outcomes Other Outcomes	
Avdin, 2014 A. Callisthenic A vs. B A vs. B. mean (SD) 2.68	ذ
exercises (in clinic): Age (mean years): 32.6 vs. 10MWT A vs. B, mean (SI	D)
Aerobic Exercise 60 sessions, over 12 33 10.81 (2.15) vs. 9.95 (1.92), p=0.211 (baseline) BBS	
	18.95 (5.38), p=0.369
(55%) Pre-post exercise intra-group comparison: Difference1.34 (baseline)	
	50.40 (5.27), p=0.700
12 weeks exercises (home- Ambulatory: NR (postintervention)	
	e intra-group comparison:
Fair over 12 weeks, (n=20) 10.63 (7.33) vs. 11.05 (5.73), p=0.762 (baseline) Difference 3.38 (2 vs. p=0.003	2.78) vs. 1.45 (1.85), p=0.001
7.4 Pre-post exercise intra-group comparison: Difference-1.94	
(2.35) -1.05 (1.32), p=0.002 vs. p=0.004	
BMI (cm/Kg2): 26.12 vs.	
25.25 HADS-D	
8.50 (3.74) vs. 6.75 (3.23), p=0.212 (baseline)	
EDSS: 3.6 vs. 3.4 6.13 (3.26) vs. 8.60 (2.41), p=0.011 (postintervention)	
Pre-post exercise intra-group comparison: Difference -	
1.94 (2.35) vs. 1.85 (1.60), p=0.003 vs. p<0.001	
63.69 (17.00) vs. 59.75 (14.06), p=0.293 (baseline)	
76.00 (18.81) vs. 69.00 (15.11), p= 0.119	
(postintervention) Pre-post exercise intra-group comparison:	
Difference12.31 (7.45) vs. 9.25 (6.99), p=0.001 vs.	
p<0.001	

Author, Year Intervention Type Duration of Postintervention		Population Age (Mean) Gender (% Female) Race (%)		
Followup Quality		Ambulatory (%) Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Azimzadeh, 2015	A. Tai Chi +	A vs. B	NA	A vs. B
	psychological	Age (mean years*): 37.5 vs.		BBS, mean (SD)
Postural Control	classes and physical	33 Female: 16 (100%) va. 19		52.25 (3.39) vs. 53.22 (2.23), p=0.496
Tai Chi	therapy: 24 sessions, 2 sessions per week	Female: 16 (100%) vs. 18 (100%)		(baseline) 53.94 (2.23) vs. 53.61 (2.14), p=0.546
	over 12 weeks	Race: NR		(postintervention)
Postintervention,	(n=16)	Ambulatory: NR		
12 weeks	(Wheelchair user: NR		
	B. Psychological			
Poor	classes and physical	Duration of MS less than 6		
	therapy. (control): 2	years: 5 vs. 4		
	sessions per week	Duration of MS 6 to 10		
	over 12 weeks	years: 3 vs. 6 Duration of MS more than 10		
	(n=18)	years: 8 vs. 7		
		EDSS: 0-1: 7 vs. 3		
		1.5-2.5: 4 vs. 6		
		3-4: 3 vs. 2 4.5-5.5: 2 vs. 1		
		4.5-5.5. 2 vs. 1		
		A vs. B		
		Age range*:		
		(n=16) vs. (n=18)		
		20 to 30 years: 6 (37%) vs.6 (33.3%)		
		31 to 40 years: 2 (12.5%) vs.		
		10 (55.6%)		
		41 to 50 years: 7 (43.8%) vs.		
		2 (11/1%) 51 to 60 years: 1 (6.2%) vs.		
		0 (0%)		
		*calculated		

Bahrami, 2019a Aerobic Exercise Treadmill Immediately	Intervention and Comparison A. Treadmill, 16 sessions over 8 weeks (n=15) B. Physiotherapy, 16 sessions over 8 weeks (n=15)	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%) A vs. B Age: 30 vs. 25 Female: 47% vs. 40% GMFCS I; 47% vs. 53% GMFCS II: 13% vs. 13% GMFCS III: 40% vs. 33%	Prioritized Outcomes A vs. B, Mean (SD); percentage change score, p=between groups 10MWT: 1.080 (0.47) to 1.22 (0.50) [22.46% change] vs. 0.99 (0.56) to 1.02 (0.61) [1.28% change], % change p<0.05 6MWT: 291.13 (160.28) to 342.63 (174.62) [23.68% change] vs. 276.10 (167.19) to 308.57 (181.22)[16.54% change], % change p>0.05 WHOQOL-Brief: 3.55 (.55) to 3.66 (0.59) [3.83% change] vs. 3.33 (0.69) 3.57 (0.67) [8.94% change], % change p>0.05	Other Outcomes NA
Baquet, 2018 Aerobic Exercise Cycling Postintervention, 12 weeks Fair	A. Bicycle ergometry, 24-36 sessions over 12 weeks (n=34)B. Waitlist control group (n=34)	A vs. B Age (mean years): 38.2 vs. 39.6 Female: 21 (62%) vs. 25 (74%) Race: NR Ambulatory: NR Wheelchair user: NR Other: RRMS 34 (100%) vs. 34 (100%)	A vs. B Mean Difference between groups: <u>6MWT</u> : 4.0, 95% CI -36.5 to 44.5, p=0.85 <u>25 foot walk</u> : -0.1, 95% CI -0.4 to 0.2, p=0.49 <u>MSWS</u> : -0.3, 95% CI -2.1 to 1.6, p=0.78 <u>HAQUAMS</u> : -0.4, 95% CI -4.5 to 3.7, p=0.84	NA

Author, Year Intervention Type		Population Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup Quality		Ambulatory (%) Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Bleyenheuft, 2017	A. Virtual reality	A vs. B	A vs. B, mean (SD)	A vs. B, mean (SD)
Dicychincuit, 2017	(HABIT-ILE): 13 6.4	Age (mean years): 10.5 vs.	A vs. b, mean (6b)	Pediatric Evaluation of Disability Inventory
Postural Control	hour sessions over	11.4	GMFM-66	(PEDI)
Balance	13 days (n=10)	Female: 4 (40%) vs. 5 (50%)	55 (5.9) vs. 55 (8.7), p=0.894, (baseline)	52 (12.4) vs. 51 (14.6), p=0.987, (baseline)
		Race: NR	62 (6.4) vs.57 (6.6), p<0.001, (postintervention)	60 (10.7) vs. 51 (15.8), p=0.001,
	B. Usual care control	Ambulatory: NR		(postintervention)
Postintervention,	(physical therapy): 2	Wheelchair user: NR	6MWT	
12 weeks	weeks (n=10)		190 (108.5) vs. 194 (101.1), p=0.940 (baseline)	Pediatric Balance Scale (PBS)
_		GMFCS level II: 2 vs. 2	236 (105.1) vs. 182 (101.1), p=0.026, p-value NS	33 (17.5) vs. 30 (23.9), p=0.749, (baseline)
Poor		GMFCS level III: 7 vs. 7	(postintervention)	42 (21.3) vs. 26 (23.2), p=0.002 NS,
		GMFCS level IV: 1 vs. 1		(postintervention)
				ABILOCO-Kids (Disability Inventory), logit (SD) -2.5 (2.1) vs1.4 (2.2), p=0.291, (baseline) (0.4 (1.7; 0.1), p=0.072 vs. 1.4 (2.6; 0.4), p=0.236 (postintervention)
Brichetto, 2015	A. Personalized	A vs. B	NA	BBS, mean (SD)
Destural Control	rehab (tailored to	Age (mean years): 50.1 vs.		46.5 (3.6) vs. 45.8 (6.6) (baseline)
Postural Control Balance	sensory impairment): 12 sessions over 4	51.0 Female: 11 (69%) vs. 12		52.8 (2.8) vs. 47.8 (6.1) (postintervention), p<0.001
Dalarice	weeks (n=16)	(75%)		p<0.001
	weeks (II-10)	Race: NR		
Postintervention, 4	B. Traditional rehab	Ambulatory: NR		
weeks	(visual rehab for	Wheelchair user: NR		
	balance disorders):			
Good	12 sessions over 4	Relapsing–remitting: 9		
	weeks (n=16)	(56%) vs.10 (63%)		
		Secondary progressive: 5		
		(31%) vs. 4 (25%)		
		Primary progressive: 2		
		(13%) vs. 2 (13%) Disease duration (years): 9.5		
		vs. 12		
		VO. 12		
		EDSS: 3.7 vs. 3.7		

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Bryant, 2013 Aerobic Exercise Cycling Postintervention, 12 weeks	A: Static bike group, 18 sessions over 6 weeks (n=11) B: Treadmill group, 18 sessions over 6 weeks (n=12)	A vs. C Age (mean years): 14.3 vs. 13.8 Female: 5 (45%) vs. 7 (58%) Race: NR	A vs. C, mean (SD) GMFM-66: NS B vs. C, mean (SD) GMFM-66: NS	NA
Fair	C: Control group no intervention (n=12)	Ambulatory: 0 (0%) vs. 0 (0%) Wheelchair user: 11 (100%) vs. 12 (100%) Other: CP: 100% had bilateral CP B vs. C Age (mean years): 13.5 vs. 13.8 Female: 3 (25%) vs. 7 (58%) Race: NR Ambulatory: 12 (100%) vs. 12 (100%) Wheelchair user: 12 (100%) vs. 12 (100%) Other: CP: 100% had bilateral CP		

Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of				
Postintervention		Gender (% Female)		
		Race (%)		
Followup		Ambulatory (%)		
Quality	Internetien end	Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)	Defectivities of Outersenses	044 0
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Bulguroglu, 2017	A. Mat Pilates: 16	A vs. B vs. C	Data reported as median (IQR)	Data reported as median (IQR)
	sessions over 8	Age (mean years): 45 vs. 37		
Muscle Strength	weeks (n=12)	vs. 40	A vs. C	A vs. C
		Female: NR	TUG (seconds):	ABC (0-100, higher=better balance):
Postintervention, 0	B. Reformer Pilates:	Race: NR	6.5 (5.2 to 7.0) vs. 5.2 (4.6 to 6.1) (baseline)	76.6 (62.7 to 92.7) vs. 90.6 (74.4 to 97.4)
weeks	16 sessions over 8	Ambulatory: 12 (100%) vs.	5.7 (5.0 to 6.5) vs. 4.9 (4.5 to 5.3) (postintervention)	(baseline)
	weeks (n=13)	13 (100%) vs. 13 (100%)		80.5 (71.7 to 97.3) vs. 91.9 (75.6 to 99.1)
Poor		Wheelchair user: NR	MSQoL-54-MCS (0-100, higher=increased QOL):	(postintervention)
	C. Usual care:	Duration of illness (mean	74.54 (65.43 to 83.41) vs. 75.65 (68.08 to 86.38)	
	relaxation and	years): 4.5 vs. 5 vs. 3	(baseline)	Modified pushup (repetitions/30 seconds):
	respiration exercises		77.23 (70.72 to 84.54) vs. 78.52 (64.77 to 89.21)	6.5 (1.25 to 14.25) vs. 7 (5 to 9) (baseline)
	at home for 16		(postintervention)	10 (6 to 20) vs. 7 (2.5 to 9.5) (postintervention)
	sessions over 8			
	weeks (n=13)		MSQoL-54-PCS (0-100, higher=increased QOL):	Modified sit-up (repetitions/30 seconds):
			74.54 (65.43 to 83.41) vs. 77.35 (68.17 to 88.31)	6 (0 to 15.5) vs. 4 (0 to 14) (baseline)
				7.5 (0 to 18.5) vs. 8 (0 to 14) (postintervention)
			75.8 (70.83 to 86.42) vs. 82.64 (66.77 to 91.27)	
			(postintervention)	Trunk flexor test (seconds):
				2.32 (0 to 10.25) vs. 6.46 (0 to 12.18)
			B vs. C	(baseline)
			TUG (seconds):	6 (2.17 to 17) vs. 6.4 (0.49 to 16.06)
			6.4 (5.0 to 8.9) vs. 5.2 (4.6 to 6.1) (baseline)	(postintervention)
			5.4 (4.9 to 7.1) vs. 4.9 (4.5 to 5.3) (postintervention)	Draws bridge (seconds):
				Prone bridge (seconds):
			MSQoL-54-MCS (0-100, higher=increased QOL):	18.29 (8.08 to 26.65) vs. 20.68 (9.62 to 29.94)
			74.58 (70.39 to 80.58) vs. 75.65 (68.08 to 86.38)	(baseline)
			(baseline)	25.23 (8.31 to 53.85) vs. 21.21 (10.70 to
			69.2 (65.86 to 71.41) vs. 78.52 (64.77 to 89.21)	24.98) (postintervention)
			(postintervention)	Rue C
			MSCal 54 DCS (0.100 bights	B vs. C
			MSQoL-54-PCS (0-100, higher=increased QOL):	ABC (0-100, higher=better balance): 60.4 (52.8 to 87.8) vs. 00.6 (74.4 to 07.4)
			71.14 (67.26 to 74.35) vs. 77.35 (68.17 to 88.31)	69.4 (52.8 to 87.8) vs. 90.6 (74.4 to 97.4)
			(baseline) 76.3 (74.39 to 83.37) vs. 82.64 (66.77 to 91.27)	(baseline) 69.4 (52.8 to 87.8) vs. 91.9 (75.6 to 99.1)
			(postintervention)	(postintervention)
				Modified pushup (repetitions/30 seconds):
				3 (1 to 11.5) vs. 4 (0 to 14) (baseline)
				10 (4 to 16) vs. 8 (0 to 14) (postintervention)
		1		

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Bulguroglu, 2017 (Continued)			A vs. B TUG (seconds): 6.5 (5.2 to 7.0) vs. 6.4 (5.0 to 8.9) (baseline) 5.7 (5.0 to 6.5) vs. 5.4 (4.9 to 7.1) (postintervention) -0.5 (-0.7 to -0.1) vs0.6 (-1.0 to 0.01), p=0.849 (post- pre change) MSQoL-54-MCS (0-100, higher=increased QOL): 74.54 (65.43 to 83.41) vs. 74.58 (70.39 to 80.58) (baseline) 77.23 (70.72 to 84.54) vs. 74.58 (70.39 to 80.58) (postintervention) 4.5 (1.7 to 5.9) vs. 5.1 (2.9 to 7.2), p=0.414 (post-pre change) MSQoL-54-PCS (0-100, higher=increased QOL): 74.54 (65.43 to 83.41) vs. 71.14 (67.26 to 74.35) (baseline) 75.8 (70.83 to 86.42) vs. 76.3 (74.39 to 83.37) (postintervention) 4.4 (2.1 to 7.1) vs. 6.3 (4.5 to 8.8), p=0.231 (post-pre change)	Modified sit-up (repetitions/30 seconds): 10 (0 to 21) vs. 4 (0 to 14) (baseline) 15 (2 to 22) vs. 8 (0 to 14) (postintervention) Trunk flexor test (seconds): 4.91 (0 to 11.80) vs. 6.46 (0 to 12.18) (baseline) 13.3 (1.35 to 23.73) vs. 6.4 (0.49 to 16.06) (postintervention) Prone bridge (seconds): 22.31 (4.72 to 44.71) vs. 20.68 (9.62 to 29.94) (baseline) 37.53 (14.63 to 60.73) vs. 21.21 (10.70 to 24.98) (postintervention) A vs. B ABCS (0-100, higher=better balance): 76.6 (62.7 to 92.7) vs. 69.4 (52.8 to 87.8) (baseline) 80.5 (71.7 to 97.3) vs. 69.4 (52.8 to 87.8) (postintervention) 5 (0.7 to 11.1) vs. 2.5 (0.2 to 16.9), p=0.913 (post-pre change) Modified pushup (repetitions/30 seconds): 6.5 (1.25 to 14.25) vs. 3 (1 to 11.5) (baseline) 10 (6 to 20) vs. 10 (4 to 16) (postintervention) 2 (1 to 4) vs. 2 (1.5 to 7), p=0.507 (post-pre change) Modified sit-up (repetitions/30 seconds): 6 (0 to 15.5) vs. 10 (0 to 21) (baseline) 7.5 (0 to 18.5) vs. 15 (2 to 22) (postintervention) 0 (0 to 1) vs. 1 (0 to 5.5), p=0.199 (post-pre change)

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Bulguroglu, 2017 (Continued)				Trunk flexor test (seconds): 2.32 (0 to 10.25) vs. 4.91 (0 to 11.80) (baseline) 6 (2.17 to 17) vs. 13.3 (1.35 to 23.73) (postintervention) 0.6 (IQR, 0 to 5.4) vs. 7.6 (0.5 to 10.8), p=0.044 (median, post-pre change) Prone bridge (seconds): 18.29 (8.08 to 26.65) vs. 22.31 (4.72 to 44.71) (baseline) 25.23 (8.31 to 53.85) vs. 37.53 (14.63 to 60.73) (postintervention) 6.2 (IQR, 0.4 to 30.1) vs. 9.1 (2.3 to 16.2),
Burschka, 2014 Postural Control Tai Chi Postintervention, 24 weeks Poor	A. Tai Chi: 48 sessions (2 sessions per week) over 24 weeks, 6 months (n=15) B. Usual care control: (n=17)	A vs. B Age (mean years): 42 vs. 43 Female: 10 (66%) vs. 12 (71%) Race: NR Ambulatory: 100% Wheelchair user: NR BMI: 24.2 vs. 25.5 MS duration (mean years): 6 vs. 7.8 MS Course Relapsing-remitting: 14 vs. 13 Secondary progressive: 0 vs. 4 Clinically isolated syndrome: 1 vs. 0 EDSS score <5: 100% vs. 100% EDSS (range, median): 1–4, median=2 vs. 1–4.5, median=4	A vs. B, mean (SD) Depression (15-item questionnaire Center for Epidemiological Studies Depression Scale CES-D) (ADS score) 12.21 (6.66) vs. 13.87 (10.82) (baseline) 7.67 (5.12) vs. 16.13 (11.99) (postintervention) Depression, main effect of time [F (1,27)=6.61, p<0.05, partial η 2=0.19] Time by Group interaction [F (1,27)=6.55, p<0.05, partial η 2=0.20] Quality of Life Questionnaire of Life Satisfaction (QLS - 7 item, 1–7 rating scale, max score 420 points) 215.77 (25.55) vs. 204.46 (27.77) (baseline) 232.57 (25.62) vs. 193.81 (36.2) (postintervention) QSL significant main effect Group [F (1,24)=8.64, p< 0.01, partial η 2 = 0.19]	p=0.957 (post-pre change) A vs. B, mean (SD) Balance (14 tasks, measured 1=achieved task, 0=failed task) Balance, 8.00 (2.83) vs. 6.88 (4.09) (baseline) 9.33 (2.26) vs. 6.53 (4.49) (postintervention) Coordination, main effect of time [F (1,30) = 4.89, p<0.05, partial η 2=0.14] Time by group interaction [F (1,30) =6.57, p<0.05, partial η 2=0.18]

Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Cakit, 2010	A. Progressive	A vs. B	Data reported as mean (SD)	Data reported as mean (SD)
Cakit, 2010	resistance cycling +	(data only for those that	A vs. B	A vs. B
Multimodal	balance exercises	completed the study: n=14		
Exercise	(lower extremity	vs. 9)	BDI (0-63, higher=worse depression):	FES (0 to 100; higher scores=increased
Exclose	strengthening): 16	Age (mean years): 36.4 vs.	22.8 (12.7) vs. 27.0 (17.6), p=NR (baseline)	confidence in performing ADL):
Postintervention, 0	sessions over 8	35.5	17.2 (12.3) vs. 25.4 (22.8), p=NR (postintervention)	19.7 (11.7) vs. 32.4 (24.1), p=NR (baseline)
weeks	weeks (n=14)	Female: 9 (64%) vs. 6 (67%)	-5.5 (5.3) vs1.6 (6.0), p=<0.05 (pre-post change)	8.3 (5.6) vs. 29.8 (24.1), p=NR
		Race: NR		(postintervention)
Poor	B. Usual care (n=9)	Ambulatory: NR	TUG (seconds):	-11.3 (7.8) vs2.6 (3.1), p<0.01 (pre-post
	- (-)	Assistive device: 4 (28.5%)	10.7 (1.4) vs. 14.6 (9.1), p=NR (baseline)	change)
		vs. 3 (37.5%)	9.3 (0.8) vs. 14.4 (9.5), p=NR (postintervention)	3,
		Duration of MS (mean	-1.3 (1.2) vs0.2 (0.8), p<0.05 (pre-post change)	
		years): 9.2 vs. 6.6		
		Fall frequency last year	10MWT (seconds):	
		(mean): 2.0 vs. 2.4	12.0 (2.4) vs. vs. 12.2 (3.1), p=NR (baseline)	
			10.0 (1.6) vs. 12.3 (3.2), p=NR (postintervention)	
			-1.9 (1.2) vs. 0.1 (0.8), p<0.05 (pre-post change)	
			DGI (0-24; ≥16 high risk for falls, <19 decreased risk for	
			falls):	
			17.4 (4.4) vs. 16.4 (4.9), p=NR (baseline)	
			20.1 (3.8) vs. 16.8 (5.7), p=NR (postintervention)	
			2.7 (0.5) vs. 0.4 (0.4), p<0.01 (pre-post change)	
			SF-36 subscale - Physical Functioning	
			43.3 (16.6) vs. 43.2 (17.7) (baseline)	
			64.6 (18.6) vs. 51.0 (20.5) (postintervention)	
			21.2 (14.4) vs. 7.7 (7.4) (pre-post change)	
			SF-36 subscale - Role-physical Function	
			15.9 (23.1) vs. 30.0 (20.9) (baseline)	
			50.0 (43.3) vs. 35.0 (37.1) (postintervention)	
			34.0 (30.1) vs. 5.0 (44.7) (pre-post change)	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Cakit, 2010 (Continued)			SF-36 subscale - Bodily pain 60.6 (25.5) vs. 72.0 (28.9) (baseline) 69.5 (28.7) vs. 76.0 (29.9) (postintervention) 8.8 (5.8) vs. 4.0 (4.0) (pre-post change) SF-36 subscale - General Health	
			50.1 (17.6) vs. 64.8 (13.9) (baseline) 54.5 (21.5) vs. 68.0 (23.4) (postintervention) 4.3 (8.4) vs. 3.2 (11.7) (pre-post change) SF-36 subscale - Vitality 40.9 (16.2) vs. 53.0 (14.8) (baseline)	
			50.0 (27.2) vs. 64.0 (21.6) (postintervention) 9.0 (19.3) vs. 11.0 (20.4) (pre-post change) SF-36 subscale - Social Functioning 62.5 (25.6) vs. 65.0 (1.1) (baseline) 65.9 (28.0) vs. 70.0 (27.3) (postintervention)	
			3.4 (23.1) vs. 5.0 (16.7) (pre-post change) SF-36 subscale - Role-emotional functioning 33.3 (36.4) vs. 66.6 (47.1) (baseline) 57.5 (44.9) vs. 86.6 (18.2) (postintervention)	
			24.2 (49.6) vs. 19.9 (50.5) (pre-post change) SF-36 subscale - Mental health 35.0 (19.6) vs. 38.0 (15.6) (baseline) 42.2 (22.7) vs. 45.0 (21.5) (postintervention) 7.2 (13.4) vs. 7.0 (6.7) (pre-post change)	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Calabro, 2017	A. Lokomat-Nanos	A vs. B	A.	Α.
	(RAGT), 40 sessions	Age (mean years):	TUG	HRSD
Intervention type:	over 8 weeks (n=20)	41 vs. 44	T0: 9.8, T1: 8, p=0.002	T0: 12, T1: 7, p=0.003
		Female:	Initial 10, T1 7.9, p=0.001	T0: 10, T1: 6, p<0.001
Aerobic Exercise	В.	60 (%) vs. 65 (%)	BBS	
Robot-Assisted	Lokomat-Pros		T0: 36, T1:44, p=0.003	
Gait Training	(RAGT + VR, 40	Race: NR	T0:35, T1:50, p<0.001	
	sessions over 8		MAS	
Postintervention, 8	weeks (n=20)	Ambulatory:	T0:1.5, T1:0.5, p=0.2	
weeks		NR	T0:2, T1:1, p=0.1	
		Wheelchair user:		
Good		NR	T0:89, T1:92, p=0.3	
		Otherm	T0:87, T2:89, p=0.4	
		Other:		
		disease duration mean: 11.5		
		years vs. 11.5 years		
		EDSS 4.75 vs. 4.4		
		years of education 10 vs. 11		
		years of education to VS. 11		

Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Callesen, 2019	A. Progressive	A vs. B vs. C	Mean change scores (95% CI); mean difference (MD)	MiniBEST
	resistance training	Median age: 52 vs. 51 vs. 56	between groups (95% CI)	2.1 (0.8 to 3.4) vs. 0.9 (-0.4 to 2.2), MD 1.1
Postural Control	(n=23): 20 sessions	years	A vs. C	(−0.7 to 2.9), p=0.24
Balance exercises	over 10 weeks	, Female: 70% vs. 82% vs.	6MWT (meters)	
	-Median number of	80%	22.8 (4.6 to 41.0) vs. 11.3 (-6.0 to 28.5), MD 12.6 (-11.3	MiniBEST
Strength	sessions completed	Race: NR	to 36.5), p=0.30	4.1 (3.0 to 5.2) vs. 2.1 (0.8 to 3.4), MD 2.2 (0.5
interventions	(range): 17 (8 to 19)	Ambulatory: 100% vs. 100%		to 3.9), p=0.01
Muscle Strength		vs. 100%	MSWS	
Exercises	B. Balance training	Gait assistive devices: 17%	-6.5 (3.0 to 10.1) vs1.3 (-2.2 to 4.7), MD -4.2 (-10.0 to	
	(n=28): 20 sessions	vs. 11% vs. 10%	1.6), p=0.16	
	over 10 weeks	Median duration of illness:		
Postintervention,	-Median number of	15 vs. 10 vs. 11 years	25FWT (meters/second)	
10 weeks	sessions completed	MS type	0.06 (-0.01 to 0.13) vs. 0.04 (-0.03 to 0.11), MD 0.02	
	(range): 16 (6 to 20)	- Relapsing remitting: 70%	(-0.08 to 0.13), p=0.66	
Fair		vs. 75% vs. 65%		
	C. Waitlist control	- Secondary progressive:	SSST (seconds)	
	(n=20)	22% vs. 14% vs. 15%	-0.9 (-2.0 to 0.2) vs0.4 (-1.5 to 0.7), MD -0.5 (-2.1 to	
		- Primary progressive: 70%	1.0), p=0.52	
		vs. 9% vs. 20%		
		Median EDSS: 4 vs. 4 vs.	B vs. A	
		3.5	6MWT (meters)	
			28.5 (13.6 to 43.4) vs. 2.8 (4.6 to 41.0), MD 4.9 (-17.5 to	
			27.3), p=0.67	
			MSWS	
			−9.3 (6.3 to 12.3) vs. −6.5 (3.0 to 10.1), MD −3.1 (−8.2 to	
			2.0), p=0.23	
			25FWT (meters/second)	
			0.14 (0.08 to 0.20) vs. 0.06 (-0.01 to 0.13), MD 0.08	
			(-0.02 to 0.18), p=0.11	
			SSST (accorde)	
			SSST (seconds) -2.6 (-3.6 to -1.7) vs0.9 (-2.0 to 0.2), MD -1.7 (-3.1 to	
	l		–0.2), p=0.02	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Carling, 2017 Postural Control Balance Postintervention, 7 weeks Fair	A. Group CoDuSe balance exercises: 14 sessions over 7 weeks (n=23) B. Waitlist (Late start) controls: (n=25)	A vs. B Age (mean years): 62 vs. 55 Female: 19 (76%) vs. 16 (62%) Race: NR Ambulatory: 100% RRMS: 0% vs. 23% SPMS: 68% vs. 58% PPMS: 32% vs. 19% Baseline EDSS: 6.16 vs. 6.06 Baseline No Falls: 48% vs. 46% Baseline Multiple Falls: 20%	A vs. B TUG: MD 4.41 SE 3.17, p=0.17 2MWT: -3.24 SE 3.37, p=0.34 Sit to Stand: 0.24 SE 2.12, p=0.91 10MWT: 1.49 SE 3.84, p=0.70 Falls Efficacy Scale International: -1.66 SE 2.39, p=0.49 MS Walking Scale: -7.21 SE 3.60, p=0.051 Trend for falls before treatment, during treatment, after treatment in control group only: -1.24 (1.66), p<0.001	BBS: MD 3.65 SE 1.44, p=0.015
Castro-Sanchez, 2012 Aerobic Exercise Aquatics Postintervention, 20 weeks, and 30 weeks Good	 A. Ai-Chi aqua therapy with Tai-Chi music, 40 sessions over 20 weeks (n=36) B. Same exercises as group A on exercise mat without music, 40 sessions over 20 weeks (n=37) 	vs. 35% A vs. B Age: 46 vs. 50 Female: 72% vs. 65% EDSS: 6.3 vs. 5.9 PPMS: 17% vs. 24% SPMS: 25% vs. 32%	A vs. B, Median (SD), p-value=between groups: MSIS-29 Physical: 48 (15.91) to 41 (12.37) vs. 46 (18.34) to 45 (17.14), p=0.014 MSIS-29 Psychological: 34 (29.47) to 21 (15.73) vs. 30 (23.53) to 25 (19.36), p=0.023 Differences in MSIS-29 maintained at 30 weeks BDI: 14 (7.72) to 5 (3.2) vs. 15 (8.68) to 13 (5.91), p<0.05 Mean (SD) baseline to post-intervention, p-value between groups: Spasm VAS: 5 (2.8) to 2 (4.3) vs. 6 (3.1) to 4 (4.5), 91% improvement vs. 10% improvement, p<0.05	Barthel Index: 91 (7.12) to 86 (9.23) vs. 87 (10.34) to 88 (8.92), p>0.05

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Chen, 2016	A. Pulmonary	A vs. B	Data reported as mean (SD)	NR
Muscle Strength 8 weeks – mid intervention 16 weeks – mid intervention Post–52–week intervention 4 weeks Fair	rehabilitation: 365 sessions over 52 weeks (n=49) B. Usual care (n=49)	Age (mean years): 62.3 vs. 63.1 Female: 0 (0%) vs. 0 (0%) Race: NR Ambulatory: NR Wheelchair user: NR Injury Level -T1–2: 17 (35%) vs. 17 (35%) -T3–4: 16 (33%) vs. 16 (33%) -T5–6: 16 (33%) vs. 16 (33%)	A vs. B FEV1 1.17 (0.25) vs. 1.17 (0.47), p>0.05 (baseline) 1.69 (0.39) vs. 1.16 (0.46), p<0.05 (8 weeks, mid intervention) 2.20 (0.44) vs. 1.17 (0.46), p<0.05 (16 weeks, mid intervention) 2.20 (0.45) vs. 1.14 (0.44), p<0.05 (postintervention) 1.18 (0.27) vs. 1.16 (0.46), p>0.05 (4-week followup) FVC 2.16 (0.36) vs. 2.16 (0.42), p>0.05 (baseline) 2.66 (0.57) vs. 2.17 (0.42), p<0.05 (8 weeks, mid intervention) 2.95 (0.56) vs. 2.17 (0.42), p<0.05 (16 weeks, mid intervention) 2.95 (0.54) vs. 2.17 (0.42), p<0.05 (postintervention) 2.15 (0.35) vs. 2.16 (0.42), p>0.05 (4-week followup) MVV 50.5 (11.8) vs. 50.5 (11.8), p>0.05 (baseline) 64.4 (12.4) vs. 50.5 (11.1), p<0.05 (8 weeks, mid intervention) 75.1 (6.8) vs. 53.8 (11), p<0.05 (16 weeks, mid intervention)	

Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Chen, 2016			EV1/FVC:	
			0.53 (0.17) vs. 0.53 (0.17), p>0.05 (baseline)	
(Continued)			0.65 (0.15) vs. 0.53 (0.16), p<0.05 (8 weeks, mid	
			intervention)	
			0.75 (0.07) vs. 0.53 (0.15), p<0.05 (16 weeks, mid	
			intervention)	
			0.75 (0.08) vs. 0.52 (0.15), p<0.05 (postintervention)	
			0.56 (0.12) vs. 0.53 (0.16), p>0.05 (4-week followup)	
			SF-36 Subscale - Physical function	
			54.2 (7.8) vs. 54.2 (7.8), p>0.05 (baseline)	
			73.8 (7.1) vs. 54.5 (7.57), p<0.05 (8-weeks, mid-	
			intervention)	
			79.8 (12.0) vs. 54.4 (8.0), p<0.0 (16 weeks, mid-	
			intervention)	
			81.1 (3.1) vs. 54.4 (7.7), p<0.05 (postintervention)	
			54.4 (8.0) vs. 54.6 (7.9), p>0.05 (4-week followup)	
			SF-36 Subscale - Social function	
			50.6 (11.8) vs. 50.6 (11.8), p>0.05 (baseline)	
			3.7 (6.2) vs. 51.9 (10.9), p<0.05 (8-weeks, mid-	
			intervention)	
			79.6 (5.4) vs. 50.5 (11.8), p<0.05 (16 weeks, mid-	
			intervention)	
			80.1 (9.4) vs. 51.2 (11.0), p<0.05 (postintervention)	
			51.2 (11.0) vs. 50.6 (11.8), p>0.05 (4-week followup)	
			SF-36 Subscale - Role emotional	
			54.3 (7.85 vs. 5.3 (6.9), p>0.05 (baseline)	
			64.4 (12.0) vs. 54.4 (7.7), p<0.05 (8-weeks, mid-	
			intervention)	
			75.1 (6.8) vs. 54.5 (7.5), p<0.05 (16 weeks, mid-	
			intervention)	
			76.3 (7.3) vs. 54.3 (7.8), p<0.05 (postintervention)	
			54.2 (7.8) vs. 54.4 (7.7), p>0.05 (4-week followup)	
			$10^{-1.2}$ (1.0) vo. $0^{-1.7}$ (1.1), pr 0.00 (-10^{-10} controllowup)	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Chen, 2016	•		SF-36 Subscale - Mental health	
(Continued)			54.1 (7.7) vs. 54.2±7.8, p>0.05 (baseline) 64.3 (12.0) vs. 54.6±7.9, p<0.05 (8-weeks, mid- intervention) 75.3 (6.7) vs. 54.1±7.7, p<0.05 (16 weeks, mid- intervention) 75.1 (6.8) vs. 54.2±7.8, p<0.05 (postintervention) 54.2 (7.8) vs. 54.2±7.8, p>0.05 (4-week followup)	
			SF-36 Subscale - Body pain 51.6 (11.3) vs. 51.2 (11.0), p>0.05 (baseline) 52.7 (11.9) vs. 50.6 (11.8), p>0.05 (8-weeks, mid- intervention) 52.2 (10.5) vs. 51.6 (11.3), p>0.05 (16 weeks, mid- intervention) 51.9 (10.8) vs. 51.5 (10.6), p>0.05 (postintervention) 51.5 (10.6) vs. 51.9 (10.8), p>0.05 (4-week followup)	

Muscle Strength Immediately Postintervention, 6 weeks Poor	(FPRE), 12 sessions over 6 weeks (n=13) B. Control group, Conventional	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%) A vs. B Age (mean years): 5.54 vs. 7.17 Female: 9 (69%) vs. 4 (33%) Race: NR Ambulatory: 100% Wheelchair user: NR GMFM Classification Level (1-4 higher scores=physical impairments): 2.08 vs. 2.33 GMFM score: 69.98 vs. 68.15 BMI (Z-score, mean): 0.14 vs. 0.60	Prioritized Outcomes A vs. B, mean (SD) GMFM-88 score 69.98 (21.55) vs. 68.15 (27.15) (baseline) 71.78 (21.05) vs. 63.48 (27.48) (postintervention), p=0.019 for group A and 0.375 for group B for change from baseline Increase pre-post for FPRE group p=0.019; control group showed no significant difference, p=0.375.	Other OutcomesA vs. B, mean (SD)Dynamic Balance, Forward functional reach test (F-FRT):21.62 (6.87) vs. 28.17 (14.49) (baseline) 26.65 (7.92), p=0.000 vs. 25.37 (10.20), p=0.261 (postintervention)Dynamic Balance, Side functional reach test (S-FRT):11.57 (5.72) vs. 15.52 (10.43) (baseline) 16.21 (5.37), p=0.003 vs. 15.95 (8.26), p=0.793 (postintervention)Knee extensor muscle strength, non-dominant side: 40.62 (30.61) vs. 34.54 (28.55) (baseline) 51.24 (33.58), p=0.048 vs. 40.59 (29.50), p=0.062 (postintervention)Knee extensor muscle strength, dominant side 30.45 (27.57) vs. 41.61 (34.00) (baseline) 52 39 (33.13) p=0.010) vs. 43.12 (32.17)

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Chrysagis 2012	A. Treadmill training 30 minutes at comfortable speed 3	GMFCS I-III n=22	GMFM (Gross Motor Function Measure) (average D [standing] and E [walking] subscales) A. 67.81 (18.22) to 71.67 (18.22)	NA
Aerobic Exercise Treadmill	times a week for 12 weeks	mean age 16.9 years	B. 64.45 (18.61) to 65.1(16.53) Difference between groups F=9.088, p=0.007 Medium effect size d=0.38 95% CI -0.50 to 1.26	
Postintervention, 0 weeks Fair	B. Conventional physical therapy 3 times a week for 12 weeks	13 males and 9 females (59% male)	MAS (spasticity) Knee extensors A. 2.59(0.62) to 2.27 (0.60) B. 2.00(0.54) to 1.51(0.56) No difference between groups F=0.237, p=0.827	
			Knee flexors A. 2.45 (0.68) to 2.12(0.67) B. 2.40(0.66) to 2.18 (0.71) No difference between groups F=0.237, p=0.632	
			Foot plantar flexors A. 2.50(0.50) to 2.18(0.56) B. 2.40 (0.62) to 2.22 (0.56) No difference between groups F=0.570, p=0.046	

	Population		
Intervention and			
		Prioritized Outcomes	Other Outcomes
			A vs. C
			BBS:
			45.1 (12.2) vs. 46.7 (7.0), p>0.05 (baseline)
			49.0 (11.5) vs. 48.5 (7.7) (postintervention)
			3.9 (4.4) vs. 0.2 (7.5) (pre-post change)
			10.0% (11.8%) vs. 3.9% (5.8%) (pre-post %
B. Whole body light			change)
vibration +	Wheelchair user: NR		Time X Group p>0.05
conventional therapy:	Disease duration (mean	3 minute walk test (meters):	
10 sessions over 3			B vs. C
weeks (n=18)	EDSS: 5.3 vs. 5.1 vs. 5.2	195.9 (103.3) vs. 162.3 (62.0) (postintervention)	BBS:
		45.0 (42.6) vs. 20.4 (27.95) (pre-post change)	43.0 (13.3) vs. 46.7 (7.0), p>0.05 (baseline)
C. Conventional		38.7% (40.3%) vs. 15.8% (20.3%) (pre-post % change)	47.2 (12.7) vs. 48.5 (7.7) (postintervention)
therapy (n=17)		Time X Group p>0.05	4.2 (6.1) vs. 0.2 (7.5) (pre-post change)
			12.0 (19.4) vs. 3.9% (5.8%) (pre-post %
			change)
participated in a			Time X Group p>0.05
minimum 3–week			
			A vs. B
			BBS:
			45.1 (12.2) vs. 43.0 (13.3), p>0.05 (baseline)
		Time X Group p>0.05	49.0 (11.5) vs. 47.2 (12.7) (postintervention)
			3.9 (4.4) vs. 4.2 (6.1) (pre-post change)
therapies)]			10.0% (11.8%) vs. 12.0 (19.4) (pre-post %
			change)
			Time X Group p>0.05
		Ave B	
		Time X Group p>0.05	
	10 sessions over 3 weeks (n=20) B. Whole body light vibration + conventional therapy: 10 sessions over 3 weeks (n=18) C. Conventional therapy (n=17) [All patients participated in a	ComparisonOther (%)A. Whole body vibration + conventional therapy: 10 sessions over 3 weeks (n=20)A vs. B vs. C Age (mean years): 39.1 vs. 43.8 vs. 47.6 Female: 6 (28.6%) vs. 4 (22.2%) vs. 11 (64.7%) Race: NRB. Whole body light vibration + conventional therapy: 10 sessions over 3 weeks (n=18)A vs. B vs. C Age (mean years): 39.1 vs. 43.8 vs. 47.6 Female: 6 (28.6%) vs. 4 (22.2%) vs. 11 (64.7%) Race: NR Mbulatory: NR Wheelchair user: NR Disease duration (mean years): 12.1 vs. 12.5 vs. 10.3 EDSS: 5.3 vs. 5.1 vs. 5.2C. Conventional therapy (n=17)EDSS: 5.3 vs. 5.1 vs. 5.2[All patients participated in a minimum 3–week multi–disciplinary rehabilitation program which included daily PT/OT 	Age (Mean) Gender (% Female) Race (%)Age (%) Ambulatory (%) Wheelchair User (%)Prioritized OutcomesA. Whole body vibration + conventional therapy: 10 sessions over 3 weeks (n=20)A vs. B vs. C Age (mean years): 39.1 vs. 13.4 (9.8) vs. 15.6 (9.3), p>0.05 (baseline) 12.6 (11.3) vs. 14.8 (10.2) (opstintervention) -0.8 (2.3) vs. 0.8 (5.5) (pre-post % change) -9.1% (19.5%) vs4.9% (23.6%) (pre-post % change) -9.1% (19.5%) vs4.9% (23.6%) (pre-post % change) Time X Group p>0.05B. Whole body light weeks (n=18)Ambulatory: NR Disease duration (mean years): 12.1 vs. 12.5 vs. 10.3 EDSS: 5.3 vs. 5.1 vs. 5.23 vs. 47 150.9 (89.4) vs. 14.3 (36.7), p>0.05 (baseline) 150.9 (89.4) vs. 15.6 (9.3), p>0.05 (baseline) 150.9 (89.4) vs. 14.3 (36.7), p>0.05 (baseline) 150.9 (89.4) vs. 15.6 (9.3), p>0.05 (baseline) 195.9 (103.3) vs. 162.3 (62.0) (postintervention) 45.0 (42.6) vs. 20.4 (27.95) (pre-post % change) Time X Group p>0.05[All patients participated in a minimum 3-week multi-disciplinary rehabilitation program which included daily PT/OT sessions (+ other therapies]]B vs. C TUG (seconds): minimum 3-week multi-disciplinary rehabilitation Program which included daily PT/OT sessions (+ other therapies])B vs. C TUG (seconds): min walk test (meters): 172.2 (82.7) vs. 14.8 (10.2) (postintervention) -3.2 (4.7) vs. 0.4 (27.9%) (pre-post % change) Time X Group p>0.05B vs. C TUG (seconds): min walk test (meters): 172.2 (82.7) vs. 14.8 (60.2) (postintervention) -3.2 (4.7) (vs. 16.2.0) (postintervention) -3.2 (4.7) (vs. 16.3 (8.0), p-0.05 (baseline) 11.4 (5.3) vs. 14.8 (60.2) (postintervention) -3.7 (43.3) vs. 20.4 (27.9%) vs. 15.6 (9.3), p-0.05 (baseline) 13.4 (9.8) vs. 14.

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Claerbout, 2012			3 min walk test (meters):	
(Continued)			150.9 (89.4) vs. 143.3 (58.7), p>0.05 (baseline) 195.9 (103.3) vs. 209.6 (74.2) (postintervention) 45.0 (42.6) vs. 37.4 (34.3) (pre-post change) 38.7% (40.3%) vs. 31.8% (37.2%) (pre-post % change) Time X Group p>0.05	
Collett, 2010	A. Combined intermittent and	A vs. B vs. C Age (mean years):	A vs. B vs. C (SD) Change post-intervention: no data provided	Barthel Index Total, Leg Power: All NS
Aerobic Exercise	continuous static	55 vs. 50 vs. 52	onango pool intervention. No data provided	
Cycling	cycling, 24 sessions over 12 weeks	Female: 9 (53%) vs. 14 (78%) vs. 16	2MWT, SF-36 total, TUG: All NS	
Postintervention, 12 weeks	(n=20)	(80%)		
Poor	B. Intermittent static cycling, 24 sessions	Race: NR		
	over 12 weeks (n=21)	Ambulatory: 20 (100%) vs. 21 (100%) vs. 20 (100%)		
	C. Continuous static cycling, 24 sessions	Wheelchair user: NR		
	over 12 weeks	Other:		
	(n=20)	MS subtypes NR		

Author, Year Population Intervention Type Age (Mean) Duration of Gender (% Female)	
Postintervention Race (%)	
Followup Ambulatory (%)	
Quality Wheelchair User (%) (See Appendix B Intervention and Condition Specific (%)	
	0000
	omes
Curtis, 2018 A. Trunk control A vs. B A vs. B A vs. B	
training: 120 Age (mean years): 8 vs. 8	
Postural Control sessions over 24 Female: 3 (21%) vs. 7 (50%) GMFM-66 PEDI Self Call Balance weeks (n=14) Race: NR 36.6 (10.6) vs. 35.3 (9.7) (baseline) 40.0 (10.7) vs. 35.3 (9.7) (baseline)	
	vs. 38.3 (14.5) (baseline)
	vs. 36.5 (17.4), p=NR
Postintervention, B. Usual care (n=14) Wheelchair user: NR 36.9 (10.3) vs. 35.7 (10.9), p=NR (24-week followup) (postinterver	
	vs. 41.7 (18.0), p=NR (24-week
-Spactic: 7 (50%) vs. 9 p>0.05) (pre-post change) followup) Fair (64%) 0.3 (2.9) vs. 0.5 (4.7); MD 0.1 (95% CI –3.6 to 3.3, 1.5 (4.2) vs.	1 8 (10 2) n>0 05 (nro noot
	−1.8 (10.2), p>0.05 (pre-post
-Dyskinetic: 7 (50%) vs. 5 p>0.05) (prefollowup change) change)	24(62) n>0.05 (profollow/up
	3.4 (6.3), p>0.05 (prefollowup
-Ataxic: 0 vs. 0 SATCO Static, median (quartiles) change) GMFCS 2 (1:4) vs. 1 (1:4.5) (baseline)	
	are – Caregiver Assistance:
	vs. 28.6 (22.0) (baseline)
	vs. 27.1 (23.3), p=NR
0 (-0.23.0.23) vs. $0 (0.0), p>0.05 (pre-post charge) (postinterver0 (-1.1) vs. 0 (0.0), p>0.05 (prefollowup change) (postinterver$	
	vs. 28.2 (24.2), p=NR (24-week
SATCO Active, median (quartiles) followup)	vs. 20.2 (24.2), p=NR (24-week
	−1.5 (8.4), p>0.05 (pre-post
2.5 (1:5) vs. 1 (1:2.5), p=NR (postintervention) change)	1.5 (0.4), p ² 0.05 (pre-post
	s. −0.4 (8.9), p>0.05 (prefollowup
0 (0:0.25) vs. 0 (0:0), p>0.05 (pre-post change) change)	3. 0.4 (0.5), p ² 0.00 (preionowap
0 (0:0), p>0.05 (prefollowup change)	
PEDI Mobilit	ty
	vs. 24.3 (17.3) (baseline)
	vs. 25.3 (20.0), p=NR
3 (2:4) vs. 5 (1:6), p=NR (postintervention) (postintervention)	
	vs. 25.4 (20.0), p=NR (24-week
0 (0.1) vs. 0 (-0.5:1), p>0.05 (pre-post change) followup)	
	1.0 (7.6), p>0.05 (pre-post
change)	
	1.1 (6.4), p>0.05 (prefollowup
change)	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Curtis, 2018				PEDI Mobility – Caregiver Assistance
(Continued)				29.2 (18.3) vs. 23.7 (22.8) (baseline) 30.3 (20.0) vs. 22.8 (26.5), p=NR (postintervention)
				25.0 (19.5) vs. 23.0 (25.3), p=NR (24-week followup)
				1.1 (12.6) vs. −0.9 (6.6), p>0.05 (pre-post
				change)
				−4.2 (17.2) vs. −0.6 (5.8), p>0.05 (prefollowup change)

Author Voor		Deputation		
Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Dalgas, 2009	A. Progressive	A vs. B (according per-	Data reported as mean (95% CI)	Data reported as mean (95% CI)
Dalgas, 2010	resistance: 24	protocol analysis)	A vs. B (according per-protocol analysis)	A vs. B (according per-protocol analysis)
	sessions over 12	Age (mean years): 45 vs. 48		
Muscle Strength	weeks (n=15)	Female: 10 (63%) vs. 10	MDI (20 to 24, mild depression; 25 to 29, moderate	Max leg press (pounds):
		(67%)	depression; >29, major depression):	102.4 (95% CI 76.7 to 128.1) vs. NR
Postintervention, 0	B. Usual care	Race: NR	10.3 (95% CI 7.0 to 13.5) vs. 8.8 (95% CI 6.4 to 11.3)	(baseline)
weeks	(continue previous	Ambulatory: 15 (100%) vs.	(baseline)	140.1 (95% CI 112.1 to 168.1) vs. 86.4 (72.4
	activity level) (n=16)	16 (100%)	7.9 (95% CI 5.2 to 10.6) vs. 9.9 (95% CI 7.4 to 12.5)	to 100.4) (postintervention)
Dalgas, 2009: Fair		Wheelchair user: NR	(postintervention)	37.1% (95% CI 26.6 to 47.6) vs. NR; MD NR,
to Good			NR vs. NR; MD NR, p=0.01 (post-pre change)	p=NR (post-pre % change)
Dalgas, 2010: Poor				
			SF-36 MCS (0-100, higher=better QOL):	EDSS (0-10, higher=greater disability):
			54.3 (95% CI 50.4 to 58.2) vs. 55.0 (95% CI 50.5 to 59.5)	3.7 (95% CI 3.2 to 4.2) vs. 3.9 (95% CI 3.5 to
				4.4), p>0.05 (baseline)
			56.8 (95% CI 52.4 to 61.2) vs. 53.1 (95% CI 49.3 to 56.8)	3.9 (95% CI 3.3 to 4.6) vs. 4.0 (95% CI 3.4 to
			(postintervention)	4.6) (postintervention)
			NR vs. NR; MD NR, p=0.09 (post-pre change)	3.9% (95% CI -3.4% to 11.2%) vs0.7% (95%
				CI -9.3 to 7.9); MD NR, p=NR (post-pre %
			SF-36 PCS (0-100, higher=better QOL):	change)
			41.4 (95% CI 37.5 to 45.3) vs. 42.6 (95% CI 38.5 to 46.6)	
			44.9 (95% CI 40.9 to 48.9) vs. 41.6 (95% CI 37.8 to 45.4)	
			(postintervention)	
			NR vs. NR; MD NR, p=0.01 (post-pre change)	
			6NIN/T (motoro):	
			6MWT (meters): 440.9 (95% CI 346.0 to 535.7) vs. 437.8 (95% CI 367.8 to	
			507.9) (baseline) 495.4 (95% CI 401.2 to 589.6) vs. 436.2 (95% CI 355.6 to	
			516.7) (postintervention) 15.3% (95% CI 9.8 to 20.9) vs. 3.9% (95% CI -1.2 to 8.9);	
			MD NR, p<0.05 (post-pre % change)	
			10MWT (seconds):	
			7.7 (95% CI 5.6 to 9.7) vs. 7.3 (95% CI 5.9 to 8.6)	
			(baseline)	
			6.6 (95% CI 4.9 to 8.4) vs. 7.9 (95% CI 6.0 to 9.9)	
			(postintervention)	
			-12.3% (95% CI -16.8 to -7.9) vs. 6.7% (95% CI -0.7 to	
			14.1); MD NR, p<0.05 (post-pre % change)	
			ן אוין מאויא איין איין איין אויע אויא איין איין איין איין איין איין איין	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Demuth, 2012 Companion to: Fowler, 2010 Aerobic Exercise Cycling Postintervention, 0 weeks Fair	A. Stationary cycling, 30 sessions over 12 weeks (n=33) B. Control No Intervention (n=31)	A vs. B Age (mean years): 10.7 vs. 11.2 Female: 13 (42%) vs. 20 (65%) Race: African-American 5 (16%) vs. 3 (10%) White 18 (58%) vs. 15 (48%) Asian 1 (3%) vs. 5 16(%) Other 7 (23%) vs. 8(26%) Ambulatory: 33 (100%) vs. 31 (100%) Wheelchair user: NR Other:	A vs. B (SD) <u>GMFM-66:</u> Change from baseline: 1.2, 95% Cl 0.5 to 1.8) vs. 0.5, 95% Cl -0.2 to 1.3, between groups p=0.23 <u>600-Yard Walk-Run Test:</u> Change from baseline: 5.6, 95% Cl 1.6 to 9.5 vs. 2.5, 95% Cl -1.1 to 6.0, p=0.24 <u>Peds Quality of Life Total Score:</u> Mean difference between groups: 3.5, 95% Cl -2.0 to 8.8, p=0.21 PedsQL Emotional Functioning 55.6 (NR) vs. 68.1 (NR) (baseline) 64.7 (NR) vs. 68.3 (NR); p=0.046 (postintervention) PedsQL Physical Functioning, Psychosocial Health Summary, Social Functioning, School Functioning, Total Score: All NS	NA

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B	Intervention and	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Deutz, 2017	A. Early treatment	A vs. B	A vs. B 16 to 20 weeks	NR
Postural Control	group (ETG), 16 to 32 units of	Age (mean years): 9.29 vs. 8.87	GMFM-66:	
Hippotherapy		Female: 12 (34%) vs. 17	Direct treatment effect resulting from the mixed model	
прошегару	to 20 weeks in	(45%)	approach: p=0.3193, F=1.01, DF=(1, 47)	
	addition to usual	Race: NR	Difference in means between the two treatments: 0.52	
Middle of treatment		Ambulatory: NR	(95% CI –0.52 to 1.55)	
(after 8-week	physiotherapy (n=35)			
observational			CHQ-28:	
phase and 16- to	B. Late treatment	GMFCS level:	Psychosocial:	
20-week	group (LTG), usual	GMFCS level II: 10 (29%)	Difference in means: -0.21 (95% CI -3.89 to 3.47)	
intervention) and	conventional	vs. 17 (45%)	Direct treatment effect: p=0.9089	
end of treatment	physiotherapy over	GMFCS level III: 7 (20%) vs.	Physical:	
(after 16-week	16 to 20 weeks	10 (26%)	Difference in means: 4.77 (95% CI -1.12 to 10.66)	
washout period,	(n=38)	GMFCS level IV: 18 (51%)	Direct treatment effect: p=0.1092	
16- to 20-week		vs. 11 (29%)		
	Crossover trial with a		KIDSCREEN-27:	
week observational		Preterm children: 26 (74%)	Difference in means: 1.07 (95% CI -2.53 to 4.68)	
phase)	weeks between two	vs. 28 (74%)	Direct treatment effect: p=0.5483	
_	intervention periods	Nonpreterm children: 9		
Poor		(26%) vs. 10 (26%)		

Author, Year		Population		1
Intervention Type		Population		
		Age (Mean)		
Duration of Postintervention		Gender (% Female)		
		Race (%)		
Followup		Ambulatory (%)		
Quality	Intervention and	Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)	Drigrifized Outcomes	Other Outeemee
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Dodd, 2011	A. Progressive resistance: 20	A vs. B [for patients with postintervention assessment	Data reported as mean (SD) A vs. B (n=36 vs. 35, ITT analysis)	Data reported as mean (SD)
Mussels Strength		•	A vs. B (n=36 vs. 35, 111 analysis)	A vs. B (n=36 vs. 35, ITT analysis)
Muscle Strength	sessions over 10	(n=36 vs. 35)]	2 min welk test (meters)	
Immediately	weeks (n=39)	Age (mean years): 47.7 vs. 50.4	2 min walk test (meters):	WHO-QOL Overall QOL (1-5,
Immediately	D. Havel same i		120.2 (35.8) vs. 112.1 (37.2) (baseline)	higher=decreased QOL):
postintervention,	B. Usual care +	Female: 26 (72%) vs. 26	122.9 (35.1) vs. 112.9 (38.5) (postintervention)	3.0 (1.0) vs. 2.9 (1.0) (baseline)
12 weeks	social program: leisure and social	(74%) Race: NR	118.6 (39.0) vs. 113.7 (40.3) (12 weeks)	3.3 (0.9) vs. 2.9 (1.2) (postintervention)
Good	activities not	Ambulation index	2.8 (14.4) vs. 0.7 (13.4); MD 2.6 (95% CI -4.0 to 9.1), p>0.05; effect size=0.27 (95% CI -0.20 to 0.74) (post-pre	3.1 (1.0) vs. 3.0 (1.0) (12 weeks)
Guu	expected to have a	-2 (mild): 17 (47%) vs. 19	change)	0.3 (1.2) vs0.1 (1.0); MD 0.4 (95% CI -0.04 to 0.9), p>0.05; effect size=0.37 (95% CI -0.10
	fitness or training	(54%)	-1.6 (15.6) vs. 1.6 (9.0); MD -3.4 (95% CI -9.5 to 2.7),	to (0.3) , $(post-pre change)$
	effect (i.e. massage,	-3 (moderate): 14 (39%) vs.	p>0.05; effect size=0.12 (95% CI -0.34 to 0.59) (12 week-	0.1 (1.1) vs. 0.1 (1.0); MD -0.001 (95% CI -0.4
	luncheons and	9 (26%)	pre change)	to 0.4), p<0.05; effect size=0.10 (95% CI -0.37
	educational sessions,	-4 (severe): 5 (14%) vs. 7	pre change)	to 0.56) (12 week-pre change)
	including some that	(20%)	MSIS-88 muscle stiffness (12 to 48, higher=increased	to 0.50) (12 week-pre change)
	enabled	Gait aid use (yes): 12 (33%)	muscle stiffness):	Max leg press (kg):
	participants to	vs. 13 (37%)	27.0 (8.8) vs. 25.1 (9.0) (baseline)	70.0 (36.0) vs. 62.2 (37.6) (baseline)
	experience a single	Fatigued (MFIS>38): 22	22.4 (7.8) vs. 24.7 (7.9) (postintervention)	85.8 (46.5) vs. 66.0 (41.6) (postintervention)
	session of different	(61%) vs. 19 (54%)	26.5 (8.7) vs. 24.2 (8.2) (12 weeks)	80.2 (40.5) vs. 68.3 (42.5) (12 weeks)
	physical therapies	(0170) V3. 13 (0470)	-3.6 (7.6) vs0.5 (6.0); MD -2.4 (95% CI -5.2 to 0.5),	15.9 (15.5) vs. 3.9 (11.1); MD 10.8 (95% CI
	such as Bobath		p>0.05; effect size=-0.29 (95% CI -0.76 to 0.18) (post-pre	4.9 to 16.7), p<0.05; effect size=0.44 (95% CI
	therapy and yoga):		change)	-0.03 to 0.91) (post-pre change)
	10 sessions over 10		-0.5 (7.0) vs0.7 (7.7); MD 0.8 (95% CI -2.3 to 4.0),	10.2 (13.7) vs. 6.2 (11.6); MD 3.5 (95% CI -2.5
	weeks (n=37)		p>0.05; effect size=0.27 (95% CI -0.20 to 0.74) (12 week-	to 9.4), p>0.05; effect size 0.28 (95% CI -0.18
l			MSIS-88 muscle spasms (14 to 56, higher=increased	Reverse leg press (kg):
l				
l				37.3 (21.2) vs. 28.5 (18.1) (postintervention)
ł				. , . , . , . , ,
ł				
l				9.5), p<0.05; effect size=0.44 (95% CI -0.03 to
l				
l				5.0 (10.1) vs. 4.7 (7.9); MD 0.7 (95% CI -3.5 to
l				4.9), p>0.05; effect size=0.18 (95% CI -0.28 to
l				
			pre change) MSIS-88 muscle spasms (14 to 56, higher=increased muscle spasms): 22.3 (7.7) vs. 22.8 (9.2) (baseline) 20.3 (6.1) vs. 23.3 (7.6) (postintervention) 23.4 (8.5) vs. 21.7 (6.3) (12 weeks) -2.0 (6.2) vs. 0.5 (8.9); MD -2.8 (95% CI -5.6 to 0.03), p>0.05; effect size=0.43 (-0.90 to 0.04) (post-pre change) 1.1 (8.2) vs1.1 (7.5); MD 1.9 (95% CI -1.1 to 5.0), p>0.05; effect size 0.22 (95% CI -0.24 to 0.69) (12 week- pre change)	35.8 (20.1) vs. 32.1 (19.5) (12 weeks) 6.5 (8.7) vs. 1.1 (7.9); MD 5.7 (95% Cl 9.5), p<0.05; effect size=0.44 (95% Cl 0.91) (post-pre change) 5.0 (10.1) vs. 4.7 (7.9); MD 0.7 (95% Cl

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Doulatabad, 2013	A. Yoga: 24 sessions over 12 weeks	A vs. B Age (average): 31.6 (range:	A. vs. B., mean (SD) MSQoL-54 (10 indicates best quality of life):	NA
Postural Control Yoga	(n=30)	18 to 45) Female: 30 (100%) vs. 30 (100%) Race: NR	4.9±1.9 vs.6.9±1.5 (baseline) 7.4±2.16 vs. 6.8±1.9 (postintervention), p=0.001	
Postintervention, 12 weeks	12 weeks (n=30)	Ambulatory: NR Wheelchair user: NR		
Poor				
Duarte Nde, 2014	A. Treadmill + tDCS, 10 sessions over 2	A vs. B Age: 8 vs. 8	A vs. B, Mean (SD), p-value=between groups:	A vs. B, Mean (SD), p-value=between groups:
Aerobic Exercise Treadmill	weeks (n=12) B. Treadmill + sham	Female: NR GMFCS I: 25% vs. 17% GMFCS II: 50% vs. 57%	PEDI self-care: 46.1 (10) to 48.0 (9.5) vs. 45.0 (9.2) to 45.5 (9.3); MD 1.4, 95% CI -6.21 to 9.01, p=0.718	PBS: 40.5 (9.4) to 45.3 (7.9) vs.39.1 (9.8) to 39.7 (8.4); MD 4.2, 95% CI -2.88 to 11.28, p=0.245
Postintervention, 3 weeks and 5 weeks	tDCS, 10 sessions over 2 weeks, (n=12)	GMFCS III: 25% vs. 25%	PEDI mobility: 38.0 (8.5) to 41.7 (7.4) vs. 38.3 (7.4) to 39.5 (7.6); MD 2.5, 05% CL 2 71 to 8 71, n=0 420	
Fair			95% CI -3.71 to 8.71, p=0.430	
Note: May share participants with Grecco, 2014				

Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Duff, 2018	A. Pilates +	A vs. B	Data reported as mean (SD)	Data reported as mean (SD)
,	massage: 24	Age (mean years): 45.7 vs.	A vs. B	A vs. B
Muscle Strength	sessions of Pilates	45.1		
Ū	and 12 massages	Female: 12 (80%) vs. 11	TUG with left turn (seconds):	FABS (0-4, higher=increased balance):
Postintervention, 0	over 12 weeks	(73%)	10.1 (4.6) vs. 8.6 (4.9), p>0.05 (baseline)	28.7 (11.7) vs. 28.0 (13.2), p>0.05 (baseline)
weeks	(n=15)	Race: NR	8.6 (2.8) vs. 8.9 (5.0) (postintervention)	31.0 (9.2) vs. 30.2 (13.3) (postintervention)
	. ,	Ambulatory: (100%) vs. 100	-1.5 (SD 2.8; 95% CI -2.7 to -0.4) vs. 0.3 (SD 0.9; 95% CI	2.3 (95% CI 0.3 to 4.3) vs. 2.2 (95% CI 0.2 to
Fair	B. Massage: 12	(100%)	–0.9 to 1.4), p=0.03 (pre-post change)	4.2), p=0.96 (pre-post change)
	massages over 12	Wheelchair user: 0 (0%) vs.		
	weeks (n=15)	0 (0%)	TUG with right turn (seconds):	% body fat:
		MS type	9.9 (4.0) vs. 9.2 (4.9), p>0.05 (baseline)	32.7 (8.3) vs. 32.2 (10.5), p>0.05 (baseline)
		-relapsing-remitting: 14	8.8 (3.3) vs. 9.5 (5.5) (postintervention)	32.5 (7.6) vs. 31.4 (11.1) (postintervention)
		(93%) vs. 11 (73%)	-1.1 (95% CI -2.1 to -0.1) vs. 0.3 (95% CI -0.7 to 1.4),	–0.2 (95% CI –1.4 to 1.0) vs. –0.8 (95% CI –
		-secondary progressive: 0	p=0.6 (pre-post change)	2.0 to 0.4), p=0.51 (pre-post change)
		(0%) vs. 2 (13%)		
		, , , , , , , , , , , , , , , , , , , ,	6MWT (meters):	
		vs. 2 (13%)	419.9 (138.2) vs. 455.1 (165.7), p>0.05 (baseline)	
		Relapse in 30 days before	472.3 (149.5) vs. 470.1 (168.1) (postintervention)	
		baseline: 2 (13%) vs. 3	52.4 (95% CI 32.7 to 72.1) vs. 15.0 (95% CI –4.7 to 34.7),	
		(20%)	p=0.01 (pre-post change)	
			MSQoL-54-PCS (0 to 100, higher=increased QOL):	
			53.7 (19.6) vs. 59.3 (18.5), p>0.05 (baseline)	
			58.3 (17.6) vs. 61.7 (19.5) (postintervention)	
			4.6 (95% CI –1.3 to 10.5) vs. 2.4 (95% CI –3.5 to 8.3),	
			p=0.60 (pre-post change)	
			MSQoL-54-MCS (0 to 100, higher=increased QOL):	
			62.7 (19.3) vs. 71.3 (15.4), p>0.05 (baseline)	
			68.6 (18.8) vs. 75.5 (13.8) (postintervention)	
			5.9 (95% CI –0.5 to 12.2) vs. 4.2 (95% CI –2.1 to 10.6),	
			p=0.71 (pre-post change)	
			p=0.7 i (pre-post change)	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B	Intervention and	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Duffell, 2014 Aerobic Exercise Robot-Assisted Gait Training Postintervention, 4 weeks	A. Robot-assisted gait training (RAGT), 12 sessions over 4 weeks (n=23) B. No intervention (n=29)	A vs. B Age: NR Female: NR Incomplete: 100%	A vs. B, p=between groups 10MWT achieved MID (0.13m/s): 13% vs. 8%, p>0.05 6MWT and TUG: p>0.05	NA
Poor				
Ebrahimi, 2015	A. Whole body vibration + low	A vs. B (Data are for those with complete followup data)	Data reported as mean (SD) A vs. B	Data reported as mean (SD) A vs. B
Multimodal Postintervention, 0 weeks Poor	intensity exercise: 30 sessions over 10 weeks (n=16) B. Usual care (n=14)	Age (mean years): 37.06 vs. 40.75 Female: 11 (69%) vs. 12 (86%) Race: NR Ambulatory: 16 (100%) vs. 14 (100%) Wheelchair user: NR Baseline EDSS: 3.12 vs. 3.10 Use of disease–modifying drugs: 10 (62.5%) vs. 8 (57.1%) Duration of disease (mean years): 6.5 vs. 10.5	TUG (seconds) 11.32 (5.21) vs. 14.43 (3.20) (baseline) 11.16 (8.82) vs. 14.57 (4.02) (postintervention) Group p=0.05 10MWT (seconds) 17.67 (8.92) vs. 21.16 (6.36) (baseline) 13.37 (4.59) vs. 19.39 (6.52) (postintervention) Group p=0.56 6MWT (meters) 184.01 (101.04) vs. 150.37 (65.18) (baseline) 272.32 (105.60) vs. 162.80 (60.57) (postintervention) 47.99% vs. NR (pre-post % change) Group p=0.01 MSQ0L-54-PCS (0-100, higher=increased QOL) 45.80 \pm 9.70 vs. 43.38 \pm 15.43 (baseline) 53.36 \pm 11.9 vs. 45.53 \pm 7.30 (postintervention) Group p=0.40 MSQOL-54-MCS (0-100, higher=increased QOL) 50.87 \pm 15.46 vs. 41.66 \pm 17.07 (baseline) 58.34 \pm 14.89 vs. 50.10 \pm 14.72 (postintervention)	Modified pushup 5.31 (4.75) vs. 2.42 (3.99) (baseline) 12.12 (6.54) vs. 2.92 (3.83) (postintervention) Group p=0.07 EDSS (1-10, higher scores=greater disability) 3.12 (1.19) vs. 3.10 (0.76) (baseline) 2.65 (1.20) vs. 3.03 (0.69) (postintervention) -15.06% vs. NR (pre-post % change) Group p=0.01 BBS (0-56, higher scores=better balance) 40.37 (9.97) vs. 34.00 (9.13) (baseline) 46.43 (8.34) vs. 35.85 (7.22) (postintervention) 15.00% vs. NR (pre-post % change) Group p=0.01

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Strength	A. Plyometric training, 16 sessions over 8 weeks (n=19)	Age: 9.47 vs. 10.3 Female: 32% vs. 45% Race: NR	A vs. B, Mean (SD) [pre-post change score and MD calculated by EPC]	NA
Plyometric training	B. Usual care (n=20)	Abulatory: 100% vs. 100% Wheelchair user: NR	10MWT (m/s): 1.18 (0.08) vs. 1.21 (0.09) (baseline) 1.20 (0.06) vs. 1.25 (0.05) (past intervention)	
Postintervention, 8 weeks		All patients were considered to have mildly spastic CP	1.29 (0.06) vs. 1.25 (0.05) (post-intervention) 0.11 (0.05) vs. 0.04 (0.06), MD 0.07 (95% CI 0.04 to 0.10) (pre-post change score)	
Fair El-Shamy, 2018	A. Robotic upper-	A vs. B	A vs. B, Mean (SD), p=between groups	NA
	limb therapy, 36	Age: 6.9 vs. 6.8		
Postural Control Motion gaming	sessions over 12 weeks (n=15)	Female: 40% vs. 27% MACS I: 33% vs. 40% MACS II: 53% vs. 40%	Spasticity MAS: –0.4, 95% CI –0.8 to –0.1, p<0.05	
Postintervention, 12 weeks	B. Conventional therapy of stretching and strength exercises, 36	MACS III: 13% vs. 20%	QUEST total: 61.9 (2) to 84.6 (2.7) vs. 62.3 (1.8) to 79.1 (2); MD 5.9, 95% Cl 3.7 to 7.3, p<0.05	
Fair	sessions over 12 weeks (n=15)			

Author, Year Intervention Type Duration of Postintervention		Population Age (Mean) Gender (% Female) Race (%)		
Followup Quality		Ambulatory (%) Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Emara, 2016	A. Treadmill training,	A vs. B	A vs. B, mean (SD)	NR
	36 sessions over 12	Age (mean years): 6.6 vs.	6 weeks (18-sessions)	
Aerobic Exercise	weeks (n=11)	6.9	GMFM-d: 13.7 (1.2) vs. 15.3(1.9), p=0.04	
Treadmill	B. Suspension	Female: 7 (64%) vs. 6 (55%) Race: NR	GMFM-e: 13.2 (1.9 vs. 14.3 (1.9), p=0.21	
Postintervention, 12 weeks	training, (dynamic spider cage) 36	Ambulatory: NR Wheelchair user: NR	10-m Walking Test: 0.4 (0.05) vs. 0.5 (0.04), p=0.12	
	sessions over 12		Five times sit to stand: 20.1 (1.0 vs. 19.5 (0.9), p=0.26	
Fair	weeks (n=11)	Baseline GMFM-d: gross		
		motor functional measure	12 weeks (36-sessions)	
		dimension D (standing):	GMFM-d: 15.8 (1.5) vs. 19.2 (2.1), p=0.001	
		GMFM-d: 12 (1.6) vs. 12.0 (0.7)	GMFM-e: 14.8 (1.5) vs. 17.2 (2.1), p=0.008	
			10-m Walking Test: 0.5 (0.04) vs. 0.6 (0.04)	
		Baseline GMFM-e: gross		
		motor function measure dimension E (walking): GMFM-e: 10.9 (1.3) vs. 10.4 (0.8)	Five times sit to stand: 18.9 (1.0) vs. 17.7(0.8)	
		Baseline 10-m Walking Test: 0.4 (0.04) vs. 0.4 (0.03)		
		Baseline Five times sit to stand:		
		21.5 (1.3) vs. 21.7 (1.5)		

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B	Intervention and	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%)		
for Full Citation) Esclarin-Ruz, 2014 Aerobic Exercise Robot-Assisted Gait Training Postintervention, 8 weeks Fair	Comparison A. Robotic locomotor training plus overground therapy 40 sessions over 8 weeks (n=44) B. Overground therapy, 40 sessions over 8 weeks (n=44)	Other (%)A vs. BAge (mean years):UMN injury: 43.6 vs. 44.9LMN injury: 36.4 vs. 42.7Female:UMN 29% vs. 29%LMN 30% vs. 29%Race: NRAmbulatory:NRWheelchair user:NROther:N (%) vs. N (%)	Prioritized Outcomes A vs. B, mean (SD) 10MWT UMN: 0.48 (0.25) to 0.54 (0.31) vs. 0.36 (0.25) to 0.39 (0.31) LMN: 0.24 (0.11) to 0.46 (0.25), vs. 0.28 (0.27) to 0.45 (0.25) p=0.09 6MWT UMN: 122.3 (49.2) to 187.48 (103.78) vs. 93.3 (53.1) to 119.41 (89.25) LMN: 82.7 (45.5) to 157.54 (89.51) vs. 94.3 (75.1) to 145.62 (125.15) PGIC Scale UMN: UMN:	A vs. B, mean (SD)

