Core Functionality in Pediatric Electronic Health Records
Core Functionality in Pediatric Electronic Health Records

Prepared for:
Agency for Healthcare Research and Quality
U.S. Department of Health and Human Services
540 Gaither Road
Rockville, MD 20850
www.ahrq.gov

Contract No. 290-2012-00009-I

Prepared by:
Vanderbilt University Evidence-based Practice Center
Nashville, TN

Investigators:
Kevin R. Dufendach, M.D.
Jacob A. Eichenberger, M.D.
Melissa L. McPheeters, Ph.D., M.P.H.
Michael W. Temple, M.D.
Haresh L. Bhatia, M.S.
Mhd Wael Alrifai, M.D.
Shannon A. Potter, M.L.I.S.
Stuart T. Weinberg, M.D.
Kevin B. Johnson, M.D., M.S.
Christoph U. Lehmann, M.D.

AHRQ Publication No. 15-EHC014-EF
April 2015
This report is based on research conducted by the Vanderbilt University Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. 290-2012-00009-I).

The findings and conclusions in this document are those of the authors, who are responsible for its contents; the findings and conclusions do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services.

The information in this report is intended to help health care decisionmakers—patients and providers, health system leaders, and policymakers, among others—make well-informed decisions and thereby improve the quality of health care services. This report is not intended to be a substitute for the application of clinical judgment. Anyone who makes decisions concerning the provision of clinical care should consider this report in the same way as any medical reference and in conjunction with all other pertinent information, i.e., in the context of available resources and circumstances presented by individual patients.

AHRQ or U.S. Department of Health and Human Services endorsement of any derivative products that may be developed from this report, such as clinical practice guidelines, other quality enhancement tools, reimbursement or coverage policies, may not be stated or implied.

This document is in the public domain and may be used and reprinted without permission except those copyrighted materials noted, for which further reproduction is prohibited without the specific permission of copyright holders.

Persons using assistive technology may not be able to fully access information in this report. For assistance contact EffectiveHealthCare@ahrq.hhs.gov.

None of the investigators have any affiliation or financial involvement that conflicts with the material presented in this report.

Preface

The Agency for Healthcare Research and Quality (AHRQ), through its Evidence-based Practice Centers (EPCs), sponsors the development of evidence reports and technology assessments to assist public- and private-sector organizations in their efforts to improve the quality of health care in the United States. The reports and assessments provide organizations with comprehensive, science-based information on common, costly medical conditions and new health care technologies and strategies. The EPCs systematically review the relevant scientific literature on topics assigned to them by AHRQ and conduct additional analyses when appropriate prior to developing their reports and assessments.

This EPC evidence report is a Technical Brief. A Technical Brief is a rapid report, typically on an emerging medical technology, strategy, or intervention. It provides an overview of key issues related to the intervention—for example, current indications, relevant patient populations and subgroups of interest, outcomes measured, and contextual factors that may affect decisions regarding the intervention. Although Technical Briefs generally focus on interventions for which there are limited published data and too few completed protocol-driven studies to support definitive conclusions, the decision to request a Technical Brief is not solely based on the availability of clinical studies. The goals of the Technical Brief are to provide an early objective description of the state of the science, a potential framework for assessing the applications and implications of the intervention, a summary of ongoing research, and information on future research needs. In particular, through the Technical Brief, AHRQ hopes to gain insight on the appropriate conceptual framework and critical issues that will inform future research.

AHRQ expects that the EPC evidence reports and technology assessments will inform individual health plans, providers, and purchasers as well as the health care system as a whole by providing important information to help improve health care quality.

We welcome comments on this Technical Brief. They may be sent by mail to the Task Order Officer named below at: Agency for Healthcare Research and Quality, 540 Gaither Road, Rockville, MD 20850, or by email to epc@ahrq.hhs.gov.

Richard G. Kronick, Ph.D.
Director, Agency for Healthcare Research and Quality

David Meyers, M.D.
Acting Director, Center for Evidence and Practice Improvement
Agency for Healthcare Research and Quality

Stephanie Chang, M.D., M.P.H.
Director, EPC Program
Center for Evidence and Practice Improvement
Agency for Healthcare Research and Quality

Edwin Lomotan, M.D.
Task Order Officer
Center for Evidence and Practice Improvement
Agency for Healthcare Research and Quality
Acknowledgments
The authors gratefully acknowledge the following individuals for their contributions to this project: Mr. Robert Goodrich and Ms. Tanya Surawicz screened literature and extracted data.

Key Informants
In designing the study questions, the EPC consulted a panel of Key Informants who represent subject experts and end-users of research. Key Informant input can inform key issues related to the topic of the technical brief. Key Informants are not involved in the analysis of the evidence or the writing of the report. Therefore, in the end, study questions, design, methodological approaches, and/or conclusions do not necessarily represent the views of individual Key Informants.

Key Informants must disclose any financial conflicts of interest greater than $10,000 and any other relevant business or professional conflicts of interest. Because of their role as end-users, individuals with potential conflicts may be retained. The Task Order Officer and the Evidence-based Practice Center work to balance, manage, or mitigate any conflicts of interest.

The list of Key Informants who participated in developing this report follows:

Martha Dewey Bergren, D.N.S., R.N., FAAN
University of Illinois
Chicago, IL

Barbara P. Byrne, M.D., M.B.A.
Edward Health System
Naperville, IL

Mark A. Del Beccaro, M.D.
University of Washington
Seattle, WA

Alexander G. Fiks, M.D., M.S.C.E.
Children’s Hospital of Philadelphia
Philadelphia, PA

Chip Hart
Physicians Computer Company
Winooski, VT

Hetty G. Khan, B.S.N., M.S.N.I.
Centers for Disease Control and Prevention
Silver Spring, MD

Susan J. Kressly, M.D., FAAP
Kressly Pediatrics
Warrington, PA
Stephen Andrew Spooner, M.D., M.S., FAAP
Cincinnati Children’s Hospital
Cincinnati, OH

Peer Reviewers

Prior to publication of the final evidence report, the EPC sought input from independent Peer Reviewers without financial conflicts of interest. However, the conclusions and synthesis of the scientific literature presented in this report does not necessarily represent the views of individual reviewers.

Peer Reviewers must disclose any financial conflicts of interest greater than $10,000 and any other relevant business or professional conflicts of interest. Because of their unique clinical or content expertise, individuals with potential nonfinancial conflicts may be retained. The TOO and the EPC work to balance, manage, or mitigate any potential nonfinancial conflicts of interest identified.

The list of Peer Reviewers follows:

William G. Adams, M.D.
Boston University School of Medicine
Boston, MA

Martha Dewey Bergren, D.N.S., R.N., FAAN
University of Illinois
Chicago, IL

Robert Grundmeier, M.D.
Children’s Hospital of Philadelphia
Philadelphia, PA

Chip Hart
Physicians Computer Company
Winooski, VT

Rainu Kaushal, M.D., M.P.H.
Weill Cornell Medical College
New York, NY

Alex R. Kemper, M.D., M.P.H.
Duke University
Durham, NC

Michael G. Leu, M.D., M.S., M.H.S., FAAP
Seattle Children’s Hospital
Seattle, WA
Rita Mangione-Smith, M.D., M.P.H.
University of Washington Department of Pediatrics
Seattle Children's Research Institute
Seattle, WA

Eugenia Marcus, M.D.
Wellesley Hills, MA

Feliciano B. Yu, M.D., M.S.H.I., M.S.P.H., FAAP
Washington University School of Medicine
St. Louis Children’s Hospital
St. Louis, MO

Alan E. Zuckerman, M.D.
Georgetown University
Washington DC
Core Functionality in Pediatric Electronic Health Records

Structured Abstract

Background. Clinicians, informaticians, policy makers, and professional organizations such as the American Academy of Pediatrics have described the need for electronic health record (EHR) systems and information technology tools that better support pediatric health care through the availability of pediatric functionalities. The Children’s EHR Format created almost 700 requirements pertaining to pediatric functionality. While the report included multiple desired functions, the large number of requirements as well as the lack of prioritization may have had a paralyzing effect on most vendors, who, confronted with Meaningful Use requirements, did not leverage the format to improve their products.

Purpose. A Technical Brief is a report of an emerging intervention for which there are limited published data and too few completed research studies to support definitive conclusions. The goals of the Technical Brief are to provide an objective description of the state of the science, identify a potential framework for assessing the applications and implications of the intervention, summarize ongoing research, and present research gaps. We developed a technical brief on the state of practice and the current literature around core functionalities for pediatric electronic health records to describe current practice and to provide a framework for future research.

Methods. We had conversations with Key Informants representing clinicians, policy experts, and researchers. We searched online sources for information about currently available programs and resources. We conducted a literature search to identify currently available research on the effectiveness of individual functionalities.

Findings. There is expert consensus in the literature that EHRs used in the care of children require specific functionalities to support the work of child health care providers and assure the delivery of quality care to pediatric patients. These functionalities relate to a child’s evolving physiology and maturity and associated conditions. Key areas include vaccination, child development, physiologic medication dosing, pediatric disease management, pediatric norms, and the relationship between pediatric patients and their caregivers, including adolescent privacy. Empirical evidence for health outcomes associated with the introduction of a pediatric EHR or for implementation of systems such as clinical decision support is largely limited to pre-post studies on a subset of important functionalities. Key Informants indicated that if these functionalities are implemented well, the EHR will also better support the care of all patients.

Summary and implications. While many of the key functionalities identified in this brief are not purely pediatric, their key role in the care of children in contrast to their minimal role for adults could mean they can get omitted in an EHR designed primarily for adult care. Incentives for developing pediatric functionalities for EHRs are currently driven by (1) meaningful use requirements and the patient-centered medical home; (2) a desire to support and maintain patient safety; and (3) the increasing presence of pediatric-specific clinical quality measures. Introducing a new pediatric functionality to an EHR should, therefore, be done thoughtfully and ideally is done in consideration of utility, testability, and usability principles. Understanding the
importance of computability and specificity of guidelines as well as motivations for development of pediatric-specific functionalities provides further insight into how dissemination and development will be driven in the future.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>Scope</td>
<td>2</td>
</tr>
<tr>
<td>Issues and Challenges in the Evidence Base</td>
<td>2</td>
</tr>
<tr>
<td>Technical Brief Objectives</td>
<td>3</td>
</tr>
<tr>
<td>Report Organization</td>
<td>3</td>
</tr>
<tr>
<td>Methods</td>
<td>5</td>
</tr>
<tr>
<td>Data Collection</td>
<td>5</td>
</tr>
<tr>
<td>Discussions With Key Informants</td>
<td>5</td>
</tr>
<tr>
<td>Published Literature Search</td>
<td>5</td>
</tr>
<tr>
<td>Gray Literature Search</td>
<td>6</td>
</tr>
<tr>
<td>Data Organization and Presentation</td>
<td>6</td>
</tr>
<tr>
<td>Peer Review</td>
<td>7</td>
</tr>
<tr>
<td>Findings</td>
<td>8</td>
</tr>
<tr>
<td>GQ1: Description of Pediatric-Specific Functionalities for EHRs</td>
<td>8</td>
</tr>
<tr>
<td>1. Vaccines</td>
<td>9</td>
</tr>
<tr>
<td>2. Routine Health Care Maintenance (RHCM)</td>
<td>11</td>
</tr>
<tr>
<td>3. Family Dynamics</td>
<td>12</td>
</tr>
<tr>
<td>4. Privacy</td>
<td>13</td>
</tr>
<tr>
<td>5. Managing Pediatric Conditions in Vulnerable Populations</td>
<td>16</td>
</tr>
<tr>
<td>6. Medications</td>
<td>17</td>
</tr>
<tr>
<td>7. Documentation and Billing</td>
<td>20</td>
</tr>
<tr>
<td>8. Pediatric-Specific Norms and Growth Charts</td>
<td>21</td>
</tr>
<tr>
<td>GQ2. Description of the Context in Which EHRs Are Implemented</td>
<td>26</td>
</tr>
<tr>
<td>Age-based Transitions</td>
<td>26</td>
</tr>
<tr>
<td>Inpatient and Outpatient</td>
<td>28</td>
</tr>
<tr>
<td>The Particular Challenge of Identity</td>
<td>29</td>
</tr>
<tr>
<td>Vaccines</td>
<td>31</td>
</tr>
<tr>
<td>Routine Health Care Maintenance</td>
<td>31</td>
</tr>
<tr>
<td>Privacy</td>
<td>32</td>
</tr>
<tr>
<td>Managing Pediatric Conditions in Vulnerable Populations</td>
<td>32</td>
</tr>
<tr>
<td>Medications</td>
<td>32</td>
</tr>
<tr>
<td>Documentation and Billing</td>
<td>33</td>
</tr>
<tr>
<td>Pediatric-Specific Norms and Growth Charts</td>
<td>33</td>
</tr>
<tr>
<td>GQ3. Evidence for Pediatric-Specific Functionalities (Evidence Map)</td>
<td>34</td>
</tr>
<tr>
<td>Vaccination-Specific Functionality</td>
<td>36</td>
</tr>
<tr>
<td>Medication-Specific Functionalities</td>
<td>38</td>
</tr>
<tr>
<td>Obesity Diagnosis</td>
<td>42</td>
</tr>
<tr>
<td>Other Functionalities Including Prevention and Counseling</td>
<td>43</td>
</tr>
<tr>
<td>Ongoing Research</td>
<td>48</td>
</tr>
<tr>
<td>GQ4. Dissemination and Future Developments</td>
<td>49</td>
</tr>
<tr>
<td>Utility</td>
<td>49</td>
</tr>
<tr>
<td>Testability</td>
<td>49</td>
</tr>
<tr>
<td>Usability</td>
<td>50</td>
</tr>
</tbody>
</table>
Background

Clinicians, informaticians, policy makers, and professional organizations such as the American Academy of Pediatrics (AAP) have described the need for electronic health record (EHR) systems and information technology tools that better support pediatric health care through the availability of pediatric functionalities.\(^1\)\(^-\)\(^3\) In particular, they suggest that EHRs used in the care of children may increase patient safety through standardization of care and reducing errors and variability in documentation and communication of patient data.\(^4\)\(^-\)\(^9\) However, adoption has lagged, and lack of pediatric functionality is often cited as a reason for the lower rates of adoption in pediatrics.\(^10\)\(^,\)\(^11\) Furthermore, while EHRs may improve safety, implementation of generic EHR systems that do not meet pediatric functionality and work flow demands could be potentially dangerous.\(^12\)\(^-\)\(^15\)

Empirical data describing the specific benefits of pediatric EHRs are scarce, and few studies have been conducted in the pediatric setting to assess the potential benefits of pediatric functionalities. Some studies describe improvements in immunization rates,\(^8\)\(^,\)\(^16\)\(^,\)\(^17\) attention-deficit/hyperactivity disorder care,\(^18\) preventive care counseling for children and adolescents,\(^19\)\(^,\)\(^20\) and hepatitis C status followup in infants.\(^21\) Ultimately, available research on outcomes has yielded inconsistent results, potentially due to great variety and variability of systems reviewed.\(^22\)\(^-\)\(^44\)

While the Health Information Technology for Economic and Clinical Health (HITECH) Act has promoted adoption of EHRs by providers and hospitals, development and implementation of functionality to promote quality of pediatric care specifically has been inconsistent, even among supporters of EHR implementation.\(^45\) Organizations including the Agency for Healthcare Research and Quality (AHRQ),\(^46\) Health Level 7 (HL7) International,\(^47\) and the AAP\(^3\) have attempted to achieve consistency by describing data formats and desired functionalities for use across pediatrics EHRs. Developed by AHRQ and CMS, the Children’s EHR Format is particularly focused on the needs of children enrolled in Medicaid or the Children's Health Insurance Program.\(^46\)

The question arises, however, in the face of several recommended core sets of functionalities for pediatric EHRs, which are truly essential. A 2007 AAP report noted immunization management, growth tracking, medication dosing, patient identification, data norms, terminology, and privacy as important concerns/requirements for EHR in pediatric populations.\(^48\) Recent recommendations from the Society for Adolescent Health and Medicine also urge that EHR designs take into account “the special needs of adolescents for access to health information and the vigorous protection of confidentiality” and note that EHR developers should ensure that systems meet regulatory requirements and privacy needs.\(^22\) These various recommendations may be based on a range of empirical or other evidence.

Despite lack of consistent recommendations, “Meaningful Use” incentives associated with the HITECH Act have resulted in increased implementation and use of EHRs by pediatricians.\(^49\) It is unclear whether providers are adopting pediatric-specific tools, however. For example, suggested minimum requirements for a “pediatric-supportive” EHR include well-child visit tracking, support for anthropometric analysis such as growth charts, immunization tracking and forecasting, and support for weight-based drug dosing.\(^48\)\(^,\)\(^50\) Only 31 percent of pediatricians use
an EHR with basic functionality, and only 14 percent use a fully functionala EHR.52 Only 8 percent of pediatricians are using a fully functional EHR with pediatric functionality.53

The Children’s EHR Format included almost 700 requirements pertaining to pediatric functionality.46 While the report included desired functions to support care of children, the large number of requirements may have had a paralyzing effect on vendors, who, additionally confronted with Meaningful Use requirements, did not leverage the format to improve their products. Reports from Children’s Health Insurance Reauthorization Act D grantees indicate that vendors used a survey-based prioritization approach to identify items of high value to pediatrician and to add these items to their EHR design. Similarly, the HL7 requirementsb include over 100 unique pediatric items.

Scope

Issues and Challenges in the Evidence Base

A significant challenge in this brief is the breadth of pediatric practice, including subgroups and special populations requiring specific elements of care that may merit specific EHR functionalities, all of which may diffuse agreement on key pediatric EHR features. Pediatric patients may range from a few hundred grams to hundreds of pounds in weight and their developmental status changes from completely dependent and helpless to independent, mature individuals. Fundamental to pediatric care is supporting the dynamic physiological and developmental changes to assure change is occurring at the right pace and time.54

Another challenge is that requirements and EHRs for inpatient and outpatient settings may differ based on the work performed and be represented differently in the literature. Similarly, individual reports may address specific elements of EHRs such as order entry or electronic prescribing. Stakeholder groups such as the AAP have published numerous position papers and recommendations, which will provide important themes and crosscutting approaches. As expected given the relatively recent increase in adoption of pediatric EHRs and the significant costs of implementing them, few controlled trials of their effects exist, and the field is developing rapidly. Data are not available uniformly across categories of care or functionalities. We will focus on the functionalities, needs, and desiderata uniquely relevant to pediatric care that extend beyond those functionalities available for adult care. Some functionality required for pediatric care is also critical for aspects of adult care, and we will include those critical features (e.g., immunization tracking, which is a key aspect of children’s care as well as that of pregnant women).

a During 2007-2009, NAMCS defined a fully functional EHR system as having all 14 functionalities in basic systems plus the following additional features: (1) medical history and followup notes; (2) drug interaction or contraindication warnings; (3) prescriptions sent to pharmacy electronically; (4) computerized orders for lab tests; (5) test orders sent electronically; (6) providing reminders for guideline-based interventions; (7) highlighting out-of-range lab values; (8) computerized orders for radiology tests.

American Hospital Association administered survey on EHR adoption defines comprehensive EHR to include the basic EHR core functionalities plus 14 additional functionalities implemented across all units (see Nakamura et al., 201349 and Jha et al., 200951).

b HL7 EHR Child Health Functional Profile (CHFP), Release 1. Available at http://www.hl7.org/implement/standards/product_brief.cfm?product_id=15.
Technical Brief Objectives

A Technical Brief is a rapid report of an emerging intervention for which there are limited published data and too few completed research studies to support definitive conclusions. The goals of the Technical Brief are to provide an objective description of the state of the science, identify a potential framework for assessing the applications and implications of the intervention, summarize ongoing research, and present research gaps. A technical brief is not intended to be a comprehensive systematic review but should provide the reader with an overview of available research, practice and to some degree, perspective, around a given clinical intervention.

