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Simulation-Based Comparison of Methods for Meta-
Analysis of Proportions and Rates  
Structured Abstract 
 
Background. In many systematic reviews it is appropriate to summarize proportions and rates 
(e.g., incidence rates) using meta-analysis. For example, researchers commonly perform meta-
analyses of sensitivity and specificity to summarize medical test performance, or of adverse or 
harmful events. Many statistical methods can be used for meta-analysis of rates and proportions.  
 
Purpose. To help provide guidance for meta-analysts, we performed an extensive simulation 
study to assess the statistical properties of alternative approaches to meta-analysis of proportions 
and incidence rates. 
 
Methods. We simulated a large number of scenarios for meta-analyses of proportions and 
incidence rates (n=792 scenarios for each). The distinct scenarios were defined by combinations 
of various factors, including the distributional form for the true summary proportion or rate and 
its defining parameters (mean, variance), the number of studies per meta-analysis, and the 
number of patients per study.  

For each scenario we generated 1000 random meta-analyses, on which we applied fixed and 
random effects analyses for two families of methods: (1) methods that approximate within-study 
variability with a normal distribution—not using a transformation, using a canonical 
transformation (logit and logarithmic for proportions and rates, respectively), or using a variance 
stabilizing transformation (arcsine and square root for proportions and rates, respectively); and 
(2) “discrete likelihood” methods that use the theoretically motivated binomial or Poisson 
distribution to model within study variability. We measured the performance of each method 
relative to the true values set in the simulation by their mean squared error, bias, and coverage.  
 
Results. In general, and for both proportions and rates, the discrete likelihood approaches 
performed better than the approximate methods in terms of the three metrics.  

Of the approximate methods, the variance stabilizing variants (arcsine transformation for 
proportions and square root transformation for rates) performed better than the untransformed 
methods or the methods using a canonical link. 

Continuity correction factors are necessary to calculate real-valued means or variances for 
some approximate methods. The bias, mean square error and coverage of these approximate 
methods are very sensitive to the choice of continuity correction factors.  
 
Conclusions. Discrete likelihood methods are preferable for the meta-analyses of proportions 
and rates. We discourage the use of approximate methods that require continuity corrections, as 
the arbitrary choice of the correction factor can greatly impact on the performance of the method. 
If software for fitting the discrete likelihood methods is unavailable and expected counts are 
large enough that normal approximations are adequate, we recommend use of a variance 
stabilizing transformation.  
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Background 
Meta-analyses of proportions or rates (e.g., incidence rates) are very often included in reports 

generated by the Effective Health Care Program, and in systematic reviews in general. For 
example, one would use a meta-analysis of proportions to calculate the summary frequency of 
adverse or harmful events. Depending on the clinical context, adverse events can be rare (e.g., 
the incidence rate of rhabdomyolysis in statin treated patients is approximately 3.3 events per 
100,000 patient years1) or quite common (e.g., the average percentage of nausea and vomiting in 
chemotherapy-treated cancer patients was 48 percent in a meta-analysis of randomized trials2). 
Meta-analysis of proportions can also be applied to evaluate medical test performance. Although 
a bivariate meta-analysis of sensitivity and specificity or summarization with a hierarchical 
summary operating characteristic curve is commonly recommended, separate (univariate) meta-
analyses may be sufficient when there is little variation in either sensitivity or specificity.3,4  

Assuming that it is appropriate to perform a meta-analysis of proportions or rates, many open 
questions remain about which statistical methods are best to use. Generally speaking, we can 
group meta-analytic approaches into two families according to how they model within-study 
variability:  

1. Discrete likelihood methods, which model the proportion of events or the incidence rate 
in a study using the binomial or Poisson distribution, respectively. These are theoretically 
motivated choices. 

2. Approximate methods, which approximate within-study variability with a normal 
distribution. Of the many variants that have been used, the three that are most interestinga 
use a normal distribution to approximate the distribution of: 
a. Untransformed proportions or rates. 
b. Canonical transformations for proportions (logit transformations) and rates 

(logarithmic transformations).b 
c. Variance stabilizing transformations for proportions (arcsine transformations) and 

rates (square root transformations).c 
 
The approximate methods have known shortcomings. First, they rely on the normal 

approximation to the binomial or Poisson distributions, which may introduce a bias or have other 
poor statistical properties when the proportion or rate is close to zero (or one), or when the study 
sample sizes are relatively small. Both situations are not uncommon in practice. A way to reduce 
this bias in the extremes (near zero or one) is to use the “canonical” transformations of 
proportions and rates. Intuitively, these non-linear transformations change the “spacing” of 
proportions and rates near the extremes. The logit transformation for proportions “expands” 
values near zero or one (mapping them to the whole real axis) and the logarithmic transformation 
for rates “expands” values tending to zero (rates are typically small numbers).  

A second problem is that, for untransformed and canonically transformed proportions and 
rates, the sample variance is a function of, and is therefore correlated with, the sample mean. 
Failure to account for this correlation in the model may bias the summary estimate and its 
variance.5-7 Corrections for this bias have been proposed,5 but are not used in practice.6,8 

aBecause they have been used commonly, or for theoretical reasons—see later paragraphs.  
bThese are termed “canonical” as they are the typical transformations for the binomial and Poisson families in the framework of 
Generalized Linear Models. See McCullough P, Nelder JA. Generalized linear models. 2 ed: Chapman & Hall, 1989. 
cVariance stabilizing transformations are discussed in Chapter 15 of Snedecor GW and Cochran WG. Statistical methods, 7ed. 
Ames: The Iowa State University Press, 1980. 
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Alternatively, variance stabilizing transformations, i.e., transformations for which the variance is 
independent of the estimated mean (arcsine transformations for proportions and square root 
transformations for rates) are a standard fix for the bias induced by this correlation.9 

Discrete likelihood methods for random effects are fit as generalized linear mixed (GLMM) 
models,7 (e.g., as random effects logistic or Poisson regressions). They cannot be implemented 
with non-iterative methods in simple spreadsheets,d and require programming in a general 
statistical package such as Stata, R, or SAS. While straightforward to implement for those with 
solid understanding of GLMMs and statistical languages, they are not easily accessible to meta-
analysts without programming skills. Moreover, the routines that fit the discrete likelihood 
methods use numerical integration algorithms10 that require examination of the robustness of the 
results to the algorithms’ default settings.e,11,12 These algorithms can also fail to converge. 
Inexperienced users may be unable to properly assess and cope with these complexities. As of 
this writing, no stand-alone meta-analysis software implements GLMMs for meta-analysis of 
binary data, including the meta-analysis of proportions.13,14 Therefore, unless the discrete 
likelihood methods are substantially better than the approximate methods, it is unlikely they will 
be heavily used. 

So which of the above methods should one prefer? A satisfactory answer to this question 
cannot be a purely empirical one. For example, it cannot be obtained by contrasting these 
methods in a large number of real-life datasets, because there is no way to know which method is 
closer to the unobserved “truth.” The best approach is to perform a comprehensive simulation 
study.  

We describe an extensive simulation study to assess the statistical properties of the above 
approaches to meta-analysis of proportions and incidence rates. This study is much broader than 
previous related investigations. For instance, several large simulation studies have extensively 
explored different methods for analyzing proportions,15-18 but did not address meta-analysis 
across studies. Several others have investigated meta-analysis of proportions,6 but did not 
compare all of the above methods in a wide range of realistic simulation scenarios. Stijnen et al19 
discussed the Poisson-normal random effects model for rates, but did no simulations. However, 
they do provide example SAS code for the discrete likelihood methods. 

d Such as MS Excel™. 
e Specifically, one has to check the sensitivity of the quadrature or adaptive quadrature method for numerically 
integrating the likelihood during model fit. Typically, one increases the number of integration points used by the 
algorithm (which results in slower but more accurate calculations) and checks for any numerical differences in the 
results.  
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Methods 
Overview 

Figure 1 outlines our simulation approach. Briefly, we generated 792 distinct scenarios for 
meta-analyses of proportions, and 792 scenarios for meta-analyses of incidence rates. These are 
formed by all possible combinations of choices for the parameters of our generative model.  

For each scenario we generated 1,000 random meta-analyses, and analyzed all of them with 
the methods of interest using both fixed and random effects approaches. We quantified the 
performance of each method by calculating its bias, mean square error and coverage probability. 
Table 1 defines these performance metrics.  

In the following sections we describe the simulation parameters, the meta-analytic methods 
compared and our choices for conveying the results of the simulations.  

Figure 1. Outline of the simulation analysis 

 

3 



Table 1. Description of performance metrics for the estimated summary proportions and rates 
Metric Formula Description Comment 
Bias 

 

 

The average difference between the true 
(simulated) proportion and its estimate 
across the 1000 simulation replicates in 
scenario j. 
Similar definition for rates. 

• Desirable to have bias near zero. 

Proportion Bias 
  

 

Bias scaled by 𝜋𝑗 or 𝜆𝑗 to make it 
proportion of the average effect 

a • To compare across scenarios 
proportions and rates 

with different true 

Square root of 
the mean 

 squared error 
(RMSE)  

 

The (square root of the) average squared 
difference between the true (simulated) 
proportion and its estimate across the 1000 
simulation replicates in scenario j.  
Similar definition for rates 
 

• 
• 

• 

• 

Desirable to have RMSE near zero. 
To compare across scenarios with different true 
proportions 𝜋𝑗, scale RMSE by 𝜋𝑗 (Similarly for rates 
𝜆𝑗) 
RMSE can be high even if bias is 0, because positive 
and negative deviations of the estimates from the true 
mean do not cancel out. 
Mean squared error is the sum of the variance of the 
estimates plus the square of their bias. 

Proportion 
RMSE 

  

 

Bias scaled by 𝜋𝑗 or 𝜆𝑗 to make it 
proportion of the average effect 

a • To compare across scenarios 
proportions and rates.  

with different true 

Coverage 
probability 

 

The proportion of times the two-sided 95% 
confidence interval (Wald-type based on   
normal distribution) of the estimated 
summary proportion contains the true 
proportion (or rate).  

• Desirable to have coverage near 95%.  
o Coverage higher than 95% means that 𝜋� or 𝜆̂ is 

an inefficient estimator 
o Coverage less than 95% indicates an inaccurate 

estimator 
Unlike bias and RMSE, coverage does not need scaling 
to compare across scenarios. 

Simulation scenario is denoted by 𝑗; the specific random simulation under scenario 𝑗 is denoted by 𝑖. 𝜋𝑗  is the true proportion in scenario 𝑗, and its estimate by a meta-analysis method in 
simulation 𝑖 for scenario j is denoted by 𝜋�𝚤𝚥. Similarly, 𝜆𝑗is the true rate and its estimate is 𝜆�𝚤𝚥, in simulation 𝑖.  
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Description of Simulations 

Simulation Parameters 
Table 2 shows the simulation parameters for proportions. Each simulation scenario represents 

combinations of the options in the table. The first row has options for the true distribution of the 
summary proportions across studies. We explicitly avoided choosing a logit-normal distribution 
for proportions or a log-normal distribution for rates, so as not to bias the results of the 
simulation study in favor of meta-analytic methods that assume these distributions for the 
random effects. Further, the examined values cover a wide range of realistic scenarios. For 
example, the true value of the proportion is varied from near the extreme of zero (π = 0.001) to 

. Because all meta-analysis methods examined for proportions are symmetric around 
, it is not necessary to span the range of values between 0.50 and 1 in the simulations. 

For example, results and conclusions for  and  are “mirror images” 
around . Regarding heterogeneity, , we assumed that it could take three levels: zero, 
small, and large. Zero heterogeneity corresponds to fixed-effects realities, and is probably not the 
norm in real-life applications. Positive heterogeneity values are more likely to be encountered in 
reallife applications.  

Table 3 shows the respective simulation parameters for rates. In contrast to proportions, the 
vast majority of incidence rates in applications take very small values. In the simulations, the 
true rate λ was varied from 1 to 50 events per 1000 person-years.  

Table 2. Simulation parameters for proportions 
# Parameter Values  

1 Distribution of summary proportions 
across studies 

Beta, uniformf (see Appendix for details) 

2 True summary proportion, π  0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50 

3 Number of studies, K 5, 15, 30 

4 Sample sizes, N* Vectors of sample sizes for the following choices: 
All sample sizes small (5-50 patients per study) 
All sample sizes medium (51-200 patients per study) 
All sample sizes large (201-1000 patients per study) 
Mixed sample sizes—approximately 50% small, 40% medium, and 
10% large. 

5 Heterogeneity, 𝜏2  Three levels: zero, small, and large. To determine 𝜏, the square root 
of the heterogeneity variance, true summary proportions were 
multiplied by 0.10 or 0.50 for small or large heterogeneity, 
respectively.  

6 Correction factor, c†  0, 0.001, 0.01, 0.10, 0.5, 1, 2 

For parsimony, in the Results section we present in detail scenarios corresponding to the underlined choices. The index j for the 
scenario has been dropped. 
*The exact values for sample sizes used in the simulations are given in the Appendix. 
†Some meta-analysis methods require the use of correction factors. See Continuity Correction Factors for details. The correction 
factor is an analytic choice and not a simulation parameter; however it is listed here for parsimony. 

f Strictly speaking, a uniform is a special case of the beta distribution, i.e., Beta(1, 1). The Appendix provides details on the 
parameters of the modal beta distributions used in the simulations.  
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Table 3. Simulation parameters for rates 
# Parameter Description or Values  

1 Distribution of summary rates across 
studies 

Gamma, uniform (see Appendix for details) 

2 True summary rate, λ  0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50 

3 Number of studies, K 5, 15, 30 

4 Exposures, E* Vectors of exposures for the following choices: 
a. All sample sizes small (50-200 person-years per study) 
b. All sample sizes medium (201-500 person-years per study) 
c. All sample sizes large (501-10000 person-years per study) 
d. Mixed sample sizes – approximately 50% small, 40% 

medium, and 10 % large. 
5 Heterogeneity, 𝜏2  Three levels: zero, small, and large. To determine 𝜏, the square root 

of the heterogeneity, true summary rates were multiplied by 0.10 or 
0.50 for small or large heterogeneity, respectively.  

6 Correction factor, c † 0, 0.001, 0.01, 0.10, 0.5, 1, 2 

For parsimony, in the Results section we present in detail scenarios corresponding the underlined choices. The index j for the 
scenario has been dropped. 
*The vectors of the exact values for sample sizes used in the simulations are given in the Appendix.  
†Some meta-analysis methods require the use of correction factors. See text for details. See Continuity Correction Factors for 
details. The correction factor is an analytic choice and not a simulation parameter; however it is listed here for parsimony. 

Generation of Random Data 
For each scenario we generated 1000 random meta-analyses of proportions or rates. The 

following pseudo-algorithm describes the process for scenario j (all subscripts for the scenario 
have been dropped for notational simplicity). The pseudo-algorithm in Table 4 refers to 
parameters in Table 2 or Table 3, as applicable. We assumed a binomial sampling distribution 
for proportions and a Poisson sampling distribution for rates so that the model fitting algorithms 
based on these assumptions are exact. 

We verified the fidelity of the simulations by comparing the mean and variance of the 
empirical distributions of the true values of the simulated proportions or rates for all scenarios 
versus the respective simulation parameters. 
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Table 4. Pseudo-algorithm for generating random data 
Step Description Simulation Table 

Row # 
Comment 

 For a given simulation scenario :*   

1 Choose the form of the distribution for true proportion (or 
true rate) in each study in the simulated meta-analyses  

1  

2 Choose the average true proportion  (or average true 
rate )  

2  

3 Choose the number of studies, K 3  

4 Choose the sample sizes for the K studies to be a vector 

of sample sizes  for proportions [or 

exposures  for rates]  

4 N and E were drawn 
once randomly for each 
K and exposure level , 
and were then kept fixed 
for all simulations. 

5 
Choose   

5  

6 Using the distribution specified in steps 1, 2 and 5, 
generate 1000 random vectors of true probabilities (or 
true rates) for the K studies:  for 

proportions, or  for rates, where  

indexes a random vector, . 

1, 2, 5 If 𝜏2 = 0 in Step 5, all 

 for 
proportions, the value 
chosen in Step 2. 
Similarly, all  for 
rates. 

Formulas for calculating 
the parameters of beta 
and uniform distributions 
for proportions (or 
gamma and uniform 
distributions for rates) 
with a given mean and 
standard deviation are 
given in the Appendix. 

7 Generate 1000 vectors of random data, corresponding to 
the numbers of events in each study:  

For proportions the random vector of events, 
, is drawn from binomial distributions 

with probabilities  and sample sizes . 

For rates, the random vector of counts, 
, is drawn from Poisson distributions 

with true rates  and exposures . 

  

*For ease of read, the index J for the simulation scenario has been dropped from the notation in the table. The symbol i indexes a 
random meta-analysis, and k indexes a study in a meta-analysis.  

Meta-Analysis Methods 
The underlying outcomes are either binary events (for which the proportion is the mean event 

rate) or counts of events (for which the incidence rate is the mean event rate per unit of 
exposure). Assuming these events are independent with nonvarying rates, the binary outcomes 
follow binomial distributions and the count outcomes follow Poisson distributions. Methods that 
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use these distributions are called “discrete likelihood” methods. When sample sizes are large 
enough,g however, the logit transformation of proportions and the logarithmic transformation of 
rates approximate normal distributions, and methods for normal distributions may be used. The 
latter are called “approximate” methods.  

We performed both fixed and random effects meta-analyses for both approximate and 
discrete likelihood methods. For approximate methods, fixed effects meta-analysis used inverse 
variance weights,20 and random effects meta-analysis used the moment-based (non-iterative) 
estimator for between study variance as per DerSimonian and Laird.21  

For discrete likelihood methods, the meta-analysis was performed in the generalized linear 
models framework for fixed effects, and the GLMM framework for random effects. For GLMMs 
we used 12 integration points after examining the robustness of results obtained with 1, 4, 8, 12, 
16, and 20 integration points in two example meta-analyses (one with 5 and one with 30 studies 
of medium sample size, a true proportion or rate of 0.20 and large heterogeneity).  

Approximate Methods 
Table 5 shows formulas for the three approximate methods used in the simulation: 

untransformed rates and proportions, canonical transformations (logit and log) and variance 
stabilizing (arcsine and square root). From the formulas in the table, zero events ( ) in, 
study k of simulation i in scenario j will result in an estimated variance of zero for untransformed 
proportions and rates, and an undefined estimate and variance for proportions and rates with the 
canonical transformation. In such pathological cases, inverse variance weights are undefined and 
continuity correction factors are typically used to make calculations possible, as explained 
below. Note that because of symmetry, the correction is also needed when  as well 
(but only for proportions). We opted to examine the behavior of approximate methods using the 
continuity correction factors, because this is a strategy that many meta-analyses follow in 
practice.  

The canonical or the variance stabilizing transformations yield summary proportions (rates) 
that have to be back-transformed to the raw proportion (rate) scale using the inverse 
transformation of the respective functions in Table 5. Corresponding back-transformations are 
needed for the methods that use the discrete likelihood. In the main analyses we simply back-
transformed the point estimates and the confidence interval bounds. Because these back-
transformations are nonlinear, becomes a skewed distribution in the raw proportion (rate) scale. 
The back-transformed point estimate is no longer the mean of the back-transformed distribution 
of the summary proportion (summary rate), and this introduces a bias. In sensitivity analyses we 
removed this bias by obtaining the mean the back-transformed values using numerical 
integration. We calculated the performance metrics in Table 1 using both the simple back-
transformation, and with numerical integration. Because results were very similar, we report the 
main analyses in the main text and present the sensitivity analyses in the Appendix.  

 
  

g More accurately, when the expected numbers in all cells (for proportions) or the expected number of counts (for rates) is 
relatively large, e.g., >5.  

, 0j ikx =

, ,j ik j kx n=
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Table 5. Formulas for the approximate methods for meta-analysis of proportions and rates in a 
study 
 Proportions Proportions Rates Rates 
 Estimated Mean Estimated Variance Estimated Mean Estimated 

Variance 
Untransformed 
proportions or rates  

[cc optional] 

 

[cc needed] 
 

[cc optional] 

 
[cc needed]

 

Canonical 
transformations* 

 

[cc needed] 

 

[cc needed] 

 
[cc needed] 

 

[cc needed] 

Variance stabilizing 
transformations† 

 

[no cc] 

 

[no cc] 

  

[no cc] 

 

[no cc] 

cc: continuity correction. 

In the Table  indexes the scenario. and  are estimates of the true proportions and rates, respectively, in 

study  of simulation . The notation is the same as in Table 4 and in the text. 
*Canonical transformations: the logit transformation for proportions and the logarithmic transformation for rates.  
†Variance stabilizing transformations: the arcsine transformation for proportions and square root transformation for rates. 

Continuity Correction Factors 

When or , the respective proportion was estimated as  , 

where c is the continuity correction factor, or correction factor for short. This adjusted estimate 
 was used in the formulas of Table 5 instead of the unadjusted estimate  when a 

continuity correction was needed. Continuity corrections were performed only for pathological 
studies in a meta-analysis. Since for untransformed proportions, the correction factor is needed 
only in the variance estimate, we performed two sets of analyses in the untransformed case. The 
first used  for estimating mean and variance; the second used  to estimate the mean, but 

 to estimate the variance. For parsimony and clarity, we present results with the first set of 
analyses (which is what many meta-analysts have done), and briefly discuss how the second set 
of analyses differs from the first.  

The same discussion applies to rates. In simulated studies with  we estimated the 

respective rate as . Continuity corrections were applied only for 

pathological studies in a meta-analysis. As for proportions, we run two sets of analyses for 
methods using untransformed rates: the first used  for estimating mean and variance; the 

second used ,j ikl  to estimate the mean, but  to estimate the variance. 