Author, Year		Population		
Intervention Type		•		
		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Faramarzi, 2020	A. Combined	A vs. B vs. C vs. D	A vs. B vs. C vs. D vs. E vs. F Mean change from baseline	Faramarzi, 2020
	exercise (resistance	Age: NR (between 18 and	(95% CI) p=between groups (postintervention)	
	+ endurance +	50 years)	[change value calculated by EPC from figures]	
Has companion:	Pilates + balance +	Female: 100%		Has companion: Banitalebi, 2020
Banitalebi, 2020	stretch) - Low	Race: NR	6MWT	
,	disability group	Ambulatory: 100%	A vs. D	
	(EDSS < 4.5)	Wheelchair user: NR	63.1 (95% CI -15.6 to 139.5) vs11.1 (95% CI -44.6 to	Multimodal Exercise
Multimodal	36 sessions (3 per		21.7)	
Exercise	week) over 12 weeks	EDSS score:	B vs. E	Immediately Postintervention, 12 weeks
	(n=23)	EDSS < 4.5:	49.7 (95% CI 1.5 to 97.83) vs1.9 (95% CI -35.0 to 32.4)	
Immediately	. ,	A. 23 (24%) vs. D. (low) 23	C vs. F	Fair
Postintervention,	B. Combined	(24%) (24 %) (3. D. (10W) 23	64.1 (95% CI 39.2 to 88.6) vs13.1 (95% CI -42.8 to	Faii
12 weeks	exercise - Moderate	(24%) EDSS ≤ 4.5 to ≤ 6:	17.4)	
12 weeks	disability group (4.5 ≤			
F a la	EDSS ≤ 6)	B.13 (14%) vs. D.	Exercise group effect on 6MWT, p<0.001	
Fair	36 sessions (3 per	(moderate) 13 (14%)	Test for interaction (presumably between disability strata)	
	week) over 12 weeks	EDSS ≥ 6.5:	were NS	
	(n=13)	C.11 (12%) vs. D. (high) 11		
	(1-13)	(12%)	TUG (lipids)	
	C. Combined		A vs. D	
	exercise - High	Baseline VO ₂ -peak	-1.5 (95% CI -4.1 to 1.2) vs. 0.72 (95% CI -0.34 to 1.8)	
		(ml/kg/min), mean (SD):	B vs. E	
	disability group	A. 23.1 (5.6) B. 17.9 ± 7.5	-1.6 (95% CI -3.6 to 0.37) vs0.3 (95% CI -4.9 to 4.5)	
	(EDSS ≥ 6.5)	C.15.2 ± 8 vs. D. (low) 21.4	C vs. F	
	36 sessions (3 per	± 4.8 (moderate) 17.4 ± 5.8	-1.9 (95% CI -3.9 to 0.03) vs. 1.4 (95% CI 0.05 to 2.6)	
	week) over 12 weeks	(high) 17.8 ± 6.7	Exercise group effect on TUG, p<0.001	
	(n=11)		Test for interaction (presumably between disability strata)	
			were NS	
	Controls (Low-			
	disability, Moderate-			
	disability, High-		VO ₂ -peak change (mL/kg/min):	
	disability)		Significant positive correlation between	
			changes Vo2 peak) with exercise, p=0.041	
	D. Waitlist control		There was a significant condition main effect on change in	
	Low (n=23)		Vo2 peak, p=0.004	
	E. Waitlist control			
	Moderate (n=13)			
	F. Waitlist control			
	High (n=11)			

		Demoletien		1
Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Field-Fote, 2011	A. Treadmill BWS	A vs. B	A vs. B, mean (SD)	A vs. B, mean (SD)
	Training with Manual	Age (mean years):		
Has companions:	Assistance, 60	39.3 vs. 38.5 vs. 42.2 vs. 45	Short distance over ground speed, change in m/s	
Kressler, 2013	sessions over 12	Female:	TM: 0.04 (0.07)	
Sandler, 2017	weeks (n=17) (TM)	17.7% vs. 22.2% vs. 13.9%	TS: 0.05 (0.09)	
		vs. 18%	OG: 0.09 (0.11)	
Aerobic Exercise	B. Treadmill BWS		LR: 0.01 (0.05)	
Robot-Assisted	Training with	Race:		
Gait Training	Electrical Stimulation,	White or non-Hispanic	Distance walked (2 min), change in meters	
	60 sessions over 12	58.8% vs. 44.4% vs. 40.0%	TM:0.8 (7.7)	
Postintervention,	weeks (n=18) (TS)	vs. 42.9%	TS: 3.8 (6.3)	
12 weeks		Hispanic 29.4% vs. 38.9%	OG: 14.2 (15.2)	
	C. Overground BWS	vs. 40% vs. 35.7%	LR: 1.2 (5.1)	
Fair	Training with	African American 11.8% vs.		
	Electrical Stimulation,	16.7% vs. 20% vs. 21.4%	LEMS, left leg, change in score	
	60 sessions over 12		TM: 1.7 (1.8)	
	weeks (n=15) (OG)	Ambulatory:	TS: 1.5 (2.7)	
		NR	OG: 1.1 (1.5)	
	D. Treadmill BWS	Wheelchair user:	LR: 1.2 (3.2)	
	Training with Robotic	NR		
	Assistance, 60		LEMS, right leg, change in score	
	sessions over 12	Other:	TM: 1.5 (2.1)	
	weeks (n=14) (LR)	2 min walk, in meters	TS: 1.6 (2.0)	
		TM: 22.1 (21.4)	OG: 1.7 (2.3)	
		TS: 20.6 (23.1)	LR: 1.3 (1.5)	
		OG: 24.0 (35.3)		
		LR:16.8 (11.3)		
		Short distance overground		
		walking speed, m/s		
		0.17 (0.14) vs. 0.18 (0.18)		
		vs. 0.19 (0.20) vs. 0.17		
		(0.10)		

	1			
Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Forsberg, 2016	A. CoDuSe balance	A vs. B	A. vs. B., mean (SD)	A. vs. B., mean (SD)
	exercises: 14	Age (mean years): 52 vs. 56	TUG:	BBS:
Postural Control	sessions over 7	Female: 28 (80%) vs. 31	13.7 (5.5) vs.17.0 (9.1), (baseline)	48.9 (5.8) vs.45.1 (9.0), (baseline)
Balance	weeks (n=35)	(82%)	0.5 (8.5) vs. −1.0 (3.8), (postintervention)	2.6 (4.1) vs. 1.6 (4.1), (postintervention)
		Race: NR		
	B. Usual care control:	Ambulatory: NR	Difference between groups, least square means adjusted	Difference between groups, least square
Postintervention, 8	(n=38)	Wheelchair use/assistive	for baseline value: 1.4 (95% CI −1.7 to 4.5), p=0.37	means adjusted for baseline value: 2.1 (95%
weeks	. ,	walking device: 18 (51%) vs.		CI 0.5 to 3.8); p=0.011
		26 (68%)	MS walking scale (12–60):	/· 1
Fair		Wheelchair use/assistive	40.0 (9.9) vs.41.6 (9.7), (baseline)	
		walking device indoors: 5	-3.4 (5.0) vs. 0.1 (5.2), (postintervention)	
		(14%) vs. 7 (18%)		
			Difference between groups, least square means adjusted	
		MSIS physical subscale (0-	for baseline value: -3.7 (95% CI -6.0 to -1.3), p=0.0026	
		100):54 (18%) vs. 56 (14%)		
		MSIS psychosocial subscale		
		(0–100): 22 (10%) vs. 22	Sit-to-Stand:	
		(8%)	35.2 (12.1) vs.42.0 (16.6), (baseline)	
		(0.0)	-3.6 (8.2) vs. -4.1 (9.8), (postintervention)	
		Type of MS - Relapsing-		
		remitting: 20 (57%) 13 (34%)	Difference between groups, least square means adjusted	
		Type of MS -Primary	for baseline value: -2.2 (95% CI -5.6 to 1.2); p=0.21	
		progressive: 4 (11%) vs. 5		
		(13%)		
		Type of MS -Secondary		
		progressive: 11 (31%) vs. 20		
		(53%)		
Fosdahl, 2019b	A. Strength training	A vs. B	A vs. B, Mean change score (SD)	NA
	(progressive	Age: 10.4 vs. 10.0	6MWT (meters)	
Multimodal	resistance exercise)	Female: 59% vs. 30%	-45.7 (55.4) vs. −55.4 (55.5), adj. MD10.6 (95% CI −29.3	
Exercise	+ stretching, 48	Ambulatory: 100%	to 50.6), p=0.590 (pre-post change)	
	sessions over 16	GMFM:	-51.1 (72.8) vs. −56.6 (59.6), adj. MD 7.2 (95% CI −43.3	
Postintervention.	weeks (n=17)	1: 59% vs. 60%	to 57.7), p=0.772 (16-week change)	
16 weeks and 32		II: 41% vs. 35%		
weeks	B. Usual care (n=20)	III: 0% vs. 5%	GDI (Gait Deviation Index)	
10010	2. 0300 0010 (II-20)		-0.4 (4.4) vs0.8 (7.14), adj. MD -1.0 (95% CI -5.3 to	
Fair			(4.4) vs. -0.6 (7.14), adj. MD -1.0 (95% Cl -5.5 (0 -3.3	
			-0.7 (6.0) vs. 1.01 (5.9), adj. MD -1.4 (95% CI -5.6 to	
			(3.8), p=0.504 (16-week change)	
			[2.0], p=0.004 (10-week change)	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Fowler, 2010	A. Stationary cycling 30 sessions over 12	A vs. B Age (mean years):	A vs. B (SD)	NA
Has companion: Demuth, 2012	weeks (n=29)	11.1 vs. 11.6 Female: 13 (42%) vs. 20 (64%)	GMFM-66 69.6 (NR) vs. 68.8 (NR) (baseline) 70.8 (NR) vs. 69.3 (NR); p=0.002 in A (postintervention)	
Aerobic Exercise	B.			
Cycling Postintervention, 0	Control No Intervention (n=29)	Ambulatory: 31 (100%) vs. 31 (100%) Wheelchair user: NR	600 yard walk-run test speed (m/min) 85.0 (NR) vs. 81.6 (NR) (baseline) 90.6 (NR) vs. 84.1 (NR); p=0.008 in A (postintervention)	
weeks				
Fair		Race: African American 5 (16%) vs. 3 (10%) White 18 (58%) vs. 15 (48%) Asian 1 (3%) vs. 5 (16%) Other 7 (23%) vs. 8 (26%)	30 sec walk test speed (m/min): NS	
		CP subtype NR		

		Demodetien		
Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Fox, 2016	A. Pilates: 12	A vs. B vs. C	Data reported as mean (SD)	Data reported as mean (SD)
	sessions over 12	Age (mean years): 53.97 vs.		
Muscle Strength	weeks (n=33)	54.60 vs. 53.78	A vs. C	ABCS (0-100, higher scores=better balance):
		Female: 28 (84.9%) vs. 25	10MWT (seconds):	A vs. C
Postintervention,	B. Standardized	(71.4%) vs. 21 (65.6%)	16.16 (7.72) vs. 15.52 (6.22) (baseline)	3.94 (1.53) vs. 4.20 (1.67) (baseline)
4 weeks	exercises (PT): 12	Race: NR	14.43 (7.56) vs. 14.94 (5.66), adj. MD -0.50 (95% CI -4.68	4.76 (2.14) vs. 4.27 (1.95), adj. MD 0.49 (95%
	sessions over 12	Ambulatory: NR (at	to 3.69), p>0.05 (postintervention)	CI -0.76 to 1.74), p>0.05 (postintervention)
Fair	weeks (n=32)	minimum, required the ability	14.90 (8.22) vs. 15.39 (5.95), adj. MD -0.50 (95% CI -4.68	
		to walk about 20 m without	to 3.69), p>0.05 (4-week followup)	CI -0.94 to 1.56), p>0.05 (4-week followup)
	C. Relaxation: 3	resting with the use of 2		
	sessions over 12	walking aids)	MSWS-12 (0-100, higher scores=decreased walking	B vs. C
	weeks (n=29)	Wheelchair user: NR	ability):	4.74 (2.19) vs. 4.20 (1.67) (baseline)
		MS type:	72.15 (19.47) vs. 70.61 (21.31) (baseline)	5.74 (2.36) vs. 4.27 (1.95), adj. MD 1.48 (95%
			63.49 (23.78) vs. 68.39 (23.69), adj. MD -4.90 (95% Cl	CI 0.21 to 2.74), p<0.05) (postintervention)
		Relapsing-remitting: 13	-19.11 to 9.32), p>0.05 (postintervention)	5.46 (2.52) vs. 4.21 (1.74), adj. MD 1.26 (95%
		(39.4%) vs. 13 (37.1%) vs.	67.39 (24.65) vs. 71.10 (21.71), adj. MD -3.71 (95% Cl	CI -0.01 to 2.52), p>0.05 (4-week followup)
		12 (37.5%)	-17.93 to 10.50), p>0.05 (4-week followup)	
		Secondary progressive: 8		A vs. B
		(24.2%) vs. 11 (31.4%) vs.	B vs. C	3.94 (1.53) vs. 4.74 (2.19) (baseline)
		11 (34.4%)	10MWT (seconds):	4.76 (2.14) vs. 5.74 (2.36), adj. MD 0.98 (95%
		Primary progressive: 12	12.85 (5.05) vs. 15.52 (6.22) (baseline)	CI -0.24 to 2.21) (postintervention)
		(36.4%) vs. 11 (31.4%)	10.73 (4.46) vs. 14.94 (5.66), adj. MD -4.20 (95% CI -8.42	4.52 (2.15) vs. 5.46 (2.52), adj. MD 0.95 (95%
		Benign: 0 (0%) vs. 0 (0%")	to 0.01), p>0.05 (postintervention)	CI -0.28 to 2.17) (4-week followup)
		vs. 1 (3.1%)	12.94 (9.18) vs. 15.39 (5.95), adj. MD -2.45 (95% CI -6.67	
			to 1.77), p>0.05 (4-week followup)	
			MSWS-12 (0-100, higher scores=decreased walking	
			ability):	
			59.38 (22.90) vs. 70.61 (21.31) (baseline)	
			47.84 (24.61) vs. 68.39 (23.69), adj. MD -20.55 (95% CI	
			-34.87 to -6.23), p<0.05 (postintervention)	
			51.41 (26.79) vs. 71.10 (21.71), adj. MD -19.69 (95% CI	
			-34.01 to -5.37), p<0.05 (4-week followup)	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Fox, 2016 (Continued)			A vs. B 10MWT (seconds): 16.16 (7.72) vs. 12.85 (5.05) (baseline) 14.43 (7.56) vs. 10.73 (4.46), adj. MD -3.71 (95% CI -7.79 to 0.37), p>0.05 (postintervention) 14.90 (8.22) vs. 12.94 (9.18), adj. MD -1.96 (95% CI -6.04 to 2.13), p>0.05 (4-week followup)	
			MSWS-12 (0-100, higher scores=decreased walking ability): 72.15 (19.47) vs. 59.38 (22.90) (baseline) 63.49 (23.78) vs. 47.84 (24.61), adj. MD -15.65 (-29.50 to -1.79), p<0.05 (postintervention) 14.90 (8.22) vs. 51.41 (26.79), adj. MD -15.97 (95% CI - 29.83 to -2.12), p<0.05 (4-week followup)	

		Design to the second		
Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Galea, 2018	A. Strength +	A vs. B	Data reported as mean (SD)	Data reported as mean (SD)
	aerobics (n=60)	Age (mean years): 40.1 vs.	A vs. B	A vs. B
Multimodal		42.8	6MWT (unit NR)	
Exercise	B. Upper body	Female: 9 (15%) 9 (16%)	142.3 (103.5) vs. 176.4 (105.1) (baseline)	ASIA-UEMS (0-100, higher=increased
	strength + aerobics	Race: NR	149 (103.7) vs. 170.8 (92.7), MD -18.36 (95% CI -68.57 to	strength):
Postintervention,	(n=56)	Ambulatory: NR	31.84), p=0.451 (postintervention)	41.8 (12.0) vs. 39.45 (11.7), p=NR (baseline)
12 weeks		Wheelchair user: NR	187.1 (93.3) vs. 133.2 (91), MD 27.12 (95% CI -12.69 to	41.5 (12.1) vs. 39.4 (11.9); MD -0.04 (95% CI
	(36 sessions over 12	ASIA Impairment Scale	66.94), p=0.168 (12 weeks)	-1.12 to 1.04), p=0.94 (postintervention)
Fair	weeks for both	classification	10MWT (m/sec-1)	43.0 (26.5) vs. 37. 5 (14.4); MD 1.65 (95% CI
	groups)	-A: 29 (48%) vs. 28 (50%)	0.5 (0.4) vs. 0.5 (0.4) (baseline)	-1.3 to 4.6), p=0.27 (12 weeks)
		-B: 9 (15%) vs. 8 (14%)	0.5 (0.3) vs. 0.6 (0.4), MD -0.01 (95% CI -0.1 to 0.08)	
		-C: 7 (12%) vs. 5 (9%)	(postintervention)	ASIA-LEMS (0-100, higher=increased
		-D: 15 (25%) vs. 15 (27%)	0.6 (0.3) vs. 1.4 (2.6), MD -0.72 (95% CI -2.41 to 0.98) (12	strength):
		Single neurological level	weeks)	10.4 (14.9) vs. 11.4 (17.9), p=NR (baseline)
		-C2-C8: 29 (48%) vs. 33	Penn Spasm Frequency Scale	12.51 (17.0) vs. 10.2 (17.2); MD 0.90 (95% CI
		(59%)	1.8 (1.1) vs. 1.5 (1) (baseline)	-0.48 to 2.27), p=0.20 (postintervention)
		-T1-T6: 18 (30%) vs. 13	1.6 (1.1) vs. 1.8 (1.1), MD -0.25 (95% CI -0.61 to 0.1),	13.2 (17.5) vs. 11.2 (17.8); MD 1.19 (95% CI
		(23%)	p=0.163 (postintervention)	-0.09 to 2.47), p=0.07 (12 weeks)
		-T7-T12: 13 (22%) vs. 10	1.6 (0.9) vs. 1.8 (1), MD 0 -0.12 (95% CI -0.44 to 0.19),	
		(18%)	p=0.446 (12 weeks)	
			Perceived Stress Scale	
			11.7 (6.5) vs. 13.4 (6.1) (baseline)	
			11.7 (6.6) vs. 12 (5.8), MD 0.61 (95% CI -1.23 to 2.45)	
			(postintervention)	
			11 (7.1) vs. 12.4 (6.7), MD -0.1 (95% CI -2.27 to 2.065)	
			(12 weeks)	
			HADS-Anxiety	
			10.3 (1.8) vs. 10.5 (1.8)	
			10.4 (1.6) vs. 10.1 (1.6), MD 0.29 (95% CI -0.25 to 0.83)	
			(postintervention)	
			10 (2.2) vs. 10.2 (1.4), MD -0.14 (95% CI -0.89 to 0.6) (12	
			weeks)	
			HADS-Depression	
			10.5 (2) vs. 10.4 (2.1)	
			10 (1.6) vs. 10.2 (1.3), MD -0.28 (95% CI -0.83 to 0.27),	
			p=0.309 (postintervention)	
			10.1 (1.5) vs. 10.2 (1.4), MD -0.23 (95% CI -0.81 to 0.35),	
			p=0.428 (12 weeks)	

Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Gandolfi, 2015	A. Balance training	A vs. B	A. vs. B., mean (SD)	A. vs. B., mean (SD)
	(sensory integration),	Age (mean years): 47.21 vs.	MSQOL-54 (0–100; higher=better performance)	BBS (0-56, higher=better performance)
Postural Control	15 sessions over 5	49.56	63.09 (11.09) vs. 58.77 (11.05) (baseline)	47.97(4.89) vs. 46.49 (5.21) (baseline)
Balance	weeks (n=39)	Female: 28 (72%) vs. 31	65.56 (10.31) vs. 59.64 (9.80) (postintervention)	52.77 (3.15) vs. 47.79 (6.05) (postintervention)
		(76%)	63.56 (10.27) 58.54 vs. (11.64) (1-month followup)	52.92 (2.97) vs. 48.33 (5.88) (1-month
RCT	B. Conventional	Race: NR	Between-group difference (95% CI) mean:	followup)
	rehabilitation, 15	Ambulatory: NR	Before: 4.32 (95% CI -0.61 to 9.25)	Between-group difference (95% CI) mean
Fair	sessions over 5	Wheelchair user: NR	After: 5.92 (95% CI 1.44 to 10.40)	before: 1.49 (95% CI -0.76 to 3.74), after: 4.99
	weeks (n=41)	EDSS score (median) 3.00	Followup: 5.02 (95% CI −1.12 to 9.92), p<0.001	(95% CI 2.83 to 7.15) followup: 4.60 (95% CI
		vs. 3.66		2.50 to 6.69), p<0.001
		Q1–Q3: 2–4 vs. 2.50–4.25	Number of falls	
		MS duration (mean years):	0.59 (.99) vs. 0.37 (0.54) (baseline)	
		12.25 vs. 15.24	0.03 (0.16) vs. 0.29 (0.34) (postintervention)	
			0.08 (0.27) vs. 0.27 (0.55) (1-month followup)	
			Between-group difference (95% CI) mean:	
			Before: 0.22 (95% CI -0.129 to 0.577)	
			After:0.30 (95% CI -0.452 to -0.08)	
			Followup: -0.191 (95% CI -0.385 to 0.003)	

Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Garrett, 2013a	A. Physiotherapist–	A vs. B vs. C vs. D [baseline	6MWT (meters)	MSIS-physical component (0–100)
Garrett, 2013b	led exercise: 10		A vs. D	A vs. D
	-			
(same author	sessions over 10	2013a]	288 (94) vs. 350 (103) (baseline)	33.0 (18.0) vs. 29.6 (23.0) (baseline)
group a as Hogan	weeks (n=80)	Age (mean years): 51.7 vs.	327 (185) vs. 315 (232) (postintervention)	26.2 (17.2) vs. 29.9 (20.7) (postintervention)
2014)		49.6 vs. 50.3 vs. 48.8	10 (52) vs. –10 (91), p=0.02 (pre-post change)	-6.9 (95% CI - 10.8 to -2.9) vs. 0.3 (95% CI -
Destand Osutual	B. Yoga: 10 sessions	Female: 50 (79%) vs.44		4.0 to 4.6), p=0.02 (pre-post change)
Postural Control	over 10 weeks	(70%) vs. 45 (68%) vs. 43	B vs. D	Due D
Yoga	(n=77)	(87%)	260 (80) vs. 350 (103) (baseline)	B vs. D
		Race: NR	285 (152) vs. 315 (232) (postintervention)	33.1 (20.0) vs. 29.6 (23.0) (baseline)
Postintervention,	C. Fitness Instructor-	Guys Neurological Disability	0 (82) vs. –10 (91), p=0.73 (pre-post change)	29.4 (19.4) vs. 29.9 (20.7) (postintervention)
12 weeks	led exercise: 10	Scale (Mobility Section)		-4.0 (95% CI -7.5 to -0.5) vs. 0.3 (95% CI -
	sessions over 10	-0 (Gait unaffected): 19	C vs. D	4.0 to 4.6), p=0.12 (pre-post change)
	weeks (n=86)	(30%) vs. 26 (41%) vs. 15	260 (80) vs. 350 (103) (baseline)	
		(22%) vs. 21 (43%)	305 (186) vs. 315 (232) (postintervention)	C vs. D
	D. Usual care (n=71)	-1 (Unsteady, but no aid	20 (61) vs. –10 (91), p<0.01 (pre-post change)	35.20 (20.0) vs. 29.6 (23.0) (baseline)
		use): 21 (33%) vs. 14 (22%)		29.5 (19.9) vs. 29.9 (20.7) (postintervention)
		vs. 28 (42%) vs. 12 (28%)	A vs. B	-5.7 (95% CI -9.1 to -2.4) vs. 0.3 (95% CI -
		-2 (Uses unilateral aid	288 (94) vs. 260 (80) (baseline)	4.0 to 4.6), p=0.03 (pre-post change)
		outdoors): 1(33%) vs. 22	327 (185) vs. 285 (152) (postintervention)	
		(34%) vs. 23 (34%) vs. 16	313.9 (104.9) vs. 281.7 (112.5) (12 weeks; no ITT)	A vs. B
		(33%)	10 (52) vs. 0 (82) (pre-post change)	33.0 (18.0) vs. 33.1 (20.0) (baseline)
		Wheelchair user: 0% vs. 0%		26.2 (17.2) vs. 29.4 (19.4) (postintervention)
		vs. 0% vs. 0%	C vs. B	27.7 (16.2) vs. 34.0 (21.8) (12 weeks; no ITT)
		Type of MS	260 (80) vs. 260 (80) (baseline)	-6.9 (95% CI -10.8 to -2.9) vs4.0 (95% CI
		-Relapsing-remitting: 35	305 (186) vs. 285 (152) (postintervention)	–7.5 to –0.5) (pre-post change)
		(55%) vs. 38 (60%) vs. 33	340.7 (88.9) vs. 281.7 (112.5) (12 weeks; no ITT)	C va D
		(49%) vs. 27 (55%)	20 (61) vs. 0 (82) (pre-post change)	C vs. B
		-Secondary progressive: 9		35.20 (20.0) vs. 33.1 (20.0) (baseline)
		(14%) vs. 7 (11%) vs. 13 (19%) vs. 10 (20%)	A vs. C $(288, (04))$ vs. $(260, (80))$ (baseline)	29.5 (19.9) vs. 29.4 (19.4) (postintervention)
			288 (94) vs. 260 (80) (baseline)	37.0 (24.1) vs. 27.7 (16.2) (12 weeks; no ITT)
		-Primary progressive: 5	327 (185) vs. 305 (186) (postintervention)	-5.7 (95% Cl -9.1 to -2.4) vs4.0 (95% Cl -
			313.9 (104.9) vs. 340.7 (88.9) (12 weeks; no ITT)	7.5 to –0.5) (pre-post change)
		vs. 3 (6%) –Benign: 0 (0%) vs. 1 (2%)	10 (52) vs. 20 (61) (pre-post change)	A vs. C
			ANOVA regults for 6MM/T	
		vs. 3 (5%) vs. 1 (2%)	ANOVA results for 6MWT:	33.0 (18.0) vs. 35.20 (20.0) (baseline)
			Group X Time p=0.129	26.2 (17.2) vs. 29.5 (19.9) (postintervention)
			Time p<0.001	27.7 (16.2) vs. 37.0 (24.1) (12 weeks; no ITT)
			Group p=0.124	-6.9 (95% CI -10.8 to -2.9) vs5.7 (95% CI
				–9.1 to –2.4) (pre-post change)

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Garrett, 2013a Garrett, 2013b (same author group a as Hogan 2014) (Continued)				ANOVA results for MSIS–physical Group X Time p=0.470 Time p<0.001 Group p=0.124 MSIS–psychological component (0–100), median (Semi–IQR) A vs. D 33.3 (15.0) vs. 22.2 (12.0) (baseline) 18.5 (18.5) vs. 18.5 (38.9) (postintervention) –11.1 (25.9) vs. 0 (16.7), p<0.01 (pre-post change)
				B vs. D 33.3 (17.0) vs. 22.2 (12.0) (baseline) 25.9 (33.3) vs. 18.5 (38.9) (postintervention) -3.7 (22.2) vs. 0 (16.7), p=0.04 (pre-post change)
				C vs. D 29.6 (13.0) vs. 22.2 (12.0) (baseline) 22.2 (29.6) vs. 18.5 (38.9) (postintervention) -3.7 (22.2) vs. 0 (16.7), p=0.02 (pre-post change)
				A vs. B 33.3 (15.0) vs. 33.3 (17.0) (baseline) 18.5 (18.5) vs. 25.9 (33.3) (postintervention) 23.4 (14.8) vs. 30.1 (20.9) (12 weeks; no ITT) -11.1 (25.9) vs3.7 (22.2) (pre-post change)
				C vs. B 29.6 (13.0) vs. 33.3 (17.0) (baseline) 22.2 (29.6) vs. 25.9 (33.3) (postintervention) 28.5 (22.7) vs. 30.1 (20.9) (12 weeks; no ITT) -3.7 (22.2) vs3.7 (22.2) (pre-post change)

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Garrett, 2013a Garrett, 2013b (same author group a as Hogan 2014)				A vs. C 33.3 (15.0) vs. 29.6 (13.0) (baseline) 18.5 (18.5) vs. 22.2 (29.6) (postintervention) 23.4 (14.8) vs. 28.5 (22.7) (12 weeks; no ITT) -11.1 (25.9) vs3.7 (22.2) (pre-post change)
(Continued)				ANOVA results for MSIS–psychological Time X Group p=0.446 Time p<0.0001 Group p=0.246
Gervasoni 2014	A. Treadmill 30	n=30	pre, post	NA
Aerobic Exercise Treadmill Postintervention, 0	minutes + 15 minutes conventional physical therapy, 12 sessions over 2 weeks	18 male/12 female (60% male) Mean age=48.75 years	Dynamic Gait Index (walking + balance) A. 15.38 to 12.54 B. 16.00 to 18.07 p=0.51	
weeks	B. 45 minutes	(range NR)		
Fair	conventional physical therapy	EDSS Mean 5.25 (3-6.5)	Positive and Negative Affect Schedule Positive A. 29.0 to 30.0 B. 28.0 to 33.0 p=0.89	
			Negative A. 26.0 to 21.0 B. 23.0 to 21.0 p=0.48	

Authon Vers		Demulation		1
Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
		American Spinal Injury	Pre, post and 8 months after intervention	SCIM (baseline to 12 months)
(Body composition)	electrical stimulation	Association Impairment		A. 57.7 (17.8) to 64.1 (19.2)
	walking while on	Scale C or D	10 meter walk test (seconds)	B. 63.9 (18.9) to 64.8 (13.4)
Hitzig 2013 (quality			A. 42.8 (46.2) to 35.2 (40.8) to 42.2 (67.7)	
of life)	treadmill 45 minutes,	n=34 randomized and	B. 49.1 (41.7) to 28.7 (8.3) to 35.1 (18.8)	SCIM mobility subscale
	3 times a week for 16	analyzed 27	No significant change over time p=0.084 and no	A. 17.27 (7.25) to 21.33 (7.62)
Kapadia 2014	weeks		difference between groups p=0.829	B. 19.09 (7.08) to 19.36 (17.36)
(walking capacity)		Mean age 55.3 years		Group by time interaction p=0.003 with A
0 0017 //	B. Aerobic and		6 minute walk test (meters)	having improvement over time
		26 males and 8 females	A. 187.9 (123.4) to 217.1 (134.4) to 232.5 (138.9)	
markers)	40 to 50 minutes 3	(76% males)	B. 79.4 (83.9) to 130 (46.0) .to 126.4 (63.8)	CHART
	times a week for 16		Overall increase in distance walked p=0.002	CHART Mobility subscale
Aerobic Exercise	weeks		No significant difference between groups p=0.096	A. 79.81 (21.00) to 85.28 (13.81) to
Treadmill				86.36(14.44)
			Timed up and go (seconds)	B. 82.09 (19.31) to 84.27 (11.89) to 88.45
Postintervention, 6			A. 43.6 (25.5) to 33.0 (15.7) to 32.2 (19.1)	(15.25)
months			B. 61.6 (36.2) to 49.5 (21.9) to 51.3 (19.6)	No differences between groups (group by time
F - :			Overall change over time p=0.016 and no difference	interaction p=0.840)
Fair			between the groups p=0.138	
				CHART Social subscale
				A. 89.94 (13.12) to 90.31 (18.02) to 88.69
				(17.10)
				B. 72.73 (24.00) to 89.64 (12.63) to 73.73
				(31.15)
				Group by time interaction p=0.065
				CHART Physical subscale A. 92.35 (11.75) to 93.72 (8.02) to 93.81 (6.16)
				A. 92.35 (11.75) to 93.72 (8.02) to 93.81 (6.16) B. 97.94 (2.49) to 94.99 (7.30) to 93.85 (5.01)
				Group by time interaction p=0.214
				Group by time interaction p=0.214
				MAS
				No change overall scores and no significant
				group by time interaction p=0.942
				group by time interaction p=0.942

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Giangregorio 2012 (Body composition)				BMD mean change left total hip {g/cm2]) A. 0.90 (0.20) to 0.88 (0.20) to 0.89 (0.20)
Hitzig 2013 (quality of life)				(p=0.41 B. 0.86 (0.21) to 0.87 (0.23) to 0.90 (0.21) p=0.06 No significant differences between groups in
Kapadia 2014				BMD or in any bone architecture indices
(walking capacity)				(pQCT) at any time point
Craven 2017 (bone markers)				Fat mass (kilogram) A. 25.4 (9.5) to 24.3 (9.5) to 25.2 (9.0) B. 23.4 (10.8) to 23.0 (10.7) to 23.3 (11.1)
(Continued)				No differences over time or between groups
	A. Running and running exercises, 48	A vs. B Age: 12.4 vs. 12.5	A vs. B, Mean Difference between groups:	NA
Aerobic Exercise	sessions over 12	Female: 33% vs. 38%	Shuttle Run Test (min): 0.9, 95% CI -0.3 to 2.2, p=0.142	
Aerobics	weeks (n=21)	GMFCS I: 57% vs. 60% GMFCS II: 38% vs. 40%	HiMat: 0.8, 95% CI -2.7 to 4.3, p=0.651	
Postintervention,	B. Usual care (n=21)	GMFCS III: 5% vs. 40%		
12 weeks	()		10X5 sprint (sec): -1.3, 95% CI -5.4 to 2.8, p=0.535	
Good				

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Gorman, 2019	A. RAGT, 36	A vs. B	A vs. B, mean (SD)	NA
Aerobic Exercise Aquatics	sessions over 3 months (n=18)	Age (mean years): 45.4 vs. 46.9 Female:	Robotic Peak VO₂ change: 2.07 (p=0.03) vs.	
	B. Aquatic therapy,	NR	Arm ergometer peak VO ₂ change	
Postintervention, 12 weeks	36 sessions over 3 months (n=15)	Race: NR Ambulatory:	Robotic: -0.30 (p=033) Aquatic: 0.98 (p=0.14)	
Fair		Community Ambulation 16 (83%) vs. 10 (67%) Wheelchair user: NR		
		Other: Time since injury (years): 6.6 vs. 12.2 Tetraplegic: 12 (67%) vs. 11		
		(73%) Paraplegic: 6 (33%) vs. 4 (27%) WISCI:9.5 \pm 7.6 11.7 \pm 6.5		

Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Grecco 2013	A. Transcranial motor		Pre, post and 3 weeks later	NA
GIECC0 2013	cortex stimulation	(II/III 16/8)		
Aerobic Exercise	while treadmill	(1711 10/0)	6 minute walk (meters)	
Treadmill	training 5 times a	N=24 randomized and all	A. 223 (58) to 448.2(100.5) to 409.6 (81.6) (within group	
ricaariiii	week for 2 weeks (no		increase F=9.966, p<0.001)	
RCT	body weight support)	completed	B. 255.4 (62.8) to 367.2 (97.6) to 345.4 (97.7) NS within	
	body weight support)	Mean age 7.9 years	group difference	
Postintervention, 3	B. Treadmill training	Mourrago r.o youro		
weeks	with placebo	7 males and 17 females	Change distance baseline to post, baseline to followup	
	stimulation	(29% males)	A. 199.6, 186.4	
Fair		()	B. 111.8, 90.0	
			Between group comparison effect size pre to post 87.8	
			(p<0.05) and pre to followup 96.4 (p<0.05)	
			GMFM-88 D scale	
			A. 63.7 (7.0) to 75.3 (11.6) to 72.6 (12.4) (no significant	
			change)	
			B. 66.2 (6.2) to 70.0 (9.2) to 68.4 (9.8) (no significant	
			change)	
			Change score baseline to post, baseline to followup	
			A. 11.5, 8.8	
			B. 3.7, 2.1	
			NS between group comparison effect sizes	
			GMFM-88 E	
			A. 54.1 (7.7) to 59.9 (11.1) to 60.7 (10.5) (no significant	
			change)	
			B. 60.7 (10.5) to 61.7 (10.7) to 60.1 (10.7) (no significant	
			change)	
			Change baseline to post, baseline to followup	
			A. 0.8, 0.4	
			B. 1.0, 0.7	
			NS between group comparison effect sizes	
l	1		The between group companson eneor sizes	

Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
	Intervention and	Condition Specific (%)		
		Other (%)	Prioritized Outcomes	Other Outcomes
		GMFCD I-III	Pre, post and 1 month later	Berg Balance Scale
		(I/II/III of 13/15/5)		A. 34.9 (8.5), 46.7(7.6), 46.2 (7.4) Post
	times a week for 7	(1/11/11/01/13/13/3)	6 minute walk test (meters)	treatment and followup different from baseline
	weeks at 80%	n=33	A. 227.4(49.4) to 377.2 (93.0) to 360.2 (86.1) Post	p<0.05, post treatment different from baseline
		11-55	treatment and followup different from baseline p<0.05,	p < 0.05, post treatment different nom baseline $p < 0.05$
RCT	maximal speed	Mean age 6.4 years	post treatment different from baseline p<0.05	B. 31.9 (7.0), 35.7(6.8), 35.6(5.2) Post
	B. Overground	wear age 6.4 years		treatment and followup different from baseline
	walking using assist	15 males and 18 females	B. 222.6 (42.6), 268.0 (45.0), 257.6 (45.8) Post treatment and followup different from baseline p<0.05, post	p<0.05
	devices if needed	(45% male)	treatment different from baseline p<0.05	
			A. had greater improvement at post (p=0.001) and	Baseline to post treatment
Fair			followup (p=0.001)	A. 11.8
				В. 3.3
			Baseline to post treatment	Effect size 8.4, p<0.000
			A. 149.7	
			B. 44.8	Baseline to followup
			Effect size 10.4.2, p<0.000	A. 11.2
				B. 3.2
			Baseline to followup A. 137.6	Effect size 8.0 p<0.000
			B. 33.6	Pediatric Evaluation Disability Index
			Effect size 104.2 p<0.000	A. 128.0(19.9), 139.0 (18.4), 140.8 (16.9) Post treatment and followup different from baseline
			Timed Up and Go (seconds)	p<0.05
			A. 14.3 (2.9) to 7.8 (2.2) to 8.6 (2.2) Post treatment and	p 0.00
			followup different from baseline $p < 0.05$, post treatment	B. 120.8(19.0), 125.8(16.2), 123.8(17.4) Post
			different from baseline p<0.05	treatment and followup different from baseline
			B. 12.8 (2.2), 10.5 (2.5), 11.2 (2.5) Post treatment and	p<0.05
			followup different from baseline $p<0.05$	F
			,	Baseline to post treatment
			Baseline to post treatment	A. 11.0
			A6.4	B. 4.0
			B2	Effect size 7.0, p<0.035
			Effect size -4.3, p<0.004	
				Baseline to followup
			Baseline to followup	A. 12.2
			A5.7	B. 3.1
			B1.3	Effect size 9.7 p<0.010
			Effect size -4.4 p<0.005	· · · · · · · · · · · · · · · · · · ·

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Grecco 2014	Companson		GMFM-88 (%)	NA
(Continued)			A. 81.6 (8.7) to 93.0 (5.7), to 91.7 (5.0); post treatment and followup different from baseline p<0.05, post treatment different from baseline p<0.05 B. 77.3(7.0) to 80.8 (7.2) to 80.7 (7.5); post treatment and followup different from baseline p<0.05 Baseline to post treatment A. 11.3 B 3.6 Effect size 7.7, p<0.000 Baseline to followup A. 10.0 B. 3.5	
Harness, 2008	A. Strength + cycling	A vs. B	Effect size 6.5; p<0.000 Data reported as mean (SEM)	Data reported as mean (SEM)
	+ vibration:	Age (mean years): 37.8 vs.	A vs. B	A vs. B
Multimodal Exercise Postintervention, 0 weeks	averaging 7.3 hours per week of exercise over 6 months (n=22) B. Self-regulated exercise: averaging	34.5 Female: (13.6%) vs. 0 (0%) Race: NR Ambulatory: NR Wheelchair user: NR Time postinjury (mean	EQ-5D (0-100, higher=increased QOL): 65.0 (4.0) vs. 67.0 (6.0), p=0.93 (baseline) 14.0 (5.0) vs. 3.0 (5.0), p=0.14 (post-pre change)	ASIA-LEMS: 8.0 (2.0) vs. 4.0 (4.0), p=0.37 (baseline) 3.3 (0.9) vs. 0.0 (0.2), p=0.035 (post-pre change)
Fair	5.2 hours per week of exercise over 6 months (n=9)	months): 40.0 vs. 97.0, p=0.0057 Baseline ASIA-UEMS: 31.0 vs. 38.0, p=0.37		ASIA-Total Motor 39.0 (3.0) vs. 42.0 (5.0), p=0.54 (baseline) 4.8 (1.0) vs0.1 (0.5), p=0.0001 (post-pre change) CHART (0-100, higher=increased handicap):
				444.0 (19.0) vs. 521.0 (23.0), p=0.017 (baseline) 12.0 (15.0) vs. 0.1 (18.0), p=0.60 (post-pre change)

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Hasanpour-	A. Yoga: 36 sessions over 12 weeks	A vs. B	A. vs. B. vs. C mean (SD) SF-36 QOL	NA
Dehkordi, 2014 "Comparison of	(n=20)	Age (mean years): 31.9 (A vs. B vs. C, NR)	A. 1533 (759.10) (baseline)	
regular aerobic	(11-20)	Female: 60 (98%) (A vs. B	2446 (540.76) (postintervention), p=0.05	
	B. Aerobics: X	vs. C, NR)	B. 1240.24 (527.32) (baseline)	
quality of life in	sessions over 12	Race: NR	2050 (527.32) (postintervention), p=0.05	
patients"	weeks (n=20)	Ambulatory: NR Wheelchair user: NR	C. 1385.75 (600.04) (baseline) 1255.75(600.22) (postintervention), p=0.05	
Has companions:	C. Usual care			
Hasanpour-	control:		SF-36 QOL mean difference between groups	
Dehkordi, 2016;	(n=21)		A vs. B	
Hasanpour-			229.32, p=0.07	
Dehkordi, 2016 (2)			A vs. C	
Postural Control			1106.41, p=0.000 B vs. C	
Yoga			877.10, p-0.000	
Postintervention, 12 weeks				
Poor				

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Hasanpour- Dehkordi, 2016 (2)	Intervention and Comparison A. Yoga: 36 sessions over 12 weeks	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%) A vs. B vs. C Age (mean years): 31.9 (A	Prioritized Outcomes A vs. B vs. C SF-36 QOL	Other Outcomes NA
"Influence of yoga and aerobics exercise on fatigue, pain and psychosocial status" Postural Control	 (n=20) B. Group exercise: X sessions over 12 weeks (n=20) C. Usual care control: 	vs. B vs. C, NR) Female: 60 (98%) (A vs. B vs. C, NR) Race: NR Ambulatory: NR Wheelchair user: NR	Mental health (baseline) (postintervention) Limited activities following emotional problems 41.9±9.16 vs. vs. (baseline) 35.65±12.3 (postintervention)	
Yoga Companion to: Hasanpour- Dehkordi, 2014 Postintervention, 12 weeks Poor	(n=21)			
Hasanpour- Dehkordi, 2016 "Effects of Yoga on Physiological Indices, Anxiety and Social Functioning" Companion to: Hasanpour- Dehkordi, 2014	A. Yoga: 36 sessions over 12 weeks (n=30) B. Usual care control: (n=30) Yoga vs. usual care	A vs. B Age (mean years): 30 vs. 30 Female: NR Race: NR Ambulatory: NR Wheelchair user: NR	SF-36 QOL, mean1533 (759.10) vs. 1385.75 (600.04) (baseline), p=0.5 2446 (540.76) vs. 1255 (600.22) (postintervention), p=0.5 3.3 (5.63 SD) vs. 3.9 (4.4) (before and after score) (postintervention), p=0.05	NA
Postural Control Yoga Postintervention, 12 weeks Poor				

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Hebert, 2011 Aerobic Exercise Cycling Postintervention, 4 weeks Fair	 A. Bicycle ergometry plus stretching, 12 sessions for 6 weeks (n=12) B. Vestibular rehabilitation (n=13) C. Waitlist control (n=13) 	A vs. B vs. C Age: 46.8 vs. 42.6 vs. 50.2 Female: 75% vs. 85% vs. 85% Race: NR Ambulatory: 100% Wheelchair user: NR BDI-II total score, mean (SD): 16.5 (9.1) vs. 17.3 (8.6) vs. 18.5 (6.4)	From start to end of intervention Mean difference between groups 6MWT: A vs. B: effect size 39.1, 95% CI -105 to 183, p=1.00 A vs. C: effect size 62.7, 95% CI -81 to 2.7, p=1.00 B vs. C: effect size 23.6, 95% CI -117 to 165, p=1.00 BDI-II At 14 weeks-end of intervention phase to end of followup phase (14 weeks) (change from end of intervention) A vs. B BDI-II: 0.7 vs. 2.6 (p=1.000) 6MWT: -58.2 vs. 38. 9 (p=0.731) A vs. C BDI-II: 4.6 vs. 0.7 (p=0.385) 6MWT: -58.2 vs24.6 (p=1.000)	NA
Hebert, 2009 Companion to: Hebert, 2011 End of treatment: 14 weeks Fair	A. Balance + Eye movement exercises: 20 sessions over 14 weeks (n=44) B. No treatment (n=44)	A vs. B Age (mean years): 47 vs. 43 Female: 37 (84%) vs. 38 (86%) Race: NR Ambulatory: 100 % Baseline: 3.50 vs. 3.34 Baseline PHQ-9: 37.8 vs. 37.6 Baseline T25W: 6.19 vs. 5.53 Baseline SF-36 PCS: 35.8 vs. 35.4 Baseline SF-36 MCS: 42.6 vs. 42.9	A vs. B 6 weeks SF-36 PCS: MD 2.39 (95% CI -0.99 to 5.78, p=0.16) SF-36 MCS: MD 2.11 (95% CI -2.24 to 6.46, p=0.34) T25W: MD -0.02 (95% CI -0.27 to 0.23, p=0.86) 14 weeks SF-36 PCS: MD 1.92 (95% CI -1.51 to 5.34, p=0.27) SF-36 MCS: MD 1.82 (95% CI -2.58 to 6.23, p=0.41) T25W: MD -0.05 (95% CI -0.63 to 0.53, p=0.86)	NA

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Heine, 2017	A. Leg cycling, 48	A vs. B	A vs. B	Impact on participation and autonomy: no
	sessions over 16	Age: 43.1 vs. 48.2	VO ₂ peak end of treatment: MD 0.048 (0.082), p=0.561	significant difference on any subscale at end
Aerobic Exercise	weeks (43)	Female: 74% vs. 72%	VO ₂ peak end of followup:	of treatment or at end of followup
Cycling		EDSS: 2.5 vs. 3.0	MD -0.046 (0.082), 0.579	
	B. MS nurse	RRMS: 72% vs. 74%		
16 weeks	consultation, 3	SPMS: 7% vs. 11%	Calculated A vs. B, Mean Difference (SE) between	
	consultations over 16	PPMS: 21% vs. 15%	groups:	
Postintervention,	weeks (46)	VO ₂ peak (L/min): 1.75 vs.		
36 weeks		1.53	IPA autonomy indoors: -0.11 (0.088), p=0.203	
		Ambulatory: 100%	<u>IPA family role</u> : -0.082 (0.1222), p=0.502	
Fair			IPA autonomy outdoors: -0.097 (0.125), p=0.438	
			IPA Social Relations: -0.138 (0.092), p=0.135	
			IPA Work/education: 0.225 (0.167), p=0.181	

Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
	Intervention and	Condition Specific (%)		
	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
	A. Hippotherapy	A vs. B	A vs. B, mean (SD), Effect size for entire study period	A vs. B, mean (SD), Effect size for entire study
	simulator, (turned on	Age (mean years): 9.95	(95% CI)	period (95% CI)
	and in workout	(8.80–11.10) vs. 9.05 (7.58–		
Hippotherapy	mode) 10 sessions	10.53)	GMFCS:	Gross Motor Function Measure (dimension B):
	over 10 weeks	Female: 5 (26%) vs. 6 (32%)	10 weeks (end of treatment)	10 weeks (end of treatment)
Followup in weeks	(n=19)	Race: NR	42.23 (15.63) vs. 43.02 (18.40)	26.95 (14.65) vs. 29.95 (14.87)
Postintervention,		Ambulatory: NR		
12 weeks	B. Hippotherapy	Wheelchair user: NR	22 weeks (followup)	22 weeks (followup)
	simulator (turned off,		43.54 (17.16) vs. 44.24 (19.76) difference 0.25 (95% CI –	27.05 (15.26) vs. 30.11 (14.94), difference
Fair	sitty position only),	Gross Motor Function	0.10	0.25 (95% CI –0.10 to 0.60)
	10 sessions over 10	Classification System levels	to 0.60)	
	week (n=19)	I–V:		
		Baseline GMFCS level I: 2		
		(11%) vs. 2 (11%)		
		Baseline GMFCS level II: 2		
		(11%) vs. 1 (5%)		
		Baseline GMFCS level III: 3		
		(16%) vs. 2 (11%)		
		Baseline GMFCS level IV: 3		
		(16%) vs. 4 (21%)		
		Baseline GMFCS level V: 9		
		(47%) vs. 10 (53%)		
		Baseline Total Gross Motor		
		Function Measure 42.75		
		(19.02) vs. 40.91 (17.50),		
		p=0.758a		
		F 0		
		Baseline Gross Motor		
		Function Measure dimension		
		B 29.84 (15.04) vs. 25.68		
		(15.40), p=0.405		

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Hochsprung, 2017	A. Visual	A vs. B	A vs. B (SD)	NA
riochsprung, 2017	biofeedback cycling	Age (mean years): NR		
Aerobic Exercise	training, 12 sessions	rige (mean years). Nix	FAP	
Cycling	over 12 weeks	Female:	(0.820) vs. (0.929) (baseline)	
- ,	(n=30)	20 (66%) vs. 16 (50%)	(0.792) vs. (0.942); p=0.002 (postintervention)	
Postintervention, 0	(
weeks		Race: NR	Calculated A vs. B Mean change scores:	
	B. Home exercise			
Poor	program, sessions	Ambulatory:	FFAP:	
	not stated (n=31)	30 (100%) vs. 31 (100%)	3.036 (p=0.002) vs1.06 (p=0.289)	
	. ,	Wheelchair user: NR		
			No comparison between groups provided	

Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Hogan, 2014	A. Group PT: 10	A vs. B [for completers only]	6MWT (meters), median (semi–IQR)	MSIS-physical component, mean (SD)
(same author	sessions over 10	Age (mean years): 57 vs. 52	[The Kruskal Wallis test showed that there was no	A vs. D
group and protocol	weeks (n=48)	vs. 58 vs. 49	statistically significant difference between groups]	50.5 (9.5) vs. 55.3 (9.5) (baseline)
as Garrett 2013a		Female: 30 (%) vs. 15 (%)	A vs. D	45.9 (10.5) vs. 50.5 (11.3) (postintervention)
and 2013b - see	B. 1-on1 PT: 10	vs. 5 (%) vs. 2 (%)	101 (39.5) vs. 83.5 (44) (baseline)	-4.54 (95% CI -7.5 to -1.5) vs4.8 (95% CI
notes)	sessions over 10	Race: NR	121.2 (47.4) vs. 90 (35) (postintervention)	−10.4 to −0.6) (pre-post change)
	weeks (n=35)	Ambulation and Wheelchair	20.2 vs. 6.5 (pre-post change)	
Postural Control		use: patients use bilateral		B vs. D
Yoga	C. Yoga (n=13)	assistance for gait and may	B vs. D	54 (11.5) vs. 55.3 (9.5) (baseline)
		use a wheelchair for longer	83.8 (39.8) vs. 83.5 (44) (baseline)	49.4 (12) vs. 50.5 (11.3) (postintervention)
Postintervention, 0	D. Usual care (n=15)	distance	100 (55) vs. 90 (35) (postintervention)	-4.52 (95% CI -7.9 to -1.1) vs4.8 (95% CI
weeks			16.2 vs. 6.5 (pre-post change)	−10.4 to −0.6) (pre-post change)
			C vs. D	C vs. D
			70 (30) vs. 83.5 (44) (baseline)	48.3 (10.5) vs. 55.3 (9.5) (baseline)
			45 (54.5) vs. 90 (35) (postintervention)	49.6 (11.6) vs. 50.5 (11.3) (postintervention)
			−25 vs. 6.5 (pre-post change)	1.3 (95% CI –4.7 to 7.3) vs. –4.8 (95% CI –10.4 to –0.6) (pre-post change)
			A vs. B	- 10.4 to -0.6) (pre-post change)
			101 (39.5) vs. 83.8 (39.8) (baseline)	A vs. B
			121.2 (47.4) vs. 100 (55) (postintervention)	50.5 (9.5) vs. 54 (11.5) (baseline)
			20.2 vs. 16.2 (pre-post change)	45.9 (10.5) vs. 49.4 (12) (postintervention)
				-4.54 (95% CI -7.5 to -1.5) vs4.52 (95% CI
			C vs. B	-7.9 to -1.1) (pre-post change)
			70 (30) vs. 83.8 (39.8) (baseline)	
			45 (54.5) vs. 100 (55) (postintervention)	C vs. B
			-25 vs. 16.2 (pre-post change)	48.3 (10.5) vs. 54 (11.5) (baseline)
				49.6 (11.6) vs. 49.4 (12) (postintervention)
			A vs. C	1.3 (95% CI –4.7 to 7.3) vs4.52 (95% CI
			101 (39.5) vs. 70 (30) (baseline)	−7.9 to −1.1) (pre-post change)
			121.2 (47.4) vs. 45 (54.5) (postintervention)	
			20.2 vs25 (pre-post change)	A vs. C
				50.5 (9.5) vs. 48.3 (10.5) (baseline)
				45.9 (10.5) vs. 49.6 (11.6) (postintervention)
				-4.54 (95% CI -7.5 to -1.5) vs. 1.3 (95% CI -
				4.7 to 7.3) (pre-post change)

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Hogan, 2014 (same author group and protocol as Garrett 2013a and 2013b - see notes) Postural Control				MSIS-psychological, median (semi-IQR) (The Kruskal Wallis test showed that there was no statistically significant difference between groups) A vs. D 18 (5.5) vs. 17 (4) (baseline) 15 (5.7) vs. 15 (4.5) (postintervention) -3 vs. 2 (pre-post change)
Yoga (Continued)				B vs. D 18 (5.38) vs. 17 (4) (baseline) 17 (4.8) vs. 15 (4.5) (postintervention) −1 vs. 2 (pre-post change)
				C vs. D 14 (2.2) vs. 17 (4) (baseline) 15 (4) vs. 15 (4.5) (postintervention) 1 vs. 2 (pre-post change)
				A vs. B 18 (5.5) vs. 18 (5.38) (baseline) 15 (5.7) vs. 17 (4.8) (postintervention) -3 vs1 (pre-post change)
				C vs. B 14 (2.2) vs. 18 (5.38) (baseline) 15 (4) vs. 17 (4.8) (postintervention) 1 vs. −1 (pre-post change)
				A vs. C 18 (5.5) vs. 14 (2.2) (baseline) 15 (5.7) vs. 15 (4) (postintervention) −3 vs. 1 (pre-post change)

	1			
Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Hota, 2020	A. Dual task	A vs. B	A vs. B, mean (SD):	NA
	exercises for upper	Age 11-25: 40% vs. 30%		
Postural Control	and lower limbs, 24	Age 26-40: 25% vs. 45%	<u>BBS</u> : MD 4.55, 95% CI 2.16 to 6.94	
Balance Exercises	sessions over 4	Age 41-55: 25% vs. 25%		
	weeks (n=20)	Age 56-70: 10% vs. 0%	Motor Assessment Scale: MD 3.82, 95% CI 1.09 to 6.55,	
Postintervention,		Female: 10% vs. 10%	p=0.006	
4 weeks	B. Control group –	Race: NR		
F - in	details NR, (n=20)			
Fair Hsieh, 2018		A vs. B	A vs. B	A vs. B, mean (SD)
nsien, 2016	A. PC gaming using arm and trunk, 60	A vs. b Age (mean years): 7.33 vs.	TUG (score)	BBS (score)
Postural Control	sessions over 12	7.41	16.43 (2.12) vs. 15.60 (1.10) (baseline)	44.74 (2.75) vs. 44.39 (2.33) (baseline)
Motion gaming	(n=20)	Female: 6 (30%) vs. 5 (25%)	17.51 (1.70) vs. 15.91 (1.87) (postintervention)	48.81 (4.74) vs. 45.37 (2.68) (postintervention)
would gaming	(11-20)	Race: NR		40.01 (4.74) V3. 40.07 (2.00) (posumervention)
Postintervention,	B PC gaming using	Ambulatory: NR		
12 weeks	mouse, 60 sessions	Wheelchair user: NR		
	over 12 weeks			
Fair	(n=20)	CP subtype		
	(11 20)	Spastic quadriplegia 11		
		(55%) vs. 12 (60%)		
		Spastic diplegic 4 (20%) vs.		
		3 (15%)		
		Athetoid 2 (10%) vs. 2 (10%)		
		Ataxic 3 (15%) vs. 3 (15%)		
		GMFCS level		
		Level II 10 (50%) vs. 10		
		(50%)		
		Level III 6 (30%) vs. 5 (25%)		
		Level IV 4 (20%) vs. 5 (25%)		
Hsieh, 2020	A. PC gaming using	A vs. B	A vs. B, mean (SD)	NA
	balance board, 36	Age: 7.9 vs. 8.1		
Postural Control	sessions over 12	Female: 32% vs. 31.5%	<u>2MWT:</u> 103.4 (16.6) to 120.1 (20.2) vs. 101.4 (23.1) to	
Motion Gaming	weeks (n=28)	Race: NR	106.1 (22.8), p=0.002	
Destinten "		GMFCS I: 53.5% vs. 50%		
Postintervention,	B. PC gaming using	GMFCS II: 28.6% vs. 32.1%	PBS-total: 29.9 (5.3) to 35.8 (5.5) vs. 32.3 (7.5) to 34.4	
0 weeks	mouse, 36 sessions		(5.9), p=0.002	
Fair	over 12 weeks (n=28)	Deplegic: 57.1% vs. 42.9%		
Гаll	(11-20)			

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Huang, 2015	A. RAGT, 16	A vs. B	A vs. B, mean (SD)	NA
	sessions over 4	Age (mean years):		
Aerobic Exercise	weeks (n=12)	41.7 vs. 38.4	A. Defecation time	
Robot-Assisted		Female:	Before 93.0 +/-14.7	
Gait Training		5 (42%) vs. 3 (25%)	After 64.5 +/-11.6	
	B. Body Weight		B. Before 84.0 +/-15.2	
Postintervention, 4	Support Treadmill	Race: NR	After 69.5 +/-15.6	
weeks	Training, 16 sessions			
	over 4 weeks (n=12)	Ambulatory: NR		
Fair		Wheelchair user: NR		
		Other		
		Other:		
		height 168.8 cm vs. 169.8		
		cm		
		weight (kg) 66.1 vs. 65.3		

Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
In, 2018	A. Whole body		A vs. B	NA
	vibration +	only)		
Postural Control	conventional physical		TUG (seconds)	
Whole body	therapy: 80 sessions	49.9	13.7 (3.1) vs. 14.7 (4.5), p=0.608 (baseline)	
vibration	over 8 weeks (n=14)		11.4 (2.8) vs. 13.7 (4.1), p=NR (postintervention)	
		Race: NR	–2.3 (1.3) vs. –1.0 (1.0), p=0.016 (post-pre change)	
Postintervention, 0	B. Placebo whole	Ambulatory: 14 (100%) vs.	Time X Group p=0.016	
weeks	body vibration +	14 (100%)		
E a la	conventional physical	Wheelchair user: NR	10MWT (seconds)	
Fair	training (n=14)	Duration (mean months):	29.3 (9.0) vs. 28.8 (7.2), p=0.868 (baseline)	
		13.7 vs. 14.3	25.8 (8.1) vs. 27.5 (6.3), p=NR (postintervention)	
			-3.5 (2.3) vs1.3 (1.4), p=0.005 (post-pre change)	
			Time X Group p=0.005	
			Spasticity measured by manual muscle tester (kg)	
			-Right ankle	
			11.9 (3.5) vs. 12.2 (3.2), p=0.785 (baseline)	
			8.8 (2.9) vs. 11.1 (2.9), p=NR (postintervention)	
			–3.1 (1.9) vs. –1.1 (0.6), p=0.001 (post-pre change)	
			Time X Group p=0.001	
			-Left ankle	
			13.2 (2.3) vs. 12.5 (3.1), p=0.526 (baseline)	
			10.1 (2.2) vs. 11.6 (2.3), p=NR (postintervention)	
			–3.0 (1.7) vs. –0.9 (1.2), p=0.001 (post-pre change)	
L			Time X Group p=0.001	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Johnston 2011	A. Partial body weight supported	Marginal ambulatory function and GMFCD III or IV	Pre, post and 1 month later	Plantar flexor spasticity A. 0.0013 (0.0012) to 0.0016 (0.0024) to
Aerobic Exercise	treadmill training with		Gait speed (meters/second)	0.0012 (0.0018)
Treadmill	two 30 minute	n=34 randomized and 26	A. 0.50(0.26) to 0.62 (0.31) to 0.63 (0.28)	B. 0.0030 (0.0024) to 0.003. (0.0021) to
	sessions 5 days a	completed the study	B. 0.44 (0.35) to 0.32 (0.50) to 0.44 (0.34)	0.0026 (0.0013)
	week for 2 weeks,		within group differences pre to post for both groups [body	
weeks	followed by 30	Mean age 9.5 years	weight supported treadmill p=0.008, physical therapy	Knee flexor spasticity
Fair	minutes 5 days a		p=0.007]; but gains only maintained in treadmill group	A. 0.0088 (0.0114), 0.0074 (0.0133), 0.0083
	week of home	14 males and 12 females		(0.0139)
	training for 10 weeks	(39% male)		B. 0.0032 (0.0044), 0.0072 (0.0137), 0.0053
	B. Individualized		A. 62.7 (17.5) to 63.3 (16.2) to 65.3 (16.5) B. 58.4 (26.9) to 60.1(25.1) to 60.6 (26.7)	(0.0044)
	physical therapy		no significant change in either group and no difference	Knee extension strength
	sessions strength		between groups	A. 3.90 (3.09) to 3.58 (2.82) to 3.06 (3.25)
	and weigh-bearing		settieen greupe	B. 3.09 (3.15) to 3.80 (4.22) to 3.69 (3.66)
	activities comparable		Pediatric Outcomes Data Collection Instrument (global)	
	session duration and		A. 50.4 (11.2) to 59.3 (11.4) to 60.0 (10.0)	Knee flexion strength
	number		B. 50.9 (14.9) to, 52.0 (22.6) to 55.4 (21.7)	A. 2.47 (1.45) to 2.43 (1.54) to 2.57 (1.65)
			score improved for all participants (p=0.003) but no	B. 2.35 (2.04) to 2.98 (3.26) to 2.54 (2.09)
			difference between groups (p=0.73); only the treadmill	
			group maintained the improvement	No significant within or between group differences in spasticity or strength

Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality (See Appendix B	Intervention and	Wheelchair User (%) Condition Specific (%)		
	Comparison	,	Prioritized Outcomes	Other Outcomes
		Other (%)		
	A. Activity-based	A vs. B (for completers only)	Data reported as mean (SD)	Data reported as mean (SD)
Jones, 2014b	therapy: 72 sessions	Age (mean years): 42.20 vs.	A vs. B	A vs. B
Multimedal	over 24–weeks;	34.14, p=0.046		OLUCIA (aslaulated using Linid profiles)
	actual frequency	Female: 1 (5%) vs. 10	TUG (seconds)	QUICKI (calculated using Lipid profiles)
	average 49.9	(48%), p=0.002	190.9 (134.6) vs. 111.19 (112.9), p=0.048 (baseline)	0.35 (0.04) vs. 0.38 (0.06), p=0.071 (baseline)
	sessions (n=20)	Race: NR	-37.2 (81.3) vs6.2 (18.1), p=0.267(pre-post change)	–0.002 (0.023) vs. –0.012 (0.045), p=0.921
Postintervention,		Spinal Cord Injury Functional		(pre-post change)
12 weeks (for ALL	B. Waitlist (n=21)	Ambulation Index: 13.44 vs.	10MWT (meters/second)	
patients completing		18.6	0.227 (0.304) vs. 0.363 (0.411), p=0.240 (baseline)	Reintegration to normal living index
the Activity Based		Wheelchair user: NR	0.096 (0.140) vs. 0.027 (0.104), p=0.036 (pre-post	78.3 (18.0) vs. 80.0 (17.1), p=0.760 (baseline)
Therapy		Tetraplegia (C2 to T1)	change)	4.6 (13.87) vs. –2.0 (10.01), p=0.087 (pre-post
intervention)		-LEMS ≥ 25: 8 (40%) vs. 7		change)
		(33%)	6MWT (meters)	
Poor (for both)		-LEMS>25: 7 (35%) vs.9	73.11 (92.57) vs. 117.6 (132.8), p=0.219 (baseline)	SCI-FAI
		(43%)	35.97 (48.15) vs. 3.0 (25.51), p=0.002 (pre-post change)	13.44 (13.4) vs. 18.6 vs. 11.5, p=0.294
		Paraplegia (T2 to T10)		
		-LEMS ≥ 25: 1 (5%) vs. 1	BMI (kg/m^2)	5.0 (8.03) vs0.21 (2.83), p=0.031 (pre-post
		(5%)	27.14 (6.36) vs. 24.81 (6.64), p=0.260 (baseline)	change)
		-LEMS > 25: 4 (20%) vs. 4	0.005 (1.15) vs. 0.723 (2.22), p=0.288 (pre-post change)	
		(19%)		
		Time postinjury (mean	Weight (pounds)	62.7 (18.8) vs. 63.6 (25.5), p=0.891 (baseline)
		months): 77.87 vs. 75.3	197 (44.79) vs. 167 (46.35), p=0.040 (baseline)	1.35 (5.2) vs. 0.0 (4.53), p=0.393 (pre-post
			-0.20 (8.29) vs. 5.03 (14.05), p=0.314 (pre-post change)	change)
			Data for ALL participants completing the Activity Based	
			Therapy intervention (n=38)	
			[Baseline vs. postintervention, MD (95% CI)]	
			TUG (seconds): 149.50 (130.39) vs. 124.99 (126.21), MD	
			-24.52 (95% CI -44.88 to -4.14), p=0.020	
			10MWT (meters/second): 0.304 (0.404) vs. 0.364 (0.389),	
			MD 0.061 (95% CI 0.01 to 0.11), p=0.021	
			6MWT (meters): 96.30 (115.15) vs. 129.35 (127.08), MD	
			33.05 (95% CI 15.82 to 50.27), p=0.000	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Jones, 2014a			Odds of responding to Activity Based Therapy at	
Jones, 2014b			postintervention (n=38) [% responding (n/N) vs. % responding (n/N), OR (95%	
(Continued)				
			TUG (positive response ≥25.7 second decrease) Tetraplegia vs. Paraplegia: 17.9% (5/28) vs. 20% (2/10), OR 1.15 (95% Cl 0.18 to 7.14), p=0.881 AlS grade C vs. grade D: 14.3% (2/14) vs. 20.8% (5/24), OR 1.58 (95% Cl 0.26 to 9.48), p=0.617 Lower extremity motor score <26 vs. >25: 25% (4/16) vs. 13.6% (3/22), OR 2.11 (95% Cl 0.40 to 11.13), p=0.378 >3 years vs. <3 years since injury: 15.8% (3/19) vs. 21% (4/19), OR 1.42 (95% Cl 0.27 to 7.44), p=0.617 Functional walker at home (>0.4m/s) vs. Non–functional walker at home (<0.4 m/s): 25.9% (7/27) vs. 0% (0/11), OR 8.42 (95% Cl 0.44 to 161.16), p=0.157 10MWT (positive response ≥0.13 meter/second increase) Tetraplegia vs. Paraplegia: 21.4% (6/28) vs. 40% (4/10), OR 2.44 (95% Cl 0.53 to 11.57), p=0.260 AlS grade C vs. grade D: 7.1% (1/14) vs. 37.5% (9/24), OR 7.80 (95% Cl 0.87 to 70.08), p=0.067 Lower extremity motor score <26 vs. >25: 18.8% (3/16) vs. 31.8% (7/22), OR 2.02 (95% Cl 0.43 to 9.46), p=0.371 >3 years vs. <3 years since injury: 15.8% (3/19) vs. 36.8% (7/19), OR 3.11 (95% Cl 0.66 to 14.60), p=0.150 Functional walker at home (>0.4m/s) vs. Non–functional walker at home (<0.4 m/s): 22.2% (6/27) vs. 36.4% (4/11), OR 2.00 (95% Cl 0.43 to 9.21), p=0.374	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Jones, 2014a			6MWT (positive response ≥45.11 meter increase)	
Jones, 2014b			Tetraplegia vs. paraplegia: 25% (7/28) vs. 50% (5/10), OR 3.00 (95% CI 0.67 to 13.53), p=0.153	
(Continued)			AIS grade C vs. grade D: 7% (1/14) vs. 53% (11/24), OR 11.00 (95% CI 1.24 to 97.97), p=0.032	
			Lower extremity motor score <26 vs. >25: 18.8% (3/16) vs. 40.9% (9/22), OR 3.00 (95% CI 0.66 to 13.66), p=0.156	
			>3 years vs. <3 years since injury: 15.8% (3/19) vs. 47.4% (9/19), OR 4.80 (95% CI 1.04 to 22.10), p=0.044 Functional walker at home (>0.4m/s) vs. Non–functional walker at home (<0.4 m/s): 25.9% (7/27) vs. 45.5% (5/11), OR 2.38 (95% CI 0.55 to 10.32), p=0.246	
			Odds of responding to Activity Based Therapy at 12-week followup (n=31) [% responding (n/N) vs. % responding (n/N), OR (95% CI)]	
			10MWT Tetraplegia vs. Paraplegia: 44% (11/25) vs. 83.3% (5/6), OR 6.36 (95% Cl 0.65 to 62.69), p=0.113 AlS grade C vs. grade D: 16.7% (2/12) vs. 13.7% (14/19), OR 14.00 (95% Cl 2.25 to 87.25), p=0.005 Lower extremity motor score <26 vs. >25: 28.6% (4/14) vs. 70.6% (12/17), OR 6.00 (95% Cl 1.26 to 28.55), p=0.024 >3 years vs. <3 years since injury: 50% (8/16) vs. 33.3% (8/15), OR 1.14 (95% Cl 0.28 to 4.68), p=0.853 Functional walker at home (>0.4m/s) vs. nonfunctional walker at home (<0.4 m/s): 42.9% (9/21) vs. 70% (7/10), OR 3.11 (95% Cl 0.63 to 15.49), p=0.166 Reported exercise <3 hours/week vs. >3 hours/week: 44.4% (4/9) vs. 60% (9/15), OR 1.88 (95% Cl 0.35 to	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Jones, 2014a	Comparison		Reported no community walking vs. community walking:	Other Outcomes
Jones, 2014b			44.4% (4/9) vs. 60% (9/15), OR 1.88 (95% CI 0.35 to	
(Continued)			9.98), p=0.461	
			6MWT Tetraplegia vs. Paraplegia: 40% (10/25) vs. 33.3% (2/6), OR 1.33 (95% Cl 0.20 to 8.70), p=0.764 AlS grade C vs. grade D: 8.3% (1/12) vs. 57.9% (11/19), OR 15.13 (95% Cl 1.61 to 142.16), p=0.018 Lower extremity motor score <26 vs. >25: 7.1% (1/14) vs. 64.7% (11/17), OR 23.83 (95% Cl 2.4 to 229.36), p=0.006 >3 years vs. <3 years since injury: 37.5% (6/16) vs. 40% (6/15), OR 1.11 (95% Cl 0.26 to 4.72), p=0.887 Functional walker at home (>0.4m/s) vs. Non–functional walker at home (<0.4 m/s): 23.8% (5/21) vs. 70% (7/10), OR 0.019 (95% Cl) Reported exercise <3 hours/week vs. >3 hours/week: 44.4% (4/9) vs. 46.7% (7/15), OR 1.09 (95% Cl 0.21 to 5.76), p=0.916 Reported no community walking vs. community walking: 22.2% (2/9) vs. 60% (9/15), OR 5.25 (95% Cl 0.80 to	
Jung, 2014	A. Aquatic exercise, 24 sessions over 8 weeks (n=10)	A vs. B Age (mean years): 42.1 vs. 51.1	34.43), p=0.084 A vs. B FVC(L): 2.5 (0.7) vs. 3.0 (0.9) baseline	NA
Aerobic Exercise	B Land exercise 24	Female:	4.3 (1.4) vs. 3.4 (1.4); change values -1.8 (1.3) vs0.31	
Aquatics	B. Land exercise, 24 sessions over 8 weeks (n=10)	3 (30%) vs. 5 (50%)	(1.6), p<0.01 (postintervention) FEV1(L):	
Postintervention, 0		Race: NR	2.1 (0.9) vs. 2.7 (1.0) baseline	
weeks			3.2 (1.2) vs. 2.9 (1.0); change values -1.1 (1.2) vs0.21	
Fair		Ambulatory: NR Wheelchair user: NR	(0.3); p<0.05 (postintervention)	
			FER(L/sec) and FEV1/FVC: all NS	

Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Jonsdottir, 2018	A. 30 minutes	EDSS 5.53	Pre, post	NA
	treadmill walking, 5	(3.5-7)	110, poor	
Aerobic Exercise	days a week for 8	(0.0 1)	2 minute walk	
Treadmill	weeks; 10 of the 30	n=42	A. 89.1 (35.5) to 116.2 (21.5)	
	minutes was doing		B. 84.5 (34.7) to 87.9 (21.5)	
Postintervention, 0	other cognitive or	Mean age 54.05 years	p=0.0006	
weeks	motor tasks (dual	(n=38)	95% CI -1.31 (-2.06, -0.57)	
	tasking treadmill)	, , , , , , , , , , , , , , , , , , ,		
Fair		28 females and 10 males	Timed Up and Go	
	B. Strength training 4	(26.3% males)	A. 16.1 (7.8) to 11.9 (2.3)	
	or 5 days a week, 3		B. 17.4 (13.5) to 14.8 (2.9)	
	sets with 10 reps/set		p=0.009	
	multiple lifts		95% CI 0.009 1.00 (.26, 1.85)	
			DGI (Dynamic Gate Index)	
			A. 15.2 (4.4) to 17.3 (2.7)	
			B. 15 (5.22) to 17.2 (2.7)	
			p=0.97	
			95% CI 0.00 (-0.77, 0.70)	
			SF-12 mental	
			A. 39.3 (8) to 42.6 (6.9)	
			B. 42.0 (10.2) to 44.7 (8.8)	
			p=0.34	
			95% CI 0.34 (-0.39, 1.09)	
			SF-12 physical	
			A. 33.8 (7.4) to -35.4 (5.3)	
			B. 37.4 (11.3) to 33.6 (5.3)	
			p=0.36	
			95% CI -0.34 (-1.06, 0.40)	
			Berg Balance	
			A. 42.9 (10.3) to 48.6 (3.7)	
			B. 44.8 (9.4) to 47.4 (3.8)	
			p=0.39	
			95% CI -0.30 (-0.98, 0.38)	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Kalron, 2016	A. Virtual reality	A vs. B NR	A. vs. B., mean (SD)	A. vs. B, mean (SD)
	(motion platform, VR	Age (mean years): 45.2	FSST:	BBS*
Postural Control	3D visuals and	Female: 19 (63%) vs. 11	16.2 (7.0) vs. 14.2 (7.1), (baseline)	46.8 (9.6) vs. 43.3 (7.1) (baseline)
Motion gaming	sound, plus balance	(37%)	12.7 (6.4) vs. 11.7 (5.9) (postintervention)	47.9 (6.4) vs. 44.6 (4.9) (postintervention)
	training): 12 sessions	Race: NR	Mean difference −3.5 (6.1), F=9.011, p=0.031	Mean difference 1.3 (5.2), F=1.541, p=0.215
Postintervention, 6	over 6 weeks (n=16)	Ambulatory: NR		
weeks		Wheelchair user: NR	FES-I:	
	B. Usual care control		36.4 (9.7) vs. 32.9 (10.3) (baseline)	
Fair	(conventional	EDSS, mean (SD): 4.1 (1.3)	29.4 (7.8) vs. 28.6 (5.8) (postintervention)	
	exercise, plus		Mean difference -4.3 (6.3), F=17.815, p=0.023	
	balance training): 12			*Labeled in the study as "BBT- Berg Balance
	sessions over 6			Test"
	weeks (n=16)			

Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
,	A. Pilates: 12	A vs. B [not accounting for	Data reported as mean (SD)	Data reported as mean (SD)
Kallon, 2017	sessions over 12	those lost to followup]	A vs. B	A vs. B
Muscle Strength	weeks + 15-minute	Age (mean years): 42.9 vs.	A VS. D	A VS. D
wuscle Strength	daily home exercise	44.3	TUG (seconds):	BBS (0-56, higher scores=better balance):
Postintervention, 0	5	Female: 14 (60.9%) vs. 15	12.5 (3.5) vs. 11.6 (2.9) (baseline)	46.8 (9.6) vs. 43.3 (7.1) (baseline)
	program (n=22)			
weeks	B. Standardized	(68.2%) Race: NR	10.7 (3.3) vs. 9.9 (2.9) (postintervention)	47.9 (6.4) vs. 44.6 (4.9) (postintervention)
F air			−1.8 (2.1) vs. −1.7 (2.1) (pre-post change) Time factor p=0.023	1.1 (4.2) vs. 1.3 (5.2) (pre-post change) Time factor p=0.215
Fair	physical therapy	Ambulatory: NR (minimum	Time X Group interaction p=0.422	Time X Group interaction p=0.561
	(Usual care ?): 12 sessions over 12	ability to walk 100m with or	Time X Group Interaction p=0.422	Time X Group Interaction p=0.561
	weeks + 15-minute	without resting with the	CN(N/T (motoro))	
	-	assistance of a walking aid was required for inclusion)	6MWT (meters): 405.6 (125.8) vs. 398.2 (105.3) (baseline)	
	daily home exercise			
	program (n=23)	Wheelchair user: NR	444.7 (89.7) vs. 423.5 (119.2) (postintervention)	
		Baseline EDSS (mean): 4.1	39.1 (78.3) vs. 25.3 (67.2) (pre-post change)	
		vs. 4.6	Time factor p=0.017	
		Disease duration (mean years): 12.4 vs. 11.3	Time X Group interaction p=0.341	
		<i>,</i>	2MWT (meters)	
			139.3 (41.5) vs. 135.7 (39.8) (baseline)	
			153.8 (43.6) vs. 147.9 (40.9) (postintervention)	
			14.5 (25.8) vs. 12.7 (23.0) (pre-post change)	
			Time factor p=0.018	
			Time X Group interaction p=0.872	
			MSWS-12 (0-100, higher scores=decreased walking	
			ability):	
			39.2 (12.7) vs. 37.2 (10.5) (baseline)	
			36.4 (11.8) vs. 34.8 (11.9) (postintervention)	
			2.8 (6.3) vs. 2.4 (5.9) (pre-post change)	
			Time factor p=0.042	
			Time X Group interaction p=0.924	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Kara, 2017	Intervention and Comparison A. Pilates: 16	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%) A vs. B	Prioritized Outcomes Data reported as mean (SD)	Other Outcomes Data reported as mean (SD)
Aerobic Exercise Aerobics Postintervention, 0 weeks Poor	sessions over 8 weeks (n=27) B. Aerobic exercise: 16 sessions over 8 weeks (n=28)	Age: 50 vs. 43 Female: 67% vs. 65% EDSS: 2.85 vs. 3.2	A vs. B TUG right 11.75 (3.38) vs. 10.33 (6.32), p<0.001 (baseline) 10.51 (2.69) vs. 9.56 (6.04), p=0.075 (postintervention) TUG left: 12.74 (3.32) vs. 10.33 (6.28), p=0.001 (baseline) 9.73 (3.17) vs. 10.39 (7.09), p=0.515 (postintervention) BDI: 11.44 (6.52) vs. 8.92 (6.49), p=0.001 (baseline) 9.77 (5.26) vs. 7.15 (6.35), p=0.156 (postintervention)	A vs. B 44.66 (10.98) vs. 46.11 (12.44), p=0.028 (baseline) 47.77 (13.89) vs. 48.57 (16.02), p=0.243 (postintervention) 3.11 (NR) vs. 2.46 (NR), p=NR (pre-post change)
Kara, 2020 Strength Immediately postintervention, 12 weeks Fair	 A. Strength and power training, 36 sessions over 12 weeks (n=15) B. Usual care; occupational therapy, 36 sessions over 12 weeks (n=15) 	A vs. B Age: 12.3 vs. 11.8 Female: 53% vs. 53% Race: NR Ambulatory: NR Wheelchair: NR Manual ability classification system (MACS) Level I: 47% vs. 40% II: 27% vs. 33% III: 27% vs. 27% GMFCS Level I: 87% vs. 87% II: 13% vs. 13%	A vs. B, Mean (SD), p-value for between group difference QUEST total 8.88 (6.51) vs. 2.22 (4.74), MD 6.65 (95% Cl 2.4 to 10.9), p=0.001 (pre-post change)	A vs. B, Mean (SD), p-value for between group difference COMP total 6.12 (2.33) vs. 0.41 (1.56), MD 5.71 (95% CI 4.2 to 7.2), p<0.001 (pre-post change)

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Kargarfard, 2017 Aerobic Exercise Aquatics Postintervention, 0 weeks Fair	Intervention and Comparison A. Aquatic exercise, 24 sessions over 8 weeks (n=17), plus 2-3 sessions per week with neurologic PTs and once weekly educational session B. 2-3 sessions per week with neurologic PTs and once weekly educational session, 16-24 sessions over	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%) A vs. B Age (mean years): 36.5 (9.0) vs. 36.2 (7.4) Female: 20 (100%) vs. 15 (100%) Race: NR Ambulatory: NR Wheelchair user: NR Other: MS: subtypes NR	Prioritized Outcomes A vs. B, mean (SD) 6MWT: 451 (58) vs. 447 (30) (baseline) 503 (57) vs. 418 (29); p<0.001 (postintervention) Sit to Stand: 21.0 (5.7) vs. 21.4 (4.7) (baseline) 16.8 (5.1) vs. 27.3 (4.8); p<0.001 (postintervention) Calculated A vs. B, Mean change scores: <u>6MWT</u> : -52 vs. 29, p<0.001	Other Outcomes A vs. B, mean (SD) Pushup: 17 (9) vs. 18 (7) (baseline) 26 (11) vs. 10 (5); p<0.001 (postintervention) BBS: 53.6 (1.7) vs. 52.3 (3.3) (baseline) 55.2 (1.2) vs. 50.2 (4.6); p<0.001 (postintervention)
Kaya Kara, 2019 Multimodal Exercise Immediately postintervention, 12 weeks Fair	8 weeks (n=15) A. Strength training (progressive resistance exercise) + balance, 36 sessions over 12 weeks (n=17) B. Usual care, 36 sessions over 12 weeks (n=16)	A vs. B Age: 11.8 vs. 11.3 Female: 53% vs. 60% Ambulatory: 100% Manual ability classification system level: I: 47% vs. 47% II: 33% vs. 27% III: 20% vs. 27%	Sit to Stand: 4.2 vs5.9, p<0.001 BBS: -1.6 vs. 2.1, p<0.001	A vs. B, mean difference, Effect size, p-value is between groups Affected lower leg 1 RM (kg): 54.33, ES 3.23, p<0.001 Unaffected lower leg 1 RM (kg): 44.33, ES 2.74, p<0.001

Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
	A. Full body	A vs. B	Data reported as mean (SD)	Data reported as mean (SD)
	progressive	Age (mean years): 42.3 vs.	A vs. B	A vs. B
Multimodal	resistance + aerobic	45.6		
Exercise	training (n=30)	Female: 24 (80%) vs. 20	SF-36 PCS (0-100, higher=greater QOL)	Resting HR (bpm):
		(67%)	44.9 (9.1) vs. 39.0 (10.8), p=NR (baseline)	92 (12) vs. 88 (12), p=NR (baseline)
Postintervention, 0	B. Aerobic training	Race: NR	46.2 (9.1) vs. 39.6 (11.3), p=NR (postintervention)	90 (11) vs. 85 (13), p=NR (postintervention)
weeks	(n=30)	Ambulatory: NR	Time X Group p=0.56	Time X Group p=0.63
		Wheelchair user: NR		
Fair	[36 sessions over 12	MS specific medication	SF-36 MCS (0-100, higher=greater QOL)	Right knee extensor strength (hamstrings):
	weeks for both	(yes): 20 (67%) vs. 20 (67%)	44.9 (13.6) vs. 46.7 (11.7), p=NR (baseline)	102.3 (23.5) vs. 91.4 (36.9), p=NR (baseline)
	groups]		45.4 (13.4) vs. 51.4 (8.6), p=NR (postintervention)	107.7 (28.0) vs. 99.3 (42.3), p=NR
			Time X Group p=0.01	(postintervention)
				Time X Group p=0.50
			VO ₂ -peak (mL/min):	
			1684 (601) vs. 1632 (539), p=NR (baseline)	Left knee extensor strength (hamstrings):
			1756 (599) vs. 1676 (494), p=NR (postintervention)	105.5 (28.1) vs. 92.7 (39.3), p=NR (baseline)
			Time X Group p=0.71	108.2 (33.1) vs. 95.6 (43.8), p=NR
			1/0 nools (ml/min/l/m)	(postintervention)
			VO_2 -peak (ml/min/kg):	Time X Group p=0.95
			23.8 (7.8) vs. 23.5 (8.2), p=NR (baseline) 24.6 (7.4) vs. 23.7 (7.1), p=NR (postintervention)	Pight knop flower strength (guadriagna):
			Time X Group $p=0.72$	Right knee flexor strength (quadriceps): 55.3 (16.0) vs. 51.0 (21.0), p=NR (baseline)
				61.3 (18.7) vs. 55.9 (24.6), p=NR
				(postintervention)
				Time X Group p=0.72
				Left knee flexor strength (quadriceps):
				58.2 (20.2) vs. 48.7 (23.5), p=NR (baseline)
				64.0 (23.7) vs. 51.7 (24.85), p=NR
				(postintervention)
				Time X Group p=0.31
				Right extensor shoulder strength:
				48.0 (13.9) vs. 45.5 (19.3), p=NR (baseline)
				51.8 (14.9) vs. 49.9 (20.1), p=NR
				(postintervention)
				Time X Group p=0.85

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
(Continued)	Companson			Left extensor shoulder strength: 46.3 (17.5) vs. 43.3 (17.3), p=NR (baseline) 50.0 (18.9) vs. 46.9 (18.6), p=NR (postintervention) Time X Group p=0.98 Right flexor shoulder strength: 34.2 (9.6) vs. 35.3 (12.6), p=NR (baseline) 36.5 (10.0) vs. 36.9 (14.1), p=NR (postintervention) Time X Group p=0.67 Left flexor shoulder strength: 35.8 (13.9) vs. 34.0 (12.1), p=NR (baseline)
				36.9 (12.4) vs. 35.9 (12.5), p=NR (postintervention) Time X Group p=0.60
Keser, 2011	A. Calisthenics, 18 sessions over 6	A vs. B Age: 36 vs. 35	A vs. B mean Difference MSFC: -0.002 (0.44) vs. 0.02 (0.23), p>0.05	A vs. B mean Difference BBS: -1.73 (3.03) vs1.80 (2.67), p>0.05
Aerobic Exercise Aerobics	weeks (15) B. Routine	Female: 53% vs. 47% EDSS: 2.9 vs. 2.8	SF-36: 0.20 (5.67) vs. 1.73 (7.75), p>0.05 HADS-A: -2.26 (3.23) vs0.80 (2.40), p>0.05 HADS-D: 0.20 (2.65) vs. 1.46 (2.19), p>0.05	Strength UE right: 8.67 (10.17) vs. 15.19 (7.77), p<0.05 Strength UE left:
Postintervention, 0 weeks	neurorehabilitation (strength, balance, coordination, anti-			7.86 (11.97) vs. 16.25 (10.95), p<0.05 Strength LE right: 15.76 (11.17) vs. 20.66 (6.18), p>0.05
Poor	spasticity exercises) 18 sessions over 6 weeks (15)			Strength LE left: 18.54 (7.59) vs. 24.17 (16.69), p>0.05

		Demodetien		
Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Khalil, 2018	A. Nintendo Wii	A vs. B	A. vs. B., mean (SD), mean difference (95% CI)	A. vs. B., mean (SD), mean difference (95%
	balance board and	Age (mean years): 39.8 vs.	TUG	CI)
Postural Control	VR scenarios with	34.9	13.93 (5.00) vs. 18.01 (15.03) (baseline)	BBS
Motion gaming	tasks to complete, 12	Female: 12 (75%) vs. 10	13.38 (5.88) vs. 17.42 (14.66) (postintervention)	43.69 (6.58) vs. 42.31 (10.82) (baseline)
	sessions over 6	(63%)	Mean difference 0.04 (95% CI -2.24 to 2.32)	50.44 (3.76) vs. 45.19 (8.64) (postintervention)
Postintervention, 6	weeks (n=16)	Race: NR		Mean difference - 4.52 (95% CI -7.90 to -1.09)
weeks		Ambulatory: NR	10MWT	
	B. Balance training at		12.43 (2.86) vs. 12.11 (3.71) (baseline)	
Fair	home, 18 sessions		11.35 (2.66) vs. 19.69 (27.23) (postintervention)	
	over 6 weeks (n=16)	Duration of MS (mean years)	Mean difference 8.48 (95% CI -5.16 to 22.12)	
		8.38 vs. 10.43		
		0.00 10.10	3 min walk test	
		EDSS: 2.9 (1.4) vs. 3.1 (1.1)	148.75 (58.60) vs. 144.75 (63.64) (baseline)	
			142.31 (64.64) vs. 140.00 (70.21) (postintervention)	
		*EDSS = a lower score	Mean difference -7.11 (95% CI -34.18 to 19.95)	
		indicates a better	Mean unerence -7.11 (95% CI -54.10 to 19.95)	
			PCS	
		performance		
			54.7 (17.69) vs. 56.91 (18.38) (baseline)	
			68.17 (13.20) vs. 57.99 (18.26) (postintervention)	
			Mean difference -11.62 (95% CI -22.27 to -0.99)	
			SF-36, MCS	
			57.00 (16.58) vs. 67.56 (11.24) 52.37 (18.73) (baseline)	
			52.37 (18.73) 67.56 (11.24) vs. 51.94 (18.97)	
			(postintervention)	
			Mean difference -13.60 (95% CI -23.66 to -3.55)	
Kim 2015	A. Conventional	Mean age 27.2 years	Pre, post	NR
	physical therapy plus			
Aerobic Exercise	30 minutes of	11 males and 10 females	6 minute walk (meters)	
Treadmill	treadmill walking for	(52% male)	A. 151.29 (91.79) to 193.93 (79.01)	
	20 sessions (3 to 5		B. 162.14 (81.85) to 180.71 (61.40)	
Postintervention, 0	sessions a week for	A. n=14		
weeks	1 to 2 months)	B. n=7	A. Significantly increased after training p<0.05 and B. Did	
	,		not significantly change; direct comparison changes in A	
Fair	B. Conventional		and B NR	
	physical therapy for			
	similar number of			
	sessions			
	303310113	1		

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Kim, 2017	A. Group boccia: 12	A vs. B	NR	Data reported as mean (SD)
	sessions over 6	Age (mean years): 22.36 vs.		A vs. B
Postural Control	weeks (n=11)	21.83		
Balance		Female: 5 (45%) vs. 5 (42%)		Modified Barthel Index (0–100, higher=greater
Social	B. Usual care (n=12)	Race: NR		independence completing ADLs)
activity/exercise		Ambulatory: NR		39.00 (9.34) vs. 35.67 (11.41), p=NR
(Boccia)		Wheelchair user: NR		(baseline)
				41.81 (10.24) vs. 37.25 (11.77), p=NR
Postintervention, 0				(postintervention)
weeks				2.82 (1.25) vs. 1.58 (1.38), p<0.05, MD 1.24
				(95% CI 0.09 to 2.34), p=0.0352 (post-pre
Poor				change)

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Kirk, 2016 Muscle Strength Postintervention, 0 weeks Poor	Intervention and Comparison A. Progressive resistance: 36 sessions over 12 weeks (n=11) B. Usual care (n=21)	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%) A+B (data across all patients) Age (mean years): 36.5 Female: 15 (43%) Race: NR Ambulatory: NR Wheelchair user: 6 (17%)	Prioritized Outcomes Data reported as mean (SD) A vs. B 10MWT (seconds) 7.76 (1.23) vs. 8.83 (0.78) (baseline) 7.49 (1.10) vs. 8.47 (0.86) (postintervention) 6MWT (meters) 481 (30) vs. 400 (32) (baseline) 510 (33) vs. 416 (33) (postintervention) Timed Stair Test (seconds) 30.69 (4.92) vs. 49.82 (7.27) (baseline)	Other Outcomes Data reported as mean (SD) A vs. B There was a statistically significant Groups X Time interaction for the 1RM measurements of all exercises. Ankle dorsiflexion 1RM for most affected leg (kg) 5.7 (0.6) vs. NR (baseline) 10.4 (1.1) vs. NR (postintervention) 83% vs. NR (pre-post % change)
			29.15 (4.62) vs. 45.01 (6.57) (postintervention)	Ankle plantarflexion 1RM for most affected leg (kg) 30.3 (4.9) vs. NR (baseline) 71.8 (6.7) vs. NR (postintervention) 137% vs. NR (pre-post % change) Knee flexion 1RM for most affected leg (kg) 16.3 (2.0) vs. NR (baseline) 29.5 (3.1) vs. NR (postintervention) 82% vs. NR (pre-post % change)
				Knee extension 1RM for most affected leg (kg) 72.3 (5.8) vs. NR (baseline) 104.5 (6.7) vs. NR (postintervention) 45% vs. NR (pre-post % change)

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Kjolhede, 2016	A. Progressive	A vs. B	Data reported as mean (SD)	NA
Muscle Strength	resistance: 48 sessions over 24 weeks (n=16)	Age (mean years): 44.6 vs. 42.2 Female: 12 (75%) vs. 12	A vs. B 25 foot walk test (m/s):	
Postintervention, 0		(75%)	1.66 (95% CI 1.5 to 1.8) vs. 1.79 (95% CI 1.6 to 2.0)	
weeks	B. Usual care	Race: NR Ambulatory: NR	(baseline) 1.82 (95% CI 1.7 to 2.0) vs. 1.80 (95% CI 1.6 to 2.0)	
Fair	(habitual lifestyle) (n=14)	Wheelchair user: NR EDSS: 2.9 (1) vs. 2.9 (1) Disease Duration (mean years): 6.7 (7.8) vs. 7.2 (6)	(postintervention) Time × group interaction p-value=0.0009 2 minute walk test (m/s):	
		Medication (n) (Rebif/Avonex/Extavia/Betaf	1.61 (95% CI 1.4 to 1.8) vs. 1.66 (95% CI 1.5 to 1.8) (baseline)	
		eron): 5/7/4/0 vs. 8/6/1/0	1.77 (95% CI 1.6 to 2.0) vs. 1.69 (95% CI 1.5 to 1.9) (postintervention) Time × group interaction p-value=0.0111	
			2 minute walk test (meters) - calculated by AAI 193.2 (95% CI 168 to 216) vs. 199.2 (95% CI 180 to 216) (baseline) 212.2 (95% CI 192 to 240) vs. 202.8 (95% CI 180 to 228) (postintervention)	

Klobucka, 2020	A. RAGT, 20	A vs. B	A vs. B, mean change scores, p=between groups:	NA
,	sessions, over 12	Age (mean years): 18 vs. 23	, <u> </u>	
Aerobic Exercise Robot-Assisted	weeks, (n=21)	Female: 47% vs. 38% Race: NR	<u>Total GMFM</u> : MD 9.43, 95% CI 6.989 to 11.891 vs. MD 0.80, 95% CI 0.154 to 1.446, p<0.001	
Gait Training Immediately	B. Usual care, conventional therapy: 20 sessions, over 12	Ambulatory: 4.8% vs. 11.5% Wheelchair user: 23.8% vs. 53.8%	<u>GMFM D</u> : MD 8.30, 95% CI 4.699 to 11.901 vs. MD 1.09, 95% CI -0.438 to 2.619, p<0.001	
Postintervention, and 12-16 weeks	weeks, (n=26)	Mechanical wheelchair: 23.8% vs. 53.8%	GMFM E: MD 9.32, 95% CI 5.329 to 13.310 vs. MD 0.53,	
Poor		Electric wheelchair: 0% vs. 15.3%	95% CI -0.208 to 1.268, p<0.001	
		GMFCS levels I-IV (%): Level I: 4.8% vs. 0% Level II: 14.3% vs. 15.4%	A vs. B., Mean (SD) GMFM-88 A (lying and rolling): 73.29 (16.53) vs. 77.83 (22.49) (baseline) 84.59 (11.58), p=0.000 vs. 77.98 (22.61), p=0.157 (postintervention)	
		Level III: 42.9% vs. 46.2% Level IV: 38.1% vs. 38.5%	GMFM-88 B (sitting): 52.22 (34.56) vs. 60.63 (35.23) (baseline) 61.58 (33.12), p=0.000 vs. 62.05 (34.44), p=0.063 (postintervention)	
			GMFM-88 C (crawling and kneeling): 49.09 (32.08) vs. 52.56 (32.55) (baseline) 57.26 (34.05), p=0.000 vs. 53.40 (32.85), p=0.027 (postintervention)	
			GMFM-88 D (standing): 30.03 (30.48) vs. 28.69 (34.12) (baseline) 38.34 (34.38), p=0.001 vs. 29.78 (34.92), p=0.180 (postintervention)	
			GMFM-88 E (walking): 25.06 (23.18) vs. 24.36 (34.23) (baseline) 34.39 (29.11), p=0.000 vs. 24.89 (35.27), p=0.180 (postintervention)	
			GMFM-88 Total (walking, running and jumping): 45.79 (26.05) vs. 50.27 (27.01) (baseline) 55.23 (26.70), p=0.000 vs. 51.07 (27.26), p=0.028 (postintervention)	
			A vs. B. Change, Mean (SD), 95% CI Overall improvement in GMFM-88 score GMFM-88 A: 11.29 (9.03) vs. 0.15 (0.53), 1.847 (95% CI 1.161–2.532), p=0.000	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
			GMFM-88 B: 9.36 (7.48) vs.1.42 (3.38), 1.421 (95% Cl 0.778–2.064), p=0.000 GMFM-88 C: 8.17 (8.69) vs.0.84 (1.89), 1.229 (95% Cl 0.603–1.856), p=0.000 GMFM-88 D: 8.30 (8.42) vs.1.09 (3.98), 1.136 (95% Cl 0.516–1.755), p=0.000 GMFM-88 E: 9.32 (9.33) vs.0.53 (1.92), 1.377 (95% Cl 0.738–2.016), p=0.000 GMFM-88 Total: 9.43 (5.73) vs. 0.80 (1.68), 2.147 (95% Cl 1.426–2.867), p=0.000	
Kooshiar, 2015 Aerobic Exercise Aquatics Postintervention, 0 weeks Fair	A. Aquatic exercise, 24 sessions over 8 weeks (n=20) B. Usual care (n=20)	A vs. B Age (mean years): Only given as mean of all participants, 29.24 Female: 20 (100%) vs. 20 (100%) Race: NR Ambulatory: NR Wheelchair user: NR MS: all participants, RRMS 28 (75.7%), PPMS 6 (16.2%), SPMS 3 (8.1%)	A vs. B, mean (SD) MQLIM: 80.06 (11.53) vs. 66.52 (6.22) 65.48 (9.74) vs. 63.13 (13.02) baseline; p<0.001 (postintervention) Calculated A vs. B, Mean change scores: <u>MQLIM: -16.93 vs1.04, p<0.001</u>	NA

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Kressler, 2013	A. RAGT (DGO), 60	NR (no demographics table)	Walking speed pertaining to post training (m/s):	NA
Commention to:	sessions over 12		Slow: DGO: 0.08 (0.05) to 0.09 (0.06), p=0.233	
Companion to: Field-Fote, 2011	weeks (n=14) *guidance force at		TS: 0.09 (0.07) to 0.10 (0.07), p=0.170 TM: 0.10 (0.07) to 0.10 (0.06), p=0.955	
	100%		OG: 0.06 (0.04) to 0.11 (0.09), p=0.001	
Aerobic Exercise	10070		Moderate: DGO: 0.14 to 0.14 (0.07), p=0.572	
Robot-Assisted	B. Treadmill Gait		TS: 0.14 (0.12) to 0.20 (0.15), p=0.007	
Gait Training	Training with E-Stim		TM: 0.17 (0.13) to 0.19 (0.14), p=0.194	
0	(TS), 6 sessions over		OG: 0.13 (0.15) to 0.25 (0.27) p=0.002	
Postintervention,	12 weeks (n=18)		Fast: DGO: 0.20 (0.13) to 0.20 (0.11), p=0.814	
12 weeks			TS: 0.22 (0.22) to 0.28 (0.27), p=0.003	
	C. Manual Assisted		TM: 0.23 (0.18) to 0.26 (0.19), p=0.232	
Poor	Treadmill Gait		OG: 0.32 (0.62) to 0.35 (0.42), p=0.084)	
	Training (TM), 6			
	sessions over 12		VO ₂ (peak) Ln[L/m]	
	weeks (N=17)		Moderate Pace:	
			DGO: 1.11 (0.37) to 1.05 (0.40), p=00.046	
	D. Overground Gait		TS: 0.91 (0.28) to 1.01 (0.28), p=0.041 TM: 0.90 (0.27) to 1.07 (0.34), p=0.035	
	Training with E-stim (OG), 60 sessions		OG: 0.90 (0.27) to 1.07 (0.34), p=0.035	
	over 12 weeks		Maximal Pace:	
	(n=15)		DGO: 1.32 (0.40) to 1.28 (0.40), p=0.439	
	(TS: 1.07 (0.36) to 1.17 (0.44), p=0.060	
			TM: 0.97 (0.25) to1.17 (0.35), p=0.017	
			OG: 1.00 (0.39) to 1.13 (0.45), p=0.038	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Kumru, 2016	A. RAGT with rTMS,	A vs. B	10MWT	NA
Acrehic Evencies	20 sessions over 4	Age (mean years):	number able to perform test	
Aerobic Exercise Robot-Assisted	weeks , then 20 sessions without	51 vs. 49 Female:	2 at baseline, 6 after last session, 10 at followup	
Gait Training	rTMS for 4 weeks	5 (33%) vs. 2 (13%)	2 at baseline, 4 after last session, 6 at followup	
Gait fraining	(n=15)	5 (55 %) VS. 2 (15 %)	LEMS mean change score after last stimulation session (4	
Postintervention. 8	(11-13)	Race: NR	weeks)	
weeks	B. RAGT alone, 40		8 vs. 4	
in o o no	sessions over 8	Ambulatory:	at followup	
Fair	weeks (n=16)	NR	10 vs. 6	
		Wheelchair user:		
		NR	UEMS mean change score after last stimulation session (4 weeks)	
		Other:	5 vs. 1	
			at followup	
		vs. 2.8	8 vs. 5	
		Level of Injury		
		Cervical or Thoracic	Modified Ashworth Score	
		Cervical: 8 (53%) vs. 6 (38%)	1.1 (0.8) to 1.1 (0.9) vs. 1.3 (1.3) to 1.1 (1.1)	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Kwon, 2011	A. Hippotherapy- plus-conventional-	A vs. B Age (mean years): 6.4 vs.	A vs. B, mean (SD) 8 weeks	A vs. B, mean (SD) 8 weeks
Postural Control	physiotherapy group	6.1	GMFM-66:	PBS:
Hippotherapy	(hippotherapy group), 16 hippotherapy sessions over 8	Race: NR Ambulatory: 100%	70.4 (7.4) vs. 69.8 (8.7) (baseline) 73.7 (8.3) vs. 70.1 (8.1), p=0.003 (postintervention)	41.7 (8.8) vs. 41.0 (10.4) (baseline) 45.8 (8.6) vs. 41.5 (10.6), p=0.004 (postintervention)
Postintervention, 0 weeks	weeks and conventional	Wheelchair user: NR		
(End of treatment after 8-week	physiotherapy (n=16)	GMFCS level: GMFCS level I: 4 (25%) vs.		
intervention)	B. Conventional- physiotherapy group	4 (25%) GMFCS level II: 12 (75%)		
Fair	(Control group), 2 sessions per week	vs. 12 (75%)		
	(n=16)	Body weight (mean kg): 21.8 vs. 19.8		
		Height (mean cm): 113.5 vs. 111.0 Previous surgery: 3 (19%)		
		vs. 4 (25%)		

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B	Intervention and	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%)		
for Full Citation)	Comparison		Prioritized Outcomes	Other Outcomes
Kwon, 2015 Postural Control	A. Hippotherapy group, 16 sessions over 8 weeks (n=46)	5.9	A vs. B, mean (SD) 8 weeks GMFM-66:	A vs. B, mean (SD) 8 weeks PBS:
Hippotherapy	B. Control group (home-based aerobic	Female: 25 (56%) vs. 17 (37%) Race: NR	60.8 (14.9) vs. 61.4 (14.8) (baseline) 63.5 (15.8) vs. 61.8 (15.0), p<0.01 (postintervention)	25.1 (18.9) vs. 26.9 (18.3) (baseline) 28.9 (18.8) vs. 27.1 (18.3), p<0.01 (postintervention)
Postintervention, 0 weeks (after 8-week	exercise with conventional physiotherapy), 16	Ambulatory: NR Wheelchair user: NR		
intervention)	aerobic exercise sessions over 8	GMFCS level: GMFCS level I: 12 (27%) vs.		
Good	weeks with conventional physiotherapy (n=46)	12 (26%) GMFCS level II: 12 (27%) vs. 12 (26%) GMFCS level III: 11 (24%) vs. 12 (26%) GMFCS level IV: 10 (22%) vs. 10 (22%)		
		Neuromotor type: Spastic: 41 (91%) vs. 43 (93%) Dyskinetic: 2 (4%) vs. 2 (4%) Ataxic: 2 (4%) vs. 1 (2%)		
		Unilateral: 4 (9%) vs. 6 (13%) Previous surgery: 6 (13%) vs. 7 (15%) Body weight (mean kg): 18.7 vs. 19.9 Height (mean cm): 107.7 vs.		
		110.1 Physiotherapy time (mean hours per week): 3.3 vs. 31		

Author Veer		Denulation		
Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Lai, 2010	A. Functional	A vs. B	NA	A vs. B (SD)
,	electrical stimulation	Age (mean years):		
Aerobic Exercise	cycling exercises, 36	28.9 vs. 28.3		BMD femoral neck (g/cm2)
Cycling	sessions over 12	20.0 10. 20.0		0.927(0.189) vs. 0.913(0.097) (baseline)
Cyoning	weeks (n=12)	Female:		0.884(0.171) vs. 0.867(0.095); p<0.050 for
Postintervention.		2 (17%) vs. 2 (17%)		difference between 1st and 2nd
12 weeks		2 (1770) V3. 2 (1770)		measurements (postintervention)
12 WEEKS	R. Control group	Race: NR		
Fair	B. Control group	Race. NR		0.842 (0.168) vs. 0.825 (0.092); p<0.050 for difference between 2nd and 3rd
ган	(n=12)	A we have let a we we		
		Ambulatory:		measurements (3 months postintervention)
		0 (0%) vs. 0 (0%)		
		Wheelchair user: NR		BMD distal femur (g/cm2)
				1.003 (0.064) vs. 1.003 (0.110) (baseline)
		Other:		0.981 (0.063) vs. 0.936 (0.103); p<0.050 for
		SCI:		difference between 1st and 2nd
		Quadriplegia:		measurements (postintervention)
		5 (33%) vs. 5 (33%)		0.913 (0.058) vs. 0.868 (0.097); p<0.050 for
		Paraplegia:		difference between 2nd and 3rd
		10 (67%) vs. 10 (67%)		measurements (3 months postintervention)
Lai, 2015	A. Aquatic therapy	A vs. B	A vs. B, Mean difference between groups:	A vs. B. mean (SD)
	plus traditional	Age (mean years):		
Aerobic Exercise	rehabilitation, 24	7.6 vs. 6.6	<u>GMFM-66:</u> 5.0 vs. 0.7, p=0.007	MAS:
Aquatics	sessions over 12	Female:	GMFM-66:	Ankle, Knee, Wrist, Elbow: all NS
	weeks (n=11)	7 (64%) vs. 4 (31%)	61.2 (18.7) vs. 64.6 (19.4) (baseline)	· ····································
			66.2 (18.2) vs. 65.3 (19.1); p=0.007 (postintervention)	Vineline Adaptive Beh Scale for Daily Living:
Postintervention, 0		Race: NR		NS
weeks	B. Traditional		CPQoL scales for Social, Functioning, Participation,	110
weeks	rehabilitation,	Ambulatory: NR	Emotional, Access, Pain and Disability, and Family	
Fair	average 2-3 sessions	Wheelchair user: NR	Health: All NS	
Fall	over 12 weeks			
		N (%) vs. N (%)		
	(n=13)	Other		
		Other:		
		CP subtypes:		
		Diplegia: 3 (27.3) vs. 6		
		(46.2)		
		Quadriplegia 5 (45.5) vs. 4		
		(30.8)		
		Hemiplegia 3 (27.3) vs. 3		
		(23.1)		

Aerobic Exercise	Intervention and Comparison A. Cycloergometer with strength and stretching exercises	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%) A vs. B Age: 34 vs. 39 Female: 14% vs. 19%	Prioritized Outcomes A vs. B median VO ₂ peak in mL min-1 baseline: 939 (714-1215) vs. 896 (677-1158), p=0.529	Other Outcomes NA
Hand cycling	32 to 48 sessions over 16 weeks (21)	BMI: 24.1 vs. 27.1 Injury C8-T12: 100%	VO ₂ peak in mL min-1 Endpoint: 1154 (1005-1351) vs. 834 (711-1005), p<0.001	
Postintervention, 0 weeks Fair	B. Maintain current activities (21)		CAB baseline: 52.3% vs. 61.9%, p=0.755 CAB endpoint: 14.2% vs. 71.4%, p<0.001 RR 0.20, 95% CI 0.07 to 0.54 Absolute risk reduction: 57.1%, 95% CI 32.7 to 81.6	
			NNT 2, 95% CI 1 to 3	
Lee, 2013 Postural Control Whole body vibration Postintervention, 0 weeks Fair	therapy: 24 sessions of vibration over 8 weeks (n=15) B. Conventional physical therapy (n=15)	Race: NR Ambulatory: 15 (100%) vs. 15 (100%) Wheelchair user: NR Baseline GMFM: 78.4 vs. 79.53	A vs. B Walking speed (meters/second): 0.37 (0.04) vs. 0.39 (0.05) (baseline) 0.48 (0.06) vs. 0.40 (0.05) (postintervention) Group effect p=0.189 Group X Time interaction p=0.001	NR
Lee, 2014 Postural Control Hippotherapy Postintervention, 0 weeks End of treatment (12-week intervention) Poor	 A. Hippotherapy group, 36 sessions over 12 weeks (n=13) B. Horseback riding simulator group, 36 sessions over 12 weeks (n=13) 	A vs. B Age (mean years): 10.8 vs. 10.0 Female: 5 (38%) vs. 4 (31%) Race: NR Ambulatory: NR Wheelchair user: NR Height: (mean cm): 125.8 vs. 122.6 Weight (mean kg): 25.2 vs. 25.5	NR	A vs. B, mean (SD) 12 weeks PBS: 35.6 (3.8) vs. 41.2 (4.7) (baseline) 35.8 (4.7) vs. 38.5 (5.3) (postintervention) No significant difference was found between the two groups.

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Liu, 2019	A. Strength exercise	A vs. B	A vs. B, Mean (SD), data for completers only):	NA
Multimodal	+ treadmill + core stability training on a	(data are for completers only; n=14 vs. 15)	Stride length (units NR)	
Exercise	stable support	Age: 43 vs. 46	0.564 (0.189) vs. 0.454 (0.173), p=0.025 (post-	
	surface, 60 sessions	Female: 21% vs. 27%	intervention)	
Immediately	over 12 weeks	Ambulatory: 100%	0.09 (0.26) vs. 0.06 (0.24), MD 0.03 (95% CI –0.16 to	
postintervention,	(n=20)	-paraplegia: 36% vs. 40%	0.22), p=NR (pre-post change)	
12 weeks		-tetraplegia: 64% vs. 60%		
	B. Strength exercise		Walking speed (units NR)	
E a in	+ treadmill + core		0.350 (0.226) vs. 0.209 (0.171), p=0.0196 (post-	
Fair	stability training on an unstable support		intervention) 0.09 (0.30) vs. 0.03 (0.23), MD 0.06 (95% CI –0.14 to	
	surface, 60 sessions		0.26), p=NR (pre-post change)	
	over 12 weeks			
	(n=20)			

Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Lorentzen, 2015	Interactive computer	A vs. B	A. vs. B., mean (SD)	A. vs. B., mean (SD)
Lorentzen, 2015	training vs. usual	Age (mean years): 10.9 vs.	Sit-to-stand	A. VS. D., Mean (SD)
Postural Control	care	11.3	16.1 (0.7) vs. 14.5 (1.0), baseline	Romberg Balance Test: C90 (mm2)
Balance	carc	Female: 11 (32%) vs. 5	20.0 (0.9) vs. 15.1 (0.9), 20 weeks	427.2 (57.6) vs. 310.9 (131.9) (intro)
Dalarice	A. Interactive	(42%)	Mean difference, (p=0.04)	462.2 (62.5) vs. 314.6 (104.9) (test1)
	computer training	Race: NR		Mean difference, (p=0.18)
Postintervention.	(home-based): 140	Ambulatory: NR	A. Sit-to-stand, baseline vs. 20 weeks	
20 weeks	sessions over 20	Wheelchair user: NR	16.1 (0.7) vs. 19.2.0 (0.9), (p=0.01)	Romberg Balance Test: velocity (mm/s)
20 100000	weeks, 40 hours of		10.1 (0.1) VO. 10.2.0 (0.0), (p 0.01)	13.4 (0.7) vs. 10.6 (1.4)
Poor	total training		B. Sit-to-stand, baseline vs. 20 weeks	14.1 (0.7) vs. 11.7 (1.7)
	time. (n=34)		14.5 (1.0) vs. 15.1 (0.9), (p=0.33)	Mean difference, (p=0.59)
	B. Usual care control:		A. Sit-to-stand, 20 weeks vs. 34 weeks	Romberg Balance Test: trace length (mm)
	(n=12)		20.0 (0.9) vs. 18.7 (1.0), (p=0.58)	403.1 (21.3) vs. 317.4 (43.0)
	· · /			422.8 (19.9) vs. 351.6 (50.2)
			Lateral step-up (LSU) left leg	Mean difference, (p=0.9)
			17.9 (1.1) vs. 16.9 (1.8) (baseline)	
			23.5 (1.4) vs. 17.8 (2.2) (20 weeks)	
			Mean difference, (p=0.004)	
			Lateral step-up (LSU) right leg	
			16.7 (1.1) vs. 18.1 +/- 2.1 (baseline)	
			22.1 +/- (1.4) vs. 18.0 +/- 2.0 (20 weeks)	
			Mean difference, (p<0.001)	
			A. LSU, baseline vs. 20 weeks (left)	
			17.9 (1.1) vs. 23.5 (1.4), (p<0.001)	
			B. LSU, baseline vs. 20 weeks (left)	
			16.9 (1.8) vs. 17.8 (2.2), (p=0.44)	
			A. LSU, baseline vs. 20 weeks (right)	
			16.7 (1.1) vs. 22.1 (1.4), (p<0.001)	
			B. LSU, baseline vs. 20 weeks (right)	
			18.1 (2.1) vs. 18.0 (2.0), (p=0.93)	
			A. LSU, 20 vs. 34 weeks (left)	
			23.5 (1.4) vs. 24.1 (1.3), (p=0.63)	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Lorentzen, 2015			A. LSU, 20 vs. 34 weeks (right)	NA
(Continued)			 22.1 (1.4) vs. 23.6 (1.5), (p=0.17) AMPS A. vs. B. (motor) 1.34 (0.09) vs. 1.21 (0.12) (baseline) 1.57 (0.11) vs. 1.26 (0.14) (20 weeks) Mean difference, (p=0.049) AMPS A. vs. B. (process) 0.85 (0.09) vs. 0.82 (0.13) (baseline) 1.10 (0.09) vs. 0.82 (0.10) (20 weeks) Mean difference, (p=0.04) A. AMPS (motor), baseline vs. 20 weeks 1.34 (0.09) vs. 1.57 (0.11), (p<0.001) B. AMPS (motor), baseline vs. 20 weeks 1.21 (0.12) vs. 1.26 (0.14), (p=0.48) A. AMPS (motor), 20 vs. 34 weeks 1.57 (0.11) vs. 1.65 (0.06), (p=0.84) A. AMPS (process), baseline vs. 20 weeks 0.85 (0.09) vs. 1.10 (0.09), (p<0.001) B. AMPS (process), baseline vs. 20 weeks 0.85 (0.13) vs. 0.82 (0.10), (p=0.95) A. AMPS (process), 20 vs. 34 weeks 	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Lucena-Anton, 2018	A. Intervention group (hippotherapy and conventional	A vs. B Age (mean years): 9.500 vs. 8.227	A vs. B, mean (SD) 13 weeks MAS:	NR
Postural Control Hippotherapy	therapy), 12 sessions over 12 weeks (n=22)	Female: 9 (41%) vs. 7 (32%) Race: NR Ambulatory: 0%	Left adductors: 2.77 (1.15) vs. 2.59 (1.22) (baseline) 2.50 (1.05) vs. 2.54 (1.22), p=0.040 (postintervention)	
Postintervention, 1 week (13 weeks total including 12- week intervention)	B. Control group (conventional therapy), 24 sessions	Wheelchair user: NR SLLA: 2.773 vs. 2.591 SLRA: 2.227 vs. 2.409	Right adductors: 2.22 (1.26) vs. 2.40 (1.14) (baseline) 1.77 (1.26) vs. 2.31 (1.24), p=0.047 (postintervention)	
Fair	over 12 weeks (n=22)	0LIVA. 2.227 V3. 2.403		
	A. Therapeutic gymnastics +	A vs. B Age: 7-9 years	A vs. B, Mean (SD), p-value is between groups	NA
Multimodal exercise	strength 94 sessions over 15 weeks (n=18)	Female: Spastic diplegia or spastic tetra paresis: 100%	Strength quadriceps femoris: 1.29 (0.49) to 1.92 (0.38) vs. 1.36 (0.56) to 1.61 (0.61), p<0.05	
Immediately postintervention, 15 weeks	B. Therapeutic gymnastics (passive			
Poor	exercises only) (n=17)			

Author, Year Intervention Type Duration of Postintervention Followup Quality		Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Marandi, 2013a Has companion: Marandi, 2013b	A. Pilates: 36 sessions over 12 weeks (n=15)	A vs. B Age (mean years): NR Female: 15 (100%) vs. 15 (100%)	A vs. B, Six Spot Step Test: Adjusted Mean Difference between groups: <u>Right leg dynamic balance:</u> -5.88 (SE 1.4), p<0.001	Data reported as mean (SD), unless otherwise noted A vs. C
Aerobic Exercise Aquatics	B. Aquatics: 36 sessions over 12 weeks (n=15)	Race: NR Ambulatory: 15 (100%) vs. 15 (100%)	Left leg dynamic balance: -6.23 (SE 1.2), p<0.001	Right leg Six Spot Step Test (seconds): 9.82 (2.87) vs. 10.64 (4.17) (baseline) 6.54 (1.93) vs. 12.65 (6.05); adj. MD -5.96
Postintervention, 0 weeks	C. Usual care (n=15)	Wheelchair user: 0 (0%) vs. 0 (0%)		(SE, 1.4), p=0.000 (postintervention) Left leg Six Spot Step Test (seconds): 9.07 (2.53) vs. 10.16 (3.76) (baseline)
Poor				6.25 (2.16) vs. 12.49 (4.63); adj. MD -6.23 (SE, 1.2), p=0.000 (postintervention)
				B vs. C Right leg Six Spot Step Test (seconds): 8.57 (3.64) vs. 10.64 (4.17) (baseline) 6.40 (1.82) vs. 12.65 (6.05); adj. MD -5.88 (SE, 1.4), p=0.000 (postintervention)
				Left leg Six Spot Step Test (seconds): 9.12 (4.31) vs. 10.16 (3.76) (baseline) 6.26 (1.95) vs. 12.49 (4.63); adj. MD -6.23 (SE, 1.2), p=0.000 (postintervention)
				A vs. B Right leg Six Spot Step Test (seconds): 9.82 (2.87) vs. 8.57 (3.64) (baseline) 6.54 (1.93) vs. 6.40 (1.82); adj. MD -0.08 (SE, 1.4), p=0.955 (postintervention)
				Left leg Six Spot Step Test (seconds): 9.07 (2.53) vs. 9.12 (4.31) (baseline) 6.25 (2.16) vs. 6.26 (1.95), adj. MD 0.00 (SE, 1.2), p=0.997 (postintervention)

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Marandi, 2013b	A. Pilates: 36	B vs. C	B vs. C	NR
Companion to: Marandi, 2013a	sessions over 12 weeks (n=15) B. Aquatics: 36	Age (mean years): 40 Female: 15 (100%) vs. 15 (100%) Race: NR	Right leg dynamic balance: 8.57 (3.64) vs. 10.64 (4.17) (baseline) 6.40 (1.82) vs. 12.65 (6.05); adj. MD -5.88 (SE, 1.4), p=0.000 (postintervention)	
Aerobic Exercise	sessions over 12	Ambulatory: 15 (100%) vs.		
Aquatics	weeks (n=15)	15 (100%)	Left leg dynamic balance:	
Postintervention, 0 weeks	C. Usual care (n=15)	Wheelchair user: 0 (0%) vs. 0 (0%)	9.12 (4.31) vs. 10.16 (3.76) (baseline) 6.26 (1.95) vs. 12.49 (4.63); adj. MD -6.23 (SE, 1.2), p=0.000 (postintervention)	
Poor				
Matusiak- Wieczorek, 2016	A. Intervention group (hippotherapy), 12 sessions over 12	A vs. B Age (mean years): 8.42 vs. 8.3	NR	A vs. B, mean (SD) 12 weeks SAS:
Postural Control Hippotherapy	weeks (n=19) B. Control group	Female: 9 (47%) vs. 9 (45%) Race: NR Ambulatory: 100%		14.42 (4.39) vs. 15.50 (3.14) (baseline) 15.63 (3.65) vs. 15.75 (3.19) (postintervention) 1.21 (1.18) vs. 0.25 (0.44) (difference in pre-
Postintervention, 0 weeks	(maintain current activities) (n=20)	Wheelchair user: NR		and postintervention scores)
End of treatment (after 12-week intervention)		Diplegia: 6 (32%) vs. 5 (25%) Hemiplegia: 13 (68%) vs. 15 (75%)		
Poor		GMFCS level: GMFCS level I: 12 (63%) vs. 11 (55%) GMFCS level II: 7 (37%) vs. 9 (45%)		

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Matusiak- Wieczorek, 2020	A. Hippotherapy, 24 sessions over 12 weeks (n=15)	A vs. B vs. C Age (mean years): 7.9 vs. 8.6 vs. 8.3	NA	A vs. B vs. C, mean (SD), p=between groups SAS: 10.93 (3.97) vs. 15.93 (4.17) vs. 14.87 (3.27)
Postural Control Hippotherapy Immediately Postintervention, 12 weeks Fair	B. Hippotherapy, 12 sessions over 12 weeks (n=15) C. Waitlist control (n=15)	Female: 40% vs. 46% vs. 46% GMFCS, level I: 67% vs. 80% vs. 47% GMFCS, level II: 33% vs. 20% vs. 53%		(baseline) 11.53 (3.74) vs. 16.53 (3.50) vs. 14.93 (3.35) (4 weeks) 12.40 (3.70) vs. 16.93 (3.24) vs. 15.00 (3.30) (8 weeks) 13.13 (3.46) vs. 17.27 (2.76) vs. 15.13 (3.36) (postintervention) 2.20 (1.42) vs. 1.33 (0.76) vs. 0.27 (0.46) (difference in pre- and postintervention scores) A vs. C: MD 1.93, 95% CI 0.94 to 2.92, p<0.001 B vs. C: MD 1.06, 95% CI 0.61 to 1.51, p<0.001 A vs. B: MD 0.87, 95% CI 0.06 to 1.69, p=0.036
Midik, 2020 Aerobic Exercise Robot-Assisted	A. RAGT plus conventional rehab, 25 sessions over 5 weeks (n=15)	A vs. B Age: 35.4 vs. 37.9 Female: 0% Race: NR	A vs. B, mean change (SE), p=between groups: <u>WISCI:</u> 3.9 (0.8) vs. 2.5 (0.5), p=0.178 <u>SCIM</u> : 9.9 (2.5) vs. 7.0 (1.3), p=0.326 <u>LEMS</u> : 1.8 (0.4) vs. 0.6 (0.2), p=0.061	NA
Gait Training Postintervention, and 12 weeks Fair	B. Conventional rehab only, 25 sessions over 5 weeks (n=15)	AIS C: 40% vs. 67% AIS D: 60% vs. 33%	At 3 month followup, change from baseline: <u>WISC</u> : 4.3 (1.0) vs. 2.5 (0.5), p=0.139 <u>SCIM</u> : 16.5 (3.2) vs. 7.6 (1.5), p=0.127 <u>LEMS</u> : 2.1 (0.5) vs. 0.6 (0.2), p=0.049	

Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Mogharnasi, 2018	A. Upper body	A vs. B	Data reported as mean (SD)	Data reported as mean (SD)
U ·	resistance training:	Age (mean years): 25.33 vs.	A vs. B	A vs. B
Muscle Strength	24 sessions over 8	25.50		
exercise	weeks (n=10)	Female: 0 (0%) vs. 0 (0%)	BMI (kg/m^2):	% Body fat:
		Race: NR	25.33 (1.37) vs. 24.91 (0.98), p>0.05 (baseline)	32.20 (2.08) vs. 32.60 (2.17), p>0.05
Postintervention, 0	B. Usual care (n=10)	Ambulatory: 0 (0%) vs. 0	24.73 (1.24) vs. 25.14 (1.01), p>0.05 (postintervention)	(baseline)
weeks	······································	(0%)		31.30 (2.21) vs. 32.90 (2.23), p>0.05
		Wheelchair user: 100		(postintervention)
Poor		(100%) vs. 100 (100%)		\ <u>-</u>
		Duration of paralysis (mean		Total cholesterol (mg/dl)
		months): 117 vs. 111		180.30 (7.02) vs. 185 (4), p>0.05 (baseline)
		Smoking (yes): 1 (10%) vs. 3		165.50 (5.89) vs. 186.50 (4.24), p<0.05
		(30%)		(postintervention)
		Etiology		
		-Motor vehicle accident: 8		High density lipoprotein cholesterol (mg/dl)
		(80%) vs. 9 (90%)		43.20 (2.25) vs. 44.60 (4.32), p>0.05
		-Fall: 2 (20%) vs. 1 (10%)		(baseline)
		Neurological status		47.90 (3.63) vs. 45.10 (4.45), p>0.05
		5		(postintervention)
		-T9: 1 (10%) vs. 2 (20%)		(posumervenuor)
		-T10: 2 (20%) vs. 2 (20%)		Low density linematein shelesteral (mar(dl)
		-T11: 2 (20%) vs. 0 (0%)		Low density lipoprotein cholesterol (mg/dl)
		-T12: 5 (50%) vs. 6 (60%)		108.70 (3.74) vs. 109 (4.59), p>0.05 (baseline)
				104 (1.94) vs. 110.80 (3.76), p<0.05
				(postintervention)
				- · · · · · · · · · · ·
				Triglyceride (mg/dl)
				158.20 (6.28) vs. 159.80 (9.70), p>0.05
				(baseline)
				134.30 (7.58) vs. 161.20 (9.78), p<0.05
				(postintervention)
Moraes, 2020	A. Hippotherapy, 16	A vs. B	A vs. B, mean (SD):	NA
	sessions over 8	Age: 45.5 vs. 48.4	<u>6MWT</u> : 459.06 (118.34) to 503.59 (126.38) vs. 513.00	
Postural Control	weeks (n=17)	Female: 94% vs. 94%	(101.97) to 497.13 (88.88), p<0.001	
Hippotherapy		Race: NR	25FWT: 6.37 (1.70) to 5.36 (1.43) vs. 5.82 (1.29) to 5.84	
	B. Waitlist control	EDSS, median: 2.0 vs. 1.75	(1.08), p<0.001	
Postintervention,	(n=16)	RRMS: 100%		
0 weeks	、 ,			
Fair				

for Full Citation Muto, 2019 Comparison Other (%) Prioritized Outcomes Other Outcomes Muto, 2019 A. Hippotherapy, 8 sessions over 48 weeks (n=12) A vs. B Age: 8 vs. 9 B. Outdoor recreation 49: sessions over 48 weeks (n=12) A vs. B B. Outdoor recreation 49: sessions over 48 weeks (n=12) A vs. B B. Outdoor recreation 40: sessions over 48 weeks (n=12) A vs. B B. Outdoor recreation 40: sessions over 48 weeks (n=12) A vs. B B. Outdoor recreation 40: sessions over 48 weeks (n=12) A vs. B B. Outdoor recreation 40: sessions over 48 weeks (n=12) A vs. B B. Outdoor recreation 40: sessions over 48 weeks (n=12) A vs. B A vs. B	Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B	Intervention and	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%)		
Mutch, 2019 A. Hippotherapy, 48 A.vs. B. A.ys. B. A.s. B. Mean (SD), p=between groups NA Postural Control Hippotherapy B. Outdoor recreation (GMFCS II: 42% vs. 42%) A.vs. B. A.vs. B. Mean (SD), p=between groups NA Postinal control Hippotherapy B. Outdoor recreation (GMFCS II: 42% vs. 42%) A.vs. B. A.vs. B. Mean (SD), p=between groups NA Postinal control Fair B. Outdoor recreation (GMFCS III: 58% vs. 58%) GMFCS III: 42% vs. 42% GMFCS III: 58% vs. 58% GMFM-66E: GMFM-66E: GMFM-6E: GMFM-				Prioritized Outcomes	Other Outcomes
Najafidoulataba, 2014 Yoga vs. usual care 2014 A vs. B Age (years): "mean age in the case group 31.6" A. vs. B., mean (SD) NA Postural Control A. Yoga: 24 sessions over 12 weeks (n=30) A vs. B Age (years): "mean age in the case group 31.6" A. vs. B, mean (SD) NA Postintervention, 12 weeks B. Usual care control: (n=30) B. Usual care control: (n=30) NR Sexual satisfaction QoL 1.8 (2.0 vs. 2.1 (1.2) (95% CI –0.09 to 0.89), p=0.01 (baseline) NA	Mutoh, 2019 Postural Control Hippotherapy Postintervention, 12 weeks (post 48- week intervention)	A. Hippotherapy, 48 sessions over 48 weeks (n=12) B. Outdoor recreation 48 sessions over 48	A vs. B Age: 8 vs. 9 Female: 58% vs. 50% GMFCS II: 42% vs. 42%	A vs. B, Mean (SD), p=between groups GMFM-66: 56.6 (9.2) to 62.8 (10.8) vs. 57.4 (7.9) to 57.9 (9.2), p<0.05 GMFM-66E: 45.4 (7.0) to 49.7 (7.6) vs. 46.0 (6.3) to 46.5 (6.6), p<0.05 5MWT (m/min): 31.9 (10.7) to 38.8 (13.5) vs. 31.1 (11.3) to 32.3 (11.6), p<0.05 WHOQOL (positive feelings): 3.1 (1) to 4.1 (1) vs. 3.1 (0.9) to 3.4 (1), p<0.05 WHOQOL (self-esteem): 2.9 (1.2) to 4.0 (0.7) vs. 3.3 (1.1) to 3.7 (0.7), p<0.05	
2014Age (years): "mean age in the case group 31.6"Physical activity QoL 23.7 (4.25) vs. 20.5 5 (3.5) (95% CI –2.42 to 0.42), p=0.001 (baseline)Postural ControlAge (years): "mean age in the case group 31.6" Female: 30 (100%) vs. 30 (100%)Physical activity QoL 23.7 (4.25) vs. 20.5 5 (3.5) (95% CI –2.42 to 0.42), p=0.001 (baseline)Postintervention, 12 weeksB. Usual care control: (n=30)Age (years): "mean age in the case group 31.6" Female: 30 (100%) vs. 30 (100%)Physical activity QoL 23.7 (4.25) vs. 20.5 5 (3.5) (95% CI –2.42 to 0.42), p=0.001 (baseline)PoorB. Usual care control: (n=30)Meelchair user: NRPhysical activity QoL 24.7 (3.94) vs. 19.45 (4.1) (95% CI 0.49 to 1.7), p=0.00 (postintervention)PoorB. Usual care control: (n=30)Meelchair user: NRSexual satisfaction QoL 1.8 (2.0 vs. 2.1 (1.2) (95% CI –0.09 to 0.89), p=0.01 (baseline) 1.4 (1.5) vs. 2.1 (1.2) (95% CI NR), p=NR					
* stated as not significant	2014 Postural Control Postintervention, 12 weeks	A. Yoga: 24 sessions over 12 weeks (n=30) B. Usual care control:	Age (years): "mean age in the case group 31.6" Female: 30 (100%) vs. 30 (100%) Race: NR Ambulatory: NR	Physical activity QoL 23.7 (4.25) vs. 20.5 5 (3.5) (95% CI –2.42 to 0.42), p=0.001 (baseline) 24.7 (3.94) vs. 19.45 (4.1) (95% CI 0.49 to 1.7), p=0.00 (postintervention) Sexual satisfaction QoL 1.8 (2.0 vs. 2.1 (1.2) (95% CI –0.09 to 0.89), p=0.01 (baseline) 1.4 (1.5) vs. 2.1 (1.2) (95% CI NR), p=NR (postintervention)*	NA

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Negaresh, 2018	A. vs. B.	A vs. B	A vs. B vs. C vs. D, Mean difference between groups	A vs. B
Aerobic Exercise Cycling	A. Normal BMI cycling UE/LE, 24 sessions over 8	Age (mean years): 31.2 vs. 29.1 Female:	(scores are estimates from graph): TUG: -3.8 vs0.1 vs2.5 vs. 0, p=0.001	BMI: NS
Postintervention, 0 weeks	weeks (n=18)	6 (35%) vs. 9 (64%) Race: NR Ambulatory:	Interaction between Weight and Exercise p=0.52	
Fair	B. Normal BMI Control (n=15) C vs. D: C: Overweight BMI cycling UE/LE, 24 sessions over 8 weeks (n=18) D: Overweight BMI Control (n=15)	17 (100%) vs. 14 (100%) Wheelchair user: NR Other: MS RRMS 18 (100%) vs. 15 (100%) C vs. D Age (mean years): 32.1 vs. 32.2 Female: 6 (35%) vs. 4 (29%) Race: NR Ambulatory: 17 (100%) vs. 13 (100%) Wheelchair user: NR	A vs. B (scores are estimates from graph) BDI changes (score): -5 vs. 0, p=0.005 TUG changes (sec): -4 vs. 0, p=0.001 VO ₂ peak changes (mg/kg/min): 2.5 vs. 0), p=0.001	
		Other: RRMS 17 (100%) vs. 13 (100%)		

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Nilsagard, 2012	A. Play games using	A vs. B	A. vs. B.*, mean (SD)	NA
rtilouguru, 2012	Nintendo Wii Fit	Age (mean years): 50.0 vs.	TUG	
Postural Control	Plus® Balance	49.4	12.4 (6.9) vs. 11.3 (5.0) (baseline)	
Motion gaming	Board for balance,	Female: 32 (76%) vs. 32	-0.8 (2.4) vs. 0.1 (2.1) (postintervention)	
	yoga, strength and aerobics, 12	(76%) Race: NR	Between groups comparison pre-post: p=0.10	
Postintervention, 7	sessions over 6	Ambulatory no use of	4SST (Four Square Step Test)	
weeks	weeks (n=42)	assistive devices:	16.8 (12.2) vs. 17.7 (13.8) (baseline)	
		Indoors - 32 (76%) vs. 37	–1.6 (2.1) vs. B –2.0 (6.6) (postintervention)	
Fair	B. No balance	(88%)	Between groups comparison pre-post: p=0.64	
	exercise during	Outdoors - 22 (52%) vs. 21		
	routine physical	(50%)	25-foot walk test $(2, 4)$ vol $(4, 7, (2, 4))$ (headline)	
	therapy (42)	Wheelchair user: 3 (7%) vs. 4 (10%)	6.56 (3.4) vs. 6.47 (3.1) (baseline) -0.3 (1.1) vs. B 0.0 (1.4) (postintervention)	
		4 (10 %)	Between groups comparison pre-post: p=0.51	
		MS subtype		
		Relapsing-remitting:	DGI Dynamic Gait Index	
		26 (62%) vs. 28 (67%)	17.1 (4.6) vs.17.1 (4.7) (baseline)	
		Secondary progressive:	1.78 (2.3) vs. 1.0 (2.0) (postintervention)	
		13 (31%) vs. 13 (31%)	Between groups comparison pre-post: p=0.21	
		Primary progressive:		
		3 (7%) vs.1 (2%)	MS Walking scale	
		MS Impact Scale (total	50.5 (25.8) vs. 52.3 (25.0) (baseline)	
		score) (mean, SD) 72.1 (19.7) vs. 73.8 (21.2)	–5.9 (11.5) vs. –3.95 (18.1) (postintervention) Between groups comparison pre-post: p=0.76	
		12.1 (19.1) vs. 13.0 (21.2)	between groups companson pre-post. p=0.76	
			*A. analyzed n=41, B. analyzed n=39	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Niwald, 2017 Aerobic Exercise Cycling Postintervention, 0	A. Cycle ergometry Intervention + complex rehabilitation 120 min/wk, 20 sessions over 4 weeks (n=21)	A vs. B Age (mean years): 57 vs. 60 Female: 13 (62%) vs. 21 (65%) Race: NR	A vs. B (SD)WHOQOL Physical 20.05(3.58) vs. 19.5(2.9) (baseline) 23.1(2.83) vs. 21.1(2.5); p=0.001 (postintervention) WHOQOL Psychological 18.05(3.67) vs. 17.6(3.2) (baseline) 21.7(3.13) vs. 18.2(1.7); p=0.001 (postintervention)	EDSS: NS
weeks Fair	B. Control intervention of complex rehabilitation 120 min/wk (n=32)	Ambulatory: 21 (100%) vs. 32 (100%) Wheelchair user: NR Other: MS subtypes NR	21.7(3.13) vs. 18.2(1.7), p=0.001 (positilervention) WHOWOL Environmental 23.76(4.15) vs. 24.85(5.2) (baseline) 26.57(3.78) vs. 25.1(3.97); p=0.030 (postintervention) Calculated A vs. B, Mean difference between groups: EDDS: 0.01, 95% CI -0.61 to 1.29, p=0.48 WHOQOL-Bref Physical: 1.45, 95% CI -0.72 to 3.62, p=0.19 WHOQOL-Bref Psychological: 3.05, 95% CI 1.30 to 4.80 to, p=0.001 WHOQOL-Bref Social: 0.60, 95% CI -0.64 to 1.84, p=0.34 WHOQOL-Bref Environmental: 2.56, 95% CI 0.20 to 4.92, p=0.03	
Norouzi, 2019 Postural Control Balance exercises Immediately postintervention, 4 weeks Fair	A. Cawthorne/ Cooksey exercises, 12 sessions over 4 weeks (n=10) B. Usual care, 4 sessions over 4 weeks (n=10)	A vs. B Age: NR Female: 0% L3-L4: 100%	NA	A vs. B, Mean (SD), p-value=between groups BBS: 38.36 (6.01) to 48.39 (4.01) vs. 37.67 (6.07) to 43.20 (4.05), MD 4.5, 95% CI -0.17 to 9.17, p=0.059* *authors report p<0.05 but unclear if this value also includes a third, neurofeedback group

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Nsenga, 2013 Aerobic Exercise Cycling	A. Cycle ergometry, 24 sessions over 8 weeks (n=10)	A vs. B Age (mean years): 14.2 vs. 14.2	A Baseline vs. A After Training Period (SD) VO ₂ peak (ml/kg/min): 35.6 (5.6) vs. 43.7(4.7)	NA
Postintervention, 0 weeks	B. Control with CP, no training (n=10)	Female: 4 (40%) vs. 4 (40%) Race: NR	(p<0.050)	
Fair		Ambulatory: 10 (100%) vs. 10 (100%) Wheelchair user: NR Other: CP: Hemiplegia: 8(80%) vs. 8 (80%) Diplegia: 2 (20%) vs. 2 (20%)		
Nsenga Leunkeu, 2012	A. 40 minutes treadmill walking 3 times a week for 8	A vs. B Age (mean years): 14.2 vs. 14.2	A vs. B 6MWT (meters):	NR
Aerobic Exercise Treadmill	weeks Walking (n=12) B. Usual care (no		490 (NR) vs. 450 (NR), p>0.05 (baseline) 600 (NR) vs. 450 (NR), p<0.05 (postintervention) VO ₂ peak:	
Postintervention, 0 weeks	training) (n=12)	Wheelchair user: 0 (0%) vs. 0 (0%) Hemiplegia: 10 (83%) vs. 10	32 (NR) vs. 32.5 (NR), p>0.05 (baseline) 40 (NR) vs. 32.5 (NR), p<0.05 (postintervention)	
Fair		(83%) Diplegia: 2 (17%) vs. 2 (17%) GMFCS -I: 8 (67%) vs. 8 (67%) -II: 4 (33%) vs. 4 (33%)	Measured peak oxygen uptake during incremental cycle ergometry (ml/kg/min) A. 32.5 to 39.0 B. 32.5 to 32.5 (data estimated from bar graph) Significant increase for those trained (A) p=0.046) and no significant change in B; comparison beween groups NR	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Ortiz-Rubio, 2016	A. Upper extremity strength +	A vs. B Age (mean years):42.21 vs.	Data reported as mean (SD) A vs. B	No adverse effects were reported by any patient.
Muscle Strength	coordination: 16 sessions over 8	44.89	ARAT most affected upper limb (scale unclear):	
Postintervention, 0 weeks	weeks (n=19) B. Booklet with	Race: NR Ambulatory: NR Wheelchair user: NR	54.68 (1.82) vs. 54.27 (0.95), p=0.803 (baseline) 56.89 (0.31) vs. 54.11 (1.07), p<0.001 (postintervention) 2.21 (95% CI -2.95 to -1.46) vs. 0.16 (95% CI -0.29 to	
Good	exercise info (n=18)	MS type -Relapsing-remitting 4 (21.05%) vs. 4 (22.22%) -Primary progressive 3 (15.79%) vs. 2 (11.11%) -Secondary progressive 12 (63.16%) vs. 12 (66.67%) EDSS (mean): 5.71 vs. 6.04	0.62), p=NR (post-pre change) ARAT least affected upper limb (scale unclear): 56.31 (1.24) vs. 56.33 (0.68), p=0.895 (baseline) 57.17 (0.00) vs. 56.16 (0.78), p<0.001 (postintervention) 0.68 (95% CI -1.28 to -0.08) vs. 0.16 (95% CI -0.08 to 0.42), p=NR (post-pre change)	
Ozkul, 2020	A. Immersive virtual reality, 16 sessions	A vs. B Age: 29 vs. 34	Pre-post median (IQR):	NA
Postural Control Balance Exercises	over 8 weeks (n=13)	Female: 69% vs. 77% Race: NR	<u>BBS:</u> 52 (42.5, 56) to 54 (44.5, 56) vs. 55 (53, 56) to 56 (53.5, 56), p>0.05	
Motion Gaming	B. Relaxation	EDSS median: 1 vs. 2	(JJ.J, JU), p~0.00	
Postintervention, 0 weeks	exercises at home, 16 sessions over 8 weeks (n=13)	Number of relapses: 3 vs. 2	<u>TUG</u> : 7.6 (6.9, 8) to 6.3 (5.7, 7.2) vs. 6.9 (6.5, 7.5) to 7.4 (6.4, 7.7), p<0.017	
Fair				

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Ozkul, 2020b Multimodal Exercise Immediately Postintervention, 8 weeks Fair	24 sessions (3 per week) over 8 weeks (n=17) B. Control group, relaxation exercise at	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%) A vs. B Age (mean years): 35.8 vs. 36.7 (mean years): Female: 76% vs. 76% Race: NR Ambulatory: 100% Wheelchair user: NR EDSS (score): 1.5 vs. 1.71 GMFM: NR BMI (kg/m2) 23.75 vs. 25.39 Disease duration (years): 7.18 vs. 5.71	Prioritized Outcomes A vs. B, Mean (SD), change mean (SD), p=within groups 6MWT (meters): 539.94 (50.21) vs. 513.82 (50.96) (baseline) 587.92 (51.44) vs. 502.75 (53.54) (postintervention); change mean (SD) 47.98 (23.34) vs11.07(36.40), p<0.001 MSQOL-54-MCS: 62.74 (19.37) vs. 56.29 (16.47) (baseline) 74.24 (14.83) vs. 50.91 (20.42) (postintervention) change mean (SD) 11.50 (15.94) vs5.38 (17.37), p=0.006	Other Outcomes Fatigue Impact Scale (FIS-Total score): 53.35 (29.64) vs. 68.12 (36.84) (baseline) 36.18 (21.57) vs. 78.88 (39.72) (postintervention) change mean (SD) -17.18 (22.24) vs. 10.76 (28.01), p=0.006

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Park, 2014	A. Intervention group	A vs. B	A vs. B, mean (SD)	NR
Destinten (antion 0	(hippotherapy), 16 sessions over 8	Age (mean years): 6.68 vs.	within 2 months after 8-week intervention GMFM-66:	
Postintervention, 8 weeks	weeks (n=34)	7.76 Female: 19 (56%) vs. 11	58.49 (13.40) vs. 61.20 (21.69) (baseline)	
(within 2 months	Weeks (II-04)	(52%)	61.43 (14.78) vs. 62.46 (21.70) (postintervention)	
after 8-week	B. Control group	Race: NR	2.93 (3.95) vs. 1.25 (1.99), p<0.05 (pre-postintervention	
intervention)	(waitlist)	Ambulatory: NR	difference)	
		Wheelchair user: NR		
Postural Control			PEDI:	
Hippotherapy			Intervention group: n=28; Control group: n=21	
		(90%)	116.32 (48.61) vs. 112.52 (64.98) (baseline)	
Poor		Unilateral CP: 2 6%) vs. 2	127.21 (46.89) vs. 114.52 (64.53) (postintervention)	
P001		(10%)	10.89 (11.94) vs. 2.00 (4.93), p<0.05 (pre-post intervention difference)	
		GMFCS level:		
		GMFCS level I: 8 (24%) vs.		
		6 (29%)		
		GMFCS level II: 11 (32%)		
		vs. 4 (19%)		
		GMFCS level III: 5 (15%) vs.		
		6 (29%)		
		GMFCS level IV: 10 (29%) vs. 5 (24%)		
	l	vs. J (2470)		

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Peri, 2017	A. RAGT plus TOP (task oriented physical therapy), 2+2 sessions/week	A vs. B vs. C vs. D Age (mean years): 6.8 vs. 10.8 vs. 9.3 vs. 8 Female:	A vs. B vs. C vs. D, mean (SD) 6MWT (meters, T0 to T1 to T2) 285.2 (219.2) to 300.9 (201.9) to 309.0 (214.9) vs. 222.1 (237.6) to 208.5 (252.7) to 225.0 (193.7) vs. 378.2 (182.6)	A vs. B, mean (SD)
Aerobic Exercise Robot-Assisted Gait Training	over 10 weeks (n=10)	6 (60%) vs. 5 (42%) vs. 5 (50%) vs. 6 (50%)	to 381.7 (159.3) to 364.1 (179.8) vs. 324.4 (110.2) to 345.0 (92.4) to 346.5 (84.3)	
	B. RAGT plus TOP (task oriented	Race: NR	GMFM-66 66.0 (12.1) to 67.0 (12.7) to 69.2 (10.4) vs. 66.2 (6.3) to	
Postintervention, 4- 10 weeks	physical therapy), 5+5 sessions/week over 4 weeks (n=10)	Ambulatory: NR Wheelchair user:	67.1 (6.2) to 68.1 (6.3) vs. 66.4 (13.4) to 68.2 (11.9) to 69.2 (9.7) vs. 68.5 (8.8) to 68.9 (8.6) to 69.2 (9.7)	
Poor	C. TOP 4	NR		
	sessions/wk over 10 weeks (n=10)	Other: GMFCS (I/II/III) 3/4/3 vs. 5/2/5 vs.3/5/2 vs.		
	D. RAGT 4 sessions/wk over 10 weeks	3/5/4		