This report describes the state of the literature on pediatric EHR functionalities and their effects on outcomes of pediatric EHR implementation. We sought comparative studies that assessed the potential benefits of pediatric EHR use. We searched published reports and gray literature sources to ascertain the evidence for pediatric-specific EHR functionalities. In addition, we engaged stakeholders to augment the findings from the literature, and inform the summary of contextual issues, barriers, and potential challenges.

Report Organization

We have organized the report by Guiding Question (GQ) and have summarized the available literature and Key Informant perspectives. GQ1, GQ2, and GQ4 reflect information found in published and unpublished literature, including opinion pieces and general materials. They also include the perspectives of our Key Informants. GQ3 is limited to a high-level evidence map of empirical studies. Thus, GQ1 and GQ2 lay out the issues that were found to be of highest relevance, while GQ3 identifies the available empirical literature on those issues. GQ4 then addresses challenges and opportunities related to implementation and dissemination.

GQ1. Description of Pediatric-Specific Functionalities for EHRs

GQ1A: Are there functionalities that have been identified in the literature and feature more prominently than others as potentially important to achieve for improving children’s health?

GQ2. Description of the Context in Which EHRs Are Implemented

GQ2A: What is the potential value of pediatric-specific functionalities in the context of care transition, specifically from newborn care to pediatric primary care, from pediatric primary care to pediatric specialist care, and from pediatric primary care to adolescent care?

GQ2B: Are certain pediatric-specific functionalities beneficial for a provider to conduct her work including sick and well-child visits? If so, does this vary by health care setting (e.g. primary care office, specialty care office, school health, and alternative care settings) or by type of visit (e.g., preventive vs. acute care)?
GQ2C: What are the challenges to implementing specific functionalities? Are some harder than others to implement by (1) vendors; and/or (2) pediatric providers?

GQ3. Description of the Existing Evidence

GQ3A: Is there any evidence that using an EHR adapted for the specific needs of pediatric providers compared with using a “regular” EHR or not using an EHR at all produces (1) better quality, including safety and cost outcomes for patients; and/or (2) improved workflow or job satisfaction for providers?

GQ3B: Which pediatric-specific functionalities influence (1) patient outcomes (including safety; quality; cost; equity; standardization of care; and/or efficiency); (2) the ability of a pediatric provider to conduct work within the EHR; (3) improvement of workflow and provider satisfaction; and/or (4) involvement of patients and families (including their education and shared decision making)?

GQ4. Dissemination and Future Developments

GQ4A: How does testability and usability of core functionalities promote or impede dissemination and future development of pediatric EHRs?
Methods

We used discussions with Key Informants, a search of the gray literature, and a search of the published literature to collect relevant data and descriptions.

Data Collection

Discussions With Key Informants

We engaged Key Informants to offer insight into pediatric-specific functionalities for electronic health records, and suggest issues of greatest importance to clinicians, patients, researchers, and payers. We searched the Web sites of relevant professional organizations and research and policy groups to identify stakeholders whose work or interests indicate a high likelihood of interest and expertise in the topic.

In consultation with the investigative team and the Agency for Healthcare Research and Quality (AHRQ), we assembled a list of individuals representing a clinical, policy, research, or vendor perspective. Seven of 10 invited individuals agreed to participate. Following approval by AHRQ of the completed Disclosure of Interest forms for proposed Key Informants, we conducted discussions with Key Informants, representing clinicians in practice as well as in policy roles in addition to accomplished researchers.

We conducted three group discussions by telephone with Key Informants. We invited the Key Informants to share their experiences and make suggestions to address the proposed Guiding Questions (GQs). Before the call, we provided the participants with a copy of the protocol and GQs. We recorded and transcribed the call discussion and generated a summary that we distributed to call participants.

We used the input from the Key Informants to establish functionalities considered to be of highest importance and weighed those against what we found most commonly in the literature. Ultimately, the data presented represent a Venn diagram of Key Informant input, functionalities identified in the literature and those described both by Key Informants and in the literature.

We conducted discussion calls with nine Key Informants. We were not required to obtain Office of Management and Budget (OMB) clearance for the Key Informant interviews because we included fewer than ten non-government associated participants. The Key Informants represented vendors, practicing pediatrician, quality improvement, public health, academic research.

More details on the Key Informants and the discussions are in Appendix B and Appendix C.

Published Literature Search

We used a combination of controlled vocabulary terms and keywords to search the published literature for studies that specifically evaluated electronic health records in the pediatric health care setting. We used terms for electronic health records, computerized physician order entry (CPOE) and clinical decision support (CDS), as well as broad terms and descriptors for pediatrics. We searched the literature base from 1999 on. We reviewed the reference lists of retrieved publications for other potentially relevant publications missed by the search strategies. We present the literature search details in Appendix A. We screened the included literature for publications that addressed one or more GQs; we further evaluated the publications for evaluation studies that met prespecified criteria (Table 1) for GQ3 (Evidence Map).
To identify newly published relevant literature, we updated the literature search during peer review and the posting period for public comments. We incorporated the results from the literature update into the Technical Brief.

We developed forms (Appendix D) for screening and data collection from the published literature. We recorded the study design and study populations from relevant sources. We document reasons for exclusion of records that were promoted for full text review (Appendix G).

<table>
<thead>
<tr>
<th>Table 1. Inclusion and exclusion criteria for evaluation studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
</tr>
<tr>
<td>Study population</td>
</tr>
<tr>
<td>Publication languages</td>
</tr>
<tr>
<td>Admissible evidence</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Outcomes</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Other criteria</td>
</tr>
</tbody>
</table>

Gray Literature Search

We augmented the searches we conducted in bibliographic databases by searching for gray literature. Examples of sources of gray literature include the Internet, government Web sites, clinical trial databases, trade publications, and meeting abstracts. We crosschecked the findings from the gray literature searches against the literature retrieval for publications that we may have missed in the literature searches.

We searched relevant professional association and organization Web sites, as well as State and Federal government Web sites descriptions or links to existing models. We present a summary of relevant consensus statements in Appendix E. We retrieved records from ClinicalTrials.gov to identify ongoing research (Appendix F).

To glean insight into the issues and concerns of users of pediatric EHRs, we collected the comments submitted by pediatric providers who reviewed their own EHR systems on the AAP Web site and summarized those by functionality (User Perspective from AAP Review System). The goal was to identify any themes that might emerge in users’ spontaneous reviews of systems, but we should be clear that we did not conduct primary data collection to gather this information. It reflects those issues raised through the AAP.

Data Organization and Presentation

We summarize information extracted from the published and gray literature in the results and discussion of this report. We identified themes from expert input and describe the findings from

the literature, Key Informant discussions, and gray literature for each theme for GQ1. In GQ2, we address contextual issues including transition of care, health care setting, and implementation considerations from the literature base and the Key Informant input. For GQ3, we summarized existing systematic reviews and original research published since the end date of the systematic reviews. We present summary tables and text to characterize the existing evidence for pediatric-specific EHRs (GQ3). We highlight the roles of testability and usability in the successful dissemination and future development of pediatric-specific EHRs in GQ4.

Based initially on Key Informant input and with confirmation from the literature, we organize the report around eight categories for the pediatric functionalities: (1) vaccines; (2) routine health care maintenance; (3) family dynamics; (4) privacy; (5) managing pediatric populations; (6) medications; (7) documentation and billing; and (8) pediatric-specific norms and growth charts.

Peer Review

A draft of this Technical Brief will be posted to the AHRQ Web site for 4 weeks for public comments. During this time, the Scientific Resource Center distributes the draft report to individuals who agreed to serve as peer reviewers. The Scientific Resource Center collects the feedback from peer reviewers and forwards the compiled comments to report authors. We will review the comments and made appropriate changes to the final report.

We will document the report revisions and provide a summary of responses to the individual comments received from public and peer reviewers in a disposition of comments table. The disposition of comments table will be available on the AHRQ Web site after publication of the final Technical Brief.
Findings

In this section, we summarize information from the published and gray literature sources to address Guiding Questions (GQs). Much of the discussion with Key Informants was consistent with the salient topics that emerged from the body of literature, focusing primarily upon vaccination, growth and child development, family dynamics and privacy challenges, medication ordering, and pediatric growth and child development norms.

We summarize Key Informant discussion, the literature, and user feedback from the American Academy of Pediatrics (AAP) pediatric EHR review site to describe pediatric specific functionalities and current approaches for improving pediatric health care and delivery (GQ1). In GQ2, we provide a discussion of transition, care setting, and other contextual issues important to the implementation and adoption of pediatric-specific functionalities described in GQ1. The results presented in GQ3 are the combined summary of existing evidence from the published literature. We present implications and areas for future research in GQ4.

GQ1: Description of Pediatric-Specific Functionalities for EHRs

GQ1A. Are there functionalities that have been identified in the literature and feature more prominently as potentially important to achieve for improving children’s health?

The Key Informants on this project were clear and consistent that EHRs need to be optimized for the care of children, and that this is not yet happening consistently. Key Informants noted that many functionalities overlap with adult care, but agreed that given the nuances associated with longitudinal and coordinated care for the pediatric population, some functionalities will be more critical than in adults to ensuring high quality and safe care. For example, while care coordination for adults is extremely important, effective coordination for children is prone to compromise if there are delays in information exchange or inaccuracies in patient identification or family relationships. Patient identification is a similarly critical issue given changes such as the ongoing evolution of family structure, the impact of family dynamics, changes in identifiers (e.g., unnamed child in newborn nursery), and issues that arise in foster care. These issues of identity have downstream effects on understanding family history, the impact of the family setting on the child’s wellness, privacy, and information sharing, and payment for services. The ability to communicate between the healthcare setting and schools and other settings where children exist was described as essential, as was recognition that providers in children’s healthcare represent a wide range of clinical specialties, all of whom need information and means of communication to provide care.

Underlying many Key Informant comments was the importance of a flexible, longitudinal record that integrates critical information about the child, the family and family history as it affect health, capabilities tailored to the needs of the clinician treating the child, and agile information display that shows the right information at the right time, despite the high volume nature of pediatrics. Moreover, Key Informants emphasized that effective systems must be adapted seamlessly to the user workflow and be customizable to adapt easily to changes in practice.

The following section will address specific information for: (1) vaccines; (2) routine health care maintenance; (3) family dynamics; (4) privacy; (5) managing pediatric conditions in
vulnerable populations; (6) medications; (7) documentation and billing; and (8) pediatric-specific norms and growth charts. The functionalities identified and described are those that the Key Informants noted as both most important and specific to the pediatric environment and that featured prominently in the published literature. That said, it should be noted that few of the functionalities have been studied empirically for their independent contribution to outcomes. The empirical data, where it exists, appears in the responses to GQ3.

1. Vaccines

Summary of Recommended Functionalities and Issues Identified by Key Informants

Vaccine-related functionality is consistently identified as a core need for EHRs used in the care of children. Key Informants viewed this functionality as a necessity, and felt that it was well established as a need for pediatric EHRs due to its prominence both in public and personal health. They noted that while vaccine provision is important also in other age groups (e.g. influenza vaccine for the general population, shingles for the elderly), in no other age groups are as many vaccines recommended on as complex a schedule. Nor are there other age groups in which vaccine receipt is as tied to public health protection, including herd immunity, and to milestones, such as school entry.

As noted by the Key Informants, the EHR has the potential to provide a means of documenting vaccine receipt, forecasting, and reminding clinicians when vaccines are due and managing populations at particular risk of poor outcomes without vaccination. As noted in the Evidence section below, vaccination reminders appearing in a clinician’s workflow have successfully improved vaccination rates in some populations. Decision support within the EHR can include identification of combinations of vaccines that can provide the greatest protection with the fewest inoculations. The vaccination record is required at multiple times in a child’s life, including school and camp entry, all the way to adulthood. To assist in documentation of progress in specific vaccine series, combination vaccines should optionally be viewable according to individual components. Key Informants noted that the vaccination component of an EHR needs to be easily updated and displayed in a way that can be shared with families and the educational system.

Summary of Recommended Functionalities and Issues Identified in the Literature

Efficient Recording of Vaccine Data

Examples of mechanisms to improve vaccine documentation efficiency include standard and 2D barcode technology and use of point of care documentation (using for example mobile devices) and may have varying levels of technological complexity. One approach, for example, to easily and accurately tracking vaccine lots, has been to incorporate bar code technology into the system.55

Clinical Decision Support

Decision support that focuses on immunization forecasting, the ability to identify individuals eligible for vaccination and appropriate vaccinations, is commonly discussed, both in the published literature and among our Key Informants, and it is generally acknowledged to be a
core element of a pediatric EHR. In one study, immunization reminders did not significantly improve immunization rates at a primary care clinic. However, other empirical studies, further described in GQ3, have shown significant increases in vaccination rates with CDS. One study reported an increase in flu vaccine rates from 7.8 percent to 25.5 percent after implementation of decision support in an EHR, and another reported an increase not only in immunization rates, but also in the ordering of several other screening tests, suggesting a potential spillover effect.

Immunization Status

There are two fundamental types of medical error that occur in the context of vaccination: missed opportunities to vaccinate (failure of omission) and incorrect vaccination (failure of commission). Clinical decision support in the context of vaccines in the EHR is designed to minimize or avoid both of these by assessing a child’s immunization status as recorded in the EHR, and ideally, incorporating data from immunization registries, including interstate registries, when available. In order to achieve these basic goals, a system must be able to distinguish not only which patient is up to date on vaccinations and which patient is not, but also in the interest of reporting quality measures which patient is late or overdue on their immunizations. It is important to note, however, that vaccine requirements may not be consistent across jurisdictions and being eligible for an immunization may not necessarily indicate that the current time is the best time to immunize. Therefore, a number of experts have recommended some flexibility in the forecasting functionality to allow compliance with local, state, or federal guidelines in cases where the guidelines do not reach agreement or in situations where delaying immunization in an eligible child will result in better immune responses.

Flexibility of Formats To Promote Data Sharing

Flexibility in vaccine information formatting is a core need in order to efficiently share records as needed with a school, parent, physician, or registry. Pediatric EHRs need to interact with state-level immunization registries to support the public health activities of the state, and as such, must have functionality to exchange data with those electronic systems. Some immunization registries, in turn, feed information back into the EHRs and provide forecasting and reminders to ensure up to date status of the pediatric patients. At a minimum, an EHR must permit the clinician to enter data on vaccinations that occurred at other institutions in order to maintain a complete record. Printouts of the immunization record would ideally incorporate data from all sources. One recommendation has been that a flow sheet incorporated into the system provide additional information on recent or anticipated immunizations, thus providing additional tracking.

User Perspective From AAP Review System

Comments on functionality related to vaccinations were common on the AAP EHR review Web site, accounting for about 20 percent of comments. Although many providers were pleased to have access to a vaccination feature in their EHR, emphasis was placed on the following elements to assure full functionality and to support clinical practice:

- Ease of accessing, viewing, and using the vaccination features (most frequent comment);
- Ease of populating the Vaccines Administration Record;
- Ability to provide a printout of the vaccination record to the patient;
- Need to interface with State registries resulted in comments from some providers who had to change EHR systems to achieve information exchange;
• Decision support systems (also referred to as “forecasting system”) that are able to help scheduling due or overdue vaccines;
• Immunization functionality to recognize and manage combination vaccines – vaccines that deliver more than one component in a single inoculation (e.g., DTaP-IPV-Hib).
• Ability to enter the combination vaccine and have the system recognize that the vaccine provides adequate immunization to multiple illnesses.

2. Routine Health Care Maintenance (RHCM)

Summary of Recommended Functionalities and Issues Identified by Key Informants

Childhood routine health care maintenance, also known as “well child care,” accounts for nearly half of healthcare visits made by children in the United States. The visit is designed to incorporate a variety of services for health maintenance and disease prevention. Per the Key Informants, one of the most critical pieces to providing effective pediatric care is to track change over time through a longitudinal record. This is especially true for vaccine administration and growth and child development, two key elements of a childhood RHCM.

The most widely used pediatric preventive care guidelines are the *Bright Futures Guidelines for the Health Supervision of Infants, Children, and Adolescents.* These emerged prevalent both in the literature as well as in discussions with Key Informants. These guidelines describe a comprehensive system of care and contain content for the 21 primary care visits recommended by the AAP for children from birth to 21 years of age. Key Informants noted a lack of synchrony between currently available EHRs and Bright Futures.

Guidelines developed by professional organizations to guide clinical care are rarely directly programmable despite a decade of efforts by the AAP’s Partnership for Policy Implementation, whose goal is to standardize and disambiguate guidelines and provide algorithms where possible. A translation process has to occur to move general clinical guidelines, intended to provide evidence-based recommendations for provision of care across a variety of practices, into specific algorithms that can be implemented into the available technology.

Summary of Recommended Functionalities and Issues Identified in the Literature

An idealized EHR would use pre-visit questionnaires to obtain data about a new patient or the interval history of an existing patient. The questionnaires would also be used to obtain any concerns the patient or parent would like to discuss during the visit, perform selective screening risk assessment, and guide the choice of anticipatory guidance topics compatible with recommendations such as those in *Bright Futures.* The results of the questionnaire would serve as the starting point of the visit.

As of 2008, no existing EHRs was completely “*Bright Futures* compatible.” Since then, several products have implemented portions, but adoption has been slow. Compliance with *Bright Futures* requires appropriate documentation for physical examination findings. A normal exam in a one-year old will be sufficiently different from an adolescent and requires different data elements for discreet data entry. Compliance also requires supplying patients and families with an after-visit summary including current height and weight, anticipatory guidance, immunization forms, school or sports physical forms, and informational handouts. The AAP Task Force on Medical Informatics also recommended that EHRs should have the ability to
supply patients and families with documentation and ideally would provide easily customize
reports to match mandated school and camp physical forms.60

User Perspective from AAP Review System

The child development functionality appeared in about 6 percent of AAP EHR reviews. The main concern was the need for availability of child developmental tools, although some reviewers indicated that an EHR should make standardized child developmental screenings, tests, and questionnaires (like ASQ) available. Others preferred to have the ability to create and use subsets of customized surveillance milestones. Still others suggested that emphasis be placed on:

- The ease of documenting long lists of developmental milestones;
- The choice of child developmental questions that need to be administered during patient’s visit;
- The need to auto-populate child developmental milestones into visit notes to ease documentation burden for patients with normal child development.

3. Family Dynamics

Summary of Recommended Functionalities and Issues Identified by Key Informants

Discussion with our Key Informants recognized supporting dynamic family structures as a key functionality of a pediatric electronic health record. By successfully tying family structures together, an electronic health record can help identify and populate shared family history, social environment, and even billing structures. An EHR should support easily sharing related data between family members and linking between individual records. As family structures become more complex and dynamic, this feature is increasingly important to the clinician to understand the influences on a child’s health in order to provide the most appropriate care. Without the functionality for family within an EHR, workflow can become unduly complicated when information needs to be duplicated between family members or privacy and confidentiality policies need to be updated for children who reach a certain age.

Summary of Recommended Functionalities and Issues Identified in the Literature

Despite a strong emphasis given by our Key Informants, very few published studies have addressed this issue. We identified only one study that described how maternal-child linkage supported detection of children at risk of perinatally acquired Hepatitis C.21,66 The AAP Council on Clinical Information Technology recognizes the importance the EHR to support dynamic family structures for privacy, consent, and billing purposes.48 This reveals a disconnect between the silence of the literature and the emphasis identified by our Key Informants.

User Perspective from AAP Review System

We identified few comments on functionality related to family dynamics on the AAP EHR review Web site. One reviewer commented on the lack of linking families or siblings as units within an EHR, underscoring Key Informant discussion about problems of ascertaining identity in systems. Reviewers also noted the need to identify more than one adult or caregiver as the
guarantor associated with a child. Another reviewer commented on the need to make parental connections transparent.