,
,

,
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j ik

j k

p
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n

= , ,

,
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, 0j ikx = , ,j ik j kx n=
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Discrete Likelihood Methods  
We fit discrete likelihood methods by maximizing the likelihood in the generalized linear 

(mixed) models framework using canonical link functions. We used the R command (package) 
lmer with a binomial distribution (corresponding to the logit link function); all analyses were 
checked for correctness by independently coding them in Stata using the xtmelogit command. 
These methods do not need continuity corrections. For rates, the distribution function in the 
aforementioned R command is Poisson (whose canonical link function is the log), and the 
respective Stata command is xtmepoisson. When all (or almost all) simulated studies in a meta-
analysis have 0 numerator, the random effects methods may not converge. This can happen when 
the true proportions or rates are small, the sample sizes or exposure sizes are small, or the 
number of studies in a meta-analysis is small. For each simulation, we recorded whether the 
random effects method converged or not. For completeness, we examined a hybrid strategy of 
attempting to fit a random effects model, and switching to a fixed effect model if the random 
effects model failed to converge.  

The fixed effect model for both proportions and rates is mathematically equivalent to simple 
pooling, i.e., the summary proportion or the summary rate can be calculated by dividing the sum 
of the numerators by the sum of the denominators.  

Presentation of Simulation Results 

Categorizing Simulation Scenarios by Expected Counts per Study 
The normal approximation to the binomial is adequate, conservatively, when the expected 

numbers of events (and no events) is at least 5, i.e., (and ). More 
liberally, one might use a cutoff of 1 event. Hence, for presentation purposes it is sensible to 
organize the simulated scenarios into 3 categories defined by expected counts of events, namely: 
those with ≤ 1; >1 and < 5; and ≥ 5 expected events per study. For any given scenario, the 
expected count of events per study is: 

  

A similar categorization was used for organizing the simulations on rates, by grouping the 
scenarios according to the expected number of events in categories with ≤1; between 1 and ≤ 5; 
and at least 5. The expected numbe

1( )jKj
j k jk

j

count =
K

expected e
λ

=Σ

r of events is given by a similar formula: 

  

 
 

 

, , 5j k j ikn π > , ,(1 ) 5j k j ikn π− >

1( )jKj
j k jk

j

count = n
K

expected
π

=Σ
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Results 
The first part of the Results section covers proportions, and the second part covers rates. For 

parsimony, and after careful examination of all scenarios, we decided to describe in detail 
findings on a representative subset of the performed analyses.h We start with comparisons and 
recommendations across all methods, and proceed to provide more details on pairwise 
comparisons between approximate methods and between approximate and discrete likelihood 
methods. Finally, results on rates were very similar to those from proportions. Thus, we report in 
detail results in proportions, and provide a succinct summary of the results on rates. We conclude 
with practical recommendations for applied meta-analysis.  

1. Results for Proportions: Results for meta-analysis of proportions: 
a. Overview of Results Across All Methods: Overview of results from comparisons 

across all methods.  
b. Simulation results for random effects meta-analysis: 

i. Pairwise Comparisons Among Approximate Methods—Random Effects 
Meta-Analysis: Comparisons between the three approximate methods 
(untransformed, canonical and variance stabilizing transformation) 

ii. Pairwise Comparisons Between Approximate and Discrete Likelihood 
Methods for Random Effects Meta-Analysis: Comparisons between 
approximate versus discrete likelihood methods  

c. Comparison Between Fixed and Random-Effects Discrete Likelihood Binomial 
Methods: Simulation results on the comparison of fixed versus random effects 
meta-analysis for the discrete likelihood methods  

2. Results for Rates: Results for meta-analysis of rates. 
a. Overview of Results Across All Methods: Overview of results from comparisons 

across all methods.  
3. Practical Recommendations for Meta-Analysis of Proportions or Rates: Practical 

recommendations for meta-analysis. 

Observations from simulations are listed as bullet points. An explanation is provided in a 
grey box after each observation: 

• [An observation on the proportion bias, proportion RMSE or coverage probability of a 
meta-analysis method/strategy.]  

[An explanation for the observation] 

h We report simulation scenarios corresponding to the combinations of the underlined values in Table 2 for proportions, and 
Table 3 for rates. 
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Results for Proportions 

Overview of Results Across All Methods  
Table 6 shows the proportion bias with the random effects analysis methods for selected 

scenarios with high heterogeneity. Table 7 is the corresponding table for RMSE, and Table 8 for 
coverage. In the Appendix we present results for the corresponding scenarios with zero 
heterogeneity. We also conducted sensitivity analyses where the back-transformations of the 
meta-analysis point estimates were done with numerical integration instead of a simple back-
transformation (see Methods section under Approximate Methods). The results of the sensitivity 
analyses were similar to the main analyses and are not shown.  

In each table, scenarios are ordered by number of studies (K), and then by expected count. 
Bold horizontal lines separate scenarios by number of studies. White and grey shading separates 
scenarios with expected counts ≤1, between 1 and 5, and ≥5. We code scenarios using two 
characters, a letter (indicating sample size scenarios; S=small, M=medium, L=large, X=mixed); 
and a number (indicating the true proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1, 6=0.4). 

Results from the five different models are displayed in the last six columns along with the 
column labeled “Discrete (fraction converged)” which shows the proportion of simulations for 
which random effects methods converged successfully. Values of 1.000 mean that random 
effects methods converged successfully in all 1000 simulations in a scenario, and a value of e.g., 
0.335 means that they converged in 335 out of 1000 simulations in a scenario. The columns 
“Discrete (random)” and “Discrete (hybrid)” are identical when the fraction converged is 1.000, 
because the random effects method was used in all simulations. 

As an example, the first row of Table 6 describes the proportion bias for a simulation of five 
studies using a true proportion of 0.001 with small sample sizes (5-50 per study) in which the 
expected number of events (counts) is less than 0.1. This scenario is labeled S1. Results show 
that the inverse variance weight method using the proportion or the logit proportion estimates 
proportions that are between 12 and 15 times the size of the true proportion (i.e., estimated as 
0.012 to 0.015, whereas the arcsine method estimates a mean that is 75 percent below the true 
proportion (i.e., is 0.00025). The discrete likelihood method converges only 16 percent of the 
time and when it does produces estimates that are nearly 5 times greater than 0.001 on average. 
Combining this with a fixed effect estimate when the method does not converge reduces this bias 
to only 5.8 percent. 

We make the following general observations for scenarios with expected counts 1 or less, 
between 1 and 5, and 5 or more: 

• For expected counts ≤1, the hybrid method has proportion bias and RMSE that are closer 
to zero and coverage probability closer to 95 percent compared to other methods.  

• For expected counts between 1 and 5 the random effects discrete likelihood method and 
the approximate method with the variance stabilizing transformation have comparable 
performance, and perform better than other methods.  

[For detailed descriptions and explanations, refer to these two sections: Pairwise 
Comparisons Among Approximate Methods—Random Effects Meta-Analysis, and 
Pairwise Comparisons Between Approximate and Discrete Likelihood Methods for 
Random Effects Meta-Analysis]  
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• For expected counts of 5 or more, the differences between methods become less evident.  
 
For numerical reasons, the random effects discrete likelihood method does not always 

converge. The following general comments can be made:  
For very small expected counts (<0.5) and K≤15 the random effects discrete likelihood 

method reached convergence for fewer than 90 percent of the simulations (see column “Discrete 
(fraction converged)”). For expected counts above 1 and K=30, the method converges practically 
for all simulations (when the fraction converged equals 1.0, random effects methods converged 
in all simulations). 

• For expected counts above 1 the random effect discrete likelihood method converged 
(almost) always, and thus the performance of the hybrid strategy is identical to that with 
random effects (discrete likelihood). 

The random effects discrete likelihood method will not converge when all (or almost all) 
studies in a meta-analysis have 0 events. This is more common in simulation scenarios 
with very low expected counts, and when the number of studies is small. 

We can make the following general comments on the preferred methods (hybrid strategy-
discrete likelihood and variance-stabilizing transformation-approximate likelihood): 

• For expected counts above 30, the approximate method using the variance stabilizing 
transformation has smaller absolute proportion bias and proportion RMSE than the 
discrete likelihood methods. For smaller counts, the methods using the discrete likelihood 
have smaller absolute proportion bias and proportion RMSE than the approximate 
method using the variance stabilizing transformation.  

[For detailed descriptions and explanations, refer to Pairwise Comparisons Between 
Approximate and Discrete Likelihood Methods for Random Effects Meta-Analysis]  

• For very large expected counts (for example when the true proportion is 0.4) all 
compared methods converge in proportion bias and proportion RMSE.  

This is congruent with what we expect theoretically: the normal approximation to the 
binomial improves with increasing expected counts.  

The hybrid strategy using the discrete likelihood has better coverage probabilities than the 
other methods for the widest range of scenarios.
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Table 6. Comparison of proportion bias across random effects methods (selected scenarios with high heterogeneity) 
Scenario K Proportion Sample size Exp count Approximate 

untransformed 
Approximate logit Approximate 

arcsine 
Discrete (fraction 

converged) 
Discrete 
(random) 

Discrete 
(hybrid) 

S1 5 0.001 small <0.1 12.380 14.529 -0.757 0.160 4.886 -0.058 
M1 5 0.001 medium 0.1 2.979 3.778 -0.645 0.497 0.998 -0.007 
S2 5 0.005 small 0.2 1.955 2.669 -0.659 0.583 0.550 -0.096 
X1 5 0.001 mixed 0.2 0.446 6.042 -0.257 0.648 0.497 -0.030 
S3 5 0.01 small 0.3 0.650 1.247 -0.563 0.797 0.099 -0.124 
L1 5 0.001 large 0.6 0.094 0.687 -0.445 0.954 -0.046 -0.090 
M2 5 0.005 medium 0.6 0.078 0.674 -0.448 0.946 -0.056 -0.107 
X2 5 0.005 mixed 1.1 0.022 0.801 -0.280 0.980 -0.002 -0.022 
M3 5 0.01 medium 1.3 -0.207 0.330 -0.300 0.997 -0.087 -0.089 
S4 5 0.05 small 1.7 -0.240 0.198 -0.261 1.000 -0.101 -0.101 
X3 5 0.01 mixed 2.2 -0.034 0.363 -0.263 0.998 -0.005 -0.007 
L2 5 0.005 large 3.2 -0.221 0.091 -0.167 1.000 -0.093 -0.093 
S5 5 0.1 small 3.4 -0.152 0.082 -0.119 1.000 -0.068 -0.068 
L3 5 0.01 large 6.4 -0.134 0.014 -0.100 1.000 -0.089 -0.089 
M4 5 0.05 medium 6.4 -0.117 0.012 -0.090 0.999 -0.082 -0.082 
X4 5 0.05 mixed 10.9 -0.093 0.085 -0.139 1.000 -0.040 -0.040 
M5 5 0.1 medium 12.8 -0.038 -0.021 -0.043 1.000 -0.066 -0.066 
S6 5 0.4 small 13.7 -0.014 -0.020 -0.028 1.000 -0.044 -0.044 
S7 5 0.5 small 17.1 -0.012 -0.014 -0.014 1.000 -0.016 -0.016 
X5 5 0.1 mixed 21.9 -0.111 -0.007 -0.124 1.000 -0.088 -0.088 
L4 5 0.05 large 31.8 -0.047 -0.087 -0.072 0.999 -0.110 -0.110 
M6 5 0.4 medium 51.4 -0.002 -0.031 -0.018 1.000 -0.040 -0.040 
L5 5 0.1 large 63.7 -0.013 -0.081 -0.049 1.000 -0.092 -0.092 
M7 5 0.5 medium 64.2 0.001 0.000 0.001 1.000 0.001 0.001 
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Table 6. Comparison of proportion bias across random effects methods (selected scenarios with high heterogeneity) (continued) 
Scenario K Proportion Sample 

size 
Exp count Approximate 

untransformed 
Approximate logit Approximate 

arcsine 
Discrete 
(fraction 

converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

X6 5 0.4 mixed 87.5 -0.014 -0.023 -0.029 1.000 -0.041 -0.041 
X7 5 0.5 mixed 109.4 -0.009 -0.007 -0.010 0.999 -0.012 -0.011 
L6 5 0.4 large 254.6 0.003 -0.038 -0.016 1.000 -0.040 -0.040 
L7 5 0.5 large 318.3 -0.005 -0.007 -0.006 1.000 -0.008 -0.008 
S1 15 0.001 small <0.1 14.558 19.528 -0.887 0.335 -0.477 -0.505 
M1 15 0.001 medium 0.1 3.183 4.300 -0.826 0.815 -0.176 -0.328 
X1 15 0.001 mixed 0.1 0.940 6.034 -0.661 0.864 -0.094 -0.217 
S2 15 0.005 small 0.1 2.334 3.685 -0.805 0.847 -0.164 -0.292 
S3 15 0.01 small 0.3 0.841 1.761 -0.695 0.977 -0.168 -0.187 
M2 15 0.005 medium 0.6 0.096 0.815 -0.559 1.000 -0.140 -0.140 
L1 15 0.001 large 0.6 0.010 0.794 -0.525 0.999 -0.125 -0.125 
X2 15 0.005 mixed 0.7 -0.084 0.971 -0.465 1.000 -0.108 -0.108 
M3 15 0.01 medium 1.1 -0.259 0.431 -0.389 1.000 -0.113 -0.113 
X3 15 0.01 mixed 1.3 -0.226 0.445 -0.380 1.000 -0.101 -0.101 
S4 15 0.05 small 1.4 -0.304 0.340 -0.350 1.000 -0.122 -0.122 
S5 15 0.1 small 2.7 -0.237 0.153 -0.184 1.000 -0.087 -0.087 
L2 15 0.005 large 3.1 -0.274 0.155 -0.191 0.999 -0.097 -0.097 
M4 15 0.05 medium 5.7 -0.168 0.032 -0.118 1.000 -0.102 -0.102 
L3 15 0.01 large 6.3 -0.169 0.029 -0.121 1.000 -0.104 -0.104 
X4 15 0.05 mixed 6.7 -0.157 0.068 -0.150 1.000 -0.084 -0.084 
S6 15 0.4 small 10.8 -0.007 -0.006 -0.029 1.000 -0.042 -0.042 
M5 15 0.1 medium 11.5 -0.073 -0.026 -0.074 1.000 -0.096 -0.096 
X5 15 0.1 mixed 13.4 -0.107 0.002 -0.098 1.000 -0.090 -0.090 
S7 15 0.5 small 13.5 0.006 0.007 0.006 1.000 0.008 0.008 
L4 15 0.05 large 31.4 -0.038 -0.074 -0.063 1.000 -0.105 -0.105 
M6 15 0.4 medium 45.9 -0.009 -0.044 -0.030 1.000 -0.057 -0.057 
X6 15 0.4 mixed 53.5 -0.005 -0.027 -0.025 1.000 -0.047 -0.047 
M7 15 0.5 medium 57.4 -0.001 -0.001 -0.001 1.000 -0.001 -0.001 
L5 15 0.1 large 62.8 -0.014 -0.085 -0.053 1.000 -0.101 -0.101 
X7 15 0.5 mixed 66.9 0.001 0.001 0.002 1.000 0.003 0.003 
L6 15 0.4 large 251.4 0.003 -0.043 -0.018 1.000 -0.046 -0.046 
L7 15 0.5 large 314.2 -0.002 -0.002 -0.002 1.000 -0.002 -0.002 
S1 30 0.001 small <0.1 14.019 19.604 -0.937 0.546 -0.677 -0.823 
M1 30 0.001 medium 0.1 3.359 4.686 -0.849 0.956 -0.346 -0.375 
X1 30 0.001 mixed 0.1 1.113 6.608 -0.737 0.974 -0.225 -0.245 
S2 30 0.005 small 0.1 2.248 3.744 -0.819 0.978 -0.311 -0.326 
S3 30 0.01 small 0.3 0.786 1.790 -0.710 1.000 -0.190 -0.190 
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Table 6. Comparison of proportion bias across random effects methods (selected scenarios with high heterogeneity) (continued) 
Scenario K Proportion Sample 

size 
Exp count Approximate 

untransformed 
Approximate logit Approximate 

arcsine 
Discrete 
(fraction 

converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

M2 30 0.005 medium 0.5 0.129 0.902 -0.586 1.000 -0.135 -0.135 
L1 30 0.001 large 0.5 0.081 0.922 -0.576 1.000 -0.126 -0.126 
X2 30 0.005 mixed 0.6 -0.140 1.093 -0.474 1.000 -0.110 -0.110 
M3 30 0.01 medium 1.1 -0.242 0.505 -0.404 1.000 -0.093 -0.093 
X3 30 0.01 mixed 1.3 -0.287 0.539 -0.358 1.000 -0.096 -0.096 
S4 30 0.05 small 1.4 -0.318 0.393 -0.334 1.000 -0.096 -0.096 
S5 30 0.1 small 2.7 -0.243 0.167 -0.194 0.999 -0.096 -0.095 
L2 30 0.005 large 2.7 -0.311 0.206 -0.220 1.000 -0.102 -0.102 
M4 30 0.05 medium 5.4 -0.182 0.043 -0.128 1.000 -0.109 -0.109 
L3 30 0.01 large 5.5 -0.190 0.056 -0.131 1.000 -0.103 -0.103 
X4 30 0.05 mixed 6.4 -0.140 0.067 -0.157 1.000 -0.101 -0.101 
M5 30 0.1 medium 10.8 -0.080 -0.024 -0.078 1.000 -0.100 -0.100 
S6 30 0.4 small 10.9 -0.005 -0.005 -0.029 1.000 -0.043 -0.043 
X5 30 0.1 mixed 12.7 -0.091 -0.006 -0.108 1.000 -0.102 -0.102 
S7 30 0.5 small 13.6 0.002 0.002 0.003 1.000 0.003 0.003 
L4 30 0.05 large 27.4 -0.043 -0.072 -0.066 1.000 -0.108 -0.108 
M6 30 0.4 medium 43.0 -0.001 -0.037 -0.023 1.000 -0.050 -0.050 
X6 30 0.4 mixed 50.8 -0.002 -0.026 -0.024 1.000 -0.045 -0.045 
M7 30 0.5 medium 53.8 0.003 0.004 0.004 1.000 0.005 0.005 
L5 30 0.1 large 54.9 -0.019 -0.087 -0.057 1.000 -0.106 -0.106 
X7 30 0.5 mixed 63.5 0.002 0.001 0.001 1.000 0.001 0.001 
L6 30 0.4 large 219.4 -0.005 -0.055 -0.028 1.000 -0.059 -0.059 
L7 30 0.5 large 274.3 0.005 0.006 0.005 1.000 0.006 0.006 
“Discrete” stands for discrete likelihood methods. Scenarios are ordered by number of studies (K), and then by expected count. Bold horizontal lines separate scenarios by number of studies. White 
and grey shading separates scenarios with expected counts ≤1, between 1 and 5, and ≥5. We code scenarios using two characters, a letter (indicating sample size scenarios; S=small, M=medium, 
L=large, X=mixed); and a number (indicating the true proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1, 6=0.4, 7=0.5).  
The column “Discrete (fraction converged)” shows the proportion of simulations for which random effects methods converged successfully. Values of 1.000 mean that random effects methods 
converged successfully in all 1000 simulations in a scenario, and a value of e.g., 0.335 means that they converged in 335 out of 1000 simulations in a scenario. The columns “Discrete (random)” and 
“Discrete (hybrid)” are identical when the fraction converged is 1.000, because the random effects method was used in all simulations.  
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Table 7. Comparison of proportion RMSE across random effects methods (selected scenarios with high heterogeneity) 
Scenario K Proportion Sample 

size 
Exp count Approximate 

untransformed 
Approximate 

logit 
Approximate  

arcsine 
Discrete 
(fraction 

converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

S1 5 0.001 small <0.1 12.407 14.631 1.025 0.160 5.211 2.277 
M1 5 0.001 medium 0.1 3.018 3.924 0.905 0.497 1.483 1.263 
S2 5 0.005 small 0.2 2.002 2.804 0.838 0.583 1.004 1.002 
X1 5 0.001 mixed 0.2 1.095 6.098 0.838 0.648 1.022 1.014 
S3 5 0.01 small 0.3 0.733 1.442 0.760 0.797 0.685 0.759 
L1 5 0.001 large 0.6 0.317 0.919 0.658 0.954 0.576 0.602 
M2 5 0.005 medium 0.6 0.289 0.912 0.660 0.946 0.567 0.598 
X2 5 0.005 mixed 1.1 0.595 0.965 0.545 0.980 0.576 0.587 
M3 5 0.01 medium 1.3 0.366 0.569 0.528 0.997 0.458 0.461 
S4 5 0.05 small 1.7 0.391 0.437 0.473 1.000 0.404 0.404 
X3 5 0.01 mixed 2.2 0.466 0.609 0.513 0.998 0.491 0.493 
L2 5 0.005 large 3.2 0.391 0.352 0.391 1.000 0.357 0.357 
S5 5 0.1 small 3.4 0.354 0.316 0.352 1.000 0.323 0.323 
L3 5 0.01 large 6.4 0.320 0.285 0.308 1.000 0.299 0.299 
M4 5 0.05 medium 6.4 0.312 0.277 0.304 0.999 0.296 0.296 
X4 5 0.05 mixed 10.9 0.340 0.366 0.373 1.000 0.364 0.364 
M5 5 0.1 medium 12.8 0.266 0.252 0.260 1.000 0.264 0.264 
S6 5 0.4 small 13.7 0.255 0.259 0.267 1.000 0.283 0.283 
S7 5 0.5 small 17.1 0.247 0.262 0.268 1.000 0.295 0.295 
X5 5 0.1 mixed 21.9 0.296 0.283 0.307 1.000 0.304 0.304 
L4 5 0.05 large 31.8 0.240 0.241 0.239 0.999 0.253 0.253 
M6 5 0.4 medium 51.4 0.242 0.266 0.254 1.000 0.275 0.275 
L5 5 0.1 large 63.7 0.243 0.242 0.239 1.000 0.248 0.248 
M7 5 0.5 medium 64.2 0.221 0.264 0.243 1.000 0.278 0.278 
X6 5 0.4 mixed 87.5 0.257 0.267 0.270 1.000 0.284 0.284 
X7 5 0.5 mixed 109.4 0.246 0.272 0.267 0.999 0.294 0.295 
L6 5 0.4 large 254.6 0.222 0.253 0.235 1.000 0.256 0.256 
L7 5 0.5 large 318.3 0.226 0.281 0.250 1.000 0.287 0.287 
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Table 7. Comparison of proportion RMSE across random effects methods (selected scenarios with high heterogeneity) (continued) 
Scenario K Proportion Sample size Exp count Approximate 