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Pompa, 2017	A. RAGT, 12	A vs. B	2MWT	A vs. B, mean (SD)
	sessions over 4	Age (mean years):	33.71 (15.43) to 42.59 (20.79) p=0.001 vs. 40.91 (22.45)	
Aerobic Exercise	weeks (n=21)	47 vs. 50	to 43.72 (24.50) p=0.076	
Robot-Assisted		Female:		
Gait Training	B. Conventional	10 (48%) vs. 12 (55%)		
Destintany option 1	Walking Training, 12 sessions over 4	Race: NR	3.10 (1.51) to 3.76 (1.04) p=0.017 vs. 3.50 (1.10) to 3.50	
Postintervention, 4 weeks	weeks (n=22)	Race. NR	(1.10) p=0.999	
WEEKS	weeks (11-22)	Ambulatory: NR	EDSS	
Fair		Wheelchair user: NR	6.62 (0.42) to 6.48 (0.37) p=0.014 vs. 6.50 (1.10) to 6.50	
			(0.49) p=0.999	
		Other:	Rivername Mobility index	
		disease duration (years)	5.76 (2.05) to 7.76 (2.62) p<0.001 vs. 6.14 (3.11) to 7.41	
		17.05 vs. 14.09	(2.58) p<0.001	
		Primary		
		Progressive/Secondary Progressive MS	LE Spasticity VAS 5.05 (1.01) to 3.40 (1.24) p=0.007 vs. 5.31 (2.52) to 5.23	
		0/21 vs. 3/22	(2.29) p=0.693	
		0/21 03. 5/22	(2.23) p=0.000	
		EDSS	Modified Barthel Index	
		6.62 vs. 6.50	63.43 (18.51) to 77.43 (15.91) p<0.001 vs. 64.09 (20.60)	
			to 74.10 (14.72) p<0.001	
Pourazar, 2020	A. Virtual reality Xbox		<u>Dynamic balance</u> was improved in the anterior,	NA
De eternel O entre l	360 Kinect, 20	Age: 9.2 vs. 9.6	posterolateral, and posteromedial directions with virtual	
Postural Control	sessions over 6	Female: 100% Race: NR	reality dance game compare with the control group,	
Motion Gaming	weeks (n=10)	GMFCS !: 50% vs. 60%	p=0.001 all comparisons	
Postintervention.	B. Encouraged to do	GMFCS II: 20% vs. 30%		
0 weeks	typical physical	GMFCS III: 30% vs. 10%		
	activity at home			
Fair	(n=10)			

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Qi, 2018	Intervention and Comparison Tai Chi vs. usual care	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%) A vs. B Age (mean years): 38.3 vs.	Prioritized Outcomes A. vs. B., mean (SD) WHOQOL-BREF (5-point scale, higher score=higher	Other Outcomes NA
Postural Control Tai Chi	A. Tai Chi: 60 sessions (2 sessions/day, 5	43.05 Female: 5 (25%) vs. 4 (20%) Race: NR Ambulatory: NR	QOL) Quality of life - Physical: 11.40 (1.25) vs. 10.94 (1.15), p=0.24 (baseline) Quality of life - Psychological 10.95 (1.57) vs. 10.87	
Postintervention, 6 weeks	days/week) over 6 weeks (n=20)	Wheelchair user: 100% BMI: 24.46 vs. 24.28	(1.08), p=0.09 (postintervention) Quality of life - Physical: 11.80 (1.33) vs. 11.09 (1.29),	
Fair	B. Usual care control: (n=20)		p=0.85 (baseline) Quality of life - Psychological: 12.23 (1.65) vs. 10.87 (1.08), p=0.04 (postintervention)	
Qi, 2018a	A. Strength + neuromuscular	A vs. B Age (mean years): 5.8 vs.	Data reported as mean (SD) A vs. B	NR
Muscle Strength Immediately postintervention, 6 weeks Fair	electrical stimulation: 30 sessions over 6 weeks, electrodes were placed on extensor of acrotarsium with a current intensity used just strong enough to cause muscle contraction, which continued for 20 minutes (n=50)	6.0 Female: 24 (48%) vs. 23 (46%) Race: NR Ambulatory: NR Wheelchair user: NR	GMFM-D/E (0-100, higher=increased motor function): 44.5 (13.2) vs. 44 (12.6), p>0.05 (baseline) 70.6 (15.2) vs. 56.7 (14.3), p<0.05 (postintervention) 71.0 (16.4) vs. 58.0 (15.6), p<0.05 (6 weeks) CSS (<7=spasm, 7-9=mild spasm, 10-12=moderate spasm, 13-16=severe spasm): 12.0 (3.4) vs. 12.3 (3.6), p>0.05 (baseline) 7.6 (3.0) vs. 9.5 (2.8), p<0.05 (postintervention) 7.4 (2.4) vs. 9.4 (2.6), p<0.05 (6 weeks)	
	B. Neuromuscular electrical stimulation: same stimulation as above (n=50)			

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Razazian, 2016 Aerobic Exercise Aquatics Postintervention, 8 weeks Poor	Intervention and Comparison Yoga vs. Aquatics A. Yoga: 24 sessions over 8 weeks (n=18) B. Aquatic exercise: 24 sessions over 8 weeks (n=18) C. Usual care control: met 2-3 times a week in hospital for usual care, over 8 weeks (n=18)	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%) A vs. B vs. C Age (mean years): 33 vs. 35 vs. 33 Female: 18 (100%) vs. 18 (100%) vs. 18 (100%) Race: NR Ambulatory: NR Wheelchair user: NR Duration of MS (years) 6.90 vs. 7.11 vs. 6.78 EDDS: 3.89 vs. 3.44 vs. 3.25 MS (primary-progressive): 0 (0%) vs. 0 (0%) vs. (0%) MS (secondary-progressive): 1 (.5%) vs. 2 (11%) vs. 2 (11%) MS (relapsing-remitting): 13 (72%) vs. 11(61%) vs. 12 (66%) MS (progressive-relapsing): 4 (22%) vs. 5 (27%) vs. 4	Prioritized Outcomes A. vs. B. vs. C, mean (SD) Beck Depression Inventory (BDI: 0–9=no or minimal to 30–63=severe depression) 19.72 (7.04) vs. 19.17 (7.83) vs. 20.78 (6.22), (baseline) 5.06 (2.92) vs. 4.78 (3.42) vs. 21.33 (6.88), (postintervention), p=0.000	Other Outcomes NA
Roppolo, 2013	A. Combination	(22%) A vs. B	A vs. B, Mean (SD), p=between groups	NA
Multimodal Exercise	therapy (aerobic + strength training) 12 weeks 24 sessions over 12 weeks	Age: 40 vs. 40 Female: 100% EDSS: 1.5 vs. 2.0	BDI: 8.8 (5.8) to 3.4 (2.9) vs. 9.2 (3.7) to 17.0 (7.0), MD 13.2, 95% CI 9.86 to 16.55, p<0.001	
Immediately postintervention,	(n=17)		MSQOL-54:	
12 weeks	B. Control group (activity not		202.7 (7.9) vs. 139.3 (32.4), MD 63.4 (7.86) (95% Cl 47.43 to 79.4), p<0.001 (post-intervention);	
Fair	specified) (n=18)		29.5 (36.17) vs22.5 (55.57), MD 52.0, 95% CI 20.8 to 83.2, p=NR (pre-post change)	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Russo, 2018 Aerobic Exercise Robot-Assisted Gait Training Postintervention, 18 weeks Fair	Intervention and Comparison A. RAGT, 18 sessions over 6 weeks followed by usual 12 weeks (36 sessions) of traditional training (n=30) B. Usual care (traditional rehabilitation training), 54 sessions over 18 weeks (n=15)	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%) A vs. B Age (mean years): 42 vs. 41 Female: 16 (53%) vs. 10 (67%) Race: NR Ambulatory: N (%) vs. N (%) Wheelchair user: N (%) vs. N (%) Other: Disease duration 11.4 years vs. 12.3 years	Prioritized OutcomesTUG change in score (seconds)Post training11.4, $p < 0.001$ vs. 11.2, $p < 0.001$;At followup8.9, $p < 0.001$ vs. 5.1, $p < 0.001$ EDSS5.5 to 5.0, $p = 0.026$ vs. 4.5 to 4.0, $p = 0.003$ Tinetti Balance Scale change in scorePost training-1.2, $p < 0.001$ vs7, $p < 0.01$;At followup-1.0, $p < 0.001$ vs0.1 $p = 0.71$ FIMChange in scorePost training-2.2, $p < 0.001$ vs1.7, $p < 0.001$ At followup	Other Outcomes HRSD 10.0 to 7.0, p=0.004 vs. 12.5 to 7.0, p=0.004
Sadeghi Bahmani, 2019	A. Endurance training (treadmill,	A vs. B vs. C Age: 38 vs. 39 vs. 38	-1.8, p<0.001 vs1.5, p<0.001 A vs. B vs. C, Mean (SD), p=between groups:	A vs. C, Mean (SD), p=between groups:
Aerobic Exercise Aerobics Postural Control	cycling, walking, jogging), 24 sessions over 8 weeks (n=26)	Female: 100% EDSS: 2.46 vs. 3.38 vs. 2.02	BDI-FS: 7.92 (5.11) to 5.12 (4.65) vs. 7.96 (6.67) to 5.29 (5.75) vs. 6.24 (4.47) to 6.52 (4.91)	EDSS - Expanded Disability status: 3.38 (1.87) to 3.10 (1.86) vs. 2.02 (1.84) to 1.98 (1.70), p>0.05
Balance	B. Balance and coordination		A vs. C: MD 3.08, 95% CI 0.33 to 5.84, p=0.028	ISI = Insomnia Severity Index; 13.46 (5.81) to 10.13 (4.92) vs. 1.71 (5.43) to
Postintervention, 8 weeks	exercises, 24 sessions over 8 weeks (n=24)		B vs. C: MD 2.95, 95% CI –0.26 to 6.16, p=0.072	11.14 (5.39), p>0.05
Fair	C. Attention control, 24 sessions over 8 weeks (n=21)		A vs. B: MD 0.13, 95% CI –3.00 to 3.26, p=0.935	

Author Verr		Demoletter		
Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
	A. Aquatic exercise	Age: 39 vs. 41 vs. 34	A vs. B, adjusted mean (SE):	Correlation coefficients between sexual
2020a (aquatic)	for two weeks (n=21)	Female: 100%	<u>FSFI:</u> 52.14 (1.2) vs. 48.80 (1.2) vs. 42.80 (1.1)	function, Fatigue
		Race: NR		
Aerobic Exercise	B. Aquatic exercise	Ambulatory: 100% vs. 100%	After controlling for baseline values, the highest scores	<u>Fatigue</u> : -0.33; p< 0.01 (baseline)
Aquatic	for three weeks	vs. 100%	were achieved in the group that exercised 2 times weekly	-0.14 (postintervention)
	(n=19)	Wheelchair user: NR	(52.14) followed by three times weekly (48.80) and active	
Postintervention,			control (42.80), p<0.001	Correlation coefficients between sexual
5 weeks	C. Control (n=22)	Median EDSS score: 3.00		function, Couple satisfaction
		vs. 1.50 vs. 1.50	Correlation coefficients between sexual function, EDSS	
Fair		Baseline Female Sexual		Couple satisfaction: 0.48 (baseline)
		Function Index (FSFI),	<u>EDSS:</u> -0.29, p<0.05 (baseline)	0.64; p< 0.001 (postintervention)
		mean: 41.40 vs. 45.67 vs.	-0.4, p=NR (postintervention)	
		50.59		
			Correlation coefficients between sexual function,	
			Depression	
			Depression: -0.17 (baseline)	
			-0.09; p< 0.01 (postintervention)	
Sadowsky, 2013	A. FES cycle	A vs. B	Calculated A vs. B, Mean change scores:	A vs. B (SD)
22201000, 2010	ergometry, 3		Total FIM: 80% vs. 60%, p<0.001	
Aerobic Exercise	sessions per week	Age (mean years):	With significant improvement with FES in subscales: self-	Body Fat Volume (cc):
Cycling	over range of 3-168	37.2 vs. 34.6	care, sphincter control, transfer, and locomotion	450 vs. 800 (est), p<0.010
Cyoning	months (n=25)	Female:	SF-36: total and composite scores NR	100 vo. 000 (000), p -0.0 r0
Postintervention. 0		4 (12%) vs. 4 (20%)	Significant improvement in physical function and role limit	
weeks	B. Standard	T (12/0) VS. 4 (20/0)	physical with FES, no difference in mental health	
WOONS	rehabilitation care.	Race: NR	subscales	
Poor	not specified (n=20)	Nace. NR		
	not specified (II-20)	Ambulatory: NR		
		Wheelchair user: NR		
		Other:		
		Quadriplegia		
		13 (52%) vs. 15 (75%)		
		Paraplegia		
		12(48%) vs. 5(25%)		

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B	Intervention and	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Salci, 2016	A. Balance training (plus Lumbar	A vs. B vs. C Age (mean years): 35.36 vs.	A. vs. B. vs. C., mean (SD), (95% CI) 2-Minute Walk Test (2MWT) , 25-meter	A. vs. B. vs. C., mean (SD), (95% CI) BBS
Postural Control Balance	stabilization):18 sessions over 6 weeks (n=14)*	37.29 vs. 34.36 Female: 6 (43%) vs. 9 (62%) vs. 10 (71%) Race: NR	A. 158.(34.14), (95% CI 138.92 to 178.34), (baseline) vs. B. 151.32 (37.76), (95% CI 129.51 to 173.12), (baseline) vs. C. 151.05, (31.52) (95% CI 132.84 to 169.25), (baseline)	A. 49.14 (5.98), (95% CI 45.68 to 52.58), (baseline) vs. B. 48.50 (6.03), (95% CI 45.01 to 51.98), (baseline) vs.
Postintervention, 6 weeks	B. Lumbar stabilization (transversus	Ambulatory: 100% Wheelchair user: NR	A. 169.39 (30.67) (95% CI 151.67 to 187.10), (postintervention) vs.	C. 48.64 (6.10) (95% CI 45.11 to 52.17), (baseline)
Fair	abdominis muscle contractions): 18 sessions over 6 weeks (n=14)* C. Task oriented training (Individualized exercises plus Lumbar stabilization): 18 sessions over 6 weeks (n=14)* *Only 14 per group received the intervention postrandomization	BMI (kg/m ²) 22.62 vs. 24.45 vs. 23.73 MS duration (years): 6.18 vs. 8.54 vs. 5.82 EDSS, median (interquartile range): 3.5 (3–4) vs. 3.5 (3– 4) vs. 3.5 (3.5–4) EDSS 1.0-4.5=fully ambulatory EDSS 5.0-9.5=impairment on ambulation Relapsing Remitting: 11 vs. 11 vs. 12 Primary Progressive: 1 vs. 1 vs. 0 Secondary Progressive: 2 vs. 2 vs. 2	B. 176.87 (36.64) (95% CI 155.71 to 198.02), (postintervention) vs. C. 169.74 (31.25) (95% CI 151.69 to 187-78) (postintervention) Change in 2MWT: 10.75 (9.97) (95% CI 4.99 to 16.51) vs. 25.55 (16.90) (95% CI 15.79 to 35.31) vs. 18.69 (14.24) (95% CI 10.46 to 26.91), p=0.023 (pre-post change)	A. 52.71 (5.36) (95% CI 49.61 to 55.81), (postintervention) B. 54.28 (3.42) (95% CI 52.30 to 56.26), (postintervention) C. 54.21 (3.37) (95% CI 52.26 to 56.16) (postintervention) Change in BBS: 3.57 (2.20) (95% CI 2.29 to 4.84) vs. 5.78 (3.40) (95% CI 3.82 to 7.74) vs. 5.57 (3.73) (95% CI 3.41 to 7.72), p=0.156 (pre-post change)

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Samaei	A. 30 minutes	Score greater than 3 on	Pre, post	NA
2014	walking at 10	GNDS limb score		
Aerobic Exercise Treadmill	degrees downgrade 3 times a week for 4 weeks	n=34 Mean age 33.03 years	25 foot walk A. 8.7 (2.4) to 6.1 (1.8) p=0.002 (within group differences) B. 7.9 (1.1) to 7.0 (1.6) p=0.048 p=0.001	
Postintervention. 0	B. 30 minutes	Mean age 55.05 years	p=0.001	
weeks	walking at 10 degrees elevation 3	28 females and 6 males (17.6% males)	2 minute walk A. 120.01 (23.6) to 160.1 (35.7) p=0.001	
Fair	times a week for 4 weeks		B. 132.6 (32.3) to 147.5 (29.8) p=0.026 p=0.0001	
			Timed Up and Go A. 98. (1.7) to 7.5 (1.8) p=0.008 B. 9.4 (2.3) to 8.9 (0.9) p=0.039 p=0.041	
			GNDS A. 35.4 (9.1) to 21.8 (5.3) p=0.006 B. 32.1 (8.6) to 27.5 (6.1) p=0.041 p=0.12	
			Modified Riverman Mobility Index A. 10.6 (3.2) to 14.3 (2.7) p=0.009 B. 10.5 (2.3) to11.9 (2.1) p=0.038 p=0.005	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Sandroff, 2017 Multimodal Exercise Mid-intervention (12 weeks into intervention); Immediately postintervention Fair	 A. Resistance + aerobics + balance: 72 sessions over 24 weeks. Approximately equal durations of aerobic, lower- extremity resistance, and balance training (n=43) B. Stretching and toning (n=40) 72 sessions over 24 weeks for both groups 	A vs. B Age (mean years): 49.8 vs. 51.2 Female: 36 (83.7%) vs. 35 (87.5%) Race: NR Ambulatory: NR Wheelchair user: NR BMI: 29.2 vs. 31.2	Data reported as mean (SD) A vs. B VO_2 peak (ml/kg/min) 16.5 (6.5) vs. 15.4 (6.2), p=NR (baseline) 16.6 (5.6) vs. 15.6 (4.9), p=NR (mid-intervention) 17.1 (5.9) vs. 15.9 (5.5), p=NR (postintervention) Time X Group interaction p>0.20 6MWT (feet) 1073.1 (529.0) vs. 1097.5 (493.3), p=NR (baseline) 1142.6 (570.3) vs. 1123.6 (488.6), p=NR (mid- intervention) 1185.5 (600.5) vs. 1115.1 (512.7), p=NR (postintervention) 112 feet vs. 18 feet, p=NR (post-pre change) +10.5% vs. +1.6%, p=NR (post-pre % change) Time X Group interaction p=0.05 25 foot walk test (feet/second) 3.7 (1.8) vs. 4.0 (1.4), p=NR (baseline) 3.8 (1.8) vs. 4.0 (1.4), p=NR (mid-intervention) 59.0 (23.4) vs. 49.3 (27.1), p=NR (postintervention) Time X Group interaction p>0.11	NR

Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Sangelaji, 2014	A. Strength +	A vs. B [according to those	Data reported as mean (SD)	Data reported as mean (SD)
	aerobics + balance:	with followup data]	A vs. B [according to those with followup data]	A vs. B [according to those with followup data]
Multimodal	30 sessions over 10	Age (mean years): 33.05 vs.		
Exercise	weeks (n=35)	7.68	6MWT (meters)	EDSS (1-10, higher scores=greater disability)
		Female: 24 (61.5%) vs. 15	487.69 (NR) vs. 597.36 (NR),p=NR (baseline)	1.7 (NR) v. 1.96 (NR),p=NR (baseline)
Postintervention, 0	B. Usual care (n=20)	(68.2%)	586.2 (NR) vs. 560.14 (NR), p=NR (postintervention)	1.7 (NR) vs. 2.06 (NR), p=NR
weeks		Race: NR	443.29 (NR) vs. 409.7 (NR), p=NR (followup)	(postintervention)
		Ambulatory: NR	NR vs. NR, MD 137.2 (24.54), p<0.0001 (pre-post	2.2 (NR) vs. 2.74 (NR), p=NR (followup)
Poor		Wheelchair user: NR	change)	NR vs. NR, MD -0.13 (0.23), p=0.60 (pre-post
			NR vs. NR, MD 47.07 (45.34), p=0.30 (postfollowup	change)
			change)	NR vs. NR, MD -0.15 (0.21), p=0.50
			NR vs. NR, MD 184.3 (51.1), p=0.001 (prefollowup	(postfollowup change)
			change)	NR vs. NR, MD -0.28 (0.29), p=0.35
			MCCal DCC (0.100 bishar-increased COL)	(prefollowup change)
			MSQoL-PCS (0-100, higher=increased QOL)	DDC (0.50, higher accurate hotter holenes)
			58.46 (NR) vs. 66.33 (NR),p=NR (baseline)	BBS (0-56, higher scores=better balance) 48.47 (NR) vs. 46.68 (NR), p=NR (baseline)
			65.78 (NR) vs. 61.47 (NR), p=NR (postintervention) 60.56 (NR) vs. 57.53 (NR), p=NR (followup)	51.41 (NR) vs. 46.28 (NR), p=NR
			NR vs. NR, MD 12.17 (3.62), $p=0.001$ (pre-post change)	(postintervention)
			NR vs. NR, MD -1.27 (3.61), p=0.73 (postfollowup	48.52 (NR) vs. 42.53 (NR), p=NR (followup)
			change)	NR vs. NR, MD 3.34 (0.87), p<0.0001 (pre-
			NR vs. NR, MD 10.90 (4.55), p-0.02 (prefollowup change)	post change)
				NR vs. NR, MD -0.14 (1.32), p=0.92
			MSQoL-MCS, (0-100, higher=increased QOL)	(postfollowup change)
			57.92 (NR) vs. 70.2 (NR), p=NR (baseline)	NR vs. NR, MD 3.21 (1.44), p=0.03
			68.52 (NR) vs. 64.45 (NR), p=NR (postintervention)	(prefollowup change)
			63.73 (NR) vs. 62.47 (NR), p=NR (followup)	
			NR vs. NR, MD 16.36 (4.46), p=0.001 (pre-post change)	
			NR vs. NR, 2.82 (4.85), p=0.56 (postfollowup change)	
			NR vs. NR, MD 13.54 (5.37), p=0.02 (prefollowup change)	

Author, Year Intervention Type Duration of Postintervention Followup		Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%)		
Quality	Intervention and	Wheelchair User (%)		
(See Appendix B for Full Citation)	Comparison	Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Sangelaji, 2016 Multimodal	A. 1 aerobic + 3 resistance training exercises per week	A vs. B vs. C vs. D Age (mean years): 35.80 vs. 31.33 vs. 33.91 vs. 33.63	Data reported as mean (SD) A vs. D	Data reported as mean (SD) BBS (0-56, higher scores=better balance)
Exercise Postintervention, 0	for 8 weeks (32 total sessions) (n=10)	Female: 4 (60%) vs. 4 (60%) vs. 4 (60%) vs. 4 (60%) Race: NR	10MWT (seconds): 9.828 (4.89645) vs. 15.217 (18.94777), p=NR (baseline) 7.422 (2.42591) vs. 15.122 (19.02946), p=NR	A vs. D 43.111 (4.96096) vs. 45.000 (10.04277), p=NR (baseline)
weeks	B. 2 aerobic + 2 resistance training	Ambulatory: NR Wheelchair user: NR	(postintervention) −2.4056 (NR) vs. −0.095 (NR); MD 2.31 (SE, 1.04),	À9.000 (2.34521) vs. 45.000 (9.74500), p=NR (postintervention)
Fair	exercises per week for 8 weeks (32 total sessions) (n=10)	Baseline EDSS (mean): 1.33 vs. 2.06 vs. 1.95 vs. 1.81	p=0.030 (post-pre change) -0.624281255% (NR) vs24.47750259% (NR), p=NR (post-pre % change)	5.8889 (NR) vs. 0 (NR); MD -5.88 (SE, 1.80), p<0.001 (post-pre change) 13.65982311% (NR) vs. 0% (NR), p=NR (post- pre % change)
	C. 3 aerobic vs. 1 resistance training exercises per week for 8 weeks (32 total sessions) (n=10) D. Control group (n=10)		6MWT (meters): 380.222 (136.77790) vs. 361.500 (238.86757), p=NR (baseline) 461.444 (139.61206) vs. 367.500 (258.75692), p=NR (postintervention) 81.2222 (NR) vs. 6.0000 (NR); MD -75.22 (SE, 28.21), p=0.010 (post-pre change) 21.36177674% (NR) vs. 1.659751037% (NR), p=NR (post-pre % change)	B vs. D 49.375 (3.06769) vs. 45.000 (10.04277), p=NR (baseline) 50.625 (1.84681) vs. 45.000 (9.74500), p=NR (postintervention) 1.25 (NR) vs. 0 (NR); MD -1.25 (SE, 1.85), p=0.500 (pre-post change) 2.53164557% (NR) vs. 0% (NR), p=NR (post- pre % change)
				C vs. D 45.400 (8.93433) vs. 45.000 (10.04277), p=NR (baseline) 48.500 (4.99444) vs. 45.000 9.74500, p=NR (postintervention) 3.1 (NR) vs. 0 (NR); MD -3.10 (SE, 1.75), p=0.090 (pre-post change) 6.828193833% (NR) vs. 0% (NR), p=NR (post- pre % change)

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B	Intervention and	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%)		
			Prioritized Outcomes	Other Outcomes
for Full Citation) Sangelaji, 2016 (Continued)	Comparison	Other (%)	Prioritized Outcomes B vs. D 10MWT (seconds): 8.109 (2.08783) vs. 15.217 (18.94777), p=NR (baseline) 6.567 (1.29852) vs. 15.122 (19.02946), p=NR (postintervention) -1.5413 (NR) vs0.095 (NR); MD 1.45 (SE, 1.07), p=0.190 (post-pre change) -19.00774467% (NR) vs0.624281255% (NR), p=NR (post-pre % change) 6MWT (meters): 422.500 (106.39012) vs. 361.500 (238.86757), p=NR (baseline) 491.500 (108.79338) vs. 367.500 (258.75692), p=NR (postintervention) 69.0000 (NR) vs. 6.0000 (NR); MD -63.00 (SE, 29.03), p=0.040 (post-pre change) 16.33136095% (NR) vs. 1.659751037% (NR), p=NR (post-pre % change) C vs. D 10MWT (seconds): 9.874 (5.56309) vs. 15.217 (18.94777), p=NR (baseline) 7.949 (5.55153) vs. 15.122 (19.02946), p=NR (postintervention) -1.925 (NR) vs0.095 (NR); MD 1.83 (SE, 1.01), p=0.080 (post-pre change) -19.49564513% (NR) vs0.624281255 (NR), p=NR (post-pre % change) 6MWT (meters): 363.000 (159.48319) vs. 361.500 (238.86757), p=NR	Other Outcomes Left knee extension strength (kg) A vs. D 12.000 (5.3619) vs. 10.667 (5.04645) (baseline) 20.444 (6.12599) vs. 11.333 (6.43946) (postintervention) 8.4444 vs. 0.6666 (pre-post change) 70.37% vs. 6.249355471% (pre-post % change)B vs. D 19.000 (10.01428) vs. 10.667 (5.04645) (baseline) 24.750 (10.93814) vs. 11.333 (6.43946) (postintervention) 5.75 vs. 0.6666 (pre-post change) 30.26315789 vs. 6.249355471% (pre-post % change) C vs. D 14.580 (7.16377) vs. 10.667 (5.04645) (baseline) 23.200 (8.70249) vs. 11.333 (6.43946) (postintervention) 8.62 vs. 0.6666 (pre-post change) 59.12208505% vs. 6.249355471% (pre-post % change) Left knee flexion strength (kg) A vs. D 7.422 (3.50955) vs. 5.346 2.761 (baseline) 13.000 (4.03113) vs. 4.917 2.61566 (postintervention) 5.5778 vs0.42897 (pre-post change) 75.150225 vs8.024625538% (pre-post % change) <
			33.5000 (NR) vs. 6.0000 (NR); MD −27.50 (SE, 27.54), p=0.330 (post-pre change) 9.228650138% (NR) vs. 1.659751037% (NR), p=NR (post-pre % change)	

Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Sangelaji, 2016				B vs. D
(Continued)				12.375 (4.89716) vs. 5.346 2.761 (baseline) 15.500 (5.47723) vs. 4.917 2.61566 (postintervention) 3.125 vs0.42897 (pre-post change) 25.25252525% vs8.024625538% (pre-post % change)
				C vs. D 7.060 (2.49275) vs. 5.346 2.761 (baseline) 12.600 (2.79682) vs. 4.917 2.61566 (postintervention) 5.54 vs0.42897 (pre-post change) 78.47025496% vs8.024625538% (pre-post % change)
				Right knee extension strength (kg) A vs. D 12.111 (5.1099) vs. 14.667 (3.26599) (baseline) 19.000 (6.61438) vs. 16.667 (7.44759) (postintervention) 6.8889 vs. 2 (pre-post change) 56.88087787% vs. 13.63633264% (pre-post % change)
				B vs. D 21.375 (9.31876) vs. 14.667 (3.26599) (baseline) 25.000 (10.91526) vs. 16.667 (7.44759) (postintervention) 3.625 vs. 2 (pre-post change) 16.95906433% vs. 13.63633264% (pre-post % change)

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B	Intervention and	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%)		
	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Sangelaji, 2016 (Continued)				C vs. D 16.000 (6.8313) vs. 14.667 (3.26599) (baseline) 24.300 (8.53815) vs. 16.667 (7.44759) (postintervention) 8.3 vs. 2 (pre-post change) 51.875% vs. 13.63633264% (pre-post % change)
				Right knee flexion strength (kg) A vs. D 7.722 3.(64958) vs. 8.205 (3.55624) (baseline) 12.333 (4.74342) vs. 7.750 (2.80624) (postintervention) 4.6111 vs0.4555 (pre-post change) 59.71225816% vs5.551154713% (pre-post % change)
				B vs. D 13.375 (5.15302) vs. 8.205 (3.55624) (baseline) 17.250 (5.94619) vs. 7.750 (2.80624) (postintervention) 3.875 vs0.4555 (pre-post change) 28.97196262% vs5.551154713% (pre-post % change)
				C vs. D 8.850 (2.80921) vs. 8.205 (3.55624) (baseline) 12.900 (3.38132) vs. 7.750 (2.80624) (postintervention) 4.05 vs0.4555 (pre-post change) 45.76271186% vs5.551154713% (pre-post % change)

Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
•		Wheelchair User (%)		
Quality (See Appendix B	Intervention and	Condition Specific (%)		
	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
	A. Progressive	A vs. B [data for completers	Data reported as mean (SD)	Data reported as mean (SD)
Scholtes, 2010	resistance (n=26): 36		A vs. B	A vs. B
	sessions over 12	only]	A VS. D	A VS. D
Scholtes, 2008	weeks	Age (mean years): 10.33 vs. 10.25	10MWT (meters/second)	Knee extensors strength (Newton/kg)
Mussle Strength	WEEKS	Female: 8 (33%) vs. 12	0.95 (0.29) vs. 0.95 (0.28) (baseline)	4.78 (1.12) vs. 4.36 (1.05) (baseline)
Muscle Strength	B. Usual care (n=25)	. ,		
	D. Usual care (II-25)	(50%) Race: NR	1.06 (0.32) vs. 1.00 (0.33), effect 0.05 (95% CI -0.07 to	5.39 (1.10) vs. 4.48 (1.21), effect 0.56 (95% CI
Postintervention, 6 weeks		Ambulatory: 24 (100%) vs.	0.16), p=0.44 (mid-intervention) 1.03 (0.33) vs. 1.07 (0.38), effect −0.04 (95% CI −0.18 to	0.13 to 0.99), p=0.01 (postintervention) 5.20 (1.04) vs. 4.46 (1.20), effect 0.35 (95% CI
0 weeks		25 (100%)	(0.33) vs. 1.07 (0.38), effect -0.04 ($95%$ Cf -0.18 to 0.10), p=0.56 (postintervention)	-0.16 to 0.85), p=0.16 (6-weeks)
Fair		Wheelchair user: NR	1.00 (0.28) vs. 1.06 (0.34), effect -0.06 (95% CI -0.17 to	0.10.000, p-0.10(0-weeks)
raii		Limb distribution	0.04), p=0.25 (6 weeks)	Knee flexors strength (Newton/kg)
		-unilateral: 29% vs. 40%	0.04, p=0.25 (0 weeks)	2.73 (0.79) vs. 2.25 (0.96) (baseline)
		-bilateral: 71% vs. 60%	1-minute fast walking test (meters/second)	2.76 (0.75) vs. 2.27 (1.02), effect 0.05 (95% CI
		GMFM Classification Level	1.29 (0.45) vs. 1.25 (0.39) (baseline)	-0.25 to 0.36), p=0.71 (postintervention)
		-1: 54% vs. 48%	1.33 (0.44) vs. 1.24 (0.47), effect 0.04 (95% CI -0.04 to	2.67 (0.86) vs. 2.33 (0.90), effect -0.10 (95%
		-II: 33% vs. 36%	0.13, p=0.31 (mid-intervention)	CI = 0.43 to 0.24), p=0.58 (6-weeks)
		-III: 13% vs. 16%	1.34 (0.48) vs. 1.23 (0.43), effect 0.04 (95% CI –0.04 to	$CI = 0.43 \ 10 \ 0.24$), p=0.30 (0-weeks)
		-11. 1070 v3. 1070	(0.12), p=0.30 (postintervention)	Hip flexor strength (Newton/kg)
			1.30 (0.45) vs. 1.26 (0.44), effect -0.01 (95% CI -0.08 to	3.96 (0.75) vs. 3.76 (0.99) (baseline)
			0.06), p=0.78 (6 weeks)	24 4.43 (0.99) vs. 4.12 (0.99), effect 0.16 (95%)
				CI - 0.22 to 0.55), p=0.41 (postintervention)
			Timed Stair Test (seconds)	4.46 (0.90) vs. $4.43 (0.86)$, effect -0.12 (95%)
			10.75 (15.93) vs. 14.08 (17.50) (baseline)	CI = 0.50 to 0.27), p=0.55 (6-weeks)
			10.75 (13.31) vs. 12.86 (15.13), effect 1.38 (95% CI -1.39	
			to 4.12), $p=0.33$ (mid-intervention)	Hip abductor strength (Newton/kg)
			9.63 (12.06) vs. 12.14 (11.22), effect 0.83 (95% CI −2.64	2.66 (0.76) vs. 2.41 (0.74) (baseline)
			to 4.30), $p=0.64$ (postintervention)	2.78 (0.85) vs. 2.28 (0.70), effect 0.27 (95% CI
			11.25 (17.34) vs. 11.71 (8.51), effect 2.87 (95% CI −2.41	0.00 to 0.54), p=0.05 (postintervention)
			to 8.16), p=0.29 (6 weeks)	2.90 (0.99) vs. 2.45 (0.94), effect 0.23 (95% CI
				-0.10 to 0.56), p=0.17 (6-weeks)
			Sit-to-Stand (reps)	0.10 to 0.00), p 0.17 (0 wookd)
			12.9 (2.8) vs. 10.8 (3.0), p<0.05 (baseline)	
			13.3 (3.2) vs. 12.1 (4.2), effect -0.47 (95% CI -2.28 to	
			(1.33), p=0.61 (postintervention)	
			13.6 (3.0) vs. 12.7 (4.3), effect -0.75 (95% CI -2.21 to	
			(0.72), p=0.32 (6 weeks)	
	I	l	10.12, $p=0.02$ (0 weeks)	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Scholtes, 2010			Lateral step-up test (reps):	Leg power - Six-repetition maximum on leg
Scholtes, 2011 Scholtes, 2008			15.6 (4.0) vs. 13.3 (5.4), p=0.95 (baseline) 15.2 (3.9) vs. 13.7 (4.3), effect -0.05 (95% CI -1.87 to	press (% body weight) 112.78 (21.28) vs. 93.76 (20.18), p<0.05
			1.77), p=0.95 (mid-intervention)	(baseline)
(Continued)			17.0 (5.1) vs. 15.4 (4.3), effect 0.48 (95% CI -1.45 to 2.40), p=0.63 (postintervention) 17.5 (4.8) vs. 15.8 (6.6), effect 0.13 (95% CI -1.84 to 2.10), p=0.9 (6-weeks) GMFM-66 (0-100, higher=increased motor function): 76.1 (12.8) vs. 71.8 (12.5) (baseline) 76.1 (11.8) vs. 73.1 (12.4), effect -0.56 (95% CI -2.11 to 0.99), p=0.48 (postintervention) 76.6 (13.0) 24 72.7 (12.8), effect 0.26 (95% CI -1.23 to 1.76), p=0.73 (6 weeks) Spasticity (0-5, higher=greater spasticity): T0 24 1.00 (1.32) vs. 2.00 (1.32) (baseline) T1 23 2.00 (1.41) vs. 2.00 (1.39), effect 0.02 (95% CI -0.99 to 1.02), p=0.97 (mid-intervention) T2 23 2.00 (1.11) vs. 1.50 (1.10) 0.46 (95% CI -0.34 to 1.26), p=0.26 (postintervention) T3 22 1.00 (0.87) vs. 1.00 (0.87) -0.22 (95% CI -0.92 to 0.49), p=0.55 (6 weeks)	119.38 (26.61) vs. 100.80 (23.72), effect 1.97 (95% CI -8.45 to 12.41), p=0.71 (mid- intervention) 135.63 (31.87) vs. 102.88 (26.76), effect 14.17 (95% CI 1.99 to 26.35) ,p=0.02 (postintervention) 129.90 (32.15) vs. 111.99 (26.17), effect 3.42 (95% CI -8.62 to 15.46), p=0.58 (6 weeks)

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Shin, 2014 Aerobic Exercise Robot-Assisted Gait Training Postintervention, 4 weeks Fair	A. RAGT, 12 sessions over 4 weeks, plus usual physiotherapy 2 times per day 5 days per week, 40 sessions over 4 weeks (N=27) B. Conventional Overground Training,	A vs. B Age (mean years): 43 vs. 48 Female: 7 (26%) vs. 12 (46%) Race: NR Ambulatory: N (%) vs. N (%) Wheelchair user:	A vs. B, mean WISCI-II change in score 8 vs. 5 (intergroup p=0.01) LEMS change in score 6 vs. 4 (intergroup p=0.24) SCiM3-M 6 vs. 3 (intergroup p=0.13) All intragroup p-values <0.001	A vs. B, mean (SD)
	2 times per day 5 days per week, 40 sessions over 4 weeks (n=26)	Other: Cervical SCI 15 (52%) vs. 16 (62%) Months since injury 3.33 vs. 2.73		
Silva e Borges, 2011 Postintervention, 0 weeks (after 6- week intervention)	 A. Riding simulator (RS) group, 12 sessions over 6 weeks (n=20) B. Conventional physical therapy (CT) 	A vs. B Age (mean years): 5.65 vs. 5.77 Female: 12 (60%) vs. 11 (55%) Race: NR Ambulatory: NR	A vs. B, number of people (%) GMFCS: GMFCS level III (baseline) to level II (postintervention): 2 (10%) vs. 1 (5%) GMFCS level IV (baseline) to level III (postintervention): 1 (5%) vs. 1 (5%) GMFCS level V (baseline) to level IV (postintervention): 2	NR
Postural Control Hippotherapy Fair	group, 12 sessions over 6 weeks (n=20)	Wheelchair user: NR	(10%) vs. 0 (0%) Children in RS group had 1.63 times more chances to show a better GMFCS score after the treatment than before the treatment (p =0.0110). Children in CT group had 1.22 times more chances to obtain a better score after treatment than before the treatment (p =0.1510).	

Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair Úser (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Slaman, 2014a	A. Strength training +	A vs. B	Data reported as mean (SD)	Data reported as mean (SD)
Slaman, 2014b	cardiopulmonary	Age (mean years): 20 vs. 20	A vs. B [for those with followup data]	A vs. B [for those with followup data]
Slaman, 2015	fitness: (n=29)	Female: 14 (48.3%) vs. 16		
Slaman, 2010	The intervention	(57.1%)	GMFM-66 (0-100, higher=increased motor function):	Hip flexion strength (units NR):
	consisted of 3 parts	Race: NR	82.57 (12.07) vs. 83.76 (14.38), p=NR (baseline)	417 (15) vs. 477 (20), p=NR (baseline)
Multimodal	over 6 months.	Ambulatory: 28 (96.6%) vs.	82.44 (11.48 vs. 85.22 (11.62), p=NR (postintervention)	449 (160) vs. 474 (139), p=NR (mid-
Exercise	1) Supervised center	25 (89.3%)	85.50 (12.41) vs. 85.22 (11.62), p=NR (24 weeks)	intervention)
	and home-based	Wheelchair user: 1 (3.3%)		429 (12) vs. 443 (153), p=NR
	physical fitness	vs. 3 (10.7%)	VO ₂ Peak (mL/min):	(postintervention)
	training (24 sessions	CP distribution	2260 (725) vs. 2533 (824), p=NR (baseline)	501 (187) vs. 486 (118), p=NR (24 weeks)
intervention);	over 12 weeks)		2515 (737) vs. 2553 (862), p=NR(mid-intervention)	NR vs. NR; adj. MD -16.1 (95% CI -81.3 to
	Counseling on	(50%)	2456 (583) vs. 2396 (861), p=NR (postintervention)	49.2), p=0.63 (pre-mid change)
postintervention;	daily physical activity,	-bilateral: 14 (48.3%) vs. 13	2315 (519) vs. 2549 (864), p=NR (24 weeks)	NR vs. NR; adj. MD 1.4 (95% CI -63.0 to
24 weeks	based on	(46.4%)	NR vs. NR; adj. MD 89.3 (95% CI -98.8 to 277.4), p=0.35	66.0), p=0.97 (pre-post change)
	motivational	-unknown: 0 (0%) vs. 1	(pre-mid change)	NR vs. NR; adj. MD 29.0 (-56.5 to 114.5),
Fair	interviewing (6	(3.4%)	NR vs. NR; adj. MD 195.2 (95% CI 57.3 to 333.1), p<0.01	p=0.51 (postfollowup change)
	sessions over 24	baseline VO ₂ peak (mean	(pre-post change)	
	weeks)	mL/min): 2533 vs. 2260	NR vs. NR; adj. MD -118.2 (95% CI -274.5 to 40.1),	Hip abduction strength (units NR):
	3) Counseling on	Waist circumference (mean	p=0.14 (postfollowup change)	461 (15) vs. 483 (24), p=NR (baseline)
	sports participation,	cm): 79 vs. 87, p<0.04		482 (143) vs. 449 (176), p=NR (mid-
	(2 required sessions	Total lower-extremity muscle	Waist Circumference (cm):	intervention)
	- up to 4 offered-	strength (mean): 1482 vs.	87 (15) vs. 79 (12), p=NR (baseline)	469 (128) vs. 480 (195), p=NR
	over 24 weeks)	1307	86 (15) vs. 82 (13), p=NR (mid-intervention)	(postintervention)
		Total upper-extremity	86 (14) vs. 82 (13), p=NR (postintervention)	476 (108) vs. 508 (215), p=NR (24 weeks)
	B. Usual care (n=28)	muscle strength (mean): 466	84 (13) vs. 80 (15), p=NR (24 weeks)	NR vs. NR; adj. MD 2.4 (95% CI -59.6 to
		vs. 448	NR vs. NR; adj. MD -3.7 (95% CI -7.2 to -0.2), p=0.04	64.5), p=0.94 (pre-mid change)
	(Entire intervention	Gross Motor Function	(pre-mid change)	NR vs. NR; adj. MD -38.6 (95% CI -93.1 to
	period was 24	Classification System Level	NR vs. NR; adj. MD -2.6 (95% CI -6.1 to 0.9), p=0.15 (pre-	15.9), p=0.17 (pre-post change)
	weeks)	(I/II/III/IV): 16/9/3/1 vs.	post change)	NR vs. NR; adj. MD -10.8 (95% CI -68.1 to
		17/9/2/0	NR vs. NR; adj. MD 0.4 (95% CI -3.9 to 4.7), p=0.85	46.5), p=0.71 (postfollowup change)
			(postfollowup change)	

Author, Year Intervention Type		Population Age (Mean)		
Duration of Postintervention		Gender (% Female) Race (%)		
Followup		Ambulatory (%)		
Quality (See Appendix B	Intervention and	Wheelchair User (%) Condition Specific (%)		
	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Slaman, 2014a Slaman, 2014b Slaman, 2015			Weight (kg): 70.3 (18.4) vs. 64.6 (17.6), p=NR (baseline) 74.0 (18.5) vs. 66.0 (18.2), p=NR (mid-intervention)	Knee extension strength (units NR): 463 (12) vs. 522 (25), p=NR (baseline) 494 (126) vs. 484 (136), p=NR (mid-
Slaman, 2010			72.9 (17.8) vs. 66.5 (18.7), p=NR (postintervention) 70.7 (15.0) vs. 67.4 (19.9), p=NR (24 weeks)	intervention) 468 (124) vs. 457 (147), p=NR
(Continued)			NR vs. NR; adj. MD 0.5 (95% CI -1.1 to 2.2), p=0.51 (pre- mid change) NR vs. NR; adj. MD -0.6 (95% CI -2.2 to 0.9), p=0.46 (pre- post change) NR vs. NR; adj. MD -0.8 (95% CI -4.0 to 2.4), p=0.62	(postintervention) 494 (144) vs. 516 (211), p=NR (24 weeks) NR vs. NR; adj. MD 17.8 (95% CI 95% CI - 56.7 to 92.4), p=0.64 (pre-mid change) NR vs. NR; adj. MD 23.7 (95% CI -58.6 to
			(postfollowup change) SF-36 subscale – Physical functioning	106.1), p=0.57 (pre-post change) NR vs. NR; adj. MD 37.7 (95% CI -38.0 to 113.4), p=0.33 (postfollowup change)
			64.81 (26.44) vs. 76.72 (20.54) (baseline) 78.86 (18.96) vs. 77.50 (27.11) (postintervention)	Shoulder abduction strength (units NR):
			79.72 (19.44) vs. 76.90 (26.34) (24 weeks) NR vs. NR; adj. MD 3.11 (95% CI –8.31 to 14.53), p>0.05 (pre-post change) NR vs. NR; adj. MD 5.45 (95% CI –5.13 to 16.04), p>0.05 (prefollowup change)	222 vs. 267 (67), p=NR (baseline) 250 vs. 167 (41), p=NR (mid-intervention) 250 vs. 105 (25), p=NR (postintervention) 282 vs. 139 (27), p=NR (24 weeks)
			SF-36 subscale – Role Physical 80.56 (27.15) vs. 75.00 (34.72) (baseline) 78.41 (35.60) vs. 73.96 (37.94) (postintervention) 84.72 (33.36) vs. 69.05 (46.03) (24 weeks)	Elbow extension strength (units NR): 226 vs. 198 (60), p=NR (baseline) 179 vs. 221 (68), p=NR (mid-intervention) 191 vs. NA, p=NR (postintervention) 263 vs. 232 (43), p=NR (24 weeks)
			NR vs. NR; adj. MD 4.15 (95% CI –15.10 to 23.40), p>0.05 (pre-post change) NR vs. NR; adj. MD 16.27 (95% CI –8.65 to 41.20), p>0.05 (prefollowup change)	Total cholesterol (mmol/L): 4.17 (0.54) vs. 4.58 (0.61), p=NR (baseline) 4.19 (0.52) vs. 4.30 (0.63), p=NR (mid- intervention)
			SF-36 subscale – bodily pain 82.59 (21.60) vs. 80.75 (23.75) (baseline) 82.09 (25.07) vs. 75.78 (22.45) (postintervention) 88.61 (18.39) vs. 73.55 (19.29) (24 weeks) NR vs. NR; adj. MD 5.47 (95% CI –7.12 to 18.06), p>0.05	3.68 (0.51) vs. 4.46 (0.94), p=NR (postintervention) 3.27 (0.67) vs. 4.32 (0.86), p=NR (24 weeks) NR vs. NR; adj. MD -0.18 (95% CI -0.50 to 0.14), p=0.27 (pre-mid change)
			(pre-post change) NR vs. NR; adj. MD 15.14 (95% CI 3.44 to 26.85), p<0.05 (prefollowup change)	NR vs. NR; adj. MD -0.50 (95% CI -3.22 to - 0.01), p=0.07 (pre-post change) NR vs. NR; adj. MD -0.55 (-1.04 to -0.07), p=0.05 (postfollowup change)

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Slaman, 2014a			SF-36 subscale – general health	High-density lipoprotein cholesterol (mmol/L):
Slaman, 2014b			71.08 (18.39) vs. 69.90 (23.19) (baseline)	1.29 (0.28) vs. 1.44 (0.31), p=NR (baseline)
Slaman, 2015			75.18 (17.39) vs. 66.09 (23.57) (postintervention)	1.37 (0.22) vs. 1.36 (0.33), p=NR (mid-
Slaman, 2010			74.50 (18.22) vs. 66.85 (22.80) (24 weeks)	intervention)
			NR vs. NR; adj. MD 7.41 (95% CI –3.81 to 18.62), p>0.05	1.42 (0.35) vs. 1.36 (0.26), p=NR
(Continued)			(pre-post change)	(postintervention)
			NR vs. NR; adj. MD 10.28 (95% CI –1.42 to 21.98),	
			p>0.05 (prefollowup change)	1.41 (0.21) vs. 1.44 (0.25), p=NR (24 weeks) NR vs. NR; adj. MD 0.12 (95% CI -0.03 to
			SF-36 subscale – vitality	0.26), p=0.13 (pre-mid change)
			54.44 (15.53) vs. 55.54 (11.25) (baseline)	NR vs. NR; adj. MD 0.01 (95% CI -0.21 to
			58.41 (8.78) vs. 57.71 (14.37) (postintervention)	0.21), p=0.38 (pre-post change)
			53.61 (11.22) vs. 54.00 (12.73) (24 weeks)	NR vs. NR; adj. MD 0.09 (95% CI -0.09 to
			NR vs. NR; adj. MD 1.64 (95% CI –4.96 to 8.23), p>0.05 (pre-post change)	0.26), p=0.34 (postfollowup change)
			NR vs. NR; adj. MD -0.40 (95% CI -6.92 to 7.71), p>0.05	Systolic blood pressure (mmHg):
			(prefollowup change)	119.9 (17.7) vs. 119.4 (17.6), p=NR (baseline) 121.1 (12.3) vs. 117.0 (16.8), p=NR (mid-
			SF-36 subscale – social functioning	intervention)
			85.19 (13.44) vs. 82.76 (21.24) (baseline)	119.2 (13.6) vs. 116.0 (16.4), p=NR
			90.34 (11.53) vs. 89.06 (17.02) (postintervention)	(postintervention)
			86.03 (15.23) vs. 90.00 (17.01) (24 weeks)	115.9 (14.2) vs. 22.9 (15.1), p=NR (24 weeks)
			NR vs. NR; adj. MD 1.76 (95% CI –5.88 to 9.41), p>0.05	NR vs. NR; adj. MD 2.9 (95% CI -3.7 to 9.5),
			(pre-post change)	p=0.40 (pre-mid change)
			NR vs. NR; adj. MD -3.08 (95% CI -12.64 to 6.49),	
			p>0.05 (prefollowup change)	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Slaman, 2014a	Companson		SF-36 subscale – role emotional	NR vs. NR; adj. MD 1.5 (95% CI -5.6 to 8.6),
Slaman, 2014b			87.65 (22.92) vs. 79.31 (37.18) (baseline)	p=0.68 (pre-post change)
Slaman, 2015			96.97 (9.81) vs. 90.28 (28.62) (postintervention)	NR vs. NR; adj. MD -10.0 (95% CI -19.2 to -
Slaman, 2010			98.15 (7.86) vs. 87.30 (32.45) (24 weeks)	1.2), p=0.03 (postfollowup change)
			NR vs. NR; adj. MD 5.94 (95% CI –5.01 to 16.90), p>0.05	
(Continued)			(pre-post change) NR vs. NR; adj. MD 11.09 (95% CI –1.22 to 23.39), p>0.05 (prefollowup change)	Diastolic blood pressure (mmHg): 78.0 (9.3) vs. 75.2 (8.6), p=NR (baseline) 76.0 (8.0) vs. 69.9 (11.7), p=NR (mid- intervention)
			SF-36 subscale – mental health	77.2 (8.3) vs. 77.5 (9.2), p=NR
			75.26 (13.90) vs. 76.69 (16.32) (baseline)	(postintervention)
			82.36 (8.52) vs. 74.67 (15.99) (postintervention)	74.8 (11.8) vs. 73.9 (10.6), p=NR (24 weeks)
			81.56 (10.81) vs. 73.40 (15.59) (24 weeks) NR vs. NR; adj. MD 8.00 (95% Cl 0.96 to 15.05), p<0.05	NR vs. NR; adj. MD 5.2 (95% CI -0.3 to 10.6), p=0.10 (pre-mid change)
			(pre-post change)	NR vs. NR; adj. MD -3.0 (95% CI -7.9 to 1.9),
			NR vs. NR; adj. MD 8.80 (95% CI 0.99 to 16.61), p<0.05	p=0.24 (pre-post change)
			(prefollowup change)	NR vs. NR; adj. MD 0.7 (95% CI -6.1 to 7.5), p=0.83 (postfollowup change)

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Straudi, 2016	A. RAGT, 12	A vs. B	PHQ-9	NA
	sessions over 6	Age (mean years):	T1-T0: -1.19 (3.26) vs1.88 (5.92), p=0.25	
Aerobic Exercise	weeks (n=27)	52 vs. 54	T2-T0: -1.7 (3.24) vs3.04 (4.66), p=0.213	
Robot-Assisted		Female:	T3-T0: -0.78 (3.31) vs2.20 (4.49), p=0.44	
Gait Training	B. Conventional	17 (63%) vs. 17 (68%)		
	physiotherapy, 12		SF 36-PCS	
Postintervention, 6	sessions over 6	Race: NR	T1-T0: 1.85 (6.92) vs. 0.72 (5.63), p=0.50	
weeks	weeks (n=25)		T2-T0: 1.67 (7.74) vs. 1.84 (6.77), p=0.99	
		Ambulatory:	T3-T0: 5.11 (16.60) vs. 1.04 (6.24), p=0.91	
Fair		NR		
		Wheelchair user:	SF 36-MCS	
		NR	T1-T0: 3.33 (8.77) vs1.16 (8.88), p=0.08	
			T2-T0: 5.37 (9.58) vs. 1.60 (9.41), p=0.14	
		Other:	T3-T0: -2.52 (14.11) vs. 1.08 (8.74) p=0.34	
		EDSS (mean):		
		6.43 vs. 6.46	TUG (s)	
			T1-T0: -1.11 (6.73) vs0.09 (7.04), p=0.76	
		MS type:	T2-T0: 2.66 (13.79) vs3.96 (10.50), p=0.95	
		primary progressive 9 (33%)	T3-T0: -4.16 (15.30) vs3.63 (10.61) p=0.24	
		vs. 7 (28%), remainder		
		secondary progressive	6MWT (m)	
			T1-T0: 16.94 (18.96) vs6.02 (27.70), p=0.003	
			T2-T0: 23.22 (32.23) vs0.75 (26.40), p=0.01	
			T3-T0: 10.64 (35.07) vs. 4.51 (33.59) p=0.55	
			BBS	
			T1-T0: 2.44 (3.98) vs0.22 (4.48), p=0.043	
			T2-T0: 3.24 (4.99) vs. 0.87 (6.45), p=0.19	
			T3-T0: 1.72 (6.05) vs0.17 (6.04) p=0.37	

Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Straudi, 2019	A. Robot-assisted	A vs. B	A vs. B, mean difference between groups:	A vs. B, Mean difference between groups:
	gait training (RAGT),	Age: 56 vs. 55	6MWT:	
Aerobic Exercise	12 sessions over 4	Female: 67% vs. 69%	4, 95% CI –10 to 18, p=0.86	BBS:
Robot-Assisted	weeks (n=36)	EDSS: 6.5 vs. 6.5	25FWT:	0, 95% CI –2 to 2, p=0.91
Gait Training		PPMS: 50% vs. 45%	0, 95% CI –0.06 to 0.05, p=0.98	
	B. Overground	SPMS: 50% vs. 55%	TUG:	PHQ-9:
Postintervention,	walking, 12 sessions		7.8, -0.2 to 15.8, p=0.25	-0.4, 95% CI -2.3 to 1.4, p=0.86
12 weeks	over 4 weeks (n=36)		MSIS-29 motor:	
			–3, 95% CI –9 to 3, p=0.31	
			MSIS-29 psychological:	
Good			-2, 95% CI -5 to 1, p=0.22S	
			SF-36 PCS:	
			-1, 95% CI -4 to 3, p=0.13	
			SF-36 MCS:	
			1, 95% CI –2 to 4, p=0.94	
Swe 2015	A. Partial body	GMFCS II or III	Pre to week 8	NA
	weight supported	(11/111 70/25)		
Aerobic Exercise	treadmill walking 30	· · · · ·	10 meter walk test (meters/second)	
Treadmill	minutes twice a week	N=95	A 0.922 (0.316) to 1.082 (0.352)	
	for 8 weeks		B. 0.805 (0.248) to 0.978 (0.299)	
Pre to post only		Mean age 16.6 years		
1 2	B. Overground	5 ,	6 minute walk test (meters)	
Good	walking similar	61 males and 34 females	A. 223.33 (94.62) to 250.60 (110.86)	
	duration and number	(64% males)	B. 205.00 (88.58) to 249.27 (107.84)	
	of sessions			
			Gross Motor Function Measure-88 (D) (standing)	
			A. 66.07 (22.28) to 77.73 (21.73)	
			B. 64.53 (16.29) 79.13 (14.22)	
			Gross Motor Function Measure-88 (E) (walking)	
			A. 41.07 (24.60) to 54.13 (28.25)	
			B. 40.47 (19.17) to 56.33 (23.05)	
			Outcome measures all showed an improvement over time	
			(p<0.001); no effect of group allocation on any parameter	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Tak, 2015	A. Nintendo-Wii, 18	A vs. B	A vs. B Mean (SD), p=between groups	NA
	sessions over 6	Age: 50 vs. 43		
Postural Control	weeks +	Cervical: 31% vs. 38%	T-shirt test (s): 29.5 (10.95) to 22.60 (8.28) vs. 23.59	
Motion gaming	conventional	ASIA (A): 77% vs. 77%	(11.35) to 22.15 (12.28), p<0.05	
	rehabilitation (n=13)	ASIA (B): 23% vs. 23%		
Immediately			Change	
postintervention,	B. Conventional		6.90 (3.55) vs. 1.44 (1.51), p<0.05	
6 weeks	rehabilitation (n=13)			
Fair				

Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Tarakci, 2013	A. Group exercise:	A vs. B	Data reported as mean (SD)	Data reported as mean (SD)
Talaku, 2015	36 sessions over 12	Age (mean years): 41.49 vs.	A vs. B	A vs. B
Multimodal	weeks (n=55)	39.65	A VS. D	A VS. D
Exercise	weeks (II-55)	Female: 34 (67%) vs. 30	10MWT (seconds):	BBS (0-56, higher scores=better balance):
Exercise	B. Waitlist (n=55)	(48%)	17.97 (2.89) vs. 17.17 (3.89), p=0.274 (baseline)	37.68 (9.91) vs. 36.94 (12.55), p=0.757
Postintervention, 0	D. Wallist (II-55)	Race: NR	15.24 (2.51) vs. 18.62 (4.21) MD 0.98, p=NR	(baseline)
weeks		Ambulatory: NR	(postintervention)	42.01 (9.32) vs. 34.81 (12.85), MD 0.64, p=NR
WEEKS		Wheelchair user: NR	Difference between groups pre-post change scores:	(postintervention)
Fair		Mean EDSS: 4.38 vs. 4.21	p<0.001	Difference between groups pre-post change
		MS type	p <0.001	scores: p=0.003
		–Relapsing Remitting: 32	Stair Climbing Test (seconds):	scores: p=0.003
		(62.7%) vs. 33 (68.7%)	12.00 (3.57) vs. 13.92 (4.54), p=0.290	
		–Primary Progressive: 10	9.53 (3.49) vs. 18.46 (16.34), MD 0.290, p=NR	
		(19.6%) vs. 8 (16.6%)	(postintervention)	
		-Secondary Progressive: 9	Difference between groups pre-post change scores:	
		(17.6%) vs. 7 (14.5%)	p<0.001	
		(17.070) VS. 7 (14.370)		
			MUSIQoL (0-100, higher-increased QOL):	
			74.41 (9.20) vs. 73.42 (9.73), p=0.628 (baseline)	
			76.39 (9.53) vs. 73.02 (10.30), MD 0.34, p=NR	
			(postintervention)	
			Difference between groups pre-post change scores:	
			p=0.02	
			Right hip flexors MAS (0-4, higher=increased spasticity):	
			1.35 (1.33) vs. 1.52 (1.03), p=0.508 (baseline)	
			0.68 (0.83) vs. 1.65 (1.09), MD 1.01, p=NR	
			(postintervention)	
			Difference between groups pre-post change scores:	
			p<0.001	
			Left hip flexors MAS (0-4, higher=increased spasticity):	
			1.29 (1.15) vs. 1.13 (1.18), p=0.518 (baseline)	
			1 (0.87) vs. 1.31 (1.21), MD 0.3, p=NR (postintervention)	
			Difference between groups pre-post change scores:	
			p=0.015	
			μ–υ.υτο	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Tarakci, 2013 (Continued)			Right hamstring MAS (0-4, higher=increased spasticity):1.35 (1.18) vs. 1.28 (0.89), p=0.782 (baseline)0.70 (0.75) vs. 1.47 (0.92), MD 0.92, p=NR(postintervention)Difference between groups pre-post change scores: $p<0.001$ Left hamstring MAS (0-4, higher=increased spasticity):1.01 (1.15) vs. 1.02 (0.88), p=0.976 (baseline)0.54 (0.70) vs. 1.26 (1.08), MD 0.8, p=NR(postintervention)Difference between groups pre-post change scores: $p<0.001$ Right Achilles MAS (0-4, higher=increased spasticity):0.86 (0.87) vs. 0.94 (0.61), p=0.611 (baseline)0.68 (0.73) vs. 1.10 (0.83), MD 0.54, p=NR(postintervention)Difference between groups pre-post change scores: $p=0.014$ Left Achilles MAS (0-4, higher=increased spasticity):0.58 (0.82) vs. 0.81 (0.69), p=0.173 (baseline)0.27 (0.53) vs. 0.89 (0.76), MD 0.95, p=NR(postintervention)Difference between groups pre-post change scores: $p=0.014$ Left Achilles MAS (0-4, higher=increased spasticity):0.58 (0.82) vs. 0.81 (0.69), p=0.173 (baseline)0.27 (0.53) vs. 0.89 (0.76), MD 0.95, p=NR(postintervention)Difference between groups pre-post change scores: $p<0.001$	NA

	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Tarakci, 2016	A. Nintendo Wii-Fit balanced gaming, 24	A vs. B Age (mean years): 10.46 vs.	A. vs. B., mean (SD) TUG (seconds)	NA
Motion gaming	sessions over 12 weeks (n=15)	10.53 Female: 5 (33%) vs. 6 (40%) Race: NR	12.96 (3.65) vs. 15.77 (4.52) (baseline) 10.62 (3.30) vs. 14.67 (4.54) (postintervention): Difference between groups pre-post change scores:	
Postintervention, 12 weeks	B. Conventional balance training, 24	Ambulatory: NR Wheelchair user: NR	p=0.001	
Fair	sessions over 12 weeks (n=15)	Assistive devices: 0 (0%) vs. 3 (20%) Orthesis: 9 (16%) vs. 10 (67 %)	10 MWT 10MWT (seconds) 13.25 (3.56) vs. 13.77 (4.72) (baseline) 11.04 (3.46) vs. 12.96 (4.64) (postintervention) Difference between groups pre-post change scores: p=0.001	
		Type of CP: Hemiplegic: 7 (47%) vs. 7 (47%) Diplegic: 7 (47%) vs. 5 (33%) Dyskinetic: 1 (.06%) vs. 3 (20%)	Wee FIM 95.73 (10.10) vs. 94.40 (10.70) (baseline) 100.26 (8.75) vs. 95.50 (10.47) (postintervention) Difference between groups pre-post change scores: p=0.001	
		GMFCS median (min–max): 2 vs. 2	Sit-to-Stand Test (number of stands in 30 seconds) 6.13 (1.55) vs. 5.60 (1.50) (baseline) 8.73 (2.08) vs. 6.13 (1.68) (postintervention) Difference between groups pre-post change scores: p=0.001	
			10-stair climbing test 10.32 (3.81) vs. 12.03 (4.91) (baseline) 8.42 (3.57) vs. 11.12 (4.27) (postintervention) Difference between groups pre-post change scores: p=0.001	

Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
		Ambulatory (%)		
Followup				
Quality (See Appendix B	Intervention and	Wheelchair User (%) Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
	A. Progressive	A vs. B	Data reported as mean (SD)	
Taylor, 2013 Bania, 2016	resistance: 24	Age (mean years): 18.17 vs.	A vs. B	Data reported as mean (SD) A vs. B
Dania, 2010	sessions over 12	18.58	A VS. D	A VS. D
Muscle Strength	weeks (n=23)	Female: 10 (44%) vs. 12	6MWT (meters):	Max leg press (1RM; kg):
Muscle Strength	weeks (II=20)	(48%)	380.7 (117.8) vs. 377.4 (114.4), p=NR (baseline)	84.7 (34.9) vs. 78.4 (31.7), p=NR (baseline)
Immediately	B. Usual care (n=25)	Race: NR	389.3 (120.4) vs. 386.0 (110.7); MD 0.1 (95% CI –20.6 to	99.5 (37.4) vs. 79.1 (31.2); MD 14.8 (95% CI
postintervention,	D. Osual cale (II-25)	Gait aid use	20.9), p>0.05 (postintervention)	4.3 to 25.3), p<0.05 (postintervention)
12 weeks		-No gait aid 13 (57%) vs. 15	387.7 (121.9) vs. 395.1 (123.9); MD –12.3 (95% CI –34.8	97.7 (41.1) vs. 83.0 (29.7); MD 10.0 (95% CI –
		(60%)	to 10.2), $p>0.05$ (12 weeks)	3.6 to 23.6), p>0.05 (12 weeks)
Taylor, 2013: Good		-Sticks 5 (22%) vs. 5 (20%)	10 10.2), p ² 0.00 (12 weeks)	0.0 to 20.0), pr 0.00 (12 weeks)
Bania, 2016: Fair		-Crutches 1 (4%) vs. 3	GMFM-66-D (0-100, higher=increased motor function):	Reverse leg press (1RM; kg):
Barna, 2010. I an		(12%)	81.4 (13.0) vs. 78.9 (12.5), p=NR (baseline)	14.8 (10.7) vs. 14.2 (10.4), p=NR (baseline)
		-Walker 4 (17%) vs. 2 (8%)	80.8 (13.1) vs. 80.2 (9.7); MD –1.3 (95% CI –4.9 to 2.4),	12.8 (10.4) vs. 14.2 (11.2); MD –0.7 (95% CI –
		Orthotics use: 8 (35%) vs.	p>0.05 (postintervention)	4.3 to 2.8), p>0.05 (postintervention)
		11 (44%)	83.7 (12.6) vs. 78.7 (13.7); MD 2.5 (95% CI –1.8 to 6.9),	12.4 (11.2) vs. 10.3 (10.8); MD 1.6 (95% CI –
		Previous single-event multi-	p>0.05 (12 weeks)	2.3 to 5.6), p>0.05 (12 weeks)
		level surgery: 11 (48%) vs.		
		11 (44%)	GMFM-66-E (0-100, higher=increased motor function):	
		Hip morphology	70.2 (22.6) vs. 66.6 (20.7), p=NR (baseline)	
		-Grade I, normal hip: 1 (2%)	72.1 (21.7) vs. 67.9 (20.6); MD 0.9 (95% CI –3.0 to 4.7),	
		vs. 3 (7%)	p>0.05 (postintervention)	
		-Grade II, near normal hip:	71.9 (23.4) vs. 66.3 (20.2); MD 1.0 (95% CI –2.6 to 4.5),	
		23 (52%) vs. 27 (59%)	p>0.05 (12 weeks)	
		-Grade III, dysplastic hip: 19		
		(43%) vs. 16 (35%)	Gait Profile Score (°):	
		-Grade IV, subluxated hip: 1	9.9 (2.6) vs. 10.6 (3.0) (baseline)	
		(2%) vs. 0 (0%)	10.2 (3.0) vs. 10.7 (3.1); MD 0.2 (95% CI –0.6 to 0.9),	
			p>0.05 (postintervention)	
			10.0 (2.9) vs. 10.5 (3.0); MD 0.2 (95% CI –0.8 to 1.2),	
			p>0.05 (12 weeks)	
			Timed Stair Test (seconds):	
			21.1 (28.9) vs. 13.8 (11.7) (baseline)	
			19.2 (28.5) vs. 13.3 (10.1), MD –0.9 (95% CI –4.7 to 2.9)	
			(postintervention)	
			17.9 (23.2) vs. 12.6 (9.1), MD –0.6 (95% CI –4.2 to 3.0)	
			(12 weeks)	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Tedla, 2014	A. Strength training	A vs. B (data are for	A vs. B, Mean change from baseline (SD):	Change in Strength of Trunk, Hip, Knee,
0 (1)	18 sessions over 6	completers only; n=30 vs.		Ankle:
Strength	weeks +	30)	PBS total score	significantly better in group A than B, p<0.05
interventions	conventional PT 1-2	Age: 9.1 vs. 8.9 years	7.23 (3.350) vs. 1.87 (1.074), p<0.001	
Muscle Strength	days/week (n=31)	Female: 33% vs. 33%		
Exercises		Gross motor function	GMFM-total score	
	B. Conventional	classification system:	9.9 (NR) vs. 2.2 (NR), p=NR	
Immediately	physical therapy 3-5	I: 7% vs. 3%		
postintervention,	sessions/per for 6	II: 20% vs. 27%		
6 weeks	weeks (n=31)	III: 37% vs. 27%		
		IV: 37% vs. 43%		
Poor				

Author Voor		Deputation		1
Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
	A. Dance (somatic	A vs. B	A vs. B, mean (SD)	NA
2017	dance therapy): 24	· · · · · · · · · · · · · · · · · · ·	FIM	
	sessions, over 12	Female: 54% vs. 62 %	3.68 (0.50) vs. 3.61 (0.38) (baseline)	
Aerobic Exercise	weeks, (n=13)	Race: NR	5.38 (0.50) vs. 3.64 (0.38) (postintervention)	
Aerobics (Dance)		Ambulatory: NR	Total scores post intervention, p=0.0006	
	B. Usual care control	Wheelchair user: NR		
Postintervention,	(n=13)		FIM - Self care	
12 weeks		BMI (cm/Kg ²):	3.17 (0.48) vs. 3.21 (0.49) (baseline)	
			4.50 (0.59) vs. 3.28 (0.50) (postintervention)	
Fair		GMFCS		
		Level II: 6 vs. 3	FIM - Sphincter control	
		Level III: 3 vs. 5	5.00 (0.78) vs. 4.84 (0.77) 4.84 (0.77) (baseline)	
		Level IV: 3 vs. 4	5.30 (0.66) vs. (postintervention)	
		Level V: 1 vs. 1	FIM - Mobility	
			3.25 (0.44) vs. 3.23 (0.45) (baseline)	
			4.71 (0.67) vs. 3.30 (0.41) (postintervention)	
			FIM - Locomotion	
			3.19 (0.42) vs. 3.07 (0.43) (baseline)	
			4.50 (0.55) vs. 3.11 (0.41) (postintervention)	
			FIM - Communication	
			4.76 (0.66) vs. 4.61 (0.58) (baseline)	
			5.57 (0.46) vs. 2.69 (0.41) (postintervention)	
			FIM - Psychosocial adjustments	
			2.71 (0.46) vs. 2.69 (0.41) (baseline)	
			5.38 (0.50) vs. 2.69 (0.41) (postintervention)	
			FIM - Cognitive function	
			2.71 (0.46) vs. 2.69 (0.41) (baseline)	
			5.38 (0.50) vs. 2.69 (0.41) (postintervention)	
			WHODAS-IFC, overall scores	
			84.56 (4.62) vs. 84.45 (4.05) (baseline)	
			39.90 (5.80) vs. 69.55 (4.39) (postintervention)	
			Overall scores, p=0.0002	
	1		overall 300103, p=0.0002	