4. Privacy

Summary of Recommended Functionalities and Issues Identified by Key Informants

One of the most difficult issues that pediatric providers currently face is the need to adhere to appropriate privacy limits as they pertain to health records of adolescents. Key Informants expressed concern that adolescents are being excluded from health information exchanges in some locations because available EHRs do not support the ability to segregate information that needs to remain in the sole purview of the adolescent patient and his or her clinician. In addition, Key Informants noted that the complex issues surrounding adolescent rights related to facets including reproductive health, choices in care, and drug use make incorporation of privacy standards in medical record systems challenging. Privacy requirements may vary by age, and permission levels within the record may vary based on clinical role or family relationship, thus complicating universal standards or guidelines.

Summary of Recommended Functionalities and Issues Identified in the Literature

Laws in all 50 states and the District of Columbia allow adolescents to request and receive care for certain services without parental consent or notification. Ensuring a safe location where an adolescent can receive services is critical to being able to address the sensitive and potentially stigmatizing issues for adolescents. If adolescents perceive that their care will not be handled confidentially, they are likely to forgo seeking health care, especially for reproductive health, mental health, or substance abuse concerns. While current laws mandate and most providers recognize the need to ensure adequate privacy for adolescents and young adults, few electronic health record systems support this functionality.

Part of the difficulty of implementing successful privacy management for adolescents stems from the fact that individual practices have widely varied needs due to unique local laws and clinic policies. Currently, the responsibility for delivering confidential patient care is shared among clinicians, hospital and clinic administrators, patients, families, and EHR vendors. A breach of confidentiality can happen at any point in the process, from scheduling of the appointment to billing for services provided (Table 2). Although the complexities in providing confidential care can make implementing privacy control daunting, the use of default privacy controls in an electronic health record could help mitigate a potential breach. A core functionality identified in both the literature and by Key Informants for a pediatric EHR is a robust privacy infrastructure with default controls that allow appropriate access to and transmission of needed health information based on an individual’s role and relationship with the patient.
Table 2. Potential breaches of confidentiality during a medical visit

<table>
<thead>
<tr>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduling an appointment</td>
</tr>
<tr>
<td>Confirmation of appointment</td>
</tr>
<tr>
<td>Reviewing and reconciling medication or problem lists with a parent present</td>
</tr>
<tr>
<td>Receiving and filling new medication prescriptions</td>
</tr>
<tr>
<td>Releasing sensitive laboratory results</td>
</tr>
<tr>
<td>Automated posting of an explanation of benefits or after visit summary</td>
</tr>
<tr>
<td>Request for summary of care or copies of medical records*</td>
</tr>
</tbody>
</table>

Note: Adapted from Table 1 in Anoshiravani et al., 2012\(^7\) and Gracy et al., 2012\(^1\)

Implementing the 2009 Health Information Technology for Economic and Clinical Health (HITECH) act “meaningful use” functionality while protecting a patient’s privacy can present a potential conflict for both providers and EHR designers. Meaningful use regulations require medication reconciliation, providing after-visit summaries, and generating lists of patients by condition. These activities may result in a confidentiality breach for adolescent patients, especially if results of such functionalities are automatically distributed to parents or insurance companies, resulting in inadvertent disclosure of protected confidential health information.\(^2\) The EHR must be able to support meaningful use functionalities while maintaining adolescent confidentiality.

Enable Default Privacy Settings for Adolescent Patients

Ideally, an EHR defaults to initial privacy settings that are relatively strict, comply with State laws, and facilitate privacy at every step in the health care process.\(^6\) Different individuals with various relationships to the patient may need and have a right to different levels of access, so confidential data elements should have a scope of confidentiality indicating those who should and should not be able to access that particular information.\(^7\) This scope should be robust to protect against both external (parents requesting information) and internal access to the information, such as restricting access to a family member who works at the institution where the care was provided. Information should be provided on a need to know basis.

Designate Individual EHR Items as Private

A single patient encounter may generate both sensitive and nonsensitive data. An optimal EHR designates sensitive information private to unauthorized individuals while allowing access to non-sensitive information. While most elements of the visit should remain confidential, some routine laboratory results and immunizations could be shared with a parent or guardian without risking dissemination of confidential health information. However, there are certain elements of the encounter that should remain confidential, such as psychological assessments, risk factor screening, reproductive health medications, and laboratory results.\(^6\)\(^,\)\(^7\)

While strict default privacy settings should protect against most breaches of confidentiality, they may fail to isolate certain portions of the medical record, especially free text items like narrative history and some problem lists. Conversely, default privacy settings may also isolate some patient information unnecessarily, such as when an oral contraceptive pill is being used to treat acne or when a drug like acyclovir, often used to treat a herpes simplex virus infection, is used to treat varicella.\(^7\) The clinician in conjunction with the patient should have the ability to override the default confidentiality designation of an individual item, as appropriate. Gray et al. also note the important functionality of allowing parents to designate certain items as

\(^6\) Anoshiravani et al., 2012
\(^7\) Gracy et al., 2012
\(^1\) Gray et al.
confidential from their child, such as a family history of Huntington’s disease, Lynch Syndrome, HIV, or psychiatric illness. Studies have noted the use of clear on-screen labeling of confidential data elements to help facilitate the differential designation of sensitive items within a single patient’s record. While EHR designers will undoubtedly develop their own implementations of this functionality, Anoshiravani et al., (2012) suggested the use of a specific background color or opaque shading of confidential elements to clearly delineate the confidential status of data item.

Transmit Privacy Settings With Information

Designating a specific portion of a patient’s record as confidential is worthless if that designation does not persist as the patient’s information is propagated and used by those who need it. It is important that EHRs designed to access confidential information include a consistent set of vocabulary and labels that can be transmitted along with the patient’s information and this information must persist through dissemination across a health information exchange. While this issue clearly exists with transmission of health information to another institution, protection must also be persistent with dissemination within the originating institution, for example when a problem or medication list is copied from one note to another. Data transmission privacy must also be considered when information is shared in a non-secure method, such as with a text, email, or patient portal message.

Special Consideration to Proxy Access

The implementation of an online patient portal deserves special consideration. It would be inappropriate for an adolescent to sacrifice privacy for electronic access to her record. Differential access to information should be provided in a way that is transparent to the adolescent patient. Proxy access is also complicated by the fact that even though an online account has been created for an adolescent, extra measures must be taken to be sure the individual logging in is actually the patient and not a guardian or a peer.

Allow Differential Access to Protected Health Information

While default general privacy settings will be sufficient for most conditions, some special conditions may demand either more or less stringent confidentiality. The AAP Council on Clinical Information Technology recognizes the importance of flexibility in the electronic health record to account for a wide array of dynamic family structures. Complex issues of confidentiality and consent for treatment arise in cases of stepparents, foster care providers, and guardians. In many cases, such an individual is a primary caregiver for a child and may accompany her to primary care visits where routine treatments such as immunizations or basic screening are provided. This person may be granted permission to consent for routine or limited care based on a custodial parent’s wishes. In some cases, a parent who no longer has custody of a child may retain access to the child’s medical record and even the right to provide consent. This dynamic is additionally complicated in situations of child abuse, especially in the early stages of an investigation. The safety of the child must be the top priority. An EHR must allow dynamic documentation of who is allowed to consent and assent for various treatments as well as who is allowed to receive protected health information. The EHR must distinguish who has provided such consent based on the presenting problem and the diagnosis. A simple example of control would be to allow age-based differential access that are enforced once a patient reaches
specific milestones such as age 13 and 18, although many other options exist.73 An adolescent should be able to provide such access in a noncoercive manner in a private setting.70

User Perspective From AAP Review System

No specific comments on privacy were abstracted, but users did repeatedly suggest that a typical pediatric EHR should have features to keep information private from parents and other providers. Providers reported that some EHR systems would print notes that did not exclude confidential sections. The staff in those cases has to manually select which sections to print. Some other specific features suggested by the reviewers:

- Privacy alerts on charts
- The ability to flag some notes as “confidential”
- The compliance with state-specific privacy regulations

5. Managing Pediatric Conditions in Vulnerable Populations

Summary of Recommended Functionalities and Issues Identified by Key Informants

Although all pediatric populations can benefit from the use of an EHR, this can be especially useful in managing the care of vulnerable populations. EHR functionality to support managing a clinical subpopulation may take two forms: monitoring and managing an at-risk clinical subpopulation or supporting care of a specific patient in that subpopulation. The Centers for Medicare and Medicaid Services specify Stage 2 criteria to demonstrate meaningful use74; as an objective, regulations include generation of patient lists by condition so that a provider may better care for a clinical subpopulation. Key Informants mention that the ability to easily identify specific lists of patient populations allows practices to schedule necessary and meaningful visits for these patients.75

One subpopulation specifically identified by our Key Informants, but that did not appear prominently in the literature, is those children who are homeless or otherwise vulnerable. Other at-risk populations described included children in foster care and those with food insecurity or exposure to violence. An EHR could be a valuable resource to accessing and supporting this group by identifying individuals who are homeless and presenting them in a list to a provider or medical social worker. Additionally, Key Informants discussed the importance of accurate documentation of care for more traditional sub-populations such as children with long-term health conditions. Understanding “normal” for children with conditions such as cerebral palsy or chronic illness is important for recognizing and assessing change and requires a nuanced documentation of care.

Summary of Recommended Functionalities and Issues Identified in the Literature

Managing a Clinical Subpopulation

The EHR can support pediatric functionality to manage clinical subpopulations, such as patients carrying a specific diagnosis or with an associated risk factor. For example, an EHR might recommend thyroid testing or a cervical spine x-ray for a patient with trisomy 21. Little EHR-specific information is available in the published literature related to pediatrics, and specifically to outpatient-relevant situations. One study used the EHR to link maternal and infant
medical charts to identify infants at risk of perinatal acquisition of hepatitis C. Generation of an annual list of exposed infants was among several interventions employed to help ensure children were subsequently screened for hepatitis C after 18 months of age, in accordance with AAP recommendations.

One additional study examined the effects of implementing CDS, reminding clinicians to assess for attention deficit hyperactivity disorder symptoms every 3 to 6 months. The system included a structured note template to record symptoms, treatment effectiveness, and adverse events. Implementation of this functionality was associated with improved documentation and an improved visit rate of patients with a given diagnosis of attention deficit hyperactivity disorder.

Finally, a study by Bell et al. showed improved prescribing of asthma controller medications and generation of asthma control plans in a group with clinical decision support incorporated into their workflow as opposed to a group that was given the electronic tools only.

User Perspective From AAP Review System

We did not identify specific comments on managing a clinical subpopulation or supporting care of specific patients in a subpopulation in the AAP EHR user review site; however, reviewers did touch on the ability of systems to provide features specific to premature infants or special populations such as children with Down syndrome. Reviewers also commented on needs specific to children born outside the United States, such as immunization reconciliation and additional screening requirements.

6. Medications

Summary of Recommended Functionalities and Issues Identified by Key Informants

Medication management, including computerized physician order entry and weight-based dosing was noted as a core functionality for a pediatric EHR, albeit one that is not unique to pediatrics. Nonetheless, medication management in children is subject to increased safety risks for at least three reasons. First, a child’s continuously changing physiology presents an important complicating factor for medication management. Second, young children do not have communication skills to warn clinicians about potential mistakes in administering drugs or about the adverse effects that they may experience. Third, children, especially neonates, may have more limited internal reserves than adults with which to buffer errors.

Key Informants discussed safety issues inherent in medication management, noting that a lack of such functionality increases a child’s risk of receiving the wrong medication or wrong dose. The range variability among physical characteristics in children is much wider in pediatric patients than for adults, ranging from a 500-gram premature infant to an obese adolescent weighing greater than 100 kg. In certain cases, a specific dosing strategy may be contraindicated, such as when usual weight-based dosing would result in a calculated dose that is larger than a medication’s maximum dose for an adult-sized pediatric patient. The pharmacokinetics and appropriate drug doses further depend on the maturity of a particular pediatric patient’s renal and hepatic drug elimination systems. Given this developing physiology, a young child has relatively limited reserves to buffer the effects of improper treatment or disease, making him particularly vulnerable to adverse effects of medication variance when compared to an adult.
Such significant variation means that the definitions of “normal,” “standard,” and “wrong” dosages for pediatric patients change rapidly over time with the clinical parameters used to calculate the dosages (age, weight, body surface area, etc.). Key Informants commented on the need for flexible systems with robust rules for functions like dose rounding that take into account differences in the patient population and in the medication being administered.

Summary of Recommended Functionalities and Issues Identified in the Literature

Medication Management

Using weight-based dosing and individually tailored dosing makes the task of ordering medications for children correctly a complex endeavor\(^7\)\(^7\),\(^8\)\(^1\) that could be substantially supported in EHRs. In accordance with the Institute of Medicine definition of an EHR, an effective system would improve medication prescribing to include “(3) provision of knowledge and decision-support that enhance the quality, safety, and efficiency of patient care; and (4) support of efficient processes for health care delivery.”\(^4\)\(^8\),\(^8\)\(^2\)

EHR systems have the potential to mitigate complexity with advanced decision support features, thus improving patient safety. Exploiting this potential calls for a specialized assessment of the unique challenges in providing pediatric care with EHRs, and in particular, unique features required of the EHRs. Pediatric medication dosing based on age and weight is more complex than dosing in adults and is prone to calculation errors.\(^7\)\(^8\) The process is further complicated by a large selection of alternative routes (oral, rectal, intravenous, subcutaneous, intrathecal, intraosseous, via gastric tube) and significant variation in concentrations of the medications, which can be provided in a great variety of dispensed forms such as tablets, liquid, nasal, partial-tablet formulations, and combination prescriptions. Even if a provider calculates correctly the dose of the medication, the dose has to be translated into the correct amount of a particular concentration to be administered, which provides the opportunity for error.\(^4\)

While amoxicillin-clavulanate is typically used in one or two dose forms for adults, thirteen different formulations are routinely used in pediatrics, increasing the chance of a prescribing error. The need for individualized dilution of stock medications and pediatric compounding of medications, with parenteral nutrition being the most complex,\(^8\)\(^3\) places children at an increased risk of medication errors. With low-weight patients, sophisticated rounding strategies and accurate weight measurements are particularly critical to avoid over- or under-dosing.\(^5\)\(^6\) For premature infants, even the patient’s age can variably be referred to as chronological age, which is based on birthdate, or postmenstrual age, which represents time of gestation.

One study compared the set of dosing eRules of the clinical decision support (CDS) integrated in a vendor-supplied ordering system with traditional dosing sources, deemed the gold standard. A significant gap was found between dosing rules in commercial products and actual prescribing practices of pediatric providers.\(^1\)\(^3\)

In another study, the EHR provided chronological age by default, rather than facilitating a choice of corrected age, which influenced assessment and recommendations for care.\(^1\)\(^4\) One study evaluating prescribing of narcotic substances in children identified support in selecting the correct concentration as well as “show your work” or the display of all data that influenced the final dose and amount in the prescription an important design feature.\(^8\)\(^4\) In an unmodified (vendor supplied) EHR, medication prescriptions for children generated a higher proportion of improper dosing alerts than prescriptions for adults, resulting in extensive dosing overrides and
alert fatigue. In a study of pediatric dose range checking, clinicians overrode under-dosing alerts much more frequently than overdosing alerts.

Electronic Prescribing
An electronic medication prescribing system can vary widely in implementation. It may range from a system that permits filling a few boxes and a printing mechanism without decision support to a fully integrated e-prescribing system with full decision support including pediatric-specific drug references and cross checking of allergies and medication interactions, integrated formulary information, and longitudinal medication tracking. The design and usability of such a system is important, as a very sophisticated and full-featured system may be of little use if it is too cumbersome, requires frequent workarounds, and lacks well-designed user interfaces. The goal of medication prescribing in an EHR is to improve safety and ease the demands on pediatric clinicians without interruption of workflow and increase in workload.

Requirements for CDS to support electronic prescribing noted in the literature are summarized in Table 3 and include the following: weight-based dose calculations and range checks, automated dose rounding, age correction and adjustment for infants, and optimized display options for medication orders.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specific Details</th>
</tr>
</thead>
</table>
| Weight-based dose calculations and range checks | - Uses specific units of measurement, preferably with allowance to switch between different systems of measurements (e.g., between metric and imperial), and display of units of measure along with the data values.
- Display normal pediatric ranges for reference and advise use when no pediatric references exit.
- Use pediatric norms with respect to range and alert levels, citing patient weight / age with soft-stops for adult dose. |
| Dose rounding | - System should allow rounding of medication doses to appropriate decimal precision in consideration of the Low-weight patients.
- System must be able to accept weight in grams or to third decimal place when provided in Kg.
- Similarly, the system must be able to accept age to the precision of days. |
| Age corrections / adjustments | - System should provide appropriate alerts for age correction for preterm infants, neonates, and small weight patients. |
| Optimized options for medications | - This is based on the availability of medications in appropriate format or concentration.
- Depending on whether this is inpatient or ambulatory setting, the EHR system may be parameterized to either available forms / concentration with the pharmacy or the most convenient forms / concentrations available in the market. |
| Special label printing | - These options may be considered for more advanced systems
- Specialized label printing for ‘School-day’ doses. |

User Perspective From AAP Review System
Overall, providers commonly stressed the need for effective e-prescribing. Specific suggestions included:
- Featuring weight-based dosing and utilizing an integrated calculator for that.
- Dose calculation should be automatic, pediatric specific, easy, provide soft-stops, and appropriate range-based alerts.
- A side-panel (or a hover-over popup) for brief description and justification of calculations to permit “Show your work”.

19
• Looking up a medication should be easy and comprehensive, by both generic and brand names.
• Selecting the appropriate concentration should be supported.
• It should be possible for med list to be viewed in chronological order, and to split current and past medications.
• E-prescribing for controlled substances should be possible if allowed by state.

7. Documentation and Billing

Summary of Recommended Functionalities and Issues Identified by Key Informants

Key Informants noted that clinicians routinely describe existing EHRs as too complex and cumbersome to use. Informants described the need to design systems with pediatric care workflow in mind as functionality not integrated into workflow will not be used in clinical practice. Key Informants also discussed documentation of care in terms of the ability to identify prior visits and visits at other centers. At present, data are often too fractionated across multiple systems to provide a useful picture of a patient’s care. Key Informants also commented on the lack of consistent, common nomenclature for coding elements of care. Lack of a common nomenclature limits interoperability and complicates clinical decision.

Summary of Recommended Functionalities and Issues Identified in the Literature

Pediatric requirements in regards to documentation and billing discussed in the literature appear to be similar to adult needs. These requirements include reducing workload during documentation by reducing the number of clicks and screens required. Clinicians desire a decreased burden in documentation of their specialty specific procedures and billing codes and desire an easier way to access these items. Codes, diagnoses, and procedures should be customized to ease access to pediatric-relevant information and reduce documentation workload.

User Perspective from AAP Review System

Reviewers mentioned repeatedly that pediatric EHR systems should have the possibility of customization, often without explaining what to customize. The notion is implied that pediatric office visits typically comprise a limited set of pediatric well or sick visits with a specific range of diagnoses, procedures, and tests that are used frequently. Increasing the ease with which these items can be retrieved during documentation (for example through a “frequently used list”) appears to be an important desire in regards to usability. One reviewer clarified that customizable data entry and problem lists would allow different doctors to meet their specific needs, such as when a provider needs to capture a patient’s response to a specific screening tool or when they need to complete documentation for secondary use of medical data, such as with school or athletic forms.

Data management was the focus of multiple reviews. Several reviewers suggested one EHR screen to display the pertinent information needed: names, a brief yet comprehensive problem list, and a descriptive updatable summary of patient’s history. This requirement seems similar to the needs of adult providers with the exception that some data elements may be exchangeable and problem lists in children often tend to be more dynamic than in adults.
The fact that providers see large numbers of patients in a day is reflected in the fact that many reviewers addressed the need for EHRs to be integrated into the provider’s workflow. Several providers complained about EHR systems that lead to disruptions of the workflow mostly focusing on the ease of documentation and note taking. Another provider complained about software that requires going back and forth between screens in order to do visit documentation, which does not reflect the natural steps of information gathering in a clinical visit.