untransformed 
Approximate 

logit 
Approximate 

arcsine 
Discrete 
(fraction 

converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

S1 15 0.001 small <0.1 14.568 19.564 0.926 0.335 1.882 1.361 
M1 15 0.001 medium 0.1 3.193 4.348 0.854 0.815 0.812 0.850 
X1 15 0.001 mixed 0.1 1.233 6.072 0.759 0.864 0.721 0.765 
S2 15 0.005 small 0.1 2.347 3.738 0.838 0.847 0.733 0.780 
S3 15 0.01 small 0.3 0.866 1.834 0.744 0.977 0.564 0.578 
M2 15 0.005 medium 0.6 0.179 0.910 0.617 1.000 0.405 0.405 
L1 15 0.001 large 0.6 0.161 0.892 0.592 0.999 0.397 0.398 
X2 15 0.005 mixed 0.7 0.362 1.042 0.543 1.000 0.410 0.410 
M3 15 0.01 medium 1.1 0.294 0.532 0.463 1.000 0.299 0.299 
X3 15 0.01 mixed 1.3 0.354 0.542 0.456 1.000 0.313 0.313 
S4 15 0.05 small 1.4 0.347 0.434 0.430 1.000 0.291 0.291 
S5 15 0.1 small 2.7 0.310 0.247 0.283 1.000 0.226 0.226 
L2 15 0.005 large 3.1 0.331 0.250 0.279 0.999 0.222 0.222 
M4 15 0.05 medium 5.7 0.240 0.167 0.207 1.000 0.195 0.195 
L3 15 0.01 large 6.3 0.238 0.166 0.208 1.000 0.193 0.193 
X4 15 0.05 mixed 6.7 0.239 0.203 0.243 1.000 0.209 0.209 
S6 15 0.4 small 10.8 0.148 0.147 0.160 1.000 0.169 0.169 
M5 15 0.1 medium 11.5 0.164 0.140 0.160 1.000 0.170 0.170 
X5 15 0.1 mixed 13.4 0.196 0.164 0.192 1.000 0.186 0.186 
S7 15 0.5 small 13.5 0.135 0.147 0.156 1.000 0.173 0.173 
L4 15 0.05 large 31.4 0.149 0.154 0.153 1.000 0.173 0.173 
M6 15 0.4 medium 45.9 0.135 0.157 0.148 1.000 0.167 0.167 
X6 15 0.4 mixed 53.5 0.142 0.156 0.153 1.000 0.168 0.168 
M7 15 0.5 medium 57.4 0.132 0.161 0.148 1.000 0.172 0.172 
L5 15 0.1 large 62.8 0.136 0.156 0.142 1.000 0.166 0.166 
X7 15 0.5 mixed 66.9 0.136 0.161 0.153 1.000 0.176 0.176 
L6 15 0.4 large 251.4 0.128 0.154 0.138 1.000 0.156 0.156 
L7 15 0.5 large 314.2 0.129 0.165 0.145 1.000 0.170 0.170 
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Table 7. Comparison of proportion RMSE across random effects methods (selected scenarios with high heterogeneity) (continued) 
Scenario K Proportion Sample size Exp count Approximate 

untransformed 
Approximate 

logit 
Approximate 

arcsine 
Discrete 
(fraction 

converged) 

Discrete (random) Discrete 
(hybrid) 

S1 30 0.001 small <0.1 14.024 19.618 0.944 0.546 1.072 1.040 
M1 30 0.001 medium 0.1 3.365 4.713 0.862 0.956 0.732 0.746 
X1 30 0.001 mixed 0.1 1.225 6.628 0.775 0.974 0.623 0.635 
S2 30 0.005 small 0.1 2.255 3.771 0.835 0.978 0.661 0.670 
S3 30 0.01 small 0.3 0.798 1.825 0.734 1.000 0.459 0.459 
M2 30 0.005 medium 0.5 0.173 0.957 0.615 1.000 0.325 0.325 
L1 30 0.001 large 0.5 0.144 0.973 0.605 1.000 0.317 0.317 
X2 30 0.005 mixed 0.6 0.271 1.126 0.513 1.000 0.295 0.295 
M3 30 0.01 medium 1.1 0.261 0.561 0.440 1.000 0.223 0.223 
X3 30 0.01 mixed 1.3 0.337 0.584 0.406 1.000 0.234 0.234 
S4 30 0.05 small 1.4 0.340 0.441 0.379 1.000 0.214 0.214 
S5 30 0.1 small 2.7 0.281 0.214 0.243 0.999 0.170 0.170 
L2 30 0.005 large 2.7 0.339 0.254 0.266 1.000 0.179 0.179 
M4 30 0.05 medium 5.4 0.217 0.120 0.174 1.000 0.157 0.157 
L3 30 0.01 large 5.5 0.223 0.129 0.179 1.000 0.157 0.157 
X4 30 0.05 mixed 6.4 0.192 0.149 0.205 1.000 0.166 0.166 
M5 30 0.1 medium 10.8 0.136 0.107 0.133 1.000 0.147 0.147 
S6 30 0.4 small 10.9 0.109 0.110 0.121 1.000 0.129 0.129 
X5 30 0.1 mixed 12.7 0.144 0.111 0.156 1.000 0.151 0.151 
S7 30 0.5 small 13.6 0.105 0.114 0.123 1.000 0.135 0.135 
L4 30 0.05 large 27.4 0.107 0.117 0.114 1.000 0.142 0.142 
M6 30 0.4 medium 43.0 0.092 0.109 0.101 1.000 0.118 0.118 
X6 30 0.4 mixed 50.8 0.099 0.110 0.110 1.000 0.123 0.123 
M7 30 0.5 medium 53.8 0.091 0.113 0.104 1.000 0.123 0.123 
L5 30 0.1 large 54.9 0.095 0.125 0.107 1.000 0.140 0.140 
X7 30 0.5 mixed 63.5 0.099 0.118 0.113 1.000 0.129 0.129 
L6 30 0.4 large 219.4 0.092 0.121 0.103 1.000 0.124 0.124 
L7 30 0.5 large 274.3 0.096 0.124 0.108 1.000 0.127 0.127 
“Discrete” stands for discrete likelihood methods. Scenarios are ordered by number of studies (K), and then by expected count. Bold horizontal lines separate scenarios by number of studies. White 
and grey shading separates scenarios with expected counts ≤1, between 1 and 5, and ≥5. We code scenarios using two characters, a letter (indicating sample size scenarios; S=small, M=medium, 
L=large, X=mixed); and a number (indicating the true proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1, 6=0.4, 7=0.5).  
The column “Discrete (fraction converged)” shows the proportion of simulations for which random effects methods converged successfully. Values of 1.000 mean that random effects methods 
converged successfully in all 1000 simulations in a scenario, and a value of e.g., 0.335 means that they converged in 335 out of 1000 simulations in a scenario. The columns “Discrete (random)” and 
“Discrete (hybrid)” are identical when the fraction converged is 1.000, because the random effects method was used in all simulations.  
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Table 8. Comparison of coverage across random effects methods (selected scenarios with high heterogeneity) 
Scenario K Proportion Sample 

size 
Exp count Approximate 

untransformed 
Approximate 

logit 
Approximate 

arcsine 
Discrete 
(fraction 

converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

S1 5 0.001 small <0.1 1.000 0.000 1.000 0.160 0.931 0.989 
M1 5 0.001 medium 0.1 1.000 0.000 0.997 0.497 0.938 0.969 
S2 5 0.005 small 0.2 1.000 0.417 1.000 0.583 0.938 0.964 
X1 5 0.001 mixed 0.2 0.992 0.000 0.645 0.648 0.966 0.978 
S3 5 0.01 small 0.3 0.999 0.766 0.796 0.797 0.976 0.981 
L1 5 0.001 large 0.6 1.000 0.833 0.815 0.954 0.960 0.962 
M2 5 0.005 medium 0.6 1.000 0.844 0.806 0.946 0.963 0.965 
X2 5 0.005 mixed 1.1 0.814 0.798 0.826 0.980 0.941 0.922 
M3 5 0.01 medium 1.3 0.926 0.896 0.842 0.997 0.972 0.969 
S4 5 0.05 small 1.7 0.755 0.923 0.879 1.000 0.958 0.958 
X3 5 0.01 mixed 2.2 0.763 0.824 0.797 0.998 0.841 0.839 
L2 5 0.005 large 3.2 0.701 0.923 0.891 1.000 0.928 0.928 
S5 5 0.1 small 3.4 0.769 0.938 0.906 1.000 0.918 0.918 
L3 5 0.01 large 6.4 0.776 0.911 0.880 1.000 0.889 0.889 
M4 5 0.05 medium 6.4 0.768 0.908 0.870 0.999 0.882 0.881 
X4 5 0.05 mixed 10.9 0.717 0.740 0.828 1.000 0.702 0.702 
M5 5 0.1 medium 12.8 0.830 0.878 0.866 1.000 0.849 0.849 
S6 5 0.4 small 13.7 0.861 0.880 0.875 1.000 0.859 0.859 
S7 5 0.5 small 17.1 0.853 0.860 0.864 1.000 0.850 0.850 
X5 5 0.1 mixed 21.9 0.723 0.819 0.815 1.000 0.750 0.750 
L4 5 0.05 large 31.8 0.825 0.866 0.861 0.999 0.842 0.842 
M6 5 0.4 medium 51.4 0.835 0.832 0.841 1.000 0.815 0.815 
L5 5 0.1 large 63.7 0.840 0.847 0.861 1.000 0.829 0.829 
M7 5 0.5 medium 64.2 0.887 0.864 0.891 1.000 0.867 0.867 
X6 5 0.4 mixed 87.5 0.827 0.854 0.835 1.000 0.828 0.828 
X7 5 0.5 mixed 109.4 0.826 0.837 0.838 0.999 0.836 0.835 
L6 5 0.4 large 254.6 0.877 0.852 0.872 1.000 0.853 0.853 
L7 5 0.5 large 318.3 0.865 0.829 0.871 1.000 0.845 0.845 
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Table 8. Comparison of coverage across random effects methods (selected scenarios with high heterogeneity) (continued) 
Scenario K Proportion Sample 

size 
Exp count Approximate 

untransformed 
Approximate 

logit 
Approximate 

arcsine 
Discrete (fraction 

converged) 
Discrete (random) Discrete 

(hybrid) 
S1 15 0.001 small <0.1 0.000 0.000 1.000 0.335 0.872 0.957 
M1 15 0.001 medium 0.1 0.215 0.000 0.500 0.815 0.979 0.983 
X1 15 0.001 mixed 0.1 0.964 0.000 0.653 0.864 0.956 0.962 
S2 15 0.005 small 0.1 0.806 0.000 0.570 0.847 0.967 0.972 
S3 15 0.01 small 0.3 0.996 0.023 0.479 0.977 0.988 0.965 
M2 15 0.005 medium 0.6 0.999 0.463 0.551 1.000 0.975 0.975 
L1 15 0.001 large 0.6 1.000 0.468 0.572 0.999 0.957 0.956 
X2 15 0.005 mixed 0.7 0.788 0.295 0.636 1.000 0.953 0.953 
M3 15 0.01 medium 1.1 0.781 0.653 0.690 1.000 0.974 0.974 
X3 15 0.01 mixed 1.3 0.668 0.623 0.703 1.000 0.919 0.919 
S4 15 0.05 small 1.4 0.527 0.711 0.739 1.000 0.946 0.946 
S5 15 0.1 small 2.7 0.571 0.847 0.841 1.000 0.921 0.921 
L2 15 0.005 large 3.1 0.506 0.839 0.828 0.999 0.928 0.928 
M4 15 0.05 medium 5.7 0.684 0.925 0.878 1.000 0.885 0.885 
L3 15 0.01 large 6.3 0.671 0.914 0.863 1.000 0.889 0.889 
X4 15 0.05 mixed 6.7 0.695 0.862 0.841 1.000 0.900 0.900 
S6 15 0.4 small 10.8 0.932 0.922 0.923 1.000 0.918 0.918 
M5 15 0.1 medium 11.5 0.846 0.928 0.898 1.000 0.883 0.883 
X5 15 0.1 mixed 13.4 0.774 0.909 0.860 1.000 0.873 0.873 
S7 15 0.5 small 13.5 0.953 0.923 0.939 1.000 0.933 0.933 
L4 15 0.05 large 31.4 0.860 0.868 0.874 1.000 0.844 0.844 
M6 15 0.4 medium 45.9 0.934 0.885 0.912 1.000 0.904 0.904 
X6 15 0.4 mixed 53.5 0.920 0.896 0.909 1.000 0.905 0.905 
M7 15 0.5 medium 57.4 0.959 0.877 0.940 1.000 0.935 0.935 
L5 15 0.1 large 62.8 0.890 0.857 0.897 1.000 0.860 0.860 
X7 15 0.5 mixed 66.9 0.939 0.892 0.917 1.000 0.931 0.931 
L6 15 0.4 large 251.4 0.939 0.880 0.931 1.000 0.920 0.920 
L7 15 0.5 large 314.2 0.948 0.857 0.920 1.000 0.919 0.919 
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Table 8. Comparison of coverage across random effects methods (selected scenarios with high heterogeneity) (continued) 
Scenario K Proportion Sample 

size 
Exp count Approximate 

untransformed 
Approximate 
logit 

Approximate 
arcsine 

Discrete (fraction 
converged) 

Discrete (random) Discrete (hybrid) 

S1 30 0.001 small <0.1 0.000 0.000 1.000 0.546 0.963 0.980 
M1 30 0.001 medium 0.1 0.000 0.000 0.274 0.956 0.976 0.977 
X1 30 0.001 mixed 0.1 0.826 0.000 0.405 0.974 0.972 0.947 
S2 30 0.005 small 0.1 0.000 0.000 0.224 0.978 0.983 0.961 
S3 30 0.01 small 0.3 0.857 0.000 0.197 1.000 0.977 0.977 
M2 30 0.005 medium 0.5 1.000 0.112 0.284 1.000 0.974 0.974 
L1 30 0.001 large 0.5 0.999 0.074 0.295 1.000 0.978 0.978 
X2 30 0.005 mixed 0.6 0.814 0.009 0.420 1.000 0.963 0.963 
M3 30 0.01 medium 1.1 0.666 0.326 0.501 1.000 0.965 0.965 
X3 30 0.01 mixed 1.3 0.447 0.244 0.545 1.000 0.939 0.939 
S4 30 0.05 small 1.4 0.266 0.412 0.580 1.000 0.936 0.936 
S5 30 0.1 small 2.7 0.425 0.755 0.765 0.999 0.919 0.919 
L2 30 0.005 large 2.7 0.245 0.667 0.707 1.000 0.916 0.916 
M4 30 0.05 medium 5.4 0.553 0.925 0.831 1.000 0.862 0.862 
L3 30 0.01 large 5.5 0.505 0.920 0.810 1.000 0.879 0.879 
X4 30 0.05 mixed 6.4 0.666 0.871 0.752 1.000 0.861 0.861 
M5 30 0.1 medium 10.8 0.800 0.930 0.852 1.000 0.823 0.823 
S6 30 0.4 small 10.9 0.934 0.920 0.921 1.000 0.914 0.914 
X5 30 0.1 mixed 12.7 0.789 0.936 0.847 1.000 0.869 0.869 
S7 30 0.5 small 13.6 0.953 0.909 0.922 1.000 0.925 0.925 
L4 30 0.05 large 27.4 0.877 0.876 0.892 1.000 0.800 0.800 
M6 30 0.4 medium 43.0 0.960 0.902 0.930 1.000 0.916 0.916 
X6 30 0.4 mixed 50.8 0.956 0.912 0.930 1.000 0.930 0.930 
M7 30 0.5 medium 53.8 0.976 0.884 0.941 1.000 0.941 0.941 
L5 30 0.1 large 54.9 0.911 0.825 0.901 1.000 0.813 0.813 
X7 30 0.5 mixed 63.5 0.952 0.880 0.921 1.000 0.930 0.930 
L6 30 0.4 large 219.4 0.953 0.850 0.927 1.000 0.906 0.906 
L7 30 0.5 large 274.3 0.961 0.847 0.935 1.000 0.931 0.931 
“Discrete” stands for discrete likelihood methods. Scenarios are ordered by number of studies (K), and then by expected count. Bold horizontal lines separate scenarios by number of studies. White 
and grey shading separates scenarios with expected counts ≤1, between 1 and 5, and ≥5. We code scenarios using two characters, a letter (indicating sample size scenarios; S=small, M=medium, 
L=large, X=mixed); and a number (indicating the true proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1, 6=0.4, 7=0.5). The column “Discrete (fraction converged)” shows the proportion of 
simulations for which random effects methods converged successfully. Values of 1.000 mean that random effects methods converged successfully in all 1000 simulations in a scenario, and a value of 
e.g., 0.335 means that they converged in 335 out of 1000 simulations in a scenario. The columns “Discrete (random)” and “Discrete (hybrid)” are identical when the fraction converged is 1.000, 
because the random effects method was used in all simulations. 
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Pairwise Comparisons Among Approximate Methods—Random 
Effects Meta-Analysis 

For random effects meta-analysis, results based on the variance stabilizing (arcsine) 
transformation have proportion bias and proportion RMSE closer to zero, and coverage 
probabilities closer to 95 percent, compared to those based on the canonical (logit) 
transformation or on untransformed data across a wide range of scenarios, as explained below.  

Therefore, if one has to use approximate methods for random effects meta-analysis of 
proportions, we would recommend the variance stabilizing transformation.  

No Transformation Versus Canonical Transformation (Logit 
Transformation) 

Figure 2 compares the proportion bias for random effects meta-analysis on untransformed 
versus logit-transformed data. Its 9 panels are arranged in 3 columns, according to whether the 
mean expected number of events in the simulated studies is ≤1, between 1 and 5, or ≥ 5; and 3 
rows, corresponding to the number of studies, K, in the simulated meta-analysis (5, 15, or 30). 

In Figure 2, points represent simulation scenarios, and are coded with a letter-number pair, 
based on sample size and true proportion. Each letter-number pair appears exactly once in each 
row of plots, as mapped in Table 9. 

Table 9. Mapping of simulation scenarios in the figures of the results section 
Studies (K) Expected count ≤ 1 1 < Expected count < 5 Expected count ≥ 5 
5 S1, S2, S3, M1, M2, L1, X1 S4, S5, M3, L2, X2, X3 M4, M5, L3, L4, L5, X4, X5 
15 S1, S2, S3, M1, M2, L1, X1, X2 S4, S5, M3, L2, X3 M4, M5, L3, L4, L5, X4, X5 
30 S1, S2, S3, M1, M2, L1, X1, X2  S4, S5, M3, L2, X3 M4, M5, L3, L4, L5, X4, X5 
Simulation scenarios are coded with two characters, a letter (indicating sample size scenarios; S=small, M=medium, L=large, 
X=mixed); and a number (indicating the true proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1). With a single exception, the 
various simulation scenarios map to the same range of expected count across all three choices of K (i.e., they map to the same 
row). The single exception pertains to X2 (i.e., scenarios with mixed sample sizes, and a true proportion equal to 0.002; 
underlined). For K=5, the expected count for X2 is 1.09; and for K=15 and K=30 the expected count is 0.67 and 0.64, 
respectively. This chance variation occurs because the sample sizes were chosen randomly for each K, and consequently the 
expected counts for all scenarios are different for 5 studies than for 15 or 30 studies. It so happens that for X2, this variation 
results in “changing columns.” 

Figure 3 has a similar layout and, denotes the proportion RMSE, which behaves 
approximately the same as the absolute value of proportion bias (see Methods). Based on the two 
figures, we make the following observations:  

• Within each column of Figure 2, the location of the graphed points (simulation scenarios) 
is quite similar, especially considering that the exact sample sizes (and thus the expected 
counts) differ across values of K (see Categorizing Simulation Scenarios by Expected 
Counts per Study). The same observation applies to Figure 3 as well. For both methods, 
the proportion bias and the proportion RMSE do not change materially with the number 
of studies, K.  

The influence of the number of studies on proportion bias (and the proportion RMSE) is 
small.  
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• For both methods, the proportion RMSE is generally highest for scenarios with expected 
counts <1, and tends to be smaller for higher expected counts. The absolute value of 
proportion bias follows a similar pattern.  

The normal approximations to the binomial are better as the expected count increases, 
and this translates to better values for proportion bias and proportion RMSE. Further, 
continuity corrections are more likely to be necessary when the expected count is less 
than 1; as discussed in the 5th bullet, continuity corrections introduce an upward bias for 
both methods.  

• For expected counts less than 1, proportion bias and proportion RMSE are not very 
different between scenarios with smaller and larger heterogeneity: the red and black 
colored points are very near each other in Figure 2 and Figure 3. All other things being 
equal, proportion RMSE differs between smaller and larger heterogeneity scenarios when 
the expected counts are larger than 1 (Figure 4; and similarly for the absolute value of 
proportion bias—not shown). 

For small expected counts, the estimate of between study heterogeneity is very often 0 or 
close to 0, and this attenuates any differences between scenarios with smaller and larger 
simulated heterogeneity.  

• When the expected count is less than 5, differences in proportion bias (and proportion 
RMSE) between small and large heterogeneity scenarios are most pronounced for the 
logit transformation: Within each plot, the difference between red and black colored 
labels is larger along the horizontal axis compared to the vertical.  

A likely explanation pertains to the “floor effect” of the untransformed data; small 
proportions are bounded by 0. In contrast, the logit transformation “expands” small 
proportion values to occupy the whole negative real axis, effectively removing the “floor 
effect”. This allows the summary estimate to be more influenced by studies with smaller 
proportion values, which are more likely to be drawn in simulations with large 
heterogeneity. 

