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Preface 
The Agency for Healthcare Research and Quality (AHRQ), through its Evidence-based 

Practice Centers (EPCs), sponsors the development of evidence reports and technology 
assessments to assist public- and private-sector organizations in their efforts to improve the 
quality of health care in the United States. The reports and assessments provide organizations 
with comprehensive, science-based information on common, costly medical conditions and new 
health care technologies and strategies. The EPCs systematically review the relevant scientific 
literature on topics assigned to them by AHRQ and conduct additional analyses when 
appropriate prior to developing their reports and assessments. 

To improve the scientific rigor of these evidence reports, AHRQ supports empiric research 
by the EPCs to help understand or improve complex methodologic issues in systematic reviews. 
These methods research projects are intended to contribute to the research base in and be used to 
improve the science of systematic reviews. They are not intended to be guidance to the EPC 
program, although may be considered by EPCs along with other scientific research when 
determining EPC program methods guidance.  

AHRQ expects that the EPC evidence reports and technology assessments will inform 
individual health plans, providers, and purchasers as well as the health care system as a whole by 
providing important information to help improve health care quality. The reports undergo peer 
review prior to their release as a final report.  

We welcome comments on this Methods Research Project. They may be sent by mail to the 
Task Order Officer named below, at: Agency for Healthcare Research and Quality, 540 Gaither 
Road, Rockville, MD 20850, or by email to epc@ahrq.gov. 
 
Carolyn M. Clancy, M.D. Jean Slutsky, P.A., M.S.P.H. 
Director Director, Center for Outcomes and Evidence 
Agency for Healthcare Research and Quality Agency for Healthcare Research and Quality 
  
Stephanie Chang, M.D. Elisabeth U. Kato, M.D., M.R.P. 
Director, EPC Program Task Order Officer 
Agency for Healthcare Research and Quality Agency for Healthcare Research and Quality 
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Evaluating Practices and Developing Tools for 
Comparative Effectiveness Reviews of Diagnostic 
Test Accuracy: Methods for the Joint Meta-Analysis of 
Multiple Tests 

Structured Abstract 
Background: Existing methods for meta-analysis of diagnostic test accuracy focus primarily on 
a single index test rather than comparing two or more tests that have been applied to the same 
patients in paired designs.  
 
Objectives: We develop novel methods for the joint meta-analysis of studies of diagnostic 
accuracy that compare two or more tests on the same participants.  
 
Development of methods: We extend the bivariate meta-analysis method proposed by Reitsma 
et al. (J Clin Epidemiol. 2005; 58[10]:982-90) and modified by others to simultaneously meta-
analyze M ≥ 2   index tests. We derive and present formulas for calculating the within-study 
correlations between the true-positive rates (TPR, sensitivity) and between the false-positive 
rates (FPR, one minus specificity) of each test under study using data reported in the studies 
themselves. The proposed methods respect the natural grouping of data by studies, account for 
the within-study correlation between the TPR and the FPR of the tests (induced because tests are 
applied to the same participants), allow for between-study correlations between TPRs and FPRs 
(such as those induced by threshold effects), and calculate asymptotically correct confidence 
intervals for summary estimates and for differences between summary estimates. We develop 
algorithms in the frequentist and Bayesian settings, using approximate and discrete likelihoods to 
model testing data.  
 
Application: Published meta-analysis of 11 studies on the screening accuracy of detecting 
trisomy 21 (Down syndrome) in liveborn infants using two tests: shortened humerus (arm bone), 
and shortened femur (thigh bone). Secondary analyses included an additional 19 studies on 
shortened femur only.  
 
Findings: In the application, separate and joint meta-analyses yielded very similar estimates. For 
example, in models using the discrete likelihood, the summary TPR for a shortened humerus was 
35.3 percent (95% credible interval [CrI]: 26.9, 41.8%) with the novel method, and 37.9 percent 
(27.7 to 50.3%) when shortened humerus was analyzed on its own. The corresponding numbers 
for the summary FPR were 4.8 percent (2.8 to 7.5%) and 4.8 percent (3.0 to 7.4%).  

However, when calculating comparative accuracy, joint meta-analyses resulted in shorter 
confidence intervals compared with separate meta-analyses for each test. In analyses using the 
discrete likelihood, the difference in the summary TPRs is 0 percent (-8.9, 9.5%; TPR higher for 
shortened humerus) with the novel method versus 2.6 percent (-14.7, 19.8%) with separate meta-
analyses. The standard deviation of the posterior distribution of the difference in TPR with joint 
meta-analyses is half of that with separate meta-analyses.  
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Conclusions: The joint meta-analysis of multiple tests is feasible. It may be preferable over 
separate analyses for estimating measures of comparative accuracy of diagnostic tests. 
Simulation and empirical analyses are needed to better define the role of the proposed 
methodology.  
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Background 
The value of diagnostic testing for patient management ultimately derives from its effect on 

patient-relevant outcomes. Testing primarily affects outcomes by indirect means, influencing 
downstream patient management decisions, including decisions for further testing, and 
administration or choice of treatment. Thus, the relative accuracy of diagnostic tests has 
considerable importance. The ideal study compares the effectiveness and safety of complete test-
and-treat strategies, but such studies are exceedingly rare.1 Instead, one has to assemble data on 
effectiveness and safety from various sources,2 including studies of test performance (test 
accuracy) and studies of the effects of interventions. For this reason, meta-analysis of accuracy 
plays a key role in evaluations of medical tests,3 although it does not directly determine the 
comparative effectiveness and safety of test-and-treat strategies.4-7  

Two key characteristics of a diagnostic test, sensitivity and specificity, depend on its 
threshold for classifying an outcome as positive. If high values are “positive”, lowering the 
threshold increases sensitivity at the expense of specificity; increasing the threshold moves the 
measures in the opposite directions. Recent statistical work has focused on developing bivariate 
analytic techniques that jointly model sensitivity and specificity in order to account for this 
inherent negative correlation.8,9 Such models have focused on a single test. 

To compare of the accuracy of two (or more) tests, analysts typically take one of two 
approaches: (a) perform a separate meta-analysis for each test and compare the meta-analytic 
summaries; or (b) perform a meta-regression using the type of test as a categorical predictor. 
Both methods assume that all individuals studied are independently sampled (i.e., that the tests 
study two distinct sets of individuals, each containing individuals with disease and individuals 
without disease). But when the same individuals receive both tests, their results are correlated. A 
valid statistical model must account for this dependence. Because the two common approaches 
do not take these correlations into account, neither is a valid method for comparing tests 
performed on the same individuals. 

In broad terms, diagnostic accuracy studies can be noncomparative, when they assess one 
index test at a given setting, or comparative, when they assess the performance of two or more 
tests. Estimates of comparative test accuracy can be obtained from either category of studies. 
Estimates from the former group are confounded by study setting, whereas estimates from the 
latter group are not. Further, comparative studies can have paired (or “crossover”) designs 
(where each test is applied to the same patients) or parallel designs (where each test is applied in 
disjoint sets of patients, e.g., using random allocation or other means). A paired design is 
statistically much more efficient, in that one needs much smaller sample sizes to detect a given 
difference in test accuracy, compared with a parallel design.   

 Reflecting this, data from studies that evaluate two tests can take more complicated forms.  
A “crossover” study, which obtains results on both tests for each individual, may report the 
sensitivity and specificity (e.g., as a 2 × 2 table) for each test separately, and not the full cross-
classifications. Or one set of individuals may receive both tests, a second subset only the first 
test, and a third subset only the second test. Yet another study design randomly assigns 
individuals to the two tests or, without randomization, administers each test to separate sets of 
individuals (including those with disease and those without disease). This work focuses primarily 
on the case in which the same individuals receive both tests and the results are cross-classified. It 
briefly discusses some of the other forms, which represent minor modifications to the models for 
assessing studies with paired designs.  
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Jointly analyzing the true- and false-positive rate (equivalently, sensitivity and one minus 
specificity) of two diagnostic tests made on the same individuals requires multivariate models, to 
account for the relation between the outcomes of the two tests in patients with disease and in 
patients without disease within studies and variation in those outcomes among studies. In this 
work, we derive a model that accounts for such relations. The model can be fitted to data that 
report totals of true and false positive and negative results for each test and for each combination 
of tests. We provide algorithms for maximizing the resulting likelihood and for calculating 
asymptotically correct confidence intervals for summary estimates and for differences between 
summary estimates. We also provide algorithms for fitting models with Markov Chain Monte 
Carlo (MCMC) methods in a Bayesian framework.  

The remainder of the work is organized around a motivating example from a meta-analysis of 
two second-trimester ultrasonographic tests that screen for trisomy 21 (Down syndrome). We 
first describe the example, and then we present the model for two tests and extensions to more 
than two tests. We then proceed with a description of estimation and inference, and a comment 
on some patterns of missing data (at the study level). We then present an analysis of the data, and 
we conclude with a discussion of the method and its applications.  
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Illustrative Example 
We examine the screening accuracy of second-trimester ultrasound markers in detecting 

liveborn infants with trisomy 21 (Down syndrome). Briefly, trisomy 21 is a clinically important 
chromosomal abnormality whose frequency is strongly associated with maternal age (more 
common in older mothers). Infants with trisomy 21 manifest mental retardation and have high 
risk of congenital structural defects.10 Until the mid-1980s maternal age was the only predictor 
for trisomy 21. Since then, biochemical measurements in maternal plasma (alpha-fetoprotein, 
human chorionic gonadotrophin, inhibin A and estriol), as well as many ultrasonographic 
markers in the first and second trimester, have been examined as screening tests. Mothers and 
fetuses identified by a positive screening test result are typically offered a definitive diagnosis 
via amniocentesis, an invasive diagnostic test.  

As an illustration, we use information from 11 studies combined in a published meta-analysis 
that examined the screening accuracy of seven ultrasonographic markers or their combination in 
detecting trisomy 21 in liveborn infants.11 We focus on two such markers, shortened humerus 
(arm bone), and shortened femur (thigh bone) of the fetus.  Two of the authors (TAT and DCH) 
extracted information from the full text of the pertinent articles on the provenance of the paper 
(first author, year of publication), the definition of positive screening tests, and cross-
classification counts for the presence or absence of each marker among infants with and without 
trisomy 21. The extractors discussed and reconciled all results and also discussed them with a 
third author (CHS).  