The support of RHCM was well addressed. The elements of these primary care visits are specific to pediatrics, and many EHR systems are not set up for such documentation. Other features of the documentation and workflow that reviewers mentioned include: 1) allowing for patient documentation; 2) allowing for digital signature; and 3) the need to support importing paper documents and the ability to scan them to patient’s digital record.

Finally, it was noted in peer review that, optimally, EHRs will connect with evidence-based recommendations directly.

8. Pediatric-Specific Norms and Growth Charts

Summary of Recommended Functionalities and Issues Identified by Key Informants

One essential area that differentiates pediatric and adult EHR requirements is the need to incorporate pediatric norms, an issue frequently noted by Key Informants. For example, the value of normal heart rate is not universal but depends on age. Most EHRs contain alerts and displays of upper and lower limit of normal based on adult normal values only,11,88 which may lead to the loss of their potential to provide clinically useful alerts or visual cues based on the range of appropriate norms for pediatric patients. The lack of pediatric norms may become dangerous when an EHR fails to identify and alert for abnormal values that may indicate life-threatening conditions. For example, a heart rate of 60 is normal in an adult but should trigger an alert in an infant.

Childhood is a period of change, where growth and development advance not always at a linear acceleration, and special populations will have varying growth patterns. Attention to the special significance of children’s growth in pediatric practice is also essential for a pediatric EHR and should manifest in graphic display and special calculations of growth patterns and comparison with normal velocity of change in typically and atypically developing children. Because small changes in growth parameters, such as weight changes in premature infants, may be important, systems should be able to store data scales that adjust the number of decimals to the total amount (three decimals for the display of weight for a premature infant, zero decimals for an adolescent) to demonstrate these changes.

Key Informants noted that the development of alternative growth charts to account for variations in growth patterns may be limited by poor availability of evidence strong enough to support their use and the fact that validated growth charts for special populations are lacking. Special population growth charts in commercial EHR systems, if available, may be derived from unknown data samples and using methods that may not have been clearly reported. Data sets used to derive the specialized charts are typically not accessible for testing.
Summary of Recommended Functionalities and Issues Identified in the Literature

Sensitivity to Growth Norms

A pediatric EHR is expected to support recording of measurements on a sufficiently granular scale to be useful for newborn or infant care. Reports in the literature have noted that EHRs should be able to compare vital signs with age-based normal ranges, accept provided normative values, and alter normal ranges to represent specific ethnic, or geographic populations. A Key Informant pointed out that pediatricians who are not affiliated with integrated health systems and whose EHRs lack pediatric norm functionality may not have adequate technical or financial resources to manipulate EHRs to account for specialized needs.

Flexibility in Data Formats

Pediatric-compliant EHRs are sensitive to numeric and non-numeric data. Norms for almost all numeric data (such as laboratory results, body measurements, scores on standardized assessments, and vital signs) change as the child grows. The measurements of most of these data are continuous, and they depend on age and/or other variants. A limited number of reference ranges may not be enough, and pediatric EHRs should be able to define a normal reference range for each piece of data at any age or in the appropriate age group granularity. Depending on data distributions, providing percentile values and/or standard deviations from the means should be available in pediatric EHRs. For non-numeric data (e.g., the presence of an abnormal physical sign), an EHR should consider age in the interpretation of normality. For example, several routine physical exam findings for newborn infants are considered an abnormal finding in older children (e.g., open fontanel).

Although age and weight are the two variants that many pediatric data depend on, some normative data is related to complex variants. Blood pressure, for example, has a reference range that is determined by age, sex, and height percentile. Another example is the peak flow meter norms, which also depend on those three variants. When a pediatric-compliant EHR flags an abnormal value of blood pressure, spirometry, or other pediatric data assessment, it should take into account all different related variants.

One challenge to the implementation of pediatric norms into EHR systems is in the case of laboratory values. The reference laboratory and not the EHR usually supply the normal ranges for these values. The EHR should be able to allow users to both integrate normal references ranges for age provided from the laboratory and to alter normal ranges to represent specific age and ethnic or geographic populations.

Flexible Growth Charts

The AAP Task Force on Medical Informatics has recommended growth chart functionality in EHRs including “Recording, graphic display, and special calculations of growth patterns, the ability to calculate, display, and compare a child’s growth percentiles and body mass index (BMI) with normal ranges, the ability to use different ranges for different patients, the ability to store data on a small enough scale to represent these changes.”

One study of growth chart functionality in an EHR system in a multispecialty pediatric clinic in an academic medical center described an electronic growth chart able to manipulate data, perform calculations, and adapt to user preferences and patient characteristics. It used reference parameters and Z-score values for weight, height, and head circumference. The growth chart was
easily viewed and supported features including the calculation of growth velocity, superimposing mid-parental height points on height curves, and plotting height curve against skeletal age. After implementation, the number of documentation instances of weight, stature, and head circumference improved from fewer than ten total per weekday, up to 488 weight values, 293 stature values, and 74 head circumference values suggesting increased incentives to providers to record these data in the EHR.

Table 4 outlines desiderata for EHR system–based growth charts identified in this study via experiences with EHR users, discussions with members of the AAP Council on Clinical Information Technology, and discussions with members of the Health Level-7 Pediatric Data Special Interest Group.

Table 4. Desiderata for management and representation of pediatric growth in an EHR system

<table>
<thead>
<tr>
<th>Workflow</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Use routinely gathered growth measurements</td>
<td>Automatically generate growth charts</td>
</tr>
<tr>
<td>Growth charts accessible from standard EHR system components</td>
<td>Growth data and calculations reusable for other tasks (e.g., decision support, documentation)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Growth data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Capture weight, height or length, head circumference</td>
<td>Calculate body mass index and growth velocity</td>
</tr>
<tr>
<td>Calculate percentiles and standard deviations based on population norms</td>
<td>Capture data using different units of measurement (e.g., grams, kilograms, pounds)</td>
</tr>
<tr>
<td>Capture context of measurement (e.g., lying or standing, ventilated, receiving growth hormone)</td>
<td>Support automated data capture from measurement devices (e.g., digital scales)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Presentation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Display growth data on standardized charts as the default view</td>
<td>Display against standard population-based normal curves</td>
</tr>
<tr>
<td>Display normal curves based on age, gender, and other demographic characteristics</td>
<td>Display using graphical and tabular formats</td>
</tr>
<tr>
<td>Display predictive growth curves or growth targets</td>
<td>Display time and date of birth for infants</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Functionality</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculate mid-parental height by gender-specific parent height percentiles</td>
<td>Display bone age measurements with actual age measurements</td>
</tr>
<tr>
<td>Display development states (e.g., Tanner stages) with actual age measurements</td>
<td>Derive and display and the median age at which a given growth point is achieved</td>
</tr>
<tr>
<td>Allow adding, deleting, and editing of growth points</td>
<td>Enable varying the scale’s level of detail (i.e., zoom in or out)</td>
</tr>
<tr>
<td>Support printing and faxing</td>
<td>Support user preferences (i.e., connected points, superimposed values, table or graphical chart)</td>
</tr>
</tbody>
</table>

EHR = electronic health record

From Rosenbloom et al., 2006
Subpopulation-Specific Growth Charts

Growth may be altered or impaired in some conditions including prematurity and Down syndrome, Turner’s syndrome and others. Population-based growth charts may not accurately reflect development of these children. Despite the lack of validated alternative growth charts as discussed above, the AAP recommended that EHR systems incorporate syndrome-specific growth charts where feasible. Attempts to address some of these alternative growth charts are noted in the literature. One example is a study that generated new growth curves for weight in male and female children with Down syndrome that described an approach to develop standardized, EHR compatible, sub-population growth charts, along with a computable data table. The study highlighted the need for using consistent approach or a standardized set of normative curves across processes to develop EHR-integrated growth charts. Without a consistent approach, different EHR systems will use different protocols for monitoring of growth in sub-populations, which limit inter-system communication, data exchange, and efforts to screen for growth abnormalities in children.

Another example is the application of pediatric Prader-Willi Syndrome growth charts of both genders, in two tertiary care facilities. The authors noted some challenges in one of the two study centers that created barriers for application including the use of a commercially available EHR as compared to an in-house developed EHR and the lack of full application of a system-wide EHR that likely reduced the demand for Prader-Willi Syndrome growth chart.

Premature infants represent another challenge for the design of EHR growth monitoring. The use of chronological age instead of corrected age when plotting against growth charts may result in incorrect interpretations regarding the adequacy of a child’s growth or developmental progress and has the potential to negatively affect care. The AAP and the Centers for Disease Control and Prevention recommended correcting age for all premature infants up to age 24 months. In one study of an EHR that used chronological age as a default setting, corrected age was used in only 24 percent of visits for infants less than 32 weeks gestation during their infancy outpatient visits in 31 primary care sites. The implications of this finding include an over-identification of developmental delay, and dietary changes including increase of caloric intake that were more likely to be done incorrectly or earlier than indicated. This study implied that EHR did not facilitate the choice of the corrected age in this population, and that default to chronological age may have contributed to the inappropriate choices by providers.

Growth Monitoring Decision Support Tools

Changes in growth trajectory or not being on a target growth curve can signal clinical problems developing in an infant or child; thus, support for growth monitoring is a helpful component of an EHR. Nonetheless, few growth monitoring decision support tools were developed and described in the literature. One group in Finland conducted a population-based pre-post intervention comparison study of a computerized and automated growth monitoring strategy integrated into EHR system in pediatric primary care setting. The application of this tool statistically increased referral because of suspected growth delay from 0.22 percent in standard growth monitoring era to 0.64 percent in automated growth monitoring era. Although this EHR-integrated tool increased the workload in of specialists, it improved primary care sensitivity to the detection of growth disorders.
User Perspective From AAP Review System

The Pediatric-Specific Norms and Growth Charts functionalities were mentioned in many reviews. The majority of pediatric providers who reviewed their own EHR systems on the AAP Web site expressed satisfaction with the fact that pediatric growth charts were available to them. However, a few reviewers reported using EHR systems that did not provide any growth charts at all. A few other providers complained about the absence of specific charts like a BMI chart, premature infant growth charts, and Down syndrome growth charts.

As a key element for tracking a child’s health and development, growth charts are of major concern to pediatricians. The reviewers stressed the need for up-to-date and standardized growth data from reputable sources like World Health Organization or the Centers for Disease Control and Prevention as well as alternate charts for children with developmental issues such as being born prematurely or having Trisomy 21. Other concerns included:

- The need for automatic percentile calculations;
- The need to have height, weight and BMI included on the same chart;
- The need for alternate units of measurement;
- The need for the parameters to be customizable by age; and
- General usability/readability of the plotting feature.
GQ2. Description of the Context in Which EHRs Are Implemented

G2A. What is the potential value of pediatric-specific functionalities in the context of care transition, specifically from newborn care to pediatric primary care, from pediatric primary care to pediatric specialist care, and from pediatric primary care to adolescent care?

The provision of pediatric care occurs over the course of many transitions that may involve a variety of care providers against a backdrop of growth and development of the neonate to child to adolescent and to adult. They may experience additional transitions at any point, including from inpatient care to outpatient care or from primary care to specialty care. Frequently care is provided in nontraditional settings such as school health or camps. Many times communication for these transitions needs to be bidirectional, and if the patient has any special health care needs, transitions may be especially challenging. Our recently published technical brief on transitions of care from pediatric to adult care for children with special health care needs documented a dearth of evidence on what works to support and facilitate this particular transition.

The AAP endorsed the Got Transition recommendations as an accessible resource for the development of EHR functionalities to support the transition of care for children, specifically children with special health care needs. As with the description of Bright Futures, however, the available materials are unlikely to be immediately translated into a programmable form due to complexity, lack of disambiguation, and decidability; nonetheless, Got Transition can provide a potential roadmap for EHR developers.

Discussions with our Key Informants identified transitions as an important functionality of a pediatric EHR. Despite its importance, it is not easily tied to a specific function but instead is affected by the improvement of multiple functions and services provided. This is perhaps not surprising given the wide range of ages, clinical scenarios, and meanings encompassed by the concept. Transitions identified by the Key Informants are listed below with a brief description of their importance. Related functionalities described in the current literature will be discussed following the descriptions.

Age-Based Transitions

For the transition of care from the fetus to newborn, newborn screening plays an important role. Virtually every infant born in the United States undergoes a series of screening tests shortly after birth to identify potentially debilitating or fatal conditions. States differ in how many conditions are tested during newborn screening, but diseases such as phenylketonuria, hemoglobinopathies, cystic fibrosis and several others are common among all states. In the environmental scan for the Children’s EHR Format, Intermountain Health reported that “an EHR would include coded results of genetic, metabolic, and developmental testing and describe functionality for prompts for caregivers for regional, state, or other requirements.” Due to the rare nature of the diseases being screened, a primary care provider may never have previously encountered one of these conditions. As such, the EHR must facilitate clear dissemination of results and decision support for immediately required actions as well as readily accessible storage of results for use throughout childhood and even into adulthood.

Another study evaluated using the EHR to improve hepatitis C screening and followup. This example illustrates a clinical scenario where at-risk children are identified around the time of
birth by maternal history, but screening is not to take place until after the child is 18 months old. In that study, at risk children were initially identified retrospectively through manual chart review, but the EHR intervention used automated prospective identification and improved hepatitis C screening tests from 8 to 50 percent.21

The transition from infancy into childhood is a period marked by frequent well-child visits and frequent immunizations. Specific EHR functions to support this transition thus depend on an EHR’s ability to send, receive, integrate into a patient’s record, and prompt physicians to act on vaccine data or lack thereof. In addition to vaccinations, preventive care information that is appropriate to a patient’s age and developmental stage should be provided at every well visit. As the body of evidence-based recommended guidelines keeps growing, it becomes more difficult to determine which guidelines may apply to a specific patient. One study applied a Bayesian learning method to an existing patient information and screening tool in order to provide physician prompts and patient education better suited for that individual.96

Adolescence marks the physical transition of a child into an adult and an EHR should facilitate this. Developmental screening, anticipatory care in the form of patient handouts including high risk behaviors, and vaccinations continue to play an important role during adolescence, but privacy becomes a much larger focus than in previous stages of a child’s life. The Society for Adolescent Health and Medicine recommends that an EHR needs to take into account the special needs of adolescents to access health information and the vigorous protection of confidentiality.22 The American College of Obstetrics and Gynecology provided recommendations in the form of a committee opinion. They note that institutions establishing an EHR system should consider systems with adolescent-specific modules that can be customized to accommodate the confidentiality needs related to minor adolescents and comply with the requirements of State and Federal laws.97 Important age-based transitions that the pediatric EHR should support are summarized in Table 5.
Table 5. Key age-based transitions relevant to EHR development

<table>
<thead>
<tr>
<th>Transition</th>
<th>Challenges</th>
<th>Relevant Functionalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fetal to Newborn</td>
<td>Involves physiologic changes of the infant as well as a physical transfer from hospital to home to clinic. A parent or infant may change providers during this time creating additional transitions from one facility, provider, or State to another.</td>
<td>Documentation (specifically growth tracking and screening tests as well as mother baby link to allow maternal labs to be linked to the infant) Child development</td>
</tr>
<tr>
<td>Newborn to childhood</td>
<td>Development encompasses changes in physical, emotional, intellectual, motor, neurological, and psychological health. Vaccinations are important in this time period. Most required vaccinations are completed by 15 to 18 months with nearly all required immunizations completed by 4 years.</td>
<td>Vaccines Child development Anticipatory guidance Population Management</td>
</tr>
<tr>
<td>Childhood to adolescence</td>
<td>Begins the transition to adulthood and creates new challenges not only for the patient and parents, but also for the providers and the EHR. Privacy laws and definitions of autonomy create a unique interplay between patient autonomy and privacy concerns. Significant development continues to occur during this time. Providers must achieve appropriate health maintenance while also promoting responsibility and self-interest in the adolescent’s own health.</td>
<td>Child development including risk behaviors Medications Population Management Privacy</td>
</tr>
<tr>
<td>Adolescence to adulthood</td>
<td>This transition will be unique for each patient. A major goal is assessing a patient’s readiness for transition out of pediatric care and into adult care. Complexity of medical history, ability to manage one’s own care, or ability of an adult provider to manage an uncommon childhood condition are possible modifiers for readiness.</td>
<td>Privacy Population Management</td>
</tr>
</tbody>
</table>

Inpatient and Outpatient

Some patients transfer between inpatient and outpatient care multiple times. Facility transfers often involve different EHR systems and highlight the need for improvement in interoperability of data between EHR systems. Basic requirements for an EHR “must support patient-care transitions between medical homes via universal (i.e., vendor/technology-neutral) portability standards for patient records among different medical home information systems”. As of the time of this report, it is critical to note that such universal interoperability is for the most part still dependent upon paper transmission due to a lack of Health Information Exchange (HIE)d. Hospital discharge after admission for asthma carries its own set of mandates from the Joint Commission and is thus an increasingly studied example of this transition.

Key Informants and literature review likewise identified the transition from one facility to another as an important function for an EHR to perform. Methods of data transmission and interoperability are shared between pediatric and adult EHRs. Nevertheless, asthma appears in the literature as a special case of this transition likely due to mandates put in place by the Joint Commission. In 2003, the commission developed three specific measures to help reduce high re-admission rates for patients with asthma. Two of the three measures have maintained greater than 95 percent compliance nationwide for the use of relievers and corticosteroids for inpatient admissions. The third measure focuses on self-management by providing a home management program.d

d As defined by the Healthcare Information and Management Systems Society (HIMSS) Health Information Exchange (HIE) “provides the capability to electronically move clinical information among disparate healthcare information systems, and maintain the meaning of the information being exchanged.”
plan of care or “asthma action plan.” Such plans apply also to school and recreation. Due to regulation and assessment by the Joint Commission, there is a growing body of literature on methods for improving compliance. While this asthma action plan is a discharge requirement for patients admitted with asthma, many clinics use the same form as an informational handout following clinic visits. Enhancements in EHRs should support pediatric asthma management by reinforcing physician adherence to guidelines and improving patient followup. The group anticipates that improved EHR support will increase the level of evidence-based care patients receive.

Similar to asthma action plans, the literature search identified forms known as “emergency information forms” (EIF), also known as an individualized plan of care, as an important function to facilitate transitions of care, especially between the patient centered medical home, specialty services, and acute care. The AAP and American College of Emergency Physicians endorsed the EIF as a minimum data set for use in emergencies. The EIF is optimally created in the patient centered medical home for a child with specific or complex medical conditions to provide a minimum amount of data about diagnoses and medications the patient carries as well as procedures a patient should or should not receive in emergencies. One study created a database for storing the EIF for a patient and stated that an accurate emergency summary should help to prevent medication errors at the time of transitions of care.

The Particular Challenge of Identity

A Key Informant singled out transitions of identity as one of the most important functions of an EHR. The identity of a child changes when there is a divorce and one parent is assigned custody. Movement to a different state, home, or insurance carrier affects the whole identity of a child. Foster care, emancipation status, and identity protection are just a few facets of all the features that truly make up a child’s identity. These issues are admittedly hard to quantify for inclusion and certification in a pediatric EHR but are important functions to think about in the scope of this review.

Although our Key Informants were adamant that transitions of identity, including through acquisition of a name after birth, through divorce and adoption and in the foster care system are critical for EHR implementation, little is available in the literature to guide best development of the EHR in this regard.