• Analytically, we expect the proportion bias of the summary estimate to be negative for 
untransformed data, and positive for logit-transformed data. The use of continuity 
corrections (cc) adds an additional bias compon

,
j

j k

cc
n

π=

ent. This additional bias component can 

be positive, zero, or negative, for , , or , respectively.  
,

j
j k

cc
n

π>
,

j
j k

cc
n

π<

24 



 

Proportion bias (for both transformed and untransformed data) can be positive, zero, or 
negative, depending on the relative magnitude of the two bias components, i.e., the bias 
component related to the mathematical transformation and that related to the correction 
factors. As heterogeneity increases, it is more difficult to make qualitative predictions for 
the proportion bias.  

Figure 2. Comparison of proportion bias between approximate methods: no transformation versus 
canonical transformation (logit)  

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line have equal 
proportion bias for both methods. Points indicate simulation scenarios, and are coded with two characters, a letter (indicating 
sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true proportions; 1=0.001, 
2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, and red scenarios with large 
heterogeneity. Only a representative subset of scenarios is plotted. The solid black reference lines indicate 0 bias. Note the 
change in scale across columns.   

25 



 

Figure 3. Comparison of proportion RMSE between approximate methods: no transformation 
versus canonical transformation (logit) 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line have equal 
proportion RMSE for both methods. Points indicate simulation scenarios, and are coded with two characters, a letter (indicating 
sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true proportions; 1=0.001, 
2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, and red scenarios with large 
heterogeneity. Only a representative subset of scenarios is plotted. Note the change in scale across columns.  
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Figure 4. Difference in RMSE between small and large heterogeneity scenarios: no transformation 
versus canonical transformation (logit) 

  
Shown are all simulation scenarios (not only the “representative” ones listed in Table 9). A similar pattern is observed for the 
absolute value of proportion bias. The horizontal dotted line at zero is the line of no difference. Vertical lines separate scenarios 
by expected counts categories.  

• For both methods, coverage is better when the expected count is at least 5 (Figure 5), 
compared to ≤ 1 or between 1 and 5.  

The normal distribution approximates the binomial better as expected counts increase 
above 5.  

• For expected counts ≥5, coverage is better for the canonical (logit) transformation 
compared to the untransformed data.  

• For expected counts ≤1, the coverage is very often 100 percent for the untransformed 
data or 0 percent for the logit transformation.  

For expected counts ≤ 1, continuity corrections are often needed for both approximate 
methods. For untransformed data, the combination of a positive bias (associated with the 
use of the continuity corrections) and the fact that the lower confidence interval can reach 
all the way to 0 (“floor effect”) may explain the 100 percent coverage.  

• Coverage appears to become worse with increasing K. This is more evident for expected 
counts between 1 and 5.  

We see no obvious explanation for this pattern. 
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Figure 5. Comparison of coverage between approximate methods: no transformation versus 
canonical transformation (logit) 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line have equal 
coverage for both methods. Points indicate simulation scenarios, and are coded with two characters, a letter (indicating sample 
size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true proportions; 1=0.001, 2=0.005, 
3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, and red scenarios with large heterogeneity. 
Only a representative subset of scenarios is plotted. The solid black reference lines indicate 95 percent coverage.  
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No Transformation Versus Variance-Stabilizing Transformation 
(Arcsine Transformation) 
Figure 6 and Figure 7 compare proportion bias and proportion RMSE, respectively for random 
effects meta-analysis on untransformed versus arcsine-transformed data. Many of the 
observations and explanations below are similar to those made in No Transformation Versus 
Canonical Transformation (Logit Transformation).  

• For small expected counts (≤1), analyses based on the variance-stabilizing transformation 
has much smaller proportion bias and proportion RMSE than those based on 
untransformed data. This difference is attenuated for simulation scenarios with larger 
expected counts.  

Analyses based on untransformed data require continuity corrections (and most often 
when the expected counts are ≤1). As discussed in No Transformation Versus Canonical 
Transformation (Logit Transformation), the net effect is a large positive bias and a large 
proportion RMSE. However, for arcsine transformed data, no continuity corrections are 
needed, and thus the proportion bias and proportion RMSE are comparatively much 
smaller.  

• For both methods, the proportion bias and the proportion RMSE do not change 
dramatically with the number of studies, K.  

The influence of the number of studies on proportion bias (and the proportion RMSE) is 
small, as in No Transformation Versus Canonical Transformation (Logit 
Transformation).  

• For expected counts less than 1, proportion bias and proportion RMSE are not very 
different between scenarios with smaller and larger heterogeneity. All other things being 
equal, differences in proportion RMSE between smaller and larger heterogeneity 
scenarios are evident for expected counts larger than 1 (Figure 8; and similarly of the 
absolute value of proportion bias—not shown).  

A likely explanation is that for small expected counts, the estimate of between study 
heterogeneity is very often 0 or close to 0, and this attenuates any differences between 
scenarios with smaller and larger simulated heterogeneity.  

• Analytically, we expect the proportion bias to be negative for analyses based on both 
untransformed and arcsine-transformed data (See appendix). As described in No 
Transformation Versus Canonical Transformation (Logit Transformation), the need for 
continuity corrections (cc) adds an additional bias component for analyses based on 
untransformed 
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between 1 and 5, the two methods are comparable for proportion bias, but the arcsine 
scale may have a bit higher RMSE. 

Figure 6. Comparison of proportion bias between approximate methods: no transformation versus 
arcsine-transformation 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line have equal 
proportion bias for both methods. Points indicate simulation scenarios, and are coded with two characters, a letter (indicating 
sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true proportions; 1=0.001, 
2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, and red scenarios with large 
heterogeneity. Only a representative subset of scenarios is plotted. The solid black reference lines indicate 0 bias. Note the 
change in scale across columns.  
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Figure 7. Comparison of proportion RMSE between approximate methods: no transformation 
versus variance stabilizing (arcsine) transformation 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line have equal 
proportion RMSE for both methods. Points indicate simulation scenarios, and are coded with two characters, a letter (indicating 
sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true proportions; 1=0.001, 
2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, and red scenarios with large 
heterogeneity. Only a representative subset of scenarios is plotted. Note the change in scale across columns.  
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Figure 8. Difference in RMSE between small and large heterogeneity scenarios: no transformation 
versus variance stabilizing (arcsine) transformation 

 
Shown are all simulation scenarios (not only the “representative” ones listed in Table 9). A similar pattern is observed for the 
absolute value of proportion bias. The horizontal dotted line at zero is the line of no difference. Vertical lines separate scenarios 
by expected counts categories. 

 
For both methods, coverage is better when the expected count is at least 5 (Figure 9), 

compared to ≤ 1 or between 1 and 5.  

The normal is a better approximation to the binomial as the expected counts increase 
above 5.  

• For expected counts ≥5, coverage is better for the variance stabilizing transformation 
compared to the untransformed data.  

• Coverage appears to become worse with increasing K, and more so for scenarios where 
heterogeneity is large. This is more evident for expected counts between 1 and 5.  

We have found no explanation for this pattern. 
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Figure 9. Comparison of coverage between approximate methods: no transformation versus 
variance stabilizing (arcsine) transformation 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line have equal 
coverage for both methods. Points indicate simulation scenarios, and are coded with two characters, a letter (indicating sample 
size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true proportions; 1=0.001, 2=0.005, 
3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, and red scenarios with large heterogeneity. 
Only a representative subset of scenarios is plotted. The solid black reference lines indicate 95 percent coverage.  
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Canonical (Logit) Versus Variance-Stabilizing (Arcsine) 
Transformation 

Figure 10 and Figure 11 compare proportion bias and proportion RMSE, respectively for 
random effects meta-analysis on logit-transformed versus arcsine-transformed data. Many of the 
observations and explanations below are similar to those made in two sections: No 
Transformation Versus Canonical Transformation (Logit Transformation) and No 
Transformation Versus Variance-Stabilizing Transformation (Arcsine Transformation).  

• For small expected counts (≤1), analyses based on arcsine transformed data have much 
smaller proportion bias and proportion RMSE compared to those based on logit-
transformed data. For larger expected counts, the differences are very small (most points 
in Figure 10 and Figure 11 are on the diagonal).  

Analyses based on logit-transformed data require continuity corrections (and most often 
when the expected counts are ≤1). As discussed in No Transformation Versus Canonical 
Transformation (Logit Transformation), the net effect is a large positive bias and a large 
proportion RMSE. However, for arcsine transformed data (No Transformation Versus 
Variance-Stabilizing Transformation [Arcsine Transformation]), no continuity 
corrections are needed, and thus the proportion bias and proportion RMSE are smaller.  

• For both methods, the proportion bias and the proportion RMSE do not change 
dramatically with the number of studies, K.  

The influence of the number of studies on proportion bias (and the proportion RMSE) is 
small, as in previous sections.  

• For expected counts less than 1, proportion bias and proportion RMSE are not very 
different between scenarios with smaller and larger heterogeneity. All other things being 
equal, differences in proportion RMSE between smaller and larger heterogeneity 
scenarios are evident for expected counts larger than 1 (Figure 12; and similarly for the 
absolute value of proportion bias—not shown).  

For small expected counts, the estimate of between study heterogeneity is very often 0 or 
close to 0, and this attenuates any differences between scenarios with smaller and larger 
simulated heterogeneity.  

• Analytically, we expect the proportion bias to be negative for analyses based on arcsine-
transformed data, and positive for analyses based on logit-transformed data (See 
appendix). As described in No Transformation Versus Canonical Transformation (Logit 
Transformation), the need for continuity corrections (cc) adds an additional bias 
component for analyses based on logit-transformed data. This additional bias component 

can be positive, zero, or negative, for , , or , respectively.  
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Figure 10. Comparison of proportion bias between approximate methods: canonical (logit) versus 
variance stabilizing (arcsine) transformation 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line have equal 
proportion bias for both methods. Points indicate simulation scenarios, and are coded with two characters, a letter (indicating 
sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true proportions; 1=0.001, 
2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, and red scenarios with large 
heterogeneity. Only a representative subset of scenarios is plotted. The solid black reference lines indicate 0 bias. Note the 
change in scale across columns.  
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Figure 11. Comparison of proportion RMSE between approximate methods: canonical (logit) 
versus variance stabilizing (arcsine) transformation 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line have equal 
proportion RMSE for both methods. Points indicate simulation scenarios, and are coded with two characters, a letter (indicating 
sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true proportions; 1=0.001, 
2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, and red scenarios with large 
heterogeneity. Only a representative subset of scenarios is plotted. Note the change in scale across columns.  
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Figure 12. Difference in RMSE between small and large heterogeneity scenarios: canonical (logit) 
versus variance stabilizing (arcsine) transformation 

 
Shown are all simulation scenarios (not only the “representative” ones listed in Table 9). A similar pattern is observed for the 
absolute value of proportion bias. The horizontal dotted line at zero is the line of no difference. Vertical lines separate scenarios 
by expected counts categories. 

For both methods, coverage is better when the expected count is at least 5 (Figure 13), 
compared to expected counts of 1 or less, or between 1 and 5.  

The normal distribution approximates the binomial better as expected counts increase 
above 5.  

• For expected counts ≥5, coverage is similar for both methods.  
• For expected counts ≤5, analyses based on the arcsine transformation have better 

coverage.  

For small expected counts, continuity corrections are often needed for logit-transformed 
data. The large positive bias (associated with the use of the continuity corrections) can 
displace the point estimate sufficiently to result in 0 percent coverage.  

• For expected counts between 1 and 5, coverage appears to become worse with increasing 
K, and more so for scenarios where heterogeneity is large.  

We have found no explanation for this pattern. 
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Figure 13. Comparison of coverage between approximate methods: canonical (logit) versus 
variance stabilizing (arcsine) transformation 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line have equal 
coverage for both methods. Points indicate simulation scenarios, and are coded with two characters, a letter (indicating sample 
size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true proportions; 1=0.001, 2=0.005, 
3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, and red scenarios with large heterogeneity. 
Only a representative subset of scenarios is plotted. The solid black reference lines indicate 95 percent coverage.  
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Effect of the Correction Factor for Zero-Event Studies 
The approximate methods for untransformed and logit-transformed data apply a correction 

factor to adjust the estimated proportion for zero-event studies. The correction factor is arbitrary, 
in that it is not selected with a procedure that proposes a unique value. We report results using a 
continuity correction of 0.5, a very commonly used value. 
As discussed in the Methods section, the correction factor introduces a bias that depends on the 
size of the correction factor and the sample size of the study.  

Figure 14 shows the mean summary proportion for fixed effects inverse variance meta-
analyses with 15 studies with average sample size equal to 115 for various values of the 
correction factor, assuming a true proportion of 0.010 and no between-study heterogeneity. 
Approximately 1/3 of the simulated studies have 0 events. Note the estimated proportion is less 
than the true proportion for small values of the correction factor, and increases as the correction 
factor gets larger. For some value of the correction factor (in this case 1), the estimated 
proportion will be exactly the true proportion, but this is of no use in practice since the “optimal” 
value of the correction factor depends on the true proportion and sample sizes. 

Since the correction factor is unrelated to the true proportion, the overall meta-analysis 
estimate is skewed towards the adjusted estimate, resulting in greater absolute bias and RMSE, 
and poorer coverage. This typically occurs for small true proportions and sample sizes. 

Figure 14. Bias induced by correction factors in fixed effects meta-analysis of untransformed data 

 

Pairwise Comparisons Between Approximate and Discrete 
Likelihood Methods for Random Effects Meta-Analysis  

For random effects meta-analysis, results based on the binomial likelihood (exact method) 
have proportion bias and proportion RMSE closer to zero and coverage probabilities closer to 95 
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percent, compared to those based on the approximate methods across a wide range of scenarios, 
as explained below.  

Therefore, we recommend the discrete likelihood method for random effects meta-analysis 
over approximate methods. 

Approximate Method With No Transformation Versus Discrete 
Likelihood Method 

Figure 15 compares the proportion bias for random effects meta-analysis using the 
approximate method with untransformed data versus the discrete likelihood method that 
maximizes the binomial likelihood.  

Figure 16 depicts proportion RMSE. Based on the two figures, we make the following 
observations:  

• The absolute proportion bias (deviation from 0) is generally smaller for the discrete 
likelihood method compared to the approximate method using untransformed data, 
particularly when expected counts ≤1.  

Meta-analyses with approximate methods and untransformed data require continuity 
corrections (and most often when the expected counts are ≤1). As discussed in No 
Transformation Versus Canonical Transformation (Logit Transformation), the net effect 
is a large positive bias and a large proportion RMSE. Continuity corrections are not 
needed for the discrete likelihood method.  

• For meta-analyses with 15 or 30 studies and expected counts larger than 1, the proportion 
bias of the discrete likelihood binomial method is approximately constant at each level of 
heterogeneity. For large heterogeneity, the proportion bias is approximately -10 percent 
of the respective true proportion, while for small heterogeneity, it is approximately 0. If 
the true proportion is exactly 0.50, the proportion bias is approximately 0.  

We have no definitive explanation for the approximately constant proportion bias of -10 
percent, which is observed across all proportions when heterogeneity is large, and the 
true summary proportion is different than 0.50.  
A plausible conjecture is based on the observation that the random effects discrete 
likelihood methods assume a logit-normal distribution of the true proportions across 
studies. A range of e.g., 0.10 in the proportion scale corresponds to vastly different 
ranges in the logit scale, depending on its location. For example the interval [0.01, 0.11] 
in the proportion scale corresponds to a length of [-4.60, -2.09] in the logit scale, but the 
interval [0.45, 0.55] corresponds to the much narrower [-0.20, 0.20] in the logit scale. 
The further away a given interval is located from 0.50 in the proportion scale, the more it 
expands in the logit scale. “Averaging” in the logit scale will therefore result in a 
negative bias in the proportion scale when the true mean is less than 0.50; no bias if the 
true mean is 0.50, and (by symmetry) a positive bias if the true mean is more than 0.50.  
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• When all studies have large sample sizes and the heterogeneity is large, the approximate 
method with untransformed data has proportion bias closer to 0 compared to the discrete 
likelihood method. (See points L4 and L5 in red font on the rightmost column in Figure 
15).  

This occurs because for large heterogeneity and expected counts ≥5 the discrete 
likelihood methods have a proportion bias of approximately -10 percent, regardless of the 
sample sizes of the studies. In these same scenarios, the normal approximation to the 
binomial is good enough to result in better proportion bias for the approximate compared 
to the discrete likelihood methods.  

• For expected counts ≤1, primarily, the proportion bias of both the discrete likelihood and 
the approximate methods is positive. For larger expected counts the proportion bias for 
both methods becomes negative.  

For the approximate methods, the explanation has been given in No Transformation 
Versus Canonical Transformation (Logit Transformation): Analytically we expect the 
bias to be negative. However, when the expected count is ≤1, studies will often have 0 
events, and a continuity correction factor, cc, is needed. This additional bias component 

can be positive, zero, or negative, for , , or , respectively.  

For the discrete likelihood method, the explanation is much simpler. When all studies 
have a 0 numerator, the discrete likelihood method (random effects logistic regression) 
fails to converge. Because simulations that fail to converge do not contribute to the 
calculations of proportion bias, proportion RMSE and coverage, these metrics should be 
interpreted with caution.  

• Proportion RMSE is generally lower for the discrete likelihood method. The differences 
are largest for small expected counts. For expected counts less than 1, proportion bias and 
proportion RMSE are not very different between scenarios with smaller and larger 
heterogeneity. All other things being equal, differences in proportion RMSE between 
smaller and larger heterogeneity scenarios are evident for expected counts larger than 1 
(Figure 17; and similarly of the absolute value of proportion bias—not shown). 

• Proportion RMSE is larger for large amounts of heterogeneity. 

Large amounts of heterogeneity increases variance, one of the components of mean 
squared error. When there is a lot of data, variability decreases and bias tends to dominate 
the mean squared error. 

 

,
j

j k

cc
n

π>
,

j
j k

cc
n

π=
,

j
j k

cc
n

π<

41 



 

Figure 15. Comparison of proportion bias: approximate method (no transformation) versus 
discrete likelihood 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line have equal 
proportion bias for both methods. Points indicate simulation scenarios, and are coded with two characters, a letter (indicating 
sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true proportions; 1=0.001, 
2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, and red scenarios with large 
heterogeneity. Only a representative subset of scenarios is plotted. The solid black reference lines indicate 0 bias. Note the 
change in scale across columns.   
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Figure 16. Comparison of proportion RMSE: approximate method (no transformation) versus 
discrete likelihood 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line have equal 
proportion RMSE for both methods. Points indicate simulation scenarios, and are coded with two characters, a letter (indicating 
sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true proportions; 1=0.001, 
2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, and red scenarios with large 
heterogeneity. Only a representative subset of scenarios is plotted. Note the change in scale across columns.  
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Figure 17. Difference in RMSE between small and large heterogeneity scenarios for analyses 
using the approximate method (no transformation) and the discrete likelihood method 

 
Shown are all simulation scenarios (not only the “representative” ones listed in Table 9). A similar pattern is observed for the 
absolute value of proportion bias. The horizontal dotted line at zero is the line of no difference. Vertical lines separate scenarios 
by expected counts categories. 

• The coverage of the discrete likelihood binomial method (Figure 18) is much closer to the 
desired value of 95 percent than that of the approximate method on untransformed data. 
This is particularly noticeable for K=15 and 30 studies.  

The normal approximation to the binomial is much better for large expected counts 
compared to smaller expected counts. Further, for small expected counts, numerators 
with zero counts are common and continuity corrections are needed for the approximate 
method. Thus, coverage is suboptimal with the approximate method. See these two 
sections: No Transformation Versus Canonical Transformation (Logit Transformation) 
and No Transformation Versus Variance-Stabilizing Transformation (Arcsine 
Transformation).  
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Figure 18. Comparison of coverage: approximate method (no transformation) versus discrete 
likelihood 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line have equal 
coverage for both methods. Points indicate simulation scenarios, and are coded with two characters, a letter (indicating sample 
size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true proportions; 1=0.001, 2=0.005, 
3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, and red scenarios with large heterogeneity. 
Only a representative subset of scenarios is plotted. The solid black reference lines indicate 95 percent coverage.  

Approximate Method With Logit Transformation Versus Discrete 
Likelihood Method 

Figure 19 compares proportion bias for random-effects meta-analysis using the approximate 
method on logit-transformed data versus the discrete likelihood binomial method.  

Figure 20 depicts the proportion RMSE. We make the following observations: 
• The absolute proportion bias (deviation from 0) is generally smaller for the discrete 

likelihood method compared to the approximate method on logit transformed data. This 
is more profound for expected counts ≤5.  
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Meta-analyses with approximate methods and untransformed data require continuity 
corrections (and most often when the expected counts are ≤1). As discussed in No 
Transformation Versus Canonical Transformation (Logit Transformation), the net effect 
is a large positive bias and a large proportion RMSE. Continuity corrections are not 
needed for the discrete likelihood method.  

• As discussed in Approximate Method With No Transformation Versus Discrete 
Likelihood Method, for meta-analyses with 15 or 30 studies and expected counts larger 
than 1, the proportion bias of the discrete likelihood binomial method is approximately 
constant at each level of heterogeneity. For large heterogeneity, the proportion bias is 
approximately -10 percent of the respective true proportion, while for small 
heterogeneity, it is approximately 0. If the true proportion is exactly 0.50, the proportion 
bias is approximately 0.  

We have no definitive explanation for the approximately constant proportion bias of -10 
percent, which is observed across all proportions when heterogeneity is large, and the 
true summary proportion is different than 0.50.  
A plausible conjecture is based on the observation that the random effects discrete 
likelihood methods assume a logit-normal distribution of the true proportions across 
studies. A range of e.g., 0.10 in the proportion scale corresponds to vastly different 
ranges in the logit scale, depending on its location. For example the interval [0.01, 0.11] 
in the proportion scale corresponds to a length of [-4.60, -2.09] in the logit scale, but the 
interval [0.45, 0.55] corresponds to the much narrower [-0.20, 0.20] in the logit scale. 
The further away a given interval is located from 0.50 in the proportion scale, the more it 
expands in the logit scale. “Averaging” in the logit scale will therefore result in a 
negative bias in the proportion scale when the true mean is less than 0.50; no bias if the 
true mean is 0.50, and (by symmetry) a positive bias if the true mean is more than 0.50.  
The finding that for large expected counts (scenarios L4 and L5) the logit-transformed 
bias approaches that of the discrete likelihood method supports this conjecture. 