We emphasize that this example is for illustration only, and the analyses presented here 
should not be used for decisionmaking. Current prenatal screening programs do not rely on 
isolated markers, but combine sequential biochemical and ultrasound testing. Further, prenatal 
screening programs also aim to detect trisomy 13 (Patau syndrome), trisomy 18 (Edwards 
syndrome) and neural tube defects.10 In addition, new screening methods sequence cell-free fetal 
DNA circulating in maternal plasma and are summarized by Palomaki et al.12  

Table 1 and Table 2 show the extracted data. Table 1 shows 11 studies that reported counts of 
the results of each test.13-23 Five studies reported sufficient information to calculate counts of 
combinations of test results among infants with trisomy 21 and among healthy infants,13-16,20 1 
study reported sufficient information to calculate counts of combinations of test results in 
trisomy 21 infants only,23 and the remaining 5 reported only separate counts for the two tests.17-

19,21,22 Three studies measured humerus in a subset of healthy infants with femur 
measurements.17-19 Table 2 shows 19 additional studies (reported in 18 publications24-41) that 
measured shortened femur only. No studies measured shortened humerus only. 
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Table 1. Cross-classification of counts of shortened femur or shortened humerus among infants with trisomy 21 and healthy infants 
(studies reporting both tests) 
Study Year 
[reference] 

Design Positive Test  
(ratio of 
observed to 
expected length) 

   Trisomy 
21       Healthy    

   N H+ F+ H+/F+ H+/F- H-/F+ H-/F- N H+ F+ H+/F+ H+/F- H-/F+ H-/F- 
Benacerraf 
199113 

Case-control H: <0.90; F: <0.91 24 12 10 9 3 1 11 400 25 40 19 6 21 354 

Benacerraf 
199214 

Case-control H: <0.90; F: <0.91 32 17 23 17 0 6 9 588 34 63 23 11 40 514 

Benacerraf 
199415 

Case-control H: <0.90; F: <0.91 45 20 22 20 0 2 23 106 3 4 1 2 3 100 

Biagiotti 
199416 

Case-control H: <0.90; F: <0.91 27 10 13 10 0 3 14 500 60 60 31 29 29 411 

Bromley 
199717 

Case-control H: <0.90; F: ≤0.91 53 19 25 – – – – 177 
(149)* 

5 14 – – – – 

Johnson 
199518 

Case-control H: ≤0.90; F: ≤0.90 36 8 15 – – – – 794 
(486)
† 

25 127 – – – – 

Lockwood 
199319 

Prospective  [Observed minus 
expected, mm] 
H <−3.6; F <−3.4 

42 6 6 – – – – 4874 
(2775
)‡ 

111 161 – – – – 

Nyberg 
199320 

Case-control H: ≤0.89; F: ≤0.91 45 11 11 8 3 3 31 942 42 44 15 27 29 871 

Nyberg 
199821 

Case-control H: ≤0.89; F: ≤0.91 142 27 30 – – – – 930 11 43 – – – – 

Rodis 
199122 

Case-control [Percentile of 
measurement] 
H <5th; F <5th  

11 7 2 – – – – 1470 74 74 – – – – 

Vintzileos 
199623 

Prospective  H: <0.89; F: <0.88 22 10 5 4 6 1 11 493 49 50 – – – – 

F[+|-] = shortened femur [present | absent]; H[+|-] = shortened humerus [present | absent]; N = total (per disease category)  
* Total 177 for femur, and 149 for humerus. All those tested for humerus were also tested for femur. 
† Total 794 for femur, and 486 for humerus. All those tested for humerus were also tested for femur. 
‡ Total 4874 for femur, and 2775 for humerus. All those tested for humerus were also tested for femur. 
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Table 2. Number of counts of shortened femur among infants with trisomy 21 and healthy infants 
(studies of shortened femur only) 
Study year [reference] Design Positive test (ratio 

of observed to 
expected length) 

Trisomy 
21  Healthy  

   N F+ N F+ 
Benacerraf 198928 Case-control <0.91 20 7 3480 

(709)* 
28 

Brumfield 198929 Case-control [BPD/FL≥1.80] 15 6 45 1 
Campbell 199424 Prospective [BPD/FL≥1.5 SD in 

controls] 
6 3 264 20 

Cuckle 198926 Case-control ≤0.90 83 20 1340 84 
Dicke 198927 Case-control <0.91 33 5 177 18 
Ginsberg 199025 Case-control [BPD/FL>1.5 SD in 

controls] 
12 (11)† 5 212 14 

Grandjean 199530 Prospective <0.91 34 15 2763 495 
Grist 199032 Prospective ≤0.90 6 3 428 28 
Hill 198934 Case-control ≤0.91 22 11 286 43 
Johnson 199331 Prospective [FL/Foot length≤0.90] 14 10 331 31 
LaFollette 198933 Case-control ≤0.91 30 4 229 27 
Lockwood 1987 (New 
Haven)35 

Case-control [BPD/FL>1.5 SD in 
controls] 

35 18 349 26 

Lockwood 1987 
(Boston)35 

Case-control [BPD/FL>1.5 SD in 
controls] 

20 14 195 9 

Lynch 198941 Case-control [BPD/FL>1.5 SD in 
controls] 

9 5 9 5 

Marquette 199038 Case-control [BPD/FL>1.5 SD in 
controls] 

31 3 155 14 

Nyberg 199039 Case-control ≤0.91 49 7 572 35 
Nyberg 199537 Prospective ≤0.91 18 5 232 14 
Shah 199040 Case-control [BPD/FL; threshold 

not stated] 
17 3 17 1 

Verdin 199836 Case-control [>97.5 percentile of 11 6 449 5 
BPD/FL in controls] 

BPD = biparietal diameter; F+ = shortened femur; FL = observed femoral length; SD = standard deviation. 
*3,480 were included, 709 were analyzed for shortened femur. 
†12 were included, 11 were analyzed for shortened femur. 
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Models and Estimation 
Over several decades, many methods have been proposed for meta-analyzing data on 

performance of medical tests. The most theoretically motivated methodologies respect the 
multivariate nature of performance metrics, allow the true-positive rate (TPR, sensitivity) and 
false-positive rate (FPR, one minus specificity) to vary together across studies (because of a 
threshold effect or other reasons), and allow for between-study heterogeneity. The meta-analysis 
methods by Reitsma et al.8 (further augmented elsewhere42,43) and by Rutter and Gatsonis9 meet 
these desiderata. Reitsma’s method summarizes data as a “summary point”, that is, a summary 
TPR and a summary FPR. Rutter’s approach summarizes data by a “summary line” (equivalent 
to the hierarchical summary receiver operating characteristic curve when transformed into 
receiver operating characteristic [ROC] space), which describes how the average TPR changes 
with the average FPR. Choosing the most helpful summary is largely subjective and application-
dependent, and in some situations the two summaries provide meaningful and complementary 
information.44  

We focus on meta-analyses in which a summary point can be considered a helpful summary 
of test performance. We briefly review the Reitsma et al. random effects bivariate model and its 
augmentations42,43 for the meta-analysis of TPR and FPR of a single test, and describe its 
extension to two and three or more tests. We use M  to denote the number of tests. In the 
following, we first describe models using the normal approximation to within-study variance, as 
historically these were developed first, and then present models that more accurately capture the 
discrete nature of the events (binomial distributions for one test and multinomial distributions for 
more than one test).45,46  

The Case of a Single Test  
Consider a meta-analysis of K  studies (indexed by k ) evaluating a single test among 

individuals with and without a condition of interest (“disease”). Table 3 shows the true 
(unobserved, population) probabilities (denoted by π ’s) of positive and negative test results in 
those with disease (D) and those without disease (D ) in study k . By definition, the TPR of the 
test is equal to π D

k , 1 , and the FPR of the test is equal to π D
k , 1 .  

Table 3. Notation for the probability of results for a single test in those with (D ) and without 
disease (D ) in study k   

Test Results Disease No Disease 
Negative (–) π D D

k , 0  
π k , 0  

Positive (+) π D D
k , 1 = TPRk  

π k , 1 = FPRk  

Structural Model 
We assume a bivariate random effects model.8 One can approximate the between-study 

variance using the normal distribution on logit-transformed data (approximate likelihood).a We 
write the logistic transformation of TPR and FPR in study k: 
                                                
a One can also use the normal approximation with the arcsine or probit transformation, or with untransformed data. 
Reitsma et al. used the canonical (logistic or logit) transformation, and this is the choice we follow here.  
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 ηk = logit(TPRk ) = logit(π
D
k , 1)   (1) 

 ξk = logit(FPRk ) = logit(π
D
k , 1)   (2) 

Across studies, the random effects for the true logit-transformed TPR and FPR are likely 
correlated, e.g., because of a threshold effect. We model this dependency using a bivariate 
normal distribution:  

⎛ η ⎞
k ⎛ ⎛ H ⎞ ⎞

 ⎜ ⎟ ~ N ⎜ , T⎟ . (3) ⎜ ⎜ξk ⎟ ⎟Ξ
 ⎝ ⎠ ⎝ ⎝ ⎠ ⎠

The means H  and Ξ  are the overall meta-analytic summaries of the logit-TPR and logit-FPR, 
respectively, and T  is the between-study covariance matrix:  

⎛ ⎞τ 2η ρηξτ τ
 T = ⎜ η ξ ⎟

2
, (4) 

⎜ τ⎝ ξ ⎟⎠
where the variances τ 2 2

η  and τξ  represent the between-study heterogeneity in logit-transformed 
TPR and FPR, respectively, and ρηξ  is the corresponding between-study correlation.   

Observational Model: Normal (Approximate) Likelihood 
In study k  we obtain sample estimates of ηk  and ξk  based on the observed counts of test 

results in those with and without disease.  
Table 4 gives the notation for the cross-classification of the results of a medical test in 

patients with and without disease in a single study. The p ’s in  
Table 4 estimate the corresponding probabilities (π ’s) in Table 3. For example, the estimate 

of the probability of a true positive result in study k  is π̂ D
k , 1= x

D
k , 1 ND

k , and correspondingly for 

the other probabilities. We estimate TPR by  T
PRk = π̂ D

k , 1 , and FPR by  F
PRk = π̂ D

k , 1 . Finally, the 
logit-transformed TPR and FPR in (1) and (2) are estimated by  
 η̂k = logit(π̂

D
k , 1)  (5) 

and 
 ξ̂k = logit(π̂

D
k , 1) .  (6) 
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Table 4. Notation for observed counts and estimated probabilities for a single test in those with 
disease (D ) and without disease (D ) in study k   

Test Results Disease, 
Counts 

Disease, 
Estimated 
Probabilities 

No 
Disease, 
Counts 

No Disease, 
Estimated 
Probabilities 

Negative (–) xk , 0
D

 
π̂ k , 0

D

 
xk , 0
D

 π̂ k , 0
D

 
Positive (+) xk , 1

D

  π̂ k , 1
D = TPR k

 
xk , 1
D

  π̂ k , 1
D = FPR k

 
Total Nk

D  1 Nk
D

  
1 
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As mentioned above, TPR and FPR are proportions, so the binomial distribution is most 
suitable for modeling their within-study behavior (see below). However, it has not been 
uncommon to approximate the within-study distribution of the logit transformed proportions 
using normal distributions. Because TPR and FPR refer to disjoint sets of patients,  η


k  and  ξ k  

are independent conditional on study k:  
   η


k ~ N (η 2

k , σ kη) , and  (7) 

   ξ

k ~ N (ξk , σ 2

kξ ) . (8) 
To facilitate later descriptions, we rewrite (7) and (8) as a single bivariate normal distribution 

⎛ ⎞η ⎛ ⎛ η ⎞ ⎞
 ⎜ k ⎟ ~ kN ⎜ ⎜ ⎟ , Σ

⎜ ξ ⎟ ⎜ ⎜ ξ ⎟ k ⎟ , (9) 
⎟

k  ⎝ ⎠ ⎝ ⎝ k ⎠ ⎠
where the within-study covariance matrix Σ k  has zero off-diagonal elements: 

⎛ σ 2

 
k

Σ k =
η 0 ⎞

⎜ ⎟
⎜ σ 2

. (10) 
⎟⎝ kξ ⎠

The elements of Σ k  are considered known and are calculated from the data using the 
formulas in the Appendix. (This assumption is typically made, but without formal justification.) 

Observational Model—Binomial Likelihood  
In place of (7) and (8) –or equivalently, (9) and (10)– we can use two independent binomials 

to model counts of test results in study k : 
 xDk , 1 ~ Bin(TPRk , ND

k )   (11) 

 xD D
k , 1 ~ Bin(FPRk , Nk )  , (12) 

while retaining the structural model specified by (3) and (4).  

The Case of Two Tests  
Consider a meta-analysis of two tests (indexed by m ) and data from K  studies. The 

outcome of each test is either negative (–) or positive (+). Table 5 gives the notation for the 
probability of each combination of test results in diseased patients and nondiseased participants 

M 2in study k . Each of the 2 = 2 = 4  rows shows the corresponding proportion in the population.  