As noted by the AAP, “A universal patient identifier is a desirable but as yet unachieved goal.” Thus, an optimally functional EHR will need to provide assignment immediately at the time of birth or even before if prenatal procedures are to be performed. EHRs need to accommodate temporary data for this field and flexibility of search functions as well as maintaining records of multiple names used by the patient. “Limited ability to communicate with pediatric patients increases the reliance on the EHR to accurately identify patients, detect erroneous assumptions, discover symptoms, and access historical information.”

In summary, a child can be discharged from the hospital with one name and arrive in clinic the following day under a new one. Separately or in conjunction, the payer relationship often depends on custody, employment status, or the ability to submit paperwork on time to the correct offices. Key Informants mentioned that sensitive issues such as adoption, foster care, or egg/sperm donation can also play a deterministic role in the identity of a child. For reasons of marriage, parenthood, or financial security children can obtain emancipation status prior to the age of 18. Current EHR systems are rarely adequate for representing this. As mentioned,
literature review did not provide a solution, but the paucity of evidence should be an impetus for ongoing research.

GQ2B. Are certain pediatric-specific functionalities beneficial for a provider to conduct her work including sick and well-child visits? If so, does this vary by health care setting (e.g. primary care office, specialty care office, school health, and alternative care settings) or by type of visit (e.g., preventive vs. acute care)?

The available literature to date provides little suggestion of the ways in which particular functionalities are beneficial within the context of pediatric care overall, or the degree to which they affect workflow and day-to-day processes. Key Informants note that while the literature to date has focused on functionality, in particular as it pertains to meeting requirements and improving health, substantially less attention has been paid to issues of the user interface and workflow as they are specific to the care of children. This is clearly an area for future examination and consideration as pediatric EHRs are developed and disseminated more broadly.

Nonetheless, it is an area where we gleaned input from Key Informants. Key Informants noted the importance of tying functionalities to supporting pediatric providers in meeting Meaningful Use requirements and measuring quality. A particular characteristic of the well-child visit is the degree to which it is highly structured. Components of that visit and parts of the physical exam for example, may or may not be associated with a quality metric or longer-term health outcomes.

Key Informants suggested that pediatric quality measures be incorporated into the development of the EHR such that reporting becomes part of the workflow and not an additional burden to the provider. In this way, decisions about what to build into the EHR are driven by two things – our empirical knowledge about what issues are tied to hard health outcomes (e.g. vaccinations and smoking status), and established quality metrics that will need to be gathered in a clinical practice.

For example, one particular area that is difficult to integrate into the workflow was noted to be tracking and care around child development, particularly in a busy environment with short visit times. By the same token, while tracking child development in an EHR may be a worthwhile endeavor and desirable to pediatricians, evidence that such incorporation affects clinical outcomes is largely lacking. Our Key Informants noted aptly that physicians have met needs such as vaccination logic in the absence of an electronic health record for many years. Thus of key importance is that the EHR fit easily into the clinician’s workflow with a focus on usability. Interestingly, as noted in GQ4 below, despite the centrality of this issue, particularly in pediatrics, evidence is trailing.

Appropriate CPOE integrated with clinical decision support (CDS) for dosing and relevant alerts make it easy for the pediatric provider to conduct her work. Appropriate weight and age based dose calculations, appropriate dose ranges, and corresponding alerts to indicate improper dosing expedite the medication use workflow for the pediatric providers.
GQ2C. What are the challenges to implementing specific functionalities? Are some harder than others to implement by a) vendors; and/or b) pediatric providers?

Per our Key Informants, any implementation of an EHR needs to be mindful that pediatrics is a high volume practice, and adding time and complexity to the day in a field with an already relatively low margin will be problematic for physicians. Ironically, implementation of all of the noted functionalities may actually create a challenge for pediatric providers to successfully see enough patients while documenting adequately and using the fully functionalities available in the EHR. Key Informants noted that taking the time to record additional information than might have previously been recorded comes at potentially significant cost if it requires fewer visits take place. Indeed, one study in our review documented the time that it took for a pediatric practice to return to baseline volume after implementing an EHR and it was substantially longer than the vendor had indicated.

Vaccines
Vaccine functionality in EHRs is hindered by factors such as non-centralized, proprietary databases that cause fragmentation of vaccination records. Clinical decision support does not perform well when documentation is incomplete and in fact can prompt physicians to give immunizations unnecessarily. Thus, finding ways to ensure that various databases communicate well and that one complete and correct record is available are particular challenges to properly implementing vaccination procedures in the EHR. Without being able to consistently demonstrate compliance with vaccinations in the patient population, physicians risk over or under vaccinating, and indeed multiple authors note this challenge. The literature search identified concerns in addressing immunization status accuracy. Both parents’ and provider’s records included errors. In addition to this core challenge, many systems have inefficient forms of data entry requiring scanning of paper records or electronic submission to a State registry that does not interface with the native patient record. Finally, different immunization formulations and manufacturers create deviations in the way a patient can be delinquent and change the number of doses needed to be considered up to date.

Routine Health Care Maintenance
RHCM tracking is a particularly challenging area of general pediatrics. The AAP has approved nine different developmental screening instruments – all of which vary in format, sensitivity, specificity, and modality. Many of these are licensed products, which may impede incorporation into the EHR. Bright Futures, the most commonly used reference for RHCM, has proven difficult to incorporate actively into electronic health records due to only a minority of recommendations being computationally decidable and executable. Decidable statements require that every condition is described clearly enough so that practitioners would agree on the clinical circumstances for which the recommendation should be applied. Executable statements describe recommended actions that are stated clearly and unambiguously. This applies both to anticipatory guidance and screening recommendations as with RHCM as well as with decision support for appropriate diagnosis and treatment during acute visits. Decision support can be used to prompt a provider to recommend the appropriate vehicle restraint device based on the child’s age, height, and weight, but the EHR cannot easily evaluate whether a child has accomplished “learning to manage conflict nonviolently”, “avoiding situations in which drugs and alcohol are
readily available”, and “avoiding risky situations.” Implementing Bright Future guidelines electronically will require discrete recommendations, age-based topics, and completely standardized wording.65

Privacy

Those who do not care for adolescent patients regularly may consider adolescent privacy as a niche issue.69,70 However, the same techniques employed in protecting an adolescent’s privacy can be expanded to many other situations including ill adults who desire to protect certain health information from their children or caregivers. Also, these issues are now extended with the observation that some adolescents can also remain on their parents’ insurance policy through the age of 26.69

Implementation of privacy controls in the EHR focus on maintaining granularity and consistency across the privacy implementation. For a relatively small EHR implementation, having a single default privacy setting with minimal customization may be adequate and may help to improve utilization by minimizing confusion.

Allowing default privacy settings is easiest when information is stored in structured data fields. Many providers currently use adolescent risk assessment screening tools that contain copyrights that present a barrier to direct integration into an EHR. Paper copies of these forms are currently being scanned into medical charts, which can add complexity to controlling the protected health information.11

Managing Pediatric Conditions in Vulnerable Populations

An EHR that supports management of clinical subpopulations will support generation of patient lists with a unifying feature as well as decision support to improve care of each individual patient.18 In order to implement such recommendations, clinical practice guidelines must be both decidable and executable.65 Generation of such lists must be done in the context of respect for patient privacy in cases of potentially sensitive health information.22 An EHR can support the adoption of practice guidelines and clinical recommendations by incorporating decision support models that fit into a clinician’s workflow when most needed.76

Implementation challenges for managing a vulnerable population fall generally into two categories: identifying individuals in the population and providing care tailored to their particular needs. Identifying children in social contexts such as homelessness or foster care can be difficult unless an EHR contains a mechanism for tracking these social constructs. If these individuals are identified properly, a Patient-Centered Medical Home can help ensure the children are receiving necessary social and community support.107 An EHR can assist in identifying children with complex care needs.108 For these individuals particularly, the storage of complex and varied data types that can be shared between institutions is critical.109

Medications

Enhancing an adult-focused ordering system for safe pediatric medication management is an intense and sophisticated task and has limitations.110 Such efforts require high-level sponsorship, involvement of clinicians, and round-the-clock support.111 Nevertheless, these efforts are seen as necessary and beneficial in reducing medication errors.87,112 In particular, vendors face the challenge in the context of detailed dosing options of integrating alerts that are appropriate and
improve safety but that do not generate fatigue, which commonly leads to the practice of physicians ignoring alerts as a nuisance.

Documentation and Billing

An EHR to support billing and documentation incorporates into a clinician’s workflow. Currently, patient data is often spread across multiple health systems. Health information exchange barriers can hinder assimilation of this data. Users of pediatric EHR systems often requested the ability for customization but without specific indicators on what needs to be customized. In order to provide customization, vendors will need to know which areas and options the clinician would like to customize. Pediatric providers also often requested incorporation of specific screening tools and local athletic or immunization forms. For proprietary tools, licensing can be a barrier to implementation. Local forms may require specific customization for inclusion.

Pediatric-Specific Norms and Growth Charts

Both the Centers for Disease Control and the World Health Organization have published validated growth charts for boys and girls, with the distinction of the World Health Organization chart being a growth standard and the Centers for Disease Control chart being a growth reference. Unfortunately, validated charts do not exist for many diseases, despite these being highly desired by pediatric providers. This creates a challenge for EHR vendors who must choose either to including non-validated charts in their software, to rely on customers to decide which charts they will support, or not to include alternates at all. Growth charts are not the only pediatric data without validated norms. Almost every information category from laboratory test reference ranges to medication doses to vital sign measurements contains gaps in pediatric normative data. Vendors continue to face this constant challenge of what data to use for pediatric standards.
GQ3. Evidence for Pediatric-Specific Functionalities (Evidence Map)

GQ3A. Is there any evidence that using an EHR adapted for the specific needs of pediatric providers compared with using a “regular” EHR or not using an EHR at all produces (a) better quality, including safety and cost outcomes for patients; and/or (b) improved workflow or job satisfaction for providers?

GQ3B. Which pediatric-specific functionalities influence (a) patient outcomes (including safety; quality; cost; equity; standardization of care; and/or efficiency); (b) the ability of a pediatric provider to conduct work within the EHR; (c) improvement of workflow and provider satisfaction; and/or (d) involvement of patients and families (including their education and shared decision making)?

The evidence base that we identified for GQ3a and GQ3b consisted of targeted existing systematic reviews, supplemented by original studies published since completion of those reviews. For QG3a and QG3b, we were limited our inclusion to empirical literature that provided data on the specific outcomes in these questions.

As this is a technical brief, and not a systematic review, we did not assess the rigor of individual studies or assess the strength of the evidence. Of note, the available literature did not directly answer the two GQs. Therefore, we describe the empirical literature that is available in an attempt to provide indirect evidence around these issues. For example, studies did not compare non-pediatric to pediatric EHRs, as would be ideal for GQ1. There were a number of studies describing the de novo implementation of a pediatric EHR using a pre-post approach. Therefore, we combined the answers to these GQs to provide as complete a view of the available literature as possible. We have organized the literature around the functionalities described in GQ1.

We included in our summary studies that used noncurrent comparators and retrospective studies, but note that these have inherent weaknesses in rigor for assessing effectiveness. We sought studies that measured effectiveness for better quality, including safety and cost outcomes for patients and improved workflow or job satisfaction for providers. Studies needed to address an evaluation of an EHR generally or specific functionalities in a pediatric setting and had to evaluate an intervention that either was focused in the outpatient setting or that, if studied in the inpatient setting, would also apply in the outpatient setting. We identified four recent systematic reviews addressing EHRs or EHR components in pediatric settings. Three primarily addressed CPOE and medication errors, and one assessed pediatric-focused health information technology.

The amount of empirical literature meeting our questions was limited. Nonetheless, we grouped the information thematically into efforts to improve vaccinations rates, reduce medication errors, increase accurate diagnoses (primarily of obesity), and other studies (most commonly focused on screening and preventive care). We identified no studies that directly compared a pediatric-specific EHR to one developed for an adult population.
Across all clinical topics, we examined 30 studies that evaluated the implementation of an EHR overall or modifications to or additions to an existing EHR. One study reported on outcomes related to workflow, including satisfaction, but most studies reported process outcomes (e.g., vaccination rates and medication errors) or documentation (proportions of children for whom diagnoses were correctly documented). See Figure 1 for detailed reasons for exclusion.

Figure 1. Literature flow diagram

An AHRQ review assessed pediatric health information technology broadly and noted some evidence to support CPOE and CDS from a small number of studies, largely conducted in academic medical centers. Some studies reported improvements in documentation and antibiotic prescribing and some reductions in medication errors. Evidence for changes in vaccine adherence was mixed, with small improvements in adherence to one vaccine in one study in a general pediatric population and improvements in flu vaccine in children with asthma in another. Timeliness of drug administration and diagnostic testing was improved in one NICU study.
Vaccination-Specific Functionality

As described in GQ1, the availability of vaccine services support in a pediatric EHR is consistently described as a core functionality. The prominent role of the vaccination schedule in well-child care makes it unsurprising that a bolus of work exists evaluating systems of increasing systems to improve vaccination rates in a variety of populations. The studies most commonly used clinical decision support and most often targeted rates of influenza vaccine, often in vulnerable populations.

We sought primarily studies that took place in outpatient settings as those are most relevant to this technical brief. All of the vaccination studies used some sort of decision support in an existing EHR (Table 6). Most were retrospective, although two were cluster RCTs, randomized at the practice level and conducted by the same group.17,120 In all studies, vaccination rates increased, although without true comparator groups, the degree to which the increase is associated with the EHR implementation or to some degree, learned behavior is unknown. Nonetheless, vaccine support was consistently described in the nonempirical literature and by our Key Informants as essential and the body of literature provided a basis for feasibility and effectiveness of using clinical decision support to increase vaccination rates and support the documentation process.

Table 6. Selected evaluation and outcomes studies on interventions to increase vaccination rates in pediatric care

<table>
<thead>
<tr>
<th>Author, Date Study Design Setting</th>
<th>Population</th>
<th>Intervention Target outcomes</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiks et al., 2013120 RCT, cluster (randomized at the practice level) 22 hospital-owned primary care practices</td>
<td>All girls ages 11 to 17 years due for at least one HPV vaccine in the study period</td>
<td>Clinician and family directed decision support, using an existing EHR Clinician intervention: EHR-based alerts for all routine adolescent vaccinations; 2) 1 hour presentation and 3) quarterly performance feedback reports Family intervention: automated telephone calls based on an EHR-generated roster. HPV vaccination rates (cumulative incidence) and time to vaccine receipt.</td>
<td>The combined intervention group demonstrated the greatest effect in both vaccination rates and time to vaccine, compared to the control group. Effects of individual components or of either the clinician or family group alone were not significantly greater than control.</td>
</tr>
<tr>
<td>Nelson et al., 201419 Pilot retrospective design with a convenience sample Outpatient specialty clinic</td>
<td>Pediatric systemic lupus erythematosus Pre: 40 charts Post: 20 charts</td>
<td>CDS in existing EHR Rates of compliance with infection and cardiovascular disease preventive care quality indicators</td>
<td>PVX vaccine (%) Pre: 31.3 Post: 81.0 Influenza vaccine (%) Pre: 33.3 Post: 95.0 Lipid panel (%) Pre: 25.0 Post: 76.0</td>
</tr>
<tr>
<td>Author, Date Study Design Setting</td>
<td>Population</td>
<td>Intervention Target outcomes</td>
<td>Results</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Pollack et al., 2014**</td>
<td>All children 6 months of age and older hospitalized between 2003 and 2012 Admissions: 20,651</td>
<td>System integrated into EMR to determine flu vaccine eligibility, conduct screening and order appropriate formulation Screening status and vaccination status</td>
<td>Screening rate (%) Pre: 19.8 Post: 77.1 Vaccination rate (%) Pre: 2.1 Post: 8.0</td>
</tr>
<tr>
<td>Bundy et al., 2013</td>
<td>Children seen by pediatric residents and selected from 3 age groups</td>
<td>CDS prompt to providers to administer vaccines that were overdue Proportion of children up to date at index birthday; proportion of children up-to-date within one year of index birthday</td>
<td>Up-to-date on index birthday No clinically meaningful change Up-to-date within one year of index birthday No clinically meaningful change</td>
</tr>
<tr>
<td>Fiks et al., 2009**</td>
<td>Children ages 5 to 19 years with asthma Participants (visits) Pre-intervention: 10,667 (21,422) Year 1: 11,919 (23,418)</td>
<td>EHR-based clinical alert for influenza vaccine Captured vaccination opportunities</td>
<td>Change in captured vaccination opportunities (%) Intervention sites: 4.8 Control sites: 3.2 95% CI: −2.4 to 4.9</td>
</tr>
<tr>
<td>Fiks et al., 2007**</td>
<td>All children younger than 24 months during a 1 year intervention (2004 to 2005) Visits: 15,928</td>
<td>Electronic reminders programmed to appear at every visit where a vaccine was due Rates of captured immunizations opportunities and overall immunization rates at 24 months</td>
<td>Captured immunization opportunities at well-child visits (%) Pre: 78.2 Post: 90.3 Captured immunization opportunities at sick-child visits (%) Pre: 11.3 Post: 32.0 Up-to-date, adjusted (%) Pre: 81.7 Post: 90.1</td>
</tr>
</tbody>
</table>
Table 6. Selected evaluation and outcomes studies on interventions to increase vaccination rates in pediatric care (continued)

<table>
<thead>
<tr>
<th>Author, Date Study Design Setting</th>
<th>Population</th>
<th>Intervention Target outcomes</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stockwell et al., 2014<sup>136</sup></td>
<td>Children (predominantly Latino and publicly insured). 8481 unique child visits; 6958 not-up-to-date Median age of 6.5 years</td>
<td>Electronic reminders based on merged data from a regional IIS Vaccination status Documentation for non-administration</td>
<td>Influenza vaccination rate (% of non-up-to-date children vaccinated at visit) Reminder on: 76.2 Reminder off: 73.8 Documentation of non-administration Reminder on: 68.1 Reminder off: 41.5</td>
</tr>
</tbody>
</table>

CDS = clinical decision support; RCT = randomized controlled trial; hER = electronic health record; EMR = electronic medical record; HPV = human papilloma virus; IIS = immunization information service

Medication-Specific Functionalities

Most studies of weight-based dosing and the use of CPOE to reduce errors have been conducted in inpatient settings, particularly in the NICU or PICU. No studies have used concurrent comparators. Of the four recent systematic reviews addressing EHRs or EHR components in pediatric settings, three primarily addressed CPOE and medication errors. CPOE was typically associated with reductions in medication errors and some improvements in vaccine adherence and timeliness of care. Medication prescription errors and/or adverse drug events decreased in three of five studies and decreased in another, though potential adverse drug events increased. Mortality results were mixed with a significant decrease post-implementation in one study, significant increase in another study, and non-significant decrease in third. In meta-analyses, potential and actual adverse drug events showed a non-significant decrease after CPOE (RR=0.65, 95% CI: 0.01 to 0.77), and mortality rates were not significantly influenced by CPOE (RR=1.02, 95% CI: 0.52 to 1.94). In the one study reporting an increase in mortality after CPOE introduction, mortality risk associated with CPOE was elevated (OR=3.28, 95% CI: 1.94 to 5.55).
One systematic review evaluated interventions to reduce dosing errors in children and included 14 studies of CPOE. Most studies were pre-post designs and most reported reductions in total error rates after CPOE implementation, though as noted in the systematic review previously described, one study12 reported an increase in mortality following implementation of CPOE. The investigators note that systems classed as CPOE likely varied considerably in functionality.115

In addition to the systematic reviews, we sought original research published since the end date of the systematic reviews. Only one directly relevant study (i.e. in the outpatient setting) was identified.87 Nonetheless, we provide an overview of inpatient studies under the view that those systems of care would also be relevant to outpatient medication processes, where issues such as weight-based dosing are also in play.