• For expected counts ≤1, primarily, the proportion bias for the discrete likelihood method 
is positive. It becomes negative for larger expected counts.  

As described in Approximate Method With No Transformation Versus Discrete 
Likelihood Method, when all studies have a 0 numerator, the discrete likelihood method 
(random effects logistic regression) fails to converge. Because simulations that fail to 
converge do not contribute to the calculations of proportion bias, proportion RMSE and 
coverage, these metrics are biased.  

• Proportion RMSE is generally lower for the discrete likelihood method. The differences 
are largest for small expected counts and small when expected counts ≥ 5. 
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For expected counts less than 1, the proportion bias and the proportion RMSE are not very 
different between scenarios with smaller and larger heterogeneity. All other things being equal, 
differences in proportion RMSE between smaller and larger heterogeneity scenarios are evident 
for expected counts larger than 1 (Figure 21; and similarly for the absolute value of proportion 
bias—not shown).  

Figure 19. Comparison of proportion bias: approximate method (logit transformation) versus 
discrete likelihood 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line have equal 
proportion bias for both methods. Points indicate simulation scenarios, and are coded with two characters, a letter (indicating 
sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true proportions; 1=0.001, 
2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, and red scenarios with large 
heterogeneity. Only a representative subset of scenarios is plotted. The solid black reference lines indicate 0 bias. Note the 
change in scale across columns. 
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Figure 20. Comparison of proportion RMSE: approximate method (logit transformation) versus 
discrete likelihood 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line have equal 
proportion RMSE for both methods. Points indicate simulation scenarios, and are coded with two characters, a letter (indicating 
sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true proportions; 1=0.001, 
2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, and red scenarios with large 
heterogeneity. Only a representative subset of scenarios is plotted. Note the change in scale across columns.  
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Figure 21. Difference in RMSE between small and large heterogeneity scenarios for analyses 
using the approximate methods (logit transformation) and the discrete likelihood method 

 
Shown are all simulation scenarios (not only the “representative” ones listed in Table 9). A similar pattern is observed for the 
absolute value of proportion bias. The horizontal dotted line at zero is the line of no difference. Vertical lines separate scenarios 
by expected counts categories. 

 
Figure 22 shows coverage probabilities.  
• The coverage of the discrete likelihood binomial method is much closer to the desired 

value of 95 percent than that of the approximate method on logit-transformed data. This 
is particularly noticeable for K=15 and 30 studies.  

The normal approximation to the binomial is much better for large expected counts 
compared to smaller expected counts. Further, for small expected counts, 0 numerators 
are common and continuity corrections are needed for the approximate method. Thus, 
coverage is suboptimal with the approximate method. See also two sections: No 
Transformation Versus Canonical Transformation (Logit Transformation) and No 
Transformation Versus Variance-Stabilizing Transformation (Arcsine Transformation).  
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Figure 22. Comparison of coverage: approximate method (logit transformation) versus discrete 
likelihood 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line have equal 
coverage for both methods. Points indicate simulation scenarios, and are coded with two characters, a letter (indicating sample 
size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true proportions; 1=0.001, 2=0.005, 
3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, and red scenarios with large heterogeneity. 
Only a representative subset of scenarios is plotted. The solid black reference lines indicate 95 percent coverage.  
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Approximate Method With Arcsine Transformation Versus Discrete 
Likelihood Binomial Method 

Figure 23 compares proportion bias for random-effects meta-analysis using the approximate 
method with the variance stabilizing (arcsine) transformation versus the discrete likelihood 
method. Figure 24 depicts the proportion RMSE. We make the following observations: 

• The absolute proportion bias (deviation from 0) is generally smaller for the discrete 
likelihood method compared to the approximate method on arcsine transformed data. 
This is more pronounced for expected counts ≤5.  

The normal approximation to the binomial becomes better when the expected counts are 
>5 compared with smaller expected counts.  

• As discussed in Approximate Method With No Transformation Versus Discrete 
Likelihood Method, for meta-analyses with 15 or 30 studies and expected counts larger 
than 1, the proportion bias of the discrete likelihood binomial method is approximately 
constant at each level of heterogeneity. For large heterogeneity, the proportion bias is 
approximately -10 percent of the respective true proportion, while for small 
heterogeneity, it is approximately 0. If the true proportion is exactly 0.50, the proportion 
bias is approximately 0.  

We have no definitive explanation for the approximately constant proportion bias of -10 
percent, which is observed across all proportions when heterogeneity is large, and the 
true summary proportion is different than 0.50.  
A plausible conjecture is based on the observation that the random effects discrete 
likelihood methods assume a logit-normal distribution of the true proportions across 
studies. A range of e.g., 0.10 in the proportion scale corresponds to vastly different 
ranges in the logit scale, depending on its location. For example the interval [0.01, 0.11] 
in the proportion scale corresponds to a length of [-4.60, -2.09] in the logit scale, but the 
interval [0.45, 0.55] corresponds to the much narrower [-0.20, 0.20] in the logit scale. 
The further away a given interval is located from 0.50 in the proportion scale, the more it 
expands in the logit scale. “Averaging” in the logit scale will therefore result in a 
negative bias in the proportion scale when the true mean is less than 0.50; no bias if the 
true mean is 0.50, and (by symmetry) a positive bias if the true mean is more than 0.50.  
The finding that for large expected counts (scenarios L4 and L5) the logit-transformed 
bias approaches that of the discrete likelihood method supports this conjecture. 

• RMSE is higher with the arcsine method for expected counts between 1 and 5. 
• For expected counts less than 1, the proportion bias and the proportion RMSE differ little 

between scenarios with smaller and larger heterogeneity.  
• All other things being equal, differences in proportion RMSE between smaller and larger 

heterogeneity scenarios are evident for expected counts larger than 1 (Figure 25; and 
similarly of the absolute value of proportion bias—not shown). RMSE is larger with 
more heterogeneity. 
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Figure 23. Comparison of proportion bias: approximate method (arcsine transformation) versus 
discrete likelihood 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line have equal 
proportion bias for both methods. Points indicate simulation scenarios, and are coded with two characters, a letter (indicating 
sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true proportions; 1=0.001, 
2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, and red scenarios with large 
heterogeneity. Only a representative subset of scenarios is plotted. The solid black reference lines indicate 0 bias. Note the 
change in scale across columns.  
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Figure 24. Comparison of proportion RMSE: approximate method (arcsine transformation) versus 
discrete likelihood method 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line have equal 
proportion RMSE for both methods. Points indicate simulation scenarios, and are coded with two characters, a letter (indicating 
sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true proportions; 1=0.001, 
2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, and red scenarios with large 
heterogeneity. Only a representative subset of scenarios is plotted. Note the change in scale across columns.  
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Figure 25. Difference in RMSE between small and large heterogeneity scenarios for analyses 
using approximate methods (arcsine transformation) and the discrete likelihood method 

 
Shown are all simulation scenarios (not only the “representative” ones listed in Table 9). A similar pattern is observed for the 
absolute value of proportion bias. The horizontal dotted line at zero is the line of no difference. Vertical lines separate scenarios 
by expected counts categories. 

Figure 26 shows coverage probabilities.  
• For expected counts above 5, the coverage probabilities are very similar for the 

approximate methods on arcsine-transformed data and the discrete likelihood methods.  
• Coverage is better under scenarios with less heterogeneity 
• With large amounts of heterogeneity, both methods have inadequate coverage 
• For expected counts less than 5, the coverage of the discrete likelihood binomial method 

is much closer to the desired value of 95 percent than that of the approximate method on 
arcsine-transformed data.  
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Figure 26. Comparison of coverage: approximate method (arcsine transformation) versus discrete 
likelihood method 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line have equal 
coverage for both methods. Points indicate simulation scenarios, and are coded with two characters, a letter (indicating sample 
size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true proportions; 1=0.001, 2=0.005, 
3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, and red scenarios with large heterogeneity. 
Only a representative subset of scenarios is plotted. The solid black reference lines indicate 95 percent coverage.  
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Comparison Between Fixed and Random-Effects Discrete 
Likelihood Binomial Methods  

Most meta-analyses use random effects methods. For random effects meta-analysis, discrete 
likelihood methods have less bias, smaller RMSE, and better coverage probabilities compared to 
approximate methods for a large range of simulation scenarios (See two sections: Pairwise 
Comparisons Among Approximate Methods—Random Effects Meta-Analysis and Pairwise 
Comparisons Between Approximate and Discrete Likelihood Methods for Random Effects Meta-
Analysis), and are thus preferable.  

Here we present comparisons between fixed and random effects meta-analysis using the 
discrete likelihood methods. Figure 27 compares the proportion bias and Figure 28 the 
proportion RMSE with fixed versus random effects analyses. We make the following 
observations:  

• Results based on the fixed-effect discrete likelihood binomial method have smaller 
absolute proportion bias than results based on the random-effects discrete likelihood 
binomial method, particularly for data with high heterogeneity—see Figure 27, the whole 
left column.  

The fixed effects estimator with the discrete likelihood method is an unbiased estimator. 
Pairwise Comparisons Between Approximate and Discrete Likelihood Methods for 
Random Effects Meta-Analysis discussed the bias observed with the random effects 
methods: it is constant at each level of heterogeneity, and is small (around 0 percent) for 
smaller heterogeneity, and approximately -10 percent for larger heterogeneity scenarios 
when the true proportion is not 0.50.  

• The proportion RMSE is approximately the same for the two methods—see Figure 28. 

When the expected counts are small, it common to have meta-analyses where all studies 
have zero counts in the numerator. In such cases, the discrete likelihood method (random 
effects logistic regression) fails to converge. Because simulations that fail to converge do 
not contribute to the calculations of proportion bias, proportion RMSE and coverage, 
these metrics should be interpreted with caution.  

• The random-effects discrete likelihood method has better coverage than the fixed-effect 
method, particularly for data with expected counts at least 1—see Figure 29. 

Fixed effects analyses assume no heterogeneity. Random effects analyses estimate 
between-study heterogeneity and incorporate it in the calculations, resulting in wider 
confidence intervals compared with fixed effects analyses. Therefore, coverage is better 
with random effects models when the data have heterogeneity.  

• The random-effects discrete likelihood method has only about 80 percent coverage when 
the expected counts are ≥ 5 and there is large heterogeneity.  
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The undercoverage results from the bias exhibited by the random effects discrete 
likelihood method.  

Figure 27. Comparison of proportion bias: fixed versus random effects with the discrete likelihood 
method 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line have equal 
proportion bias for both methods. Points indicate simulation scenarios, and are coded with two characters, a letter (indicating 
sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true proportions; 1=0.001, 
2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, and red scenarios with large 
heterogeneity. Only a representative subset of scenarios is plotted. The solid black reference lines indicate 0 bias. Note the 
change in scale across columns.  
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Figure 28. Comparison of proportion RMSE: fixed versus random effects with the discrete 
likelihood method 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line have equal 
proportion RMSE for both methods. Points indicate simulation scenarios, and are coded with two characters, a letter (indicating 
sample size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true proportions; 1=0.001, 
2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, and red scenarios with large 
heterogeneity. Only a representative subset of scenarios is plotted. Note the change in scale across columns.  
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Figure 29. Comparison of coverage: fixed versus random effects with the discrete likelihood 
method 

 
Rows correspond to number of studies. Columns correspond to ranges of expected count. Points on the dashed line have equal 
coverage for both methods. Points indicate simulation scenarios, and are coded with two characters, a letter (indicating sample 
size scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true proportions; 1=0.001, 2=0.005, 
3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios with small heterogeneity, and red scenarios with large heterogeneity. 
Only a representative subset of scenarios is plotted. The solid black reference lines indicate 95 percent coverage.  

Results for Rates 
Simulation results for rates were very similar to those of proportions, and are thus not shown 

in detail. To convey the similarity, we show an example of the proportion bias for simulations of 
rates and of proportions for the comparison of approximate methods with the canonical versus 
the variance stabilizing transformation (Figure 30). The similarity in the results is obvious, and is 
theoretically expected, as the Poisson is a limiting case of the binomial distribution as the 
exposure increases.  
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Figure 30. Side by side comparison of results from simulations for proportions and rates: Comparison of proportion bias for 
approximate methods, canonical versus variance stabilizing transformations 

 
Rows correspond to number of studies. Columns correspond to ranges of expected events (for rates, left side) and ranges of expected counts (for proportions, right side). Points on 
the dashed line have equal proportion bias for both methods. Points indicate simulation scenarios, and are coded with two characters, a letter (indicating sample size scenarios; 
S=small, M=medium, L=large, X=mixed); and a number (indicating the true rates or true proportions: 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1). Black color indicates scenarios 
with small heterogeneity, and red scenarios with large heterogeneity. Only a representative subset of scenarios is plotted. The solid black reference lines indicate 0 bias. Note the 
change in scale across columns, and from the left to the right panel.  
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Overview of Results Across All Methods  
Table 10 shows the proportion bias with the random effects analysis methods for selected 

scenarios with high heterogeneity. Table 11 and Table 12 show the corresponding proportion 
RMSE and coverage. We make the following general observations for scenarios with expected 
counts 1 or less, between 1 and 5, and 5 or more: 

• For expected counts ≤1, the hybrid method has proportion bias and RMSE that are closer 
to zero and coverage probability closer to 95 percent compared to other methods.  

• For expected counts between 1 and 5 the random effects discrete likelihood method and 
the approximate method with the variance stabilizing transformation have comparable 
performance, and better than other methods.  

[For detailed descriptions and explanations refer to two sections: Pairwise Comparisons 
Among Approximate Methods—Random Effects Meta-Analysis and Pairwise 
Comparisons between Approximate and Discrete Likelihood Methods for Random 
Effects Meta-Analysis. Analogous points apply to simulations of rates as well.]  

• For expected counts of 5 or more, the differences between methods become less evident.  
 
For numerical reasons, the random effects discrete likelihood method does not always 

converge. The following general comments can be made:  
• For very small expected counts (<0.5) and for K=5 or K=15 the random effects discrete 

likelihood method reached convergence for fewer than 85 percent of the simulations (see 
column “Discrete (fraction converged)”). For expected counts above 1 or for K=30, the 
method converges practically for all simulations. 

• For expected counts above 1 the random effect discrete likelihood method converged 
(almost) always, and thus the performance of the hybrid strategy is identical to that with 
random effects. 

The random effects discrete likelihood method will not converge when all studies in a 
meta-analysis have 0 events. This is more common in simulation scenarios with very low 
expected counts and when the number of studies is small. 

We can make the following general comments on the preferred methods (hybrid strategy-
discrete likelihood and variance-stabilizing transformation-approximate likelihood): 

• For expected counts larger than 10, the hybrid strategy for meta-analysis using the 
discrete likelihood has larger absolute bias than the approximate method using the 
variance stabilizing transformation, and the reverse for smaller counts.  

[The explanations are analogous to those in two sections (Pairwise Comparisons Among 
Approximate Methods—Random Effects Meta-Analysis and Pairwise Comparisons 
Between Approximate and Discrete Likelihood Methods for Random Effects Meta-
Analysis) for proportions; briefly, the discrete likelihood methods appear to have a 
constant relative bias of approximately -10 percent when heterogeneity is large, and when 
the expected number of counts is >5] 
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• For very large expected counts (for example when the true rate is 0.4) all compared 
methods converge in proportion bias and proportion RMSE.  

This is congruent with what we expect theoretically: the normal approximation to the 
Poisson improves with increasing expected counts.  

• The hybrid strategy using the discrete likelihood has better coverage probabilities than 
the other methods for the widest range of scenarios. 

 
Finally, in sensitivity analyses that used numerical integration instead of a simple 

transformation to obtain the meta-analysis point estimates in the rate scale (see Methods section, 
paragraph on Approximate Methods), results were very comparable with those reported in Table 
11 and Table 12 (not shown). 
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Table 10. Comparison of proportion bias across random effects methods for meta-analysis of rates (selected scenarios with high 
heterogeneity) 
Scenario K Rate Exposure 

size 
Expected 

count 
Approximate 

untransformed 
Approximate 

log 
Approximate 
square root 

Discrete 
(fraction 

converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

S1 5 0.001 Small 0.1 2.689 3.207 -0.678 0.530 0.737 -0.079 
M1 5 0.001 Medium 0.4 0.722 1.236 -0.561 0.836 0.080 -0.097 
S2 5 0.005 Small 0.7 0.018 0.573 -0.430 0.972 -0.083 -0.109 
S3 5 0.01 Small 1.5 -0.276 0.261 -0.289 1.000 -0.103 -0.103 
M2 5 0.005 Medium 1.8 -0.313 0.211 -0.248 1.000 -0.100 -0.100 
X1 5 0.001 Mixed 1.9 1.023 0.815 -0.158 0.994 0.066 0.059 
M3 5 0.01 Medium 3.6 -0.359 0.073 -0.146 1.000 -0.094 -0.094 
L1 5 0.001 Large 5.7 -0.337 0.014 -0.130 1.000 -0.100 -0.100 
S4 5 0.05 Small 7.3 -0.296 0.012 -0.074 1.000 -0.074 -0.074 
X2 5 0.005 Mixed 9.4 -0.065 0.161 -0.269 1.000 0.004 0.004 
S5 5 0.1 Small 14.7 -0.243 -0.041 -0.060 1.000 -0.084 -0.084 
M4 5 0.05 Medium 17.8 -0.240 -0.051 -0.059 1.000 -0.089 -0.089 
X3 5 0.01 Mixed 18.8 -0.232 0.101 -0.192 1.000 -0.038 -0.038 
L2 5 0.005 Large 28.4 -0.221 -0.058 -0.051 1.000 -0.085 -0.085 
M5 5 0.1 Medium 35.6 -0.220 -0.081 -0.064 1.000 -0.101 -0.101 
L3 5 0.01 Large 56.8 -0.206 -0.076 -0.052 1.000 -0.092 -0.092 
S6 5 0.4 Small 58.8 -0.207 -0.088 -0.057 1.000 -0.099 -0.099 
X4 5 0.05 Mixed 93.8 -0.275 -0.020 -0.078 1.000 -0.075 -0.075 
M6 5 0.4 Medium 142.3 -0.185 -0.084 -0.044 1.000 -0.089 -0.089 
X5 5 0.1 Mixed 187.6 -0.243 -0.053 -0.065 1.000 -0.087 -0.087 
L4 5 0.05 Large 284 -0.200 -0.103 -0.060 1.000 -0.106 -0.106 
L5 5 0.1 Large 567.9 -0.189 -0.098 -0.054 1.000 -0.099 -0.099 
X6 5 0.4 Mixed 750.3 -0.210 -0.088 -0.063 1.000 -0.103 -0.103 
L6 5 0.4 Large 2271.7 -0.166 -0.079 -0.033 1.000 -0.076 -0.076 

 
  

63 



 

Table 10. Comparison of proportion bias across random effects methods for meta-analysis of rates (selected scenarios with high 
heterogeneity) (continued) 
Scenario K Rate Exposure 

size 
Expected 

count 
Approximate 

untransformed 
Approximate 

log 
Approximate 
square root 

Discrete 
(fraction 

converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

S1 15 0.001 Small 0.1 3.330 4.002 -0.812 0.849 -0.161 -0.288 
M1 15 0.001 Medium 0.3 0.812 1.400 -0.673 0.990 -0.144 -0.152 
S2 15 0.005 Small 0.6 0.123 0.774 -0.543 1.000 -0.129 -0.129 
X1 15 0.001 Mixed 0.8 0.904 0.982 -0.417 0.999 -0.049 -0.050 
S3 15 0.01 Small 1.2 -0.252 0.420 -0.374 1.000 -0.108 -0.108 
M2 15 0.005 Medium 1.6 -0.343 0.313 -0.303 1.000 -0.103 -0.103 
M3 15 0.01 Medium 3.3 -0.415 0.159 -0.156 0.999 -0.081 -0.081 
X2 15 0.005 Mixed 3.9 -0.198 0.227 -0.300 1.000 -0.065 -0.065 
L1 15 0.001 Large 5.6 -0.371 0.053 -0.144 1.000 -0.103 -0.103 
S4 15 0.05 Small 6.1 -0.414 0.028 -0.121 1.000 -0.109 -0.109 
X3 15 0.01 Mixed 7.7 -0.355 0.110 -0.214 1.000 -0.093 -0.093 
S5 15 0.1 Small 12.3 -0.342 -0.044 -0.089 1.000 -0.113 -0.113 
M4 15 0.05 Medium 16.5 -0.307 -0.052 -0.072 1.000 -0.105 -0.105 
L2 15 0.005 Large 27.9 -0.305 -0.070 -0.076 1.000 -0.111 -0.111 
M5 15 0.1 Medium 32.9 -0.267 -0.078 -0.060 1.000 -0.106 -0.106 
X4 15 0.05 Mixed 38.6 -0.348 -0.037 -0.085 1.000 -0.108 -0.108 
S6 15 0.4 Small 49.2 -0.257 -0.093 -0.065 1.000 -0.113 -0.113 
L3 15 0.01 Large 55.8 -0.277 -0.094 -0.072 1.000 -0.119 -0.119 
X5 15 0.1 Mixed 77.2 -0.290 -0.063 -0.067 1.000 -0.106 -0.106 
M6 15 0.4 Medium 131.6 -0.232 -0.099 -0.051 1.000 -0.106 -0.106 
L4 15 0.05 Large 279 -0.231 -0.107 -0.059 1.000 -0.113 -0.113 
X6 15 0.4 Mixed 309 -0.250 -0.099 -0.059 1.000 -0.113 -0.113 
L5 15 0.1 Large 558 -0.230 -0.112 -0.060 1.000 -0.115 -0.115 
L6 15 0.4 Large 2231.9 -0.231 -0.115 -0.059 1.000 -0.113 -0.113 
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Table 10. Comparison of proportion bias across random effects methods for meta-analysis of rates (selected scenarios with high 
heterogeneity) (continued) 