Table 5. Notation for the probability of each combination of results in those with disease (D ) and 
without disease (D ) in study k   – the case of two tests 

Test 1 Test 2 Disease No Disease 
– – π k , 00

D

 π k , 00
D

 
– + π k , 01

D

 π k , 01
D

 
+ – π k , 10

D

 π k , 10
D

 
+ + π k , 11

D

 π k , 11
D
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The marginal TPR and FPR in each test are:  
 
 TPR D D D

k , 1 = π k , 1• = π k , 10 +π k , 11 , (13) 
 TPR D D D

k , 2 = π k , •1 = π k , 01 +π k , 11 , (14) 
 FPR D D D

k , 1 = π k , 1• = π k , 10 +π k , 11 , (15) 
and  
 FPR = π D = π D +π D

k , 2 k , •1 k , 01 k , 11 . (16) 
In the equations, •  indicates summation over the respective subscript. In addition, we define 

the “jointly true positive rate” (JTPR), and “jointly false positive rate” (JFPR):  
 JTPRk = π

D
k , 11  (17) 

and 
 JFPRk = π

D
k , 11 . (18) 

Structural Model: TPR and FPR Parameterization 
The sets of probabilities in the Disease and No Disease columns of Table 5 are each mutually 

exclusive and exhaustive and could be modeled with a multinomial distribution. Alternatively, 
we could re-express these parameters as functions of the sensitivities and specificities of each 
test and approximate the multinomial distribution using a multivariate normal distribution. As in 
the previous section, we work with logit-transformed probabilities. For study k  and test m  
equations (1) and (2) become: 
 ηkm = logit(TPRk , m )   (19) 
 ξkm = logit(FPRk , m ) .  (20) 

We also model the logit-JTPR, ηk* , and logit-JFPR, ξk*  , which capture information on the 
agreement between the two tests in those with and without disease, respectively: 
 η D

k* = logit(π k , 11) , and  (21) 
 ξk* = logit(π

D
k , 11) .  (22) 

By arranging quantities for the two tests in column vectors, we write  
 ηk = (ηk1,ηk2,ηk*)' , and  
 ξk = (ξk1, ξk2, ξ

'
k*)' . 

with the prime ( ) denoting transpose, bold symbols denoting vectors or matrices, and italics 
denoting scalars. 

Across studies, the joint distribution of the random effects for the true logit-transformed 
TPRs, FPRs, JTPR and JFPR may involve correlation. We model this dependency using a six-
dimensional normal distribution analogous to (3): 
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⎛ η ⎞
k1

⎜ ⎟
⎜ ηk2 ⎟
⎜ η ⎟ ⎛ ⎞

 ⎜ k* η ⎛ Η ⎞ ⎞
⎟ = k ⎛

⎜ ⎟ ~ N ⎜ ⎜ ⎟ , T⎟ , (23) 
⎜ ξk1 ⎟ ⎜ ξ k ⎟ Ξ⎝ ⎠ ⎝ ⎝ ⎠ ⎠
⎜ ⎟ξ⎜ k2 ⎟
⎜ ξ ⎟⎝ k* ⎠ 

where the means Η = (H1, H2, H*)'  and Ξ = (Ξ1,Ξ2,Ξ*)'  are column vectors of the overall 
means of the respective quantities for the two tests, and T  is a between-study covariance matrix, 
analogous to that in (4).  

We propose an unstructured and a simplified structured specification for T :  

Unstructured variant, TA  
⎡ τ 2 ρ ⎤
⎢ η1 η1η2τη1τη2 ρη1η*τη1τη* ρη1ξ1τη1τξ1 ρη1ξ 2τη1τξ 2 ρη1ξ*τη1τξ* ⎥
⎢ τ 2η2 ρη2η*τη2τη* ρη2ξ1τη2τξ1 ρη2ξ 2τ τ ⎥
⎢ η2 ξ 2 ρη2ξ*τη2τξ* ⎥
⎢ τ 2η* ρ τ

T ⎢ ξ
⎥

 
η* 1 η*τξ1 ρη*ξ 2τη*τξ 2 ρη*

A =
ξ*τη*τξ* ⎥

2
  (24) 

⎢ τ
⎢

ξ1 ρξ1ξ 2τξ1τξ 2 ρξ1ξ*τξ1τξ* ⎥
⎥

⎢ τ 2ξ 2 ρ
⎢

ξ 2ξ*τξ 2τξ* ⎥

⎢ τ 2
⎥

⎣ ξ* ⎥⎦
In (24), TA  has 21 parameters that have to be estimated.  

Structured variant, TB  
For the case of two tests, we can impose structure (and reduce the number of parameters to be 
estimated to 13) by the following requirements: 

a. All logit-TPRs have the same variance, τ 2η  
b. All logit-FPRs have the same variance, τ 2ξ  
c. The logit-JTPRs have the same variance, τ 2η*   
d. The logit-JFPRs have the same variance, τ 2ξ*   
e. The correlation between logit-TPRs in different tests is ρηη  
f. The correlation between logit-FPRs in different tests is ρξξ  
g. The correlation between logit-JTPR and logit-JFPR is ρη*ξ*  
h. The correlation between the logit-TPR and logit-FPR in the same test is ρηξ  
i. The correlation between the logit-TPR and logit-FPR in different tests is 

 ηξ  
j. The correlation between the logit-TPR for each test and the logit-JTPR is ρηη*  
k. The correlation between the logit-FPR for each test and the logit-JFPR is ρξξ*  
l. The correlation between the logit-TPR for each test and the logit-JFPR is ρηξ*  
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m. The correlation between the logit-FPR for each test and the logit-JTPR is ρη*ξ  
 

⎡ τ 2 2
η ρηητη ρηη*τητη* ρηξτητξ  τ ρ ⎤

⎢ ηξ ητξ ηξ*τητξ* ⎥
⎢ τ 2η ρ ⎥
⎢ ηη*τητη* ηξτητξ ρηξτητξ ρηξ*τητξ* ⎥
⎢ τ 2η* ρη*ξτη*τξ ρ τ

 
η η*τξ ρ

T ⎢ *ξ η*ξ
⎥

*τ
=

η*τξ*
B ⎥

2 2
 . (25) 

⎢ τ ρξξτ *τξτξ* ⎥
⎢

ξ ξ ρξξ
⎥

⎢ τ 2ξ ρξξ*τξτξ* ⎥
⎢
⎢ τ 2

⎥
⎥

 ⎣ ξ* ⎦

Structural Model: Probability Parameterization  
Another, perhaps more direct approach, models the probabilities 

πD
k = (π D

k , 00 ,π
D D D D D D D D
k , 01,π k , 10 ,π k , 11)  and π k = (π k , 00 ,π k , 01,π k , 10 ,π k , 11)  directly, rather than re-

expressed in terms of sensitivity, specificity and joint positivity. One could work with the logits 
of these probabilities and reformulate the multivariate normal model in terms of them or one 
could proceed to model the probabilities themselves in the form of a Dirichlet distribution. The 
resulting parameter estimates could then be re-expressed in terms of TPRs and FPRs, if desired, 
either directly through transformations of MCMC simulations from Bayesian analyses or using 
the delta method with likelihood analyses. We leave this for future work. 

Observational Model: Multivariate Normal (Approximate) 
Likelihood 

We calculate sample estimates for the quantities in the structural model using the observed 
counts in Table 6. For each combination of test results, the estimate of the population proportion 
is  
 π̂ D

k = xDk / N
D
k   (26) 

(we have suppressed the indices corresponding to the rows in Table 6); ND
k  is the total number 

of those with disease. (For notational simplicity we assume that both tests are applied to all 
patients, and thus ND

k , 1 = N
D
k , 2 = N

D
k .) The corresponding notation for those without disease 

replaces D  with D . We estimate the sensitivity and specificity of test m  in study k  by the 
replacing true probabilities (π ’s) with the respective sample estimates ( π̂ ’s) in (13) through  
(16); and the logit-transformed TPR, FPR, JTPR and JFPR by 
  η̂km = logit(TPRk , m ) ,  (27) 
 ˆ

 ξkm = logit(FPRk , m ) , (28) 
 η̂*= logit(π̂ D

k , 11) , and  (29) 

 ξ̂k* = logit(π̂
D
k , 11) .  (30) 
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Table 6. Notation for observed counts and estimated probabilities in those with disease (D ) and 
without disease (D ) in study k  – the case of two tests 
Test  1 Test  2 Disease, 

Counts 
Disease, 
Estimated 
Probabilities 

No Disease, 
Counts 

No Disease, 
Estimated 
Probabilities 

– – xk , 00
D

 
π̂ k , 00

D

 
xk , 00
D

 
π̂ k , 00

D

 
– + xk , 01

D

 
π̂ k , 01

D

 
xk , 01
D

 
π̂ k , 01

D

 
+ – xk , 10

D

 
π̂ k , 10

D

 
xk , 10
D

 
π̂ k , 10

D

 
+ + xk , 11

D

 
π̂ k , 11

D

 
xk , 11
D

 
π̂ k , 11

D

 
Totals  Nk

D
 

1 Nk
D

 
1 

We assume that both tests are applied to all patients, and thus ND
k , 1 = N

D
k , 2 = N

D
k . 

ltivariate normal distribution in a We model within-study variability in study k  using a mu
manner analogous to (9). More explicitly, 

⎛ η̂ ⎞
k1⎜ ˆ ⎟

⎜ ηk2 ⎟
⎜ η̂ ⎟

 ⎜ k* ⎛ η̂ ⎞ ⎛ ⎛ ⎞⎟ η ⎞
⎜ ˆ = ⎜ k ⎟⎟ ~ k

N ⎜ ⎜ ⎟ , Σ k ⎟ . (31) 
ξk1 ⎜ ˆ ⎟ ⎜ ξ ⎟⎜ ⎟ ⎝ ξ ⎜⎠ ⎝ ⎝ k ⎟

k ⎠ ⎠
⎜ ξ̂ ⎟
⎜ k2 ⎟
⎜ ξ̂ ⎟

k*
 

The within-study covariance matrices Σ k  in (31) include the within-study correlations 
between the logit-transformed TPRs, FPRs, JTPR and JFPR. The elements of η̂k  are correlated 

because they pertain to the same patients (those with disease). The elements of ξ̂ k  are correlated 
because they are calculated in the same patients (those without disease). However, η̂k  is not 

correlated with ξ̂ k  because they are calculated in disjoint samples. Thus, Σ k  is a block-diagonal 
matrix: 

⎡ 2 ⎤σ σ kη12 σ⎢ kη1 kη1* ⎥
⎢ σ 2 ⎥

kη2 σ⎢ kη2* 0 ⎥

Σ k
Σ k =

η 0
⎢⎡ ⎤ σ 2 ⎥

 ⎢ kη** ⎥⎢ ⎥ = ⎢ ⎥ , (32) 
⎢ Σ 2
⎣ kξ ⎥⎦ ⎢ σ kξ1 σ kξ12 σ kξ1* ⎥

⎢ 2 ⎥
⎢ 0 σ kξ 2 σ kξ 2* ⎥
⎢ 2 ⎥
⎢ σ kξ** ⎥
⎣ ⎦

where Σ kη  and Σ kξ  are the 3× 3  covariance matrices of the logit-transformed metrics in those 
with disease and those without disease, respectively, and 0  a 3× 3  matrix of zeros. The 

⎝ ⎠
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elements of Σ k  are considered known and are calculated from the data using the formulas in the 
Appendix.  The analogy between (9) and (31), and between (10) and (32) is clear. 

If the tests have not been applied in the same patients (i.e., the comparative studies used a 
parallel design) (32) becomes a diagonal matrix, i.e., a matrix with all off-diagonal elements 
equal to zero.   