Author, Year				
Intervention Type		Population Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
	Intervention and	Condition Specific (%)		
	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
		Age: 48 vs. 47 vs. 48 vs. 47	A vs. B, mean difference between groups:	A. Exergaming: sensorimotor and visuomotor
101101, 2020	360, Adventure video	vs. 44	MSIS-29: -10.8 (6.09) vs. 1.0 (3.46), p<0.001	agility training using
	game, 25 sessions	Female: 86% vs. 86% vs.	6MWT: 57.4 (52.09) vs. 6.3 (49.27), p=0.017	each of the three modules of the Xbox 360
		93% vs. 93% vs. 92%	BBS: 6.1 (3.52) vs0.2 (2.62), p<0.001	core system (n=14)
- , 5		Race: NR	EQ-5 Sum score:-2.3 (1.44) vs. 0.0 (1.13), p<0.001	, , , , , , , , , , , , , , , , , , ,
Postural Control	Sensorimotor and	Ambulatory: 100% vs. 100%		B. Balance exercises: dynamic and static
Balance Exercises	visuomotor agility	vs. 100% vs. 100% vs.	Data are reported as Mean (SD)	balance and stepping
	training using	100%	[MDs calculated by EPC]	exercises performed in multiple directions
1	each of the three	Wheelchair user: NR		(n=14)
Strength	modules of the Xbox		A vs. E	
	360 core system	RRMS: 50% vs. 64% vs.	MSIS-29	C. Cycling (n=14)
	(n=14)	64% vs. 64% vs. 66%	109.1 (8.60) vs. 109.8 (10.67) (baseline)	
facilitation (PNF)		PPMS: 50% vs. 36% vs.	-10.8 (6.09) vs. 1.0 (3.46), MD -11.8 (95% CI -15.9 to -7.7)	
	B. Balance	36% vs. 36% 34%	(pre-post change)	(n=14)
	exercises: dynamic			
	and static balance	Median EDSS score: 5.0 vs.	EQ5D sum score	E. Usual care: continuation of standard
	and stepping	5.0 vs. 5.0 vs. 5.0 vs. 5.0	13.9 (2.18) vs. 13.3 (0.89) (baseline)	physical therapy and habitual activity (n=12)
	exercises performed		-2.3 (1.44) vs. 0.0 (1.3), MD -2.3 (95% CI -3.4 to -1.2)	
	in multiple directions		(pre-post change)	All interventions consisted of 25, 1 hour
	(n=14)			sessions over 5 weeks
	0.0.11			
	C. Cycling (n=14)		12.6 (3.23) vs. 14.3 (3.22) (baseline)	
	D. Proprioceptive		-0.2 (2.67) vs0.4 (2.94), MD 0.20 (95% CI -2.1 to 2.5)	
	neuromuscular		(pre-post change)	
	facilitation (n=14)		BBS	
	Tacilitation (n= 14)		21.7 (3.56) vs. 22.5 (4.38) (baseline)	
1	E. Usual care:		6.1 (3.52) vs0.2 (2.62), MD 6.3 (95% CI 3.8 to 8.8) (pre-	
	continuation of		post change)	
	standard physical			
	therapy and habitual		6MWT (meters)	
	activity (n=12)		235.8 (35.48) vs. 243.3 (39.56) (baseline)	
	, ,,		57.4 (52.09) vs. 6.3 (49.27), MD 51.1 (95% CI 9.8 to 92.4)	
	All interventions		(pre-post change)	
	consisted of 25, 1			
	hour sessions over 5			
	weeks			

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Tollar, 2020 (Continued)			B vs. E MSIS-29 106.0 (10.35) vs. 109.8 (10.67) (baseline) -6.3 (4.36) vs. 1.0 (3.46), MD -7.3 (95% CI -10.5 to-4.1) (pre-post change) EQ5D sum score 13.6 (0.93) vs. 13.3 (0.89) (baseline) -0.6 (1.15) vs. 0.0 (1.3), MD -0.6 (95% CI -1.6 to 0.40) (pre-post change)	
			BDI 11.6 (2.56) vs. 14.3 (3.22) (baseline) 0.1 (1.86) vs0.4 (2.94), MD 0.5 (95% CI -1.4 to 2.5) (pre-post change)	
			BBS 21.9 (2.32) vs. 22.5 (4.38) (baseline) 3.9 (2.25) vs0.2 (2.62), MD 4.1 (95% CI 2.1 to 6.1) (pre- post change)	
			6MWT (meters) 230.4 (30.03) vs. 243.3 (39.56) (baseline) 19.2 (35.4) vs. 6.3 (49.27), MD 12.9 (95% CI -21.5 to 47.3) (pre-post change)	
			C vs. E MSIS-29 110.7 (9.76) vs. 109.8 (10.67) (baseline) -6.3 (8.07) vs. 1.0 (3.46), MD -7.3 (95% CI -12.5 to -2.1) (pre-post change)	
			EQ5D sum score 13.4 (1.83) vs. 13.3 (0.89) (baseline) -1.4 (1.7) vs. 0.0 (1.3), MD -1.4 (95% CI -2.6 to -0.2) (pre- post change)	

	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Tollar, 2020			BDI	
(Continued)			13.6 (3.43) vs. 14.3 (3.22) (baseline) -1.0 (2.75) vs0.4 (2.94), MD -0.60 (95% CI -2.9 to 1.7) (pre-post change)	
			BBS 20.7 (3.79) vs. 22.5 (4.38) (baseline) 2.5 (2.62) vs0.2 (2.62), MD 2.7 (95% CI 1.1 to 4.3) (pre- post change)	
			6MWT (meters) 245.7 (41.08) vs. 243.3 (39.56) (baseline) 32.1 (44.58) vs. 6.3 (49.27), MD 25.8 (95% CI -12.2 to 63.8) (pre-post change)	
			D vs. E MSIS-29 109.8 (10.67) vs. 109.8 (10.67) (baseline) -1.9 (2.8) vs. 1.0 (3.46), MD -2.9 (95% CI -5.4 to -0.4) (pre-post change)	
			EQ5D sum score 13.9 (1.44) vs. 13.3 (0.89) (baseline) -0.5 (1.16) vs. 0.0 (1.3), MD -0.5 (95% CI -1.5 to 0.5) (pre- post change)	
			BDI 12.3 (2.55) vs. 14.3 (3.22) (baseline) -0.6 (1.87) vs0.4 (2.94), MD -0.2 (95%CI -2.2 to 1.8) (pre-post change)	
			BBS 21.1 (1.51) vs. 22.5 (4.38) (baseline) 1.6 (3.52) vs0.2 (2.62), MD 1.8 (95% CI -0.7 to 4.3) (pre-post change)	
			6MWT (meters) 244.3 (52.98) vs. 243.3 (39.56) (baseline) 5.5 (34.64) vs. 6.3 (49.27), MD -0.8 (95% CI -34.9 to 33.3) (pre-post change)	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Totosy de	A. Progressive	A vs. B	A vs. B, Mean (SD), p-value between groups:	A vs. B, Mean (SD), p-value between groups:
Zepetnek, 2015	resistance + aerobic	Age: 39 vs. 42	Systolic blood pressure:	Total cholesterol (mmol/L): 1.5 (0.9) to 4.3
	training, 32 sessions	Female: 0% vs. 18%	116 (18) to 116 (15) vs. 118 (18) to 116 (17), p>0.05	(1.0) vs. 4.1 (0.9) to 4.1 (0.9), p>0.05
Multimodal	over 16 weeks	AIS A-B: 25% vs. 45%		
Exercise	(n=12)	AIS C-D: 75% vs. 55%	Diastolic blood pressure:	Low-density lipoprotein cholesterol (mmol/L):
Immediately	B. Maintain existing		68 (9) to 67 (9) vs. 74 (13) to 72 (11), p>0.05	2.9 (0.9) to 2.7 (0.7) vs. 2.5 (0.7) to 2.4 (0.6), p>0.05
postintervention,	physical activity		Heart rate:	
16 weeks	levels (n=11)		75 (13) to 71 (13) vs. 75 (10) to 74 (10), p>0.05	High density lipoprotein cholesterol (mmol/L): 1.01 (0.2) to 1.01 (0.3) vs. 1.13 (0.2) to 1.17
Fair			HbA1c (mmol/mol):	(0.3), p>0.05
			35.7 (11.6) to 36.6 (11.2) vs. 34.9 (4.8) to 34.7 (3.9),	
			p>0.05	Triglyceride: 1.3 (0.6) to 1.4 (0.6) vs. 1.1 (0.7) to 1.0 (0.7), p>0.05
			BMI:	
			27.3 (5.2) to 27.0 (5.0) vs. 25.7 (4.9) to 26.6 (4.7), p<0.05	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Valent, 2010 Aerobic Exercise Hand cycling Postintervention, 0 weeks Fair	A. Hand cycle ergometry, 15-72 sessions over 9-39 weeks (n=20) B. Active rehabilitation, sessions unclear (matched control) (n=17)	A vs. B Age (mean years): 46 vs. 40 Female: 4 (24%) vs. 4(24%) Race: NR Ambulatory: NR Wheelchair user: NR Other: Paraplegia: 10 (59%) vs. 11 (65%) Tetraplegia: 7(41%) vs. 6(35%)	A vs. B (SD) FVC%, PEF%, VO ₂ Peak (ml/min), VO ₂ Peak (ml/kg/min): all NS Elbow R Flexion 253(94) vs. 213(73) (baseline) 283(91) vs. 233(72); p=0.168 (postintervention)	Elbow L Flexion 255(76) vs. 235(75) (baseline) 300(84) vs. 233(65); p=0.0.010(postintervention) Shoulder R Exorotation 126(47) vs. 130(43) (baseline) 150(49) vs. 134(33); p=0.011 (postintervention) Shoulder L Exorotation 124(47) vs. 129(43) (baseline) 154(51) vs. 133(43); p=0.0.001 (postintervention) Shoulder R Endorotation 158(71) vs. 149(54) (baseline) 191(70) vs. 160(61); p=0.025(postintervention) Shoulder L Endorotation 165(62) vs. 158(61) (baseline) 195(62) vs. 163(67); p=0.0.026 (postintervention) Elbow R Flexion, Elbow R Extension, Elbow L Extension, Shoulder R Abduction, Shoulder L Abduction: All NS

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)		Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
van der Scheer 2016 Aerobic Exercise Treadmill	wheelchair training in a treadmill for 30	Mean age 56.0 years 22 males and 7 females (76% males)	Peak oxygen uptake (median) A. 1.02 to 1.01 B. 1.09 to 1.07 No differences	NA
16 week intervention	B. Usual care			
Postintervention, 0 weeks Fair				

Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
	A. Strength +	A vs. B	Data reported as mean (SD)	NR
Van Wely, 2014b	aerobics +	Age (mean years): 9.5 vs.	A vs. B	
Van Wely, 2010	physiotherapy +	10.0		
<u>,</u>	counseling: 24	Female: 13 (52%) vs. 8	GMFM-66 (0-100, higher=increased motor function):	
Multimodal	sessions of fitness	(33%)	77 (14) vs. 80 (14), p=NR (baseline)	
Exercise	training over 16	Race: NR	79 (13) vs. 79 (14), p=NR (postintervention)	
	weeks (n=25)	Ambulatory: 25 (100%) vs.	79 (14) vs. 82 (14), p=NR (24 weeks)	
Mid-intervention		24 (100%)	1.7 (4.5) vs. −1.4 (4.2); adj. MD 2.8 (95% CI 0.2 to 5.4),	
(16 weeks into	B. Physiotherapy	Wheelchair user for long	p=0.03 (post-pre change)	
trial);	(n=25)	distances: 5 (20%) vs. 5	1.2 (4.4) vs. 2.0 (3.1); adj. MD −0.9 (95% CI −3.3 to 1.4),	
Immediately		(21%)	p>0.05 (24 weeks-pre change)	
postintervention,		GMFCS		
24 weeks		-I: 15 (60%) vs. 13 (54%)	1 min walk test (meters):	
		-II: 6 (24%) vs. 6 (25%)	86.0 (20.0) vs. 92.0 (20.0), p=NR (baseline)	
Van Wely, 2014a:		-III: 4 (16%) vs. 5 (21%)	92.0 (22.0) vs. 94.0 (20.0), p=NR (mid-intervention)	
Good		Laterality	92.0 (25.0) vs. 96.0 (17.0), p=NR (postintervention)	
Van Wely, 2014b:		-Unilateral: 12 (48%) vs. 11	91.0 (25.0) vs. 93.0 (19.0), p=NR (24 weeks)	
Fair		(46%) -Bilateral: 13 (52%) vs. 13	6.0 (7.0) vs. 1.0 (9.0); adj. MD 5.0 (95% CI 0.0 to 9.0),	
		(54%)	p=0.06 (mid-pre change) 6.0 (11.0) vs. 3.0 (9.0); adj. MD 2.0 (95% CI -4.0 to 9.0),	
		Orthoses (yes): 17 (68%) vs.	p>0.05 (post-pre change)	
		15 (62%)	5.0 (11.0) vs. 2.0 (10.0); adj. MD 3.0 (-43.0 to 10.0),	
		13 (02 %)	p>0.05 (24 weeks-pre change)	
			Functional strength (repetitions)	
			43 (16) 42 (18) (baseline)	
			48 (18) 48 (22) (mid-intervention)	
			51 (20) 53 (21) (postintervention)	
			53 (18) 56 (22) (24-week followup)	
			4 (8) 4 (8), MD 0 (95% CI −5 to 5) (pre-mid change)	
			9 (10) 10 (9), MD 0 (95% CI -5 to 5) (pre-post change)	
			9 (8) 13 (9), MD -4 (95% CI -9 to 2) (prefollowup change)	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Van Wely, 2014a Van Wely, 2014b			CP-QOL Social well-being and acceptance (0-100, higher=increased QOL)	
Van Wely, 20140			75.9 (8.4) vs. 75.4 (11.9) (baseline)	
(Continued)			72.9 (9.6) vs. 75.5 (9.4) (24 weeks) NR vs. NR, MD –3.1 (95% CI –7.9 to 1.7), p=0.19	
(Continued)			(prefollowup change)	
			CP-QOL Functioning (0-100, higher=increased QOL) 71.1 (8.6) vs. 71.3 (11.4) (baseline) 72.9 (9.6) vs. 75.5 (9.4) (24 weeks) NR vs. NR, MD –2.5 (95% CI –7.3 to 2.3), p=0.30 (prefollowup change)	
			CP-QOL Participation & Physical Health (0-100, higher=increased QOL) 65.5 (11.6) vs. 67.2 (16.5) (baseline) 68.9 (9.3) vs. 70.7 (14.0) (24 weeks) NR vs. NR, MD –0.8 (95% CI –5.7 to 4.1) p=0.75 (prefollowup change)	
			CP-QOL Emotional well-being and self-esteem (0-100, higher=increased QOL) 77.7 (8.2) vs. 79.7 (15.1) (baseline) 78.2 (7.1) vs. 79.6 (12.7) (24 weeks) NR vs. NR, MD –0.3 (95% CI –5.3 to 4.7), p=0.90 (prefollowup change)	
			CP-QOL pain and impact on disability (0-100, higher=more bothered by disability) 30.5 (16.8) vs. 32.9 (21.0) (baseline) 34.4 (16.4) vs. 28.4 (14.8) (24 weeks) NR vs. NR, MD 5.0 (95% CI –5.2 to 15.2), p-0.33 (prefollowup change)	

Author Voor		Deputation		
Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Vermohlen, 2018	A. Hippotherapy plus	A (n=30) vs. B (n=37)	A vs. B	A (n=30) vs. B (n=37), mean (SD)
Protocol:	standard care, 12	Age (median years): 50 vs.	12 weeks	12 weeks
Wollenweber, 2016	sessions over 12	51	MSQoL-54:	BBS:
	weeks (n=32)	Female: 27 (90%) vs. 27	A (n=30) vs. B (n=36), mean (SD)	LOCF ANCOVA:
Postural Control		(73%)	Mental health subscale score:	40.6 (11.5) vs. 42.1 (10.9) (baseline)
Hippotherapy	B. Control group	Race: NR	62.6 (18.0) vs. 67.1 (17.2) (baseline)	47.0 (8.7) vs. 45.1 (10.9) (postintervention)
	(standard care), 12	Ambulatory: NR	75.7 (15.0) vs. 64.2 (19.9) (postintervention)	Mean difference in change between groups at
End of treatment	weeks (n=38)	Wheelchair user: NR	Mean difference in change between groups at 12 weeks:	12 weeks: 2.33 (95% CI 0.03 to 4.63), p=0.047
(after 12-week			14.4 (95% CI 7.5 to 21.3), p<0.001	
intervention)		EDSS at inclusion (mean):	A (n=25) vs. B (n=31), mean (SD)	MMRM:
		5.4 vs. 5.3	Physical health subscale score:	Mean difference in change between groups at
			46.0 (14.2) vs. 53.7 (14.6) (baseline)	12 weeks: 3.07 (95% CI 1.00 to 5.14), p=0.004
		Weight (mean kg): 67 vs.	57.0 (15.1) vs. 51.3 (15.9) (postintervention)	
Fair		70.6	Mean difference in change between groups at 12 weeks:	
		Median time from onset of	12.0 (95% CI 6.2 to 17.7), p<0.001	
		MS to inclusion (IQR years):		
		16.5 vs. 17.6	A (n=30) vs. B (n=36), mean (SD)	
		Physiotherapy: 29 (97%) vs.	NRS:	
		35 (95%)	4.6 (2.1) vs. 4.4 (2.2) (baseline)	
			2.9 (2.1) vs. 3.8 (2.3) (postintervention)	
			Mean difference in change between groups at 12 weeks:	
			-0.9 (95% CI -1.9 to -0.1), p=0.031	
Wallard, 2017	A. RAGT, 20	A vs. B	GMFM-66 D (%), mean (SD)	A vs. B, mean (SD)
Wallard, 2018	sessions over 4	Age (mean years):	53.89 (16.02) to 60.68 (14.71) vs. 53.81 (14.67) to 55.74	
	weeks (n=14)	8.3 vs. 9.6	(15.02), p=0.048	
Aerobic Exercise		Female:		
Robot-Assisted	B. Usual care, 20	6 (43%) vs. 9 (56%)	GMFM-66 E	
Gait Training	sessions over 4		42.23 (14.65) to 50.87 (15.82) vs. 42.51 (13.09) to 43.61	
	weeks (n=16)	Race: NR	(12.59), p=0.026	
Postintervention, 4				
weeks		Ambulatory:		
		NR		
Poor		Wheelchair user:		
		NR		

		B Ista		
Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Williams, 2020	A. Center-baesd	Age: 53 vs. 51	A vs. B, Mean (SD)	NA
	group exercise	Female: 65% vs. 88%	[baseline to 8-week followup change scores and MDs	
Multimodal	(n=26)	Race: NR	calculated by EPC]	
		Abulatory: 100% vs. 100%		
Immediately	B. Home-based	Wheelchair user: NR	10MWT (m/s)	
postintervention	exercise (n=24)	Aid use	All patients	
and 8 weeks		None: 27% vs. 58%	0.83 (0.5) vs. 1.1 (0.4) (baseline)	
	The exercise	Unilateral: 42% vs. 29%	0.95 (0.5) vs. 1.25 (0.5) (immediately postintervention)	
Fair	program for both	Bilateral: 31% vs. 13%	0.11 (0.6) vs. 0.11 (0.6), MD 0.01 (95% CI -0.36 to 0.37)	
	groups included two,		(pre-post change)	
	60-minute sessions	Type of MS	0.86 (0.4) vs. 1.2 (0.4) (8 weeks postintervention)	
	per week, held at	RRMS: 58% vs. 67%	0.03 (0.30) vs. 0.10 (5.23), MD -0.07 (95% CI -0.22 to	
	least 2 days apart	PPMS: 19% vs. 8%	0.08) (pre-8 week postintervention change)	
	for 8 weeks.	SPMS: 15% vs. 8%	Low disability patients (Disease Step Rating Scale 0-2)	
		Benign: 4% vs. 8%	1.37 (0.38) vs. 1.37 (0.32) (baseline)	
		Unknown/NR: 4% vs. 8%	1.28 (0.33) vs. 1.52 (0.46) (immediately postintervention)	
			-0.1 (1.04) vs. 0.15 (0.63), MD 0.24 (95% CI -0.61 to	
			1.08) (pre-post change)	
			1.22 (0.06) vs. 1.41 (0.37) (8 weeks postintervention)	
			-0.15 (0.33) vs. 0.04 (0.22), MD -0.19 (95% CI -0.41 to	
			0.03) (pre-8 week postintervention change)	
			High disability patients (Disease Step Rating Scale 3-5)	
			0.71 (0.39) vs. 0.81 (0.28) (baseline)	
			0.86 (0.46) vs. 0.89 (0.36) (immediately postintervention)	
			0.16 (0.59) vs. 0.07 (0.85) MD 0.8 (95% CI -0.47 to 0.64)	
			(pre-post change)	
			0.76 (0.41) vs. 0.92 (0.33) (8 weeks postintervention)	
			0.05 (0.25) vs. 0.11 (0.20), MD -0.06 (95% CI -0.24 to	
			0.12) (pre-8 week postintervention change)	
			6MWT (meters)	
			216.4 (128.4) vs. 301.3 (108.4) (baseline)	
			248.7 (125.3) vs. 312.3 (121.9) (immediately	
			postintervention)	
			31.2 (163.2) vs. 12.5 (166.6), MD 18.67 (95% CI -78.22	
			to 115.56) (pre-post change)	
			236.3 (115.2) vs. 300.7 (119.4) (8 weeks postintervention)	
			19.9 (78.04) vs0.60 (72.79), MD -20.5 (95% CI -60.21 to	
			19.21) (pre-8 week postintervention change)	
	I	L		1

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Williams, 2020	Companson		Low disability patients (Disease Step Rating Scale 0-2)	
(Continued)			372.5 (61.5) vs. 359.36 (85.6) (baseline) 378 (63.3) vs. 382.4 (103) (immediately postintervention) 5.5 (248.8) vs. 23.1 (151.5), MD 17.6 (95% CI –184.2 to 219.26) (pre-post change) 352 (67.2) vs. 367 (97.4) (8 weeks postintervention) -20.5 (41.06) vs. 7.64 (58.94), MD 28.14 (95% CI -8.26 to 64.54) (pre-8 week postintervention change)	
			High disability patients (Disease Step Rating Scale 3-5) 178.6 (102.1) vs. 216.5 (84.6) (baseline) 214.5 (111.5) vs. 221.2 (93.7) (immediately postintervention) 35.9 (151.7) vs. 4.7 (211.80), MD 31.17 (95% CI -108.37 to 170.72) (pre-post change score) 204.1 (105.2) vs. 212.2 (85.1) (8 weeks postintervention) 25.5 (65.6) vs4.3 (53.7), MD -29.8 (95% CI -77.21 to 17.61) (pre-8 week postintervention change)	
			BBS 42 (16.7) vs. 50.9 (6) (baseline) 43.5 (14.9) vs. 50.7 (7.9) (immediately postintervention) 1.5 (17.02) vs0.18 (17.37), MD 1.70 (95% CI -8.4 to 11.80) (pre-post change) 44 (15.4) vs. 51 (6.9) (8 weeks postintervention) 2.0 (10.23) vs. 0.1 (4.17), MD -1.9 (-6.44 to 2.64) (pre-8 week postintervention change)	
			Low disability patients (Disease Step Rating Scale 0-2) 53.8 (0.8) vs. 53.3 (3.6) (baseline) 54.2 (1.9) vs. 53.8 (3.5) (immediately postintervention) 0.4 (9.7) vs. 0.56 (5.9), MD 0.2 (95% CI -7.69 to 8.01) (pre-post change) 54 (1.9) vs. 53.5 (3.9) (8 weeks postintervention) 0.20 (1.35) vs. 0.20 (2.39), MD 0.0 (-1.37 to 1.37) (pre-8 week postintervention change)	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Williams, 2020 (Continued)	Intervention and Comparison		Prioritized Outcomes High disability patients (Disease Step Rating Scale 3-5) 39.1 (17.5) vs. 47.6 (7.3) (baseline) 40.7 (15.5) vs. 46.7 (10.2) (immediately postintervention) 1.6 (22.3) vs0.9 (31.2), MD 2.54 (95% CI -18.01 to 23.08) (pre-post change) 41.2 (16.4) vs. 47.7 (8.7) (8 weeks postintervention) 2.10 (10.77) vs. 0.10 (5.23), MD -2.0 (95% CI -9.31 to	Other Outcomes
Wens, 2015a "Impact of 24 weeks of resistance and endurance exercise on glucose tolerance in persons with multiple sclerosis" Multimodal Exercise Postintervention, 0 weeks Poor	A. Progressive resistance + aerobics, 60 sessions over 24 weeks (n=29) B. Nonexercise control (n=15)	A vs. B	5.31) (pre-8 week postintervention change) A vs. B, Mean difference between groups: 24 weeks (end of treatment) Body weight (kg): 1.9, 95% CI -0.124 to 0.07 No differences in glucose and insulin	A vs. B, Mean difference between groups: 24 weeks (end of treatment) Resting HR: 9.0, 95% CI 6.57 to 11.43, p<0.001 Body fat %: 2.0, 95% CI 0.67 to 3.33, p=0.003 Knee extension and flexion improved with exercise. Group X Time interaction p<0.05

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Wens, 2015b	A. Resistance Training + High Intensity Interval	A vs. B vs. C Age (mean years): 43 vs. 47 vs. 47	Data reported as mean (SD) A vs. C VO ₂ Max (ml/min)	Data reported as mean (SD) A vs. C Resting HR (BPM):
Multimodal Exercise	Training (n=12) B. Resistance		2031 (186) vs. 1647 (133) (baseline) 2379 (197) vs. 1645 (160) (postintervention) 17.8% (4.6%) vs. 2.5% (4.1%), p<0.01 (pre-post %	75 (3) vs. 75 (4) (baseline) 84 (3) vs. 87 (4) (postintervention) 12.5% (4.6%) vs. 14.3% (3.8%), p>0.05 (pre-
Postintervention, 0 weeks	Training + High intensity continuous cardiovascular	Ambulatory: NR Wheelchair user: NR EDSS (mean score): 2.3 vs.	change) VO₂ Max (ml/min/kg)	post % change) % body fat:
Fair	training (n=11) C. No intervention - "sedentary control" (n=11)	2.7 vs. 2.5	26.6 (2.2) vs. 21.9 (1.8) (baseline) 30.7 (2.1) vs. 23.6 (2.1) (postintervention) 17.8% (4.6%) vs. 2.5% (4.1%), p<0.01 (pre-post % change)	36.2% (1.9%) vs. 38.2% (2.1%) (baseline) 34.3% (2.0%) vs. 37.3% (2.2%) (postintervention) −3.9% (2.0%) vs. −2.8% (1.6%), p>0.05 (pre- post % change)
	[30 sessions over 12 weeks for both groups]		B vs. C VO ₂ Max (ml/min) 1870 (238) vs. 1647 (133) (baseline) 1969 (230) vs. 1645 (160) (postintervention) 7.5% (5.8%) vs. 2.5% (4.1%), p<0.01 (pre-post % change) VO ₂ Max (ml/min/kg) 26.3 (3.1) vs. 21.9 (1.8) (baseline)	B vs. C Resting HR (BPM): 76 (3) vs. 75 (4) (baseline) 80 (4) vs. 87 (4) (postintervention) 7.0% (5.8%) vs. 14.3% (3.8%), p>0.05 (pre- post % change)
			28.2 (3.0) vs. 23.6 (2.1) (postintervention) 7.5% (5.8%) vs. 2.5% (4.1%), p<0.01 (pre-post % change)	% body fat 33.6% (2.8%) vs. 38.2% (2.1%) (baseline) 32.6% (2.8%) vs. 37.3% (2.2%) (postintervention) −2.5% (1.2%) vs. −2.8% (1.6%) (pre-post % change)

	I			
Author, Year		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Willoughby, 2010	A. Partial body weight supported	GMFCD III or IV	Pre, post, 10 weeks after training	NA
Aerobic Exercise	treadmill training 30	n=33 randomized and 26	10 minute walk test (10MWT) (walking endurance)	
Treadmill	minutes 2 times a	analyzed	(meters)	
	week for 9 weeks		A. 244.33 (115.41) to 218.38 (123.71) to 215.67 (142.99)	
RCT		Mean age 10.8 years	B. 118.36 (89.89) to 135.82 (95.65) to 148.43 (103.52)	
	B. Overground		Pre to post trend for between groups F=3.004 p=0.097	
Postintervention,	walking with walker	15 males and 11 females	favoring B	
10 weeks after	or assist device	(54% males)	Pre to 24 week trend for between groups F=2.992	
intervention	comparable duration		p=0.098 favoring B	
	and number of			
Fair	sessions			
Wu, 2017a	A. Robotic resistance	A vs. B	A vs. B, pre to post followup mean (SD), p-value	NR
	treadmill training, 18	Age (mean years): 10.6 vs.		
treadmill training	sessions over 6	10.8	10MWT (m/s)	
improves	weeks (n=12)	Female: 6 (50%) vs. 6 (55%)	Fast: 0.98 (0.39) to 1.13 (0.38) to 1.09 (0.35), p=0.01 vs.	
locomotor function			0.84 (0.34) to 0.84 (0.37) to 0.77 (0.36), p=0.19	
in children with	B. Robotic	Race: -week followupwhite:	Self-selected: 0.63 (0.30) to 0.72 (0.24) to 0.71 (0.22),	
cerebral palsy: a	assistance treadmill	6 (50%) vs. 6 (55%)	p=0.22 vs. 0.54 (0.22) to 0.52 (0.18) to 0.50 (0.19), p=0.61	
randomized	training, 18 sessions			
controlled pilot	over 6 weeks (n=11)	Ambulatory:	6MWT (m)	
study"		NR	272.7 (113.0) to 336.3 (104.9) to 353.9 (125.8), p=0.001	
		Wheelchair user:	vs. 216.3 (116.8) to 230.1 (119.2) to 224.7 (118.7), p=0.63	
Aerobic Exercise		NR		
Robot-Assisted			GMFM-66	
Gait Training		Other:	63.7 (8.7) to 63.4 (8.2) to 64.9 (9.4), p=0.02 vs. 60.0 (9.2)	
		GMFCS I: 1 (8%) vs. 0 (0%)	to 59.8 (9.6) to 60.3 (9.4), p=0.69	
Postintervention,8		GMFCS II: 5 (42%) vs. 5		
weeks (after 6-		(45%)		
week intervention)		GMFCS III: 5 (42%) vs. 4	23.0 (17.2) to 23.0 (18.0) to 24.5 (12.2), p=0.84 vs. 23.0	
L		(36%)	(23.6) to 19.5 (12.1) to 24.0 (16.0), p=0.74	
Fair		GMFCS IV: 1 (8%) vs. 2		
		(5%)	PODCI, parent	
			7.5 (16.2) to 19.1 (15.5) to 19.0 (16.8), p=0.002 vs. 7.9	
			(22.8) to 9.8 (16.4) to 3.9 (24.5), p=0.83	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Wu, 2017b	A. Robotic treadmill	A vs. B	A vs. B, pre to post to followup mean (SD), p-value	NA
"The effects of the	training, 18 sessions	Age (mean years):		
	over 6 weeks (n=11)	11.3 vs. 10.5	GMFM-66B	
dynamic weight		Female:	64.0 (8.3) to 64.7 (9.2) to 64.7 (9.4), p=0.57 vs. 62.6	
shifting training into		5 (45%) vs. 4 (33%)	(10.7) to 64.5 (11.1) to 63.8 (10.5), p=0.08	
	B. Treadmill only			
	training, 18 sessions	Race: -week followup	PODCI self	
of children with cerebral palsy– a	over 6 weeks (n=12)	white: 6 (55%) vs. 7 (58%)	10.0 (14.6) to -1.0 (24.8) to 16.0 (17.45), p=0.52 vs. 23.0 (23.6) to 19.5 (12.1) to 24.0 (16.0), p=0.73	
randomized		Ambulatory: 100%		
controlled study"		Wheelchair user: NR	PODCI parent	
			12.9 (16.2) to 19.4 (12.9) to 17.2 (16.0), p= 0.17 vs. 17.2	
Aerobic Exercise		Other:	(17.6) to 18.2 (19.4) to 21.4 (21.2), p=0.34	
Robot-Assisted		GMFCS I: 1 (9%) vs. 2		
Gait Training		(17%)	MAS	
Destintementie 0		GMFCS II: 6 (55%) vs. 3	0.62 (0.46) to 0.67 (0.60) to 0.41 (0.38), p=0.18 vs. 0.65	
Postintervention,8		(25%)	(0.36) to 0.48 (0.47) to 0.58 (0.44), p=0.19	
weeks (after 6		GMFCS III: 3 (27%) vs. 5		
weeks intervention)		(42%)		
Fair		GMFCS IV: 1 (9%) vs. 2		
Fair		(17%)		

Author, Year		Deputation		1
		Population		
Intervention Type		Age (Mean)		
Duration of		Gender (% Female)		
Postintervention		Race (%)		
Followup		Ambulatory (%)		
Quality		Wheelchair User (%)		
(See Appendix B	Intervention and	Condition Specific (%)		
for Full Citation)	Comparison	Other (%)	Prioritized Outcomes	Other Outcomes
Yang 2013	A. Walking on a track while stepping over	Spinal cord injury	Pre to post change scores	CES-D (change scores) A=-2.5
Aerobic Exercise	individualized series	n=22 randomized and 20	6 minute walk test (meters) (change scores)	B=-2.3
Treadmill	of obstacles and on	analyzed	A. 10	Both groups achieved significant improvement
	targets (precision		B. 29	p<0.05
	training) one hour a	Mean age 46 years	Both groups achieved significant improvement p<0.05	No difference between groups
Pre to post,	day for 5 days a		Improvement significantly greater with treadmill training	
crossover with 2	week for 8 weeks	14 males and 6 females	p=0.045	
months rest		(70% males)		
between	B. Walking on a		10 meter walk test (meters/second)	
	treadmill with body		A. 0.025	
8 week intervention	weight support if		B. 0.070	
	needed (used by 5 of		Both groups achieved significant improvement p<0.05	
Fair	10 participants) at		No difference between groups	
	faster than their			
	overground walking		Spinal Cord Injury Functional Ambulatory Profile	
	speed for one hour a		(measures walking skills in daily life)	
	day for 5 days a		A42	
	week for 8 weeks		B75	
			Both groups achieved significant improvement p<0.05	
	Crossover trial with 2		No difference between groups	
	months rest between			
Yazgan 2020	A. Nintendo Wii Fit,	A vs. B vs. C	A vs. C, Mean change scores:	NA
	16 sessions over 8	Age: 47.5 vs. 43.1 vs. 40.7	<u>BBS:</u> 5.8 vs. 0.93, p<0.05	
Postural Control	weeks (n=15)	Female: 86.7% vs. 100% vs.	<u>TUG</u> : -1.54 vs; 0.05, p<0.05	
Motion Gaming		86.7%	<u>6MWT</u> : 42.71 vs. 7.59 p<0.05	
	B. Balance Trainer			
Postintervention,	motion gaming, 16	RRMS: 73.3% vs. 66.7% vs.	B vs. C, Mean change scores:	
0 weeks	sessions over 8	93.3%	BBS: 2.66 vs. 0.93, p<0.05	
	weeks (n=12)		TUG: -0.64 vs; 0.05, p<0.05	
	C Maitliat control		6MWT: 23.25 vs. 7.59 p>0.05	
Fair	C. Waitlist control		<u>MusiQoL</u> : 5.32 vs0.19, $p<0.05$	
	(n=15)		A vs. C, Mean change scores: p<0.05 in favor of group A	
			for BBS and MusiQoL	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Yazici, 2019 Aerobic Exercise Robot-Assisted Gait Training Immediately postintervention, 12 weeks Poor	A. Robot-assisted gate (RAGT), 36 sessions over 12 weeks (n=12) B. Physiotherapy assumed, 36 sessions over 12 weeks assumed (n=12)	A vs. B Age: 8.8 vs. 9.5 Female: 50% vs. 50% GMFCS I or II: 100%	A vs. B, Mean or Median (SD), MD calculated as if all are means, p=between groups 6MWT: 409.58 (49.1) to 475.17 (47.7) vs. 437.00 (55.0) to 459.17 (53.75); MD 43.42, 95% CI 19.64 to 67.21, p<0.001 GMFM-88: 253.00 (8.81) to 256.17 (8.23) vs. 253.67 (7.70) to 255.25 (7.94), MD 1.59, 95% CI -2.19 to 5.37, p=0.410 GMFM-88D: 36.08 (2.27) to 36.92 (1.73) vs. 36.75 (2.22) to 37.42 (1.98), MD 0.17, 95% CI -0.79 to 1.13, p=0.729 GMFM-88E: 6 4.00 (6.90) to 66.25 (6.78) vs. 64.08 (6.43) to 64.92 (6.72), MD 1.14, 95% CI -1.69 to 4.51, p=0.373	BBS: 50.08 (2.43) to 52.08 (2.68) vs. 50.25 (2.93) to 51.00 (3.30), MD 1.25, 95% CI -0.07 to 2.57, p=0.064
Yildirim, 2019 Aerobic Exercise Robot-Assisted Gait Training Immediately postintervention, 8 weeks Fair	A. Robot-assisted gate (RAGT), 16 sessions over 8 weeks + conventional therapy (n=44) B. Conventional therapy (n=44)	A vs. B Age: 32 vs. 37 Female: 39% vs. 36% Tetraplegia: 20% vs. 16% ASIA Complete: 48% vs. 41%	A vs. B, Median (Interquartile range), p-value=between groups: Functional Independence Measure (FIM): 69 (31) to 85 (35) vs. 67 (36) to 77 (24), p=0.022 Walking Index for Spinal Cord Injury (WISCI II): 5 (9) to 9 (7) vs. 5 (6.7) to 6.5 (5), p=0.011	NA

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Intervention and Comparison	Population Age (Mean) Gender (% Female) Race (%) Ambulatory (%) Wheelchair User (%) Condition Specific (%) Other (%)	Prioritized Outcomes	Other Outcomes
Young, 2019	A. Movement to	A vs. B vs. C	A vs. B vs. C	NA
Aerobic Exercise Aerobics	Music 36 sessions over 12 weeks (27) B. Adapted Yoga	Age: 50 vs. 48 vs. 47 Female: 81% vs. 77% vs. 86% White: 44 vs. 58% vs. 61%	TUG A vs. C: -1.89, 95% CI -3.30 to -0.48, p=0.01 TUG B vs. C: -1.20, 95% CI -2.58 to 0.18, p=0.09 TUG B vs. A: 0.69, 95% CI -0.71 to 2.08, p=0.33	
Postintervention, 0 weeks	(26) C. Waitlist control	Patient Determined Disease Steps (PDDS): PDDS 0: 30% vs. 46% vs.	6MWT A vs. C: 40.98, 95% CI 2.21 to 79.75 6MWT B vs. C: 22.83, 95% CI -16.67 to 6.2, p=0.25 6MWT B vs. A: -18.15, 95% CI -56.36 to 20.05	
Fair	(28)	21% PDDS 3: 15% vs. 8% vs. 14% PDDS 6: 11% vs. 4% vs. 11%	5xSit-to-Stand A vs. C: -1.00, 95% CI -2.58 to 0.55, p=0.20 5xSit-to-Stand B vs. C: -0.70, 95% CI -2.17 to 0.77, p=0.34 5xSit-to-Stand B vs. A: 0.30, 95% -1.21 to 1.82, p=0.69	
Zoccolillo, 2015	A. X-box with Kinect	A and B (combined)	NA	A. vs. B., mean (SD)
Postural Control Motion gaming	(3D motion capture) gaming plus neuro- developmental treatment, 16	Age (mean years): 6.89 Female: NR Race: NR Ambulatory: NR		QUEST (Quality of Upper Extremities Skills Test) A. 76 (21) (baseline) 81 (20), p=0.003 (postintervention)
Postintervention, 8 weeks	sessions over 8 weeks (n=15)	Wheelchair user: NR		B. NR (baseline) (postintervention) NR, p=0.056
Poor	B.Neurodevelopment al treatment, 16 sessions over 8 weeks (n=16)	GMFM88=84.6±19.8%		

Abbreviations: BMD = bone mineral density; BMI = body mass index; CAB = Chronic Asymptomatic Bacturia; CHART = Craig Handicap and Assessment Reporting Technique; CP = cerebral palsy; EDSS = Expanded Disability Status Scale; FAC = functional ambulation category; FES-I = Falls Efficacy Scale International; FIM=Functional Independence Measure; FSS = Fatigue Severity Scale; FSST = Four Square Step Test; GNDS = Guy's Neurologic Disability Scale; GMFCS = Gross Motor Function Classification System; HADS-A = Hospital Anxiety Depression Scale-Anxiety; HADS-D=Hospital Anxiety Depression Scale-Depression; HRSD = Hamilton Depression Rating Scale; MAS = Modified Ashworth Scale; MCS = Mental Component Summary; MS = multiple sclerosis; MSIS = Multiple Sclerosis Impact Scale; MMT = Maximal Muscle Testing combined upper and lower limb strength; MusiQoL = MS international Quality of Life; NA = not applicable; NR = not reported; PCS = General Health Perception; SAWS = Satisfaction with Abilities and Well-Being Scale; SD = standard deviation; SCI = spinal cord injury; SCIM = Spinal Cord Independence Measure; WHODAS IFC=The International Classification of Functioning, Disability and Health

See Appendix B. Included Studies for full study citation.

i able F-2. Harms and	study characteristics (continuation of	of Table F-1 result	s by study)		-	
Author, Year						
Intervention Type						
Duration of						
Postintervention						
Followup				Number		
Quality				Randomized	Country	
(See Appendix B for				Analyzed	Setting	
Full Citation)	Harms	Condition	Inclusion Criteria	Attrition	Study Design	Funding Source
Acar, 2016	NR	Cerebral palsy	Children with spastic	Randomized:30	Turkey	NR
			hemiparesis, 6 and 15	Analyzed:3 0		
Postural Control			years old, 1–3 Manual	Attrition: 0%	Outpatient clinic	
Motion gaming			Ability Classification	(0/30)		
			System, level 1or 2 of the		RCT	
Postintervention, 6			GMFCS and ability to			
weeks			grasp and release an			
			object.			
Poor			-			
Abbasi, 2019	NR	Multiple sclerosis	Inclusion Criteria: 20-50	Randomized:	Iran	NR
			years old with MS,	50	Rehabilitation	
Postural Control			ambulatory, EDSS 1-4.5	Analyzed:46	Clinic	
Whole body vibration				Attrition: 8.7%	RCT	
			2 months	(4/46)		
Immediately						
postintervention,						
6 weeks						
Fair						
Adar, 2017	NR	Cerebral palsy	Inclusion Criteria:	Randomized:	Turkey	None
. .			Diagnosis of CP, Age 4-18		Outpatient clinic	
Aerobic Exercise			years. Grade >1 in lower	Analyzed: 32	RCT	
Aquatics			extremities according to	Attrition: 0%		
			MAS, being able to being	(0/32)		
			medically able to			
Postintervention, 0			participate in an exercise			
weeks			program (no severe			
			medical illness other than			
			CP), being able to follow			
Fair			directions, and adherence			
			to the exercise program.			

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms	Condition	Inclusion Criteria	Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Afrasiabifar, 2018 Postural Control Balance	No adverse events reported Cawthorne-Cooksey Group: Lost to followup after 8 weeks (n=1)	Multiple sclerosis	Patients with confirmed MS for 6 months, in remission, aged 15 to 55 years, ability to stand for 30 seconds and to walk a	Randomized: 75 Analyzed: 72 Attrition: 4% (3/75)	Iran Outpatient clinic RCT	University This work was supported by a Master thesis grant from the Deputy of Research
Postintervention, 12 weeks Good	-Unable to participate regularly (n=1) Frankel Group: Lost to followup after 8 weeks (n=2)		distance of 6 meters without any assistance, and BBS score of 21–40.	(3//3)		and Technology of Yasuj University of Medical Sciences, Iran
	-Unable to participate regularly (n=1) -Disease relapses (n=1)					
Ahmadi, 2013 Aerobic Exercise Treadmill	None	Multiple sclerosis	Inclusion Criteria: Women aged 19 to 54 with EDSS score 1-4	Randomized: 31 Analyzed: 31 Attrition: NR	Iran Outpatient clinic	NR
Postural Control Yoga					RCT	
Immediately postintervention, 8 weeks						
Fair Ahmadizadeh, 2020	NR	Cerebral Palsy	Children with CP, up to 12	Randomized:	Iran	Neuromuscular
Postural Control Whole Body Vibration Postintervention, 6 weeks			years old; able to walk without falling or without walking aids, ability to follow orders and to be at the level of 1, 2 and 3 GMFCS	20 Analyzed: 20 Attrition: 0% (0/20)	Outpatient rehabilitation	Rehabilitation Research Center of Semnan University of Medical Sciences
Fair					KU I	

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms	Condition	Inclusion Criteria	Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Akkurt, 2017 Aerobic Exercise Hand cycling Postintervention, 0 weeks Fair	NR	Spinal cord injury	2) all lesions were traumatic; 3) lesion levels were C7-L5; 4) they were at least 1 month postinjury; 5) they were physically active in training and outdoor mobility less than two hours a week; 6) they received medical approval for participation in physical activity; 7) they had the ability to read and write the Turkish language.		Turkey Outpatient clinic RCT	NR
Alexeeva 2011 Aerobic Exercise Treadmill Pre to post Fair	2 experienced an increase in spasticity with slower walking times after training		Injury at T10 or below 17-60 years old Able to rise from sitting with minimal assistance and independently advance at least one leg	Randomized 40 Analyzed 35 Attrition 5/35=12.5% (13 w intervention)	USA (author), states recruited nationally to internationally but does not provide details Coordinated at large spinal cord injury rehabilitation hospital RCT	Government funding
Al-Sharman, 2019 Aerobic Exercise Aerobics Postintervention, 6 weeks Poor	N=1 patient broke a leg.	Multiple sclerosis		Randomized: 40 Analyzed: 30 Attrition: 25% (10/40)	Jordan Neurological hospital clinic RCT	NR

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Amiri, 2019 Postural Control Balance exercises Strength interventions Muscle Strength Exercises Postintervention,10 weeks	Harms NR	Condition Multiple sclerosis	Inclusion Criteria Inclusion Criteria: Women with relapse MS, subgroup scores of EDSS 2.5 to 5.5	Number Randomized Analyzed Attrition Randomized: 69 (in abstract (72, Figure 1) Analyzed: 69 Attrition: 4% (3/69)	Country Setting Study Design Iran Outpatient clinic for sports injury RCT	Funding Source NR
Fair						
Aras, 2019 Aerobic Exercise Robot-Assisted Gait Training Postintervention, 4 weeks, and 6 month followup Fair	None reported	Cerebral Palsy	Children with CP, 6 to 14 years; Level II-III GMFCS and able to ambulate at least 10 meters with or without an assistive device	Randomized: 30 Analyzed: 29 Attrition: 3% (1/30)	Turkey Outpatient rehabilitation RCT	No funding received
Arntzen, 2019 Arntzen, 2020 Postural Control Balance exercises Postintervention, 7 weeks, plus 18 and 30 weeks Good	None	Multiple sclerosis	Diagnosis of MS; Patients with expanded disability scores of 1 to 6.5	Randomized: 80 Analyzed: 80 Attrition: 0% (80/80) post intervention	Norway Setting Outpatient clinic RCT	Norway Regional Health Authority

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms	Condition	Inclusion Criteria	Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Aviram 2017 Aerobic Exercise Treadmill Postintervention, 6 months Fair	None reported	Cerebral palsy	Recruited from adolescents from schools and clinics Ability to walk with or without assist device for at least 10 meters	95 randomized 95 assessed	Israel, Jordan, Palestine	Funding NR
Aydin, 2014 Aerobic Exercise Aerobics Postintervention, 12 weeks Fair	No harms reported. Note: Two patients discontinued due to "failure to adapt to the exercise"	Multiple sclerosis	Patients with relapsing- remitting type of MS and EESS scores above 4.5	Randomized: 40 Analyzed: 36 Attrition: 10% (4/40)	Germany Outpatient clinic RCT	NR
Azimzadeh, 2015 Postural Control Tai Chi Postintervention, 12 weeks Poor	NR	Multiple sclerosis	Women between 20 and 60 years old; diagnosed with MS by a physician specialist based on their medical records; EDSS scores equal to or less than 5/5 based on medical records; No other acute or chronic debilitating conditions such as lung and heart diseases, musculoskeletal disorders, mental or psychological problems based on patients' statements and medical records; Absence of any stage of pregnancy	Randomized: 36 Analyzed:34 Attrition: 5.5% (2/36)	Iran Group setting - location NR RCT	Unclear

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Bahrami, 2019a Aerobic Exercise Treadmill Immediately postintervention, 8 weeks	Harms None - reported that no injury occurred that was due to the intervention.	Condition Cerebral palsy	Inclusion Criteria Inclusion Criteria: spastic CP patients aged 18-45 year old with GMFCS level I to III	Number Randomized Analyzed Attrition Randomized: 35 Analyzed: 29 Attrition: 17% (6/35)	Country Setting Study Design Iran Outpatient rehab clinic RCT	Funding Source Iran University Grant
Fair Baquet, 2018	NR	Multiple sclerosis	Patients had to be	Randomized:	Germany	German Ministry of
Aerobic Exercise Cycling Postintervention, 12 weeks Fair			diagnosed with RRMS according to the McDonald criteria 2010, an EDSS score <3.5, and currently in remission with no relapse or progression during the last 3 months. Patients had to be on stable immunotherapy for more than 3 months or without any planned change in disease- modifying therapies for the next 6 months.	N=64	Outpatient clinic RCT with 12 week extension	Research and Education

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Bleyenheuft, 2017 Postural Control Balance	Harms NR	Condition Cerebral palsy	Inclusion Criteria Patients diagnosed with bilateral CP in GMFCS levels II to IV; age 6 to 16 years; an ability to grasp light objects and lift the	Number Randomized Analyzed Attrition Randomized: 20 Analyzed:20 Attrition: 0% (0/20)	Country Setting Study Design Belgium, USA Day camp Non randomized	Funding Source This study was a pilot for a larger trial (NCT02667613). The work was supported in part by Goldman
Postintervention, 12 weeks Poor			more affected arm 15cm above a table surface, school level equal to that of typically developing peers; ability to follow instructions and complete testing		study (quasirandomized)	Sachs Gives and by Mindy and Mark Dehnert. YB had a research grant from the Fonds de la recherche clinique, cliniques universitaires Saint- Luc, Brussels, Belgium.
Brichetto, 2015 Postural Control Balance Postintervention, 4 weeks Good	NR	Multiple sclerosis		Randomized: 32 Analyzed:32 Attrition: 0% (0/32)	Italy Outpatient clinic RCT	None
Bryant, 2013 Aerobic Exercise Cycling Postintervention, 12 weeks Fair	NR	Cerebral palsy	Children aged 8–17 years, with cerebral palsy at GMFCS levels IV and V, able to pedal on an adapted static bicycle and walk with partial body weight support on a treadmill	Randomized: N=23 Analyzed: 21 Attrition: 10% (2/21)	UK School RCT	National Institute for Health Research

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms	Condition	Inclusion Criteria	Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Bryant, 2013 Aerobic Exercise Cycling Postintervention, 12 weeks Fair	None reported	Cerebral palsy	Children aged 8–17 years, with cerebral palsy at GMFCS levels IV and V, able to pedal on an adapted static bicycle and walk with partial body weight support on a treadmill	Randomized: N=24 Analyzed: 22 Attrition: 8% (2/24)	UK School RCT	National Institute for Health Research
Bulguroglu, 2017 Muscle Strength Postintervention, 0 weeks Poor	NR	Multiple sclerosis	Being over 18 years of age; not having had an MS attack or any surgery in the last 6 months, being below 4.5 EDSS score	Randomized: 45 Analyzed: 38 Attrition: 15.6% (7/45)	Turkey Outpatient RCT	NR
Burschka, 2014 Postural Control Tai Chi Postintervention, 24 weeks Poor	NR (One patient in the Tai Chi withdrew due to unspecified health issues.)	Multiple sclerosis	MS patients able to walk without a walking aid, an EDSS score <5, relapse- free for the past 4 weeks	Randomized: 38 Analyzed: 32 Attrition: 15% (6/38)* *Six patients from the Tai Chi group withdrew from the study due to time issues (N=5) and (N=1) health problems, 32 patients was included in the final analysis	Germany Outpatient clinic RCT (two-arm trial)	Industry Novartis Pharma GmbH.

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms	Condition	Inclusion Criteria	Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Cakit, 2010 Multimodal Exercise Postintervention, 0 weeks Poor	NR		or secondary progressive MS, mild or moderate MS determined by Kurtzke Expanded Disability Status Scale scores of 6.0, and ability to stand independently in upright position for 3 secs and if they had been without steroid and immunosuppressive therapy within the past 4 weeks	Randomized: 45 Analyzed: 33 Attrition: 27% (12/45) [Across entire study - all 3 study arms]	Turkey Outpatient/home RCT	NR
Calabro, 2017 Aerobic Exercise Robot-Assisted Gait Training Postintervention, 8 weeks Good	NA	Multiple sclerosis	Inclusion Criteria: RRMS, Age 18-65, moderate to severe walking disability EDSS 4.0-5.5, Montreal Cognitive Score >24, no neurological or orthopedic co-morbidities that interfere with ambulation, stable medications for 6 months	Randomized: N=40 Analyzed: 40 Attrition: 0% (0/40)	Italy Outpatient Randomized Control Trial	None
Callesen, 2019 Postural Control Balance exercises Strength interventions Muscle Strength Exercises Postintervention, 10 weeks Fair	PRT group reported three falls but they were not related to the intervention.	Multiple sclerosis	Inclusion Criteria: People 18 years or older, EDSS scale 2.0 to 6.5	Randomized: 71 Analyzed: 71 Attrition: 17% (12/71)	Denmark Outpatient clinic RCT	Danish foundation TrygFonden

Author, Year						
Intervention Type						
Duration of						
Postintervention						
				Number		
Followup				Number		
Quality				Randomized	Country	
(See Appendix B for				Analyzed	Setting	
Full Citation)	Harms	Condition	Inclusion Criteria	Attrition	Study Design	Funding Source
Carling, 2017	Two adverse events (both falls) occurred	Multiple sclerosis	Walking ability not	Randomized:	Sweden	Mixed
	during intervention, neither fall was injurious		exceeding 200 m (with or	51	Outpatient	Study was supported
Postural Control	(cited from text).		without a walking aid)	Analyzed: 48	RCT	by
Balance				Attrition: 6%		grants from the
	Note: Figure 1 indicates (n=2) Lost to			(3/51)		Uppsala-Örebro
	followup due to fall related fractures in the					Regional Research
Postintervention, 7	early-intervention group					Committé, the
weeks						research committee of
	Prospectively reported falls:					Örebro County
Fair	The late-start group reported a total of 245					Council and the
	falls and 2220 near falls during the study					Norrbacka-Eugenia
	period, giving a fall					Foundation
	rate of 1.28/person/ month and a near fall					
	rate of 11.64/					
	person/month					
Castro-Sanchez, 2012	NR	Multiple sclerosis		Randomized:	Spain	NR
			18 to 75 years old, EDSS	73	Outpatient therapy	
Aerobic Exercise			scale <u><</u> 7.5, VAS >4.	Analyzed: 71	clinic	
Aquatics				Attrition: 2%	RCT	
				(2/73)		
Postintervention, 20						
weeks, and 30 weeks						
Cood						
Good Chen, 2016	NR	Spinal cord injury	1. Injury located at C5–C7	Randomized:	China	NR
Chen, 2010	NR	Spinal coru injury	(C: cervical spinal nerve),	98	Inpatient	
Muscle Strength			spinal injury of patients	Analyzed: 98	RCT	
Muscle Strength			conformed to International	Attrition: 0%	NOT	
8 weeks – mid			Standards for	(0/98)		
intervention			Neurological Classification	(0/30)		
16 weeks – mid			of Spinal Cord Injury			
intervention			(ASIA, 4th Edition, 1992);			
Post-52-week			2. Patients in stable			
intervention			condition and could			
4 weeks			cooperate to complete			
4 WEEKS			pulmonary function test			
Fair			and pulmonary			
			rehabilitation			
			renabilitation			

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Cho, 2020 Muscle Strength Immediately Postintervention, 6	Harms No adverse events reported, (one patient dropped out "due to their health condition".	Condition Cerebral palsy	Inclusion Criteria Inclusion Criteria: Children between the ages of 6 and 13 years diagnosed with diplegic CP, GMFCS level between I and III.	Number Randomized Analyzed Attrition Randomized: 25* Analyzed: 25 Attrition: 0% (0/25)	Country Setting Study Design Korea Outpatient clinic RCT	Funding Source Korean government grant
Positierveniion, 6 weeks Poor			between rand m.	*Selected from 28,10% (3/28)		
Chrysagis 2012 Aerobic Exercise Treadmill Postintervention, 0 weeks Fair	None reported	Cerebral palsy	Recruited at special school for children with disabilities Ambulatory (with or without aids) adolescents with tetra- or diplegia	Randomized 22 Analyzed 22	Greece	NR
Claerbout, 2012 Postural Control Whole Body Vibration Postintervention, 0 weeks Fair	NR	Multiple sclerosis	Persons with clinically definite MS and an EDSS between 3 and 7	Randomized: 55 Analyzed: 47 Attrition: 14.5% (8/55)	Belgium Inpatient RCT	PF acknowledges the FWO Flanders for financial support during the study period.

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Collett, 2010 Aerobic Exercise Cycling Postintervention, 12 weeks Poor	Harms 3 participants from the combined exercise group reported adverse events during the exercise intervention phase (tachycardia, leg pain, and exacerbation of a knee injury). Intermittent group 4 participants discontinued the intervention due to adverse events (two due to pain during cycling, one because of an exacerbation of MS symptoms and one due to a loss of consciousness during cycling). MS	Condition Multiple sclerosis	Inclusion Criteria People with MS over 18 years of age identified through local neurologists or self-referral.	Number Randomized Analyzed Attrition Randomized: N=61 Analyzed:55 Attrition: 20% (12/61)	Country Setting Study Design United Kingdon Gym Randomized comparator study	Funding Source Multiple Sclerosis Society of Great Britain and Northern Ireland and Oxfordshire Primary Care Trust (PCT) extension to the MS funding National Institute of Health Research
Curtis, 2018 Postural Control Balance Postintervention, 24 weeks Fair	NR	Cerebral palsy	Diagnosis of CP classified as levels III–V of the Gross Motor Function Classification System, be aged between 2 and 15 years, and have trunk or head postural control deficits	Randomized: 28 Analyzed: 23 Attrition: 17.9% (5/28)	NR Outpatient clinic and home RCT	Nonprofit This trial was supported financially by grants from The Association of Danish Physiotherapist's Foundation for Research, Education and Development of Clinical Practice, Fund for Physiotherapy in Private Practice and the Britta Holles Fund.

Author, Year						
Intervention Type						
Duration of						
Postintervention						
Followup				Number		
Quality				Randomized	Country	
(See Appendix B for				Analyzed	Setting	
Full Citation)	Harms	Condition	Inclusion Criteria	Attrition	Study Design	Funding Source
Dalgas, 2009	NR	Multiple sclerosis	Patients with definite	Randomized:	Denmark	Supported by the
Dalgas, 2010			relapsing-remitting MS	38	Outpatient clinic	National Multiple
0			according to Mc-	Analyzed: 31	RCT	Sclerosis Society, The
Muscle Strength			Donald criteria, EDSS	Attrition: 18.4%		Research Foundation
			score between 3.0 and 5.5	(7/38)		of the MS Clinic of
Immediately			with a pyramid function	` ,		Southern Denmark
postintervention			score 2.0, ability to walk			(Vejle, Esbjerg, and
[100m, no need for help			Soenderborg),
Dalgas, 2009: Fair to			with transportation to			Director Werner
Good			training facility, age 18			Richter and Wife's
Dalgas, 2010: Poor			years, and acceptance of			Grant, The
C ·			diagnosis and treatment.			Augustinus-
			C			Foundation, Engineer
						Bent Boegh and Wife
						Inge Boeghs
						Foundation, Vilhelm
						Bangs Foundation,
						Manufacturer Mads
						Clausen's Foundation,
						The Toyota
						Foundation, Mrs.
						Benthine Lund's
						Foundation, and AP
						Moeller's Foundation.
Demuth, 2012	NR	Cerebral palsy	Inclusion criteria were: (1)	Randomized:	USA	Foundation for
,		· · · · · · · · · · · · · · · · · · ·	spastic diplegic CP; (2)	N=64	Outpatient clinic	Physical
Companion to: Fowler,			age between 7 and 18	Analyzed: 58	RCT	Therapy
2010			years; (3) the	Attrition:9 %		
			ability to comply with	(6/64)		
Aerobic Exercise			simple verbal directions;	(
Cycling			(4) Gross			
- ,			Motor Function			
Postintervention, 0			Classification System			
weeks			(GMFCS) levels I to			
			III; and (5) selective motor			
Fair			control rating of good or			
			fair for			
			at least one leg.			
	1	1	at load one log.	I	1	1

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Deutz, 2017 Postural Control Hippotherapy Middle of treatment (after 8-week observational phase and 16- to 20-week intervention) and end of treatment (after 16- week washout period, 16- to 20-week intervention, and 8- week observational phase)	Harms 1 patient fell during hippotherapy and fractured humerus	Condition Cerebral palsy	Inclusion Criteria Inclusion Criteria: bilateral spastic CP, age 5 to 16 years, no HT and no major surgery during the preceding 12 months, no allergy to horse hair, informed consent of the parents available, gross motor function classification level (GMFCS) II to IV, and no achillotenotomy performed during the preceding 6 months	Number Randomized Analyzed Attrition Randomized: 73 Analyzed: 66 (19 more did not finish the study, 47 analyzed) Attrition: 10% (7/73) or 36% (26/73) or 29% (19/66)	Country Setting Study Design Germany Outpatient clinic Randomized crossover trial	Funding Source Nonprofit
Poor Dodd, 2011 Muscle Strength Immediately postintervention, 12 weeks Good	A vs. B Increases in any sensory symptoms characteristic of MS: 0 (0%) vs. 0 (0%) Any injury that required participants to miss a training session: 0 (0%) vs. 0 (0%) Reductions in symptoms of muscle spasm: -2.8 units (95% CI 5.6 to 0.3) vs2.4 units (95% CI 5.2 to 0.5), p>0.05 Short-term muscle soreness: 69% (25) vs.	Multiple sclerosis	Aged 18 years or more, have a confirmed diagnosis of relapsing–remitting MS, have an Ambulation Index score of 2, 3 or 4 (mild to moderate walking disabilities), and have received medical clearance to participate.	Randomized: 76 Analyzed: 67 Attrition: 11.8% (9/76)	Australia Community gymnasiums RCT	Supported by Multiple Sclerosis Research Australia.

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms NR	Condition	Inclusion Criteria	Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Doulatabad, 2013 Postural Control Yoga Postintervention, 12 weeks Poor	NR	Multiple sclerosis	Women aged between 18- 45 with at least 2 year MS history; and the ability to participate in Yoga exercise	Randomized: 60 Analyzed:60 Attrition: 0% (0/60)	Iran Group setting RCT	Nonprofit: Yasouj University of Medical Sciences
Duarte Nde, 2014 Aerobic Exercise Treadmill Postintervention, 3 weeks and 5 weeks Fair Note: May share participants with Grecco, 2014	NR	Cerebral palsy	Inclusion Criteria: Spastic cerebral palsy; GMFCS levels I, ii or iii;;between 5 and 10 years old; independent gate for at least 12 months; able to comprehend procedures	Randomized: 24 Analyzed: 24 Attrition: 0%	Brazil Outpatient physical therapy clinics RCT	Brazilian fostering agencies CAPES and FAPESP
Duff, 2018 Muscle Strength Postintervention, 0 weeks Fair	No adverse events were reported in either group during the intervention. However, one participant experienced severe muscle spasticity of the leg during the baseline stimulation protocol. This person fully recovered within 2 hours of the testing.	Multiple sclerosis	the ability to travel to the assessment and intervention locations	Randomized: 30 Analyzed: 27 Attrition: 10% (3/30)	Canada Pilates studio RCT	This study was funded by a Hermes Canada MS Society of Canada Wellness Research Innovation grant.
Duffell, 2014 Aerobic Exercise Robot-Assisted Gait Training Postintervention, 4 weeks Poor	NR	Spinal cord injury	Inclusion Criteria: subjects with incomplete SCI	Randomized: 52 Analyzed: 52 Attrition: 0% (0/52)	USA Outpatient Rehabilitation Clinic RCT	NIH and Craig H Nelson Foundation

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms	Condition	Inclusion Criteria	Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Ebrahimi, 2015 Multimodal Postintervention, 0 weeks Poor	NR	Multiple sclerosis	Definite MS according to McDonald's criteria, with relapsing–remitting form of the disease and EDSS 1.5 to 5.0	Randomized: 34 Analyzed: 30 Attrition: 11.8% (4/34)	Iran Outpatient RCT	NR
Elnaggar 2019 Strength Plyometric training Postintervention, 8 weeks Fair	NR	Cerebral palsy	age, independent ambulators, categorized as level I according to Gross Motor Function Classification System, mild spastic (hypertonia less than 1+ grade as being measured by the Modified Ashworth Scale), ability to understand and follow instructions.	Randomized:44 Analyzed: 39 Attrition: 11.4% (5/44)	Outpatient	NR
El-Shamy, 2018 Postural Control Motion gaming Postintervention, 12 weeks Fair	NR	Cerebral palsy	Inclusion Criteria: children 6-8 years old with hemiplegic CP, MACS I- III, able to hear/see and follow directions	Randomized: 30 Analyzed: 30 Attrition: 0% (0/30)	Saudi Arabia Children's Hospital RCT	NR

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Emara, 2016 Aerobic Exercise Treadmill Postintervention, 12 weeks Fair	Harms NR	Condition Cerebral palsy	Inclusion Criteria Inclusion Criteria: Children 6 to 8 years old with spastic diplegia, gross motor function classification system (GMFCS) level III.	Number Randomized Analyzed Attrition Randomized: N=22 Analyzed: 20 Attrition: .09% (2/22)	Country Setting Study Design Saudi Arabia Outpatient clinic RCT	Funding Source Nonprofit Taibah University, Al Madinah Al- Munawara, Saudi Arabia (Grant Number 6093/1435).
Faramarzi, 2020 Has companion: Banitalebi, 2020 Multimodal Exercise Immediately Postintervention, 12 weeks Fair	No adverse events were reported.	Multiple sclerosis	Inclusion Criteria: Women aged 18 to 50 with MS, with no relapse or acute exacerbation the past 6 months.	Randomized: 94 Analyzed: 89 Attrition: 5% (5/94)	Iran Outpatient clinic RCT	NR
Esclarin-Ruz, 2014 Aerobic Exercise Robot-Assisted Gait Training Postintervention, 8 weeks Fair	NA	Spinal cord injury	Inclusion Criteria: C2 to L3 SCI, ASIA C or D, onset <6 months, ago 16-70, able to stand with external support	Randomized: N=88 Analyzed: 81 Attrition: 7.9%	Spain Hospital RCT	Research Grant

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Field-Fote, 2011 Has companions: Kressler, 2013; Sandler, 2017 Aerobic Exercise Robot-Assisted Gait Training Postintervention, 12 weeks	Harms NA	Condition Spinal cord injury	Inclusion Criteria Inclusion Criteria: Asia classification C or D Spinal Cord Injury at T10 or higher, able to take 1 step with 1 leg, and ability to rise to standing position with at most moderate (50%) assistance	Number Randomized Analyzed Attrition Randomized: N=74 Analyzed: 64 Attrition: 14% (10/74)	Country Setting Study Design USA Outpatient Randomized Control Trial	Funding Source Funding: National Institutes of Health and Miami Project to Cure Paralysis
Fair Forsberg, 2016 Postural Control Balance Postintervention, 8 weeks Fair	Two adverse events were reported: one participant lost balance during challenging tasks in standing and fell on a soft carpet, and one fell while standing on his/her knees. No injuries were reported.	Multiple sclerosis	Patients with MS able to walk 100 meters but unable to maintain tandem stance ≥30 seconds	Randomized: 87 Analyzed:73 (week 8) Attrition: 16.1% (14/87 - week 8) Analyzed: 66 (week 24) Attrition: 24% (21/87 - week 24)	Sweden Hospital RCT	Government: supported by the Uppsala- "Orebro Regional Research Council (RFR- 306241), the Norrbacka-Eugenia Foundation (Grant no. 814/12), and the Research Committee of Region " Orebro County (Grants nos.OLL-216421 and OLL- 317511)
Fosdahl, 2019b Multimodal Exercise Postintervention, 16 weeks and 32 weeks Fair	NR	Cerebral palsy	Inclusion Criteria: Spastic bilateral CP patients GMFCS levels I- III	Randomized: 37 Analyzed: 34 Attrition: 9% (34/37)	Norway Pediatric outpatient clinic RCT	Sophies Minde Ortopedi AS, Oslo University Hopsital

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Fowler, 2010 Has companion: Demuth, 2012 Aerobic Exercise Cycling Postintervention, 0 weeks Fair	Harms NR	Condition Cerebral palsy	age; (2) ability to follow simple verbal directions (3) ability to walk independently, with or without an assistive device, for short distances (Gross Motor Function Classification System levels I–III); and (4) good or fair selective voluntary motor control for at least one limb.	Number Randomized Analyzed Attrition Randomized: N=64 Analyzed:58 Attrition: 9% (6/64)	Country Setting Study Design USA Outpatient clinic RCT	Funding Source Corporate donations or discounts: Biodex Inc, Freedom Concepts, Helen's Cycles, Santa Monica, National AMBUCS Inc, and Sam's Club. Volunteers and foundations: Caitlin Fowler, Ernie Meadows, Sidney Stern Memorial Trust, Steinmetz Foundation, Sykes Family Foundation, and United Cerebral Palsy Research and Education Foundation.
Fox, 2016 Muscle Strength Postintervention, 4 weeks Fair	Four adverse events occurred: a fractured ankle (Pilates group) and a fractured humerus (standardized exercise group) (both as a result of falls in the snow, unrelated to the exercise sessions) and pneumonia and pancreatitis (relaxation group) (unrelated to the exercise sessions)	Multiple sclerosis	Aged over 18 years, had a definite diagnosis of MS according to McDonald's criteria, and had an EDSS score of 4.0 to 6.5, meaning that, at best, they were able to walk independently without use of an aid or rest for 500 m (EDSS score 4.0) and, at worst, they required 2 walking aids (pair of crutches or canes) to walk about 20 m without resting.	Randomized: 100 Analyzed: 84 Attrition: 16% (16/100)	England Outpatient clinic RCT	NR

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms	Condition	Inclusion Criteria	Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Galea, 2018	A vs. B	Spinal cord injury	More than 18 years of	Randomized:	Australia and New	The study was funded
Multimodal Exercise Postintervention, 12 weeks Fair	 Withdrawals due to AE or SAE: 3.3% (2/60) vs. 1.8% (1/56) Other AEs (only most common are specifically called out) Definitely related (n events) All: 85 vs. 28 Skin abrasion/ bruising: 25 vs. 2 Autonomic dysreflexia: 19 vs. 4 Pain: 17 vs. 19 Probably related (n events) All: 53 vs. 40 Skin abrasion/ bruising: 16 vs. 0 Autonomic dysreflexia: 7 vs. 3 Pain: 17 vs. 27 Headache: 0 vs. 3 Possibly related (n events) All: 56 vs. 64 Skin abrasion/ bruising: 0 vs. 4 Pain: 20 vs. 34 Headache: 0 vs. 12 Dizziness/ nausea: 5 vs. 0 Bladder/bowel problems: 5 vs. 0 		age, had sustained a motor complete or incomplete traumatic SCI above the level of T12 at least 6 months prior to consent, and had medical clearance to participate.	116 Analyzed: 86 Attrition: 25.9% (30/116)	Zealand Outpatient clinic RCT	by the Transport Accident Commission (Victorian Neurotrauma Initiative), the Lifetime Care and Support Authority NSW, the University of Melbourne and The University of Western Australia.
Gandolfi, 2015	7 patients in the experimental group 8.8%	Multiple sclerosis	Patients diagnosed with	Randomized:	Italy	Nonprofit: Fondazione
Postural Control Balance Postintervention, 5 weeks	(7/80) withdrew for medical reasons or because of difficulty arranging transportation to the study site. No adverse events were reported during the study period		MS aged ≤65 years; EDSS22 score 1.5≥ × ≤6.0; Mini-Mental State Evaluation score ≥24; subjective symptoms of balance impairments; fear of falling and/or history of	80 Analyzed:80 Attrition: 0% (0/80)	Outpatient clinic RCT	Italiana Sclerosi Multipla onlus (FISM) grant no. FISM 2009/R/27
Fair			falls as defined by at least one fall within the last year			

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms	Condition		Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Garrett, 2013a Garrett, 2013b (same author group a as Hogan 2014) Postural Control Yoga Postintervention, 12 weeks	NR	Multiple sclerosis	Over 18 years of age and had a diagnosis of MS that was confirmed by a consultant physician or neurologist.	Garrett 2013a (3 intervention groups, 1 control group, postintervention followup, ITT analysis) Randomized: 372 Analyzed: 242 Attrition: 34.9% (130/372) Garrett 2013b (3 intervention groups, 12- week followup, no ITT analysis) Randomized: 243 Analyzed: 121 Attrition: 50% (122/243)	Ireland Community gyms, hotels, health centers	This work, designated the 'Getting the Balance Right project,' was supported by the Multiple Sclerosis Society of Ireland (MSI) through the Tesco Charity of the Year funding and the Pobal, Dormant Accounts Flagship Fund. In addition, the lead author was an EMBARK PhD Scholar who was supported by the Irish Research Council for Science Engineering and Technology.
Gervasoni 2014 Aerobic Exercise Treadmill	None reported	Multiple sclerosis	Able to walk 6 meters with or without assist device	30 randomized 30 analyzed	Iran RCT	Government funded
Postintervention, 0 weeks Fair						

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms	Condition	Inclusion Criteria	Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Giangregorio 2012 (Body composition) Hitzig 2013 (quality of life) Kapadia 2014 (walking capacity) Craven 2017 (bone markers) Aerobic Exercise Treadmill Postintervention, 6	None reported	Spinal cord injury	Incomplete injuries from C2 to T12 American Spinal Injury Association Impairment Scale C or D	34 randomized 28 analyzed 6/34=18% attrition	Canada Rehabilitation hospital	Ontario Neurotrauma Foundation
months Fair						
Gibson, 2018 Aerobic Exercise Aerobics Postintervention, 12 weeks Good	NR	Cerebral palsy	Inclusion Criteria: CP patients 9 to 18 years old with GMFCS levels I-III	Randomized: 43 Analyzed: 42 Attrition: 2% (1/43)	Australia Outpatient therapy clinic RCT	Non-government Centre and Princess Margaret Hospital Foundation
Gorman, 2019 Aerobic Exercise Aquatics Postintervention, 12 weeks Fair	(N=1, treatment related)	Spinal cord injury	SCI ASIA C or D, age 18- 65, tolerate 30 minutes standing frame	Randomized: N=37 Analyzed 32 Attrition: 13.5%)	USA Outpatient RCT	Funding: US Department of Defense SCI Research Program

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms	Condition	Inclusion Criteria	Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Grecco 2013 Aerobic Exercise Treadmill RCT Postintervention, 3 weeks Fair	None reported	Cerebral palsy	Recruited children from specialized outpatient clinics Children	24 randomized 24 analyzed	Brazil	Government funded
Grecco 2014 Aerobic Exercise Treadmill RCT Postintervention, 4 weeks Fair	None reported	Cerebral palsy	Recruited from outpatient clinics Children	35 randomized 35 analyzed at post 33 analyzed at 1-month followup 2/35=6%	Brazil RCT	Government funded
Harness, 2008 Multimodal Exercise Postintervention, 0 weeks Fair	NR	Spinal cord injury	Age 18–70 years, SCI greater than 2 months prior that resulted in paraplegia or quadriplegia between C2 and T12, and ASIA Impairment Scale A, B, C, or D	Randomized: NA Analyzed: 29 Attrition: 6.5% (2/31)	USA Outpatient clinic Comparative Cohort	Funds provided by the National Center of Research Resources, 5M011 RR- 00827-29, US Public Health Service.