Scenario K Rate Exposure 
size 

Expected 
count 

Approximate 
untransformed 

Approximate 
log 

Approximate 
square root 

Discrete 
(fraction 

converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

S1 30 0.001 Small 0.1 3.284 4.021 -0.840 0.980 -0.345 -0.358 
M1 30 0.001 Medium 0.3 0.874 1.489 -0.708 1.000 -0.169 -0.169 
S2 30 0.005 Small 0.6 0.109 0.779 -0.559 1.000 -0.134 -0.134 
X1 30 0.001 Mixed 0.7 0.820 1.169 -0.441 1.000 -0.095 -0.095 
S3 30 0.01 Small 1.2 -0.258 0.459 -0.375 0.999 -0.099 -0.099 
M2 30 0.005 Medium 1.6 -0.338 0.381 -0.313 1.000 -0.095 -0.095 
M3 30 0.01 Medium 3.1 -0.436 0.164 -0.185 0.999 -0.101 -0.101 
X2 30 0.005 Mixed 3.3 -0.208 0.232 -0.304 1.000 -0.096 -0.096 
L1 30 0.001 Large 4.6 -0.364 0.100 -0.163 1.000 -0.102 -0.102 
S4 30 0.05 Small 6.2 -0.421 0.034 -0.115 1.000 -0.105 -0.105 
X3 30 0.01 Mixed 6.5 -0.349 0.109 -0.207 1.000 -0.103 -0.103 
S5 30 0.1 Small 12.4 -0.368 -0.035 -0.084 1.000 -0.110 -0.110 
M4 30 0.05 Medium 15.7 -0.328 -0.046 -0.070 1.000 -0.104 -0.104 
L2 30 0.005 Large 23.2 -0.343 -0.058 -0.083 1.000 -0.113 -0.113 
M5 30 0.1 Medium 31.5 -0.294 -0.091 -0.075 1.000 -0.121 -0.121 
X4 30 0.05 Mixed 32.5 -0.356 -0.032 -0.080 1.000 -0.103 -0.103 
L3 30 0.01 Large 46.3 -0.303 -0.084 -0.070 1.000 -0.115 -0.115 
S6 30 0.4 Small 49.8 -0.268 -0.091 -0.060 1.000 -0.111 -0.111 
X5 30 0.1 Mixed 65 -0.324 -0.069 -0.074 1.000 -0.113 -0.113 
M6 30 0.4 Medium 125.8 -0.252 -0.110 -0.061 1.000 -0.118 -0.118 
L4 30 0.05 Large 231.7 -0.259 -0.115 -0.068 1.000 -0.124 -0.124 
X6 30 0.4 Mixed 260.2 -0.260 -0.100 -0.060 1.000 -0.115 -0.115 
L5 30 0.1 Large 463.4 -0.242 -0.110 -0.058 1.000 -0.115 -0.115 
L6 30 0.4 Large 1853.4 -0.238 -0.114 -0.055 1.000 -0.114 -0.114 

“Discrete” stands for discrete likelihood methods. Scenarios are ordered by number of studies (K), and then by expected count. Bold horizontal lines separate scenarios by number 
of studies. White and grey shading separates scenarios with expected counts ≤1, between 1 and 5, and ≥5. We code scenarios using two characters, a letter (indicating sample size 
scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true rates; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1, 6=0.4).  
The column “Discrete (fraction converged)” shows the proportion of simulations for which random effects methods converged successfully. Values of 1.000 mean that random 
effects methods converged successfully in all 1000 simulations in a scenario, and a value of e.g., 0.335 means that they converged in 335 out of 1000 simulations in a scenario. The 
columns “Discrete (random)” and “Discrete (hybrid)” are identical when the fraction converged is 1.000, because the random effects method was used in all simulations.  
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Table 11. Comparison of proportion RMSE across random effects methods for meta-analysis of rates (selected scenarios with high 
heterogeneity) 

Scenario K Rate Exposure 
size 

Expected 
count 

Approximate 
untransformed 

Approximate 
log 

Approximate 
square root 

Discrete 
(fraction 

converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

S1 5 0.001 Small 0.1 2.716 3.365 0.862 0.530 1.180 1.099 
M1 5 0.001 Medium 0.4 0.772 1.450 0.755 0.836 0.693 0.752 
S2 5 0.005 Small 0.7 0.240 0.815 0.630 0.972 0.542 0.560 
S3 5 0.01 Small 1.5 0.363 0.500 0.498 1.000 0.424 0.424 
M2 5 0.005 Medium 1.8 0.411 0.458 0.478 1.000 0.418 0.418 
X1 5 0.001 Mixed 1.9 1.213 1.005 0.463 0.994 0.579 0.582 
M3 5 0.01 Medium 3.6 0.457 0.319 0.355 1.000 0.328 0.328 
L1 5 0.001 Large 5.7 0.444 0.295 0.335 1.000 0.317 0.317 
S4 5 0.05 Small 7.3 0.415 0.273 0.288 1.000 0.283 0.283 
X2 5 0.005 Mixed 9.4 0.294 0.497 0.480 1.000 0.460 0.460 
S5 5 0.1 Small 14.7 0.365 0.258 0.267 1.000 0.270 0.270 
M4 5 0.05 Medium 17.8 0.352 0.238 0.244 1.000 0.252 0.252 
X3 5 0.01 Mixed 18.8 0.363 0.394 0.399 1.000 0.384 0.384 
L2 5 0.005 Large 28.4 0.334 0.241 0.243 1.000 0.250 0.250 
M5 5 0.1 Medium 35.6 0.328 0.241 0.241 1.000 0.251 0.251 
L3 5 0.01 Large 56.8 0.311 0.232 0.229 1.000 0.239 0.239 
S6 5 0.4 Small 58.8 0.305 0.229 0.223 1.000 0.235 0.235 
X4 5 0.05 Mixed 93.8 0.394 0.274 0.283 1.000 0.289 0.289 
M6 5 0.4 Medium 142.3 0.293 0.236 0.229 1.000 0.238 0.238 
X5 5 0.1 Mixed 187.6 0.354 0.250 0.252 1.000 0.259 0.259 
L4 5 0.05 Large 284 0.297 0.235 0.223 1.000 0.237 0.237 
L5 5 0.1 Large 567.9 0.294 0.239 0.228 1.000 0.240 0.240 
X6 5 0.4 Mixed 750.3 0.306 0.229 0.224 1.000 0.240 0.240 
L6 5 0.4 Large 2271.7 0.276 0.229 0.221 1.000 0.231 0.231 
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Table 11. Comparison of proportion RMSE across random effects methods for meta-analysis of rates (selected scenarios with with high 
heterogeneity) (continued) 
Scenario K Rate Exposure 

size 
Expected 
count 

Approximate 
untransformed 

Approximate 
log 

Approximate 
square root 

Discrete 
(fraction 
converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

S1 15 0.001 Small 0.1 3.339 4.054 0.849 0.849 0.810 0.842 
M1 15 0.001 Medium 0.3 0.827 1.487 0.722 0.990 0.520 0.527 
S2 15 0.005 Small 0.6 0.183 0.877 0.605 1.000 0.396 0.396 
X1 15 0.001 Mixed 0.8 0.974 1.065 0.499 0.999 0.439 0.440 
S3 15 0.01 Small 1.2 0.282 0.520 0.451 1.000 0.292 0.292 
M2 15 0.005 Medium 1.6 0.365 0.405 0.384 1.000 0.261 0.261 
M3 15 0.01 Medium 3.3 0.440 0.248 0.253 0.999 0.208 0.208 
X2 15 0.005 Mixed 3.9 0.250 0.392 0.380 1.000 0.270 0.270 
L1 15 0.001 Large 5.6 0.405 0.178 0.228 1.000 0.200 0.200 
S4 15 0.05 Small 6.1 0.446 0.162 0.205 1.000 0.193 0.193 
X3 15 0.01 Mixed 7.7 0.382 0.253 0.295 1.000 0.225 0.225 
S5 15 0.1 Small 12.3 0.384 0.150 0.172 1.000 0.185 0.185 
M4 15 0.05 Medium 16.5 0.351 0.147 0.157 1.000 0.173 0.173 
L2 15 0.005 Large 27.9 0.344 0.152 0.155 1.000 0.174 0.174 
M5 15 0.1 Medium 32.9 0.309 0.150 0.144 1.000 0.167 0.167 
X4 15 0.05 Mixed 38.6 0.388 0.155 0.169 1.000 0.180 0.180 
S6 15 0.4 Small 49.2 0.292 0.156 0.144 1.000 0.169 0.169 
L3 15 0.01 Large 55.8 0.315 0.159 0.147 1.000 0.174 0.174 
X5 15 0.1 Mixed 77.2 0.333 0.149 0.151 1.000 0.171 0.171 
M6 15 0.4 Medium 131.6 0.269 0.160 0.138 1.000 0.165 0.165 
L4 15 0.05 Large 279 0.270 0.165 0.140 1.000 0.169 0.169 
X6 15 0.4 Mixed 309 0.289 0.159 0.140 1.000 0.169 0.169 
L5 15 0.1 Large 558 0.266 0.167 0.139 1.000 0.169 0.169 
L6 15 0.4 Large 2231.9 0.265 0.167 0.136 1.000 0.168 0.168 
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Table 11. Comparison of proportion RMSE across random effects methods for meta-analysis of rates (selected scenarios with high 
heterogeneity) (continued) 
Scenario K Rate Exposure 

size 
Expected 
count 

Approximate 
untransformed 

Approximate 
log 

Approximate 
square root 

Discrete 
(fraction 
converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

S1 30 0.001 Small 0.1 3.288 4.051 0.853 0.980 0.704 0.711 
M1 30 0.001 Medium 0.3 0.881 1.534 0.728 1.000 0.418 0.418 
S2 30 0.005 Small 0.6 0.144 0.835 0.588 1.000 0.300 0.300 
X1 30 0.001 Mixed 0.7 0.873 1.206 0.490 1.000 0.332 0.332 
S3 30 0.01 Small 1.2 0.273 0.515 0.416 0.999 0.222 0.222 
M2 30 0.005 Medium 1.6 0.349 0.431 0.358 1.000 0.206 0.206 
M3 30 0.01 Medium 3.1 0.448 0.214 0.235 0.999 0.173 0.173 
X2 30 0.005 Mixed 3.3 0.235 0.314 0.344 1.000 0.200 0.200 
L1 30 0.001 Large 4.6 0.385 0.163 0.210 1.000 0.166 0.166 
S4 30 0.05 Small 6.2 0.438 0.122 0.166 1.000 0.157 0.157 
X3 30 0.01 Mixed 6.5 0.366 0.192 0.253 1.000 0.178 0.178 
S5 30 0.1 Small 12.4 0.391 0.104 0.131 1.000 0.148 0.148 
M4 30 0.05 Medium 15.7 0.354 0.112 0.126 1.000 0.146 0.146 
L2 30 0.005 Large 23.2 0.363 0.113 0.129 1.000 0.148 0.148 
M5 30 0.1 Medium 31.5 0.316 0.128 0.119 1.000 0.152 0.152 
X4 30 0.05 Mixed 32.5 0.376 0.109 0.130 1.000 0.143 0.143 
L3 30 0.01 Large 46.3 0.325 0.124 0.117 1.000 0.148 0.148 
S6 30 0.4 Small 49.8 0.289 0.125 0.106 1.000 0.141 0.141 
X5 30 0.1 Mixed 65 0.346 0.120 0.123 1.000 0.149 0.149 
M6 30 0.4 Medium 125.8 0.270 0.140 0.107 1.000 0.146 0.146 
L4 30 0.05 Large 231.7 0.277 0.146 0.115 1.000 0.153 0.153 
X6 30 0.4 Mixed 260.2 0.280 0.131 0.104 1.000 0.143 0.143 
L5 30 0.1 Large 463.4 0.260 0.139 0.105 1.000 0.143 0.143 
L6 30 0.4 Large 1853.4 0.256 0.142 0.102 1.000 0.143 0.143 
“Discrete” stands for discrete likelihood methods. Scenarios are ordered by number of studies (K), and then by expected count. Bold horizontal lines separate scenarios by number 
of studies. White and grey shading separates scenarios with expected counts ≤1, between 1 and 5, and ≥5. We code scenarios using two characters, a letter (indicating sample size 
scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true rates; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1, 6=0.4).  
The column “Discrete (fraction converged)” shows the proportion of simulations for which random effects methods converged successfully. Values of 1.000 mean that random 
effects methods converged successfully in all 1000 simulations in a scenario, and a value of e.g., 0.335 means that they converged in 335 out of 1000 simulations in a scenario. The 
columns “Discrete (random)” and “Discrete (hybrid)” are identical when the fraction converged is 1.000, because the random effects method was used in all simulations.  
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Table 12. Comparison of coverage across random effects methods for meta-analysis of rates (selected scenarios with high 
heterogeneity) 
Scenario K Rate Exposure 

size 
Expected 
count 

Approximate 
untransformed 

Approximate 
log 

Approximate 
square root 

Discrete 
(fraction 
converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

S1 5 0.001 Small 0.1 1.000 0.000 0.999 0.530 0.947 0.972 
M1 5 0.001 Medium 0.4 1.000 0.737 0.836 0.836 0.963 0.969 
S2 5 0.005 Small 0.7 1.000 0.849 0.824 0.972 0.971 0.972 
S3 5 0.01 Small 1.5 1.000 0.912 0.891 1.000 0.964 0.964 
M2 5 0.005 Medium 1.8 1.000 0.907 0.894 1.000 0.946 0.946 
X1 5 0.001 Mixed 1.9 1.000 0.737 0.796 0.994 0.788 0.783 
M3 5 0.01 Medium 3.6 1.000 0.929 0.899 1.000 0.942 0.942 
L1 5 0.001 Large 5.7 1.000 0.904 0.865 1.000 0.879 0.879 
S4 5 0.05 small 7.3 1.000 0.897 0.868 1.000 0.876 0.876 
X2 5 0.005 mixed 9.4 1.000 0.643 0.789 1.000 0.557 0.557 
S5 5 0.1 small 14.7 1.000 0.864 0.842 1.000 0.826 0.826 
M4 5 0.05 medium 17.8 1.000 0.886 0.867 1.000 0.853 0.853 
X3 5 0.01 mixed 18.8 1.000 0.625 0.789 1.000 0.545 0.545 
L2 5 0.005 large 28.4 1.000 0.877 0.870 1.000 0.842 0.842 
M5 5 0.1 medium 35.6 0.998 0.851 0.840 1.000 0.825 0.825 
L3 5 0.01 large 56.8 1.000 0.856 0.869 1.000 0.845 0.845 
S6 5 0.4 small 58.8 0.995 0.869 0.875 1.000 0.846 0.846 
X4 5 0.05 mixed 93.8 1.000 0.817 0.809 1.000 0.718 0.718 
M6 5 0.4 medium 142.3 0.998 0.828 0.849 1.000 0.813 0.813 
X5 5 0.1 mixed 187.6 0.999 0.827 0.815 1.000 0.776 0.776 
L4 5 0.05 large 284 1.000 0.827 0.851 1.000 0.809 0.809 
L5 5 0.1 large 567.9 1.000 0.810 0.828 1.000 0.789 0.789 
X6 5 0.4 mixed 750.3 0.993 0.823 0.820 1.000 0.802 0.802 
L6 5 0.4 large 2271.7 0.999 0.831 0.851 1.000 0.784 0.784 
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Table 12. Comparison of coverage across random effects methods for meta-analysis of rates (selected scenarios with high 
heterogeneity) (continued) 

Scenario K Rate Exposure 
size 

Expected 
count 

Approximate 
untransformed 

Approximate 
log 

Approximate 
square root 

Discrete 
(fraction 
converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

S1 15 0.001 small 0.1 1.000 0.000 0.542 0.849 0.967 0.972 
M1 15 0.001 medium 0.3 1.000 0.168 0.444 0.990 0.980 0.970 
S2 15 0.005 small 0.6 1.000 0.503 0.545 1.000 0.980 0.980 
X1 15 0.001 mixed 0.8 1.000 0.232 0.681 0.999 0.912 0.911 
S3 15 0.01 small 1.2 1.000 0.624 0.710 1.000 0.965 0.965 
M2 15 0.005 medium 1.6 1.000 0.713 0.774 1.000 0.949 0.949 
M3 15 0.01 medium 3.3 1.000 0.833 0.875 0.999 0.930 0.930 
X2 15 0.005 mixed 3.9 1.000 0.661 0.730 1.000 0.837 0.837 
L1 15 0.001 large 5.6 1.000 0.928 0.856 1.000 0.897 0.897 
S4 15 0.05 small 6.1 1.000 0.921 0.869 1.000 0.890 0.890 
X3 15 0.01 mixed 7.7 1.000 0.773 0.780 1.000 0.851 0.851 
S5 15 0.1 small 12.3 0.999 0.917 0.874 1.000 0.854 0.854 
M4 15 0.05 medium 16.5 1.000 0.901 0.880 1.000 0.842 0.842 
L2 15 0.005 large 27.9 1.000 0.887 0.893 1.000 0.865 0.865 
M5 15 0.1 medium 32.9 0.996 0.882 0.897 1.000 0.856 0.856 
X4 15 0.05 mixed 38.6 1.000 0.906 0.865 1.000 0.859 0.859 
S6 15 0.4 small 49.2 0.978 0.825 0.870 1.000 0.821 0.821 
L3 15 0.01 large 55.8 1.000 0.836 0.868 1.000 0.822 0.822 
X5 15 0.1 mixed 77.2 0.997 0.884 0.863 1.000 0.847 0.847 
M6 15 0.4 medium 131.6 0.990 0.816 0.895 1.000 0.835 0.835 
L4 15 0.05 large 279 1.000 0.787 0.885 1.000 0.823 0.823 
X6 15 0.4 mixed 309 0.979 0.804 0.874 1.000 0.827 0.827 
L5 15 0.1 large 558 1.000 0.783 0.877 1.000 0.814 0.814 
L6 15 0.4 large 2231.9 0.993 0.778 0.893 1.000 0.810 0.810 
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Table 12. Comparison of coverage across random effects methods for meta-analysis of rates (selected scenarios with high 
heterogeneity) (continued) 
Scenario K Rate Exposure 

size 
Expected 
count 

Approximate 
untransformed 

Approximate 
log 

Approximate 
square root 

Discrete 
(fraction 
converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

S1 30 0.001 small 0.1 1.000 0.000 0.223 0.980 0.978 0.958 
M1 30 0.001 medium 0.3 1.000 0.000 0.192 1.000 0.980 0.980 
S2 30 0.005 small 0.6 1.000 0.174 0.306 1.000 0.970 0.970 
X1 30 0.001 mixed 0.7 1.000 0.000 0.470 1.000 0.931 0.931 
S3 30 0.01 small 1.2 1.000 0.362 0.508 0.999 0.963 0.963 
M2 30 0.005 medium 1.6 1.000 0.398 0.620 1.000 0.934 0.934 
M3 30 0.01 medium 3.1 1.000 0.754 0.747 0.999 0.887 0.887 
X2 30 0.005 mixed 3.3 1.000 0.598 0.569 1.000 0.886 0.886 
L1 30 0.001 large 4.6 1.000 0.829 0.764 1.000 0.884 0.884 
S4 30 0.05 small 6.2 1.000 0.926 0.815 1.000 0.848 0.848 
X3 30 0.01 mixed 6.5 1.000 0.796 0.676 1.000 0.866 0.866 
S5 30 0.1 small 12.4 0.989 0.935 0.848 1.000 0.803 0.803 
M4 30 0.05 medium 15.7 1.000 0.884 0.862 1.000 0.784 0.784 
L2 30 0.005 large 23.2 1.000 0.886 0.838 1.000 0.788 0.788 
M5 30 0.1 medium 31.5 0.994 0.809 0.859 1.000 0.739 0.739 
X4 30 0.05 mixed 32.5 1.000 0.927 0.860 1.000 0.834 0.834 
L3 30 0.01 large 46.3 1.000 0.836 0.865 1.000 0.762 0.762 
S6 30 0.4 small 49.8 0.935 0.796 0.883 1.000 0.770 0.770 
X5 30 0.1 mixed 65 0.997 0.853 0.840 1.000 0.760 0.760 
M6 30 0.4 medium 125.8 0.961 0.710 0.877 1.000 0.728 0.728 
L4 30 0.05 large 231.7 1.000 0.677 0.838 1.000 0.704 0.704 
X6 30 0.4 mixed 260.2 0.946 0.737 0.870 1.000 0.749 0.749 
L5 30 0.1 large 463.4 1.000 0.692 0.873 1.000 0.741 0.741 
L6 30 0.4 large 1853.4 0.980 0.666 0.886 1.000 0.730 0.730 
“Discrete” stands for discrete likelihood methods. Scenarios are ordered by number of studies (K), and then by expected count. Bold horizontal lines separate scenarios by number 
of studies. White and grey shading separates scenarios with expected counts ≤1, between 1 and 5, and ≥5. We code scenarios using two characters, a letter (indicating sample size 
scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true rates; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1, 6=0.4).  
The column “Discrete (fraction converged)” shows the proportion of simulations for which random effects methods converged successfully. Values of 1.000 mean that random 
effects methods converged successfully in all 1000 simulations in a scenario, and a value of e.g., 0.335 means that they converged in 335 out of 1000 simulations in a scenario. The 
columns “Discrete (random)” and “Discrete (hybrid)” are identical when the fraction converged is 1.000, because the random effects method was used in all simulations.  
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Practical Recommendations for Meta-Analysis of Proportions 
or Rates 

The following are practical recommendations for meta-analysts, and probably apply 
generally. For most meta-analyses we would think that a random effects analysis will be adopted, 
because clinical and methodological diversity are more often present than not.  
 
Recommendation 1. Use meta-analysis methods that model within study data using the 
binomial likelihood (for proportions) or the Poisson likelihood (for rates). 

If the number of events is 0 for the vast majority of studies, the random effects methods may 
not converge. It is reasonable to use a hybrid strategy where if the random effects analysis fails 
to converge, one performs a meta-analysis with the fixed effects discrete likelihood method.  
 