Observational Model: Multinomial Likelihood 
Alternatively, one can use the multinomial distribution to model the cross-classification of the 

results of two or more tests. Specifically, the column vectors of counts  x
D = (xDk00 ,…, xDk11)'  and 

 x
D = (xDk00 ,…, xDk11)'  follow multinomial distributions: 

 xD ~M
 (ND D

k , π k ) ,  (33) 
and 
 xD ~M

 (ND D
k , π k ) .  (34) 

The estimates of the true probabilities πD= (π D , , π D )'  and πD= (π D , D… k k00 k11  k k00 …, π k11)'  
are π̂ D  and π̂ D , respectively, with elements defined in (26) (and its counterpart for those without 
disease). 

As above, if the tests have not been applied in the same patients (i.e., the comparative studies 
used a parallel design) (33) and (34) become sets of independent binomials.  

The Case of Three or More Tests  
One can extend the models to M > 2  tests that have been applied in the same patients, but 

some care is required to ensure that the resulting model has enough parameters to represent the 
probabilities of all the possible outcomes in cross-classified data. The number of parameters is 
not the only challenge, as we discuss below.  

Number of Parameters 
Because the number of parameters needed to fully specify the test results among both 

diseased and nondiseased individuals is 2M −1, the total number of parameters for a fully 
specified model increases very rapidly. We need: 
• 2M −1 parameters to model the probabilities (or functions of probabilities) in those with 

disease  
• 2M −1 parameters in those without the disease 
• (2M+1 − 2)(2M+1 −1) / 2  parameters to model between-study variances and covariances, 

assuming the unstructured covariance matrix TA  in (24), for a total of 
(2M+1 − 2)+ [(2M+1 − 2)(2M+1 −1) / 2]  parameters.  
As per Sections 3.1 and 3.2, one needs 5 and 27 parameters for one and two tests, 

respectively. For three and four tests one needs 119 and 495 parameters, respectively! Numerical 
difficulties arise both in unstructured parameterizations because of the large number of 
parameters and in structured parameterizations in which it may be difficult to enforce positive 
definiteness of the covariance matrices during optimization.  
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As mentioned already, several parameterizations of the probabilities are possible. One model 
uses logits of the 2M −1 probabilities of individual test combinations in both diseased and 
nondiseased individuals. Another uses the M  logit-TPRs together with the logits of other 
suitable functions of the individual probabilities, as we did for the case of two tests. For 
illustration, when M = 3 , 2M −1= 7 , and the additional four functions could be the probability 
that Test 1 and Test 2 are positive, the probability that Test 1 and Test 3 are positive, the 
probability that Test 2 and Test 3 are positive, and the probability that all three tests are positive. 
(In a particular application, the choice of such functions should take into account the likely 
probabilities, so as to minimize difficulties with small probabilities and small cell counts.) 

For the case of three or more tests, the practical consequences of such representations are 
unclear. In practice, it is unlikely that a systematic review would find completely cross-classified 
data on more than two tests.  

Handling the observational model is less complex presuming the multinomial likelihood is 
used. Within each group of diseased or nondiseased individuals, the counts of combinations of 
positive and negative test results on all the tests forms a cross-classification that can be 
represented by a multinomial distribution. The approximate normal likelihood becomes too 
complex when M>3.  
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Estimation and Inference 
Separate (one test at a time) and joint meta-analysis models using the normal approximation 

can be fit using (restricted) maximum likelihood.  
Separate meta-analyses models that use the binomial distribution can be fit in the generalized 

linear mixed models framework using routines readily available in general statistical packages 
such as xtmelogit in Stata or lmer in R. However, the joint meta-analysis models using the 
multinomial likelihood cannot be fit in these general routines. The available generalized linear 
mixed model (GLMM) packages in R, Stata and SAS do not allow the user to specify the random 
effects distribution in (24), where the random effects pertain to sums of the probabilities in Table 
5. Optimizing the likelihood for joint meta-analysis using the multinomial likelihood outside a 
GLMM package is nontrivial, because it involves calculating complicated integrals numerically. 
Thus we did not develop routines for fitting this model. Instead we fitted the model using 
Markov Chain Monte Carlo (MCMC) methods in the Bayesian framework, as described later in 
this section.  

Maximum Likelihood Estimation (Model Using the Normal 
Approximation) 

To fit the normal approximation model, optimize the log likelihood 
1 LogL = ∑

K

(log(W2 k )−Dk 'WkDk ) ,  (35) 
k=1

⎛ η̂ −H ⎞
where W (Σ +T)−1k = k  and D k

k = ⎜ ⎟ ; Wk denotes the determinant of Wk . The 
⎜⎝ ξ̂ k − Ξ ⎟⎠

parameters to be estimated are the summary effects H  and Ξ  and the elements of the between-
study covariance matrix T . Alternatively, one can optimize the restricted likelihood, which was 
the approach we used in the applied example:  

 
K K

LogL* 1 1= ∑( ⎛ ⎞
log(Wk )−Dk 'WkDk ) + log⎜ ∑Wk ⎟   (36) 

2 k=1 2 ⎝ k=1 ⎠
As mentioned previously, it is typical meta-analytic practice to consider the elements of Σ k  

known, but calculate them from the data. Appendix A provides formulas for these calculations. 
The matrix equations for the log likelihood remain the same for bivariate meta-analysis of one 
test and for the joint meta-analysis of two or more tests.  

By optimizing (35) or (36) we obtain the (restricted) maximum likelihood estimators Ĥ , Ξ̂  
and T̂ . We also obtain the (2M+1 − 2)× (2M+1 − 2)  estimated covariance matrix C = (cij )  of the 

(Ĥ ', Ξ̂ ')'  as the inverse Hessian matrix.  
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Confidence Intervals  

Confidence Intervals for the Summary Estimates Hm  and Ξm   
Confidence intervals for summary estimates are obtained in a similar manner for bivariate 

analyses of one test and for joint meta-analyses of two or more tests. Therefore, the formulas 
below are for M tests.  

The 100(1−α )%  simultaneous confidence interval (usually a 95% confidence interval) for 
Hm  (the summary logit-TPR in test m) is given by: 
 (Ĥm − qα cmm , Ĥm + qα cmm ) ,  (37) 

where cmm  is the variance of Ĥm , and qα  is the square root of the 100(1−α )  percentile of the 
chi-squared distribution with 2M+1 − 2  degrees of freedom. This simultaneous confidence 
interval is a special case of Scheffé’s F-projections for multiple comparisons; it controls type I 
error for the family of all possible linear combinations of the estimated parameters.47 The 
simultaneous confidence interval for Ξm  (the summary logit-FPR in test m) is given by: 

 (Ξ̂m − qα c
m+2M −1, m+2M −1

, Ξ̂m + qα c
m+2M −1, m+2M −1 ) ,  (38) 

where c
m+2M −1, m+2M −1

 is the variance of Ξ̂m .  

Confidence Intervals for Differences Hi − H j  and Ξ i −Ξ j  Between 
Summary Estimates of Two Tests 

For two tests that have been applied to the same patients, one can either perform a meta-
analysis for Test 1 and a separate one for Test 2, or a joint meta-analysis for the two tests. In 
either case, one can compare the diagnostic accuracy of the tests by calculating the difference 
between the logit-TPRs H1 − H2  and the difference between the logit-FPRs Ξ1 −Ξ 2 . The 
confidence intervals for such differences are calculated in different ways for separate versus joint 
meta-analyses of the two tests. 

Confidence Intervals for Differences Based on Separate Meta-
Analyses Per Test  

Separate bivariate meta-analyses of the two tests ignore within-study correlations and treat 
the summary estimates of the two tests as independent. The resulting asymptotic confidence 
interval for the difference in logit TPR of tests i  and j  is  

 (Ĥi − Ĥ j − zα /2 var(Ĥi )+ var(Ĥ j ), Ĥi − Ĥ j + zα /2 var(Ĥi )+ var(Ĥ j )) ,  (39) 

where zα /2 is the upper α / 2  percentile of the standard normal distribution. Because the 
confidence intervals in (39) ignore within-study correlations, their coverage differs from the 
nominal 100(1−α )% . Bonferroni’s inequality offers a simple adjustment to control the type I 
error. One substitutes zα /(2 f )  for zα /2  in (39), where f  is the number of comparisons of interest. 
It may be reasonable to consider f = 2M +M (M −1) , which equals the number of estimated 
mean logit-TPRs and mean logit-FPRs plus the total number of pairwise differences among the 
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mean logit-TPRs and plus the total number of pairwise differences among the mean logit-FPRs. 
(The above considers all other modeled quantities, such as the logit-JTPR and the logit-JFPR, as 
nuisance parameters that are not of interest.)  

Confidence Intervals for Differences Based on Joint Meta-Analyses of 
All Tests  

For joint multivariate meta-analyses of all tests, differences and simultaneous confidence 
⎛ H ⎞

intervals are obtained as follows. For convenience, write β = ; that is, arrange the true ⎜ ⎟⎝ Ξ ⎠
summary logit-transformed quantities in a column vector. For a vector a = (a1, … ,a

2(2M −1)
)'  let 

⎛ Ĥ ⎞
L(a, β) = a ' β  be a linear combination of the true summaries, and L(a, β̂) = a '⎜  its 

⎝ Ξ̂
⎟
⎠

estimate. Then 100(1−α )%  simultaneous confidence intervals for all possible linear 
combinations are given by 
 (L(a , β̂)− q ˆ

α (a 'Ca) , L(a , β)+ qα (a 'Ca)) .   (40) 

In particular, to estimate differences between the summary logit-TPRs of tests i  and j , set 

a = 1 , a = −1 , and all other elements of a β̂i j  to 0. Then L(a, ) = Ĥi − Ĥ j , and the confidence 
interval in (40) becomes 
 (Ĥi − Ĥ j − qα c ˆ

ii + cjj − 2cij , Hi − Ĥ j + qα cii + cjj − 2cij ) .   (41) 
In an analogous manner, to estimate differences between summary logit-FPRs for tests i  and 
j , set a a

i+ M −
=

2 1
1, a = −

j+2M −1
1 , and all other elements of  to 0, and proceed as in (40) to obtain  

(Ξ̂ i − Ξ̂ j − q c + c −
 ˆ ˆ

α i+2M −1, i+2M −1 j+2M −1, j+2M −1
2c

i+2M −1, j+2M −1
,

  (42) 
Ξ i −Ξ j + qα c

+ −
+

i 2M −1, i+2M 1
c
j+

−
2M −1, j+2M −1

2c
i+2M −1, j+2M −1

).

MCMC Estimation and Credible Intervals for Models Using 
Discrete Likelihoods 

We fit models using the binomial and multinomial distributions at the within-study level with 
MCMC methods. To this end, and in addition to equations in the Models and Estimation chapter, 
we specified vague prior distributions for the following modeled parameters.  

The true means were assigned independent vague normal priors: 
⎛ H ⎞

 ~ N (0, 106 ⋅⎜ ⎟ I
 ⎝ Ξ 6 ) , 

⎠
where I6  is the 6 × 6  identity matrix.  