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Hasanpour-Dehkordi, 2014 "Comparison of regular aerobic and yoga on the quality of life in patients" Has companions: Hasanpour-Dehkordi, 2016; Hasanpour- Dehkordi, 2016 (2) Postural Control Yoga	Harms NR	Condition Multiple sclerosis	ability to perform the	Number Randomized Analyzed Attrition Randomized: 61 Analyzed: 61 Attrition: 0% (0/61)	Country Setting <u>Study Design</u> Iran Hospital RCT	Funding Source Nonprofit: Research and Technology Deputy of Shahrekord University of Medical Sciences grant no. 419
Postintervention, 12 weeks Poor Hasanpour-Dehkordi,	NR	Multiple sclerosis	Diagnosis of MS; consent	Randomized:	Iron	Nonprofit: Research
2016 (2) "Influence of yoga and aerobics exercise on fatigue, pain and psychosocial status" Postural Control Yoga Companion to:			to participate in the study; and the ability to speak and to move	61 Analyzed:61 Attrition: 0% (0/61)	Iran Gym RCT	and Technology Deputy of Shahrekord University of Medical Sciences
Hasanpour-Dehkordi, 2014 Postintervention, 12 weeks Poor						

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Hasanpour-Dehkordi, 2016 "Effects of Yoga on Physiological Indices, Anxiety and Social Functioning" Postural Control Yoga Companion to: Hasanpour-Dehkordi, 2014	Harms NR	Condition Multiple sclerosis	Inclusion Criteria Diagnosis of MS; consent to participate in the study; and the ability to speak and to move	Number Randomized Analyzed Attrition Randomized: 60 Analyzed: 60 Attrition: 0% (0/60) *During the study, 10 from case group and 10 from control group were excluded	Country Setting Study Design Iran Gym RCT	Funding Source Nonprofit: Research and Technology Deputy of Shahrekord University of Medical Sciences
Poor Hebert, 2011 Aerobic Exercise Cycling Postintervention, 4 weeks Fair	One patient in the exercise control group had a minor ankle sprain (1/13).	Multiple sclerosis	MS patients 18 to 65 years old; able to walk 100 m with or without a single-sided device; a score of 45 out of 84 on the Modified Fatigue Impact Scale questionnaire; composite score of 72 on the computerized SOT	Randomized: 38 Analyzed: 38* Attrition: 0% (0/38) *ITT	US Outpatient clinic	National Multiple Sclerosis Society, Pilot Project no. PP1501
Hebert, 2009 Companion to: Hebert, 2011 Balance Postinterventon, 14 weeks Fair	NR	Multiple sclerosis	Ambulation of 100 m with no greater than intermittent or unilateral constant use of an assistive device, age 18 to 60 years	Randomized: 88 Analyzed: 6 weeks: 81 Analyzed: 14 weeks: 76 Attrition: 15% (13/88)	USA Outpatient RCT	Nonprofit

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms	Condition	Inclusion Criteria	Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Heine, 2017	Odds of self- reported relapse in patients with RRMS (adjusted for disease severity)	Multiple sclerosis	Male and female between 18 and 70 years,	Randomized: 89	The Netherlands Outpatient	Nonprofit
Aerobic Exercise Cycling	was 0.28, 95% Cl 0.10 to 0.789, p=0.016 in favor of aerobic training		ambulant without MS exacerbation or steroid treatment <3 months.	Analyzed: 80 Attrition at end of treatment:	RCT	
16 weeks				9/43 (21%) vs. 15/46 (33%)		
Postintervention, 36 weeks				Attrition at 1 year followup: 17/43 (40%) vs.		
Fair				38/46 (83%)		
Herrero, 2012	A vs. B	Cerebral palsy	4 and 18 years old with	Randomized: N=38	Spain Outpatient clinic	Government
Postural Control Hippotherapy			cerebral palsy, Gross Motor Function Classification System	Analyzed: 38* Attrition:.5% (4/38)	RCT	
Postintervention, 12 weeks			levels I–V.	*ITT		
Fair						

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms	Condition	Inclusion Criteria	Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Hochsprung, 2017	NR	Multiple sclerosis	Inclusion criteria: (1) referral by the neurologist	Randomized: N=61	Spain Outpatient clinic	NR
Aerobic Exercise			to our hospital's multiple	Analyzed:61	RCT	
Cycling			sclerosis unit; (2) diagnosis of definite MS	Attrition: 0% (0/61)		
Postintervention, 0			according to the	(0/01)		
weeks			McDonald criteria at least			
Deer			2 years previously; (3)			
Poor			EDSS score ≤7 (established by a			
			neurologist); (4) age			
			between 20 and 70 years;			
			(5) clinical stability during			
			the 3 months previous to			
			recruitment; (6) no			
			cognitive impairment according to the Mini-			
			Mental State Examination;			
			(7) willingness to sign an			
			informed consent form;			
			and (8) EDSS score			
			between 2 and 6.5.			

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Hogan, 2014 (same author group and protocol as Garrett 2013a and 2013b - see notes) Postural Control Yoga Postintervention, 0 weeks	Harms Main problems reported by participants, n -Mobility/walking problems: 49 -Fatigue: 41 -Balance: 36 -Weakness: 34 -Bladder/bowel: 29 -Pain: 16 -Stiffness/spasms: 16 -Vision: 9 -Sensation: 6 -Falls: 3 -No problems: 2	Condition Multiple sclerosis	Inclusion Criteria Over 18 years of age and had a diagnosis of MS that was confirmed by a consultant physician or neurologist.	Number Randomized Analyzed Attrition Randomized: 146 Analyzed: 111 Attrition: 24% (35/146)	Country Setting Study Design Ireland Community gyms, hotels, health centers RCT	Funding Source This work, designated the 'Getting the Balance Right project,' was supported by the Multiple Sclerosis Society of Ireland (MSI) through the Tesco Charity of the Year funding and the Pobal, Dormant Accounts Flagship Fund. In addition, the lead author was an EMBARK PhD Scholar who was supported by the Irish Research Council for Science Engineering and Technology.
Hota, 2020 Postural Control Balance Exercises Postintervention, 4 weeks Fair	None reported	Spinal Cord Injury	Patients 10 years old or more, admitted with cervical injury, > 30 days post injury	Randomized: 40 Analyzed: 40 Attrition: 0% (0/40)	India Spinal injury center inpatient rehabilitation RCT	Funding NR
Hsieh, 2018 Postural Control Motion gaming Postintervention, 12 weeks Fair	NR	Cerebral palsy	Diagnosis of CP resulting in hemiparesis, or a deficit in movement and balance	Randomized: 40 Analyzed:40 Attrition: 0% (0/40)	Taiwan Outpatient clinic RCT	NR

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms	Condition	Inclusion Criteria	Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Hsieh, 2020 Postural Control Motion Gaming Postintervention, 0 weeks Fair	No adverse effect "was expected" but results NR.	Cerebral Palsy	Children between 6 and 10 years old with cerebral palsy and motor problems GMFCS category level = I–III	Randomized: 56 Analyzed: 56 Attrition: 0% (0/56)	Taiwan Pediatric rehabilitation RCT	Funding NR
Huang, 2015 Aerobic Exercise Robot-Assisted Gait Training Postintervention, 4 weeks Fair	none	Spinal cord injury	Inclusion Criteria: Incomplete SCI, T8 to L2, injury within 6 months	Randomized: N=24 Analyzed: 24 Attrition: 0%	China outpatient (?) RCT	Research on Design Theory and Compliant Control for Underactuated Lower Extremity Rehabilitation Robotic Systems
In, 2018 Postural Control Whole body vibration Postintervention, 0 weeks Fair	None reported.	Spinal cord injury	(1) diagnosed with cervical level 6 or 7 incomplete SCI, (2) onset ≥6 months, (3) American Spinal Injury Association Impairment Scale (AIS) grade D motor and sensory scores, (4) ability to stand for at least 5 min, (5) ability to understand and follow verbal commands, (6) medical referral by a physician for physical therapy, and (7) ability to complete designed WBV training session.	Randomized: 32 Analyzed: 28 Attrition: 12.5% (4/32)	South Korea Outpatient RCT	This work was supported by the 2016 Gimcheon university Research Grant.

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms	Condition	Inclusion Criteria	Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Johnston 2011 Aerobic Exercise Treadmill Postintervention, 4 weeks Fair	None reported	Cerebral palsy	Recruited from Shriners' outpatient clinics children with diplegia, triplegia or quadriplegia GMFCS III or IV Able to take 8 steps 6 to 13 years old	34 randomized 26 analyzed 8/34=23.5% attrition	USA Physical therapists and home setting RCT	funded by Shriners (Foundation)
Jones, 2014a Jones, 2014b Multimodal Exercise Postintervention, 12 weeks (for ALL patients completing the Activity Based Therapy intervention) Poor (for both)	Withdrawals due to injuries related to participation in intensive exercise: 7.7% (2/26) vs. 0% (0/22)	Spinal cord injury	AlS classification of C or D, upper motor neuron injury, preserved tendon reflexes in the lower extremities, at least 1 year postinjury, and ages 18 to 66 years.	Randomized: 48 Analyzed: 41 Attrition: 14.6% (7/48)	USA Outpatient RCT	Supported in part by the National Institute on Disability and Rehabilitation Research (NIDRR), U.S. Department of Education (grant no. H133G080031–10).
Jonnsdottir, 2018 Aerobic Exercise Treadmill Postintervention, 0 weeks Fair	None reported	Multiple sclerosis	Recruited inpatient rehab service, able to walk 10 meters	42 randomized 38 analyzed 4/42=9.5% attrition	Italy Rehabilitation center RCT	Government

Author, Year						
Intervention Type						
Duration of						
Postintervention						
				N		
Followup				Number		
Quality				Randomized	Country	
(See Appendix B for				Analyzed	Setting	
Full Citation)	Harms	Condition	Inclusion Criteria	Attrition	Study Design	Funding Source
Jung, 2014	NR	Spinal cord injury	Diagnosis of American Spinal Injury	Randomized: N=20	Korea Inpatient	NR
Aerobic Exercise			Association (ASIA) grade	Analyzed: 20	RCT	
Aquatics			B, C, or	Attrition: 0%		
			D spinal cord injury at the	(0/20)		
Postintervention, 0			levels of C8 to L5.			
weeks						
Fair						
Kalron, 2016	NR	Multiple sclerosis	Diagnosis of definite	Randomized:	Israel	Nonprofit: supported
			relapsing remitting MS;	32		by a Pilot Research
Postural Control			25–55 years of age;	Analyzed:30	Outpatient clinic	Award from the
Motion gaming			moderate neurological	Attrition: 6.3%		National Multiple
			disability as scored by the	(2/32)	RCT	Sclerosis Society
Postintervention, 6			EDSS; ranging from 3.0 to			(PP2208)
weeks			6.0 inclusive with a			
			pyramidal functional score			
Fair			of at least 3			
Kalron, 2017	No adverse or harmful events were	Multiple sclerosis	(1) diagnosis of definite	Randomized:	Israel	This work was
	reported in both groups		relapsing-remitting	50	Outpatient clinic	supported by a grant
Muscle Strength			multiple sclerosis	Analyzed: 45	RCT	(EMR200136_642)
			according to the revised	Attrition: 10%		from the Merk KGaA,
Postintervention, 0			McDonald criteria (2) age	(5/50)		Damstadt, Germany.
weeks			range from 25-55 years;			, <u> </u>
-			and (3) the EDSS score			
Fair			ranging from 3.0 to 6.0.			
·			Additionally, only patients			
			receiving disease-			
			modifying drugs based on			
			interferon beta-1a for at			
			least 3 months.			
			icast o monuis.			

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms	Condition	Inclusion Criteria	Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Kara, 2017 Aerobic Exercise Aerobics Muscle Strength Postintervention, 0 weeks Poor	NR	Multiple sclerosis	Older than 18 years, EDSS <6 – Being diagnosed with definite MS according to McDonald criteria, an- EDSS of ≥6 – Being older than 18 years – Not having an acute attack.	Randomized: NA Analyzed: 35 (64%) Attrition: 22 (40%)	Turkey Outpatient Quasiexperimental, nonrandomized	No funding received
Kara, 2020 Strength Immediately postintervention, 12 weeks Fair	No adverse events occurred in either group.	Cerebral palsy	(1) age between 7 and 16 years; (2) classification as levels I-III on the Manual Ability Classification System (MACS); and (3) the ability to follow and accept verbal instructions.	Randomized: 34 Analyzed: 30 Attrition: 12% (4/34)	Turkey Outpatient RCT	NR
Kargarfard, 2017 Aerobic Exercise Aquatics Postintervention, 0 weeks Fair	NR	Multiple sclerosis	Inclusion Criteria: MS of a minimum of 2 years, had no relapses in the past month, and were able to exercise regularly.	Randomized: N=40 Analyzed: 32 Attrition: 20% (8/40)	Iran Outpatient clinic RCT	NR
Kaya Kara, 2019 Multimodal Exercise Immediately postintervention, 12 weeks Fair	No adverse events reported, although one person in the exercise group had ankle pain following a fall while playing basketball.	Cerebral palsy	Inclusion Criteria: GMFCS levels I, ages 7 to 16 years old	Randomized: 33 Analyzed: 30 Attrition: 9% (3/33)	Turkey Physical therapy clinic RCT	NR

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Kerling, 2015 Multimodal Exercise Postintervention, 0 weeks Fair	Harms NR	Condition Multiple sclerosis	Inclusion Criteria Diagnosed MS, adult age (18–65 years), and mobility with a maximum value of 6 (low to moderate disability) on the EDSS	Number Randomized Analyzed Attrition Randomized: 60 Analyzed: 37 Attrition: 38.3% (23/60)	Country Setting Study Design Germany Outpatient RCT	Funding Source The study was supported by Sanofi Aventis.
Keser, 2011 Aerobic Exercise Aerobics Postintervention, 0 weeks Poor	NR	Multiple sclerosis	EDSS between 1 and 5.5	Randomized: NA Analyzed: 30 Attrition: 0	Turkey Outpatient Quasiexperimental, nonrandomized	NR
Khalil, 2018 Postural Control Motion gaming Postintervention, 6 weeks Fair	NR	Multiple sclerosis	Diagnosis of MS, relapsing remitting type of MS; age of above 18 years, EDSS score of 3 to 6.5; being relapse free for 30 days prior to participation or to completing testing	Randomized:40 Analyzed: 32 Attrition: 20% (8/40)	Jordan University RCT	Government: funding support from EU commission for funding support (grant number: AR- 42).
Kim 2015 Postural Control Balance Postintervention, 0 weeks Fair	None reported	Cerebral palsy	Ambulatory adults (without support)	Randomized 21 Analyzed 21	Korean RCT	Government funding

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms	Condition	Inclusion Criteria	Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Kim, 2017	NR	Cerebral palsy	Adults with CP in the age	Randomized:	South Korea	This work was
1411, 2011		concorran parcy	bracket of 18 to 30 years	N/A	NR	supported by the
Postural Control Balance Social activity/exercise (Boccia) Postintervention, 0 weeks Poor			diagnosed with disability of levels 1 to 2 encephalopathy by medical specialists in the areas of rehabilitation medicine and neurosurgery. Those who can sustain seated posture on supplementary wheelchair, those capable of performing boccia exercise, those who achieved more than 18 points in the Mini–Mental Status Examination and had no difficulties in communicating and interacting with the researcher and participants, those who consented to voluntarily participate in the experiment on their own	Analyzed: 23 Attrition: 0% (0/23)	Prospective Comparative Cohort	Research Fund of Ulsan College in Korea
Kirk, 2016	Most subjects that received the PRT	Cerebral palsy	will. Diagnosed with CP, age	Randomized:	Denmark	The study was
Muscle Strength Postintervention, 0 weeks	intervention reported delayed onset of muscle soreness during the first couple of training sessions, and 3 subjects reported irritation in tendon tissue surrounding the knee.		18–65 years, and gait function with or without walking aids	N/A Analyzed: 32 Attrition: 8.6% (3/35)	Gymnasium Comparative cohort	supported by a grant from the Ludvig and Sara Elsass Foundation and the Association of Danish
Poor						Physiotherapists

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms	Condition	Inclusion Criteria	Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Kjolhede, 2016 Muscle Strength Postintervention, 0 weeks Fair	NR	Multiple sclerosis	relapsing-remitting MS diagnosis according to the McDonald criteria, EDSS 2.0–5.5 with a "pyramidal functions" subscore ≥ 2 and receiving IFN- β 1a or 1b (Rebif, Avonex, Extavia, or Betaferon) for at least 3 months (IFN- β and Copaxone are the first line of recommended medication for relapsing- remitting MS in Denmark).	Randomized: 35 Analyzed: 30 Attrition: 16.7% (5/30)	Denmark Outpatient clinic RCT	This study was supported by The Augustinus Foundation, Hestehandler Ole Jacobsen Mindelegat, and Biogen Idec.
Klobucka, 2020 Aerobic Exercise Robot-Assisted Gait Training Immediately Postintervention, and 12-16 weeks Poor	No adverse events were reported.	Cerebral palsy	Adolescent and adults with bilateral spastic CP, ages 15 years and older with GMFCS levels I-IV.	Randomized: 47 Analyzed: 47 and 45 Attrition: 10% (5/47)	Slovakia Outpatient rehabilitation Clinic RCT	This work was supported by KREATON Project.
Kooshiar, 2015 Aerobic Exercise Aquatics Fair	NR	Multiple sclerosis	Inclusion Criteria: Female patients affected by MS, certified with a medical documentation and with a neurologist approval; cognitive competency to give informed consent; citizen of Iran and residing in Mashhad; age ranging from 19 to 45 years; and Kurtzke EDSS 9 Score of 1-5.5.	Randomized: N=40 Analyzed: 37 Attrition: 0.8% (3/40)	Iran Outpatient clinic RCT	NR

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms	Condition	Inclusion Criteria	Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Kressler, 2013 Companion to: Field- Fote, 2011 Aerobic Exercise Robot-Assisted Gait Training	None	Spinal cord injury	Inclusion Criteria: chronic motor-incomplete spinal cord injury, minimal walking ability	Randomized: N=74 Analyzed: 64 Attrition: 13.5%	US Outpatient (Academic medical center research lab) RCT	NR
Postintervention, 12 weeks						
Poor						
Kumru, 2016 Aerobic Exercise Robot-Assisted Gait Training Postintervention, 8 weeks	9 mild treatment-related adverse effects (facial twitching, headache)	Spinal cord injury	Inclusion Criteria: ASIA C or D Cerivial or Thoracic SCI, no limitation in passive range of motion, no changes in medical treatment	Randomized: N=34 Analyzed: 31 Attrition: 9%	Spain Inpatient rehabilitation hospital RCT	Foundation La Marato and Instituto de Salud Carlos
Fair		O and hard an also	la chucica Oriteria	Deve de vecime e de	Denvelie of Konse	N
Kwon, 2011 Postural Control Hippotherapy Postintervention, 0 weeks (End of treatment after 8-week intervention) Fair	NR	Cerebral palsy	Inclusion Criteria: diagnosis of bilateral spastic cerebral palsy, GMFCS level I or II, body weight less than 35kg, and age of 4 to 10 years	Randomized: NA Analyzed: 32 Attrition: 0% (0/32)	Republic of Korea Gym and outpatient clinic Quasiexperimental, nonrandomized	Nonprofit

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Kwon, 2015 Postural Control Hippotherapy Postintervention, 0 weeks (End of treatment after 8-week intervention)	Harms 2 participants (2%) fell during the study period. One participant returned to the therapy, while the other dropped out. A vs. B Falls: 2% (1/46) vs. 0% (0/46)	Condition Cerebral palsy	Inclusion Criteria Inclusion Criteria: diagnosis of CP, body weight less than 35 kg, and age between 4 and 10 years	Number Randomized Analyzed Attrition Randomized: 92 Analyzed: 91 Attrition: 1% (1/92)	Country Setting Study Design Republic of Korea Home and outpatient clinic RCT	Funding Source Nonprofit
Good Lai, 2010 Aerobic Exercise Cycling Postintervention, 12 weeks Fair	NR	Spinal cord injury	Having a neurologically complete SCI motor lesion (American Spinal Cord Association (ASIA) impairment scale (17) grade A) between C5 andT10; having muscle responses to trial electrical stimulation; and never having undergone FES therapy	Randomized: N=24 Analyzed:24 Attrition: 0% (0/24)	Taiwan Inpatient RCT	National Science Council
Lai, 2015 Aerobic Exercise Aquatics Postintervention, 0 weeks Fair	None	Cerebral palsy	Diagnosis of spastic cerebral palsy; age of 4 to 12 years; Gross Motor Function Classification System levels of I to IV16; and ability to follow instructions	Randomized: N=27 Analyzed: 24 Attrition: 11% (3/27)	Taiwan Outpatient clinic RCT	National Science Council and Chang Gung Memorial Hospital

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms	Condition	Inclusion Criteria	Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Lavado, 2012 Aerobic Exercise Hand cycling Postintervention, 0 weeks Fair	NR	Spinal cord injury		Randomized: 42 Analyzed: 42 (100%) Attrition: 0	Brazil Outpatient RCT	No funding received
Lee, 2013 Postural Control Whole body vibration Postintervention, 0 weeks Fair	NR	Cerebral palsy	(1) cerebral palsy diagnosed by both a pediatric neurological doctor and a physical therapist; (2) no history of serious surgery on the spine; (3) diagnosis of weak muscles in at least one of the evaluated leg muscles; muscle weakness was determined by symptoms of the muscle's inability to perform rising from a chair (difficulty with movements) – symptoms include: fatigue, numbness in muscles, inability to support one's arms and legs, drowsiness, prolonged tiredness and lethargy; (4) no drug being taken for spasticity control; (5) good vision; (6) ability to comprehend instructions; and (7) ability to walk without the use of walking aids.		South Korea Outpatient RCT	This research received no specific grant from any funding agency in the public, commercial, or not–for–profit sectors.

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Lee, 2014	Harms NR	Condition Cerebral palsy	Inclusion Criteria	Number Randomized Analyzed Attrition Randomized:	Country Setting Study Design Republic of Korea	Funding Source
Postural Control Hippotherapy End of treatment (12- week intervention) Poor			MAS grade less than +1, perform more than 10 m independent walking, available for more than 30-minute training per day	26 Analyzed: 26 Attrition: 0% (0/26)	Outpatient clinic RCT	
Liu, 2019 Multimodal Exercise Immediately postintervention, 12 weeks Fair	Reported no adverse events occurred.	Spinal cord injury	Inclusion Criteria: Ambulatory SCI patients, 18-50 years old	Randomized: 40 Analyzed: 29 Attrition: 27% (11/40)	China Rehab center RCT	The Special Fund for Basic Scientific Research of Central Public Institutes
Lorentzen, 2015 Postural Control Balance Postintervention, 20 weeks Poor	NR	Cerebral palsy	Diagnosis pf spastic cerebral palsy (GMFCS I- II; MACS I-II) based on medical records and classification by the therapists participated in the study	Non Randomized: 34 Analyzed:34 Attrition: 0% (0/34)	Denmark Outpatient Clinic Quasiexperimental, nonrandomized	Nonprofit: Ludvig and Sara Elsass foundation
Lucena-Anton, 2018 Postural Control Hippotherapy Postintervention, 1 week (13 weeks total including 12-week intervention) Fair	No adverse effects were reported.	Cerebral palsy	Inclusion Criteria: prior diagnosis of spastic CP, nonwalking children (GMFCS levels: IV-V), and children aged 3 to 14 years	Randomized: 48 Analyzed: 44 Attrition: 4% (2/48)	Spain Outpatient clinic RCT	NR

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Makhov, 2018	Harms NR	Condition Cerebral palsy	Inclusion Criteria Inclusion Criteria: CP	Number Randomized Analyzed Attrition Randomized:	Country Setting Study Design Russia	Funding Source
Multimodal exercise Immediately postintervention, 15 weeks			patients 7 to 9 years old with spastic diplegia or spastic tetra paresis	35 Analyzed: 35 Attrition: 0 % (0/35)	Setting Outpatient clinic RCT	
Poor Marandi, 2013a Aerobic Exercise Aquatics Has companion: Marandi, 2013b Postintervention, 0 weeks Poor	NR		Women with MS and a EDSS score of less than 4.5 who visited Kashai hospital in Esfahan	Randomized: 57 Analyzed: 45 Attrition: 21% (12/57)	Iran NR RCT	This study was conducted as a thesis funded by Isfahan University, Isfahan, Iran
Marandi, 2013b Companion to: Marandi, 2013a Aerobic Exercise Aquatics Postintervention, 0 weeks Poor	NR	Multiple sclerosis	Women with MS and a EDSS score of less than 4.5 who visited Kashai hospital inEsfahan	Randomized: 57 Analyzed: 45 Attrition: 21% (12/57)	Iran NR RCT	This study was conducted as a thesis funded by Isfahan University, Isfahan, Iran

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Matusiak-Wieczorek, 2010	Harms NR	Condition Cerebral palsy	Inclusion Criteria	Number Randomized Analyzed Attrition Randomized:	Country Setting Study Design Poland	Funding Source
2016 Postural Control Hippotherapy End of treatment (after 12-week intervention) Poor			children aged 6-12 years with spastic diplegia or spastic hemiplegia CP, GMFCS level 1 or 2, able to understand and follow simple verbal instructions	NA Analyzed: 39 Attrition: 0% (0/39)	Outpatient clinic Quasiexperimental, nonrandomized	
Matusiak-Wieczorek, 2020 Postural Control Hippotherapy Immediately Postintervention, 12 weeks Fair	Not reported	Cerebral Palsy	Children with CP, aged 6– 12 years, classified as Gross Motor Function Classification System (GMFCS) level I or II, with spastic diplegia or hemiplegia.	Randomized: 45 Analyzed: 45 Attrition: 0% (0/45)	Poland Outpatient rehabilitation (Indoor riding arena) RCT	None
Midik, 2020 Aerobic Exercise Robot-Assisted Gait Training Postintervention, and 12 weeks Fair	None reported	Spinal Cord Injury	Male patients 19 to 53 years old with traumatic incomplete SCI for at least 12 weeks	Randomized: 30 Analyzed: 30 Attrition: 0% (0/30)	Turkey Inpatient rehabilitation RCT	None

Author, Year						
Intervention Type						
Duration of						
Postintervention						
Followup				Number		
Quality				Randomized	Country	
(See Appendix B for				Analyzed	Setting	
Full Citation)	Harms	Condition	Inclusion Criteria	Attrition	Study Design	Funding Source
Mogharnasi, 2018	NR	Spinal cord injury	1) All lesions were	Randomized:	Iran	This research
			complete and lesion levels		NR	received no specific
Muscle Strength			were T9-T12; 2) all lesions	Analyzed: 20	RCT	grant from any
exercise			were traumatic duo to	Attrition: 0%		funding agency in the
			physical trauma; 3) all	(0/20)		public, commercial, or
Postintervention, 0			subjects were physically	` ,		not-for-profit sectors.
weeks			inactive in training after			
			occurrence of lower limb			
Poor			paralysis; 4) all			
			participants were			
			examined by a physician			
			and received medical			
			approval for participation			
			in physical activities; 5)			
			they were able to sit down			
			while maintaining upper-			
			body balance; and 6) all			
			participants only used			
			wheelchairs without any			
			short leg braces þ			
			crutches, long leg braces			
			b walker and crutches.			
			They were free from			
			pressure sores, bladder			
			infections, and potentially			
			damaging metabolic and			
			cardiovascular limitations.			
Moraes, 2020	None reported	Multiple	Diagnosis of relapsing-	Randomized:	Brazil	None
,		Sclerosis	remitting MS; 18 years or	33		
Postural Control			older, able to walk with	Analyzed: 33	Outpatient	
Hippotherapy			an assistive device; have	Attrition: 0%	rehabilitation	
11			EDSS ≤6.0; have PDDS	(0/33)		
Postintervention, 0			≤5, have not had a	(
weeks			relapse for more than 6		RCT	
			mon			
Fair						

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms	Condition	Inclusion Criteria	Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Mutoh, 2019 Postural Control Hippotherapy Postintervention, 12 weeks (post 48 week intervention) Fair	NR	Cerebral palsy	Inclusion Criteria: CP patients 4 to 14 years old with GMFCS levels II- III	Randomized: 24 Analyzed: 24 Attrition: 0% (0/x24)	United Kingdom Outpatient RCT	Grants-in-Aid for Scientific Research
Najafidoulataba, 2014 Postural Control Postintervention, 12 weeks Poor	NR	Multiple sclerosis	Women aged 18 years and older, diagnosed with MS disease for the last 2 years; no history of other disabling diseases; physically able to participate in the study and perform yoga exercises	Randomized: 60 Analyzed:60 Attrition: 0% (0/60)	Iran Unclear (not specified) RCT	Nonprofit: financial support from Yasuj University of Medical Sciences
Negaresh, 2018 Aerobic Exercise Cycling Postintervention, 0 weeks Fair	NR	Multiple sclerosis	Inclusion based on the following criteria: (a) RRMS type (revised McDonald criteria19), (b) general BMI ranging between 20 to 30 kg/m ² , EDSS: 4, and (d) age >22 years.	Randomized: N=66 Analyzed:61 Attrition: 9% (5/66)	Iran Outpatient clinic RCT	NR
Nilsagard, 2012 Postural Control Motion gaming Postintervention, 7 weeks Fair	At the final data collection, the balance exercise group reported 10 falls during the study period compared with 14 in the nonexercise group. No falls occurred during balance exercise, data collection or travelling to or from the appointments. No other adverse events were reported.	Multiple sclerosis	Patients diagnosed with MS in accordance with the revised McDonald criteria; subjectively perceived impaired balance function in standing or walking activities; and the ability to walk 100 m without resting	Randomized: 84 Analyzed:80 Attrition: 4.8% (4/84)	Sweden Unclear (Home or Clinic) RCT	Nonprofit: funded by the Uppsala-Örebro Regional Research Council, the Research Committee of Örebro County Council, and the Norrbacka- Eugenia Foundation

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Niwald, 2017 Aerobic Exercise Cycling Postintervention, 0 weeks	Harms NR	Condition Multiple sclerosis	Inclusion Criteria Diagnosed MS Age >18 years Informed consent to participate in the study Ability to perform aerobic exercises	Number Randomized Analyzed Attrition Randomized: N=53 Analyzed: NR Attrition: NR	Country Setting Study Design Poland Inpatient Pre-post	Funding Source Young Scientists of the Medical University of Lodz
Fair Norouzi, 2019 Postural Control Balance exercises Immediately postintervention, 4 weeks Fair	NR	Spinal cord injury	Inclusion Criteria: Paraplegic veterans with SCI at L3, L4 (ASIA B-D)	Randomized: 30 Analyzed: 30 Attrition: 0% (0/30)	Iran Setting Outpatient clinic RCT	NR
Nsenga, 2013 Aerobic Exercise Cycling Postintervention, 0 weeks Fair	NR	Cerebral palsy	CP (Gross Motor Function Classification System (GMFCS) levels I and II	Randomized: N=24 Analyzed: 20 Attrition: 17% (4/24)	France School Pre-Post	NR
Nsenga-Leunkeu 2012 Aerobic Exercise Treadmill Postintervention, 0 weeks Fair	None reported	Cerebral palsy	Convenience sample children from special education school 10 to 16 years old	28 randomized 24 analyzed 4/28=14% attrition	Canada RCT	NR

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Nsenga-Leunkeu, 2012 Aerobic Exercise Treadmill Postintervention, 0 weeks	Harms None of this group experienced any limitation of walking because of pain.	Condition Cerebral palsy	Inclusion Criteria Children and adolescents with CP (GMFCS27 levels I or II; age range, 10 to 16 years)	Number Randomized Analyzed Attrition Randomized: N/A Analyzed: 24 Attrition: 14.3% (4/28)	Country Setting Study Design NR Outpatient clinic Matched pairs cohort	Funding Source NR
Fair Ortiz-Rubio, 2016 Muscle Strength Postintervention, 0 weeks Good	NR	Multiple sclerosis	Diagnosis of relapsing- remitting MS, secondary progressive MS, or primary progressive MS according to the criteria formulated by McDonald et al; adults between the ages of 18 and 65 years; patients with an Expanded Disability Status Scale <7.5; and patients with a Mini-Mental State Examination >24. Patients reported upper limb impairment and had at least on 1 hand a pathological Nine Hole Peg Test with 2 standard deviations above the mean normal values published by Oxford Grice et al at screening.	Randomized: 37 Analyzed: 37 Attrition: 0% (0/37)	Spain Home-based RCT	NR

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms	Condition	Inclusion Criteria	Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Ozkul, 2020 Postural Control Balance Exercises Motion Gaming Postintervention, 0 weeks Fair	None reported (No adverse or harmful events in both groups)	Multiple Sclerosis	Diagnosis of MS; 18–65 years old a, Expanded Disability Status Scale (EDSS) score under 6	Randomized: 54 (51 assigned to intervention) Analyzed: 39 Attrition: 24% (13/54)	Turkey	None
Ozkul, 2020b Multimodal Exercise Immediately Postintervention, 8 weeks Fair	Reported no adverse or harmful events occurred.	Multiple sclerosis	remitting MS, adults age 18–65 with EDSS	Randomized: 34 Analyzed: 34 Attrition: 0% (0/34)	Turkey Outpatient Neurorehabilitation Clinic RCT	None
Park, 2014 Postintervention, 8 weeks (within 2 months after 8-week intervention) Postural Control Hippotherapy Poor	NR	Cerebral palsy	Inclusion Criteria: age 3 to 12 years, body weight less than 40 kg, and gross motor function classification system (GMFCS) level I to IV	Randomized: NA Analyzed: 55 Attrition: 17% (11/66)	Republic of Korea Outpatient clinic Cohort	NR

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms	Condition	Inclusion Criteria	Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Peri, 2017 Aerobic Exercise Robot-Assisted Gait Training Postintervention, 4-10 weeks Poor	NR	Cerebral palsy	Inclusion criteria: age 4- 17, spastic bilateral CP, able to communicate, able to walk independently, femur length >21cm	Randomized: N=44 Analyzed: 44 Attrition: 0%	Italy Outpatient Quasiexperimental, nonrandomized	NR
Pourazar, 2020 Postural Control Motion Gaming Postintervention, 0 weeks Fair	NR	Cerebral Palsy	Girls with 7 to 12 years with Spastic Hemiplegic Cerebral Palsy, levels I and II (MACS), GMFCS score range 1 to 3 and able to walk without an assistive device	Randomized: 20 Analyzed: 20 Attrition: 0% (0/20)	Iran Outpatient rehabilitation RCT	None
Pompa, 2017 Aerobic Exercise Robot-Assisted Gait Training Postintervention, 4 weeks Fair	NR	Multiple sclerosis	Diagnosis of MS, age 25- 65, EDSS 6-7.5, Mini Mental State Exam >24	Randomized: N=50 Analyzed: 43 Attrition: 14%	Italy Inpatient Rehabilitation RCT	Santa Lucia Foundation and Italian Ministry of Health

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms	Condition	Inclusion Criteria	Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Qi, 2018 Postural Control Tai Chi Postintervention, 6 weeks Fair	NR	Spinal cord injury	Right-handed SCI patients who met the diagnostic criteria for SCI according to the American Spinal Injury Association; between 20 and 70 years old; able to communicate and follow instructions, and able to maintain a sitting posture for more than 30 min in a wheelchair	Randomized: 40 Analyzed:40 Attrition: 0% (0/40)	China Unclear RCT	Government: Financially supported by Research Project of Shanghai Administration of Sports (16Z015)
Qi, 2018a Muscle Strength Immediately postintervention, 6 weeks	NR	Cerebral palsy	NR (Children with spastic CP)	Randomized: 100 Analyzed: 100 Attrition: 0% (0/100)	China NR RCT	None
Fair Razazian, 2016 Aerobic Exercise Aquatics Postintervention, 8 weeks Poor	NR	Multiple sclerosis	Women diagnosed with primary-progressive secondary-progressive MS or relapsing-remitting progressive-relapsing MS as diagnosed by neurologists, aged between 25 and 50 years, Expanded Disability Status Scale e6, receiving stable, regular, and monitored pharmacological treatment of MS (immune modulatory treatments)	Randomized: 54 Analyzed:54 Attrition: 0% (0/54)	Iran Gym, aquatic rehab. center RCT	Nonprofit

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms	Condition	Inclusion Criteria	Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Roppolo, 2013 Multimodal Exercise Immediately postintervention, 12 weeks Fair	NR	Multiple sclerosis	Inclusion Criteria: Women with relapsing MS mean ages 18 to 60 years old, and EDSS scores 0 to 3	Randomized: 35 Analyzed: 35 Attrition: 2% (1/35)	Italy Outpatient clinic Quasiexperimental study	NR
Russo, 2018 Aerobic Exercise Robot-Assisted Gait Training Postintervention, 18 weeks Fair	None	Multiple sclerosis	Inclusion Criteria: relapsing-remitting MS, EDSS 3.0-5.5, Montreal Cognitive Assessment Score at least 24, no other neurological or orthopedic comorbidities, stable medication for 6 months	Randomized: N=45 Analyzed: 45 Attrition: 0%	Italy Outpatient RCT	NR
Sadeghi Bahmani, 2019 Aerobic Exercise Aerobics Postural Control Balance Postintervention, 8 weeks Fair	NR	Multiple sclerosis	Inclusion Criteria: Women with MS 18 to 65 years old, EDSS score <6	Randomized: 92 Analyzed: 71 Attrition: 23% (21/92)	Iran Outpatient clinic RCT	NR

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms	Condition	Inclusion Criteria	Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Sadeghi Bahmani, 2020a (aquatic) Aerobic Exercise Aquatic Postintervention, 5 weeks Fair	NR	Multiple Sclerosis	Diagnosis of MS;18 to 65 year old women, EDSS score < 6	Randomized: 62 Analyzed: 39 Attrition: 24% (13/54)	Iran Setting (outpatient, rehabilitation) RCT	Not reported
Sadowsky, 2013 Aerobic Exercise Cycling Postintervention, 0 weeks Poor	NR	Spinal cord injury	Diagnosed with chronic SCI, defined as >16 months following injury at the time of initial evaluation at the center.	Randomized: This was a nonrandomized study	USA Outpatient clinic Retrospective analysis	Deans Fund at Washington University School of Medicine, Barnes-Jewish Hospital Foundation, the Barnes-Jewish Hospital Auxiliary Foundation, Christopher Reeve Paralysis Foundation, the Nextsteps Foundation, the Sam Schmidt Foundation, Gateway to a Cure Foundation, and the Eric Westacott Foundation and, in part, by the Intramural Research Program at the NIH Clinical Center.

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms	Condition	Inclusion Criteria	Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Salci, 2016	4.2% (2/48) discontinued intervention reported acute exacerbation and femur	Multiple sclerosis	Diagnosis of MS (McDonald criteria); older	Randomized: 48	Turkey	None
Postural Control Balance	fracture after fall		than 18 years, an EDSS score between 3 and 5	Analyzed: 42* Attrition: 11%	University	
	4.2% (2/48) discontinued intervention reported acute exacerbation and traffic		with prominently ataxic problems; discontinuing	(6/48)	RCT	
Postintervention, 6 weeks	accident		the use of corticosteroids for 3 months prior to the	*Studies states that n=0 were		
Fair	4.2% (2/48) discontinued intervention without any reason		study; and having no acute exacerbations and no change in MS-specific	excluded from the analysis yet the n-analyzed		
	Study states: "No adverse effects of training were reported in the groups".		medications within 3 months of the study	was 42/48, so there was no ITT.		
Samaei 2014	None reported	Multiple sclerosis	Able to walk 10 meters in less than 10 minutes	34 randomized 31 analyzed 3/34=9%	Iran	Government/university
Aerobic Exercise Treadmill			Score greater than 3 on GNDS limb score	attrition		
Postintervention, 0 weeks						
Fair						

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms	Condition	Inclusion Criteria	Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Sandroff, 2017	NR	Multiple sclerosis		Randomized:	USA	This paper was
Multimodal Exercise Mid-intervention (12 weeks into intervention); Immediately postintervention Fair			of age; definite MS diagnosis based on neurologist's verification using standard diagnostic criteria; neurologist's verification of EDSS score between 4.0 and 6.0 based on the participant's most recent neurologist administered score (i.e., onset of substantial MS- related mobility disability); engaging in low levels of physical activity (i.e., participating in <2 days of at least 30 min of aerobic and/or resistance exercise per week); being relapse- free over the past 30 days; and low risk for contraindications for exercise testing and training based on no more than one "yes" response on all Physical Activity Readiness Questionnaire	83 Analyzed: 62 Attrition: 25.3% (21/83)	Outpatient clinic RCT	supported by a grant from the National Multiple Sclerosis Society (RG 4991A3/1).
Sangelaji, 2014	NR	Multiple sclerosis	items. Suffering from recurrent	Randomized:	Iran	The study is self-
Multimodal Exercise Postintervention, 0 weeks Poor			and improving type of MS, 18 to 50 years old, not having had any MS attack in the last 3 months and consuming various types of interferon for prevention of MS attacks, EDSS scores of 0-4	72 Analyzed: 55 Attrition: 23.6%% (17/72)	PT clinic RCT	funded

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Sangelaji, 2016	Harms NR	Condition Multiple sclerosis	Inclusion Criteria	Number Randomized Analyzed Attrition Randomized:	Country Setting Study Design Iran	Funding Source
Multimodal Exercise Postintervention, 0 weeks Fair			remaining MS 2. Adults between 18 and 50 years of age 3. An EDSS level of 0-5 4. Right-handed 5. No history of systemic disease, concomitant neurological disorders, epilepsy, heart diseases, anemia, or severe depression.	40 Analyzed: 40 Attrition: 0% (0/40)	PT clinic RCT	by Sport Science Research Institute of Iran.
Scholtes, 2010 Scholtes, 2011 Scholtes, 2008 (check QR, only 2 studies listed - 2010, 2012) Muscle Strength Postintervention, 6 weeks Fair	NR	Cerebral palsy		Randomized: 51 Analyzed: 49 Attrition: 3.9% (2/51)	Netherlands School RCT	Study was supported financially by a grant from the Johanna Kinder-Fonds (2005/ 0123-357), the Adriaanstichting, and the Phelps Stichting (2006016).
Shin, 2014 Aerobic Exercise Robot-Assisted Gait Training Postintervention, 4 weeks Fair	NR	Spinal cord injury	Inclusion Criteria: SCI <6 months, ASIA D, age 20- 65	Randomized: N=60 Analyzed: 53 Attrition: 11.7%	Korea Inpatient Rehabilitation RCT	NR

Author Vac-						1
Author, Year Intervention Type						
Duration of						
Postintervention						
				Number		
Followup				Number	0	
Quality				Randomized	Country	
(See Appendix B for				Analyzed	Setting	
Full Citation)	Harms	Condition	Inclusion Criteria	Attrition	Study Design	Funding Source
Silva e Borges, 2011	NR	Cerebral palsy	Inclusion Criteria:	Randomized:	Brazil	NR
			CP spastic diplegia	40	Outpatient clinic	
Postintervention, 0				Analyzed: 40	RCT	
weeks (after 6-week				Attrition: 0%		
intervention)				(0/40)		
Postural Control						
Hippotherapy						
Fair						
Slaman, 2014a	NR	Cerebral palsy	Diagnosed with spastic	Randomized:	Netherlands	NR
Slaman, 2014b			unilateral or bilateral CP;	57	outpatient clinic	
Slaman, 2015			age 16 to 24 years old;	Analyzed: 42	RCT	
Slaman, 2010			and GMFCS levels I to IV.	Attrition: 26.3%		
(check QR study dates -				(15/57)		
Slaman 2014, 2015a,				· /		
2015b listed)						
Multimodal Exercise						
Mid-intervention (12						
weeks into intervention);						
Immediately						
postintervention,						
24 weeks						
Fair						
Straudi, 2016	none	Multiple	Primary or secondary	Randomized:	Italy	Multiple Sclerosis
		sclerosis	progressive MS, 18 or	N=58	2 outpatient	Italian Society
Aerobic Exercise			older, and severe gait	Analyzed: 54	treatment centers	
Robot-Assisted Gait			impairment EDSS 6.0-7.0	Attrition: 6.9%	RCT	
Training						
Postintervention, 6						
weeks						
Fair						
		1				

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms	Condition	Inclusion Criteria	Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Straudi, 2019 Aerobic Exercise Robot-Assisted Gait Training Postintervention, 12 weeks Good	NR	Multiple sclerosis	Inclusion Criteria: People with MS, 18-65 years old, EDSS of 6.0-7.0	Randomized: 72 Analyzed: 64 Attrition: 12.5% (8/64)	Italy University Hospital RCT	Research Programme of Emilia Romagna Region
Swe 2015 Aerobic Exercise Treadmill Pre to post only Good	None reported	Cerebral palsy	Recruited from adolescents from schools and clinics Ability to walk with or without assist device for at least 10 meters	30 randomized 30 analyzed	Done in Singapore. Author in Australia RCT	Funding NR
Tak, 2015 Postural Control Motion gaming Immediately postintervention, 6 weeks Fair	NR	Spinal cord injury	Inclusion Criteria: At least 6 months since injury; able to sit independently for at least 30 seconds and absence pain sitting for 2 hours; able to lift arms to head; no musculoskeletal deformities; less than 5 points each leg on American Spinal Cord Injury Association Scale	Randomized: 26 Analyzed: 26 Attrition: 0%	South Korea Rehabilitation hospital RCT	Sahmyook Univerisity

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Tarakci, 2013 Multimodal Exercise Postintervention, 0 weeks Fair	Harms No adverse events occurred during the training period of the current study. There were no deleterious effects of the group exercise training on balance, fatigue and quality of life parameters.	Condition Multiple sclerosis	Inclusion Criteria Diagnosis of definite MS by McDonald criteria, EDSS score between 2.0 and 6.5, no relapse within 30 days, ability to adapt to exercises, having stability in medication and no difficulty in the transportation to the hospital.	Number Randomized Analyzed Attrition Randomized: 110 Analyzed: 99 Attrition: 10% (11/110)	Country Setting Study Design Turkey Outpatient RCT	Funding Source This research received no specific grant from any funding agency in the public, commercial, or not–for–profit sectors.
Tarakci, 2016 Postural Control Motion gaming Postintervention, 12 weeks Fair	NR	Cerebral palsy	Diagnosis of CP (diplegic, hemiplegic, dyskinetic type); age 5–18 years of age; GMFCS level 1, level 2 or level 3; no history of epilepsy; no botulinum toxin A treatment for the lower extremities in the previous 6 months; no excessive spasticity in any joint (score >2 on the MAS); and confirmed mental ability to be able adapt to exercise	Randomized: 38 Analyzed:30 Attrition: 21% (8/38)	Turkey University rehab. center RCT	NR
Taylor, 2013 Bania, 2016 Muscle Strength Immediately postintervention, 12 weeks Taylor, 2013: Good Bania, 2016: Fair	A vs. B Short-term muscle soreness was reported by most participants in group A. Minor calf strain: 4.3% (1/23) vs. 0% (0/25) Minor discomfort due to plantar fascia: 4.3% (1/23) vs. 0% (0/25)	Cerebral palsy	Patients with spastic diplegic CP, aged between 14 and 22 years, be classified as level II or III on the GMFCS, and be able to follow simple instructions.	Randomized: 49 Analyzed: 48 Attrition: 2% (1/49)	Australia Local gymnasiums RCT	This trial was supported financially by a grant from the National Health and Medical Research Council of Australia (ID 487321).

Author Voor						1
Author, Year						
Intervention Type Duration of						
Postintervention						
Followup				Number		
Quality				Randomized	Country	
(See Appendix B for				Analyzed	Setting	
Full Citation)	Harms	Condition	Inclusion Criteria	Attrition	Study Design	Funding Source
Tedla, 2014	Strong pressure from hand held	Cerebral palsy	Inclusion Criteria:	Randomized:	Saudi Arabia	NR
	dynameters was applied but reported to not		CP patients 5 to 14 years	60	Rehabilitation	
Strength interventions	hurt the skin.		old with spastic diplegia,	Analyzed: 60	hospital	
Muscle Strength			GMFCS I - IV	Attrition: 3%		
Exercises				(2/60)	RCT	
Exercices				(2,00)		
Immediately						
postintervention,						
6 weeks						
0 WCCKS						
Poor						
Teixeira-Machado, 2017	NB	Cerebral palsy	Patient 15-29 years old,	Randomized:	Italy	NR
		corobrar parcy	diagnosed with cerebral	26	italy	
Aerobic Exercise			palsy, increased muscle	Analyzed: 26	Outpatient clinic	
Aerobics (Dance)			tone and no cardiopathy	Attrition: 0% (0/	Outpution on no	
(Bullee)			or neoplasy	26)	RCT	
Postintervention, 12			of ficopiasy	20)		
weeks						
weeks						
Poor						
Tollar, 2020	NR	Multiple	Diagnosis of MS; male or	Randomized:	Hungary and	None
,		Sclerosis	female sex, age ≥30	70	The Netherlands	
Aerobic Exercise				Analyzed: 68	Outpatient clinic	
Cycling			6, a relapse frequency ≤1	Attrition: 3%	RCT	
c)g			per year over the past 5	(2/70)		
Postural Control			years to minimize a	(_,,		
Balance Exercises			change in medication, and			
Motion Gaming			Mini-Mental State			
Canning (Examination score ≥ 24			
Strength						
proprioceptive						
neuromuscular						
facilitation (PNF)						
Immediately						
postintervention, 5						
weeks						
WCCRS						
Fair						
			1			I]

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms	Condition	Inclusion Criteria	Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Totosy de Zepetnek, 2015 Multimodal Exercise Immediately postintervention, 16 weeks Fair	NR, one adverse event not related to the study reported.	Spinal cord injury	Inclusion Criteria: People with chronic SCI 1 year post injury, 18 to 65 years old	Randomized: 23 Analyzed: 17 Attrition: 7% (2/23)	Canada Outpatient clinic RCT	Ontario Neurotrauma Foundation Grant
Valent, 2010 Aerobic Exercise Hand cycling Postintervention, 0 weeks Fair	NR *this is questionable as one subject dropped out due to elbow tendonitis	Spinal cord injury	Included subjects met the following criteria: (1) had an acute SCI; (2) had a prognosis of 'remaining mainly wheelchair-bound'; (3) had a lesion level of C5 or lower (and consequently were expected to be able to propel a hand cycle); (4) were aged between 18 and 65 years; (5) had sufficient knowledge of the Dutch language; (6) did not have a progressive disease or psychiatric problem; (7) were free of halo-frames or corset; (8) were made familiar with hand cycling and agreed to participate according the training protocol.	Randomized: Nonrandomized study	Netherlands Inpatient rehabilitation Retrospective analysis	Netherlands Organisation for Health, Research and Development

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) van der Scheer 2016 Aerobic Exercise Treadmill 16-week intervention Postintervention, 0 weeks	Harms None	Condition Spinal cord injury	Inclusion Criteria Community dwelling inactive manual wheelchair users with SCI	Number Randomized Analyzed Attrition n=29 randomized 27 analyzed 2/29 attrition	Country Setting Study Design The Netherlands RCT Trained in rehabilitation center	Funding Source Government
FairVan Wely, 2014aVan Wely, 2014bVan Wely, 2010Multimodal ExerciseMid-intervention (16weeks into trial);Immediatelypostintervention,24 weeksVan Wely, 2014a: GoodVan Wely, 2014b: Fair	NR	Cerebral palsy	Children with spastic cerebral palsy, aged 7–13 years who could walk, classification in GMFCS level I–III, understanding of the Dutch language and fulfilling at least one of the following criteria as determined in a telephone interview: less active than the international physical activity norm of less than 1 hour daily at >5 metabolic equivalents, which is moderate or vigorous intensity; no regular participation in sports or (physiotherapeutic) fitness program (i.e., less than three times a week for at least 20 minutes); and experience of problems related to mobility in daily life or sports.	Randomized: 50 Analyzed: 47 Attrition: 6.0% (3/50)	Netherlands Outpatient clinic and participants home RCT	This project is part of the Dutch nationalLEARN 2 MOVE research program and is supported financially by ZonMw (grant number 89000002), Johanna Kinderfonds, Stichting Rotterdams Kinderrevalidatie Fonds Adriaanstichting, Revalidatie-fonds, Phelps Stichting, Revalidatie Nederland, and the Nederlandse Vereniging van Revalidatieartsen.

Author, Year						
Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms	Condition	Inclusion Criteria	Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Vermohlen, 2018 Protocol: Wollenweber, 2016 Postural Control Hippotherapy End of treatment (after 12-week intervention) Fair	A (n=30) vs. B (n=37) Patients with adverse events: 13 (43%) vs. 15 (41%) Number of patients with adverse events that are considered serious adverse events: 1 (3%) vs. 2 (5%)	Multiple sclerosis	Inclusion Criteria: confirmed multiple sclerosis with spasticity of the lower limbs, EDSS score between 4 and 6.5, written informed consent of the patient, approval of the responsible study physician, legal competence, minimum age of 18 years	Randomized: 70 Analyzed: 41 (67 analyzed for modified ITT) Attrition: 41% (29/70)	Germany Outpatient clinic RCT	Nonprofit
Wallard, 2017 Wallard, 2018 Aerobic Exercise Robot-Assisted Gait Training Postintervention, 4 weeks Poor	NR	Cerebral palsy	Inclusion Criteria: children 8-10 years old with bilateral spastic CP GMFCS Level II, walk 60m with or without assistive device	Randomized: N=30 Analyzed:30 Attrition: 0%	France Outpatient RCT	NR
Wens, 2015b Multimodal Exercise Postintervention, 0 weeks Fair	No dropout or adverse events were reported during the trial period	Multiple sclerosis	MS patients diagnosed according to McDonald criteria (EDSS range 1–5), aged >18 years	Randomized: 34 Analyzed: 34 Attrition: 0% (0/34)	NR NR RCT	Nonprofit MS Fund, Limburg, Flanders, Belgium
Williams, 2020 Multimodal Postintervention, 0 weeks and 8 weeks Fair	No adverse events were reported as a result of the intervention by either group.	Multiple sclerosis	Diagnosis of MS made by a neurologist, able to walk 10 meters with or without an aid within 2 minutes, no relapse of their MS in the past 4 weeks, and no other neurological or orthopedic condition that would affect their function.	Randomized: 50 Analyzed: 44 Attrition: 12% (6/50)	Australia Outpatient and home RCT	Nonprofit agency

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Willoughby 2010 Aerobic Exercise Treadmill Postintervention, 10 weeks Fair	Harms One B child dropped out due to back pain	Condition Cerebral palsy	Inclusion Criteria Recruited children from school for children with disabilities	Number Randomized Analyzed Attrition 33 randomized 26 analyzed 7/33=21% attrition for 9- week study	Country Setting Study Design Done in Singapore, Author Australia Done at schools RCT	Funding Source NR
Wu, 2017aWu, 2017a"Robotic resistancetreadmill trainingimproves locomotorfunction in children withcerebral palsy: arandomized controlledpilot study"Aerobic ExerciseRobot-Assisted GaitTrainingPostintervention,8weeks (after 6-weekintervention)Fair	NR	Cerebral palsy	Inclusion Criteria: bilateral spastic CP, aged 4 to 14 years, without botulinum toxin treatment and orthopedic surgery or neurosurgery in the 6 months before the onset of training, GMFCS I to IV, able to signal pain, fear, or discomfort reliably, with mild scoliosis (Cobb angle <20), passive range of motion within functional limits, and able to follow instructions on behavior tests	Randomized: N=23 Analyzed: 20 Attrition: 13% (3/23)	US Outpatient clinic RCT	Government

Author, Year						
Intervention Type Duration of						
Postintervention						
				Number		
Followup					0	
Quality				Randomized	Country	
(See Appendix B for				Analyzed	Setting	-
Full Citation)	Harms	Condition	Inclusion Criteria	Attrition	Study Design	Funding Source
Wu, 2017b	NR	Cerebral palsy	Inclusion Criteria: bilateral	Randomized:	US	NIDRR/RERC
"The effects of the			spastic CP, age 4 to 16	N=23	Outpatient	Government
integration of dynamic			years, GMFCS I-IV, able	Analyzed: 21	RCT	
weight shifting training			to signal pain, fear or	Attrition: 8.7%		
into treadmill training on			discomfort reliably,	(2/23)		
walking function of			passive range of motion			
children with cerebral			within functional limits			
palsy– a randomized			(ankle dorsiflexion =			
controlled study"			neutral; knee flexion = 0–			
			120°; hip flexion = 0–90°;			
Aerobic Exercise			and hip extension = 0–			
Robot-Assisted Gait			10°), if scoliosis is			
Training			present, Cobb angle <			
			20°, no Botulinum toxin			
Postintervention,8			treatment within past 3			
weeks (after 6-week			months, no orthopedic			
intervention)			surgery or neurosurgery			
,			within the past 6 months			
Fair						
Yang 2013	One drop out due to wrist pain worsening	Spinal cord injury	SCI C1 to L1 > 7 months	n=22	Canada	Government and
	during use of walker		ago	randomized		Foundation
Aerobic Exercise	-		Able to walk > 5 meters	and 20	RCT, single blind,	
Treadmill			with walking aid or braces	analyzed	cross over design	
			Able to attend 5x/week	-	with 2 months rest	
Pre to post, crossover			training	2/22	between	
with 2 months rest			Recruitment occurred over			
between			5 years			
			5			
8 week intervention						
Fair						

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation) Yazgan 2020 Postural Control Motion Gaming Postintervention, 0 weeks Fair	Harms None reported	Condition Multiple Sclerosis	Inclusion Criteria Diagnosis of MS; 25 to 60 years old, ambulatory without relapses in 3 months, EDSS between 2.5 and 6	Number Randomized Analyzed Attrition Randomized: 47 Analyzed: 42 Attrition: 10% (5/47)	Country Setting Study Design Turkey Setting (outpatient, rehabilitation) RCT	Funding Source University
Yazici, 2019 Aerobic Exercise Robot-Assisted Gait Training Immediately postintervention, 12 weeks Poor	NR	Cerebral palsy	Children with GFMS I-II hemiplegic cerebral palsy, no vision or hearing impairment who were attending a physiotherapy rehabilitation program	Randomized: 24 Analyzed: 22 Attrition: 9.1% (2/22)	Turkey University Rehabilitation Clinic Cohort study	NR
Yildirim, 2019 Aerobic Exercise Robot-Assisted Gait Training Immediately postintervention, 8 weeks Fair	NR	Spinal cord injury	18-65 years olds with SCI ASIA A-D complete or incomplete, injury within 6 months, ambulatory pre- injury	Randomized: 88 Analyzed: 88 Attrition: 0% (0/88)	Turkey Rehbialita-tion hospital RCT	NR

Author, Year Intervention Type Duration of Postintervention Followup Quality (See Appendix B for Full Citation)	Harms	Condition	Inclusion Criteria	Number Randomized Analyzed Attrition	Country Setting Study Design	Funding Source
Young, 2019	A vs. B vs. C Total AEs:	Multiple sclerosis	PDSS between 0 to 6 (8=bedridden)	Randomized: 81	USA Outpatient	Government
Aerobic Exercise	3 vs. 1 vs. 0			Analyzed: 81	RCT	
Aerobics	Falls: 0 vs. 0 vs. 0			presumed (100%)		
12 weeks	MSK-related: 3 vs. 0 vs. 0			Attrition: 20 (25%)		
) weeks	CV-related: 0 vs. 1 vs. 0					
Fair						
Zoccolillo, 2015	1 patient withdrew due to adverse event not related to the intervention (external	Cerebral palsy	Clinical diagnosis of CP; age between 4 and 14	Randomized: 22	Italy	Government
Postural Control	exoskeleton for standing up in front of the		years; level of GMFC	Analyzed: 15	Outpatient clinic	Italian Ministry of
Motion gaming	Kinect was broken, damage occurred outside of the study.		between I and IV	Attrition: 31.8% (7/22)	Crossover RCT	Health
Postintervention, 8 weeks						
Poor						

Abbreviations: AE = Adverse Events; BAI = Beck Anxiety Inventory; BBS = Berg Balance Scale; BMD = bone mineral density; BDI = Beck Depression Inventory; BMI = body mass index; CAB = Chronic Asymptomatic Bacturia; CAPES = Coordenac, a o de Aperfeic, oamento de Pessoal de Ni vel Superior; CES-D = Center for Epidemiologic Studies Depression Scale; CHART = Craig Handicap and Assessment Reporting Technique; CP = cerebral palsy; EESS = ENLIST ENL Severity Scale; EDSS = Expanded Disability Status Scale; FAC = functional ambulation category; FAFESP = Fundac, a o de Amparo a' Pesquisa; FES-I = Falls Efficacy Scale International; FIM=Functional Independence Measure; FISM = Fondazione Italiana Sclerosi Multipla FSS = Fatigue Severity Scale; FSST = Four Square Step Test; GMFM-88= The Gross Motor Function Measure-88; GNDS = Guy's Neurologic Disability Scale; GMFCS = Gross Motor Function Classification System; HADS-A = Hospital Anxiety Depression Scale-Anxiety; HADS-D = Hospital Anxiety Depression Scale-Depression; HRSD = Hamilton Depression Rating Scale; MACS = Manual Ability Classification System; MAS = Modified Ashworth Scale; MCS = Mental Component Summary; MS = multiple sclerosis; MSI = Multiple Sclerosis Impact Scale; MSQOL= Multiple Sclerosis Quality; MMT = Maximal Muscle Testing combined upper and lower limb strength; MusQoL = MS international Quality of Life; NA = not applicable; NR = not reported; PCS = General Health Perception; PPMS = Primary progressive MS ; NIH = National Institutes of Health; PRT = progressive resistance training RCT = Randomized controlled trial; RRMS = Relapsite; SAE = Serious Adverse Events; SAWS = Satisfaction with Abilities and Well-Being Scale; SD = standard deviation; SCI = spinal Cord injury; SCIM = Spinal Cord Independence Measure; SCPE = Surveillance of Cerebral Palsy in Europe; SOT = Sensory Organization Test; SPMS = Secondary progressive MS; TUG= Timed Up and Go Test; WHODAS IFC=The International Classification of Functioning, Disability and Health

See Appendix B. Included Studies for full study citation.

Appendix G. Quality Assessment

Table G-1. Quality assessment of randomized controlled trials

Author, Year (See Appendix B for	Randomization	Allocation Concealment	Groups Similar at Baseline (10% or Less	Outcome Assessors	Care Provider	Patients		to Followup	
Full Citation)	Adequate	Adequate	Difference)	Masked	Masked	Masked	Analyzed)	Acceptable	Quality Rating
Abbasi, 2019	Yes	Unclear	Yes	Yes	No	No	Yes	Yes/Yes	Fair
Acar, 2016	Unclear	Unclear	No	Unclear	No	No	Yes	Yes/Yes	Poor
Adar, 2017	Unclear	Unclear	No	Yes	No	No	Yes	Yes/Yes	Fair
Afrasiabifar, 2018	Yes	Unclear	No	Yes	No	No	Yes	Yes/Yes	Good
Ahmadi, 2013	Unclear	Unclear	Yes	Unclear	No	No	Yes	Yes/Yes	Fair
Ahmadizadeh, 2020	Unclear	Unclear	Yes	Yes	Unclear	No	Yes	Yes/Yes	Fair
Akkurt, 2017	Unclear	Unclear	No	Yes	No	No	Yes	Yes/Yes	Fair
Al-Sharman, 2019	Unclear	Unclear	No	Yes	No	No	No	No/No	Poor
Alexeeva, 2011	Yes	Yes	No	Yes	No	No	Yes	Yes/No	Fair
Amiri, 2019	Unclear	Unclear	Yes	Unclear	No	No	Yes	Yes/Yes	Fair
Aras, 2019	Unclear	Unclear	Unclear	Unclear	No	No	Yes	Yes/Yes	Fair
Arntzen, 2019	Yes	Unclear	Yes	Yes	No	No	Yes	Yes/Yes	Good
Aydin, 2014	Yes	Unclear	Yes	Unclear	No	No	No	Yes/No (20% vs. 0%)	Fair
Azimzadeh, 2015	No	No; small numbers	Yes	Unclear	No	No	Unclear	Yes	Poor
Bahrami, 2019a	Unclear	Unclear	Yes	Unclear	No	No	No	Yes/Yes	Fair
Baquet, 2018	Yes	Unclear	No	Yes	No	No	Yes	Yes/Yes	Fair
Brichetto, 2015	Unclear	Yes	Yes	Yes	No	No	Yes	Yes	Good
Bryant, 2013	Unclear	Unclear	No	Yes	No	No	Yes	Yes/Yes	Fair
Bulguroglu, 2017	Unclear	Unclear	No	Yes	No	No	No	Yes/Unclear	Poor
Cakit, 2010	Yes	Unclear	No	Yes	No	No	Unclear	No/No	Poor
Calabro, 2017	Yes	Yes	Yes	Yes	No	No	Yes	Yes/Yes	Good
Callesen, 2019	Unclear Cluster randomized	Unclear	Yes	Yes	No	No	No	Overall, Yes (17%) Differential, No: strength (26%) vs. WL (10%); Yes: strength (26%) vs. balance (16%) and balance (16%) vs. WL (10%)	Fair
Carling, 2017	Yes	Yes	No	Yes	No	No	Yes	Yes/Yes	Fair
Castro-Sanchez, 2012	Yes	Yes	Unclear	Yes	No	No	Yes	Yes/Yes	Good

Chen, 2016	Unclear	Unclear	No for smoking but had similar baseline PFTs and QoL scores	Unclear	No	No	Yes based on SF-36 answered questionnaires	Yes/Yes	Fair
Cho, 2020	Unclear	Unclear	No	Unclear	Unclear	No	No	Yes/Yes	Poor
Chrysagis, 2012	Unclear	Yes	No	Yes	No	No	Yes	Yes/Yes	Fair
Claerbout, 2012	Unclear	No	Yes	Yes	No	Unclear	Yes	Yes/Yes	Fair
Collett, 2011	Yes	Unclear	No (DMT, Leg power)	Yes	No	No	Yes (imputed)	No (75% completed 12 weeks) No (53%, 95%, 72%)	Poor
Curtis, 2018	Yes	Unclear	No - gender	Yes	No	No	No	No control lost more	Fair
Dalgas, 2009 Dalgas, 2010	Unclear	Unclear	Yes	No	No	No	No	Yes	Fair
Demuth, 2012	Unclear	Unclear	Yes	Yes	No	No	No	Yes	Fair
Deutz, 2018	Unclear	Unclear	Unclear	Unclear	No	No	Unclear	No (29%)	Poor
Dodd, 2011	Yes	Yes	Yes	Yes	No	No	Yes LVCF	Yes	Good
Doulatabad, 2012	Unclear	Unclear	Unclear	Unclear	No	No	No	Unclear	Poor
Duarte Nde, 2014	Unclear	Yes	Yes	Yes	Unclear	Yes	Yes	Yes/Yes	Fair
Duff, 2018	Yes	Unclear	No	Yes	No	No	Yes	Yes	Fair
Duffell, 2014	Unclear	Unclear	Unclear	Unclear	No	No	Unclear	Unclear	Poor
Ebrahimi, 2015	Unclear	Unclear	No	Yes	No	No	No (88%)	Yes/No (6% vs. 18%)	Poor
Elnaggar, 2019	Yes	Yes	No	Yes	No	No	No	Yes/Yes	Fair
El-Shamy, 2018	Yes	Yes	No	Yes	No	No	Yes	Yes/Yes	Fair
Emara, 2016	Yes	Unclear	Yes	Yes	No	No	No (91%)	Yes	Fair
Esclarin-Ruz, 2014	Unclear	Unclear	No	Yes	No	No	Unclear	Yes/Yes	Fair
Faramarzi, 2020 (Banitalebi, 2020)	Unclear	Unclear	Unclear- characteristics based on disability levels	No	No	No	Yes	Yes/Yes	Fair
Field-Fote, 2011 (Sandler, 2017)	Unclear	Unclear	Yes	Yes	No	No	No	Yes	Fair
Forsberg, 2016	Yes	Yes	Yes	Yes	No	No	No	Yes	Fair
Fosdahl, 2019b	Unclear	No	No	Yes	No	No	Yes (imputation for 6MWT)	Yes	Fair
Fowler, 2010	Unclear	Unclear	No - vision	Yes	No	No	No	Yes	Fair
Fox, 2016	Yes	Yes	No	Yes	No	No	No	Yes	Fair
Galea, 2018	Yes	Yes	Yes	Yes	No	No	Yes	No/No	Fair
Gandolfi, 2015	Yes	Yes	Yes	Yes	No	No	No	Yes	Fair

Garrett, 2013a "Exercise in the	Yes	Yes	No	Yes	No	No	No	No	Poor
community for people with minimal gait" (Garrett, 2013b)									
Gervasoni, 2014	Unclear	Unclear	Yes	NR	No	No	No	Yes	Fair
Giangregorio, 2012	Yes	Yes	Yes	Yes	No	No	Yes	No	Fair
(Hitzig, 2013; Craven, 2017;Kapadia, 2014)	165	165	103	165	INO	INO	105	NO	raii
Gibson, 2018	Yes	Yes	Yes	Yes	No	No	Yes	No	Good
Gorman, 2019	Yes	Yes	No	No (not at both sites)	No	No	Yes	Yes/Yes	Fair
Grecco, 2013	Unclear	Unclear	Yes	Yes	No	No	No	Yes	Fair
Grecco, 2014	Yes	Yes	Yes	Unclear	Unclear	No	Yes	Yes	Fair
Hasanpour Dehkordi, 2016 "Influence of…"	Yes	Unclear	Unclear	Unclear	No	No	Unclear	Unclear	Poor
Hasanpour-Dehkordi, 2016 "Effects of…"	No	No	Unclear	Yes	No	No	Unclear	Unclear	Poor
Hassanpour-Dehkordi, 2014	Unclear	Unclear	Unclear	Unclear	No	No	Unclear	Unclear	Poor
Hebert, 2011 (Hebert, 2009)	Yes	Yes	Yes	Yes (except patient-reported)	Unclear	No	Yes	Yes	Fair
Heine, 2017	Yes	Yes	No	Yes	No	No	Unclear	2 mos: Yes 4 mos: Yes 6 mos: Yes/No 12 mos: No	Fair
Herrero, 2012	Yes	Yes	Yes	Yes	No	No	Yes	Yes/Yes	Fair
Hochsprung, 2017	Yes	Unclear	No	Yes	No	No	No	Yes/Unclear	Poor
Hogan, 2014	No	Unclear	No	Yes	No	No	No	No/No	Poor
Hota, 2020	Unclear	Unclear	No	Unclear	Unclear	No	Yes	Yes/Yes	Fair
Hsieh, 2018	Unclear	Unclear	Yes	Yes	No	No	Unclear	Yes/Yes	Fair
Hsieh, 2020	Yes	Unclear	Unclear	Unclear	No	No	Yes	Yes/Yes	Fair
Huang, 2015	Unclear	Unclear	Yes, but few variables	No	No	No	Yes	Yes/Yes	Fair
In, 2018	Unclear	Unclear	Yes	Yes	No	No	No	Yes/Yes	Fair
Johnston, 2011	Yes	Unclear	Unclear (some differences)	Unclear (2 sites yes, 1 site no)	No	No	No	No (23%)/Yes	Fair
Jones, 2014a "results from a randomized clinical trial"	Unclear	Unclear	No (several differences)	No	No	No	Unclear	Unclear	Poor
Jones, 2014b "results from a secondary analysis"	Unclear	Unclear	Unclear	NR	NR	No	No 41/48 analyzed	No 38/48 for 6 months	Poor
Jonsdottir, 2018	Yes	Yes	No	Yes	No	No	Yes	Yes	Fair
Jung, 2014	Unclear	Unclear	Unclear (some differences)	No	No	No	Yes	Yes/Yes	Fair

Kalron, 2016	Unclear	Yes	Yes	Unclear	Unclear	No	Yes (6.6% missing)	Yes/Yes	Fair
Kalron, 2017	Yes	Yes	Yes	Yes (except patient-reported)	Unclear	No	No	Yes	Fair
Kara, 2020	Yes	Unclear	Yes	Yes	No	No	No	Yes/Yes	Fair
Kargarfard, 2018	Yes	Unclear	Yes	Unclear	No	No	Yes (LOCF)	Yes	Fair
Kaya Kara, 2019	Yes	Unclear	Yes	Yes	No	No	Yes	Yes	Fair
Kerling, 2015	Unclear	Yes	No	Yes (primary outcomes objective)	No	No	Yes (LOCF)	No/Yes	Fair
Khalil, 2018	Unclear	Unclear	No	Yes	No	No	No	Yes	Fair
Kim, 2015	Yes	Yes	No	Unclear	No	No	Unclear	Unclear	Fair
Kjolhede, 2016	Unclear	Unclear	Yes	No	No	No	No	Yes	Fair
Klobucka, 2020	Unclear	Unclear	No	NR	No	No	Yes (immediately after treatment); at 3-4 month LTF only RAGT reported	Yes (immediately post treatment); No 3-4 month 24% LTF in RAGT	Poor
Kooshiar, 2015	No	No	Yes	Unclear	No	No	Yes	Yes/Yes	Fair
Kressler, 2013	Unclear	Unclear	Unclear (no demographics)	Unclear	No	No	Yes	Unclear	Fair
Kumru, 2016	Unclear	Unclear	Yes	Yes	No	Yes	Yes	Yes/Yes	Fair
Kwon, 2015	Yes	Yes	Yes	Yes	No	No	Yes	Yes/Yes	Good
Lavado, 2013	Yes	No	Unclear	Yes	No	No	Yes	Yes/Yes	Fair
Lee, 2013	Unclear	Unclear	Yes (limited)	Yes	No	No	Yes	Unclear	Fair
Lee, 2014	Unclear	Unclear	Yes (limited)	Unclear	No	No	Yes	Unclear	Poor
Liu, 2019	Unclear	Unclear	No	Unclear	No	No	No	Overall: No	Fair
	Unclear	Unclear	Yes	Unclear	No	No	No	Differential: Yes No	
Lucena-Anton, 2018	Yes	Unclear	Yes	Yes	No	No	Yes	Yes/Yes	Fair
Makhov, 2018	Unclear	Unclear	Unclear	Unclear	No	No	Unclear	Unclear	Poor
Marandi, 2013a "A comparison of 12 weeks"	Unclear	Unclear	No	Unclear	No	No	No (79%)	No (21%), Yes	Poor
Marandi, 2013b "A comparison between pilates…"	Unclear	Unclear	No	Unclear	No	No	No	No	Poor
Matusiak-Wieczorek, 2020	Unclear	Unclear	No	Unclear	No	No	Yes	Yes/Yes	Fair
Midik, 2020	Unclear	Unclear	No	No	Yes	No	Yes	Yes/Yes	Fair
Mogharnasi, 2019	Unclear	Unclear	Yes	Unclear	No	No	Yes	Yes	Poor
Moraes, 2020	Unclear	Unclear	Yes	Yes	No	No	Yes	Yes, Yes	Fair