In the outpatient study, an automated weight-based dosing calculator added to an existing EHR was associated with significantly fewer medication errors after implementation in multiple family medicine clinics. The study focused specifically on the use of ibuprofen and acetaminophen in children ages 12 and under.87

Studies examined either the implementation of a CPOE or CPOE with and without CDS. Among those that studied all potential iterations, those that separately addressed the issue of CDS in addition to the CPOE consistently reported that while implementation of CPOE generally did not lead to significant change, the addition of decision support around dosing did.

Table 7. Selected evaluation and outcomes studies on CPOE and weight-based dosing

<table>
<thead>
<tr>
<th>Author, Date Study Design Setting</th>
<th>Population/Groups</th>
<th>Intervention Target outcomes</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>McCrory et al., 201417 Pre-post, retrospective Academic children’s hospital</td>
<td>Patients in a PICU who received manual red blood cell exchange</td>
<td>Introduction of a CPOE system (Eclipsys Sunrise Clinical Manager) Protocol compliance and effectiveness of the manual red blood cell exchange procedure</td>
<td>Protocol violations (n) Pre-intervention: 20 Post-intervention: 3 Sickle hemoglobin reduction (%) Pre-intervention: 55 Post-intervention: 70 Prep=0.04 Peak hemoglobin (g/dL) Pre: 12.0 Post: 11.5 p=0.25</td>
</tr>
<tr>
<td>Bissinger et al., 201318 Pre-post, prospective quality improvement study Academic NICU</td>
<td>All infants who had antibiotics initiated for a suspected healthcare-associated infection Phase I:Baseline Phase II: Implementation of a CPOE</td>
<td>Development and introduction of a CPOE system, after a period of quality improvement projects Improvement between Phase I and Phase II in time to antibiotic Administration within 2 hours (%) Pre: 45 Phase I: 66 Phase II: 85 p<0.001</td>
<td>Antibiotic timing, mean (SD) Pre: 150 (85.1) Phase I: 113 (70.4) Phase II: 74 (43.4) Phase I vs. Phase II: p<0.001</td>
</tr>
</tbody>
</table>
Table 7. Selected evaluation and outcomes studies on CPOE and weight-based dosing (continued)

<table>
<thead>
<tr>
<th>Author, Date Study Design Setting</th>
<th>Population/Groups</th>
<th>Intervention Target outcomes</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maat et al., 2012<sup>26</sup> Interrupted time-series simulation study Academic NICU</td>
<td>All neonates hospitalized for one or more days between 2001 and 2007 with one or more risk factors for hypoglycemia or hyperglycemia (n=2040)</td>
<td>System combining CPOE and parenteral and enteral nutrition ordering (CPOE system with additional CDS for glucose calculations) Hypoglycemic and hyperglycemic episodes and prescribing time efficiency</td>
<td>No significant pre-post difference on numbers of hypo- and hyperglycemics per 100 hospital days of patients in every 3 month period (p=0.88; p=0.75) or per 100 glucose measurements (p=0.91; p=0.74) Stratification for SGA also showed no effect. Physicians completed the three simulation cases correctly with a significant reduction in time with CPOE vs. calculation of 1.3 minutes for simple and 8.6 minutes for complex cases.</td>
</tr>
<tr>
<td>Kazemi et al., 2009<sup>33</sup> Pre-post with three periods Iranian neonatal ward</td>
<td>P1: no CPOE P2: CPOE without decision support P3: CPOE with decision support</td>
<td>CPOE with and without decision support Non-intercepted dosing errors in antibiotics and anticonvulsants</td>
<td>There was no significant difference in error rates pre and post CPOE without decision support. Errors were significantly reduced after decision support was added to the CPOE (53% to 34%; p<0.001) Dose errors were more frequently intercepted than frequency errors. Notably, physicians ignored alerts when they did not understand why they appeared.</td>
</tr>
<tr>
<td>Longhurst et al., 2010<sup>35</sup> Pre-post Academic children’s hospital (quaternary care center)</td>
<td>All non-obstetric inpatients admitted 2001 to 2009 Discharges (n) Pre-intervention: 80,063 Post-intervention: 17,432</td>
<td>CPOE (locally modified functionality within a commercially sold EHR to support CPOE and electronic nursing documentation) Mean monthly adjusted mortality</td>
<td>Change in mortality rate, adjusted mean monthly Post-implementation: 20% reduction (95% CI: 0.8 to 40), p=0.03</td>
</tr>
<tr>
<td>Author, Date Study Design Setting</td>
<td>Population/Groups</td>
<td>Intervention Target outcomes</td>
<td>Results</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Kadmon et al., 2009<sup>132</sup> Pre-post with four periods Tertiary care medical center, PICU</td>
<td>1250 orders from each of the 4 periods P1: no CPOE P2: CPOE without decision support P3: CPOE with decision support P4: CPOE with decision support after a change in prescription authorization</td>
<td>CPOE with and without decision support that included dosage recommendations and limits on prescriptions Prescription error rates</td>
<td>Total errors (%)
P1: 8.2
P2: 7.8
P3: 4.4
P4: 1.4
p<0.0001
Potential adverse drug events (%)
P1: 2.5
P2: 2.4
P3: 0.8
P4: 0.7
p=0.82
MPEs (%)
P1: 5.5
P2: 5.3
P3: 3.8
P4: 0.7
p=0.0001
RVs
P1: 0.002
P2: 0.001
P3: 0
P4: 0.7
p=1.0
Significant decreases in errors occurred only after the addition of decision support to the CPOE
Adverse drug events
Odds of experiencing an ADE were 42% higher in hospitals without CPOE</td>
</tr>
</tbody>
</table>
| Yu et al., 2009¹³³ Case control study | Cases: 4,625 Controls: 18,040 | Presence of a CPOE (hospitals that implemented electronic order entry in all clinical domains) | }
Table 7. Selected evaluation and outcomes studies on CPOE and weight-based dosing (continued)

<table>
<thead>
<tr>
<th>Author, Date Study Design Setting</th>
<th>Population/Groups</th>
<th>Intervention Target outcomes</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ginzburg et al., 2009 Pre-post</td>
<td>Multiple family medicine clinics</td>
<td>Children ages 12 and younger receiving either ibuprofen or acetaminophen prescriptions</td>
<td>Automated weight-based dosing calculator within the EHR</td>
</tr>
<tr>
<td>Visits (n) Pre-intervention: 316 Post-intervention: 224</td>
<td>Medication and overdosing errors</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CPOE = computerized physician order entry; her = electronic health records; NICU = neonatal intensive care unit; PICU = pediatric intensive care unit

See: “Improving Antimicrobial Prescribing Practices in the Neonatal Intensive Care Unit” (5R01NR010821)

Obesity Diagnosis

A body of literature exists on methods for encouraging the recording of BMI and presumably, appropriate follow up, including a prior systematic review on the use of information technology for screening and treating obesity that includes studies through April 2012. All but one of the newer studies identified used a pre-post design (Table 8). Newer studies consistently reported higher rates of diagnosis and documentation, but given substantial attention paid to issues of obesity in children, it is not entirely clear that increases may not have been associated with secular trends. No studies describe patient health outcomes or directly address workflow issues.

As noted in a study published in 2012, in which there was a concurrent comparator, the predicted probability for a diagnosis of obesity increased in both groups (with and without a structured progress note) but the increase was greater in the intervention group. In this study, the effect of a point of care alert with clinical decision support was studied in two group practices in Massachusetts. One implemented the alert, and the other did not. The decision support tool was activated in the intervention set of clinics for children whose age and sex-specific BMI was equal to or greater than 95 percent. The baseline rate of documenting an ICD-9 code for obesity was significantly lower in the intervention group at baseline than in the comparator group, and this group demonstrated significantly greater improvement in documentation over the course of the study. While this study demonstrates a case in which a decision support tool was able to increase documentation, additional study is necessary to understand the degree to which documentation leads to appropriate care and patient-centered outcomes. All other studies were pre-post with the inherent risks of bias associated with that design.
Table 8. Selected evaluation and outcomes studies on use of documentation functionalities to improve identification of obesity

<table>
<thead>
<tr>
<th>Author, Date Study Design Setting</th>
<th>Population</th>
<th>Intervention Target outcomes</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shaikh et al., 2014 (^{1,2}) Pre-post UC Davis Health System</td>
<td>36 pediatric house staff and 12 attending physicians; 432 overweight/obese children (574 total visits)</td>
<td>An alert for high BMI, a checklist and standardized documentation template</td>
<td>Diagnosis of overweight/obesity increased from 40% to 57%. Proportion of children scheduled for followup visits increased from 17% to 27%.</td>
</tr>
<tr>
<td>Bode et al., 2013 (^{19}) Pre-post Academic military medical center, adolescent clinic</td>
<td>All adolescent patients, ages 12 to 19 presenting for well-child care</td>
<td>Inclusion of BMI percentile and BMI growth curve by the medical screener</td>
<td>Rates of BMI Pre: 30.0 Post: 30.5 Correct diagnosis rate (%) Pre: 40.0 Post: 64.0 Pre vs. Post: OR=3.36, 95% CI: 1.7 to 6.7</td>
</tr>
<tr>
<td>Savinon et al., 2012 (^{10}) Pre-post Federally funded, privately owned community health center</td>
<td>All children ages 7 to 18 years presenting for a well-child visit for a total of 74 records (40 written and 34 electronic)</td>
<td>Customized EMR including data entry for BMI calculation, risk assessment questionnaire for parents, diagnosis prompt, and an obesity-specific followup visit. Frequency of recording BMI, completing growth charts Number of children diagnosed with overweight or obesity</td>
<td>Rates of diagnosis no change BMI recorded in EMR patients were significantly more likely to have a BMI recorded in the record after the intervention</td>
</tr>
<tr>
<td>Keehbauch et al., 2012 (^{24}) Pre-post Two community-based family medicine residency clinics</td>
<td>Family medicine residents, pediatric and family medicine faculty Pediatric patients aged 2 to 18 years</td>
<td>EHR upgrade to include BMI by gender and age, plus physician education versus EHR upgrade alone Site 1: EMR upgrade plus physician education Site 2: EMR upgrade alone</td>
<td>Correct documentation of overweight or obese status (%) Site 1: Pre: 29.7 Post: 40.2 Site 2: Pre: 19.4 Post: 27.5</td>
</tr>
<tr>
<td>Ayash et al., 2012 (^{17}) Quasi-experimental (natural) experiment Multisite group practices</td>
<td>Children ages 2 to 18 years seen for well-child care between 2006 and 2008 Intervention: 34,908 Comparison: 123,446</td>
<td>Computerized point of care alert with clinical decision support; physicians at one system were led to a structured progress note Predicted probability of diagnosis of childhood obesity</td>
<td>Predicted probability of an obesity diagnosis increased significantly more in the intervention group than in the control.</td>
</tr>
</tbody>
</table>

BMI = body mass index; her = electronic health record; EMR = electronic medical record

Other Functionalities Including Prevention and Counseling

A growing body of literature is assessing additional services, including preventive care and counseling. Much of this literature focuses on populations with special health care needs and thus provides support for the use of EHRs in population management. Populations studied
included children with asthma and attention deficit hyperactivity disorder (Table 9). Screening and prevention topics included increasing appropriate Pap smears in young women, screening for anemia and tuberculosis on the basis of family triggers, and behavioral screening.

A recent study assessed whether the rates of preventive counseling delivered at well-child visits is different for practices that use a basic EHR, a fully functional EHR, or no EHR. This study provides the best estimates to date of national rates of EHR use as they relate to preventive care. The authors conducted a cross-sectional analysis combining data from the National Ambulatory Medical Care Survey (NAMCS) and the National Hospital Ambulatory Medical Care Survey (NHAMCS) Electronic Medical Records Supplement from 2007-2010. NAMCS provides information about the use of ambulatory medical care service and NHAMCS provides details about hospital-based outpatient and emergency departments in the United States. These two surveys include information provided by physicians or staff members that include patient demographics, counseling topics discussed, ICD-9 codes, and visit duration.

Overall 77 percent of preventive visits were performed with no EHR, 14 percent with a basic EHR, and 9 percent with a fully functional EHR. When comparing basic to fully functional EHR’s, visits take 3.5 more minutes (18%) for fully functional EHRs than those with basic EHR’s (p=0.05). In practices with fully functional EHRs, 34 percent more counseling topics were covered in during the visit. When time is considered in the model, visits utilizing fully functional EHR’s provided 36 percent more counseling than those without an EHR (p=0.009) and for each 10-minute increase in time spent, the average number of topics increased by 12 percent (p=0.01).

One study described the time needed to learn a new system and return to baseline visit numbers after implementation of an EHR. This study reported simultaneously that outcomes were positive in terms of increasing presence of problem lists, decreased medication and forms turnaround time and decreased need for medical support staff. However, appointments had to be restricted for 3 months rather than the expected 4 weeks as staff learned the system.
<table>
<thead>
<tr>
<th>Author, Date Study Design Setting</th>
<th>Population</th>
<th>Intervention Target Outcomes</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rand et al., 2013(^1) Cross-sectional Analysis of NAMCS and NHAMCES data (2007 – 2010)</td>
<td>National comparison of practices with and without EHRs</td>
<td>Presence of an EHR Preventive counseling at child and adolescent well-child visits</td>
<td>Practices with EHRs documented 34% more preventive topics than those without Well-child visits with a fully functional EHR lasted 3.5 minutes longer than those with a basic EHR</td>
</tr>
<tr>
<td>White et al., 2013(^2) Pre-post, retrospective review of data Academic medical center</td>
<td>374 adolescents, median age 19 (range: 14 to 20) years; 71 providers</td>
<td>CDS revised to reflect current guidelines for screening in adolescents, including raising reminder age to 21 years, and providing guidance about which test (Pap only) is appropriate for young women. Physicians cervical cancer screening patterns for adolescents</td>
<td>Number of pap smears decreased significantly overall (34%, p<0.0005) by 60% among OB/GYNs (p<0.005) and by 20% (p=0.08) among primary care physicians. The proportion of pap smears that were indicated did not change significantly overall or in any department. Most pap tests in both periods were not supported by the guideline-concordant algorithm.</td>
</tr>
<tr>
<td>Hacker et al., 2012(^3) Pre-post Academic pediatric practice</td>
<td>Seven pediatricians, serving 6,000 patients</td>
<td>Implementation of an EHR (transition from paper records) with a questionnaire for entering results from paper forms previously used to screen for mental illness</td>
<td>Rate of behavioral screening increased in the baseline period from 70% to 91%, but decreased in the training period by 28%. Half of eligible youths were screened in the month after implementation and screening did not return to baseline levels until 3 years after implementation.</td>
</tr>
<tr>
<td>Carroll et al., 2011(^4) RCT General pediatric practice</td>
<td>2239 children</td>
<td>CHICA decision support and EMR system Implementation of screening for iron-deficiency anemia and tuberculosis based on family response to trigger questions</td>
<td>Physicians were more likely to screen in the presence of risk factors in the intervention group. Anemia: 17.5% vs. 3.1%, p<0.001 Tuberculosis: 1.8% vs. 0.8%, p<0.05</td>
</tr>
</tbody>
</table>
Table 9. Selected evaluation and outcomes studies of other functionalities (continued)

<table>
<thead>
<tr>
<th>Author, Date Study Design Setting</th>
<th>Population</th>
<th>Intervention Target Outcomes</th>
<th>Results</th>
</tr>
</thead>
</table>
| Co et al., 2010¹⁸ RCT, cluster General pediatrics; 12 primary care practices | Children aged 5 to 18 years with a prior diagnosis of ADHD; 79 pediatricians | EHR-based decision support, including a) clinician reminders to assess symptoms; and b) ADHD note template
Proportion of children with visits in the study period in which ADHD was assessed and quality of documentation of ADHD assessment | Patients in the intervention practices were more likely to have had any visit at which ADHD was discussed (p=.04); however, they did not have an increased likelihood of a non-well-child visit with ADHD discussion (p=.27) or a well-child visit with ADHD discussion (.33).
33% of eligible physicians in the intervention group used the ADHD template over the study period. The template was never used for any visit other than one specifically for ADHD. |
| Bell et al., 2010⁷⁶ RCT, cluster Children's Hospital of Philadelphia system, 12 primary care sites in the | stratified on urbanity | CDS alerts embedded in the EHR to encourage physicians to use available asthma management tools
Proportion of children with persistent asthma with 1) at least one prescription for controller medications; 2) up to date ACP; 3) for ages 6 , documentation of spirometry | Urban intervention practices had statistically significant increases in asthma controller medications and spirometry compared to controls. Although suburban practices had significant increases pre-post overall, there was no significant difference between intervention and control groups. Of note, urban practices had higher rates of compliance prior to the intervention. |
Table 9. Selected evaluation and outcomes studies of other functionalities (continued)

<table>
<thead>
<tr>
<th>Author, Date Study Design Setting</th>
<th>Population</th>
<th>Intervention Target Outcomes</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samaan et al., 2009<sup>23</sup></td>
<td>20 attending physicians and 26 transient physicians; residents and medical students seeing 14,000 patients with 35,000 visits annually</td>
<td>General Electric Logician 5.5 Version EHR Documentation, medication refill turnaround time, medical record support staff time, billing practices, patient volume and access to appointments, and patient cycle time</td>
<td>Presence of a problem list improved from 29% to 84% within 6 months. Medication turnaround time improved from 48 hours to 12 hours. Forms' turnaround decreased from 7 to 10 business days to 3 to 5 business days. Medical support staff needs decreased from 1 to 0.5 full time employee. Although the vendor suggested that patient volume would be returned to baseline after 4 weeks, appointments had to be restricted by 10% for an additional 3 months. This led to an increased wait for the third next available from 3 to 50 days, which returned to baseline in 1 year.</td>
</tr>
<tr>
<td>Schriger et al., 2000<sup>31</sup></td>
<td>Febrile children less than 3 years of age presenting to the emergency department</td>
<td>CDS based on guidelines for the care of febrile children without known cause Quality of documentation of the medical record and after-care instructions; Appropriateness of testing and treatment decisions and diagnoses; Percentage of testing and treatment charges associated with indicated activities; Per-patient charges per visit</td>
<td>Documentation increase of 21 essential history and exam items from 80% in the control to 92% during the intervention. Percentage documentation of after-care items increased from 48% to 81% Documentation decreased to baseline when the computer system was removed.</td>
</tr>
</tbody>
</table>

ADHD = attention deficit hyperactivity disorder; EHR = electronic health record; CDS = clinical decision support; CHICA = Child Health Improvement through Computer Automation; NAMCS = National Ambulatory Medical Care Survey; NHAMCS = National Hospital Ambulatory Medical Care Survey

Another study demonstrated that EHRs have the potential to improve counseling and screening at well-child visits. The Child Health Improvement through Computer Automation (CHICA) system is a decision-support and EHR system for pediatric health maintenance and disease prevention. This study focused on screening for two specific conditions: tuberculosis and iron-deficiency anemia. When a patient checks into the clinic, the CHICA system prints a prescreening form. While waiting to see the provider, the patient or parent completes a prescreening form. The responses to the questions on the form were used to generate a provider worksheet that the clinician uses during the visit. In this study, patients were randomly selected to receive questions on the prescreening form about risk factors for tuberculosis and iron-deficiency anemia. The results included improvements in quality of documentation, medication refill turnaround time, medical record support staff time, billing practices, patient volume and access to appointments, and patient cycle time.
deficiency anemia. If there were concerns, the provider worksheet would then reflect the increased risks with tailored alerts and encourage them to explore this area more thoroughly with the patient and perform risk-based screening tests if appropriate. The study included a control group in which the parents did not receive questions to answer and the provider worksheet contained only a generic reminder to inquire about these two conditions.

This study resulted in significant findings for the detection of risk factors for tuberculosis and iron-deficiency anemia. In the intervention group, significantly more people reported positive risk factors for iron-deficiency anemia as compared with the control group (OR=6.6, 95% CI: 4.5 to 9.5). In the tuberculosis group, there were also significantly higher detection rates of positive risk factors (OR=2.3, 95% CI: 1.0 to 5.0). The authors demonstrated that the CHICA system performs well in assessing risk directly from parents and patients to determine who should receive risk-based screening for tuberculosis and iron-deficiency anemia.