To assign priors for the covariance matrix T  we use the factorization T = diag(τ)R diag(τ)  
where diag(τ)  is the diagonal matrix whose diagonal elements are the square roots of the 
variances of the ηk  and ξk  and R  is the correlation matrix corresponding to the covariances of 
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the ηk  and ξk . We assign independent uniform priors to the elements of τ , i.e., the standard 
deviations of the random effects): 
  τ m ~ U (10−4 , 5)    

The priors for R  must guarantee that the matrix is positive definite with elements between -1 
and 1. We follow Lu and Ades48 in factorizing R  using the Cholesky decomposition for square 
symmetric matrices R = LL ' , and in assigning specially constructed priors to the elements of the 
lower triangular matrix L (this is the spherical parameterization of Pinheiro and Bates49):  
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φ )
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43 ⋅
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41) ⎥   
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⎥

cos( ) ⋅⎢ φ52 ⋅ cos(φ )sin(φ ) ⋅ sin(φ )sin(φ ) ⋅φ⎢ cos(
⎥

51) si )) 52 ⋅φ n( 0sin( φ
51 φ sin(

54 53
φ )s
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sin( 52 in(
53

) φ41) sin(φ52 )sin(φ41) ⎥
⎢ 51 ⎥
⎢

φ ⋅ cos(φ63) ⋅ φ64 ) ⋅ si φφ φ (φ⋅ cos 65 )sin( n( 65 )sin( ) ⎥
⎢ φ cos( 62 ) φ ⋅ cos( 64 )sin( 63)

φ ⋅
cos( 61) φ sin( 62 ) φφ φ sin( 63)sin( ) sin( )sin(

64
) ⎥

⎢ sin( φ
61) φ sin( φ62 ⋅

62 )sin( 64 ) 63 φ62 ⋅
φ φ ⎥

⎣ sin( 61) sin( 61) sin( 61) ⎦
Setting uniform independent priors for φ ’s in the interval 0 to π = 3.14159...  yields a prior for 
R  in which all elements are between -1 and 1 and positive definiteness is guaranteed 
  φ

 ij ~ U (0, π)  .  
See Lu and Ades for a short discussion on the density of the elements of R  using the priors 
above.48 See Pinheiro and Bates for a discussion of additional parameterizations.49 

95% Credible Intervals 
With MCMC it is straighfrorward to obtain credible intervals for any quantity or any function 

of quantities explicitly, by simulation. In particular, we used 95% central credible intervals as the 
2.5 and 97.5 percentile of the MCMC simulations. 

Software and Computation 
For the normal approximation models, the log likelihood in (35) and (36) for the unstructured 

variant of the T  matrix can be optimized using routines such as mvmeta in Stata. We have 
developed our own Stata routines to optimize both the structured and the unstructured variant of 
T . (mvmeta uses a simple imputation of zero point estimates and large variances or covariances 
to simplify programming when handling studies with missing data; our routines do not need such 
imputations.) For convergence, starting values from fixed effect meta-analysis estimates appear 
to suffice. Note however, that the routine for the structured covariance matrix is not as robust: it 
failed to converge in the dataset used in this example (but does converge in other datasets). The 
optimization uses a modified Newton-Raphson algorithm. The routines are available from the 
authors upon request (see also www.cebm.brown.edu).  
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We ran MCMC analyses using JAGS version 3.1.0 through the R package rjags. We used 
three chains with a burn-in of at least 100,000 iterations and between 100,000 and 800,000 
iterations for recording results. We monitored convergence with the Gelman-Rubin diagnostic 
for stochastic nodes corresponding to the meta-analysis means and the elements of their 
between-study covariance matrices. We declared convergence when the 97.5 percentile of the 
diagnostic was 1.10 or less for all monitored stochastic nodes, and provided that on visual 
inspection the traceplots of the MCMC chains were suggestive of good mixing.   
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Incomplete or Missing Data 
In practice, not all studies in a meta-analysis report counts on all combinations of test results 

in diseased and nondiseased participants. In the example, even with only two tests, the level of 
detail varies substantially. For some studies we can construct the full cross-classification for both 
TPR and FPR, for some we can construct the cross-classification for TPR but not FPR or vice 
versa; some studies report only the estimated TPRs and FPRs of the tests, and others report an 
intermediate level of detail.  In principle, it is desirable to incorporate all available suitable 
evidence, perhaps including results from studies that evaluated only a single test. And if the total 
number of tests to be analyzed is greater than two, it is likely that many studies will have 
evaluated only two of the tests. We can describe many patterns of missingness, but we comment 
on the following three: 

Information To Extract Cross-Classification Counts Is Not 
Reported  

Often studies report information on the TPR or the FPR of each test, but do not provide data 
to reconstruct the cross-classification of test results. Assuming that data are missing at random, 
one could proceed with imputation of the missing within-study correlations between the 
quantities of interest, using information from the observed correlations from studies with 
complete data. In performing the imputation, one must ensure the positive definiteness of the 
covariance matrix. Another option imputes the missing counts directly. This is the approach 
taken in the analysis of the example in this work. 

A Subset of Studies Reports Only on Diseased or Only on 
Nondiseased Individuals  

If information is missing at random, one obtains unbiased estimates by optimizing the 
appropriate likelihood omitting contributions from the missing subsets. 

Some Studies Do Not Report Results From Each Test 
If information is missing at random, one again optimizes the likelihood of the observed data 

omitting the missing tests.  
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Analysis of the Example 
As is typical for screening tests, individual studies have chosen thresholds to attain primarily 

low FPR (ranging from less than 1% to 18% for both tests, except for a single study with 
shortened femur with an FPR of 55%), with TPRs that range from 10 percent to 72 percent for 
both tests (Figure 1).  
Figure 1. Observed sensitivities and false-positive rates for the two tests in the example 

 
Note: Markers denote studies (circles: shortened humerus; squares: shortened femur). In the rightmost plot, lines connect test 
results in the same patients (from paired studies). 
 

Figure 2 shows scatter plots of logit-transformed TPR and FPR for the studies in the 
example. Most plots give the impression of positive correlation between the estimated quantities. 
For descriptive purposes we calculated empirical Spearman correlation coefficients, which 
corroborate the visual impressions Table 7). This informal exploration lends support to the 
notion that the joint multivariate meta-analysis of the two tests will take into account information 
that separate bivariate meta-analyses would ignore.  
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Figure 2. Scatter plots of η̂ ’s and ξ̂ ’s in the example 

 
Note: Circles denote paired test studies. In the η̂  vs. ξ̂  plot, 2 2 “x” marks denote studies of shortened femur only. The asterisk 
(“*”) marks a study where the FPR is 55 percent (logit-FPR is 0.20) but has been relocated to lie in the plotted region. The range 
of the axes in the scatter plots is approximately 3 units in the logit scale, and the aspect ratio has been kept to 1 to facilitate visual 
assessments. FPR: false-positive rate (one minus specificity); TPR: true-positive rate (sensitivity). 
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Table 7. Empirical correlations between η̂ ’s and ξ̂ ’s in the example 
 η̂1  η̂2  η̂*  ξ̂1  ξ̂2  ξ̂*  
η̂1   1 0.22 0.57 0.41 0.15 0.31 
η̂2    1 0.89 0.23 0.46 [0.16]* 0.10 

η̂*     1 0.39 0.45 0.26 

ξ̂1      1 0.74 0.93 

ξ̂2       1 0.79 

ξ̂*        1 
*0.46 for the 11 paired studies; 0.16 for all 30 studies of shortened femur.  

Note: Figure 2 shows scatterplots between η̂1 , η̂2 , ξ̂1  and ξ̂2 .  
Subscript 1 refers to shortened humerus and subscript 2 to shortened femur. Subscript * refers to JTPR or JFPR. 

Estimates of Diagnostic Accuracy  
Table 8 shows the results of the meta-analyses. The upper part of the table (nonshaded rows a 

through f) shows results in the 11 paired studies. The lower part (shaded rows a through f) shows 
the corresponding results including the additional 19 studies on shortened femur. The table 
includes results from separate meta-analyses for each test using the normal approximation (row 
a) and the binomial likelihood (row b), and the following joint meta-analyses: using the normal 
approximation and accounting for within study correlation (row c); using the normal 
approximation and ignoring within-study correlation (i.e., setting the off-diagonal elements of 
Σ k  to zero; row d); using the multinomial likelihood (which models within study correlation; 
row e); and using independent binomials for each test in both diseased and nondiseased 
individuals (i.e., a discrete likelihood but ignoring the within-study correlations; row f).   

In general, the analyses give similar point estimates for the true-positive rates and similar 
point estimates for the false-positive rates. The 95% credible intervals in Bayesian models using 
discrete likelihoods (rows b, e, f) tend to be longer than the respective 95% confidence intervals 
in non-Bayesian models using the normal approximation. Overall, the lengths of the confidence 
or credible intervals in Table 8 differ only slightly between the separate and joint meta-analyses. 
To facilitate comparisons of the length of the confidence intervals between separate meta-
analyses of each test and joint analyses, we report 95% confidence intervals that are not 
corrected for multiple comparisons. Specifically, we used z0.025 = 1.96  instead of qα  in (37), 
(38), (40), (41) and (42). 

Including all 30 studies does not change the point estimates and confidence/credible intervals 
for shortened humerus appreciably. It results in lower uncertainty for shortened femur, as all 19 
additional studies were on shortened femur.  
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Table 8. Point estimates and individual 95% confidence intervals with alternative meta-analysis methods 
 Summary  

TPR (%) 
Summary  
TPR (%) 

Summary  
JTPR (%) 

Summary  
FPR (%) 

Summary  
FPR (%) 

Summary  
JFPR (%) 

 Short humerus Short femur  Short humerus Short femur  

Analyses in the 11 paired studies       

Separate meta-analyses of the two 
tests 

      

    a. Bivariate, normal likelihood  36.9 (29.3, 45.1) 36.0 (26.0, 47.3) NA 5.0 (3.5, 7.1) 7.6 (5.5, 10.3) NA 

    b. Bivariate, binomial likelihood 37.9 (27.7, 50.3) 35.4 (23.1, 49.5) NA 4.8 (3.0, 7.4) 7.4 (5.0, 10.7) NA 

Joint meta-analyses of the two tests       

    c. Normal likelihood, using within-
study correlation 

37.3 (29.9, 45.5) 37.5 (27.9, 48.1) 30.9 (23.0, 40.2) 4.9 (3.4, 7.0) 7.6 (5.6, 10.2) 3.0 (2.2, 4.1) 

    d. Normal likelihood, ignoring 
within-study correlation 

37.5 (29.4, 46.5) 36.4 (26.1, 48.0) 27.5 (19.5, 37.2) 4.9 (3.4, 7.0) 7.3 (5.3, 10.0) 2.8 (2.0, 4.0) 

    e. Multinomial likelihood (uses 
within-study correlations) 

35.3 (26.9, 41.8) 35.0 (22.4, 46.2) 26.1 (16.6, 34.0) 4.9 (2.8, 7.5) 7.3 (4.6, 10.5) 2.7 (1.6, 4.2) 

    f. Binomial likelihood (ignores 
within-study correlation) 

34.6 (20.3, 44.2) 35.9 (20.5, 50.4) 26.8 (11.3, 39.2) 4.8 (2.9, 7.7) 7.3 (4.6, 11.5) 2.8 (1.7, 4.4) 

Analyses in all 30 studies       

Separate meta-analyses of the two 
tests 

      

    a. Bivariate, normal likelihood  36.9 (29.3, 45.1) 35.8 (29.1, 43.1) NA 5.0 (3.5, 7.1) 7.6 (6.1, 9.4) NA 

    b. Bivariate, binomial likelihood 38.0 (27.8, 50.3) 35.2 (27.8, 43.3) NA 4.8 (3.0, 7.4) 7.4 (5.8, 9.3) NA 

Joint meta-analyses of the two tests       

    c. Normal likelihood, using within-
study correlation 

34.2 (27.2, 42.0) 37.1 (30.6, 44.2) 29.8 (23.1, 37.5) 4.9 (3.5, 6.7) 7.6 (6.2, 9.4) 3.0 (2.3, 3.8) 

    d. Normal likelihood, ignoring 
within-study correlation 

35.9 (28.9, 43.6) 35.8 (29.0, 43.3) 26.7 (20.4, 34.1) 5.0 (3.6, 7.0) 7.5 (6.1, 9.3) 2.9 (2.2, 3.9) 

    e. Multinomial likelihood (uses 
within-study correlations) 

34.7 (27.9, 42.5) 34.8 (28.7, 41.9) 25.2 (18.9, 32.4) 4.9 (3.1, 7.4) 7.4 (6.0, 9.2) 2.8 (1.9, 3.9) 

    f. Binomial likelihood (ignores 
within-study correlation) 

35.9 (27.7, 45.1) 34.9 (28.0, 42.7) 27.5 (19.2, 37.2) 4.9 (3.1, 7.4) 7.4 (5.8, 9.3) 2.8 (1.8, 4.1) 

FPR = false-positive rate (1–specificity); REML = restricted maximum likelihood; TPR = true-positive rate (sensitivity); JFPR/JTPR = joint-[false|true]-positive rate. The joint 
meta-analyses of the two tests use the unstructured variant of the between-study covariance matrix as per equation (24).  
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Table 9 shows the standard errors and the standard deviations of the posteriors of the 
summary estimates in the logit scale for maximum likelihood and Bayesian analyses, 
respectively. Meta-analyses that model the within-study correlations between tests generally 
gives more precise estimates. Standard errors based on the Bayesian models with discrete 
likelihoods are larger than those from the non-Bayesian normal likelihoods. When all 30 studies 
are considered, differences in the standard errors or standard deviations between separate and 
joint meta-analyses are attenuated primarily for shortened femur, to which the additional data 
pertain.  