Musselman, 2014 (companion to Yang, 2014)	Yes	Yes	Yes except for self-selected speed for endurance training	Yes	No	No	Yes	Yes	Fair
Mutoh, 2019	Yes	Unclear	Yes	Yes	No	No	Yes	Yes/Yes	Fair
Najafidoulatabad, 2014	Unclear	Unclear	Yes	Unclear	No	No	Unclear (# eligible, LTF NR)	Unclear (# eligible, LTF NR)	Poor
Negaresh, 2019	Unclear	Unclear	Yes	Yes	No	No	No	Yes	Fair
Nilsagard, 2013	Yes	Yes	No	Yes	No	No	Yes 95% analyzed	Yes	Fair
Norouzi, 2019	Yes	Unclear	Unclear	Unclear	No	No	Yes	Yes/Yes	Fair
Ortiz-Rubio, 2016	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Good
Ozkul, 2020	Yes	Yes	No	Unclear	Unclear	No	No	No/Yes	Fair
Ozkul, 2020b	Yes	Unclear	Yes	Yes	Unclear	No	Yes	Yes/Yes	Fair
Pompa, 2017	Yes	No	No	Yes	No	No	No	Yes	Fair
Pourazar, 2020	Unclear	Unclear	Yes	Unclear	Unclear	No	Yes	Yes/Yes	Fair
Qi, 2018a "Therapeutic…"	Unclear	Unclear	Yes	Unclear	Unclear	No	Yes	Unclear	Fair
Qi, 2018b "The effect"	Yes	Unclear	Yes	No	No	No	Yes	Yes/Yes	Fair
Razazian, 2016	No	Unclear	No	Yes	No	No	Unclear	Unclear	Poor
Russo, 2018	Yes	Yes	Unclear	Yes	No	No	Yes	Yes	Fair
Sadeghi Bahmani,2019a	Yes	Yes	No	Unclear	No	No	Yes	Yes/Yes	Fair
Sadeghi Bahmani,2019b	Yes	Yes	Yes	Unclear	No	No	No	Yes/Yes	Fair
Salci, 2017	Unclear	Unclear	Yes	No	No	No	No	Yes	Fair
Samaei, 2016	Unclear	Unclear	Yes	No	No	No	No	Yes	Fair
Sandroff, 2017	Unclear	Unclear	Yes	No	No	No	No	No	Fair
Sangelaji, 2014	No	Unclear	Yes	Yes	No	No	No	No	Poor
Sangelaji, 2016	Unclear	Unclear	Yes	Yes	No	No	No	Yes	Fair
Scholtes, 2010	Unclear	Unclear	Yes	Yes	No	No	No	Yes	Fair
Shin, 2014	Unclear	Unclear	Yes	No	No	No	No	Yes	Fair
Silva e Borges, 2011	Unclear	Unclear	Yes	Yes	No	No	Yes	Yes/Yes	Fair
Slaman, 2014	Unclear	Unclear	Yes	Unclear	No	No	No	Yes	Fair
Slaman, 2015a "A lifestyle"	Yes	Unclear	Yes	No	No	No	No	Yes	Fair
Slaman, 2015b "Can a lifestyle"	Yes	Unclear	Yes	Unclear	No	No	No	No	Fair
Straudi, 2016	Yes	Yes	No	Yes	No	No	Yes	Yes	Good
Straudi, 2019	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Good
Swe, 2015	Yes	Yes	Yes	Yes	No	No	No	Yes	Good
Tak, 2015	Yes	Unclear	Yes	Unclear	No	No	Yes	Yes/Yes	Fair
Tarakci, 2013	Yes	Unclear	Yes	Yes	No	No	No	Yes	Fair
Tarakci, 2016	Yes	Unclear	Yes	No	No	No	No	No	Fair
1 a1 a1 01, 2010	165	Undeal	163	NU	INU	INU	NU	INU	I all

Taylor, 2013 and Bania, 2016	Yes	Yes	Yes	Yes	No	No	No	Yes	Good
Tedla, 2014	Unclear	Unclear	Unclear	No	No	No	Yes	Yes (97%)	Poor
Teixeira-Machado, 2017	Yes	Unclear	Yes	Unclear	Unclear	No	Yes	Yes/Yes	Fair
Tollar, 2020	Yes	Unclear	No	Yes	Unclear	No	Yes	Yes/Yes	Fair
Totosy de Zepetnek, 2015	Yes	Unclear	No	Unclear	No	No	No	No/Yes	Fair
van der Scheer, 2016	Unclear	Unclear	No (time since injury)	No	No	No	Yes	Yes/Yes	Fair
Van Wely, 2014a, 2014b	Yes	Yes	No for gender	Unclear	No	No	Yes	Yes/Yes	Fair
Vermohlen, 2018	Yes	Yes	Yes	Yes (except patient-reported)	Unclear	No	Yes	Yes	Fair
Wallard, 2017	Unclear	Unclear	Yes	Yes	No	No	Unclear	Unclear (NR)	Poor
Wallard, 2018	Unclear (NR)	Unclear	Unclear (few variables reported)	Unclear	No	No	Unclear	Unclear (NR)	Poor
Wens, 2015a "Impact…"	Unclear	Unclear	No	Yes	No	No	Unclear	Unclear	Poor
Wens, 2015b "High intensity…"	Unclear	Unclear	Yes, but BMI d= overweight for 2 groups, healthy weight for 1	No	No	No	Yes	Yes/Yes	Fair
Williams, 2020	Yes	Yes	No	Yes	No	No	Yes	Yes/Yes	Fair
Willoughby, 2010	Yes	Yes	Yes	Yes	No	No	No	No (24%)/Yes	Fair
Wu, 2017a "Robotic"	Yes	Unclear	Unclear (numerous but small differences favoring one group)	Unclear	Unclear	No	No (13% missing)	Yes	Fair
Wu, 2017b "Effects"	Unclear	Yes	Yes	No	No	No	Yes	Yes/Yes	Fair
Yang, 2014	Unclear	Unclear	Yes	Yes	No	No	No	Yes/Yes	Fair
Yazgan, 2020	Yes	Unclear	No	No	No	No	No	Yes//No	Fair
Yildirim, 2019	No	No	Yes	Unclear	No	No	Yes	Yes	Fair
Young, 2019	Yes	Yes	Yes	Yes	No	No	Yes	No (25%)/Yes	Fair
Zoccolillo, 2015	Unclear	Unclear	Unclear	No	No	No	No	No/No (41%)/Yes	Poor

Table G-2. Quality assessment of quasiexperimental studies

Author, Year (See Appendix B for Full Citation)	Did the Study Attempt To Enroll a Random Sample or Consecutive Patients Meeting Inclusion Criteria (Inception Cohort)?	Were the Groups Comparable at Baseline?	Did the Study Use Accurate Methods for Ascertaining Exposures, Potential Confounders, and Outcomes?	Were Outcome Assessors and/or Data Analysts Blinded to Treatment?	Did the Article Report Attrition?	Did the Study Perform Appropriate Statistical Analyses on Potential Confounders?	Overall Loss to Followup Acceptable? Differential Loss to Followup Acceptable?	Were Outcomes Prespecified and Defined, and Ascertained Using Accurate Methods?	Quality Rating
Aviram, 2017	Unclear	No	Yes	No	Yes	No	Yes	Yes	Fair
Bleyenheuft, 2017	No (quasiexperimental)	No	Yes	Yes (2 outcomes)	No	No	Yes	Yes/Yes	Poor
Burschka, 2014	Unclear	Unclear	Yes	Unclear	Unclear	Unclear	No	Yes	Poor
Kara, 2017	Unclear	Unclear	Unclear	Yes	Yes	No	No (36%)/(63%)	Yes	Poor
Keser, 2011	Unclear	Yes	Yes	Unclear	No	No	Unclear	Yes	Poor
Kirk, 2016	No	unclear	Yes	No	No	No	Unclear	Yes	Poor
Kwon, 2011	No	Yes (limited variables)	Yes	Yes	No	Unclear; at least they did repeated measures analysis	Unclear	Yes	Fair
Lai, 2010	No	No; small numbers	Yes	Yes	Yes	Yes; ANCOVA	Yes	Yes	Fair
Lorentzen, 2015	No	No; n's in Gr 1=34, Gr 2=12; diff % but small #s	Yes	Unclear	No	Unclear; model appears to focus on interaction; they do correct for multiple comparisons.	Unclear	Yes	Poor
Matusiak- Wieczorek, 2016	No	Yes	No	No	Yes	No	Yes	Yes	Poor
Niwald, 2017	Unclear	Yes	Yes	No	No, but same number enrolled reported for outcomes	No	NR	Yes	Fair
Nsenga Leunkeu, 2012	No (convenience sample)	Unclear	Yes	No	Yes	No	Yes/Unclear	Yes	Fair
Nsenga, 2013	No	Yes	Yes	Unclear	Yes	Yes	Yes	Yes	Fair
Peri, 2017	Unclear	No	Unclear	Unclear	No	No	Unclear	Yes	Poor
Roppolo, 2013	Unclear	Yes	Yes	Unclear	Yes	Yes	Unclear	Yes	Fair

Table G-3. Quality assessment of cohort studies

Author, Year (See Appendix B for Full Citation)	Did the Study Attempt To Enroll a Random Sample or Consecutive Patients Meeting Inclusion Criteria (Inception Cohort)?	Groups	Did the Study Use Accurate Methods for Ascertaining Exposures, Potential Confounders, and Outcomes?	Were Outcome Assessors and/or Data Analysts Blinded to Treatment?	Did the Article Report Attrition?	Did the Study Perform Appropriate Statistical Analyses on Potential Confounders?	Overall Loss to Followup Acceptable? Differential Loss to Followup Acceptable?	Were Outcomes Prespecified and Defined, and Ascertained Using Accurate Methods?	Quality Rating
Harness, 2008	Yes	Yes	Yes	No	Yes	No	Yes/Yes	Yes	Fair
Kim, 2017	Unclear	No	Yes	Unclear	No	No	Unclear	Yes	Poor
Lai, 2015	No	No; small numbers	Yes	Yes	Yes	Yes; ANCOVA	Yes	Yes	Fair
Park, 2014	No	No	Yes	Unclear	Yes	No	Yes (17%), No (24% vs. 0%)	Yes	Poor
Sadowsky, 2013	Unclear	No	Yes	Unclear	No	No	Unclear	Yes	Poor
Yazici, 2019	No	Unclear	Yes	Unclear	Yes	No	Yes/No	Yes	Poor
Valent, 2010	Unclear	Yes	Yes	Unclear	Yes	No	Yes/unclear	Yes	Fair

Appendix H. Strength of Evidence

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Aerobic Exercise Aerobics	Home exercise with DVD or Attention control	Sleep	2 (N=77) Al-Sharman, 2019 Sadeghi Bahmani, 2019b	Moderate	Consistent	Imprecise	Undetected	Low for benefit	PSQI: 8.0 (3.8) to 4.6 (2.3) vs. 8.9 (4.3) to 7.1 (3.2), p<0.001
Aerobic Exercise Aerobics	Attention control	Function	1 (N=47) Sadeghi Bahmani, 2019b	Moderate	Unknown	Imprecise	Undetected	Insufficient	EDSS: 2.46 (1.50) to 2.27 (1.64) vs. 2.02 (1.84) to 1.98 (1.70), p>0.05
Aerobic Exercise Aerobics	Pilates	Function	1 (N=55) Kara, 2017	High	Unknown	Imprecise	Undetected	Insufficient	TUG right: MD -0.47, 95% CI -2.975 to 2.035, p=0.71 TUG left: MD -3.07, 95% CI -6.341 to 0.201, p=0.07
Aerobic Exercise Aerobics	Pilates	Balance	1 (N=55) Kara, 2017	High	Unknown	Imprecise	Undetected	Insufficient	BBS: MD -0.67, 95% CI - 10.56 to 9.22, p=0.89
Aerobic Exercise Aerobics	Neuro- rehabilitation	Function	1 (N=30) Keser, 2011	High	Unknown	Imprecise	Undetected	Insufficient	MSFC: MD -0.002 (0.44) vs. 0.02 (0.23), p>0.05
Aerobic Exercise Aerobics	Neuro- rehabilitation	Quality of Life	1 (N=30) Keser, 2011	High	Unknown	Imprecise	Undetected	Insufficient	SF-36 total: MD 0.20 (5.67) vs. 1.73 (7.75), p>0.05
Aerobic Exercise Aerobics	Neuro- rehabilitation	Balance	1 (N=30) Keser, 2011	High	Unknown	Imprecise	Undetected	Insufficient	BBS: MD -1.73 (3.03) vs 1.80 (2.67), p>0.05

 Table H-1. Strength of evidence for Key Question 2: aerobic exercise for multiple sclerosis

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Aerobic Exercise Aquatics	Usual care, previous activity level or attention control	Function	1 (N=32) Kargarfard, 2018	Moderate	Unknown	Imprecise	Undetected	Insufficient	Mean (SD) <u>6MWT</u> : 451 (58) vs. 447 (30) (baseline) 503 (57) vs. 418 (29) (postintervention) Between group difference p<0.001 <u>Sit to Stand:</u> 21.0 (5.7) vs. 21.4 (4.7) (baseline) 16.8 (5.1) vs. 27.3 (4.8) (postintervention) Between group difference p<0.001
Aerobic Exercise Aquatics	Usual care, previous activity level or attention control	Quality of Life	1 (N=40) Kooshiar, 2015	Moderate	Unknown	Imprecise	Undetected	Insufficient	Mean (SD) MQLIM: 63.13 (13.02) vs. 65.48 (9.74) (baseline) 80.06 (11.53) vs. 66.52 (6.22) (post-intervention) Between group difference, p<0.001
Aerobic Exercise Aquatics	Ai-Chi exercises on mat	ADLs	1 (N=73) Castro-Sanchez, 2012	Low	Unknown	Imprecise	Undetected	Low for benefit	$\begin{array}{r} \underline{MSIS-29\ Physical:} 48\\ \hline (15.91)\ to\ 41\ (12.37)\ vs.\\ 46\ (18.34)\ to\ 45\ (17.14),\\ p=0.014\\ \underline{MSIS-29\ Psychological:}\\ 34\ (29.47)\ to\ 21\ (15.73)\\ vs.\ 30\ (23.53)\ to\ 25\\ \hline (19.36),\ p=0.023\\ \hline Differences\ in\ MSIS-29\\ maintained\ at\ 30\ weeks\\ \underline{Barthel\ Index:}\ 91\ (7.12)\ to\\ 86\ (9.23)\ vs.\ 87\ (10.34)\ to\\ 88\ (8.92),\ p>0.05\\ \end{array}$

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Aerobic Exercise Aquatics	Usual care, previous activity level or attention control	Balance	2 (N=62) Kargarfard, 2018 Marandi, 2013	Moderate	Consistent	Imprecise	Undetected	Low for benefit	Six Spot Step Test, N=30: Right leg dynamic balance: 8.57 (3.64) vs. 10.64 (4.17) (baseline) 6.40 (1.82) vs. 12.65 (6.05) (post-intervention) Adjusted MD -5.88 (SE 1.4), p<0.001 Left leg dynamic balance: 9.12 (4.31) vs. 10.16 (3.76) (baseline) 6.26 (1.95) vs. 12.49 (4.63) (post-intervention) Adjusted MD -6.23 (SE 1.2), p<0.001 BBS, N=32 53.6 (1.7) vs. 52.3 (3.3) (baseline) 55.2 (1.2) vs. 50.2 (4.6) (post-intervention) Between group difference p<0.001
Aerobic Exercise Aquatics	Usual care, previous activity level or attention control	Female Sexual Function Index	1 (60) Bahmani, 2020	Moderate	Unknown	Imprecise	Undetected	Low for benefit	Exercise 2x/week vs. <u>3x/week vs. active control:</u> <u>FSFI:</u> 52.14 vs. 48.80 vs. 42.80, p<0.001

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Aerobic Exercise Cycling	Usual care, previous activity level or attention control	Function	6 (n=277) Negaresh, 2018 Hochsprung, 2017 Baquet, 2018 Hebert, 2011 Tollar, 2020 Heine, 2017	Moderate	Consistent	Imprecise	Undetected	Low-strength evidence of no clear benefit	$\begin{array}{l} \underline{\text{TUG}}: -3.8 \ \text{vs.} -0.1, \ \text{favors}\\ \text{cycling UE/LE}\\ \underline{6MWT}: \ \text{MD} \ 4.0, \ 95\% \ \text{CI} -36.5 \ \text{to} \ 44.5\\ 32.1 \ (44.58) \ \text{vs.} \ 6.3\\ (49.27), \ \text{p}=0.174\\ \text{MD} \ 62.7, \ 95\% \ \text{CI} -87 \ \text{to}\\ 2.7, \ \text{p}=1.00\\ \underline{25} \ \text{foot} \ \text{walk}: \ \text{MD}: -0.1,\\ 95\% \ \text{CI} \ -0.4 \ \text{to} \ 0.2, \ \text{p}=0.49\\ \underline{\text{MSWS}}: \ -0.3, \ 95\% \ \text{CI} \ -2.1\\ \text{to} \ 1.6, \ \text{p}=0.78\\ \text{MSIS}-29: \ -6.3 \ (8.07) \ \text{vs.}\\ 1.0 \ (3.46), \ \text{p}=0.008\\ \underline{\text{FAP}}: \ 3.036 \ \text{vs.} \ -1.06, \ \text{no}\\ \text{between group}\\ \text{comparison provided}\\ \underline{\text{IPA} \ \text{autonomy indoors}: \ -}\\ 0.11 \ (0.088), \ \text{p}=0.203\\ \underline{\text{IPA} \ \text{family role}: \ -0.082}\\ (0.1222), \ \text{p}=0.502\\ \underline{\text{IPA} \ \text{autonomy outdoors}: \ -}\\ 0.097 \ (0.125), \ \text{p}=0.438\\ \underline{\text{IPA} \ \text{Social} \ \text{Relations}: \ -}\\ 0.138 \ (0.092), \ \text{p}=0.135\\ \underline{\text{IPA} \ \text{Work/education}:}\\ 0.225 \ (0.167), \ \text{p}=0.181\\ \end{array}$
Aerobic Exercise Cycling	Usual care, previous activity level or attention control	Quality of Life	2 (n=94) Baquet, 2018 Tollar, 2020	Moderate	Inconsistent	Imprecise	Undetected	Insufficient	<u>HAQUAMS</u> : -0.4, 95% CI - 4.5 to 3.7, p=0.84 <u>EQ-5 Sum Score:</u> -1.4 (1.7) vs. 0.0 (1.13), p=0.023
Aerobic Exercise Cycling	Usual care, previous activity level or attention control	ADLs	1 (89) Heine, 2017	Moderate	Unknown	Imprecise	Undetected	Insufficient	IPA: <u>Autonomy indoors</u> : - 0.11 (0.088), p=0.203 <u>Family role</u> : -0.082 (0.1222), p=0.502 <u>Autonomy outdoors</u> : - 0.097 (0.125), p=0.438 <u>Social Relations</u> : -0.138 (0.092), p=0.135 <u>Work/education</u> : 0.225 (0.167), p=0.181

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Aerobic Exercise Cycling	Usual care, previous activity level or attention control	Balance	1 (26) Tollar, 2020	Moderate	Unknown	Imprecise	Undetected	Insufficient	BBS: 2.5 (2.62) vs0.2 (2.62), p=0.015
Aerobic Exercise Robot- Assisted Gait Training	Usual care, previous activity level or attention control	Walking	2 (95) Straudi, 2016 Pompa, 2017	Moderate	Inconsistent	Imprecise	Undetected	Insufficient	<u>6MWT</u> : 23.22 (32.23) vs. -0.75 (26.40), p=0.01 10MWT: 0.07 (0.15) vs. 0.01 (0.10), p=0.29 <u>2MinWT</u> : 8.88 vs. 2.81, p>0.05 <u>FAC (functional</u> <u>ambulation category)</u> : 6.86 vs. 0.00, p>0.05
Aerobic Exercise Robot- Assisted Gait Training	Usual care, previous activity level or attention control	Function	2 (97) Russo, 2018 Straudi, 2016	Moderate	Consistent	Imprecise	Undetected	Low-strength evidence of no clear benefit	<u>TUG</u> : 0.20, 95% CI -3.40 to 3.80, p=0.91 <u>TUG</u> : 2.66 (13.79) vs. -3.96 (10.50), p=0.95
Aerobic Exercise Robot- Assisted Gait Training	Usual care, previous activity level or attention control	Quality of Life	1 (52) Straudi, 2016	Low	Unknown	Imprecise	Undetected	Insufficient	<u>SF 36-PCS:</u> 1.67 (7.74) vs. 1.84 (6.77), p=0.99 <u>SF 36-MCS:</u> 5.37 (9.58) vs. 1.60 (9.41), p=0.14
Aerobic Exercise Robot- Assisted Gait Training	Usual care, previous activity level or attention control	Balance	2 (97) Straudi, 2016 Russo, 2018	Moderate	Consistent	Imprecise	Undetected	Low for benefit	<u>TBS</u> : 0.48 (SE 0.22), p=0.04 <u>BBS</u> : 3.24 (4.99) vs. 0.87 (6.45), p=0.19
Aerobic Exercise Robot- Assisted Gait Training	Usual care, previous activity level or attention control	ADLs	1(43) Pompa, 2017	Moderate	Unknown	Imprecise	Undetected	Insufficient	Rivermean Mobility Index: 0.73, 95% CI -0.85 to 2.31, p=0.37
Aerobic Exercise Robot- Assisted Gait Training	RAGT without VR	Function	1 (40) Calabro, 2017	Low	Unknown	Imprecise	Undetected	Insufficient	<u>TUG:</u> -0.064, 95% CI - 0.408 to 0.536, p=0.3
Aerobic Exercise Robot- Assisted Gait Training	RAGT without VR	Balance	1 (40) Calabro, 2017	Low	Unknown	Imprecise	Undetected	Insufficient	BBS: -0.019, 95% CI - 2.403 to 2.365, p=0.8

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Aerobic Exercise Robot- Assisted Gait Training	RAGT with assistance	Function	1 (23) Wu, 2017a	Moderate	Unknown	Imprecise	Undetected	Insufficient	<u>6MWT:</u> 49.8, 95% CI - 49.85 to 149.45, p=0.33 <u>GMFM-66 total:</u> 0.10, 95% CI -7.74 to 7.94, p=0.98 <u>GMFM-66D:</u> 0.10, 95% CI -8.55 to 8.75, p=0.98 <u>GMFM-66E:</u> 0.10, 95% CI -16.32 to 16.52, p=0.99
Aerobic Exercise Robot- Assisted Gait Training	Treadmill or Overground walking	Function	2 (95) Wu, 2017b Straudi, 2019	Low	Consistent	Imprecise	Undetected	Low-strength evidence of no clear benefit	<u>GMFM-66 total:</u> -5.1, 95% CI 13.62 to 3.42, p=0.24 <u>GMFM-66D:</u> 3.6, 95% CI - 5.40 to 12.60, p=0.43 <u>GMFM-66E:</u> 0.2, 95% CI - 17.79 to 19.19, p=0.98 <u>6MWT:</u> MD 4, 95% CI -10 to 18, p=0.86 <u>25FWT:</u> MD 0, 95% CI - 0.06 to 0.05, p=0.98 <u>TUG:</u> MD 7.8, 95% CI -0.2 to 15.8, p=0.25
Aerobic Exercise Robot- Assisted Gait Training	Overground walking	QoL	1 (72) Straudi, 2019	Low	Unknown	Imprecise	Undetected	Low-strength evidence of no clear benefit	MSIS-29 motor: -3, 95% CI -9 to 3, p=0.31 MSIS-29 psychological: MSIS-29 psychological: - 2, 95% CI -5 to 1, p=0.22 SF-36 PCS: SF-36 PCS: -1, 95% CI -4 to 3, p=0.13 SF-36 MCS: SF-36 MCS: 1, 95% CI -2 to 4, p=0.94
Aerobic Exercise Robot- Assisted Gait Training	Overground walking	Balance	1 (72) Straudi, 2019	Low	Unknown	Imprecise	Undetected	Low-strength evidence of no clear benefit	BBS: 0, 95% CI -2 to 2, p=0.91

		1	Number of Chiller		1				
			Number of Studies						
			(Participants)						
Intervention			Author Year						
Category,			(See Appendix B for	Study			Reporting	Strength of	Findings, Direction and
Intervention	Comparator	Outcome	Full Citation)	Limitations	Consistency	Precision	Bias	Evidence	Magnitude of Effect
Aerobic	All	Function	4(119)	Moderate	Consistent	Imprecise	Undetected	Low for	<u>DGI</u> : 2.16 vs. 2.07, p=0.51
Exercise	comparators		Gervasoni, 2014					benefit	<u>DGI:</u> 0.2, 95% CI -1.95 to
Treadmill			Jonsdottir, 2018						2.27, p=0.87
			Samaei, 2014						<u>TUG</u> : -2.83, 95% CI -4.7
			Ahmadi, 2013						to -0.9, p=0.009
									<u>TUG:</u> 9.8 (1.7) to 7.5 (1.8)
									vs. 9.4 (2.3) to 8.9 (0.9),
									p=0.041
									<u>10MWT:</u> 8.68 (1.93) to
									7.07 (1.03) vs. 9.16 (1.88)
									to 9.47 (1.92), p=0.001
									<u>2MWT</u> : 120.40 (20.29) to
									139.90 (20.78) vs. 121.50
									(27.73) to 119.05 (27.12),
									p=0.001
									<u>2MWT</u> : 28.3, 95% CI
									13.04 to 43.60, p<0.001
									<u>2MinWT</u> : 12.01 (23.6) to
									160.1 (35.7) vs. 132.6
									(32.3) to 147.5 (29.8),
									p<0.001
									25-foot WT: 8.7 (2.4) to
									6.1 (1.8) vs. 7.9 (1.1) to
									7.0 (1.6), p=0.001
									Modified Riverman
									Mobility Index: 10.6 (3.2)
									to 14.3 (2.7) vs.10.5 (2.3)
Aerobic	Usual care	Eurotian /	2 (50)	Moderate	Consistent	Incomercia	l la dete ete d	Low for	to 11.9 (2.1), p=0.005
Exercise	or waitlist	Function/ Walking	2 (50) Gervasoni, 2014	woderate	Consistent	Imprecise	Undetected	benefit	<u>DGI:</u> 0.2, 95% CI -1.95 to 2.27, p=0.87
Treadmill	Or Waitiist	waiking	Ahmadi, 2013					Denenit	TUG: -2.83, 95% CI -4.7
rreaurini			Anmaul, 2013						to -0.9, p=0.009
									10MWT: 8.68 (1.93) to
									7.07 (1.03) vs. 9.16 (1.88)
									to 9.47 (1.92), p=0.001
									<u>2MWT</u> : 120.40 (20.29) to
									<u>210001</u> . 120.40 (20.29) 10 139.90 (20.78) vs. 121.50
									(27.73) to 119.05 (27.12),
									p=0.001
									2MWT: 28.3, 95% CI
									<u>210001</u> . 28.3, 93% CT 13.04 to 43.60, p<0.001
									13.041045.00, p > 0.001

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Aerobic Exercise Treadmill	Strength Training	Function	1 (38) Jonsdottir, 2018	Moderate	Unknown	Imprecise	Undetected	Insufficient	TUG: -2.83, 95% CI -4.7 to -0.9, p=0.009 DGI: 0.2, 95% CI -1.95 to 2.27, p=0.87 2MWT: 28.3, 95% CI 13.04 to 43.60, p<0.001
Aerobic Exercise Treadmill	Downhill vs. Uphill treadmill training	Function	1 (31) Samaei, 2016	Moderate	Unknown	Imprecise	Undetected	Insufficient	25-foot WT: 8.7 (2.4) to 6.1 (1.8) vs. 7.9 (1.1) to 7.0 (1.6), p=0.001 2MinWT: 12.01 (23.6) to 160.1 (35.7) vs. 132.6 (32.3) to 147.5 (29.8), p<0.001
Aerobic Exercise Treadmill	Strength Training	Quality of Life	1 (38) Johsdottir, 2018	Moderate	Unknown	Imprecise	Undetected	Insufficient	<u>SF-12 mental</u> : -3.0, 95% CI -9.43 to 3.38, p=0.34 <u>SF-12 physical</u> : 1.8, 95% CI -2.08 to 5.59, p=0.36
Aerobic Exercise Treadmill	Strength Training	Balance	1 (38) Jonsdottir, 2018	Moderate	Unknown	Imprecise	Undetected	Insufficient	BBS: 1.1, 95% CI -1.4 to 3.7, p=0.39
Aerobic Exercise Treadmill	Usual care or waitlist	Balance	2 (50) Ahmadi, 2013 Gervasoni, 2014	Moderate	Consistent	Imprecise	Undetected	Low for benefit	BBS: 4.01 vs. 3.15, p=0.33 BBS: 46.20 (6.32) to 53.80 (2.34) vs. 44.50 (9.43) to 41.70 (8.48), p=0.001

Abbreviations: 6MWT = 6-Minute Walking Test; 10MWT = 10-Meter Walking Test; 25FWT=25-Foot Timed Walking Test; BBS = Berg Balance Scale; DGI = Dynamic Gait Index; EDSS = Expanded Disability Status Scale; FAC = Functional Ambulation Category; FAP = Functional Ambulation Profile; GMFM-66 = The Gross Motor Function Measure-66; HAQUAMS = Hamburg Quality of Life Questionnaire in Multiple Sclerosis; IPA = Impact on Participation; MQLIM = Multicultural Quality of Life Index; MD = mean difference; MS = multiple sclerosis; MSFC = Multiple Sclerosis Functional Composite; MSIS = Multiple Sclerosis Impact Scale; NA = not applicable; PSQI = Pittsburgh Sleep Quality Index; RAGT = Robot-Assisted Gait Training; RCT = randomized controlled trial; SD = standard deviation; SF = Short Form; SF 36-MCS = Short Form 36 Mental Health Scores; SF 36-PCS = Short Form 36 Physical Component Score; TBS = Tinetti balance scale; TUG= Timed Up and Go Test

Intervention Category, Intervention Aerobic Exercise	Comparator Usual care, previous	Outcome ADLs	Number of Studies (Participants) Author Year (See Appendix B for Full Citation) 1 (26) Teixeira-	Study Limitations Moderate	Consistency Unknown	Precision Imprecise	Reporting Bias Undetected	Strength of Evidence Insufficient	Findings, Direction and Magnitude of Effect ICF total change score: -44.56 vs. 14.90, p<0.001
Aerobics	activity level or attention control		Machado, 2018						
Aerobic Exercise Aerobics	Usual care	Running/ mobility	1 (42) Gibson, 2018	Low	Unknown	Imprecise	Undetected	Insufficient	Shuttle Run Test (min): 0.9, 95% CI -0.3 to 2.2, p=0.142 HiMat: 0.8, 95% CI -2.7 to 4.3, p=0.651 10X5 sprint (sec): -1.3, 95% CI -5.4 to 2.8, p=0.535
Aerobic Exercise Aquatics	Land-based exercise	Function	(N=32) Adar, 2017	Moderate	Unknown	Imprecise	Undetected	Insufficient	Mean SD <u>:</u> <u>TUG</u> : -0.13 (0.14) vs0.16 (0.13), p=0.664 <u>GMGM-88</u> : 0.05 (0.05) vs. 0.05 (0.03), p=0.451 <u>WeeFIM motor</u> : 0.04 (0.04) vs. 0.06 (0.06),p=0.860 <u>WeeFIM total</u> : -0.13 (0.14) vs0.16 (0.13), p=0.287 N=24, Mean (SD)
Aerobic Exercise Aquatics	Rehabilitation exercises	Function	1 (24) Lai, 2015	Moderate	Unknown	Imprecise	Undetected	Insufficient	<u>GMFM-66:</u> 61.2 (18.7) vs. 64.6 (19.4) (baseline) 66.2 (18.2) vs. 65.3 (19.1) (postintervention) Difference in change score between groups:p=0.007
Aerobic Exercise Aquatics	Rehabilitation exercises	Quality of Life	1 (24) Lai, 2015	Moderate	Unknown	Imprecise	Undetected	Insufficient	Cerebral Palsy QoL Scale: for Social, Functioning, Participation, Emotional, Access, Pain and Disability, and Family Health: All NS

Table H-2. Strength of evidence for Key Question 2: aerobic exercise for cerebral palsy

Intervention Category, Intervention Aerobic Exercise Aquatics	Comparator Rehabilitation exercises	Outcome ADLs	Number of Studies (Participants) Author Year (See Appendix B for Full Citation) 1 (24) Lai, 2015	Study Limitations Moderate	Consistency Unknown	Precision Imprecise	Reporting Bias Undetected	Strength of Evidence Insufficient	Findings, Direction and Magnitude of Effect Vineline Adaptive Behavior Scale for Daily Living: 72.1 (48.5) vs. 93.7 (43.8) (baseline) 76.5 (7.6) vs. 76.4 (10.8) (post- intervention)
Aerobic Exercise Cycling	Usual care, previous activity level or attention control	Function	2 (85) Fowler 2010 Bryant 2013	Moderate	Consistent	Imprecise	Undetected	Low for benefit	Difference in change score between groups: p=0.393 <u>GMFM-66 pooled</u> : 0.70, 95% CI -0.20 to 1.60, p=0.127 <u>GMFM-88D</u> : 5.4, 95% CI 1.23 to 9.57, p=0.01 <u>GMFM-88E</u> : 2.3, 95% CI 0.20 to 4.40, p=0.03 600-Yard Walk-Run Test:
Aerobic Exercise Cycling	Usual care, previous activity level or attention control	Quality of Life	1 (62) Demuth, 2012	Moderate	Unknown	Imprecise	Undetected	Insufficient	Bool-Yard Walk-Run Test: Change from baseline: 5.6, 95% Cl 1.6 to 9.5 vs. 2.5, 95% Cl -1.1 to 6.0, p=0.24 Peds Quality of Life Total Score: 3.5, 95% Cl -2.0 to 8.8, p=0.21

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Aerobic Exercise Robot- Assisted Gait Training	Usual care, previous activity level or attention control	Function	12 RCTs (77); 1 cohort study (24) Wallard, 2017 Wallard, 2018 Klobucka, 2020 Yazici, 2019	High	Consistent	Imprecise	Undetected	Insufficient	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
Aerobic Exercise Robot-Assisted Gait Training	Usual care, previous activity level or attention control	Balance	1 (24) Yazici, 2019	High	Unknown	Imprecise	Undetected	Insufficient	BBS: 1.25, 95% CI -0.07 to 2.57, p=0.064

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Aerobic Exercise Robot-Assisted Gait Training	Treadmill training (Partial body- weight supported; Anti-gravity;)	Function	2 (52) Aras, 2019 Wu, 2017b	Moderate	Consistent	Imprecise	Undetected	Insufficient	6MWT: 39.6 (40.4) vs. 37.6 (20.2) vs. 48.3 (25.1), p>0.05 for all pairwise comparisons 6MWT (3 mo followup): 45.2 (44.4) vs. 48.6 (37.8) vs. 58.2 (22.9), p>0.05 for all pairwise comparisons GMFM-D: 3.6 (2.5) vs. 4.6 (4.6) vs. 3.5 (2.5), p>0.05 for all pairwise comparisons GMFM-D (3 mo followup): 3.6 (2.5) vs. 4.6 (4.6) vs. 3.5 (2.5), p>0.05 for all pairwise comparisons GMFM-E: 2.4 (2.0) vs. 2.6 (1.7) vs. 3.7 (1.9), p>0.05 for all pairwise comparisons GMFM-E: 2.4 (2.0) vs. 2.6 (1.7) vs. 3.7 (1.9), p>0.05 for all pairwise comparisons GMFM-E (3 mo followup): 2.6 (1.8) vs. 2.6 (1.7) vs. 3.7 (1.9), p>0.05 for all pairwise comparisons GMFM-66 total: -5.1, 95% CI 13.62 to 3.42, p=0.24 GMFM-66-D: 3.6, 95% CI – 5.40 to 12.60, p=0.43 GMFM-66-E: 0.2, 95% CI – 7.79 to 19.19, p=0.98

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Aerobic Exercise Treadmill	Usual care, previous activity level or attention control	Function	2 (53) Chrysagis, 2012 Bahrami, 2019a	Moderate	Consistent	Imprecise	Undetected	Low for benefit	<u>GMFM-D+E</u> : 3.87 vs. 0.69, p=0.007 <u>Self-selected walking</u> <u>speed</u> : 8.06 vs. 0.48, p=0.009 <u>10MWT</u> : 1.080 (0.47) to 1.22 (0.50) [22.46% change] vs. 0.99 (0.56) to 1.02 (0.61) [1.28% change], % change p<0.05 <u>6MWT</u> : 291.13 (160.28) to 342.63 (174.62) [23.68% change] vs. 276.10 (167.19) to 308.57 (181.22)[16.54% change], % change p>0.05
Aerobic Exercise Treadmill	Usual care	Quality of Life	1 (30) Bahrami, 2019a	Moderate	Unknown	Imprecise	Undetected	Insufficient	<u>WHOQOL-Brief</u> : 3.55 (.55) to 3.66 (0.59) [3.83% change] vs. 3.33 (0.69) 3.57 (0.67)[8.94% change], % change p>0.05
Aerobic Exercise Treadmill	Overground walking	Walking	5 (130) Willoughby, 2010 Swe, 2015 Grecco, 2013 Emara, 2016 Kim, 2015	Moderate	Inconsistent	Imprecise	Undetected	Low strength of evidence for no clear benefit	$\frac{10MWT}{10.4}: 0.4 (0.04) to 0.5 (0.04) vs. 0.4 (0.03) to 0.6 (0.04), p=0.12 (0.04) vs. 0.4 (0.03) to 0.6 (0.04), p=0.12 (0.05) vs. 44.8, p<0.001 (0.05) vs. 44.8, p<0.001 (0.05) vs. 44.8, p<0.001 (0.05) vs. 148.36 (0.05) vs. 17, p=0.65 (0.05) vs. 17, p=0.65 (0.05) vs. 118.36 (0.$

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Aerobic Exercise Treadmill	Overground walking	Function	4 (109) Willoughby, 2010 Swe, 2015 Grecco, 2013 Emara, 2016	Moderate	Inconsistent	Imprecise	Undetected	Low strength of evidence for no clear benefit	5XSit-to-Stand: 21.5 (1.3) to 18.9 (1.0) vs. 21.7 (1.5) to 17.7 (0.8), p=0.26 GMFM-88 D: 12.5 (1.6) to 15.8 (1.5) vs.12.0 (0.7) to 19.2 (2.1), p=0.02, favors spider cage GMFM-88 E: 10.9 (1.3) to 14.8 (1.5) vs.10.4 (0.8) to 17.2 (2.1), p=0.05, favors spider cage TUG: -6.4 vs2.0, p=0.004, favors treadmill GMFM-88D: 23.9 vs. 8.1, p<0.001, favors treadmill GMFM-88E: 20.1 vs. 8.2, p<0.001, favors treadmill GMFM-88D: -2.94, 95% CI -16.42 to 10.64, p=0.67 GMFM-88E: -2.8, 95% CI -20.02 to 14.42, p=0.75
Aerobic Exercise Treadmill	Treadmill training with TDC stim vs. Treadmill training with sham TDC	Function	1 (24) Grecco, 2014	Moderate	Unknown	Imprecise	Undetected	Insufficient	<u>6MWT:</u> 102.4, 95% CI 33.16 to 171.64, p=0.004 <u>GMFM-88D:</u> 7.8, 95% CI 0.46 to 15.15, p=0.037 <u>GMFM-88E:</u> -3.39 to 12.99, p=0.251
Aerobic Exercise Treadmill	Treadmill training with TDC stim vs. Treadmill training with sham TDC	Balance	1 (24) Duarte Nde, 2014	Moderate	Unknown	Imprecise	Undetected	Insufficient	PBS: 40.5 (9.4) to 45.3 (7.9) vs.39.1 (9.8) to 39.7 (8.4); MD 4.2, 95% CI -2.88 to 11.28, p=0.245

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Aerobic Exercise Treadmill	Treadmill training with TDC stim vs. Treadmill training with sham TDC	ADLs	1 (24) Duarte Nde, 2014	Moderate	Unknown	Imprecise	Undetected	Insufficient	PEDI self-care: 46.1 (10) to 48.0 (9.5) vs. 45.0 (9.2) to 45.5 (9.3); MD 1.4, 95% CI -6.21 to 9.01, p=0.718 PEDI mobility: 38.0 (8.5) to 41.7 (7.4) vs. 38.3 (7.4) to 39.5 (7.6); MD 2.5, 95% CI -3.71 to 8.71, p=0.430
Aerobic Exercise Treadmill	Individualized strength- based physical therapy	Function	1 (26) Johnston, 2011	Moderate	Unknown	Imprecise	Undetected	Insufficient	<u>GMFM</u> : 62.7 (17.5) to 63.3 (16.2) vs. 58.4 (26.9) to 60.1 (25.1), p=0.66

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Aerobic Exercise Treadmill (for adults with CP)	Strength Training or Usual care	Function	2 RCTs (51) Kim, 2015 Bahrami, 2019a 1 quasiexperi- mental trial (95) Aviram, 2017	Moderate	Inconsistent	Imprecise	Undetected	Low-strength evidence for no clear benefit	$\frac{6\text{MWT on treadmill: 5.71,}{95\% \text{ Cl} -53.22 \text{ to } 64.64,} \\ \text{p=0.85} \\ \frac{6\text{MWT on overground}}{8} \\ \frac{\text{walking: } 24.07, 95\% \text{ Cl} \\ -46.80 \text{ to } 94.94, \text{p=0.51} \\ \frac{6\text{MWT: }}{20.9} (4.0) \text{ vs. } 27.9 \\ (6.7), \text{p=0.31} \\ \overline{\text{TUG: }} -2.82 (0.51) \text{ vs. } 3.52 \\ (0.60), \text{p=0.014, favors} \\ \text{strength training} \\ \overline{\text{GMFM-66: }} 1.98 (0.40) \text{ vs.} \\ 3.10 (0.44), \text{p=0.001, favors} \\ \text{strength training} \\ \overline{\text{GMFM-66D: }} 5.53 (1.61) \text{ vs.} \\ 8.36 (1.24), \text{p=0.013, favors} \\ \text{strength training} \\ \overline{\text{GMFM-66E: }} 4.80 (1.33) \text{ vs.} \\ 7.21 (0.96), \text{p=0.81} \\ 10\text{MWT-self-paced: } 0.272 \\ (0.045) \text{ vs. } 0.276 (0.049), \\ \text{p=0.41} \\ 10\text{MWT-fast: } 0.387 (0.070) \\ \text{ vs. } 0.374 (0.069), \text{p=0.30} \\ 10\text{MWT: } 1.080 (0.47) \text{ to} \\ 1.22 (0.50) [22.46\% \text{ change}] \\ \text{ vs. } 0.99 (0.56) \text{ to } 1.02 (0.61) \\ [1.28\% \text{ change}], \% \text{ change} \\ \text{p<0.05} \\ \overline{6\text{MWT: }} 291.13 (160.28) \text{ to} \\ 342.63 (174.62) [23.68\% \\ \text{ change}] \text{ vs. } 276.10 (167.19) \\ \text{ to } 308.57 (181.22) [16.54\% \\ \text{ change}], \% \text{ change } \text{p>0.05} \\ \end{array}$

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Aerobic Exercise Treadmill (for adolescents with CP)	Physical Therapy or Overground Walking	Function	2 RCTs (56) Chrysagis, 2012 Swe, 2015 1 Quasi- experimental study (24) Nsenga- Leunkau, 2012	Moderate	Consistent	Imprecise	Undetected	Low-strength evidence for no clear benefit	6MWT: -17.00, 95% CI -89.77 to 55.77, p=0.65 10MWT: -0.013, 95% CI -0.23, 0.21, p=0.91 GMFM-88D: -2.94, 95% CI -16.42 to 10.64, p=0.67 GMFM-88E: -2.8, 95% CI -20.02 to 14.42, p=0.75 10MWT: 244.33 (115.41) to 219.38 (123.71) vs. 118.36 (89.89) to 135.82 (95.65), p=0.097 6MWT: 480 to 601 vs. 450 to 450, no difference in baseline values, significant difference in post- intervention values favoring treatment

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Aerobic Exercise Treadmill (for children with CP)	Overground walking with or without spider cage, treadmill walking with sham transcranial DC stim, Individual strength- based PT	Function	4 (103) Johnston, 2011 Emara, 2016 Grecco, 2013 Grecco, 2014	Moderate	Inconsistent	Imprecise	Undetected	Low-strength evidence for no clear benefit	$\frac{10MWT}{10}: 0.4 (0.04) to 0.5 (0.04) vs. 0.4 (0.03) to 0.6 (0.04), p=0.12 5XSit-to-Stand: 21.5 (1.3) to 18.9 (1.0) vs. 21.7 (1.5) to 17.7 (0.8), p=0.26 GMFM-88 D: 12.5 (1.6) to 15.8 (1.5) vs.12.0 (0.7) to 19.2 (2.1), p=0.02, favors spider cage GMFM-88 E: 10.9 (1.3) to 14.8 (1.5) vs.10.4 (0.8) to 17.2 (2.1), p=0.05, favors spider cage 6MWT: 102.4, 95% CI 33.16 to 17.1 (2.1), p=0.004 GMFM-88E: 7.8, 95% CI 0.46 to 15.15, p=0.037 GMFM-88E: 4.8, 95% CI -3.39 to 12.99, p=0.251 6MWT: 149.7 vs. 44.8, p<0.001 TUG: -6.4 vs2.0, p=0.004 GMFM-88E: 20.1 vs. 8.1, p<0.001 GMFM-88E: 20.1 vs. 8.2, p<0.001 GMFM-88E: 20.1 vs. 8.2, p<0.001 GMFM: 62.7 (17.5) to 63.3 (16.2) vs. 58.4 (26.9) to 60.1 (25.1), p=0.66$

Abbreviations: 6MWT = 6-Minute Walking Test; 10MWT=10-Minute Walking Test; BBS = Berg Balance Scale; CI = confidence interval; CP = cerebral palsy; HiMat = High Level Mobility Assessment Tool; GMFM = The Gross Motor Function Measure; ICF = International Classification of Functioning, Disability and Health; NA = not applicable; PBS = Pediatric Balance Scale; PEDI = Pediatric Evaluation of Disability Inventory; RCT = randomized controlled trial; TUG= Timed Up and Go Test; WHOQOL = World Health Organization Quality of Life

Table H-3. Strength of evidence for Key Question 2: aerobic exercise for cerebral palsy and multiple sclerosis

Intervention Category, Intervention Aerobic Exercise	Comparator Usual care, previous activity level or	Outcome Function	Number of Studies (Participants) Author Year (See Appendix B for Full Citation) 2 (N=81) Teixera- Machado,	Study Limitations Moderate	Consistency Consistent	Precision Imprecise	Reporting Bias Undetected	Strength of Evidence Low for benefit	Findings, Direction and Magnitude of Effect <u>TUG:</u> MD-1.89, 95% CI 3.30 to -0.48, p=0.01 <u>6MWT:</u> MD 40.98, 95% CI
Exercise Dance	'								· · ·

Abbreviations: 6MWT = 6-Minute Walking Test; CP = cerebral palsy; FIM=Functional Independence Measure; MD = mean difference; MS = multiple sclerosis; TUG= Timed Up and Go Test

Table H-4. Strength of evidence for Key Question 2: aerobic exercise for spinal cord injury

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Aerobic Exercise Aquatics	Rehabilita- tion exercises	Pulmonary function	1 (20) Jung, 2014	Moderate	Unknown	Imprecise	Undetected	Insufficient	$\begin{array}{l} \text{Difference in change scores} \\ \text{between groups:} \\ \underline{FVC}(L): \text{MD -1.8}(1.3) \text{ vs} \\ 0.31(1.6), \text{ p=0.031} \\ \underline{FEV1}(L): \text{MD -1.1}(1.2) \text{ vs} \\ 0.21(0.3); \text{ p=0.038} \\ \underline{FER}(L/\text{sec}):-10.0(9.7) \text{ vs} \\ 5.4(7.0, \text{ p=0.238} \\ \underline{FEV1/FVC:} -3.7(2.3) \text{ vs} \\ 2.1(3.4), \text{ p=0.234} \end{array}$
Aerobic Exercise Cycling (arm and leg)	Usual care, previous activity level or attention control	Function	1 RCT (33) Akkurt, 2017 1 cohort (45) Sadowsky, 2013	Moderate	Inconsistent	Imprecise	Undetected	Insufficient	A vs. B, Mean change scores: FIM: 0.5 vs0.5, p=1.00 FIM: 80% vs. 60%, p<0.001
Aerobic Exercise Cycling (arm and leg)	Usual care, previous activity level or attention control	Quality of Life	1 RCT (33) Akkurt, 2017 1 cohort (45) Sadowsky, 2013	Moderate	Inconsistent	Imprecise	Undetected	Insufficient	WHOQOL-Bref, p>0.05 <u>SF-36</u> : total and composite scores NR; Significant improvement in physical function and role limit physical with FES cycling, no difference in mental health subscales
Aerobic Exercise Cycling (hand)	Usual care, previous activity level or attention control	ADLs	1 (33) Akkurt, 2017	Moderate	Unknown	Imprecise	Undetected	Insufficient	CHART-sf, p>0.05
Aerobic Exercise Robot- Assisted Gait Training	Usual care or overground walking without RAGT	ADLs	2 (176) Yildirim, 2019 Esclarin-Ruz, 2014	Moderate	Consistent	Imprecise	Undetected	Low for benefit	FIM: 69 (31) to 85 (35) vs. 67 (36) to 77 (24), p=0.022 FIM/Motor: p=0.09, favors RAGT

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Aerobic Exercise Robot- Assisted Gait Training	Head-to- head comparison (treadmill training, overground walking)	Function	3 (141) Esclarin-Ruz, 2014 Kressler, 2013 Shin, 2014	Moderate	Consistent	Imprecise	Undetected	Low for benefit	<u>6MWT</u> : p=0.047, favors RAGT <u>FIM/Motor</u> : p=0.09, favors RAGT <u>WISC-II</u> : p=0.10, favors RAGT <u>WISCI-II</u> : p=0.01 , favors RAGT <u>LEMS</u> : p=0.24 <u>LEMS</u> : p=0.24 <u>LEMS</u> : p<0.01, favors RAGT <u>Velocity change</u> : p>0.05, favors treadmill/ overground walking SCiM3-M: 6 vs. 3, p=0.13
Robot- Assisted Gait Training	Sham transcranial magnetic stimulation	Function	1 (31)	Moderate	Unknown	Imprecise	Undetected	Insufficient	10MWT: p=0.09, favors RAGT LEMS: p=0.001 UEMS: p=0.02 WISCI-II: p>0.05

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Aerobic Exercise Robot- Assisted Gait Training	Usual care/no treatment	Function	3 (170) Duffell, 2014 Yildirim, 2019 Midik, 2020	Moderate	Inconsistent	Imprecise	Undetected	Low-strength evidence for no clear benefit	$\begin{array}{l} \mbox{WISCI II: 5 (9) to 9 (7) vs. 5} \\ (6.7) to 6.5 (5), p=0.011 \\ 10MWT achieved MID \\ (0.13m/s): 13\% vs. 8\%, \\ p>0.05 \\ 6MWT and TUG: p>0.05 \\ \hline \mbox{WISCI: 3.9 (0.8) vs. 2.5} \\ (0.5), p=0.178 \\ \hline \mbox{SCIM: 9.9 (2.5) vs. 7.0 (1.3), } \\ p=0.326 \\ \hline \mbox{LEMS: 1.8 (0.4) vs. 0.6} \\ (0.2), p=0.061 \\ \mbox{At 3 month followup, change from baseline:} \\ \hline \mbox{WISC: 4.3 (1.0) vs. 2.5} \\ \hline \mbox{(0.5), p=0.139} \\ \hline \mbox{SCIM: 16.5 (3.2) vs. 7.6} \\ \hline \mbox{(1.5), p=0.127} \\ \hline \mbox{LEMS: 2.1 (0.5) vs. 0.6} \\ \hline \mbox{(0.2), p=0.049} \\ \end{array}$
Aerobic Exercise Treadmill	Structured PT, Aerobic + Strength Training	Function	2 (55) Alexeeva, 2011 Giangregorio, 2012 Hitzig, 2013 Kapadia, 2014 Craven, 2017	Moderate	Consistent	Imprecise	Undetected	Low-strength evidence for no clear benefit	$\begin{array}{r} \underline{10MWT\ (m/s):}\ 0.30\ (0.26)\ to\\ \hline 0.46\ (0.40)\ vs.\ 0.41\ (0.34)\ to\\ \hline 0.51\ (0.36)\\ \hline \underline{10MWT:}\ 42.8\ (46.2)\ to\ 35.2\\ \hline (40.8)\ to\ 42.2\ (67.7)\ vs.\ 49.1\\ \hline (41.7)\ to\ 28.7\ (8.3)\ to\ 35.1\\ \hline (18.8)\ p=0.829\\ \hline \underline{6MWT:}\ 187.9\ (123.4)\ to\\ 217.1\ (134.4)\ to\ 232.5\\ \hline (138.9)\ vs.\ 79.4\ (83.9)\ to\\ 130\ (46.0)\ to\ 126.4\ (63.8),\\ p=0.096\\ \hline \underline{TUG:}\ 43.6\ (25.5)\ to\ 33.0\\ \hline (15.7)\ to\ 32.2\ (19.1)\ vs.\ 61.6\\ \hline (36.2)\ to\ 49.5\ (21.9)\ to\ 51.3\\ \hline (19.6)\ p=0.138\\ \hline \underline{FIM:}\ 4.7\ (1.82)\ to\ 5.19\\ \hline (1.80)\ to\ 5.19\ (1.83)\ vs.\ 4.18\\ \hline (2.14)\ to\ 4.82\ (1.66)\ to\ 5.09\\ \hline (2.98)\ p=0.115\\ \end{array}$

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Aerobic Exercise Treadmill	Track training, Physical therapy	Quality of Life	1 (35) Alexeeva, 2011	Moderate	Unknown	Imprecise	Undetected	Insufficient	SAWS (Satisfaction with disabilities and well-being): 39.3 ((8.3) to 35.2 (8.7) vs. 35.9 (6.9) to 32.4 (7.6) vs. 36.6 (9.9) to 29.0 (7.9), p>0.05
Aerobic Exercise Treadmill	Track training, Physical therapy	Balance	1 (35) Alexeeva, 2011	Moderate	Unknown	Imprecise	Undetected	Insufficient	Tinetti Balance Scale (TBS):9.8 (5.4) to 19.4 (5.0) vs.10.5 (3.4) to 11.9 (2.5) vs.10.1(3.6) to 12.9 (2.7),p<0.05, Improvement from

Abbreviations: 6MWT = 6-Minute Walking Test; 10MWT = 10-Meter Walk Test; CHART = Craig Handicap and Assessment Reporting Technique; CI = confidence interval; FER= Forced Expiratory Flow Rate; FEV1 = Forced Expiratory Volume at one second; FEV1/FVC = Force Expiratory Volume at one second/Forced Vital Capacity; FIM=Functional Independence Measure; FVC = Forced Vital Capacity; LEMS = Lower Extremity Motor Score; MID = Minimal Important Difference; NA = not applicable; RAGT = Robot-Assisted Gait Training; RCT = randomized controlled trial; SAWS = Satisfaction with disabilities and well-being; SCI = spinal cord injury; SF-36 = Short Form 36; TBS = Tinetti Balance Scale; TUG= Timed Up and Go Test; UEMS = Upper Extremity Motor Score; WHOQOL = World Health Organization Quality of Life; WISCI II = Walking Index for Spinal Cord Injury II

Table H-5. Strength of evidence for Key Question 2: balance exercise for multiple sclerosis

Intervention Category, Intervention Comparator Outco Postural Usual care Qualit Balance	Number of Studies (Participants) Author Year (See Appendix B for Full me Citation)		Consistency Consistent	Precision Imprecise	Reporting Bias Undetected	Strength of Evidence Insufficient	Findings, Direction and Magnitude of Effect Mean between-group difference: <u>MSQoL-54:</u> 5.02, 95% CI -1.12
training Postural Control Balance training Usual care or waitlist/no intervention Funct	on 7 (N=369) Forsberg, 2016 Callesen, 2019 Carling, 2017 Amiri, 2019 Tollar, 2020 Ozkul, 2020 Arntzen, 2020	Moderate	Consistent	Imprecise	Undetected	Low strength of evidence for benefit	to 9.92 EQ-5 Sum Score: -0.6 (1.15) vs. 0.0 (1.13), p=0.023 Pooled MSWS (4 studies): - 4.66, 95% CI -6.65 to -2.67 Pooled TUG (3 studies): 0.45, 95% CI -1.92 to 2.82 2MWT: MD 16.7, 95% CI 8.15 to 25.25 10MWT: MD 0.48, 95% CI 0.11 to 0.85 25FWT (m/s): MD 0.10, 95% CI 0.00 to 0.20, p=0.04 FGA: 2.1, 95% CI 0.6 to 3.6, p=0.0079 2MWT: -3.24 (3.37), p=0.34 Sit-to-Stand: 0.24 (2.12), p=0.17 10MWT: 1.49 (3.84), p=0.70 Significant interaction between time and group according to baseline EDSS score for core muscle endurance and strength, p<0.05

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Postural Control Balance training	Usual care or Waitlist	Balance BBS	10 (N=553) Afrasiabifar, 2018 Brichetto, 2015 Gandolfi, 2015 Carling, 2017 Callesen, 2019 Arntzen, 2019 Forsberg, 2016 Amiri, 2019 Tollar, 2020 Ozkul, 2020	Moderate	Consistent	Imprecise	Undetected	Moderate for benefit	Pooled BBS (7 studies): MD - 4.314 95% CI -5.57 to -2.70 Pooled MiniBEST) 2 studies: 2.40, 95% CI 1.10 to 3.70 1 study: Significant interaction between time and group according to baseline EDSS score for static and dynamic stability p<0.05
Postural Control Balance training	Usual care or Waitlist	Falls Near falls	2 (128) Carling, 2017 Gandolfi, 2015	Moderate	Consistent	Imprecise	Undetected	Low for benefit	$\frac{Falls: -1.24 (1.66), p<0.001}{Near Falls: -8.24 (14.78), p=0.002}$ $\frac{\# \text{ of Falls: } 0.59 (0.99) \text{ to } 0.03}{(0.16) \text{ vs. } 0.37 (0.54) \text{ to } 0.29}$ $(0.34), p=0.005 (post-intervention); 0.59 (0.99) \text{ to } 0.08}$ (0.27) vs. 0.37 (0.54) to 0.27 (0.55), p=0.53 (1 month post treatment)
Postural Control Balance training	Attention control	Sleep	1 (45) Sadeghi Bahmani, 2019b	Moderate	Unknown	Imprecise	Undetected	Insufficient	<u>ISI:</u> 13.46 (5.81) to 10.13 (4.92) vs. 1.71 (5.43) to 11.14 (5.39), p>0.05
Postural Control Balance training	Other active interventions (lumbar stabilization and task-oriented training)	Function 2-Minute Walk Test	1 (N=42) Salci, 2017	Moderate	Unknown	Imprecise	Undetected	Insufficient	Mean change from baseline: 10.75 m vs. 25.55 m vs. 18.69 m; p>0.05
Postural Control Balance training	Other active interventions (lumbar stabilization and task-oriented training)	Balance BBS	1 (N=42) Salci, 2017	Moderate	Unknown	Imprecise	Undetected	Insufficient	Mean change from baseline: 3.57 vs. 5.78 vs. 5.57; p=0.16

Intervention Category, Intervention Postural Control Hippotherapy	Comparator Usual care, previous activity level or attention control	Outcome Quality of life MSQoL-54	Number of Studies (Participants) Author Year (See Appendix B for Full Citation) 1 (N=70) Vermohlen, 2018	Study Limitations Moderate	Consistency Unknown	Precision Imprecise	Reporting Bias Undetected	Strength of Evidence Insufficient	Findings, Direction and Magnitude of Effect Mental health score: mean difference 12.0, 95% CI 6.2 to 17.7
Postural Control Hippotherapy	Usual care, previous activity level or attention	Balance BBS	1 (N=70) Vermohlen, 2018	Moderate	Unknown	Imprecise	Undetected	Insufficient	Physical health score: 14.4, 95% CI 7.5 to 21.3 Mean difference 3.07, 95% CI 1.00 to 5.14
Postural Control Hippotherapy	control Usual care, previous activity level or attention control	Spasticity NSR	1 (N=70) Vermohlen, 2018	Moderate	Unknown	Imprecise	Undetected	Insufficient	Mean difference -0.9, 95% CI - 1.9 to -0.1
Postural Control Hippotherapy	Usual care, previous activity level or attention control	Walking	1 (N=33) Moraes, 2020	Moderate	Unknown	Imprecise	Undetected	Insufficient	<u>6MWT</u> : 459.06 (118.34) to 503.59 (126.38) vs. 513.00 (101.97) to 497.13 (88.88), p<0.001 <u>25FWT</u> : 6.37 (1.70) to 5.36 (1.43) vs. 5.82 (1.29) to 5.84 (1.08), p<0.001
Postural Control Tai Chi	Usual care	Depression Immediatel y Post- treatment	1 QENR (N=32) Burschka, 2014	High	Unknown	Imprecise	Undetected	Insufficient	CES-D mean score 7.67 (5.12), p=0.007 vs. 16.13 (11.99), p=0.951; favors Tai Chi, interaction p=<0.05
Postural Control Tai Chi	Usual care	Quality of life Immediatel y Post- treatment	1QENR (N=32) Burschka, 2014	High	Unknown	Imprecise	Undetected	Insufficient	QLS mean score 232.57 (25.62), p=0.012 vs. 193.81 (36.2), p=0.290, Interaction p<0.01
Postural Control Tai Chi	Usual care	Balance Immediatel y Post- treatment	1 QENR (N=32) Burschka, 2014	High	Unknown	Imprecise	Undetected	Insufficient	14-task balance test: 9.33 (2.26), p=0.031, for the intervention vs. 6.53 (4.49), p=0.439; interaction p<0.05
Postural Control Tai Chi	Psychological classes and physical therapy)	Balance BBS <i>Immediate-</i> <i>Iy Post-</i> <i>treatment</i>	1 (N=34) Azimzadeh, 2015	High	Unknown	Imprecise	Undetected	Insufficient	BBS: 52.25 (3.39) to 53.94 (2.23) vs. 53.22 (2.23) to 53.61 (2.14), p>0.05

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Postural Control Motion gaming	Usual care	Function	4 N=(177) Nilsagard, 2013 Ozkul, 2020 Tollar, 2020 Yazgan, 2020	Moderate	Consistent	Imprecise	Undetected	Low for benefit	<u>6MWT pooled 2 studies:</u> MD - 30.90, 95% CI -49.55 to -12.25 <u>TUG pooled 3 studies:</u> MD - 1.06, 95% CI -1.43 to -0.69 <u>25footWT:</u> -0.3 (1.1) vs0.1 (1.4), p=0.51 <u>DGI:</u> 1.78 (2.3) vs. 1.0 (2.0), p=0.21 <u>MS Walking Scale:</u> -5.9 (11.5) vs3.95 (18.1), p=0.76 <u>Four Square Step</u> <u>Test</u> : -1.6(2.1) vs2.0 (6.6), p=0.64
Postural Control Motion gaming	Different type balance exercises	Function	2 (N=62) Kalron, 2016 Khalil, 2018	Moderate	Consistent	Imprecise	Undetected	Insufficient	Four Square Step Test: 16.2 (7.0) to 12.7 (6.4) vs. 14.2 (7.1) to 11.7 (5.9), p=0.361 <u>TUG:</u> 0.04, 95% CI –2.24 to 2.32, p=0.97 <u>10MWT:</u> 8.48, 95% CI –5.16 to 22.12, p=0.21 <u>3MinWT:</u> -7.11, 95% CI –34.18 to 19.95, p=0.59
Postural Control Motion gaming	Different type balance exercises or usual care	Quality of Life	2 (N=58) Khalil, 2018 Tollar, 2020	Moderate	Consistent	Imprecise	Undetected	Insufficient	<u>SF-36 PCS:</u> -11.62, 95% CI - 22.27 to -0.99, p=0.03 <u>SF-36 MCS:</u> -13.60, 95% CI - 23.66 to -3.55, p=0.01 <u>EQ-5 Sum Score</u> : -2.3 (1.44) vs. 0.0 (1.13), p<0.001
Postural Control Motion gaming	Different type balance exercises	Balance	2 (N=62) Khalil, 2018 Kalron, 2016	Moderate	Inconsistent	Imprecise	Undetected	Insufficient	BBS: 46.8 (9.6) to 47.9 (6.4) vs. 43.3 (7.1) to 44.6 (4.9), p=0.56 BBS: -4.52, 95% CI -7.90 to - 1.09, p=0.01 Falls Efficacy Scale International: 36.4 (9/7) to 29.4 (7.8) vs. 32.9 (10.3) to 28.6 (5.8), p=0.021 FES-I: 3.86, 95% CI -0.062 to 8.34, p=0.08

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Postural Control Motion gaming	Usual care	Balance	3 (94) Tollar, 2020 Ozkul, 2020 Yazgan, 2020	Moderate	Consistent	Imprecise	Undetected	Low for benefit	BBS (pooled analysis 3 trials): MD -3.43, 95% CI -6.30 to -0.57
Postural Control Whole body vibration	Usual Care	Function	1 (N=47) Claerbout, 2012	Moderate	Unknown	Imprecise	Undetected	Insufficient	<u>3MinWT:</u> 45.0 (42.6) vs. 20.4 (27.95), p>0.05 <u>TUG:</u> 11.32 (5.21) to 11.16 (8.82) vs. 14.43 (3.20) to 14.57 (4.02), p=0.05, NS
Postural Control Whole body vibration	Usual Care	Balance	1 (N=47) Claerbout, 2012	Moderate	Unknown	Imprecise	Undetected	Insufficient	BBS: 3.9 (4.4) vs. 4.2 (6.1) vs. 0.2 (7.5), p>0.05 for all comparisons
Postural Control Whole body vibration	No treatment	QoL	1 (46) Abbasi, 2019	Moderate	Unknown	Imprecise	Undetected	Insufficient	<u>QOL-54 (PCS)</u> : 4.20 (1.73, 8.40) vs1.26 (-3.28, 0), p<0.001 <u>QOL-54 (MCS)</u> : 5.96 (2.71, 11.89) vs0.17 (-2.20, 0.07), p<0.001
Postural Control Yoga	Usual care, previous activity level or attention control	Function	4 (N=215) Garrett, 2013a/b Hogan, 2014 Young, 2019 Ahmadi, 2013	High	Consistent	Imprecise	Undetected	Low-strength evidence for no clear benefit	6MWT: Median Difference (SIQR): 0 (82) vs10 (91), p=0.73 6MWT: Median Difference: -25 vs. 6.5, NS 6MWT: Mean Difference: 22.83, 95% CI -16.67 to 6.2, p=0.25 TUG: MD:-1.20, 95% CI -2.58 to 0.18, p=0.09 5XSit to Stand: -0.70, 95% CI - 2.17 to 0.77, p=0.34 10MWT: 12.45 (4.54) to 6.45 (3.61) vs. 9.16 (1.88) to 9.47 (1.92), p=0.11 2MWT: 109 (17.44) to 120.36 (20.62) vs. 121.50 (27.73) to 119.05 (27.12), p=0.11

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Postural Control Yoga	Usual care, previous activity level or attention control	Quality of Life	4 (N=241) Doulatabad, 2013 Hasanpour- Dehkordi, 2014 Garrett, 2013a/b Hogan, 2014	High	Inconsistent	Imprecise	Undetected	Insufficient	$\frac{Mean (SD) MSQoL-54:}{4.9\pm1.9 vs.6.9\pm1.5 (baseline);} 7.4\pm2.16 vs.6.8\pm1.9 (post-intervention), p=0.001Mean Difference SF-36:1106.41, p<0.001Median Difference MSIS-psychological: -3.7 (22.2) vs. 0(16.7), p=0.04Median (SIQR) MSIS-psychological: 14 (2.2) baseline,15 (4) post intervention vs. 17(4) baseline, 15 (4.5) post-intervention, NSMean Difference MSIS-physical:-4.0, 95% CI -7.5 to -0.5 vs.0.3, 95% CI -4.0 to 4.6, p=0.12Mean Difference MSIS-physical:1.3, 95% CI -4.7 to 7.3 vs4.8,95% CI -10.4 to -0.60, NS$
Postural Control Yoga	Usual care, previous activity level or attention control	Balance	2 (N=49) Hogan, 2014	High	Unknown	Imprecise	Undetected	Insufficient	BBS: MD: 5.3, 95% CI -3.1 to 7.5 vs3.1, 95% CI -2.8 to 9.0, NS <u>BBS</u> : 47.72 (6.78) to 53.81 (3.40) vs. 44.50 (8.48) to 41.70 (8.48), p=0.07
Postural Control Yoga	Movement to Music (Dance)	Function	1 (N=53) Young, 2019	Moderate	Unknown	Imprecise	Undetected	Insufficient	6MWT: MD: -18.2, 95% CI -56.4 to 20.1, p=0.34 TUG: MD 0.69, 95% CI -0.71 to 2.08, p=0.33 5XSit to Stand: MD 0.30, 95% CI -1.21 to 1.82, p=0.69
Postural Control Yoga	Undescribed control	Quality of Life: Sexual Satisfaction	1 RCTs (N=60) Najafidoul- atabad, 2014	Moderate	Unknown	Imprecise	Undetected	Insufficient	Yoga baseline 1.8 (SD 2.0) to 1.4 (SD 1.5), p=0.001 versus women in the control group (baseline 2.1 (SD 1.2) to 2.1 (SD 1.2), p>0.05.
Postural Control Yoga	Aerobics	QoL	1 (N=40) Hasanpour- Dehkordi, 2014	High	Unknown	Imprecise	Undetected	Insufficient	SF-36: MD between groups: 229.32, p=0.07

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Postural Control Yoga	Physiotherapist- led exercise	Function	1 (N=126) Garrett, 2013a/b	High	Unknown	Imprecise	Undetected	Insufficient	6MWT: Median Difference (SIQR): 0 (82) vs. 10 (52), NS
Postural Control Yoga	Physiotherapist- led exercise	Quality of Life	1 (N=126) Garrett, 2013a/b	High	Unknown	Imprecise	Undetected	Insufficient	MSIS (psychological): Median Difference (SIQR): -3.7 (22.2) vs11.1 (25.9), NS MSIS (physical): : MD -4.0, 95% CI -7.5 to -0.5 vs6.9, 95% CI - 10.8 to -2.9, NS
Postural Control Yoga	Group exercise	Qol	1 (N=61) Hogan, 2014	High	Unknown	Imprecise	Undetected	Insufficient	MSIS-29 (psychological): 18 (5.38) to 17 (4.8) vs. 8 (5.5) to 15 (5.7), p>0.05 MS-29 (physical): 54 (11.5) to 49.4 (12) vs. 50.5 (9.5) to 45.9 (10.5) vs, p=NR
Postural Control Yoga	Group exercise	Balance	1 (N=61) Hogan, 2014	High	Unknown	Imprecise	Undetected	Insufficient	BBS: 30.4 (11.6) to 34.2 (9.8) vs. 28.9 (9.5) to 34.5 (9.8), p<0.05
Postural Control Yoga	Group exercise	Function	1 (N=61) Hogan, 2014	High	Unknown	Imprecise	Undetected	Insufficient	6MWT: 83.9 (39.8) to 100 (55) vs. 101 (39.5) to 121.2 (47.4), p>0.05
Postural Control Yoga	One-on-one exercise	Qol	1 (N=48) Hogan, 2014	High	Unknown	Imprecise	Undetected	Insufficient	MSIS-29 (psychological): 18 (5.38) to 17 (4.8) vs. 14 (2.2) to 15 (4), p>0.05 MS-29 (physical): 54 (11.5) to 49.4 (12) vs. 48.3 (10.5) to 49.6 (11.6), p=NR
Postural Control Yoga	One-on-one exercise	Balance	1 (N=48) Hogan, 2014	High	Unknown	Imprecise	Undetected	Insufficient	BBS: 30.4 (11.6) to 34.2 (9.8) vs. 22.6 (12.6) to 27.9 (11.5), p<0.05
Postural Control Yoga	One-on-one exercise	Function	1 (N=48) Hogan, 2014	High	Unknown	Imprecise	Undetected	Insufficient	6MWT: 83.9 (39.8) to 100 (55) vs. 70 (30) to 45 (54.5), p>0.05
Postural Control Yoga	Fitness instructor-led exercise	6MWT	1 (N=130) Garrett, 2013a/b	High	Unknown	Imprecise	Undetected	Insufficient	Median Difference (SIQR): 0 (82) vs. 20 (61), NS