Ongoing Research

It is clear that research that is more rigorous is needed to inform development and implementation, and indeed a number of studies have been identified as being in progress. Studies that are currently registered as ongoing are documented, including their populations, interventions, and outcomes under study in Appendix F. We identified 17 ongoing studies, most of which are being conducted at academic centers, on a range of clinical topics, including improving asthma care, increasing vaccination uptake, weight-based dosing and care for premature infants.
GQ4. Dissemination and Future Developments

GQ4A. How does testability and usability of core functionalities promote or impede dissemination and future development of pediatric EHRs?

A number of challenges are associated with the development and implementation of core functionalities for pediatric EHRs.

Implementation of health information technology projects has a significant likelihood of failure. Adding pediatric functionalities to existing EHRs may both have a positive effect or negative on implementation success. Among the anticipated positive effects is the possibility that adding functionalities to EHRs that support workflow and required tasks that pediatric providers need to perform will increase provider willingness to adopt these systems. Presumably, under this scenario, they will perceive the value of the improved workflow, reduced documentation burden, and secondary utilization of data, including school physical exams or immunization records.

Negative effects through additional pediatric functionalities may be linked to poor implementation into workflows, inclusion of functionalities that have little value to pediatric providers, and unintended consequences of new pediatric functionalities such as increased documentation burden or increased liability.

Introducing a new pediatric functionality to an EHR should, therefore be done thoughtfully and is ideally is done in consideration of utility, testability, and usability principles. Understanding the importance of computability and specificity of guidelines as well as motivations for development of pediatric-specific functionalities provides further insight into how dissemination and development will be driven in the future.

Utility

Utility refers to the usefulness of a specific function to both the pediatric provider and the patient. If a pediatric function is added to the EHR that rarely provides value and is associated with a significant burden, for example underdosing alerts, then its utility must be considered as low and vendors and providers should refrain from implementing it into pediatric EHRs.

We identified no specific literature to the topic of utility of pediatric functionalities, although Key Informants identified a number of functionalities that they perceived to have high immediate utility for pediatric providers. These included such as dosing support, immunization documentation and forecasting, documentation of pediatric development and physical exams, anticipatory guidance, and pediatric growth charts, as described in GQ1. Also, certain high volume diseases and their pediatric specific management needs were identified as targets for functionalities with high value (e.g. subpopulation management of children with asthma).

Testability

Testability or validity refers to the finding that a pediatric functionality actually performs the function it purports to perform. For example if immunization forecasting is added to an EHR, it has to be validated that it actually provides the correct recommendation to a provider. For this scenario, the Centers for Disease Control and Prevention recognized the complexity and provide
a testing framework that allows developers to test their forecasting results against expected results.5

No papers were identified that focused on testability of pediatric EHR functionalities. The paucity of pediatric specific features in EHRs explains this finding. However, indirect evidence exists that there is a need to validate pediatric functionalities as indicated by the Centers for Disease Control and Prevention effort to allow developers of immunization forecasting to evaluate the validity of their clinical decision support. Anticipating the increased implementation of “Bright Futures”65 in pediatric EHRs, we also anticipate the need for a validation process. The need is not only determined by the ambiguity and decidability of some Bright Futures recommendations65 but also by the complexity of the decision support required to select the appropriate developmental questions and exams based on age, gender, and prior knowledge of the patient’s state.

The phenomenon of system testability is extremely new and generally poorly understood. Testability is typically relevant to core functionalities that utilize patient-specific data (age, weight, height, immunizations received) and contextual variables (date, planned medication order) to detect out of range or abnormal values (delayed growth, delayed immunizations, inappropriate medication doses for age) to recommend changes in plans (revised immunization administration plans, age-appropriate medication doses) and to compute higher-level patient data (e.g., body mass index.) Systems employing computational approaches to provide these recommendations may be at risk for causing medical errors. These components may, however, be tested against use cases. A Key Informant stated that “testing has been a part of certification and implementation of Surescripts® electronic prescribing messaging standards for more than 10 years.” Testing also has been employed in immunization ordering and status checking138-140 and in tools to calculate weight-based dosing of prescription medications.141

These papers demonstrate the need for rigorous assessment of core functionalities amenable to testing, with publication of those results in a way that allows adopters of these patient data to factor these data in their purchasing decisions. However, the literature search returned no papers summarizing the value of testability, researching variation in computation among vendor systems for pediatrics, and assessing the impact of exposing any test results to purchasers.

Clearly specified functionalities, which include computable guidelines and data standards where applicable, are preferred by vendors, and such functionalities would be more straightforward to test. However, the usability of the functionalities was clearly presented as a high priority, and testing for usability can be difficult and time-consuming. One Key Informant asserted that "usability and being specific about how to design a function that has conformance criteria are orthogonal concepts or perhaps even contradictory."

An Investigator noted that this issue is currently being discussed in another venue overseen by the Centers for Disease Control and Prevention where features for improving immunization functionalities in EHRs are being addressed, including testing for usability. Knowledge obtained from those efforts would be relevant and provide useful input to this topic.

Usability

Usability describes how well functionality integrates into the workflow of a clinician and can be used at the right time during a visit without interrupting other processes. This issue applies to the development and implementation of all EHRs, of course, but we describe it here because it is

5 See http://www.cdc.gov/vaccines/programs/iis/interop-proj/cds.html
an essential issue to address. The implementation alone of desired pediatric-specific functionalities is not necessarily associated with an improved pediatric EHR to support pediatric care, as it is the usability of the functionality that drives acceptance. Building pediatric functionality is not enough to assure that the EHR is being used by pediatric providers.

Several comments from Key Informants emphasized the importance of new functionalities being able to support workflows in an efficient manner, at the risk of being underutilized. Among the comments:

- "Frequently, pediatricians report that the core functionality takes too long or is too complicated. Usability is the issue, and is one that is difficult to measure."
- "Software can be designed with the functionality, but if it is not in a workflow-friendly user interface, it does not matter that the functionality exists. A feature list without a gauge of usability is not helpful."
- "One of the chief complaints that you hear from the users is that it is too hard to use plain and simple. If they are too hard to use, then the full benefit of what is the actual functionality is lessened."

One suggestion to increase usability of new functionalities was to recommend that vendors provide real-time, contextual support features to optimize the use of pediatric tools. Usability of EHR functionalities has been recently reviewed by AHRQ. In the adult literature, usability of core functionalities has affected EHR adoption and dissemination. The report recommended additional research to document use patterns and evaluate user interfaces in the pediatric domain.

However, a literature search did not identify any articles specific to pediatric core functionalities. It is clear from feedback provided to the AAP EMR review site that there is a difference in perceived usability of core functions across the spectrum of commercially available EMRs. Feedback on that site is designed to both steer pediatric practices toward more usable systems and to "raise the bar" of functionality in those systems found less usable. Given the wide variation in perceived usability, it would be useful to understand how these perceptions affect dissemination and future modifications by these vendors. There was implied consensus through the categories evaluated in the EMR review site and expressed consensus by the Key Informants that usability evaluation/research in pediatric EHRs is needed to improve experience, workflow, and incentives for EHR use.

Specificity and Computability

Proposed functionalities should be clearly defined, using specific guidelines and standardized data when applicable to reduce vendor interpretation and translation.

A Key Informant representing a pediatric EHR vendor stated that, "The more concrete and computable, the more likely a vendor is going to pay attention." The same informant gave an example of two different sets of data for pediatric growth charts - one from the Centers for Disease Control and Prevention and one from the World Health Organization - and explained that, "If there is no source of official data, vendors effectively make up the data and put it in their EHR. In practice, vendors can easily produce the features; however, vendors cannot make up the standards."

Key Informants suggested that organizations such as the AAP and other key expert organizations should work with vendors to aid in the creation and dissemination of guidelines and standardized data similar to the work currently performed by the Partnership for Policy Implementation at the AAP.
Incentives for Developing Pediatric Functionalities

Incentives for developing pediatric functionalities for EHRs are currently driven by (1) meaningful use requirements and the Patient-Centered Medical Home; (2) a desire to support and maintain patient safety; and (3) the increasing presence of pediatric-specific clinical quality measures.

Meaningful Use and the Patient-Centered Medical Home

Currently, EHR vendors have been concentrating their development resources on meeting the stages of Meaningful Use requirements, so that their products can become certified and available to providers and hospitals that want to use those products to take advantage of financial incentives. Per one former vendor and Key Informant, vendors’ ability to respond to customer demands for new features and improved usability has been reduced by half in response to the Federal legislation.

Key Informant discussions on how to continue to prioritize and promote/incentivize vendors to develop specific core functionalities for pediatrics focused on the following strategies: patient safety, clinical quality measures, Meaningful Use, and the Patient-Centered Medical Home.

A Key Informant representing a pediatric EHR vendor stated, "for the near future, anything that is in the model pediatric data format that lines up with Meaningful Use or the Patient-Centered Medical Home is much more likely to get done than those that do not. The Patient-Centered Medical Home and Meaningful Use certification are driving development." Increased survival of complex pediatric patients, as well as the increase in chronic illnesses such as diabetes, hypertension, and obesity in pediatric populations, make the care coordination functionality an increasing priority.

Patient Safety

Key Informants suggested that the safety aspect of dealing with pediatric patients is an important consideration. Specifically, pediatric patients have different standards for vital signs. Heart rates and blood pressures that may be considered normal for most individuals are significantly abnormal for certain age ranges. Pediatric patients require weight-based dosing, which is prone to calculation error. Automated calculations remove some of the human check factors leading to the potential for more error. Pediatric EHRs must according to the Key Informants and the literature reviewed in GQ1 assure that providers receive help in the complex decision making process required in pediatrics especially in the domains of medication management and immunization forecasting.

Clinical Quality Measures (CQMs)

As more CQMs are recommended specifically for the pediatric population, it will become increasingly important for EHRs to have the capability to support these recommendations, including the collection of required data elements and generation of relevant reports. The literature demonstrated improvements in population health associated with core measures in asthma management.
Summary and Implications

There is expert consensus in the literature that EHRs used in the care of children require specific pediatric functionalities to support the work of child health care providers and to assure the delivery of quality care to pediatrics patients. These functionalities relate to a child’s evolving physiology and maturity and the conditions that are associated with those. Key areas include vaccination, child development, physiologic medication dosing, pediatric disease management, pediatric norms, and the relationship between pediatric patients and their caregivers, including adolescent privacy.

Vaccine forecasting and management is generally considered a critical pediatric functionality of an EHR. Forecasting is complex and must reflect local and regional immunization requirements. It must support documentation and appropriate handling of combination vaccinations. In accordance with meaningful use requirements and to support the pediatric clinician, the EHR must have the ability to communicate with one or more vaccine registries and exchange data bidirectionally.

The EHR needs functionalities to support longitudinal assessment of child growth and development and counseling regarding injury prevention, proper nutrition, and lifestyle choices. Bright Futures is the primary guideline used by most pediatric clinicians for child development and growth as well as screening for abnormalities and anticipatory guidance. The EHR could maximally support child development recommendations by providing tailored longitudinal recommendations for individual patients using clinical decision support, such as those from Bright Futures. A key functionality related to the child’s changing physiology and maturity is the incorporation of pediatric specific norms and growth charts into the EHR. A pediatric provider must assure adequate, on-target growth and development. This work requires the EHR to support longitudinal documentation of growth and developmental patterns with adequate age and granularity specifications. The growth chart should be readily available in the EHR and must capture weight, height or length, head circumference and calculate body mass index, growth velocity, percentiles and standard deviations based on population norms. Display should be available in a variety of formats that vary based on gender and condition (e.g. trisomy 21). The growth chart should support adjustments for gestational age, mid-parental height, bone age measurements, and the ability to manipulate, display, or disseminate data in a variety of ways to suit the clinician’s needs.

Clinicians often describe EHRs as complex and cumbersome to use. An optimal EHR is created according to user-centered design principles to support workflow and reduce documentation workload. Data is assimilated from multiple sources and is readily available for the pediatric provider. The EHR should be flexible enough to support capture and generation of screening forms and health summaries for secondary use of medical data, such as with school or athletic forms.

A pediatric friendly EHR must support medication dosing based on dynamic physiological parameters such as weight, age, body surface area, and metabolic function. Medication ordering is additionally complicated by a wide array of available tablet strengths and liquid concentrations. The appropriate dose and medication interactions can also change by the route of administration. EHRs should facilitate weight and body-surface based dosing that supports appropriate rounding based on a medication’s safety and efficacy margin, which may change based on route and patient’s physiology such as hepatic or renal function. Prescribing should also incorporate common features of adult medication management such as drug-drug and drug-allergy checking, provision of an indication and diagnosis associated with each medication, and
the ability to provide comments with salient prescription information that should be made available to pharmacists and others downstream. In summary, the EHR prescribing system should provide assistance in selecting appropriate dose and dispensing amounts given the specific patient’s physiology and maturity and diagnoses.

The pediatric EHR should support functionality that assists with care and management of common pediatric conditions, such as asthma, attention deficit hyperactivity disorder, and perinatal exposures. On the macro scale, the EHR should support management of clinical subpopulations by allowing creation of customized lists based on condition or feature. On the individual scale, the EHR incorporate clinical practice guidelines and recommendations into the standard clinical workflow, including generation of pediatric specific billing codes and documentation.

A key functionality related to the child’s changing physiology and maturity is the incorporation of pediatric specific norms and growth charts into the EHR. A pediatric provider must assure adequate, on-target growth and development. This work requires the EHR to support longitudinal documentation of growth and developmental patterns with adequate age and granularity specifications. The growth chart should be readily available in the EHR and must capture weight, height or length, head circumference and calculate body mass index, growth velocity, percentiles and standard deviations based on population norms. Display should be available in a variety of formats that vary based on gender and condition (e.g. trisomy 21). The growth chart should support adjustments for gestational age, mid-parental height, bone age measurements, and the ability to manipulate, display, or disseminate data in a variety of ways to suit the clinician’s needs.

The pediatric patient is cared for in the context of a dynamic family and social structure. For the young child, this includes linking complex family structures and promoting anticipatory guidance and screening that is tailored to the individual in the context of that structure. As the child becomes an adolescent, the EHR must support robust privacy controls that may have many complexities. Reports in the literature and Key Informants advocate default privacy functionality that can then be customized to allow differential access to various portions of the adolescent electronic health record. Such privacy settings must be in accordance with State laws that require confidentiality. With granularity and customizability, a successful implementation has the potential to provide even more security than classical paper records and may allow clinicians to better care for the unique needs of the adolescent patient population.

While many of these functionalities are not purely pediatric, their key role in the care of children in contrast to their minimal role for adults could mean they can get overlooked if an EHR is designed primarily for adult care. Yet, if these functionalities are implemented well, the EHR will also undoubtedly better support the care of all patients (Table 10).

A number of challenges were identified in the technical brief. For example, vaccine functionality in EHRs is hindered by factors such as non-centralized, proprietary databases that cause fragmentation of vaccination records. Clinical decision support does not perform well when documentation is incomplete and in fact can prompt physicians to give immunizations unnecessarily. Thus, finding ways to ensure that various databases communicate well and that one complete and correct record is available are particular challenges to properly implementing vaccination procedures in the EHR. In terms of medication management, enhancing an adult-focused CPOE system for a safe pediatric medication management is an intense and sophisticated task and has limitations. Such efforts require high-level sponsorship, involvement of clinicians, and round-the-clock support. Routine health care maintenance is a
particularly challenging area of general pediatrics. The AAP has approved nine different developmental screening instruments – all of which vary in format, sensitivity, specificity, and modality. *Bright Futures*, the most commonly used reference for routine health care maintenance, has proven difficult to incorporate actively into electronic health records due to only a minority of recommendations being computationally decidable and executable.\(^6\) Tracking growth in children adds yet other challenges. Both the Centers for Disease Control and the World Health Organization have published validated standard growth charts for boys and girls. Unfortunately, validated charts do not exist for many diseases, despite these being highly desired by pediatric providers. This creates a challenge for EHR vendors who must choose either to including non-validated charts in their software, to rely on customers to decide which charts they will support, or not to include alternates at all.\(^6\)–\(^9\)

Table 10. Summary and Implications

<table>
<thead>
<tr>
<th>Core Functionalities in Pediatric Electronic Health Records</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccine forecasting and management</td>
</tr>
<tr>
<td>• Reflects regional requirements</td>
</tr>
<tr>
<td>• Supports documentation, including combination vaccinations</td>
</tr>
<tr>
<td>• Communicates with registries</td>
</tr>
<tr>
<td>Routine Health Care Maintenance</td>
</tr>
<tr>
<td>• Facilitates longitudinal assessment of growth and development</td>
</tr>
<tr>
<td>• Calculates body mass index, growth velocity, percentiles, and standard deviations</td>
</tr>
<tr>
<td>• Allows customized growth charts as approved by clinician</td>
</tr>
<tr>
<td>• Provides tailored longitudinal health and safety recommendations</td>
</tr>
<tr>
<td>Documentation and Billing</td>
</tr>
<tr>
<td>• Integrates into a clinician’s workflow to reduce documentation overload</td>
</tr>
<tr>
<td>• Supports use and creation of customized forms</td>
</tr>
<tr>
<td>• Interfaces with schools and community health organizations</td>
</tr>
<tr>
<td>Medications</td>
</tr>
<tr>
<td>• Facilitates medication prescribing by weight, body surface area, and age</td>
</tr>
<tr>
<td>• Incorporates dose rounding tailored to a medication’s safety and efficacy profile</td>
</tr>
<tr>
<td>Management of Vulnerable Populations</td>
</tr>
<tr>
<td>• Generates patient lists based on key clinical diagnoses or risk factors</td>
</tr>
<tr>
<td>• Identifies patients in a clinical subpopulation who are due for preventative services</td>
</tr>
<tr>
<td>• Incorporates clinical practice guidelines into a standard clinical workflow</td>
</tr>
<tr>
<td>Family Structures</td>
</tr>
<tr>
<td>• Links families together for easy navigation and data sharing between family members</td>
</tr>
<tr>
<td>• Supports dynamic privacy controls that support differential access to health data</td>
</tr>
</tbody>
</table>

Our Technical Brief does have limitations. It is not intended to be complete systematic review; nor were we able to include the viewpoints of a wider range of Key Informants. Only one vendor is represented, for example. Nonetheless, it does provide an overview of the current state of the science; it was also available for public comment for 4 weeks and we have responded to those comments and incorporated additional perspectives in that way.
Next Steps

Through discussion with our Key Informants and review of the literature, we have described functionalities that will support the pediatric clinician in caring for children. This technical brief is intended to provide an overview of current practice and research and to identify areas for improvement.

The brief was commissioned for use as part of a larger project being completed by CMS and AHRQ to prioritize functionalities for pediatric EHRs in order to promote their use and implementation. Clearly, this brief has also identified a number of areas that are in need of rigorous research and we hope that it will encourage researchers and funders to ensure that this empirical work is pursued. Given the small number of empirical studies providing an evidence base for what works in this field, it is clear that research that is more rigorous is needed to inform development and implementation. A number of studies have been identified as being in progress. Studies that are currently registered as ongoing are documented, including their populations, interventions, and outcomes under study in Appendix F. We identified 17 ongoing studies, most of which are being conducted at academic centers, on a range of clinical topics, including improving asthma care, increasing vaccination uptake, weight-based dosing and care for premature infants. We hope this report encourages all stakeholders to collaborate on this effort to improve electronic health records, ensuring we provide the best possible care for children.