In sum, for estimating summaries of TPRs and FPRs, the payoff of joint meta-analyses 
versus separate meta-analyses is at best modest.  
Table 9. Standard errors or posterior standard deviations of logit-transformed summary effects 
with alternative meta-analysis methods 
 

 
SE/Posterior SD  

   logit-TPR logit-TPR logit-FPR  logit-FPR  
 (shortened 

humerus) 
(shortened 
femur) 

(shortened 
humerus) 

(shortened 
femur) 

Analyses in the 11 paired studies 
    Separate meta-analyses of the two 

tests 
    

    a. Bivariate, normal likelihood  0.1745 0.2397 0.1934 0.1714 

    b. Bivariate, binomial likelihood 0.2430* 0.2957* 0.2399* 0.2072* 
Joint meta-analyses of the two 
tests 

    

    c. Normal likelihood, using 
within-study correlation 

0.1715 0.2230 0.1947 0.1646 

    d. Normal likelihood, ignoring 
within-study correlation 

0.1871 0.2446 0.1910 0.1753 

    e. Multinomial likelihood (uses 
within-study correlations) 

0.1686* 0.2691* 0.2514* 0.2134* 

    f. Binomial likelihood (ignores 
within-study correlation) 

0.2581* 0.3405* 0.2659* 0.2456* 

Analyses in all 30 studies     

Separate meta-analyses of the two 
tests 

    

    a. Bivariate, normal likelihood  0.1745 0.1560 0.1934 0.1173 
    b. Bivariate, binomial likelihood 0.2423* 0.1730* 0.2397* 0.1306* 

Joint meta-analyses of the two 
tests 

    

    c. Normal likelihood, using 
within-study correlation 

0.1692 0.1492 0.1720 0.1162 

    d. Normal likelihood, ignoring 
within-study correlation 

0.1646 0.1594 0.1764 0.1187 

    e. Multinomial likelihood (uses 
within-study correlations) 

0.1658* 0.1473* 0.2257* 0.1195* 

    f. Binomial likelihood (ignores 
within-study correlation) 

0.1919* 0.1651* 0.2308* 0.1257* 

FPR = false-positive rate (1–specificity); SE = standard error; TPR = true-positive rate (sensitivity). The joint meta-analyses of 
the two tests use the unstructured variant of the between-study covariance matrix as per equation (24). 
*Standard deviation of the posterior.  
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Estimates of Comparative Diagnostic Accuracy 
We can compare the TPRs and FPRs of shortened humerus and shortened femur using meta-

analysis. A convenient metric is the difference between the summary TPRs or the summary 
FPRs of the tests. Another metric is the difference in the summary logit-TPRs (and the same for 
the logit-FPRs). The exponential of the latter is an odds ratio: it expresses how many times 
higher the odds of a true positive (or false positive) are when shortened humerus is the test, 
versus when shortened femur is the test. For both metrics, a positive difference in, e.g., the TPR 
favors shortened humerus, in that its average TPR is higher than that of shortened femur. A 
difference of zero favors neither test, and a negative difference favors shortened femur. For FPR 
the direction is reversed: a negative difference favors shortened humerus, and so on.   

Separate Meta-Analyses Versus Joint Analyses Accounting for 
Within-Study Correlations 

Table 10 shows differences in the absolute scale, and Table 11 shows relative differences 
(differences in the logit scale and odds ratios). In each table, the point estimates are generally 
similar across analyses. This is congruent with Table 8, where the point estimates for the 
summary TPRs and FPRs were similar across analyses. However, the confidence or credible 
intervals are shorter for the joint meta-analyses compared with the corresponding separate meta-
analyses. For example, consider the analyses using the discrete likelihood. Among the 11 paired 
studies, the length of the confidence interval for the difference in TPRs in row e (joint meta-
analyses accounting for within-study correlations) is approximately half of that in row b 
(separate meta-analyses; Table 10). The corresponding confidence intervals for FPRs are 
approximately 20 percent shorter. It so happens that in analyses using binomial and multinomial 
likelihoods, the shortening of the credible intervals is more evident for the difference in TPRs 
and logit-TPRs. In analyses using the normal approximations, the gain (in terms of shortening 
confidence interval lengths) is maximal for the difference in FPRs and logit-FPRs.  

The sensitivities do not differ beyond what is expected by chance. The corresponding odds 
ratios in are close to one, between 1.03 and 1.13. All analyses suggest that shortened femur has 
smaller summary false-positive rate than shortened humerus, corresponding to odds ratios of 
0.64 or 0.65. The differences in the summary false-positive rates are statistically significant in 
the joint meta-analyses (albeit uncorrected for multiple comparisons).  

Separate Meta-Analyses Versus Joint Analyses Not Accounting for 
Within-Study Correlations 

As shown in Table 10 and Table 11, there is gain in terms of shorter confidence or credible 
interval lengths from joint analyses compared with separate meta-analyses, even if the within-
study correlations are ignored (assumed to be zero; compare rows a and d for analyses with 
normal approximations; and rows b and f for analyses using the discrete likelihood). However, 
the gain is less than that obtained when within-study correlations are accounted for.  

Finally, when all 30 studies are included, the differences between separate meta-analyses, 
joint meta-analyses accounting for correlation and joint meta-analyses not accounting for 
correlation remain in the same direction, but are attenuated.  
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Table 10. Comparative test performance: Differences in the summary TPRs or FPRs and 
corresponding standard errors or standard deviations of the posterior distributions 

 Difference in TPR post. SDDiff or 
SEDiff 

Difference in 
FPR 

post. SDDiff or 
SEDiff 

Analyses in the 11 paired studies     
Separate meta-analyses of the two 
tests 

    

    a. Bivariate, normal likelihood  0.9 (-12.5, 14.3) 6.85 -2.6 (-5.5, 0.4)  1.51 

    b. Bivariate, binomial likelihood 2.6 (-14.7, 19.8) 8.70* -2.5 (-6.3, 1.1) 1.83* 

Joint meta-analyses of the two 
tests 

    

    c. Normal likelihood, using 
within-study correlation 

-0.2 (-8.9, 8.6) 4.45 -2.8 (-4.7, -0.8) 1.00 

    d. Normal likelihood, ignoring 
within-study correlation 

1.2 (-9.6, 12.0) 5.51 -2.4 (-4.4, -0.4) 1.02 

    e. Multinomial likelihood (uses 
within-study correlations) 

0.0 (-8.9, 9.5) 4.62* -2.5 (-5.4, 0.3) 1.43* 

    f. Binomial likelihood (ignores 
within-study correlation) 

-1.4 (-10.2, 8.8) 4.81* -2.5 (-6.4, 0.5) 1.68* 

Analyses in all 30 studies     

Separate meta-analyses of the two 
tests 

    

    a. Bivariate, normal likelihood  1.0 (-9.6, 11.7) 5.42 -2.6 (-5.0, -0.2) 1.24 

    b. Bivariate, binomial likelihood 2.9 (-10.1, 17.0) 6.87* -2.5 (-5.2, 0.5) 1.44* 

Joint meta-analyses of the two 
tests 

    

    c. Normal likelihood, using 
within-study correlation 

-2.9 (-8.5, 2.7) 2.86 -2.7 (-4.6, -0.9) 0.94 

    d. Normal likelihood, ignoring 
within-study correlation 

0.1 (-8.3, 8.4) 4.26 -2.5 (-4.2, -0.8) 0.89 

    e. Multinomial likelihood (uses 
within-study correlations) 

-0.2 (-8.9, 8.8) 4.50* -2.5 (-4.9, 0.2) 1.29* 

    f. Binomial likelihood (ignores 
within-study correlation) 

0.9 (-9.2, 11.6) 5.29* -2.5 (-4.9, 0.2) 1.30* 

FPR = false-positive rate (1–specificity); SE = standard error; TPR = true-positive rate (sensitivity). The joint meta-analyses of 
the two tests use the unstructured variant of the between-study covariance matrix as per equation (24). For models fit with REML 
(rows a, c and d) the differences were calculated using the delta method on the fitted model parameters.  
*Standard deviation of the posterior. 
Bold italic font: Statistically significant difference (p<0.05) or posterior probability >0.975 that the difference is less than 0. 
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Table 11. Comparative test performance: Differences in the summary logit-TPRs or logit-FPRs and corresponding standard errors or 
standard deviations of the posterior distributions 

Analysis  TPR   FPR  

 Difference in logits post. SDDiff or 
SEDiff 

Odds ratio Difference in logits post. SDDiff or 
SEDiff 

Odds ratio 

Analyses in the 11 paired studies 
  

    
Separate meta-analyses of the two 
tests 

      

    a. Bivariate, normal likelihood  0.038 (-0.543, 0.619) 0.2965 1.04 (0.58, 1.86) -0.440 (-0.947, 0.066) 0.2584 0.64 (0.39, 1.07) 

    b. Bivariate, binomial likelihood 0.112 (-0.632, 0.889) 0.3827* 1.12 (0.53, 2.43) -0.452 (-1.086, 0.168) 0.3166* 0.64 (0.34, 1.18) 

Joint meta-analyses of the two 
tests 

      

    c. Normal likelihood, using 
within-study correlation 

-0.006 (-0.309, 0.296) 0.1544 0.99 (0.73, 1.34) -0.480 (-0.810, -0.150) 0.1684 0.62 (0.44, 0.86) 

    d. Normal likelihood, ignoring 
within-study correlation 

0.051 (-0.374, 0.476) 0.2169 1.05 (0.69, 1.61) -0.427 (-0.761, -0.093) 0.1704 0.65 (0.47, 0.91) 

    e. Multinomial likelihood (uses 
within-study correlations) 

0.000 (-0.374, 0.447) 0.2087* 1.00 (0.69, 1.56) -0.443 (-0.956, 0.057) 0.2533* 0.64 (0.38, 1.06) 

    f. Binomial likelihood (ignores 
within-study correlation) 

-0.061 (-0.432, 0.408) 0.2161* 0.94 (0.65, 1.50) -0.444 (-1.058, 0.094) 0.2807* 0.64 (0.35, 1.10) 