Recommendation 2. If recommendation 1 cannot be followed,i use meta-analysis models that 
rely on a variance stabilizing transformation (arcsine for proportions and square root for rates 
along with the normal approximation to the binomial (for proportions) or the Poisson (for rates). 

Recommendations 1 and 2 both favor methods that do not suffer from the correlation 
between the estimate of the proportion and its variance (or the estimate of the rate and its 
variance), which is a problem with approximate methods on untransformed or canonically 
transformed proportions (rates). Further, using methods other than those in recommendations 1 
and 2 may necessitate continuity corrections in applications with rare events. Continuity 
corrections can yield very biased summary proportions or rates, and thus should be avoided. 
Therefore, using methods other than the ones above recommended above can affect the meta-
analysis summary results and conclusions. 

If the estimated proportions and sample sizes in all studies are such that the expected number 
of events and the expected number of no events are relatively large (e.g., at least 5) the examined 
methods converge. Thus the choice of method is arguably less important. Similarly for rates, 
methods converge when the expected numbers of events are relatively large for all studies (e.g., 
more than 5). 
  

iFor example, if someone does not have access to software that can perform the analyses suggested in 
Recommendation 1.  
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Discussion 
We describe a comprehensive simulation study of a wide range of methods for meta-analysis 

of proportions and rates. Based on the proportion bias, proportion RMSE and coverage 
probabilities of the compared methods we make concrete and clear recommendations of 
immediate relevance to meta-analytic practice. Specifically, we recommend the discrete 
likelihood methods that model within study data using the binomial likelihood (for proportions) 
or the Poisson likelihood (for rates) over methods that use normal distributions to approximate 
within-study variability. If approximate methods must be used (e.g., because there is no access to 
specialized statistical packages) we recommend using a variance stabilizing transformation, that 
is, the arcsine for proportions and the square root for rates.  

Based on the observations gleaned from this study we conjecture that three major sources of 
statistical bias have to be dealt with in the meta-analysis of proportions or rates. The first two can 
be dealt with in a straightforward manner by following the aforementioned recommendations. 
The third source of statistical bias cannot be dealt with, but we believe that it does not change the 
recommendations, because it leaves the relative ranking of the available methods unchanged. We 
expand below.  

Bias Stemming From Continuity Corrections 
We have shown clearly that the use of correction factors can introduce arbitrary bias, and 

degrade RMSE and coverage. Methods necessitating continuity corrections should therefore be 
avoided when events are rare (or, for proportions, when all units experience an event). The 
discrete likelihood method (recommendation #1) and the approximate method using the variance 
stabilizing transformation (recommendation #2) are not susceptible to this limitation.  

Bias Stemming From the Correlation Between Estimate and 
Its Variance 

A second source of bias stems from the correlation that is induced between the point estimate 
and its variance for untransformed or canonically transformed data. Intuitively, this correlation 
results in a “distortion” of the weights assigned to studies in inverse variance meta-analysis, and 
this results in a statistical bias. The discrete likelihood method (recommendation #1) is not 
susceptible to this problem. For approximate methods, the variance stabilizing transformation 
(recommendation #2) removes the correlation between estimates and their variance, and corrects 
the statistical bias.  

Note that this bias is not limited to rare event situations, but applies throughout the range of 
proportions or rates. Indeed, we found clear differences between the three approximate methods 
in the proportion bias, proportion RMSE and coverage probabilities, with the variance stabilizing 
transformations being preferable. In a limited simulation study comparing the discrete likelihood 
method with the canonical transformation for the meta-analysis of proportions, Hamza et al. 
conjectured that all approximate methods would have comparably large bias, because “there will 
always be a correlation between the estimate and the within-study variance, as they are 
determined by the same parameter […]”.6 Hamza et al. did not recognize the arcsine 
transformation as a variance stabilizing one, i.e., one that does not suffer from the bias induced 
by the correlation between the estimates of the proportion (or rate) and the variance. 
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Bias Stemming From a Misspecification of the Random 
Effects Distribution 

Finally, the third source of bias stems from the fact that the true random effects distribution 
of the proportions or rates is unknown. Meta-analysis models that assume a random effects 
distribution other than the true will introduce some statistical bias. The more extreme the 
departure of the assumed random effects distribution from the true one, the greater the bias. 
Because the true distribution is unknowable, it is impossible to eliminate this bias. Instead, one 
can examine the relative performance of meta-analysis methods in data simulated using 
alternative random effects distributions. General recommendations are feasible when the relative 
ranking of the methods is stable across the simulated random effects distributions. We simulated 
beta and uniform distributions in the proportion scale and (gamma and uniform distributions for 
rates). Excluding the approximate methods that use untransformed data, the other meta-analysis 
methods make calculations in a transformed scale (i.e., using the logit() or the arcsin(sqrt()) 
transformation for proportions, and the log() and sqrt() transformation for rates).j  

All these functions are concave for proportions between 0, 0.50, and therefore introduce a 
negative bias: The mean in the transformed scale will be smaller than the transformation of the 
mean in the proportion scale. For concreteness, consider that the true proportion is 0.10 and that 
the square root of the heterogeneity parameter is 0.05 (large heterogeneity). These values 
correspond to a Beta(3.5, 31.5). The mean of the logit transformation of this Beta is -2.331 (by 
numerical Monte Carlo integration), which corresponds to 0.089 in the proportion scale, a -11 
percent proportion bias. Using a uniform distribution instead of a beta yields a similar bias. The 
specific distribution would be a Uniform(0.0134, 0.1866), and the mean of its logit-transformed 
values is -2.368, which corresponds to 0.086 in the proportion scale, and a proportion bias of -14 
percent. If one were using the variance stabilizing transformation, which is less “drastic”k, the 
statistical bias is smaller: -2.6 percent for the beta, and -3.4 percent for the uniform.  

The canonical and variance stabilizing transformations for proportions are point-symmetric 
around 0.50. Thus, they have no bias at exactly 0.50, and have a positive bias above 0.50. In our 
simulations we observed that for true proportions equal to 0.50, the bias with the canonical and 
variance stabilizing transformations is almost zero.  

The analogous applies to rates. However, the canonical and variance-stabilizing 
transformations for rates are strictly concave, and therefore have a negative bias throughout the 
positive domain, which diminishes as the expected number of events rises.  

As discussed above, the bias introduced by the potential misspecification of the true random 
effects distribution in the meta-analysis affects meta-analysis methods using canonical and 
variance-stabilizing transformations, as well as the discrete likelihood methods in a similar 
manner. We conjecture that for many forms of sampling distributions the relative ordering of the 
methods with respect to proportion bias and RMSE and coverage will remain relatively stable. 
Therefore, the recommendations #1 and #2 above are reasonable in general. For example, Hamza 

jNote that this holds for the discrete likelihood methods as well: for proportions, the link function is the logit() and 
for rates the log(). 
kFor proportions between 0 and 0.50, the first derivatives of the logit() and arcsine(sqrt()) transformations are both 
negative, but that of the logit is strictly smaller (more extreme). Because the statistical bias is determined by the first 
derivative of the transformations, it is more extreme for the canonical (former) compared to the variance stabilizing 
(latter) transformation. Because 0.50 is an inflection point for both transformations, there is no bias for mean 
proportions of 0.50. 
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et al.6 assumed a log normal distribution for the random effects, which removes the third type of 
bias, as it matches the analysis methods exactly. Hamza et al. showed that the discrete likelihood 
method outperforms the approximate method using the canonical link (presumably because of 
the two other biases),6 which is in accordance to our first recommendation.  

We find it encouraging that our results (which focus on the summary proportion) did not 
seem to depend on the form of the distribution for proportions simulated: results were very 
consistent between scenarios using the uniform or the beta (gamma) distribution. This is not 
surprising given the above discussion. Further, it may be that the number of studies in our 
simulation study was small enough that —so long as the standard deviation is the same—it does 
not make a difference whether they were generated by a uniform or by a beta (or gamma). The 
shape of the distribution may have a large impact on the statistical properties of the heterogeneity 
estimator with each method. However, we did not focus on this aspect, which is reserved for 
future work.  

Other Considerations 
The recommended discrete likelihood methods are straightforward to fit in the familiar 

generalized linear mixed models (GLMM) framework. Meta-analysts who are not statistically 
sophisticated and are not familiar with statistical programming environments such as R, Stata or 
SAS will probably be challenged to follow our primary recommendation. First, most of these 
environments do not have an elaborate point-and-click interface, and some programming may be 
needed. Second, GLMM software routines can be unstable, and the default options may need 
adjustment to ensure convergence of the fitting algorithm. Specifically, to evaluate the log 
likelihood of a GLMM is it necessary to perform a numerical integration step.22 The numerical 
integration is achieved by quadrature or adaptive quadrature algorithms, which become more 
precise (and more computationally expensive, i.e., slow) when they use more integration points. 
It is good practice to examine the robustness of the results using increasing number of integration 
points (e.g., 8, 12, 16, 20, 25).10-12 The estimate of the between-study variance rather than the 
estimate of the summary proportion is more sensitive to the number of integration points.11 

So what should one do if the GLMM algorithm does not converge? In our experience, non-
convergence can be an issue if all or almost all studies have 0 in the numerators of the 
proportions or rates. Increasing the number of integration points does not necessarily fix the 
problem. When this happens, we propose to perform a meta-analysis using the discrete 
likelihood and fixed effects, or the approximate method with the variance stabilizing 
transformation as a secondary approach.  

As of this writing, none of the standalone meta-analysis packages performs GLMM-based 
meta-analysis of proportions or rates,13,14,23 despite the fact that it can be very easily added in 
those with a modular open source architecture such as OpenMeta-Analyst.14 Therefore, the 
second recommendation to use a variance stabilizing transformation is important, as it is very 
easy to implement even in a spreadsheet program such as Microsoft Excel ™.  

In sum, we believe that enough information exists to provide strong guidance on the 
performance characteristics of alternative methods for the meta-analysis of proportions and rates. 
While differences between the approximate and the discrete likelihood methods attenuate when 
the expected count is larger than 5, i.e., when the sample sizes or the exposures are large and the 
proportions/rates are not close to zero, it is probably best to avoid analyses of untransformed or 
logit proportions. Analysts experienced with programming and GLMMs should prefer the 
discrete likelihood methods. When these fail or when the analyst is not experienced enough to 
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use them, the variance stabilizing transformations will usually offer a safe alternative since many 
meta-analyses will have large enough expected counts and rates. Only if sufficient data are 
available and other options are not practical, should untransformed or logit proportions be used.  
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Appendix A. Additional Descriptions of Methods and 
Results 

Table A-1 Sample sizes used in simulations for proportions 
 Small Heterogeneity Medium Large Mixed 

5 
Studies 

41 50 33 26 21 120 69 161 154 138 339 974 619 675 576 26 9 109 63 887 

15 
Studies 

32 28 15 30 6 46 
45 33 21 29 26 20 
19 44 11 

176 78 152 85 60 92 73 55 
126 164 113 126 138 165 118 

655 326 815 889 991 373 
262 565 956 245 701 282 
881 810 676 

46 42 21 16 35 26 32 
83 197 119 198 100 
58 241 794 

30 
Studies 

20 23 22 15 8 13 
27 11 38 48 44 31 
50 40 33 45 43 16 
8 34 42 35 24 29 
31 30 5 20 21 13 

 60 71 153 184 183 105 99 
145 112 59 153 59 90 70 154 
134 124 176 59 66 104 94 75 
66 117 62 144 113 132 62 

270 626 212 267 760 217 
659 946 547 884 829 342 
680 261 272 206 259 440 
906 717 234 421 772 714 
477 512 529 640 900 958 

43 36 49 11 27 5 18 
14 31 27 50 47 9 50 
12 157 199 178 91 
121 173 107 181 155 
169 120 186 441 324 
782 

These vectors were drawn randomly and then kept fixed throughout the simulations.
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Table A-2 Sample sizes used in simulations for rates 
Number 

of 
studies 

Small Heterogeneity Medium Large Mixed 

K=5 170 199 142 120 
104 

339 237 421 407 375 2143 9686 5469 6137 
4961 

120 64 317 226 
8652 

K=15 138 125 84 132 53 
186 181 142 102 
130 120 100 99 180 
72 

452 256 403 269 220 284 
245 210 352 427 325 352 
375 429 336 

5893 1994 7792 8674 
9889 2552 1232 4823 
9467 1025 6443 1463 
8575 7733 6143 

187 171 102 86 149 
119 139 265 494 
338 495 299 216 
977 7549 

K=30 101 110 107 85 62 
79 123 71 161 193 
178 138 198 165 
142 184 176 87 61 
145 173 148 114 
129 136 132 52 100 
105 77 

 220 242 405 467 466 309 
297 389 323 218 406 217 
280 240 407 367 348 452 
218 231 308 288 249 231 
334 223 388 326 363 223 

1330 5551 633 1284 
7146 691 5941 9358 
4609 8613 7966 2180 
6198 1220 1353 561 
1194 3349 8876 6638 
903 3120 7281 6598 
3785 4205 4399 5724 
8807 9493 

175 151 197 70 125 
50 95 82 138 124 
199 189 64 197 73 
414 497 455 281 
342 446 314 461 
409 437 339 471 
3353 1967 7399 

These vectors were drawn randomly and then kept fixed throughout the simulations. 
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Table A-3. Formulas for setting the parameters of beta, uniform and gamma distributions 
Parameters for the 

distribution of the true 
effects in simulations 

Explanations for 
simulations of 

proportions and rates 

Formulas for the first 
parameter 

Formulas for the second 
parameter 

Beta: parameters  and 

 

For proportions, set  

 

For rates: Not applicable 

   

Uniform: bounds  

[a, b]  

For proportions, set  

 

For rates, set  

 

  

Gamma: parameters  

and  

For proportions: Not 

applicable  

For rates, set  

 

  

In the above, j indexes the simulation scenario. As described in the methods, the standard deviation of the true effects is 
parameterized as a multiplier on the magnitude of the true proportion or rate. When  the above distributions are not used 

and all simulated studies have the same true effect (see Methods).  

and,j j jµ π σ τ π= =

and,j j jµ π σ τ π= =

and,j j jµ λ σ τ λ= =

3b µ σ= +

and,j j jµ λ σ τ λ= =

0jτ =
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Table A-4. Comparison of proportion bias across random effects methods (selected scenarios with zero heterogeneity) 
Scenario K Proportion Sample 

size 
Exp count Approximate 

untransformed 
Approximate 

logit 
Approximate 

arcsine 
Discrete 
(fraction 

converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

S1 5 0.001 small <0.1 12.422 14.531 -0.733 0.168 5.039 0.015 
M1 5 0.001 medium 0.1 2.946 3.700 -0.680 0.482 0.947 -0.061 
S2 5 0.005 small 0.2 1.949 2.698 -0.635 0.569 0.646 -0.064 
X1 5 0.001 mixed 0.2 0.421 6.042 -0.258 0.652 0.467 -0.043 
S3 5 0.01 small 0.3 0.656 1.233 -0.557 0.818 0.109 -0.093 
L1 5 0.001 large 0.6 0.118 0.663 -0.401 0.956 -0.001 -0.045 
M2 5 0.005 medium 0.6 0.080 0.605 -0.436 0.956 -0.049 -0.091 
X2 5 0.005 mixed 1.1 0.061 0.743 -0.202 0.994 0.022 0.016 
M3 5 0.01 medium 1.3 -0.189 0.288 -0.262 0.997 -0.043 -0.046 
S4 5 0.05 small 1.7 -0.191 0.200 -0.173 1.000 -0.026 -0.026 
X3 5 0.01 mixed 2.2 -0.005 0.318 -0.223 1.000 0.016 0.016 
L2 5 0.005 large 3.2 -0.184 0.094 -0.108 1.000 -0.032 -0.032 
S5 5 0.1 small 3.4 -0.132 0.083 -0.065 1.000 -0.011 -0.011 
L3 5 0.01 large 6.4 -0.113 0.026 -0.058 1.000 -0.029 -0.029 
M4 5 0.05 medium 6.4 -0.083 0.043 -0.032 1.000 -0.007 -0.007 
X4 5 0.05 mixed 10.9 -0.056 0.063 -0.080 1.000 0.003 0.003 
M5 5 0.1 medium 12.8 -0.032 0.021 -0.007 1.000 0.002 0.002 
S6 5 0.4 small 13.7 -0.009 0.004 -0.003 1.000 -0.001 -0.001 
S7 5 0.5 small 17.1 -0.001 -0.001 -0.001 1.000 -0.001 -0.001 
X5 5 0.1 mixed 21.9 -0.045 0.025 -0.043 1.000 -0.001 -0.001 
L4 5 0.05 large 31.8 -0.017 0.007 -0.005 0.998 -0.001 -0.001 
M6 5 0.4 medium 51.4 -0.002 0.001 -0.001 1.000 0.000 0.000 
L5 5 0.1 large 63.7 -0.007 0.003 -0.002 1.000 0.000 0.000 
M7 5 0.5 medium 64.2 -0.001 -0.001 -0.001 1.000 -0.001 -0.001 
X6 5 0.4 mixed 87.5 -0.006 0.002 -0.002 1.000 -0.001 -0.001 
X7 5 0.5 mixed 109.4 -0.001 -0.001 -0.001 1.000 -0.001 -0.001 
L6 5 0.4 large 254.6 0.001 0.001 0.001 0.999 0.001 0.001 
L7 5 0.5 large 318.3 0.001 0.001 0.001 0.998 0.001 0.001 
S1 15 0.001 small <0.1 14.550 19.530 -0.887 0.336 0.456 -0.511 
M1 15 0.001 medium 0.1 3.192 4.308 -0.815 0.808 -0.106 -0.278 
X1 15 0.001 mixed 0.1 0.986 5.984 -0.634 0.864 -0.039 -0.169 
S2 15 0.005 small 0.1 2.366 3.687 -0.784 0.875 -0.120 -0.230 
S3 15 0.01 small 0.3 0.851 1.747 -0.678 0.982 -0.131 -0.146 
M2 15 0.005 medium 0.6 0.117 0.775 -0.520 0.999 -0.072 -0.072 
L1 15 0.001 large 0.6 0.017 0.741 -0.505 1.000 -0.084 -0.084 
X2 15 0.005 mixed 0.7 0.001 0.886 -0.402 1.000 -0.037 -0.037 
M3 15 0.01 medium 1.1 -0.215 0.390 -0.321 0.999 -0.033 -0.032 
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Scenario K Proportion Sample 
size 

Exp count Approximate 
untransformed 

Approximate 
logit 

Approximate 
arcsine 

Discrete 
(fraction 

converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

X3 15 0.01 mixed 1.3 -0.134 0.388 -0.295 1.000 -0.016 -0.016 
S4 15 0.05 small 1.4 -0.250 0.302 -0.272 1.000 -0.036 -0.036 
S5 15 0.1 small 2.7 -0.205 0.137 -0.109 1.000 -0.014 -0.014 
L2 15 0.005 large 3.1 -0.228 0.137 -0.119 0.999 -0.021 -0.021 
M4 15 0.05 medium 5.7 -0.127 0.070 -0.045 1.000 -0.006 -0.006 
L3 15 0.01 large 6.3 -0.128 0.067 -0.046 0.999 -0.006 -0.006 
X4 15 0.05 mixed 6.7 -0.118 0.061 -0.086 0.999 -0.010 -0.010 
S6 15 0.4 small 10.8 -0.014 0.011 -0.003 0.998 0.002 0.002 
M5 15 0.1 medium 11.5 -0.057 0.028 -0.018 0.999 -0.003 -0.003 
X5 15 0.1 mixed 13.4 -0.069 0.033 -0.026 1.000 0.001 0.001 
S7 15 0.5 small 13.5 0.000 0.000 0.000 1.000 0.000 0.000 
L4 15 0.05 large 31.4 -0.024 0.011 -0.006 0.994 -0.001 -0.001 
M6 15 0.4 medium 45.9 -0.003 0.002 -0.001 0.997 0.000 0.000 
X6 15 0.4 mixed 53.5 -0.005 0.002 -0.001 0.998 0.000 0.000 
M7 15 0.5 medium 57.4 0.001 0.001 0.001 0.996 0.001 0.001 
L5 15 0.1 large 62.8 -0.010 0.006 -0.002 0.993 0.000 0.000 
X7 15 0.5 mixed 66.9 0.000 0.000 0.000 0.999 0.000 0.000 
L6 15 0.4 large 251.4 0.000 0.000 0.000 0.996 0.000 0.000 
L7 15 0.5 large 314.2 0.000 0.000 0.000 0.985 0.000 0.000 
S1 30 0.001 small <0.1 14.013 19.620 -0.937 0.537 -0.684 -0.830 
M1 30 0.001 medium 0.1 3.346 4.654 -0.854 0.949 -0.333 -0.367 
X1 30 0.001 mixed 0.1 1.114 6.593 -0.733 0.979 -0.200 -0.217 
S2 30 0.005 small 0.1 2.248 3.701 -0.823 0.983 -0.278 -0.291 
S3 30 0.01 small 0.3 0.793 1.771 -0.696 1.000 -0.130 -0.130 
M2 30 0.005 medium 0.5 0.141 0.846 -0.561 1.000 -0.071 -0.071 
L1 30 0.001 large 0.5 0.101 0.864 -0.542 1.000 -0.059 -0.059 
X2 30 0.005 mixed 0.6 -0.081 1.021 -0.418 1.000 -0.043 -0.043 
M3 30 0.01 medium 1.1 -0.210 0.419 -0.360 0.998 -0.037 -0.037 
X3 30 0.01 mixed 1.3 -0.193 0.456 -0.274 0.998 -0.009 -0.010 
S4 30 0.05 small 1.4 -0.263 0.310 -0.275 1.000 -0.027 -0.027 
S5 30 0.1 small 2.7 -0.221 0.150 -0.115 0.999 -0.008 -0.008 
L2 30 0.005 large 2.7 -0.264 0.182 -0.138 1.000 -0.012 -0.012 
M4 30 0.05 medium 5.4 -0.149 0.082 -0.051 0.999 -0.006 -0.006 
L3 30 0.01 large 5.5 -0.162 0.081 -0.063 0.998 -0.011 -0.011 
X4 30 0.05 mixed 6.4 -0.110 0.065 -0.069 1.000 -0.007 -0.007 
M5 30 0.1 medium 10.8 -0.069 0.032 -0.021 1.000 -0.004 -0.004 
S6 30 0.4 small 10.9 -0.017 0.009 -0.005 0.998 0.000 0.000 
X5 30 0.1 mixed 12.7 -0.063 0.030 -0.027 0.998 -0.001 -0.001 
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Scenario K Proportion Sample 
size 