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Postural Control Yoga	Fitness instructor-led exercise	MSIS- psychologi cal	1 (N=130) Garrett, 2013a/b	High	Unknown	Imprecise	Undetected	Insufficient	MSIS (psychological): Median Difference (SIQR): -3.7 (22.2) vs3.7 (22.2), NS MSIS (physical): MD -4.0, 95% CI -7.5 to -0.5 vs5.7, 95% CI - 9.1 to -2.4, NS

Abbreviations: 2MWT = 2-Minute Walking Test; 3MinWT = 3-Minute Walking Test; 6MWT = 6-Minute Walking Test; 10MWT = 10-Meter Walking Test; 25-FWT=25-Foot Timed Walking Test; BBS=Berg Balance Scale; CES-D= Center for Epidemiological Studies Depression Scale, CI = confidence interval; ISI =Insomnia Severity Index; RCT=randomized controlled trial; MCS = Mental Component Summary; MD = mean difference; MS = multiple sclerosis; MSIS = Multiple Sclerosis Impact Scale; MSQOL= Multiple Sclerosis Quality of Life; NSR = nonsignificant risk; QENR=quasiexperimental nonrandomized study; QLS=Questionnaire of Life Satisfaction; QOL = Quality of Life; SD = Standard Deviation; SF 36-MCS = Short Form 36 Mental Health Scores; SF 36-PCS = Short Form 36 Physical Component Score; SIQR = Symptom Impact Questionnaire; TUG= Timed Up and Go Test; WT = Walking Time

Table H-6. Strength of evidence for Key Question 2: balance exercise for cerebral palsy

			Number of						
			Studies (Participants)						
)			Author Year (See						
Intervention			Appendix B					Strength	
Category, Intervention	Comparator	Outcome	for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	of Evidence	Findings, Direction and Magnitude of Effect
Postural Control Balance Exercises	Usual care	Function	1 (28) Curtis, 2018 2 QENR (66) Lorentzen, 2015 Bleyenheuft, 2017	High	Unclear as not all estimates of effect were reported	Imprecise	Undetected	Insufficient	$\frac{\text{LE GMFM-66:}}{(6.4) \text{ vs. } 55 (8.7) \text{ to } 56 (7.6) \text{ to } 57 (6.6),} \\ p<0.001 \\ \underline{6MWT:} 190 (108.5) \text{ to } 226 (100.8) \text{ to} \\ 236 (105.1) \text{ vs. } 194 (101.1) \text{ to } 180 \\ (111.1) \text{ to } 182 (101.1), p=0.026 \\ \underline{GMFM-66:} 1.1, 95\% \text{ CI} -2.2 \text{ to } 4.4, \\ p>0.05 (post-intervention); 0.1, 95\% \text{ CI} \\ -3.6 \text{ to } 3.3, p>0.05 (12 \text{ month} \\ followup) \\ \text{Sit-to-stand, number of cycles} \\ performed: 20.0 (0.9) \text{ vs, } 15.1 (0.9), \\ p=0.04 \\ \text{Left leg lateral step up, number of} \\ \text{steps: } 23.5 (1.4) \text{ vs } 17.8 (2.2), p=0.004 \\ \text{Right leg lateral step up, number of} \\ \text{steps: } 22.1 (1.4) \text{ vs. } 18.0 (2.0), \\ p<0.001 \\ \underline{SATCo:} \text{ mean between group} \\ \text{difference at end of treatment and at} \\ \text{post-treatment followup: } p>0.05 \\ \end{array}$
Postural Control Balance	Usual care	Balance	1 (28) Curtis, 2018 1 QENR (46)	High	Consistent	Imprecise	Undetected	Insufficient	PBS: 33 (17.5) to 43 (20.1) to 42 (21.3) vs. 30 (23.9) to 27 (22.2) to 26 (23.2), p=0.002
Exercises			Lorentzen, 2015						Romberg Balance Test center of gravity maintenance area (mm2): 462.2 (62.5) vs 314.6 (104.9), p=0.18

) Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Postural Control Balance Exercises	Usual care	ADLs	1 (28) Curtis, 2018 1 QENR (20) Bleyenheuft, 2017 1 cohort (23) Kim, 2017	High	Unclear as not all estimates of effect were reported	Imprecise	Undetected	Insufficient	PEDI: 52 (12.4) to 57 (11.5) to 60 (10.7) vs. 51 (14.6) to 51 (15.3) to 51 (15.8), p=0.001 PEDI Self Care, PEDI Mobility, PEDI Mobility Caregiver Assistance: mean between group difference at end of treatment and at post-treatment followup: p>0.05 Modified Barthel Index, mean change from baseline: 2.82 (SD 1.25) vs 1.58 (SD 1.38), p<0.05; MD 1.24, 95% CI 0.09 to 2.34, p=0.04

) Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Postural Control Hippotherapy	Usual care, previous activity level or attention control	Function	5 RCTs, 2 QENRs (N=333) Deutz, 2018 Herrero, 2012 Kwon, 2015 Silva e Borges, 2011 Kwon, 2011 Park, 2014 Mutoh, 2019	Moderate	Consistent	Imprecise	Undetected	Low for benefit	$ \begin{array}{l} \hline & GMFM-66: \ 60.8 \ (14.9) \ to \ 63.5 \ (15.8) \\ \text{vs. } 61.4 \ (14.8) \ to \ 61.8 \ (15.0), \ p<0.01 \\ \hline & GMFM-88: \ 72.7 \ (19.2) \ to \ 75.7 \ (18.3) \\ \text{vs. } 73.9 \ (17.9) \ to \ 74.3 \ (18.1), \ p<0.01 \\ \hline & GMFM-88D: \ 54.1 \ (34.2) \ to \ 59.7 \ (32.5) \\ \text{vs. } 55.5 \ (32.2) \ to \ 54.9 \ (33.2), \ p<0.01 \\ \hline & GMFM-88E: \ 41.0 \ (34.1) \ to \ 45.1 \ (35.4) \\ \text{vs. } 42.0 \ (33.2) \ to \ 43.0 \ (33.0), \ p<0.01 \\ \hline & GMFM-88E: \ 41.0 \ (34.1) \ to \ 45.1 \ (35.4) \\ \text{vs. } 42.0 \ (33.2) \ to \ 43.0 \ (33.0), \ p<0.01 \\ \hline & GMFM-88E: \ 41.0 \ (34.1) \ to \ 45.1 \ (35.4) \\ \text{vs. } 42.0 \ (33.2) \ to \ 43.0 \ (33.0), \ p<0.01 \\ \hline & GMFM-66E \ total: \ 0.52, \ 95\% \ CI \ -0.52 \ to \\ \hline & 1.55, \ p>0.05 \\ \hline & GMFM-66E: \ 0.016, \ 95\% \ CI \ -1.09 \ to \\ 1.12, \ p>0.05 \\ \hline & GMFM \ 66E: \ 2.30, \ 95\% \ CI \ -0.28 \ to \ 4.33, \\ p<0.05 \\ \hline & GMFM \ total: \ 0.27, \ 95\% \ CI \ -0.07 \ to \\ 0.62, \ p>0.05 \\ \hline & GMFM \ total: \ Proportion \ with \\ & improvement \ from \ baseline, \ 10 \ weeks: \\ (11/19) \ vs. \ (8/19); \ OR \ 1.89 \ (95\% \ CI \ 0.5 \\ to \ 6.9), \ p>0.05 \\ \hline & GMFM-66: \ 70.4 \ (7.4) \ to \ 73.7 \ (8.3) \ vs. \\ 69.8 \ (8.7) \ to \ 70.1 \ (8.1), \ p=0.003 \\ \hline & GMFM-88: \ 89.4 \ (7.3) \ to \ 91.1 \ (6.7) \ vs. \\ 88.0 \ (8.3) \ to \ 88.3 \ (8.4), \ p=0.054 \\ \hline & GMFM-88E: \ 67.2 \ (17.5) \ to \ 74.6 \ (19.3) \\ vs. \ 65.3 \ (20.0) \ vs. \ 66.9 \ (20.1), \ p=0.042 \\ \hline & GMFM-66: \ 56.6 \ (9.2) \ to \ 62.8 \ (10.8) \ vs. \\ 57.4 \ (7.9) \ to \ 57.9 \ (9.2), \ p<0.05 \\ \hline & GMFM-66E: \ 2.93 \ (3.95) \ vs. \ 1.25 \ (1.99), \\ p<0.05 \\ \hline & GMFM-66E: \ 2.93 \ (3.95) \ vs. \ 1.25 \ (1.99), \\ p<0.05 \\ \hline & GMFM-66E: \ 2.93 \ (3.95) \ vs. \ 1.25 \ (1.99), \\ p<0.05 \\ \hline & GMFM-66E: \ 2.93 \ (3.95) \ vs. \ 1.25 \ (1.99), \\ p<0.05 \\ \hline & GMFM-66E: \ 2.93 \ (3.95) \ vs. \ 1.25 \ (1.99), \\ p<0.05 \\ \hline & GMFM-66E: \ 2.94 \ (7.0) \ to \ 32.5 \ (5/20) \ vs. \ 10\% \\ \hline & (2/20), \ p=0.24 \\ \hline \end{array}$

) Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Postural Control Hippotherapy	Usual care, previous activity level or attention control	Quality of life	2 RCT (97) Deutz, 2018 Mutoh, 2019	High	Consistent	Imprecise	Undetected	Insufficient	No difference between groups in Child Health Questionnaire-28 psychosocial or physical subscale scores or on KIDSCREEN-27 parental scale scores <u>WHOQOL (positive feelings)</u> : 3.1 (1) to 4.1 (1) vs. 3.1 (0.9) to 3.4 (1), p<0.05 <u>WHOQOL (self-esteem)</u> : 2.9 (1.2) to 4.0 (0.7) vs. 3.3 (1.1) to 3.7 (0.7), p<0.05 <u>WHOQOL (negative feelings)</u> : 2.9 (0.8) to 2.8 (0.7) vs. 2.8 (0.8* to 2.8 (0.8), p>0.05
Postural Control Hippotherapy	Usual care, previous activity level or attention control	Spactiicity MAS	1 RCT (N=44) Lucena-Anton, 2018	Moderate	Unknown	Imprecise	Undetected	Insufficient	MAS, left adductors: 2.50 (SD 1.05) vs. 2.54 (SD 1.22), p=0.040 MAS, right adductors: 1.77 (SD 1.26) vs. 2.31 (SD 1.24), p=0.047
Postural Control Hippotherapy	Usual care, previous activity level or attention control	Balance PBS	1 RCT, 2 QENRs (N=150) Kwon, 2015 Kwon, 2011 Lee, 2014	Moderate	Consistent	Imprecise	Undetected	Low for benefit	Pooled analysis (3 studies): MD 3.14, 95% Cl 0.21 to 6.07, p=0.036
Postural Control Hippotherapy	Usual care, previous activity level or attention control	Sitting Balance SAS	2 RCT (N=83) Herrero, 2012 Matusiak- Wieczorek, 2020 1 QENR (N=39) Matusiak- Wieczorek, 2016	HModerate	Consistent	Imprecise	Undetected	Insufficient	SAS: MD: Treatment effect: 0.26 (0.65) vs0.21 (0.92), p>0.05 SAS: 14.42 (4.39) to 15.63 (3.65) vs.15.50 (3.14) to 15.75 (3.19), p=0.010 SAS: 10.93 (3.97) to 13.13 (3.46) vs. 14.87 (3.27) to 15.13 (3.36), p<0.001 (but worse disability in control group)

) Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Postural Control Motion gaming	Neurodeve- lopmental training	Function (QUEST)	2 (N=61) Acar, 2016 Zoccolillo, 2015	High	Consistent	Imprecise	Undetected	Insufficient	QUEST (dissociated movement): 80.1 (7.73) to 85.6 (8.54) vs. 81.4 (10.70) to 86.4 (8.78), p>0.05 QUEST (grasp): 42.2 (18.76) to 47.1 (16.64) vs. 53.0 (16.45) to 55.7 (15.30), p>0.05 QUEST (weight bearing): 60.2 to 72.7 (19.60) vs. 75.4 (19.97) to 77.3 (15.43), p>0.05 QUEST (extension): 72.9 (14.78) to 77.0 (12.05) vs. 71.0 (23.53) to 74.0 (23.36), p>0.05 QUEST: 76 (21) to 81 (20) vs. 74 (20) to 78 (20), p>0.05
Postural Control Motion gaming (arm exoskeleton)	Conventional rehabilitation	Function (QUEST)	1 (N=30) El-Shamy, 2018	Moderate	Unknown	Imprecise	Undetected	Insufficient	QUEST total: 61.9 (2) to 84.6 (2.7) vs. 62.3 (1.8) to 79.1 (2); MD 5.9, 95% CI 3.7 to 7.3, p<0.05
Postural Control Motion gaming	PC gaming using mouse or traditional balance training	Function	3 (N=126) Hsieh, 2018 Tarakci, 2016 Hsieh, 2020	Moderate	Inconsistent	Imprecise	Undetected	Insufficient	$\begin{array}{c} \underline{\text{TUG:}} & 16.43 \ (2.12) \ \text{to} \ 17.51 \ (1.70) \ \text{vs.} \\ 15.60 \ (1.10) \ \text{to} \ 15.91 \ (1.87), \ p<0.05 \\ \underline{\text{TUG:}} & -1.24, \ 95\% \ \text{Cl} \ -4.13 \ \text{to} \ 1.65, \\ p=0.40 \\ \underline{10MWT:} & -1.4, \ 95\% \ \text{Cl} \ -4.36 \ \text{to} \ 1.56, \\ p=0.35 \\ \underline{\text{Sit to Stand Test:}} \ 2.07, \ 95\% \ \text{Cl} \ 0.82 \ \text{to} \\ 3.32, \ p=0.001, \ \text{favors conventional} \\ \hline \text{balance training} \\ \underline{10 \ \text{Step Climbing Test:}} \ -0.99, \ 95\% \ \text{Cl} \ -3.99 \ \text{to} \ 2.01, \ p=0.52 \\ \underline{2MWT:} \ 103.4 \ (16.6) \ \text{to} \ 120.1 \ (20.2) \ \text{vs.} \\ 101.4 \ (23.1) \ \text{to} \ 106.1 \ (22.8), \ p=0.002 \\ \end{array}$

) Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Postural Control Motion gaming	PC gaming using mouse or traditional balance training or usual physical activity	Balance	4 (N=146) Hsieh, 2018 Tarakci, 2016 Hsieh, 2020 Pourazar, 2020	Moderate	Consistent	Imprecise	Undetected	Low for benefit	BBS: 44.74 (2.75) to 48.81 (4.74) vs. 44.39 (2.33) to 45.37 (2.68), p<0.05
Postural Control Whole body vibration	Usual care	Walking	2 (N=50) Lee, 2013 Ahmadizadeh, 2020	Moderate	Inconsistent	Imprecise	Undetected	Insufficient	Walking speed (meters/second): 0.37 (0.04) to 0.48 (0.06) vs. 0.39 (0.05) to 0.40 (0.05), p=0.001 <u>6MWT:</u> 158.8 (100.24) to 189.45 (115.47) vs. 194 (78.82) to 271.5 (60.81), p=0.04 (favors control)

Abbreviations: 6MWT = 6-minute walk test; BBS=Berg Balance Scale; CHQ=Child Health Questionnaire; CI = confidence interval; CP = cerebral palsy; GMFCS = Gross Motor Function Classification System; GMFM = Gross Motor Function Measure; MAS = Modified Ashworth Scale; MD = mean difference; MWT = Minute Walking Time; NA = not applicable; PBS=Pediatric Balance Scale; QENR=quasiexperimental nonrandomized studies; QUEST = Quality of Upper Extremity Skills Test, SAS=Sitting Assessment Scale; RCT = randomized controlled trial; SD = Standard Deviation; TUG= Timed Up and Go Test; WHOQOL = World Health Organization Quality of Life

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Postural Control Balance training	Usual care	Balance	2 (N=60) Norouzi, 2019 Hota, 2020	Moderate	Consistent	Imprecise	Undetected	Insufficient	BBS pooled 2 studies: MD - 4.53, 95% Cl -6.46, -2.61 (favors balance exercises)
Postural Control Tai Chi	Usual care	Quality of life Immediately post- treatment	1 (N=40) Qi, 2018	Moderate	Inconsistent	Imprecise	Undetected	Insufficient	WHOQOL-BREF mean score: 12.23 (1.65) vs. 10.87 (1.08), p=0.04, favors Tai Chi
Postural Control Motion Gaming	Usual care	Dynamic balance	1 (26) Tak, 2015	Moderate	Unknown	Imprecise	Undetected	Insufficient	T-shirt test (s): 29.5 (10.95) to 22.60 (8.28) vs. 23.59 (11.35) to 22.15 (12.28), p<0.05
Postural Control Whole body vibration	Usual care	Function	1 (N=28) In, 2018	Moderate	Unknown	Imprecise	Undetected	Insufficient	10MWT: 29.3 (9.0) to 25.8 (8.1) vs. 28.8 (7.2) to 27.5 (6.3), p=0.005 TUG: 13.7 (3.1) to 11.4 (2.8) vs. 14.7 (4.5) to 13.7 (4.1), p=0.016

Table H-7. Strength of evidence for Key Question 2: balance exercise for spinal cord injury

Abbreviations: BBS = Berg Balance Scale; CES-D = Center for Epidemiological Studies Depression Scale, MWT = Minute Walking Time; NA = not applicable; RCT = randomized controlled trial; SCI = spinal cord injury; WHOQOL-BREF = World Health Organization Quality of Life

Table H-8. Strength of evidence for Key Question 2: muscle strength exercise for multiple sclerosis

Table H-8. Str	engin of evide	ence for Key (Question 2: musc	ie strengtn ex	ercise for mul	tiple sciero:	515	[
			Number of						
			Studies						
			(Participants)						
			Author Year						
Intervention			(See Appendix						
Category,			B for Full	Study			Reporting	Strength of	Findings, Direction and
Intervention	Comparator	Outcome	Citation)	Limitations	Consistency	Precision	Bias	Evidence	Magnitude of Effect
Strength	Usual care,	Walking	6MWT	Moderate	Consistent	Imprecise	Undetected	Low-strength	6MWT
Interventions	previous	Immediately	5 (N=161)					evidence for	p5 trials, MD
Muscle	activity level	Post-	Kalron, 2017					no clear	–12.69 meters, 95% CI –29.45
Strength	or attention	treatment	Duff, 2018					benefit	to 4.07, I ² =0%
Exercise	control		Dalgas,						
			2009/2010						2MWT
			Callesen, 2019						p3 trials, MD –3.3 meters, 95%
			Tollar, 2020						CI –11.92 to 2.81, I ² =0%
			2MWT						10MWT
			3 (N=153)						p3 trials, MD –1.04 seconds,
			Kjolhede, 2016						95% CI –2.48 to 0.69, I ² =0%
			Kalron, 2017						
			Dodd, 2011						MSWS-12 (0-100 scale)
									-1.36, 95% CI -4.83 to 2.10,
			10MWT						l ² =26%
			2 (N= 132)						
			Fox, 2016						25FWT
			Dalgas,						p2 trials, MD –0.07 m/s, 95%
			2009/2010						CI –0.19 to 0.05, I ² =47%
			MSWS-12						
			3 (N=165)						
			Kalron, 2017						
			Fox, 2016						
			Callesen, 2019						
			25FWT						
			2 (N=65)						
			Kjolhede, 2016						
			Callesen, 2019						
Strength	Usual care,	Walking	10MWT	Moderate	Consistent	Imprecise	Undetected	Low-strength	10MWT
Interventions	previous	Short term	2 (N= 132)					evidence for	p2 trials, MD1.27, 95% CI
Muscle	activity level		Fox, 2016					no clear	–2.75 to 0.22, I ² =0%
Strength	or attention		Dalgas,					benefit	
Exercise	control		2009/2010						

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Strength Interventions Muscle Strength Exercise	Usual care, previous activity level or attention control	Functional capacity <i>Immediately</i> Post treatment	TUG 3 (N=113) Duff, 2018 Bulguroglu, 2017 Kalron, 2017 SSST 2 (N=65) Marandi, 2013a/b Callesen, 2019	Moderate	Consistent	Imprecise	Undetected	Low-strength evidence for no clear benefit	TUĞ MD –1.30 seconds, 95% CI – 4.38 to –1.78, I ² =0% SSST MD –2.88, 95% CI –7.51 to 1.74, I ² =95%
Strength Interventions Muscle Strength Exercise	Usual care, previous activity level or attention control	Quality of Life <i>Immediately</i> <i>Post-</i> <i>treatment</i>	MSQol/SF36 MCS 3 (N=100) Duff, 2018 Bulguroglu, 2017 Dalgas, 2010	Moderate	Consistent	Imprecise	Undetected	Low-strength evidence for no clear benefit	MSQoI/SF36 MCS (0-100 scale) MD -3.48, 95% CI -6.61 to - 0.27, I ² =0%
Strength Interventions Muscle Strength Exercise	Usual care, previous activity level or attention control	Quality of Life Immediately Post- treatment	MSQol/SF36 PCS 3 (N=100) Duff, 2018 Bulguroglu, 2017 Dalgas, 2010	Moderate	Consistent	Imprecise	Undetected	Low-strength evidence for no clear benefit	MSQoI/SF36 PCS (0-100 scale) MD -2.77, 95% CI -6.88 to 3.12, I ² = 34%
Strength Interventions Muscle Strength Exercise	Usual care, previous activity level or attention control	Quality of Life <i>Immediately</i> Post- treatment	EQ5D total 1 (N=26) Tollar, 2020	Moderate	Consistent	Imprecise	Undetected	Low-strength evidence for no clear benefit	13.9 (1.44) vs. 13.3 (0.89) (baseline) -0.5 (1.16) vs. 0.0 (1.3) (followup) Difference -0.5, 95% Cl -1.5 to 0.5

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Strength Interventions Muscle Strength Exercise	Usual care, previous activity level or attention control	Balance	ABCS 2 (N=132) Bulguroglu, 2017 Fox, 2016 FABS 1 (N=30) Duff, 2018 BBS 2 (N=71) Kalron, 2017 Tollar, 2020 6 (N=319)	Moderate	Consistent	Imprecise	Undetected	Low-strength evidence for no clear benefit	ABCS (3 trials): MD -0.30, 95% CI -1.38 to 0.77, 1 ² =27% FABS (1 study): MD 0.1, 95% CI -5.43 to 5.63 BBS (2 studies): -0.93, 95% CI -2.87 to 1.01, 1 ² =14%

Abbreviations: 6MWT = 6-Minute Walk Test; 10MWT = 10-Meter Walk Test; 25FWT = 25-Feet Walk Test; ABCS = Activities-Specific Balance Confidence Scale; BBB Berg Balance Scale; CI = confidence interval; EQ-5D = EuroQOL-5 Dimension Questionnaire; FABS = Fullerton Advanced Balance Scale; MD = mean difference; CI = confidence interval; MS = multiple sclerosis; MSQoL-MCS = Multiple Sclerosis Quality of Life-54 instrument Mental Component Score; MSQoL-PCS = Multiple Sclerosis Quality of Life-54 instrument Score; MSWS-12 = Multiple Sclerosis Walking Scale; NA = not applicable; RCT = randomized controlled trial; SF-36 MCS = Short-Form 36 Mental Component Summary; SF-36 PCS = Short-Form 36 Physical Component Score; SSST = Six Spot Step Test; TUG = Timed Up and Go Test

Table H-9. Strength of evidence for Key Question 2: muscle strength exercise for cerebral palsy

	ongen of office		Question 2: muscl						
			Number of						
			Studies						
			(Participants)						
			Author Year						
Intervention			(See Appendix				_		
Category,			B for Full	Study			Reporting	Strength of	Findings, Direction and
Intervention	Comparator	Outcome	Citation)	Limitations	Consistency	Precision	Bias	Evidence	Magnitude of Effect
Strength	Usual care	Walking	1MWT	Moderate	Consistent	Imprecise	Undetected	Low-strength	1MWT
Interventions		Immediately	1 (N=51)					evidence for	difference 0.7 m/s, 95% Cl
Muscle		Post-	Scholtes, 2008,					no clear	-0.23 to 0.9
Strength		treatment	2010, 2011					benefit	
Exercise									
			6MWT						6MWT
			1 (N=49)						difference 0.0 meters, 95% CI
			Taylor,						-41.6 to 41.6
			2013/Bania, 2016						
			10MWT						10MWT
			2 (N=91)						MD –0.26 seconds, 95% CI –
			Scholtes, 2008,						0.95 to 0.43, I ² =44%
			2010, 2011						
			Elnaggar, 2019						Gait Profile Score
									difference 0.2 degrees, 95% CI
			Gait Profile						–0.86 to 1.26
			Score						
			1 (N=49)						
			Taylor,						
			2013/Bania, 2016						
Strength	Usual care	Walking	1MWT	Moderate	Consistent	Imprecise	Undetected	Low-strength	1MWT
Interventions		Short term	1 (N=51)					evidence for	difference 0.0 m/s, 95% CI
Muscle			Scholtes, 2008,					no clear	-0.15 to 0.15
Strength			2010, 2011					benefit	
Exercise									
			6MWT						6MWT
			1 (N=49)						difference 10.7 meters, 95% CI
			Taylor,						-32.3 to 53.7
			2013/Bania, 2016						
			,						
			10MWT						10MWT
			1 (N=51)						difference -0.06 m/s, 95% CI
			Scholtes, 2008,						-0.17 to 0.05
			2010, 2011						

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Strength Interventions Muscle Strength Exercise	Usual care	Functional Capacity <i>Immediately</i> <i>Post-</i> <i>treatment</i>	GMFM-66 1 (N=51) Scholtes, 2008, 2010, 2011 GMFM-66(D) 1 (N=49) Taylor, 2013/Bania, 2016 GMFM-66(E) 1 (N=49) Taylor, 2013/Bania, 2016 GMFM-88 1 (N=25) Cho, 2020 30SEC LAT STEP-UP 1 (N=51) Scholtes, 2008, 2010, 2011 QUEST 1 (N=34) Kara, 2020 COPM 1 (N=34) Kara, 2020	Moderate	Consistent	Imprecise	Undetected	Low-strength evidence for no clear benefit	GMFM-66 (0-100 scale) difference 1.3, 95% CI –3.10 to 5.70 GMFM-66(D) (0-100 scale) difference 1.9, 95% CI –2.58 to 6.38 GMFM-66 (E) (0-100 scale) difference –0.6, 95% CI –8.29 to 7.09 GMFM-88 (0-100 scale) 71.78 (21.1) vs. 63.48 (27.5) (postinervention), p=NR 30SEC LAT STEP-UP difference 0.5 repetitions, 95% CI –1.26 to 2.26 QUEST total 8.88 (6.51) vs. 2.22 (4.74), MD 6.65 (95% CI 2.4 to 10.9), p=0.001 COPM total: 6.12 (2.33) vs. 0.41 (1.56), MD 5.71 (95% CI 4.2 to 7.2), p<0.001
Strength Interventions Muscle Strength Exercise	Usual care	Functional Capacity <i>Short term</i>	30SEC LAT STEP-UP 1 (N=51) Scholtes, 2008, 2010, 2011	Moderate	Unknown	Imprecise	Undetected	Insufficient	30SEC LAT STEP-UP difference 0.4 repetitions, 95% CI –1.53 to 2.33

Intervention Category, Intervention Strength Interventions Muscle	Comparator Neuromus- cular electrical	Outcome Functional Capacity Immediately	Number of Studies (Participants) Author Year (See Appendix B for Full Citation) GMFM-66 1 (N=100) Qi, 2018a	Study Limitations Moderate	Consistency Unknown	Precision Imprecise	Reporting Bias Undetected	Strength of Evidence Insufficient	Findings, Direction and Magnitude of Effect GMFM-66 (0-100 scale) difference –13.4, 95% Cl –16.90 to –9.90
Strength Exercise	stimulation	Post- treatment	QI, 2010a						-10.90 10 -3.90
Strength Interventions Muscle Strength Exercise	Neuromus- cular electrical stimulation	Functional Capacity Short term	GMFM-66 1 (N=100) Qi, 2018a	Moderate	Unknown	Imprecise	Undetected	Insufficient	GMFM-66 (0-100 scale) difference and –12.5, 95% CI –16.26 to –8.74
Strength Interventions Muscle Strength Exercise	Usual care	Balance	F-SFRT, S-SFRT 1 (N=25) Cho 2020 PBS 1 (N=62) Tedla 2014	High	Consistent	Imprecise	Undetected	Insufficient	F-SFRT: 21.62 (6.87) vs. 28.17 (14.49) (baseline) 26.65 (7.92), p=0.000 vs. 25.37 (10.20), p=0.261 (postintervention) S-SFRT: 11.57 (5.72) vs. 15.52 (10.43) (baseline) 16.21 (5.37), p=0.003 vs. 15.95 (8.26), p=0.793 (postintervention) PBS: 7.23 (3.350) vs. (1.074), p<0.001

Abbreviations: 1MWT = 1-Minute Walk Test; 6MWT = 6-Minute Walk Test; 10MWT = 10-Meter Walk Test; 25FWT = 25-Feet Walk Test; 30 SEC LAT STEP-UP = 30 second lateral step-up; CI = confidence interval; COPM = Canadian Occupational Performance Measure; CP = cerebral palsy; GMFM-66 = Gross Motor Function Measure 66; GMFM-66(D) = Gross Motor Function Measure 66 dimension D (standing); GMFM-66(E) = Gross Motor Function Measure 66 dimension E (walking, running, jumping); MD = mean difference; NA = not applicable; RCT = randomized controlled trial; QUEST = Quality of Upper Extremity Skills Test

Table H-10. Strength of evidence for Key Question 2: muscle strength exercise for spinal cord injury

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Strength Interventions Muscle Strength Exercise	Usual care	Quality of Life <i>Immediately</i> <i>Post-</i> <i>treatment</i>	SF-36 1 (N=98) Chen, 2016	Moderate	Unknown	Imprecise	Undetected	Insufficient	SF-36 subscales Physical function (0-100) difference 26.7, 95% Cl 24.61 to 28.79 Social function (0-100) difference 28.9, 95% Cl 26.06 to 31.74 Role emotional (0-100) difference 22.0, 95% Cl 20.11 to 23.89 Mental health (0-100) difference 21.0, 95% Cl 19.10 to 22.90 Body pain (0-100) difference 0.0, 95% Cl -2.74 to 2.74

Abbreviations: CI = confidence interval; NA = not applicable; RCT = randomized controlled trial; SCI = spinal cord injury; SF-36 = Short-Form 36 questionnaire

			y Question 2: mul			ies strengt			,
			Number of Studies						
			(Participants)						
Intervention			Author Year						
				Chudy			Reporting	Strongth of	Findings Direction and
Category,	Compositor	Outcome	(See Appendix B	Study Limitations	Consistensy	Precision	Bias	Strength of Evidence	Findings, Direction and
Intervention	Comparator	Outcome	for Full Citation)		Consistency				Magnitude of Effect
Multimodal Exercise Progressive resistance or strength exercise plus aerobic or balance	Usual care, previous activity level or attention control	Walking Immediately Post- treatment	6MWT 35 (N=276) Sandroff, 2017 Sangelaji, 2016 Ebrahimi, 2015 Faramazi, 2020 Ozkul, 2020 10MWT 3 (N=93) Sangelaji, 2016 Cakit, 2010 Ebrahimi, 2015 Other 1 (N=83) Sandroff, 2017	Moderate	Consistent ^a	Imprecise	Undetected	Low for benefit	6MWT 4 trials, MD -64.92, 95% CI - 73.5 to -56.2, I ² =0%excluding outlier trial ^b 10MWT 3 trials MD -1.99 seconds, 95% CI -2.8 to -1.2, I ² =0%: excluding outlier trial ^c Other (no differences) MSWS-12: difference -3.30, 95% CI -10.16 to 3.56 (0- 100 scale) 25FWT: difference 0.30 feet/second, 95% CI -0.15 to 0.75
Multimodal Exercise Progressive resistance or strength exercise plus aerobic or balance	Usual care, previous activity level or attention control	Walking Short term	6MWT 1 (N=72) Sangelaji, 2014	High	Unknown	Precise	Undetected	Insufficient	6MWT difference 184.3 ± 51.1 meters, p=0.03
Multimodal Exercise Progressive resistance or strength exercise plus aerobic or balance	Usual care, previous activity level or attention control	Functional capacity <i>Immediately</i> <i>Post</i> <i>treatment</i>	23 (N=142) Cakit, 2010 Ebrahimi 2015 Faramarzi, 2020	High	Inconsistent	Precise	Undetected	Insufficient	TUG MD –2.15 seconds, 95% CI –2.72 to –1.58, I ² =0

Table H-11. Strength of evidence for Key Question 2: multimodal exercise that includes strengthening for multiple sclerosis

Intervention Category, Intervention Multimodal Exercise Progressive resistance or strength exercise plus aerobic or balance	Comparator Usual care, previous activity level or attention control	Outcome Balance	Number of Studies (Participants) Author Year (See Appendix B for Full Citation) 3 (N=224) Sangelaji, 2014 Sangelaji, 2016 Ebrahimi, 2015 Tarakci, 2013	Study Limitations Moderate	Consistency Consistent	Precision Precise	Reporting Bias Undetected	Strength of Evidence Low for benefit	Findings, Direction and Magnitude of Effect BBS: MD -3.37, 95% CI - 3.76 to -3.14, I2=38%
Multimodal Exercise Progressive resistance or strength exercise plus aerobic or balance	Usual care, previous activity level or attention control	MSQoL-54 MCS <i>Immediately</i> <i>Post-</i> <i>treatment</i>	23 (N=119) Sangelaji, 2014 Ebrahimi, 2105 Ozkul, 2020b	High	Inconsistent	Imprecise	Undetected	Insufficient	MSQoL-54 MCS (0-100 scale): 3 trials MD –10.7, 95% CI –22.6 to 1.24, I ² =91%; o
Multimodal Exercise Progressive resistance or strength exercise plus aerobic or balance	Usual care, previous activity level or attention control	MSQoL-54 MCS <i>Long-term</i> (42 weeks)	1 (N=51) Sangelaji, 2014	High	Unknown	Imprecise	Undetected	Insufficient	MSQoL-54 MCS (0-100 scale): 13.54 ± 5.37, p=0.02
Multimodal Exercise Progressive resistance or strength exercise plus aerobic or balance	Usual care, previous activity level or attention control	MSQoL-54 PCS Immediately Post- treatment	23 (N=119) Sangelaji, 2014 Ebrahimi, 2105 Ozkul. 2020b	High	Consistent ^a	Imprecise	Undetected	Insufficient	MSQoL-54,PCS (0-100 scale): MD -13.3, 95% CI - 21.6 to -4.9, I ² =75% After excluding outlier MD - 12.0, 95% CI -13.8 to 5.0, I ² =75%

Intervention Category, Intervention Multimodal	Comparator Usual care,	Outcome MSQoL-54	Number of Studies (Participants) Author Year (See Appendix B for Full Citation) 1 (N=51)	Study Limitations High	Consistency Unknown	Precision Imprecise	Reporting Bias Undetected	Strength of Evidence Insufficient	Findings, Direction and Magnitude of Effect MSQoL-54,PCS (0-100
Exercise Progressive resistance or strength exercise plus aerobic or balance	previous activity level or attention control	PCS Long-term (42 weeks)	Sangelaji, 2014						scale): difference 10.9 ± 4.55, p=0.02
Multimodal Exercise Progressive resistance or strength exercise plus aerobic or balance	Multimodal exercise vs. Aerobic exercise	Quality of Life; SF-36 MCS/PCS <i>Immediately</i> <i>Post-</i> <i>treatment</i> <i>MusiQoL</i>	1 (N=60) Kerling, 2015 1 (N=110)	Moderate	Unknown	Imprecise	Undetected	Insufficient	SF36 MCS (0-100 scale) difference 4.2, 95% CI 0.2 to 8.2 (favors control) SF36 PCS (0-100 scale) difference -0.7, 95% CI - 3.9 to 2.2 MusiQOL (0-100 scale:) difference -2.38, 95% CI - 4.68 to -0.08
Multimodal Exercise Exercises to improve functional strength, balance, gait speed and endurance plus stretching and core- stability work.	Group multimodal exercise vs. Home-based multimodal exercise	Walking Immediatetly Post- treatment 6MWT, 10MWT	1 (N=44), Williams, 2020	Moderate	Unknown	Imprecise	Undetected	Insufficient	10MWT, difference 0.01 (95% CI -0.36 to 0.37 m/s) 6MWT, Difference 18.67 (95% CI -78.22 to 115.56 meters)

Intervention Category, Intervention Multimodal Exercise Exercises to improve functional strength, balance, gait speed and endurance plus stretching and core- stability work.	Comparator Group multimodal exercise vs. Home-based multimodal exercise	Outcome Walking Short term (8 weeks) 6MWT, 10MWT	Number of Studies (Participants) Author Year (See Appendix B for Full Citation) 1 (N=44), Williams, 2020	Study Limitations Moderate	Consistency Unknown	Precision Imprecise	Reporting Bias Undetected	Strength of Evidence Insufficient	Findings, Direction and Magnitude of Effect 10MWT, Difference -0.19 (95% CI - 0.41 to 0.03, m/s) 6MWT, Difference -20.5 (95% CI - 60.21 to 19.21 meters)
Multimodal Exercise Exercises to improve functional strength, balance, gait speed and endurance plus stretching and core- stability work.	Group multimodal exercise vs. Home-based multimodal exercise	Balance Immediatetly Post- treatment	1 (N=44), Williams, 2020	Moderate	Unknown	Imprecise	Undetected	Insufficient	BBS Difference 1.70 (95% CI −8.4 to 11.80)

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Multimodal Exercise Exercises to improve functional strength, balance, gait speed and endurance plus stretching and core- stability work.	Group multimodal exercise vs. Home-based multimodal exercise	Balance short term (8 weeks	1 (N=44), Williams, 2020	Moderate	Unknown	Imprecise	Undetected	Insufficient	BBS Difference -1.9 (-6.44 to 2.64)

Abbreviations: BBS = Berg Balance Scale; 6MWT = 6-Minute Walk Test; 10MWT = 10-Meter Walk Test; 25FWT = 25-Feet Walk Test; CI = confidence interval; MD = mean difference; MS = multiple sclerosis; MSQoL-MCS = Multiple Sclerosis Quality of Life–54 instrument Mental Component Score; MSQoL-PCS = Multiple Sclerosis Quality of Life–54 instrument Physical Component Score; MSWS-12 = Multiple Sclerosis Walking Scale; NA = not applicable; RCT = randomized controlled trial; SF-36 MCS = Short-Form 36 Mental Component Summary; SF-36 PCS = Short-Form 36 Physical Component Score; TUG = Timed Up and Go Test.

^a Effect estimates go in the same direction even though magnitude of effect may differ
 ^b Outlier excluded, Sangelaji 2014
 ^c Outlier excluded, Tarakci 2013

Table H-12. Strength of evidence for Ke	y Question 2: multimodal exercise that includes strengthening for cerebral palsy	
	y dubblion in malamodal exclusion that moradoo of ongenoming for corosial paloy	

Intervention Category, Intervention Multimodal Exercise Progressive resistance or strength exercise plus aerobic or balance	Comparator Usual care	Outcome Walking Immediately Post- treatment	Number of Studies (Participants) Author Year (See Appendix B for Full Citation) 6MWT 1 (N=37) Fosdahl, 2019b GDI 1 (N=37) Fosdahl, 2019b	Study Limitations Moderate	Consistency Unknown	Precision Imprecise	Reporting Bias Undetected	Strength of Evidence Insufficent	Findings, Direction and Magnitude of Effect 6MWT (meters) 1 trial: difference -45.7 (55.4) vs55.4 (55.5), adj. MD10.6 (95% CI -29.3 to 50.6), p=0.590 (pre-post change) GDI 1 trial: difference -0.4 (4.4) vs. -0.8 (7.14), adj. MD -1.0 (95%)
Multimodal Exercise Progressive resistance or strength exercise plus aerobic or balance	Usual care	Walking Intermediate term (16 weeks)	6MWT 1 (N=37) Fosdahl, 2019b GDI 1 (N=37) Fosdahl, 2019b 1MWT 2 (N=80) Kaya Kara, 2019 Van Wely, 2014a	Moderate	Inconsistent	Imprecise	Undetected	Insufficient	CI -5.3 to 3.3), p=0.65 6MWT (meters) 1 trial: difference -differences)vs56.6 (59.6), adj. MD 7.2 (-43.3 to 57.7), p=0.772 (16 week change) GDI 1 trial: difference -0.7 (6.0) vs. 1.01 (5.9), adj. MD -1.4 (95% CI -5.6 to 2.8), p=0.504 (16 week change) 1MWT:2 pooled trials: MD -5.28, 95% CI -10.24 to - 0.33, I ² =45%

Intervention Category, Intervention Multimodal Exercise Progressive resistance or strength exercise plus aerobic or balance	Comparator Usual care	Outcome Functional Capacity Immediately Post- treatment	Number of Studies (Participants) Author Year (See Appendix B for Full Citation) GMFM-66 2 (N=105) Slaman, 2015a, 2015b, 2014, 2010 Van Wely, 2014a, 2014b, 2010 GMFM88-D/E 1 (N=30) Kaya Kara, 2019	Study Limitations Moderate	Consistency Inconsistent (GMFM-66) Unknown (GMFM-88 D/E)	Precision Imprecise	Reporting Bias Undetected	Strength of Evidence Low-strength evidence for no clear benefit	Findings, Direction and Magnitude of Effect GMFM-66 (0-100 scale) 2 trials, MD -1.5 , 95% CI -6.4 to 4.7, 1 ² =71%). No difference in one trial (difference 1.6, 95% CI -2.7 to 5.9) in one trial; the other trial favored exercise over usual care (difference -3.1 , 95% CI $-$ 5.7 to -0.6) GMFM-88-D 1 trial: difference -0.2 , 95% CI -0.9 to 0.6 GMFM-88-E
Multimodal Exercise Progressive resistance or strength exercise plus aerobic or balance	Usual care	Functional Capacity Intermediate term (16 weeks)	TUG 1 (N=37) Fosdahl, 2019b	Moderate	Unknown	Imprecise	Undetected	Insufficient	1 trial: difference 2.7, 95% Cl 1.0 to 4.4 TUG difference –1.1, 95% Cl –1.4 to –0.78
Multimodal Exercise Progressive resistance or strength exercise plus aerobic or balance	Usual care	Quality of Life <i>Immediately</i> <i>Post</i> <i>treatment</i>	CP-QOL: 1 (N=50) Van Wely, 2014a, 2014b, 2010 SF-36: 1 (N=57) Slaman, 2015a, 2015b, 2014, 2010	Moderate	Consistent	Unknown	Undetected	Low-strength evidence for no clear benefit	No improvement in any domain of either QOL measure was seen in either study (please see full report).

Abbreviations: 6MWT = 6-Minute Walk Test; CI = confidence interval; CP = cerebral palsy; CP-QOL = cerebral palsy quality of life questionnaire; GDI = Gait Deviation Index; GMFM-66 = Gross Motor Function Measure 66; GMFM-88-D/E = Gross Motor Function Measure 88 dimensions D (standing) and E (walking, running, jumping); MD = mean difference; NA = not applicable; SF-36 = Short-Form 36 questionnaire; QoL = quality of life; RCT = randomized controlled trial; TUG = Timed Up and Go Test

Table H-13.	Strength of ev	aence for Key	y Question 2: mul	timodal exerc	cise that includ	des strengti	nening for sp	inal cord injur	<u>y</u>
Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Multimodal Exercise Progressive resistance or strength exercise plus aerobic or balance	Usual care	Walking ability <i>Immediately Post-</i> <i>treatment</i>	1 (N=48) Jones, 2014a, 2014b	High	Unknown	Imprecise	Undetected	Insufficient	Change scores 6MWT $36.0 \pm 48.2 \text{ vs. } 3.0 \pm 25.5$ meters, p=0.002 10MWT $0.1 \pm 0.1 \text{ vs. } 0.03 \pm 0.1 \text{ meters}$ per second; p=0.036 SCI-FAI (scale not provided) $5.0 \pm 8.0 \text{ vs. } -0.2 \pm 2.8, p=0.03$
Multimodal Exercise Progressive resistance or strength exercise plus aerobic or balance	Usual care	Functional Capacity <i>Immediately</i> Post - intervention	1 (N=48) Jones, 2014a, 2014b	High	Unknown	Imprecise	Undetected	Insufficient	TUG difference -37.2 ± 81.3 vs 6.2 ± 18.1 seconds; p=0.267
Multimodal Exercise Progressive resistance or strength exercise plus aerobic or balance (whole body)	Multimodal Exercise (upper body only)	Walking ability <i>Immediately</i> <i>Post-</i> <i>treatment</i>	1 (N=26) Galea, 2018 (subset of patients who could walk)	Moderate	Unknown	Imprecise	Undetected	Insufficient	6MWT difference -12.30, 95% CI - 68.01 to 43.41 10MWT difference -0.10, 95% CI -0.30 to 0.10
Multimodal Exercise Progressive resistance or strength exercise plus aerobic or balance (whole body)	Multimodal Exercise (upper body only)	Walking ability Short-term Followup (12 weeks)	1 (N=26) Galea, 2018 (subset of patients who could walk)	Moderate	Unknown	Imprecise			6MWT difference -88.0, 95% CI - 143.71 to -32.29 10MWT difference -0.80, 95% CI -2.3 to 0.70

Table H-13. Strength of evidence for Key Question 2: multimodal exercise that includes strengthening for spinal cord injury

Abbreviations: 6MWT = 6-Minute Walk Test; 10MWT = 10-Meter Walk Test; NA = not applicable; RCT = randomized controlled trial; SCI = spinal cord injury; SCI-FAI = Spinal Cord Injury Function Ambulation Index; TUG = Timed Up and Go Test.

Table H-14. Strength of evidence for Key Question 2a clinical outcomes: mental health

	Jucingui oi evic		Question za cim		S. memai neu			1	1
Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
All-exercise interventions All physical exercise interventions in MS	All comparators	Depression scores	12 RCTs (N=564) Baquet, 2018 Hebert, 2011 Negaresh, 2019 Russo, 2018 Dalgas, 2009 Cakit, 2010 Razazian, 2016 Ahmadi, 2013 Sadeghi Bahmani, 2019 Tollar, 2020 Ozkul, 2020b Sadeghi Bahmani, 2020	Moderate	Consistent	Imprecise	Undetected	Moderate for benefit	(SMD -0.29, 95% CI -0.50 to -0.03, I ² =8%)
All-exercise interventions All physical exercise interventions in SCI	All comparators	Depression Scores	3 RCTs (N=171) Yang, 2014 Akkurt, 2017 Galea, 2018	Moderate	Consistent	Imprecise	Undetected	Low-strength evidence for no clear benefit	CES-D: -2.7 vs. -2.4, p>0.05 HADS change scores: 0 vs. 0.5, p>0.05 CES-D change scores: -3 vs. 3, p>0.05 HADS-Depression 10.5 (2) vs. 10.4 (2.1) (baseline) 10 (1.6) vs. 10.2 (1.3) (post-intervention) MD -0.28, 95% CI -0.83 to 0.27, p=0.309 (post-intervention) 10.1 (1.5) vs. 10.2 (1.4) MD -0.23 (95% CI -0.81 to 0.35), p=0.428 (24 weeks— 12 weeks post-intervention)

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
All-exercise interventions	All comparators	Anxiety scores	2 RCTs (N=146) Keser, 2011	Moderate	Consistent	Imprecise	Undetected	Insufficient	1 MS: HAD Anxiety scores not provided but no
interventions	comparators	300103	Galea, 2018						difference between
All physical									calisthenics and neurorehab
interventions in MS and SCI									1SCI: MD 0.29, 95% CI - 0.25 to 0.83, p=0.291, no
									difference between whole
									body strength training and
									upper body strength on depression scores between
									groups with little change
									from baseline in both groups

Abbreviations: MS = multiple sclerosis; HAD = Hospital and Depression (Scale); MD = mean difference; NA = not applicable; RCT = randomized controlled trial; SCI = spinal cor injury

Intervention Category, Intervention	Comparator	Outcome	Number of RCTs (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
All-exercise interventions (General exercise effect across interventions/ populations)	Usual Care	6MWT	25 (1196) Baguet, 2018 Hebert, 2011 Kargarfard, 2018 Young, 2019 Kim, 2015 Kalron, 2017 Duff, 2018 Dalgas, 2010 Taylor, 2013 Hogan, 2014 Garrett, 2012ab Sandroff, 2017 Sangelaji, 2014 Sangelaji, 2016 Ebrahimi, 2015 Jones, 2014a Bahrami, 2019a Callesen, 2019 Fosdahl, 2019b Tollar, 2020 Yazgan, 2019 Moraes, 2020 Ahmadizadeh 2019	Moderate	Consistent	Precise	Undetected	Moderate for benefit	6MWT: Pooled analysis: MD - 32.94, 95% CI -46.07 to - 19.81, I ² =78%

Table H-15. Strength of evidence for Key Question 2: general exercise effect across interventions and populations

Intervention Category, Intervention	Comparator	Outcome	Number of RCTs (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
All exercise	Usual Care	Walking in MS	25 (1529) Baguet, 2018 Hebert, 2011 Kargarfard, 2018 Young, 2019 Kalron, 2017 Duff, 2018 Dalgas, 2010 Hogan, 2014 Garrett, 2012a/b Sandroff, 2017 Sangelaji, 2014 Sangelaji, 2016 Ebrahimi, 2015 Carling, 2017 Cakit, 2010 Tarakci, 2013 Fox, 2016 Forsberg, 2016 Nilsagard, 2012 Callesen, 2019 Ahmadi, 213 Arntzen, 2020 Tollar, 2020 Moraes, 2020 Yazgan, 2019 Faramarzi, 2020	Moderate	Consistent	Precise	Not detected	High for benefit	Pooled analysis (19 studies): 6MWT: MD -42.70, 95% CI - 57.05 to -28.35, I ² =75% Pooled analysis (9 studies): 10MWT: MD -1.44, 95% CI - 2.74 to -0.13, I ² =90% Pooled analysis (9 studies): MS Walking Scale: MD -2.88, 95% CI -4.80 to -0.96, I ² =33%

Intervention Category, Intervention	Comparator	Outcome	Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
All exercise	Usual Care	10MWT	14 (659) Fox, 2016 Dalgas, 2010 Carling, 2017 In, 2018 Sangelaji, 2016 Cakit, 2010 Ebrahimi, 2015 Tarakci, 2013 Jones, 2014a Bahrami, 2019 Elnaggar, 2019 Scholtes, 2012 Ahmandi, 2013 Arntzen, 2020	Moderate	Consistent	Imprecise	Not detected	Moderate for benefit	MD -1.24, 95% CI -2.04 to -0.44
All exercise	Usual Care	Function: GMFM-66 in CP GMFM-66E in CP TUG	7 (353) Fowler, 2010 Bryant, 2012 Scholtes, 2010 Deutz, 2017 Herrero, 2012 Slaman, 2015 Van Wely, 2014	Moderate	Consistent	Imprecise	Not detected	Low-strength evidence for benefit	GMFM-66: MD -0.58, 95% CI - 1.62 to 0.45, I2=79% GMFM-66D: MD -0.89, 95% CI -7.33 to 5.55, I2=60% GMFM-66E: MD -3.73, 95% CI -5.78 to -1.67, I2=0% TUG: MD -1.05, 95% CI -1.35 to -0.76)

Intervention Category, Intervention	Comparator	Outcome	Number of RCTs (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
All exercise	Usual Care	Walking in CP	7 (234) Kim, 2015 Taylor, 2013 Bahmani, 2019 Fosdahl, 2019b Ahmadizadeh, 2019 Elnagger, 2019 Scholtes, 2012	Moderate	Consistant	Imprecise	No detected	Low for no clear benefit	Pooled analysis (4 trials) 6MWT: MD 6.85, 95% CI - 13.39 to 27.08, I ² =0% Pooled analysis (3 trials) 10MWT: MD -0.46, 95% CI - 1.55 to 0.63, I ² =44%
All exercise	Usual Care	BBS	19 (1006) Gervasoni, 2014 Kargarfard, 2018 Afrasiabifar, 2018 Forsberg, 2016 Carling, 2017 Gandolfi, 2015 Hsieh, 2018 Vermohlen, 2018 Sangelaji, 2014 Sangelaji, 2014 Sangelaji, 2016 Ebrahimi, 2015 Tarakci, 2013 Brichetto, 2015 Tollar, 2020 Ozkul, 2020 Yazgan, 2019 Hota, 2020 Ahmandi, 2013 Kalron, 2017	Moderate	Consistent	Precise	Not detected	Moderate for benefit	MD -3.64, 95% CI -4.23 to - 3.04, I ² =68%

			Number of RCTs						
Intervention			(Participants) Author Year						
Category,			(See Appendix B for	Study			Reporting	Strength of	Findings, Direction and
Intervention	Comparator	Outcome	Full Citation)	Limitations	Consistency	Precision	Bias	Evidence	Magnitude of Effect
All exercise	Usual Care	TUG	19 (N=882)	Moderate	Consistent	Imprecise	Undetected	Low-strength	TUG: MD -0.66, -1.28 to -0.04,
	Usual Care	100	Negaresh, 2018	Moderate	Consistent	Imprecise	Undeteeted	evidence for	l ² =85%
			Russo, 2018					benefit	1 -00 %
			Young, 2019					bonon	
			Duff, 2018						
			Bulguroglu, 2017						
			Kalron, 2017						
			Carling, 2017						
			Forsberg, 2016						
			Claerbout, 2012						
			Nilsagard, 2012						
			Hsieh, 2018						
			In, 2018						
			Cakit, 2010						
			Ebrahimi, 2015						
			Jones, 2014a						
			Kaya Kara, 2019						
			Ozkul, 2020						
			Yazgan, 2019						
			Faramarzi, 2020						
All exercise	Usual Care	TUG in MS		Moderate	Consistent	Precise	Undetected	Moderate-	TUG: MD -0.30, 95% CI -1.18
			Negaresh, 2018					strength	to 0.59, I ² =89%
			Russo, 2018					evidence for no	
			Young, 2019					clear benefit	
			Duff, 2018						
			Bulguroglu, 2017						
			Kalron, 2017						
			Carling, 2017						
			Forsberg, 2016						
			Claerbout, 2012						
			Nilsagard, 2012						
			Cakit, 2010						
			Ebrahimi, 2015						
			Ozkul, 2020						
			Yazgan, 2019						

Intervention Category, Intervention	Comparator	Outcome	Number of RCTs (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
All exercise	Usual Care	BBS in MS	17 (906) Gervasoni, 2014 Kargarfard, 2018 Afrasiabifar, 2018 Forsberg, 2016 Carling, 2017 Gandolfi, 2015Vermohlen, 2018 Sangelaji, 2014 Sangelaji, 2014 Ebrahimi, 2015 Tarakci, 2013 Ahmadi, 2013 Tollar, 2020 Kalron, 2017 Brichetto, 2015 Ozkul, 2020 Yazgan, 2019	Moderate	Consistent	Precise	Not detected	Moderate for benefit	<u>BBS:</u> MD -3.56, 95% CI -4.58 to -2.54, I ² =77%
All exercise	Usual Care	Function in CP	11 (500) Hsieh, 2018 Kaya Kara, 2019 Fowler, 2010 Bryant, 2012 Schlotes, 2010 Deutz, 2017 Herrero, 2012 Mutoh, 2019 Slaman, 2015 Van Wely, 2014	Moderate	Consistent	Imprecise	Not detected	Low for benefit	BBS: MD -3.09, 95% CI -4.60 to -1.58 <u>Pooled TUG</u> : -1.05, 95% CI - 1.35 to -0.76, I ² =0% <u>Pooled GMFM-66</u> : MD -0.58, 95% CI -1.62 to 0.45, I ² =79%
All exercise	Usual Care	Function in SCI	4 (129) Norouzi, 2019 Hota, 2020 Jones, 2014 In, 2018	Moderate	Consistent	Imprecise	Not detected	Low for benefit	Pooled BBS: MD -4.53, 95% CI -6.46 to -2.61, I ² =0% 6MWT: MD -32.97, 95% CI - 68.17 to 2.23 Pooled analysis (2 trials) 10MWT: MD -5.06, 95% CI - 13.29 to 3.15, I ² =55% Pooled analysis (2 trials) TUG: - 10.33, 95% CI -37.10 to 16.45, I ² =61%

Abbreviations: : 6MWT = 6-Minute Walk Test; 10MWT = 10-Meter Walk Test; BBS: Berg Balance Scale; CP = cerebral palsy; GMFM-66 = Gross Motor Function Measure 66; GMFM-66(D) = Gross Motor Function Measure 66 dimension D (standing); GMFM-66(E) = Gross Motor Function Measure 66 dimension E (walking, running, jumping); MD = mean difference; MS = multiple sclerosis; NA = not applicable; RCT = randomized controlled trial; SCI = spinal cord injury; TUG = Timed Up and Go Test

Intervention Category, Intervention Aerobic Exercise in CP	Comparator Usual care	Outcome VO ₂ peak	Number of Studies (Participants) Author Year (See Appendix B for Full Citation) 2 quasiexperimental (54) Nsenga, 2013 Nsenga Leunkeu, 2012	Study Limitations Moderate	Consistency Consistent	Precision Imprecise	Reporting Bias Undetected	Strength of Evidence Low for benefit	Findings, Direction and Magnitude of Effect Both studies show significant increase in VO2 Peak ml/min from baseline with training, not in usual care. (estimates from graphs): <u>VO2 Peak:</u> 32.5 to 39.0 (p<0.05) vs. 32.5 to 32.5 (P>0.05) VO2 Peak (ml/kg/min: 7.00, 95% Cl 1.93 to 12.07, p=0.007
Aerobic Exercise in MS	Usual care	VO ₂ peak	4 (251) Baquet, 2018, Heine, 2017 Negaresh, 2018	Moderate	Inconsistent	Imprecise	Undetected	Insufficient	Mean difference between groups: <u>Study 1: VO2 Peak (ml/min):</u> - 51.4, 95% CI -165.2 to 62.5, p=0.37 <u>VO2 Peak (ml/min/kg)</u> : -0.9, 95% CI -2.5 to 0.6, p=0.24 Study 2: A vs. B, difference between groups (SD), <u>VO2 Peak (L/min)</u> : MD 0.048 (0.082), p=0.561 <u>VO2 Peak (mL/kg/min)</u> : MD 0.979 (1.075), p=0.364 <u>Study 3: VO2 Peak (change from baseline, estimated from graph)</u> : 2.7 vs. 0 vs. 1.9 vs. 0.6, p=0.001
Aerobic Exercise in SCI	Usual care	VO ₂ peak	2 (71) van der Scheer 2016 Lavado, 2012 1 cohort study (N=17) Valent, 2010	Moderate	Consistent	Imprecise	Undetected	Low for benefit	Median change RCT 1: VO2 Peak (L/min): 0.05 to -0.07, p=0.01 RCT 2: VO2 Peak (mL/min): 939 to 1154 (p=0.009) vs. 896 to 834, p=0.906; Post- intervention comparison, p<0.001

Table H-16. Strength of evidence for Key Question 2b intermediate outcomes: effect of physical activity interventions on VO₂ peak and VO₂ max

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Aerobic Exercise in SCI	Head to head comparison of aerobic programs	VO2 peak	3 (100) Gorman, 2019 Alexeeva, 2011 Akkurt, 2017	Moderate	Inconsistent	Imprecise	Undetected	Insufficient	Median change: <u>VO2Peak (ml/kg/min):</u> 4.30 vs. 1.35, p=0.02 A vs. B, Mean (SD) <u>VO2Peak (ml/kg/min):</u> 16.48 (5.39) to 16.18 (5.11) vs.13.33 (3.06) to 14.31 (3.88), p=0.063 A vs. B vs. C, Mean (SD) <u>VO2Peak (ml/km/min)</u> : 12% nonsignificant increase within groups, but no differences between groups, p>0.05
Multimodal Exercise in CP	Usual care,	VO ₂ peak	1 (57) Slaman, 2014a, 2014b, 2018	Moderate	Unknown	Imprecise	Undetected	Insufficient	Mean difference between groups: VO2 Peak (mL/min): MD 195.2, 95% CI 57.3 to 333.1, p<0.01
Multimodal Exercise in MS	Usual care	VO ₂ max/peak	12 (123) Wens, 2015b (high intensity) Banitalebi, 2020	Moderate	UConsistent	Imprecise	Undetected	ILow for benefit	Mean (SD) Study 1: <u>VO2 Max (ml/min):</u> 17.8% (4.6%) vs. 2.5% (4.1%), p<0.01 <u>VO2 Max (ml/min/kg):</u> 17.8% (4.6%) vs. 2.5% (4.1%), p<0.01 <u>% Body fat:</u> Study 2: VO2 peak: p=0.004, effect of disability*exercise p=0.097

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Multimodal Exercise in MS	Head-to-head comparison	VO2 peak/max	2 (96) Wens, 2015b (high intensity); Sandroff, 2017	Moderate	Unknown	Imprecise	Undetected	Insufficient	Mean (SD) <u>VO2 Peak (ml/kg/min):</u> 16.5 (6.5) vs. 15.4 (6.2), p=NR (baseline) 17.1 (5.9) vs. 15.9 (5.5), p=NR (post-intervention) Time X Group interaction p>0.20 Mean (SD) of % change A vs. Control <u>VO2 Max (ml/min):</u> 17.8% (4.6%) vs. 2.5% (4.1%), p<0.01 <u>VO2 Max (ml/min/kg):</u> 17.8% (4.6%) vs. 2.5% B vs. Control <u>VO2 Max (ml/min):</u> 7.5% (5.8%) vs. 2.5% (4.1%), p>0.05 <u>VO2 Max (ml/min/kg):</u> 7.5% (5.8%) vs. 2.5% (4.1%), p>0.05

Abbreviations: CI = confidence interval; NA = not applicable; RCT = randomized controlled trial. SD = standard deviation

Intervention Category, Intervention Aerobic Exercise in SCI	Comparator Usual care	Outcome Pulmonary function	Number of Studies (Participants) Author Year (See Appendix B for Full Citation) 1 cohort study (n=17). Valent, 2010	Study Limitations Moderate	Consistency Unknown	Precision Imprecise	Reporting Bias Undetected	Strength of Evidence Insufficient	Findings, Direction and Magnitude of Effect Mean change scores, p=between groups: <u>FVC%</u> : -9.4 vs7.8, p=0.619
Aerobic Exercise in SCI	Head-to- head comparison of aerobic programs	Pulmonary function	1 RCT (n=33) Akkurt, 2017	Moderate	Unknown	Imprecise	Undetected	Insufficient	PEF%: -12.6 vs10.0, p=0.722 Median change <u>.</u> <u>VO2Peak (ml/kg/min): 4</u> .30 vs. 1.35, p=0.02 FEV1 (ml): -0.14 vs. 0.17, p>0.05 FEV1 %: 1 vs. 5, p>0.05 FVC (ml): -0.31 vs0.20, p>0.05 FVC %: 1.5 vs. 1.5, p>0.05 FEV1/FVC, 3.51-0.50, p>0.05
Aerobic Exercise in SCI	Head-to- head comparison of aerobic programs	Pulmonary function	1 RCT (n=20) Jung, 2014	Moderate	Unknown	Imprecise	Undetected	Insufficient	Mean change scores, p=between groups: <u>FVC(L):</u> 1.8 (1.3) vs. 0.31 (1.6), p=0.031 <u>FEV1(L):</u> 1.1 (1.2) vs. 0.21 (0.3); p=0.038 <u>FER(L/sec):</u> 10.0 (9.7) vs. 5.4 (7.0), p=0.238 <u>FEV1/FVC:</u> 3.7 (2.3) vs. 2.1 (3.4), p=0.243
Strength Exercise in SCI	Usual Care	Pulmonary function	1 RCT (n=98) Chen, 2016	Moderate	Unknown	Imprecise	Undetected	Insufficient	$\begin{array}{l} \mbox{Mean (SD), p=post-intervention:} \\ \hline FEV1: 1.17 (0.25) to 2.20 (0.45) \\ \mbox{vs. } 1.17 (0.45) to 1.14 (0.44), \\ \mbox{p<0.05} \\ \hline FVC: 2.16 (0.36) to 2.98 (0.54) vs. \\ \hline 2.16 (0.42) to 2.17 (0.42), \mbox{p<0.05} \\ \hline MVV: 50.5 (11.8) to 75.2 (6.8) vs. \\ \hline 50.5 (11.8) to 51.5 (10.6), \mbox{p<0.05} \\ \hline FEV1/FVC: 0.53 (0.17 to 0.75 \\ \hline (0.08) vs. 0.53 (0.17) to 0.52 \\ \hline (0.15), \mbox{p<0.05} \\ \end{array}$

Table H-17. Strength of evidence for Key Question 2b intermediate outcomes: effect of physical activity interventions on pulmonary function tests

Abbreviations: FER= Forced Expiratory Flow Rate; FEV1 = forced expiratory volume; FVC = forced vital capacity; MVV = maximal voluntary ventilation; NA = not applicable; RCT = randomized controlled trial; SCI = spinal cord injury

Table H-18. Strength of evidence for Key Question 2c: reduction of harms of immobility

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
		Decubitus Ulcer	No studies						No studies
Arm cycling + strength + stretching	Usual physical therapy	Asymptoma tic bacturia	1 (42) Lavado, 2012	Moderate	Unknown	Imprecise	Not detected	Insufficient	RR 0.20, 95% CI 0.07 to 0.54, p<0.001
RAGT	Treadmill training	Enema dose needed	1 (24) Huang, 2015	Moderate	Unknown	Imprecise	Not detected	Insufficient	-29 ml vs11 mL, p<0.05
RAGT	Treadmill training	Defecation time	1 (24) Huang, 2015	Moderate	Unknown	Imprecise	Not detected	Insufficient	-29 min vs15 min, p<0.05
		Autonomic dysreflexia	No studies						No studies

Abbreviations: CI = confidence interval; RAGT = Robot-Assisted Gait Training

Table H-19. Strength of evidence for Key Question 2d, decreased risk of adverse outcomes of mobility devices: effect of physical activity interventions on spasticity

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Aerobic Exercise (Treadmill, Aquatic) in CP	Usual care	Spasticity	1 RCT (N=11) 1 Cohort (N=11) Chrysagis, 2012 Lai, 2015	Moderate	Inconsistent	Imprecise	Undetected	Insufficient	RCT: Mean change, p=value Modified Ashworth Scale: Knee extensors: 0.32 vs. 0.18, p=0.827 Knee flexors: 0.31 vs. 0.22, p=0.632 Foot plantar flexors: 0.32 vs. 0.17, p=0.460 Cohort: A vs B (ANCOVA p-values) Modified Ashworth Scale: Ankle: 0.614 Knee: 1.000 Wrist: 1.000 Elbow: 1.000
Aerobic Exercise (Treadmill) in CP	RAGT vs Treadmill	Spasticity	1 RCT (N=21) Wu, 2017a (pilot study)	Moderate	Unknown	Imprecise	Undetected	Insufficient	Modified Ashworth Scale (Baseline vs 6 weeks vs 8 weeks f/u) 0.62 (0.46) to 0.67 (0.60) to 0.41 (0.38), p=0.18, vs. 0.65 (0.36) to 0.48 (0.47) to 0.58 (0.44), p=0.19
Aerobic Exercise in CP	Partial body- weight supported treadmill vs individualized strength training	Spasticity	1 RCT (N= 26) Johnston, 2011	Moderate	Unknown	Imprecise	Undetected	Insufficient	Mean difference between groups, p=between groups <u>KinCom computerized</u> <u>dynamometer</u> : <u>Plantar Flexor Spasticity (J/⁰/s):</u> -0.0003, p=0.75 <u>Knee flexor spasticity (J/⁰/s):</u> -0.0026, p=0.59

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Aerobic Exercise in CP	Aquatic vs land-based exercise	Spasticity	1 RCT (N=32) Adar, 2017	Moderate	Unknown	Imprecise	Undetected	Insufficient	Median pre-post p-values on MAS Location Aquatics Land RKneeFlexors 0.039 0.008 LKneeFlexors 0.003 0.003 RAnkleFlexors 0.005 0.001 LAnkleFlexors 0.046 0.046 RHipAdductors 0.025 0.083 LHipAdductors 0.003 0.013
Aerobic Exercise in MS	Neuromuscul ar electrical stimulation+ Strength exercises vs NMS alone	Spasticity	1 RCT (N=100) Qi, 2018a	Moderate	Unknown	Imprecise	Undetected	Insufficient	Mean difference between groups: <u>Comprehensive Spasticity Scale</u> (<u>CSS):</u> 1.6, 95% CI 0.33 to 2.87, p=0.01
Aerobic Exercise in MS	Lokomat-Pros (RAGT+VIRT UAL REALITY) VS Lokomat- Nanos (RAGT alone)	Spasticity	1 RCT (N=40) Calabro, 2017	Low	Unknown	Imprecise	Undetected	Insufficient	Effect size, p-value is between groups: <u>MAS</u> : -0.01, 95% CI -0.539 to 0.539, p=0.40
Aerobic Exercise in MS	RAGT vs Conventional walking training	Spasticity	1 RCT (N=23) Pompa, 2017	Moderate	Unknown	Imprecise	Undetected	Insufficient	Mean SD, p=between groups: <u>Spasticity VAS 100mm ranged</u> <u>from "no problem" to "very bad":</u> 5.05 to 3.40 vs. 5.31 to 5.23, p=0.048
Aerobic Exercise in MS	Aquatics vs. land-based relaxation exercises	Spasticity	1 RCT (N=73)	Low	Unknown	Imprecise	Undetected	Low for benefit	<u>Spasm VAS</u> : 5 (2.8) to 2 (4.3) vs. 6 (3.1) to 4 (4.5), 91% improvement vs. 10% improvement, p<0.05

Intervention Category, Intervention	Comparator	Outcome	Number of Studies (Participants) Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Aerobic Exercise in SCI	Body weight support treadmill with FES vs Aerobic and resistance training	Spasticity	1 RCT (N=34) Kapadia, 2014	Moderate	Unknown	Imprecise	Undetected	Insufficient	<u>MAS</u> : No between group differences in MAS involving the hip, knee, and ankle joints.(data/results not reported)
Aerobic Exercise in SCI	RAGT+rTMS vs RAGT+sham rTMS	Spasticity	1 RCT (N=31) Kumru, 2016	Moderate	Unknown	Imprecise	Undetected	Insufficient	Mean Difference between groups: <u>MAS</u> : -0.20, 95% CI -0.94 to 0.54, p=0.59
Strength Exercise (progressive resistance) in CP	Usual care	Spasticity	1 (N= 49) Scholtes, 2010	Moderate	Unknown	Imprecise	Undetected	Insufficient	Effect Size: 0.46, 95% CI -0.34 to 1.26, p=0.26
Strength Exercise (progressive resistance) in MS	Attention control (social program)	Spasticity	1 (N= 71) Dodd, 2011	Low	Unknown	Imprecise	Undetected	Low for no clear benefit	Mean Difference between groups: MSIS-88 stiffness: -2.4, 95% CI -0.52 to 0.5 MSIS-88 muscle spasms: -2.8, 95% CI -5.6 to 0.03
Balance Exercise Hippotherapy in CP	Usual care (physical therapy)	Spasticity	1 (N=44) Lucena-Anton, 2018	Moderate	Unknown	Imprecise	Undetected	Insufficient	Mean (baseline to post- treatment), p=between groups <u>Modified Ashworth Scale:</u> Left Abductors: 2.77 to 2.50 vs. 2.59 to 2.54, p=0.040 <u>Right Abductors</u> : 2.22 to 1.77 vs. 2.40 to 2.31, p=0.047
Balance Exercise Hippotherapy in MS	Usual care (physical therapy)	Spasticity	1 (N= 70) Vermohlen, 2018	Moderate	Unknown	Imprecise	Undetected	Insufficient	Mean Difference between groups: Spasticity NRS: -0.9 (95% CI -1.9 to -0.1), p=0.031

Abbreviations: CI = confidence interval; CSS = Comprehensive Spasticity Scale; MAS = Modified Ashworth Scale; NA = not applicable; NRS = Numeric Rating Scale; RAGT = Robot-Assisted Gait Training; SD = standard deviation; RCT = randomized controlled trial.

Table H-20. Strength of evidence for Key Question 2e: harms of physical activity

			Number of RCTs (Participants)						
Intervention	Comparator	Outcome	Author Year (See Appendix B for Full Citation)	Study Limitations	Consistency	Precision	Reporting Bias	Strength of Evidence	Findings, Direction and Magnitude of Effect
Intensive whole body exercises	Intensive upper body exercises	Autonomic dysreflexia	1 (116) Galea, 2018	Moderate	Unknown	Unknown as number of events rather than number of persons with event	Not detected	Moderate- strength evidence that AD can occur with exercise in SCI; Low- strength evidence that risk is increased with whole body vs. upper body exercise in SCI	26 episodes of AD (3 serious) with intensive exercise along with 5 episodes of dizziness/ nausea vs. 7 episodes in upper body exercise along with 15 episodes of headache (n=60 whole body exercises vs. n=56 in upper body exercises group)
Hippotherapy Pilates Balance exercises Usual physio- therapy	Usual care, no treatment	Falls	6 (456) Kwon, 2015 Deutz, 2017 Vermohlen, 2018 Fox, 2016 Carling, 2017 Gandolfi, 2015	Moderate	Consistent	Imprecise	Not detected	Insufficient	RR 3.74, 95% CI 0.80 to 17.45, p=0.093 Gandolfi p<0.005 Kwon 2 falls, groups not specified
Multiple interventions	Usual care, no treatment, other interventions	Most frequently reported AEs: Joint pain, joint swelling, muscle soreness, muscle cramps, sprain, strains, arm pain, leg pain	Multiple studies	Moderate	Unknown	Unknown	Potential reporting bias as many trials did not address harms	Insufficient	Not possible to determine among outcomes which are due specifically to an overuse; no intervention was more likely to lead to muscle and joint pains than another based on current evidence; pains were also frequent in control groups All population subgroups also had insufficient evidence for AEs due to inadequate reporting All intervention subgroups also had insuffient evidence for AEs due to inadequate reporting

Abbreviations: AE = adverse event; RR = risk ratio; SCI = spinal cord injury