Analyses in all 30 studies       

Separate meta-analyses of the two 
tests 

      

    a. Bivariate, normal likelihood  0.045 (-0.414, 0.504) 0.2341 1.05 (0.66, 1.66) -0.446 (-0.889, -0.003) 0.2261 0.64 (0.41, 1.00) 

    b. Bivariate, binomial likelihood 0.124 (-0.452, 0.724) 0.2976* 1.13 (0.64, 2.06) -0.451 (-1.006, 0.076) 0.2730* 0.64 (0.37, 1.08) 

Joint meta-analyses of the two 
tests 

      

    c. Normal likelihood, using 
within-study correlation 

-0.127 (-0.316, 0.062) 0.0965 0.88 (0.73, 1.06) -0.474 (-0.810, -0.138) 0.1733 0.62 (0.44, 0.87) 

    d. Normal likelihood, ignoring 
within-study correlation 

0.004 (-0.345, 0.354) 0.1783 1.00 (0.71, 1.42) -0.432 (-0.751, -0.112) 0.1631 0.65 (0.47, 0.89) 

    e. Multinomial likelihood (uses 
within-study correlations) 

-0.007 (-0.398, 0.385) 0.1989* 0.99 (0.67, 1.47) -0.446 (-0.939, 0.026) 0.2415* 0.64 (0.39, 1.03) 

    f. Binomial likelihood (ignores 
within-study correlation) 

0.042 (-0.411, 0.505) 0.2323* 1.04 (0.66, 1.66) -0.444 (-0.953, 0.028) 0.2468* 0.64 (0.39, 1.03) 

FPR = false-positive rate (1–specificity); SE = standard error; TPR = true-positive rate (sensitivity). The joint meta-analyses of the two tests use the unstructured variant of the 
between-study covariance matrix as per equation (24). *Standard deviation of the posterior. 
Bold italic font: Statistically significant difference (p<0.05) or posterior probability >0.975 that the difference is less than 0.  
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Four-Dimensional 1.96-Standard-Error Volumes for Separate 
and Joint Meta-Analyses  

In the example, accounting for within-study correlation has at best moderate impact on the 
length of the confidence intervals for meta-analysis means, but can result in tighter confidence 
intervals for differences of means (for assessing comparative test accuracy). These findings are 
not discordant. The explanation involves the concept of a “confidence volume,” which 
generalizes the confidence interval in more than one dimension. The same concept applies to 
credible intervals in Bayesian analyses in an analogous manner.  

To introduce the concept, focus on the meta-analysis of the sensitivity and specificity of a 
single test, say shortened humerus. The bivariate meta-analysis model yields estimates of means 
of logit-transformed sensitivities and false-positive rates and their covariance. The geometric 
representation of the simultaneous confidence interval for the estimated means is a two-
dimensional ellipse (Figure 3), whose shape is determined by the estimated covariance, and 
whose center is determined by the estimated means. The confidence intervals of the estimated 
means are projections of the elliptical contour corresponding to 1.96 standard errors (95% 
confidence ellipse). A fundamental metric is the area of the 95% confidence ellipse, in that it 
characterizes the distribution of the estimated means according to the model. The area can be 
calculated analytically (see Appendix). 
Figure 3. 1.96-standard-error confidence region (ellipse) for a bivariate meta-analysis of shortened 
humerus only 

 
FPR = false-positive rate (1-specificity); TPR = true-positive rate (sensitivity).  
Note: The plot is on the logit scale. The black dot represents the summary point, i.e., the mean logit true-positive and false-
positive rates for the 11 meta-analyzed studies of shortened humerus. The red horizontal lines represent the 95% confidence 
interval on the margin of the estimated mean logit true-positive rate, and the red vertical lines represent the corresponding 95% 
confidence intervals of the estimated mean logit false-positive rate. The ellipse is the 1.96-standard-error region of the joint 
distribution of the two estimated means.  

By contrast, separate univariate meta-analyses would effectively consider the estimated 
means as independent; the geometric representation of the estimated means with separate 
univariate meta-analyses is a rectangle (Figure 4). The 1.96-standard-error region of the 
rectangle is larger than that of the ellipse in Figure 3. (The type I error rate for the rectangle 
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confidence region in Figure 4 is 1− 0.952 = 0.0975 , so the rectangle does not have 95% 
coverage.) The coordinates of the summary point in Figure 4 come from separate meta-analyses, 
and are slightly different from Figure 3.  
Figure 4. 1.96-standard-error confidence region (rectangle) for independent meta-analyses of 
sensitivity and specificity (shortened humerus only) 

30 

 
FPR = false-positive rate (1-specificity); TPR = true-positive rate (sensitivity).  
Note: The plot is on the logit scale. The black dot represents the coordinates of the mean of logit-transformed sensitivity and 
false-positive rate for shortened humerus. The red horizontal lines represent the 95% confidence interval on the margin of the 
summary logit true-positive rate, and the red vertical lines represent the corresponding 95% confidence intervals of the summary 
logit false-positive rate. The rectangle is the 1.96-standard-error confidence region of the joint distribution of the two means, 
which have been obtained from separate univariate random effects meta-analyses with REML. The coordinates of the summary 
point in this figure come from separate meta-analyses, and are slightly different from Figure 3. 

 
The concept of the confidence region extends to more dimensions. When one considers both 

tests, the summary logit sensitivities and false-positive rates have a joint distribution over four 
dimensions. Table 12 shows the calculated four-dimensional 1.96-standard-error confidence 
volumes for the alternative meta-analyses performed here. The confidence volume for joint 
meta-analyses is much smaller than that from separate meta-analyses for the two tests. The 
reason is that the joint analyses incorporate more information in the form of within-study 
correlations.  
When considering estimated means and the confidence intervals around them, we observe no 
great differences between separate meta-analyses of the two tests and joint analyses, in the same 
way as we see no great differences between the confidence intervals in Figure 3 and those in 
Figure 4. However, when we calculate differences of means we choose a projection that results 
in appreciable differences.   
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Table 12. Four-dimensional volumes within the 1.96-standard error hull for the summary estimates 
in alternative analyses (normal approximation modeling only) 
 Volume (×10-3) Ranking (small to large) 

Analyses in the 11 paired studies 
  Separate meta-analyses of the two 

tests 
  

    a. Bivariate, normal likelihood  13.4 3 

    b. Bivariate, binomial likelihood Not calculated – 
Joint meta-analyses of the two 
tests 

  

    c. Normal likelihood, using 
within-study correlation 

4.9 1 

    d. Normal likelihood, ignoring 
within-study correlation 

12.0 2 

    e. Multinomial likelihood (uses 
within-study correlations) 

Not calculated – 

    f. Binomial likelihood (ignores 
within-study correlation) 

Not calculated – 

Analyses in all 30 studies   

Separate meta-analyses of the two 
tests 

   

    a. Bivariate, normal likelihood  7.6 3 

    b. Bivariate, binomial likelihood Not calculated – 

Joint meta-analyses of the two 
tests 

  

    c. Normal likelihood, using 
within-study correlation 

1.8 1 

    d. Normal likelihood, ignoring 
within-study correlation 

5.7 2 

    e. Multinomial likelihood (uses 
within-study correlations) 

Not calculated – 

    f. Binomial likelihood (ignores 
within-study correlation) 

Not calculated – 

Note: The volumes do not have units and are on the logit scale. The joint meta-analyses of the two tests use the unstructured 
variant of the between-study covariance matrix as per equation (24).  

Estimates of Between-Study Variance and Comparison of 
Structural Variants of T   

Table 13 shows the estimated between-study variance from analyses using the normal 
approximation, and Table 14 shows posterior medians from analyses using discrete likelihoods. 
For ease of comparison, we have arranged results from separate meta-analyses in the same 
format as for results from joint meta-analyses.   

All between-study correlations are almost always positive, and appear to be mostly congruent 
with each other. One should not overinterpret the differences in these estimates across models, 
because variance components are often not well estimated.   
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Table 13. Estimates of between-study standard errors and correlations (analyses of the 11 paired studies) 
Model Normal approximation, estimates of τ ',R  Discrete likelihood, estimates of τ ',R  

Separate meta-
analyses 0.448

0.696
−

0.590
0.536
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

,

1 0 − 0.73 0 −
1 − 0 0.79 −

− − − −
1 0 −

1 −
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

  

0.628
0.807
−

0.684
0.602
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

,

1 0 − 0.53 0 −
1 − 0 0.64 −

− − − −
1 0 −

1 −
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 
Joint meta-
analyses 
(accounting for 
within-study 
correlation) 

0.446
0.637
0.578
0.609
0.520
0.513

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

,

1 0.69 0.90 0.66 0.34 0.61
1 0.92 0.41 0.79 0.69

1 0.48 0.56 0.62
1 0.57 0.90

1 0.88
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

0.432
0.717
0.612
0.739
0.611
0.630

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

,

1 0.74 0.84 0.88 0.78 0.94
1 0.97 0.40 0.90 0.73

1 0.54 0.85 0.78
1 0.48 0.88

1 0.82
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 
Joint meta-
analyses (not 
accounting for 
within-study 
correlation) 

0.485
0.699
0.626
0.595
0.554
0.572

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

,

1 0.72 0.86 0.65 0.34 0.59
1 0.96 0.30 0.63 0.51

1 0.32 0.44 0.44
1 0.62 0.92

1 0.87
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

0.561
0.879
0.852
0.731
0.673
0.667

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

,

1 0.94 0.96 0.58 0.57 0.72
1 0.96 0.31 0.55 0.55

1 0.35 0.43 0.52
1 0.48 0.84

1 0.78
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 
Note: The table shows the factorization of the estimated covariance matrices into vectors of between-study standard deviations and correlation matrices, Note that 
T = diag(τ)Rdiag(τ) , where diag(τ)  is a matrix with the estimated standard deviations on the diagonal and with all off-diagonal elements 0, and R  is a correlation 
matrix. The joint meta-analyses of the two tests use the unstructured variant of the between-study covariance matrix as per equation (24). 
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Table 14. Estimates of between-study standard errors and correlations (analyses of all 30 studies) 
Model Normal approximation, estimates of τ ',R  Discrete likelihood, estimates of τ ',R  

Separate meta-
analyses 0.448

0.709
−

0.590
0.582
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

,

1 0 − 0.73 0 −
1 − 0 0.28 −

− − − −
1 0 −

1 −
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

0.627
0.793
−

0.683
0.639
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

,

1 0 − 0.53 0 −
1 − 0 0.22 −

− − − −
1 0 −

1 −
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 
Joint meta-
analyses 
(accounting for 
within-study 
correlation) 

0.740
0.668
0.780
0.590
0.578
0.519

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

,

1 0.83 0.97 0.28 −0.27 0.04
1 0.93 0.43 0.29 0.45

1 0.41 −0.05 0.24
1 0.5 0.87

1 0.86
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

0.470
0.971
0.662
0.745
0.796
0.651

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

,

1 0.46 0.74 0.91 0.42 0.90
1 0.72 0.30 0.41 0.50

1 0.53 0.47 0.71
1 0.33 0.84

1 0.53
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

Joint meta-
analyses (not 
accounting for 
within-study 
correlation) 

0.475
0.721
0.592
0.628
0.592
0.603

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

,

1 0.78 0.89 0.41 0.07 0.31
1 0.98 0.08 0.27 0.21

1 0.22 0.24 0.28
1 0.67 0.93

1 0.89
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

0.575
1.149
0.765
0.751
0.833
0.703

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

,

1 0.52 0.90 0.71 0.37 0.77
1 0.64 0.19 0.30 0.39

1 0.43 0.31 0.57
1 0.36 0.83

1 0.52
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 
Note: The table shows the factorization of the estimated covariance matrices into vectors of between-study standard deviations and correlation matrices, Note that 
T = diag(τ)Rdiag(τ) , where diag(τ)  is a matrix with the estimated standard deviations on the diagonal and with all off-diagonal elements 0, and R  is a correlation 
matrix. The joint meta-analyses of the two tests use the unstructured variant of the between-study covariance matrix as per equation (24).  
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Discussion 
We propose models for the joint (multivariate) meta-analysis of M ≥ 2  diagnostic tests. The 

models are applicable when the tests are applied in the same patients and a substantial number of 
studies report data on the cross-classification of results from several tests, and for examples in 
which it is helpful to summarize study accuracy with a “summary point” (such as summary 
sensitivity and specificity), rather than a “summary line” (such as a hierarchical summary 
receiver operating characteristic curve). We derive formulas for calculating within-study 
covariances from data reported in the studies themselves. We show in an applied example that 
the developed methods can result in tighter confidence intervals for comparisons between 
sensitivities or false-positive rates of different tests than those from separate meta-analyses for 
each test. 