Exp count Approximate 
untransformed 

Approximate 
logit 

Approximate 
arcsine 

Discrete 
(fraction 

converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

S7 30 0.5 small 13.6 -0.002 -0.002 -0.002 1.000 -0.002 -0.002 
L4 30 0.05 large 27.4 -0.030 0.014 -0.008 0.993 -0.001 -0.001 
M6 30 0.4 medium 43.0 -0.002 0.004 0.001 0.997 0.002 0.002 
X6 30 0.4 mixed 50.8 -0.004 0.003 0.000 0.997 0.001 0.001 
M7 30 0.5 medium 53.8 0.000 0.000 0.000 0.999 0.000 0.000 
L5 30 0.1 large 54.9 -0.013 0.006 -0.003 0.988 0.000 0.000 
X7 30 0.5 mixed 63.5 0.000 0.000 0.000 0.997 0.000 0.000 
L6 30 0.4 large 219.4 0.000 0.001 0.000 0.992 0.001 0.001 
L7 30 0.5 large 274.3 0.000 0.000 0.000 0.986 0.000 0.000 

“Discrete” stands for discrete likelihood methods. Scenarios are ordered by number of studies (K), and then by expected count. Bold horizontal lines separate scenarios by number 
of studies. White and grey shading separates scenarios with expected counts ≤1, between 1 and 5, and ≥5. We code scenarios using two characters, a letter (indicating sample size 
scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1, 6=0.4, 7=0.5).  
The column “Discrete (fraction converged)” shows the proportion of simulations for which random effects methods converged successfully. Values of 1.000 mean that random 
effects methods converged successfully in all 1000 simulations in a scenario, and a value of e.g., 0.335 means that they converged in 335 out of 1000 simulations in a scenario. The 
columns “Discrete (random)” and “Discrete (hybrid)” are identical when the fraction converged is 1.000, because the random effects method was used in all simulations.   
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Table A-5. Comparison of proportion RMSE across random effects methods (selected scenarios with zero heterogeneity) 
Scenario K Proportion Sample 

size 
Exp 

count 
Approximate 

untransformed 
Approximate 

logit 
Approximate 

arcsine 
Discrete 
(fraction 

converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

S1 5 0.001 small <0.1 12.454 14.629 1.034 0.168 5.336 2.370 
M1 5 0.001 medium 0.1 2.978 3.813 0.882 0.482 1.350 1.182 
S2 5 0.005 small 0.2 1.999 2.847 0.850 0.569 1.111 1.064 
X1 5 0.001 mixed 0.2 1.020 6.099 0.846 0.652 0.985 0.990 
S3 5 0.01 small 0.3 0.732 1.406 0.743 0.818 0.661 0.734 
L1 5 0.001 large 0.6 0.329 0.873 0.644 0.956 0.562 0.588 
M2 5 0.005 medium 0.6 0.286 0.827 0.649 0.956 0.544 0.572 
X2 5 0.005 mixed 1.1 0.436 0.898 0.450 0.994 0.438 0.444 
M3 5 0.01 medium 1.3 0.329 0.500 0.477 0.997 0.400 0.403 
S4 5 0.05 small 1.7 0.342 0.400 0.413 1.000 0.355 0.355 
X3 5 0.01 mixed 2.2 0.290 0.478 0.418 1.000 0.313 0.313 
L2 5 0.005 large 3.2 0.309 0.271 0.297 1.000 0.260 0.260 
S5 5 0.1 small 3.4 0.269 0.241 0.257 1.000 0.234 0.234 
L3 5 0.01 large 6.4 0.212 0.176 0.193 1.000 0.180 0.180 
M4 5 0.05 medium 6.4 0.197 0.178 0.181 1.000 0.175 0.175 
X4 5 0.05 mixed 10.9 0.167 0.179 0.220 1.000 0.153 0.153 
M5 5 0.1 medium 12.8 0.128 0.121 0.122 1.000 0.121 0.121 
S6 5 0.4 small 13.7 0.100 0.094 0.097 1.000 0.096 0.096 
S7 5 0.5 small 17.1 0.080 0.076 0.078 1.000 0.077 0.077 
X5 5 0.1 mixed 21.9 0.125 0.109 0.146 1.000 0.103 0.103 
L4 5 0.05 large 31.8 0.079 0.077 0.077 0.998 0.077 0.077 
M6 5 0.4 medium 51.4 0.049 0.048 0.049 1.000 0.048 0.048 
L5 5 0.1 large 63.7 0.053 0.053 0.053 1.000 0.053 0.053 
M7 5 0.5 medium 64.2 0.039 0.039 0.039 1.000 0.039 0.039 
X6 5 0.4 mixed 87.5 0.052 0.043 0.047 1.000 0.041 0.041 
X7 5 0.5 mixed 109.4 0.044 0.036 0.038 1.000 0.034 0.034 
L6 5 0.4 large 254.6 0.023 0.023 0.023 0.999 0.022 0.022 
L7 5 0.5 large 318.3 0.018 0.018 0.018 0.998 0.017 0.017 
S1 15 0.001 small <0.1 14.561 19.564 0.931 0.336 1.877 1.359 
M1 15 0.001 medium 0.1 3.203 4.356 0.849 0.808 0.823 0.860 
X1 15 0.001 mixed 0.1 1.272 6.021 0.747 0.864 0.728 0.771 
S2 15 0.005 small 0.1 2.381 3.733 0.824 0.875 0.740 0.777 
S3 15 0.01 small 0.3 0.877 1.811 0.734 0.982 0.560 0.571 
M2 15 0.005 medium 0.6 0.194 0.856 0.586 0.999 0.377 0.377 
L1 15 0.001 large 0.6 0.153 0.812 0.568 1.000 0.349 0.349 
X2 15 0.005 mixed 0.7 0.288 0.934 0.481 1.000 0.332 0.332 
M3 15 0.01 medium 1.1 0.261 0.471 0.405 0.999 0.253 0.253 
X3 15 0.01 mixed 1.3 0.246 0.454 0.376 1.000 0.235 0.235 

A-7 



 

Scenario K Proportion Sample 
size 

Exp 
count 

Approximate 
untransformed 

Approximate 
logit 

Approximate 
arcsine 

Discrete 
(fraction 

converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

S4 15 0.05 small 1.4 0.297 0.378 0.361 1.000 0.229 0.229 
S5 15 0.1 small 2.7 0.255 0.200 0.199 1.000 0.154 0.154 
L2 15 0.005 large 3.1 0.270 0.205 0.197 0.999 0.151 0.151 
M4 15 0.05 medium 5.7 0.170 0.128 0.122 1.000 0.109 0.109 
L3 15 0.01 large 6.3 0.164 0.120 0.114 0.999 0.100 0.100 
X4 15 0.05 mixed 6.7 0.155 0.120 0.150 0.999 0.101 0.101 
S6 15 0.4 small 10.8 0.069 0.060 0.063 0.998 0.061 0.061 
M5 15 0.1 medium 11.5 0.095 0.077 0.077 0.999 0.074 0.074 
X5 15 0.1 mixed 13.4 0.105 0.078 0.084 1.000 0.071 0.071 
S7 15 0.5 small 13.5 0.054 0.049 0.051 1.000 0.050 0.050 
L4 15 0.05 large 31.4 0.052 0.047 0.046 0.994 0.045 0.045 
M6 15 0.4 medium 45.9 0.030 0.029 0.029 0.997 0.029 0.029 
X6 15 0.4 mixed 53.5 0.031 0.028 0.029 0.998 0.028 0.028 
M7 15 0.5 medium 57.4 0.024 0.024 0.024 0.996 0.024 0.024 
L5 15 0.1 large 62.8 0.033 0.032 0.031 0.993 0.031 0.031 
X7 15 0.5 mixed 66.9 0.023 0.022 0.023 0.999 0.022 0.022 
L6 15 0.4 large 251.4 0.013 0.012 0.012 0.996 0.012 0.012 
L7 15 0.5 large 314.2 0.010 0.010 0.010 0.985 0.010 0.010 
S1 30 0.001 small <0.1 14.017 19.637 0.944 0.537 0.993 0.996 
M1 30 0.001 medium 0.1 3.352 4.677 0.867 0.949 0.759 0.773 
X1 30 0.001 mixed 0.1 1.212 6.610 0.766 0.979 0.588 0.599 
S2 30 0.005 small 0.1 2.254 3.723 0.836 0.983 0.633 0.641 
S3 30 0.01 small 0.3 0.806 1.799 0.722 1.000 0.432 0.432 
M2 30 0.005 medium 0.5 0.181 0.888 0.591 1.000 0.280 0.280 
L1 30 0.001 large 0.5 0.158 0.903 0.574 1.000 0.278 0.278 
X2 30 0.005 mixed 0.6 0.227 1.047 0.468 1.000 0.259 0.259 
M3 30 0.01 medium 1.1 0.236 0.466 0.404 0.998 0.198 0.198 
X3 30 0.01 mixed 1.3 0.244 0.484 0.325 0.998 0.168 0.169 
S4 30 0.05 small 1.4 0.287 0.352 0.321 1.000 0.165 0.165 
S5 30 0.1 small 2.7 0.245 0.182 0.163 0.999 0.105 0.105 
L2 30 0.005 large 2.7 0.286 0.216 0.185 1.000 0.114 0.114 
M4 30 0.05 medium 5.4 0.169 0.113 0.096 0.999 0.079 0.079 
L3 30 0.01 large 5.5 0.180 0.113 0.103 0.998 0.080 0.080 
X4 30 0.05 mixed 6.4 0.133 0.097 0.107 1.000 0.073 0.073 
M5 30 0.1 medium 10.8 0.088 0.062 0.059 1.000 0.055 0.055 
S6 30 0.4 small 10.9 0.051 0.043 0.045 0.998 0.044 0.044 
X5 30 0.1 mixed 12.7 0.082 0.057 0.059 0.998 0.048 0.048 
S7 30 0.5 small 13.6 0.038 0.034 0.036 1.000 0.035 0.035 
L4 30 0.05 large 27.4 0.046 0.037 0.035 0.993 0.034 0.034 
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Scenario K Proportion Sample 
size 

Exp 
count 

Approximate 
untransformed 

Approximate 
logit 

Approximate 
arcsine 

Discrete 
(fraction 

converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

M6 30 0.4 medium 43.0 0.022 0.021 0.021 0.997 0.021 0.021 
X6 30 0.4 mixed 50.8 0.022 0.020 0.020 0.997 0.020 0.020 
M7 30 0.5 medium 53.8 0.018 0.017 0.017 0.999 0.017 0.017 
L5 30 0.1 large 54.9 0.027 0.025 0.024 0.988 0.024 0.024 
X7 30 0.5 mixed 63.5 0.017 0.016 0.016 0.997 0.016 0.016 
L6 30 0.4 large 219.4 0.010 0.010 0.010 0.992 0.010 0.010 
L7 30 0.5 large 274.3 0.008 0.008 0.008 0.986 0.008 0.008 

“Discrete” stands for discrete likelihood methods. Scenarios are ordered by number of studies (K), and then by expected count. Bold horizontal lines separate scenarios by number 
of studies. White and grey shading separates scenarios with expected counts ≤1, between 1 and 5, and ≥5. We code scenarios using two characters, a letter (indicating sample size 
scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1, 6=0.4, 7=0.5).  
The column “Discrete (fraction converged)” shows the proportion of simulations for which random effects methods converged successfully. Values of 1.000 mean that random 
effects methods converged successfully in all 1000 simulations in a scenario, and a value of e.g., 0.335 means that they converged in 335 out of 1000 simulations in a scenario. The 
columns “Discrete (random)” and “Discrete (hybrid)” are identical when the fraction converged is 1.000, because the random effects method was used in all simulations.   
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Table A-6. Comparison of coverage across random effects methods (selected scenarios with zero heterogeneity) 
Scenario K Proportion Sample 

size 
Exp count Approximate 

untransformed 
Approximate 

logit 
Approximate 

arcsine 
Discrete 
(fraction 

converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

S1 5 0.001 small <0.1 1.000 0.000 1.000 0.168 0.988 1.000 
M1 5 0.001 medium 0.1 1.000 0.000 1.000 0.482 0.977 1.000 
S2 5 0.005 small 0.2 1.000 0.431 1.000 0.569 0.952 1.000 
X1 5 0.001 mixed 0.2 0.998 0.000 0.650 0.652 0.972 0.998 
S3 5 0.01 small 0.3 1.000 0.774 0.818 0.818 0.985 1.000 
L1 5 0.001 large 0.6 1.000 0.847 0.823 0.956 0.964 1.000 
M2 5 0.005 medium 0.6 0.999 0.863 0.815 0.956 0.965 0.999 
X2 5 0.005 mixed 1.1 0.936 0.849 0.913 0.994 0.970 0.936 
M3 5 0.01 medium 1.3 0.946 0.917 0.888 0.997 0.971 0.946 
S4 5 0.05 small 1.7 0.852 0.931 0.926 1.000 0.965 0.852 
X3 5 0.01 mixed 2.2 0.932 0.919 0.946 1.000 0.950 0.932 
L2 5 0.005 large 3.2 0.795 0.954 0.949 1.000 0.975 0.795 
S5 5 0.1 small 3.4 0.852 0.962 0.968 1.000 0.959 0.852 
L3 5 0.01 large 6.4 0.875 0.955 0.950 1.000 0.960 0.875 
M4 5 0.05 medium 6.4 0.916 0.956 0.964 1.000 0.961 0.916 
X4 5 0.05 mixed 10.9 0.930 0.950 0.969 1.000 0.946 0.930 
M5 5 0.1 medium 12.8 0.939 0.954 0.960 1.000 0.955 0.939 
S6 5 0.4 small 13.7 0.956 0.968 0.960 1.000 0.965 0.956 
S7 5 0.5 small 17.1 0.960 0.971 0.971 1.000 0.970 0.960 
X5 5 0.1 mixed 21.9 0.935 0.965 0.975 1.000 0.949 0.935 
L4 5 0.05 large 31.8 0.951 0.963 0.962 0.998 0.965 0.951 
M6 5 0.4 medium 51.4 0.953 0.959 0.957 1.000 0.957 0.953 
L5 5 0.1 large 63.7 0.954 0.952 0.954 1.000 0.952 0.954 
M7 5 0.5 medium 64.2 0.964 0.964 0.964 1.000 0.961 0.964 
X6 5 0.4 mixed 87.5 0.965 0.963 0.964 1.000 0.950 0.965 
X7 5 0.5 mixed 109.4 0.971 0.972 0.972 1.000 0.958 0.971 
L6 5 0.4 large 254.6 0.961 0.959 0.960 0.999 0.956 0.961 
L7 5 0.5 large 318.3 0.973 0.973 0.973 0.998 0.968 0.973 
S1 15 0.001 small <0.1 0.000 0.000 1.000 0.336 0.954 0.000 
M1 15 0.001 medium 0.1 0.230 0.000 0.521 0.808 0.975 0.230 
X1 15 0.001 mixed 0.1 0.954 0.000 0.665 0.864 0.949 0.954 
S2 15 0.005 small 0.1 0.761 0.000 0.585 0.875 0.955 0.761 
S3 15 0.01 small 0.3 0.988 0.018 0.481 0.982 0.965 0.988 
M2 15 0.005 medium 0.6 0.999 0.490 0.606 0.999 0.975 0.999 
L1 15 0.001 large 0.6 0.999 0.498 0.592 1.000 0.978 0.999 
X2 15 0.005 mixed 0.7 0.909 0.301 0.725 1.000 0.970 0.909 
M3 15 0.01 medium 1.1 0.869 0.726 0.772 0.999 0.968 0.869 
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Scenario K Proportion Sample 
size 

Exp count Approximate 
untransformed 

Approximate 
logit 

Approximate 
arcsine 

Discrete 
(fraction 

converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

X3 15 0.01 mixed 1.3 0.851 0.688 0.802 1.000 0.950 0.851 
S4 15 0.05 small 1.4 0.686 0.782 0.823 1.000 0.955 0.686 
S5 15 0.1 small 2.7 0.642 0.890 0.925 1.000 0.966 0.642 
L2 15 0.005 large 3.1 0.578 0.875 0.907 0.999 0.964 0.578 
M4 15 0.05 medium 5.7 0.746 0.912 0.942 1.000 0.957 0.746 
L3 15 0.01 large 6.3 0.743 0.924 0.952 0.999 0.971 0.743 
X4 15 0.05 mixed 6.7 0.760 0.927 0.928 0.999 0.960 0.760 
S6 15 0.4 small 10.8 0.948 0.960 0.955 0.998 0.957 0.948 
M5 15 0.1 medium 11.5 0.882 0.945 0.950 0.999 0.954 0.882 
X5 15 0.1 mixed 13.4 0.861 0.941 0.958 1.000 0.956 0.861 
S7 15 0.5 small 13.5 0.943 0.964 0.960 1.000 0.957 0.943 
L4 15 0.05 large 31.4 0.924 0.957 0.950 0.994 0.956 0.924 
M6 15 0.4 medium 45.9 0.972 0.969 0.968 0.997 0.967 0.972 
X6 15 0.4 mixed 53.5 0.950 0.957 0.955 0.998 0.953 0.950 
M7 15 0.5 medium 57.4 0.958 0.960 0.959 0.996 0.958 0.958 
L5 15 0.1 large 62.8 0.949 0.963 0.964 0.993 0.965 0.949 
X7 15 0.5 mixed 66.9 0.966 0.965 0.963 0.999 0.959 0.966 
L6 15 0.4 large 251.4 0.958 0.955 0.958 0.996 0.955 0.958 
L7 15 0.5 large 314.2 0.963 0.964 0.963 0.985 0.962 0.963 
S1 30 0.001 small <0.1 0.000 0.000 1.000 0.537 0.989 0.000 
M1 30 0.001 medium 0.1 0.000 0.000 0.254 0.949 0.966 0.000 
X1 30 0.001 mixed 0.1 0.846 0.000 0.429 0.979 0.959 0.846 
S2 30 0.005 small 0.1 0.000 0.000 0.227 0.983 0.977 0.000 
S3 30 0.01 small 0.3 0.822 0.000 0.226 1.000 0.964 0.822 
M2 30 0.005 medium 0.5 1.000 0.106 0.308 1.000 0.975 1.000 
L1 30 0.001 large 0.5 1.000 0.092 0.331 1.000 0.972 1.000 
X2 30 0.005 mixed 0.6 0.906 0.003 0.479 1.000 0.957 0.906 
M3 30 0.01 medium 1.1 0.754 0.445 0.544 0.998 0.953 0.754 
X3 30 0.01 mixed 1.3 0.701 0.278 0.659 0.998 0.962 0.701 
S4 30 0.05 small 1.4 0.449 0.556 0.661 1.000 0.963 0.449 
S5 30 0.1 small 2.7 0.381 0.754 0.881 0.999 0.956 0.381 
L2 30 0.005 large 2.7 0.274 0.686 0.840 1.000 0.968 0.274 
M4 30 0.05 medium 5.4 0.512 0.839 0.916 0.999 0.959 0.512 
L3 30 0.01 large 5.5 0.458 0.857 0.914 0.998 0.957 0.458 
X4 30 0.05 mixed 6.4 0.652 0.881 0.901 1.000 0.950 0.652 
M5 30 0.1 medium 10.8 0.750 0.911 0.944 1.000 0.951 0.750 
S6 30 0.4 small 10.9 0.926 0.958 0.957 0.998 0.957 0.926 
X5 30 0.1 mixed 12.7 0.785 0.920 0.960 0.998 0.971 0.785 
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Scenario K Proportion Sample 
size 

Exp count Approximate 
untransformed 

Approximate 
logit 

Approximate 
arcsine 

Discrete 
(fraction 

converged) 

Discrete 
(random) 

Discrete 
(hybrid) 

S7 30 0.5 small 13.6 0.949 0.964 0.961 1.000 0.960 0.949 
L4 30 0.05 large 27.4 0.885 0.938 0.956 0.993 0.954 0.885 
M6 30 0.4 medium 43.0 0.958 0.968 0.967 0.997 0.965 0.958 
X6 30 0.4 mixed 50.8 0.958 0.959 0.962 0.997 0.959 0.958 
M7 30 0.5 medium 53.8 0.950 0.956 0.951 0.999 0.952 0.950 
L5 30 0.1 large 54.9 0.916 0.953 0.958 0.988 0.955 0.916 
X7 30 0.5 mixed 63.5 0.964 0.958 0.963 0.997 0.959 0.964 
L6 30 0.4 large 219.4 0.954 0.954 0.956 0.992 0.954 0.954 
L7 30 0.5 large 274.3 0.948 0.948 0.948 0.986 0.949 0.948 

“Discrete” stands for discrete likelihood methods. Scenarios are ordered by number of studies (K), and then by expected count. Bold horizontal lines separate scenarios by number 
of studies. White and grey shading separates scenarios with expected counts ≤1, between 1 and 5, and ≥5. We code scenarios using two characters, a letter (indicating sample size 
scenarios; S=small, M=medium, L=large, X=mixed); and a number (indicating the true proportions; 1=0.001, 2=0.005, 3=0.01, 4=0.05, 5=0.1, 6=0.4, 7=0.5). The column 
“Discrete (fraction converged)” shows the proportion of simulations for which random effects methods converged successfully. Values of 1.000 mean that random effects methods 
converged successfully in all 1000 simulations in a scenario, and a value of e.g., 0.335 means that they converged in 335 out of 1000 simulations in a scenario. The columns 
“Discrete (random)” and “Discrete (hybrid)” are identical when the fraction converged is 1.000, because the random effects method was used in all simulations.  
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