True comparative accuracy studies involve a network of different diagnostic accuracy studies 
that include fully cross-classified data from crossover studies, data from crossover studies 
reported as separate 2 × 2  tables, and data from parallel test studies that examine all or a subset 
of the potential index tests. The herein described models can form the basis for network meta-
analysis of test accuracy. For example, the case of three or four tests is essentially a case of 
network meta-analysis. Nevertheless, for a more general solution to the meta-analysis of 
networks of diagnostic accuracy studies, the herein presented work should be extended to 
incorporate all of the data structures, respect their constraints and simultaneously estimate all 
parameters, while respecting consistency equations that arise when the network contains three or 
more tests that are not all compared in each study.  

We hypothesize that most studies of diagnostic accuracy that assess two or more tests in the 
same patients do not report sufficient data to extract the cross-tabulations of test results as in 
Table 5. If this is true, only separate meta-analyses are possible. Authors of primary studies of 
diagnostic accuracy should be encouraged to report such information clearly. In our work with 
the illustrative example, the extraction of counts for cross-classified test results was challenging. 
For example, Biagiotti et al.16 reported cumulative counts of test positives for shortened 
humerus, shortened femur and for both tests combined using several thresholds. To reconstruct 
the equivalent of Table 5 for the thresholds of interest (ratio of observed to expected length 
<0.90 for humerus and <0.91 for femur), we had to employ mixed integer linear programming 
(details available from the authors on request). Even so, we could not extract cross-tabulation 
counts from five studies in the trisomy 21 group, and from six studies in the healthy group. 

In the application, when the focus is on estimates of the summary TPRs or summary FPRs, 
the payoff of multivariate analyses was modest at best, in that the differences in the summary 
estimates and confidence/credible intervals from separate meta-analyses for each test were not 
that pronounced. For the models presented here, the summary point estimates from separate 
meta-analyses will be the same as from joint meta-analyses if (a) the within study covariances 
are zero, or (b) if the within-study covariance matrices are all equal (that is Σ k = Σ  for all k).50 
The former is unlikely for diagnostic tests, because we can reasonably expect that results 
obtained from tests applied to the same patients will be positively correlated. Therefore, for 
meta-analysis of diagnostic tests the point estimates will differ when the within-study covariance 
matrices are most dissimilar across studies. However, the variances of the summary estimates are 
always affected.  

The most pronounced differences between separate and joint meta-analyses are observed 
when one estimates comparative diagnostic accuracy. We see this as a manifestation of the 
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theoretical advantages of the joint meta-analyses. First, the joint meta-analyses utilize all the 
information in the cross-tabulation of the test results, and this translates into smaller standard 
errors compared with separate meta-analyses. Second, with joint meta-analyses one can obtain 
simultaneous confidence intervals that control the type I error for all possible linear 
combinations of summary estimates, as described in (40).47 Third, when calculating comparative 
test accuracy, the joint meta-analyses respect the grouping of data by study. In contrast, separate 
meta-analyses rely on differences of marginal estimates; that is, they first average across studies 
and then compare the averages. As in meta-analyses of treatment effects, the latter approach can 
result in biased estimates (in some way analogous to Simpson’s paradox). 

Already with two tests, transforming the parameters to the logit scale introduces a 
complication: the sum of the probabilities recovered from the logit-scale parameters is not 
guaranteed to be 1. One can avoid this complication by constrained optimization or by using 
parameters in the probability scale and a Dirichlet distribution for the random effects.  Further 
research will be necessary to determine whether a Dirichlet distribution can accommodate sums 
of probabilities such as TPRs and FPRs as parameters, or only the individual probabilities. 

Nevertheless, our work demonstrates complexities introduced by simultaneous consideration 
of multiple diagnostic tests that are not apparent in treatments of diagnostic test models which 
focus on a single test. First, while sensitivity and specificity completely describe the model 
parameters for a single test, they fail to do so once a second test is introduced. Then, it becomes 
necessary to consider the joint probability of the two tests in addition to the marginal 
probabilities of each. With additional tests, the need for extra parameters grows rapidly and it is 
not clear at all which are the most clinically important parameterizations.  

Second, the number of cross-classifications grows rapidly with more tests, thus increasing the 
chance of combinations of test results with small counts. When some counts are small, the 
normal likelihood becomes suboptimal46,51 and multinomial observational distributions are 
preferred. Moreover, not only are the observed counts small but the cell probabilities also may 
become extremely small and so the asymptotic normality of the random effects distribution may 
no longer hold either. Random effects will also be imprecisely estimated when the number of 
participants is small and outliers will become more of an issue, inflating between-study variances 
and inflating prediction ellipses. 

Third, the exponentially exploding number of parameters will require structured correlation 
matrices for model identifiability and numerical convergence. We have suggested one such 
structure, but even its simple form did not always permit our models to be estimable. More 
experience with these models is needed to resolve both numerical and conceptual issues for 
appropriate structures. 

Fourth, as the number of tests increases, the likelihood that each patient will receive each test 
and have a recorded result becomes unlikely. Missing data will then become the norm, rather 
than the exception. Such missing data may be random or structural when certain tests are not 
ordered. Assumptions about the missing data mechanism become crucial with large amounts of 
missing data and with nearly empty cells. Our assumption that data are missing at random will 
hold only in special situations. These certainly do not include sequences of tests where test 
ordering is related to prior knowledge about health status. 

Fifth, while comparative accuracy studies should rightly be set up so that patients receive 
each test in order to reduce biases and ensure the clinical relevance of the resulting inferences, 
such designs require strict protocols to ensure validity. Many of these issues are covered by items 
in the QUADAS study quality and STARD reporting quality instruments including prospective 
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and consecutive data collection, avoidance of verification bias, blinding of readers to test and 
gold standard results and control of the time between test administrations. As the number of tests 
grows, quality control becomes more difficult and differences may begin to influence test results. 

Finally, in the field of diagnostic accuracy it is hard to imagine a topic where exploration of 
heterogeneity with covariates is not needed. In principle, adding covariates to the current models 
is straightforward: one simply has to substitute linear equations of the covariates in the place of 
the means at the structural model. This will increase the number of parameters further. An 
additional complication stems from the different parameterizations of the probabilities in the 
structural model. For example, the interpretation of the coefficients for covariates will be very 
different for parameterizations based on sums of probabilities (e.g., TPRs and FPRs) versus a 
direct parameterization of the probabilities themselves. It is not clear how one should judge the 
appropriateness of the various parameterizations.  

So should one use separate or joint meta-analysis for analyzing paired diagnostic accuracy 
data? This work introduces one approach and is not sufficient for making general methodological 
recommendations. In theory, the decision for performing separate versus joint meta-analyses 
depends on the underlying assumptions that the researcher is prepared to make about the data. 
Ideally, these decisions should be made early in the analysis, and not after an examination of the 
data. In some instances alternative analyses will yield similar results; in other instances they may 
not. The fact that we observed differences in comparative test accuracy in a single example is not 
a strong basis for recommending general use.  

More generally but in the same vein, methodological recommendations address the problem 
of choosing between alternative methodologies, and developing them should be approached as a 
decision problem.52 In brief, one must define the decision context, which includes specifying: (a) 
the perspective from which the problem is approached (e.g., recommendations for specialists 
who perform publicly funded research may have to set a much higher bar than recommendations 
for the meta-analysis community, which may want to set pragmatic minimum standards); (b) all 
reasonable alternative choices; (c) the type of problems to which the recommendation applies; 
(d) the characteristics or quantities (utilities) that will be used in making a decision, and their 
relative weights if more than one exist. These represent not only the scientific rigor of each 
alternative but also issues such as the feasibility of performing an analysis without access to 
statistical expertise or specialized software, and other concerns. Subsequently, one must examine 
theoretical arguments, results from simulation analyses, or empirical data, as applicable, and be 
transparent on how the recommendation is reached. Pending an adequate exploration of this 
decision problem in their setting, our opinion is that meta-analysts facing problems such the one 
analyzed here should consider performing joint meta-analysis, if only as a sensitivity analysis.  
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Appendix A. Formulas for Within-Study Covariance 
Matrices and for 1.96-Standard Error Volumes 

Variances for logit-transformed sensitivities and false positive rates for 
bivariate meta-analysis (single test) 
See Table 3 in the main report for notation. The within-study covariance Σ k  in study k has zero 
off-diagonal elements, because sensitivity and specificity are calculated in independent groups. 

⎛ σ 2
k

Σ =
η 0 ⎞

⎜ ⎟ ,! k ⎜ σ 2
⎝ kξ ⎟ ! !

⎠
with  
 

1σ 2
kη =! ND

k p
D ,
k1(1− p

D ! !
k1)

and  

σ 2 1
! kξ = ND ,

k p
D D ! !
k1(1− pk1)

 

Variances for logit-transformed sensitivities and false positive rates for the 
joint multivariate meta-analysis of two tests 
Application of the multivariate delta method yields the following formulas. (The notation [m:1] 
indicates the sum over all patterns in which the outcome on test m is 1).  
Variance of logit TPR in study k for test m: 

σ 2 1
! k ,ηm =

NDπ̂ D (1− π̂ D ) ! !
k k[m:1] k[m:1]

Variance of logit JTPR in study k: 
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Variance for logit FPR in study k for test m: 
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k π̂
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Variance for logit JFPR in study k: 
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Covariance between logit TPRs of tests m and t in study k: 
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Covariance between logit FPRs of tests m and t in study k: 
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Covariance between logit TPR of test m and logit-JTPR in study k: 
 

1σ! k ,ηmη* = ND
k π̂

D
k[m:1](1− π̂

D
k , 11) ! !

Covariance between logit FPR of test m and logit-JFPR in study k: 
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Formulas for calculating 1.96-standard-error volumes  

Let t1,… , tM  be the lengths of the half axes of an ellipsoid of dimension M that corresponds to 
the contour surface of one standard error. The volume VM  included in this one-standard-error 
surface is calculated by integration. We calculated the first three integrals. (In the following three 
formulas π = 3.14159…  ) 

V! 2 = π t1t2 !!
V 4

! 3 = π t
3 1t2t3 !!

V 1
! 4 = π2t

2 1t2t3t4 !!
For a covariance matrix C  we have to calculate the lengths of the half axes for the one-standard-
error contour ellipsoid. Rotation to an orthonormal basis automatically provides the lengths of 
the half axes; these are the square roots of the eigenvalues λ1,… , λM  of C . So set tm = λm  in 
the formulas above. The 1.96-standard-error volume uncorrected for multiple comparisons is 

! (z M
0.025 ) VM ,!!

With zα /2 = 1.96  denoting the upper α / 2  percentile of the standard normal distribution. For 
example in the main report, Table 11 the volumes in rows (b) and (c) pertain to four-dimensional 
models and were calculated using the formula above, for M = 4 . The confidence volume in row 
(a) corresponds to two independent bivariate models. It is calculated as the product of the 
confidence volumes of dimension 2, one for each bivariate model. 
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