Appendix A. Literature Search Strategies

Medline via PubMed

<table>
<thead>
<tr>
<th>Search terms</th>
<th>Search results</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 ("pediatrics"[mh] OR "infant"[mh] OR "Child"[mh] OR "adolescent"[mh] OR "child health services"[mh] OR "intensive care units, pediatric"[mh] OR "hospitals, pediatric"[mh])</td>
<td>2850349</td>
</tr>
<tr>
<td>#2 (child*[tiab] OR paediatr*[tiab] OR paediatr*[tiab] OR adolescent*[tiab] OR neonat*[tiab] OR infant*[tiab])</td>
<td>1535394</td>
</tr>
<tr>
<td>#3 Search (#1) OR (#2)</td>
<td>323347</td>
</tr>
<tr>
<td>#4 ("Medical records systems, computerized"[mh] OR "decision support systems, clinical"[mh])</td>
<td>28598</td>
</tr>
<tr>
<td>#6 Search (#4) OR (#5)</td>
<td>35200</td>
</tr>
<tr>
<td>#7 Search (#3) AND (#6)</td>
<td>3299</td>
</tr>
<tr>
<td>#8 Limit to publication year >1998</td>
<td>3240</td>
</tr>
</tbody>
</table>

EMBASE

<table>
<thead>
<tr>
<th>Search terms</th>
<th>Search results</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 (pediatric* or child* or infant* or paediatric* or neonat* or adolescent*).mp</td>
<td>3032578</td>
</tr>
<tr>
<td>#2 ("computerized provider order entry" or "cpage" or "electronic health" or "EHR" or "clinical decision support" or "CDS" or "CDSS").mp</td>
<td>18501</td>
</tr>
<tr>
<td>#3 #1 AND #2</td>
<td>1475</td>
</tr>
<tr>
<td>#4 Limits: NOT Medline, Publication Date: 1999-Current</td>
<td>84</td>
</tr>
</tbody>
</table>

Notes:
- Using “medical order entry system” subject heading instead of “medical records systems, computerized” retrieves 2165 records. Using the broader term, “medical records systems, computerized” which encompasses “medical order entry system” and “electronic health records” retrieves an additional 1105 records- many of which may not be relevant to this topic. Cataloguers use the most specific heading available, however in this case, the broader term “medical records systems, computerized” was introduced in 1991, more than a decade before the more specific headings “medical order entry system” and “electronic health records”. Initial search conducted on 8/5/2014 retrieved 3038 records. On 1/5/2015, an updated search retrieved 202 additional unique records.

Abbreviations: mh=Medical Subject Heading; tiab=title/abstract word.
Appendix B. Key Informant Interviews

The Vanderbilt Evidence-based Practice Center (EPC) Director and the Agency for Healthcare and Quality (AHRQ) Task Order Officer reviewed the completed Disclosure of Interest forms for each Key Informant. We conducted discussion calls with nine Key Informants, one of whom was an employee of the Centers for Disease Control and Prevention. We were not required to obtain Office of Management and Budget (OMB) clearance for the Key Informant interviews because we included fewer than ten non-government associated participants.

We scheduled calls to include two or more Key Informants based upon availability and concordance of perspectives. The EPC Director and a co-investigator from the project team led each of the Key Informant discussion calls. We held three calls, each lasting 60 minutes. We recorded the discussion calls and distributed a summary to the participants. We organized the discussion summaries Guiding Question for analysis by the authors. The report authors identified key themes from multiple perspectives and noted unique perspectives from Key Informants.

<table>
<thead>
<tr>
<th>Martha Bergren</th>
<th>Community Health Nursing Program</th>
<th>University of Illinois</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS, RN, NCSN, APHN-BC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bobbie Byrne</td>
<td>Chief Information Officer</td>
<td>Edwards Health System</td>
</tr>
<tr>
<td>MD, MBA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mark A. Del Beccaro</td>
<td>Department of Pediatrics</td>
<td>University of Washington</td>
</tr>
<tr>
<td>MD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steve Downs</td>
<td>Department of Pediatrics</td>
<td>Indiana University</td>
</tr>
<tr>
<td>MD, MS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alex Fiks</td>
<td>Pediatric Research Consortium</td>
<td>Children’s Hospital of Philadelphia</td>
</tr>
<tr>
<td>MD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chip Hart</td>
<td>Vendor</td>
<td>Physician’s Computer Company</td>
</tr>
<tr>
<td>Hetty Khan</td>
<td>Health Informatics</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>MS, MGA, RN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sue Kressly</td>
<td>Physician</td>
<td>Kressly Pediatrics</td>
</tr>
<tr>
<td>MD, FAAP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andrew Spooner</td>
<td>Chief Medical Information Officer</td>
<td>Cincinnati Children’s Hospital</td>
</tr>
<tr>
<td>MD, MS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix C. Summary of Key Informant Input

GQ1. Description of EHRs
GQ 1A: Are there functionalities that have been identified in the literature and feature more prominently than others as potentially important to achieve for improving children’s health?
- Family relationships, patient engagement, age of majority.
- Determine family relationship through subject to subject relationship. Insurance status, etc.
- Tracking last well-child visit
- PPI transition policy, EHR support checklist (Got Transition)

GQ2. Description of the context in which EHRs are implemented
GQ 2A: What is the potential value of pediatric-specific functionalities in the context of care transition, specifically from newborn care to pediatric primary care, from pediatric primary care to pediatric specialist care, and from pediatric primary care to adolescent care?
- Add transition from adolescences to adult to the list of transitions
- Pediatric-specific time units, weight units, weight-based dosing, developmental milestones, growth data, family appropriate education, use of pediatric scales
- Private physician wish list (e.g., immunization logic) is not new or specific to EHR functionality
- Core functionality is difficult
- Lack of standards for clinical circumstance (e.g. there are only two growth charts, but pediatricians want more)

GQ 2B: Are certain pediatric-specific functionalities beneficial for a pediatrician to conduct her work including sick and well-child visits? If so, does this vary by health care setting (e.g. primary care office, specialty care office, school health, and alternative care settings) or by type of visit (e.g., preventive vs. acute care)?
- Language translation
- Food safety, domestic violence,
- Data tied to non-clinical data
- Social service case-management data
- Bright Futures Guidance- not there or not computable. CDSS only 20% compatible (publication by Steve Downs)
- Conformance criteria

GQ2C: What are the challenges to implementing specific functionalities? Are some harder than others to implement by a) vendors; and/or b) pediatric providers?
- Functions align with MU or PCMH and is certification driven
- CQM is vague and broken

GQ3. Description of the existing evidence
GQ 3A: Is there any evidence that using an EHR adapted for the specific needs of pediatric providers compared with using a “regular” EHR or not using an EHR at all produces a) better quality, including safety and cost outcomes for patients; and/or b) improved workflow or job satisfaction for providers?
- Health information chapter
- Electronic Pediatric Research in Office Settings ePros
 (http://www2.aap.org/pros/epros/eprosa&m.htm)

GQ 3B: Which pediatric-specific functionalities influence a) patient outcomes (including safety; quality; cost; equity; standardization of care; and/or efficiency); b) the ability of a pediatric provider to conduct
work within the EHR; c) improvement of workflow and provider satisfaction; and/or d) involvement of patients and families (including their education and shared decision making)?)

- Data of usefulness is mostly unpublished

GQ4. Dissemination and future developments

GQ 4A: How does testability and usability of core functionalities promote or impede dissemination and future development of pediatric EHRs?

- Testing for usability can be difficult
- Real-time contextual support
- Provide specific guidelines, concrete and computable information for translation by vendors
- Decrease burden of reports, order, and care plans.
Appendix D. Screening Forms

Abstract Screening Form

- If you answer “No” to one or more questions (with the exception of #4) the record is excluded.
- If you answer “Yes” or “Cannot Determine” to all questions, the record is promoted for full text screening.
- To flag a reference for team review, background, or review of references, check one or more reasons listed at the end of the form.
- Use the comments field as needed to enter reference specific notes or questions.
- Submit the form to move to the next reference.

<table>
<thead>
<tr>
<th>1. Population is children, aged 21 years or younger</th>
<th>Yes</th>
<th>No</th>
<th>Cannot Determine</th>
<th>Neutral</th>
<th>X-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Addresses pediatric-specific functionality or feature for an EHR</td>
<td>Yes</td>
<td>No</td>
<td>Cannot Determine</td>
<td>Neutral</td>
<td>X-2</td>
</tr>
<tr>
<td>3. Health care setting (i.e., exclude camp, school, public health, kindergarten settings, etc.)</td>
<td>Yes</td>
<td>No</td>
<td>Cannot Determine</td>
<td>Neutral</td>
<td>X-3</td>
</tr>
<tr>
<td>4. Reports original research</td>
<td>Yes</td>
<td>No</td>
<td>Cannot Determine</td>
<td>Neutral</td>
<td>Neutral</td>
</tr>
<tr>
<td>5. [If #4 is “Yes”]: Addresses Guiding Question(s) 1, 2, 3 and/or 4</td>
<td>Yes</td>
<td>No</td>
<td>Cannot Determine</td>
<td>Neutral</td>
<td>X-4</td>
</tr>
<tr>
<td>5. [If #4 is “No”]: Addresses Guiding Question(s) 1, 2, and/or 4</td>
<td>Yes</td>
<td>No</td>
<td>Cannot Determine</td>
<td>Neutral</td>
<td>X-4</td>
</tr>
</tbody>
</table>

GQ 1A. Are there functionalities that have been identified in the literature and feature more prominently than others as potentially important to achieve for improving children’s health? [GQ1A]

GQ 2A. What is the potential value of pediatric-specific functionalities in the context of care transition, specifically from newborn care to pediatric primary care, from pediatric primary care to pediatric specialist care, and from pediatric primary care to adolescent care? [GQ2A]

GQ 2B. Are certain pediatric-specific functionalities beneficial for a pediatrician to conduct her work including sick and well-child visits? If so, does this vary by health care setting (e.g., primary care office, specialty care office, school health, and alternative care settings) or by type of visit (e.g., preventive vs. acute care)? [GQ2B]

GQ 2C. What are the challenges to implementing specific functionalities? Are these harder than others to implement by a) vendors; or b) pediatric providers? [GQ2C]

GQ 3A. Is there any evidence that using an EHR adapted for the specific needs of pediatric providers compared with using a “regular” EHR or not using an EHR at all produces: a) better quality, including safety and cost outcomes for patients; or b) improved workflow or job satisfaction for providers? [GQ3A]

GQ 3B. Which pediatric-specific functionalities influence: a) patient outcomes (including safety; quality; cost; equity; standardization of care; and efficiency); b) the ability of a pediatric provider to conduct work within the EHR; c) improvement of workflow and provider satisfaction; or d) involvement of patients and families (including their education and shared decision making)? [GQ3B]

GQ 4A. How does testability and usability of core functionalities promote or impede dissemination and future development of pediatric EHRs? [GQ4A]

Does not address a guiding question X-4

Retain for: ___ Team Review ___ Background/Discussion ___ Review of References ___ Other

COMMENTS:

Note: In Distiller, question #4 uses branching logic to ensure that Guiding Question 3 is addressed by original research. If the answer to #4 is “No” the option for Guiding Question 3 will be hidden.
Full Text Screening Form

Senior reviewer decision for study status:

<table>
<thead>
<tr>
<th>Include</th>
<th>Exclude</th>
</tr>
</thead>
<tbody>
<tr>
<td>If excluded, mark reason(s)</td>
<td></td>
</tr>
</tbody>
</table>

- Not children (i.e. older than 21 years of age) X-1
- Does not address pediatric-specific functionality or feature of an EHR X-2
- Not a healthcare setting of interest X-3
- Not relevant to outpatient setting X-4
- Does not address a Guiding Question X-5

<table>
<thead>
<tr>
<th>If included, mark Guiding Question(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GQ 1A. Are there functionalities that have been identified in the literature and feature more prominently than others as potentially important to achieve for improving children’s health? GQ1A</td>
</tr>
<tr>
<td>GQ 2A. What is the potential value of pediatric-specific functionalities in the context of care transition, specifically from newborn care to pediatric primary care, from pediatric primary care to pediatric specialist care, and from pediatric primary care to adolescent care? GQ2A</td>
</tr>
<tr>
<td>GQ 2B. Are certain pediatric-specific functionalities beneficial for a pediatrician to conduct her work including sick and well-child visits? If so, does this vary by health care setting (e.g. primary care office, specialty care office, school health, and alternative care settings) or by type of visit (e.g., preventive vs. acute care)? GQ2B</td>
</tr>
<tr>
<td>GQ 2C. What are the challenges to implementing specific functionalities? Are these harder than others to implement by a) vendors; or b) pediatric providers? GQ2C</td>
</tr>
<tr>
<td>GQ 3A. Is there any evidence that using an EHR adapted for the specific needs of pediatric providers compared with using a “regular” EHR or not using an EHR at all produces: a) better quality, including safety and cost outcomes for patients; or b) improved workflow or job satisfaction for providers? GQ3A</td>
</tr>
<tr>
<td>GQ 3B. Which pediatric-specific functionalities influence: a) patient outcomes (including safety; quality; cost; equity; standardization of care; and efficiency); b) the ability of a pediatric provider to conduct work within the EHR; c) improvement of workflow and provider satisfaction; or d) involvement of patients and families (including their education and shared decision making)? GQ3B</td>
</tr>
<tr>
<td>GQ 4A. How does testability and usability of core functionalities promote or impede dissemination and future development of pediatric EHRs? GQ4A</td>
</tr>
</tbody>
</table>

- Does not address a guiding question X-4

Retain for:

- ___ Team Review ___ Background/Discussion ___ Review of References ___ Other

COMMENTS:

D-2
<table>
<thead>
<tr>
<th>Citation</th>
<th>Title</th>
<th>Notes</th>
<th>Category</th>
</tr>
</thead>
</table>
| Gray et al., 2014¹ | Recommendations for EHR Use for Delivery of Adolescent Health Care | - Global, excluding China and India, EHR usage in 2010.
- Adolescent confidentiality protection summarized.
- Adolescent may forgo healthcare if their privacy is threatened.
- No incentive for EHR vendors, in current regulatory environment, to incorporate granular privacy controls in their products. | Privacy (Adolescents) |
| Patterson et al., 2013² | Enhancing EHR Usability in Pediatric Patient Care: A Scenario-Based Approach | - Summary of the NIST 7865 report (see below) Highlights a few selected recommendations for EHR vendors and developers, small-group pediatric practices, and children's hospitals.
- Special considerations for pediatric patients from clinical experts
- Relevant concepts for human factors engineering from Human Factors experts | Pediatric-specific norms |
| Blythe et al., 2012² | Standards for Health Information Technology to Ensure Adolescent Privacy | - Recommends nine basic principles for 'ideal' EHR
- Supports the caution that adolescent may forgo healthcare if privacy is threatened
- States that HIPAA not specific to adolescent privacy issues which may result in deferral to state laws regarding minors | Privacy (Adolescents) |
| Lowry et al., 2013³ | A Human Factors Guide to Enhance EHR Usability of Critical user Interactions when Supporting Pediatric Patient Care. [NIST.IR.7865] | - Highlights the user interactions unique to or salient for pediatric care and
- Details the unique features of pediatric patient care, in contrast to general adult patient care including patient physiology, complexity of routine tasks, and limited communication abilities.
- Provides conceptual model of unique user-related risks of EHR systems for pediatric patients.
- It covers human factors guidance for critical user interactions along 9 themes (patient identification, medications, alerts, growth chart, vaccinations, labs, newborn care, privacy, and radiology
- Suggests opportunities for innovations to consider for specialized child modules that can be used in conjunction with an established EHR.
- Appendix covers scenarios citing the potential pitfalls. | Pediatric-specific norms |
| ACOG Committee on Adolescent Health Care 2014⁴ | ACOG Committee Opinion # 599: Adolescent confidentiality and electronic health records | - Clarifies that HIPAA privacy rule leaves health care providers with questions about the relationship between HIPAA local applicable laws
- Standards lacking for state and other laws pertaining to minor consent, provisions for privacy and services governed by federal laws.
- Details the nature and requirement of the adolescent privacy and confidentiality of services consented by a minor | Privacy (Adolescents) |
| Gerstle et al., 2007⁵ | Electronic Prescribing Systems in Pediatrics: The Rationale and Functionality Requirements | - Describes the levels and implementation of e-prescribing.
- Cites pediatric specific advantages of CPOE
- Suggests and provides guidelines, potential barriers, and cautions against potential pitfalls.
- Cites benefits of e-prescribing to public health, patient, pharmacists, insurers and providers. | Medications / CPOE |
References

Appendix F. Ongoing Studies

A search of ClinicalTrials.gov retrieved 46 records. The table below summarizes the records that were retained as relevant (n=17).

Search strategy: ((EHR) OR (EMR) OR (electronic AND record)) AND (functionality OR HIT OR CPOE OR "decision support" OR "electronic prescribing" OR "order entry" OR "information technology" OR "quality improvement") | Child

<table>
<thead>
<tr>
<th>Study Name</th>
<th>Location</th>
<th>Sponsors and Collaborators</th>
<th>Population Disease/Condition</th>
<th>Interventions / Groups</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>An Electronic Decision Support Tool to Improve Outpatient Asthma Care</td>
<td>Agency for Healthcare Research and Quality (AHRQ) Children's Hospital of Philadelphia</td>
<td>• Children with a diagnosis of asthma • Age 1 to 18 years</td>
<td>Behavioral: Computerized decision support</td>
<td>Primary • The proportion of patients on appropriate asthma controller medication at the end of the trial Secondary • an updated asthma action plan • documentation of spirometry (6 to 18 years) in those with asthma • an updated problem list that reflects an assessment of asthma severity</td>
<td></td>
</tr>
<tr>
<td>Children's Hospital of Philadelphia NCT01522144</td>
<td>Completed Start: July 2006 Complete: August 2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Better Pediatric Asthma Outcomes Through Chronic Care</td>
<td>University of Connecticut Health Center</td>
<td>• Determined by provider to be asthmatic • Member of Medical Managed Care Organization partner group • Ages 5 to 17 years</td>
<td>Behavioral: Electronic (computer based) provider feedback tool</td>
<td>Primary • Asthma control • Guideline appropriate medicating by providers • Patient knowledge Secondary • Self-efficacy • Social support</td>
<td></td>
</tr>
<tr>
<td>University of Connecticut Health Center NCT00355069</td>
<td>Completed Start: August 2001 Complete: May 2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child Health Improvement Through Computer Automation (CHICA) Highlighting Study</td>
<td>Indiana University</td>
<td>• Physicians practicing in one of our four study clinics who use CHICA</td>
<td>Other: Highlight set 1 (two prompts) Other: Highlight Set 2 (two different prompts)</td>
<td>• Whether or not prompt was answered</td>
<td></td>
</tr>
<tr>
<td>IUMG Clinic System NCT01583101</td>
<td>Completed Start: September</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comprehensive Clinical Decision Support (CDS) for the Primary Care of Premature Infants</td>
<td>Children's Hospital of Philadelphia National Library of Medicine (NLM)</td>
<td>• Premature infants aged 20 weeks to 35 weeks</td>
<td>Other: Clinical Decision Support Tool</td>
<td>Primary • Evaluate usability of the intervention Secondary • Evaluate effect on care</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Completed Start: September</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Name Location</td>
<td>Trial Identifier</td>
<td>Study Status</td>
<td>Population Disease/Condition Age</td>
<td>Interventions / Groups</td>
<td>Outcomes</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>----------------------------------</td>
<td>------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Children's Hospital of Philadelphia</td>
<td>NCT01478711</td>
<td>2009 Complete: October 2012</td>
<td>Parents of children will be enrolled in the study if they meet a set of eligibility criteria which includes:</td>
<td>Behavioral: Safety Training Behavioral: Personal Health Partner and Counseling</td>
<td>Primary: Personal Health Partner (PHP) assessment with electronic health record (EHR) data exchange before pediatric primary care visits Secondary: Personal Health Partner (PHP) pre-visit counseling with post-visit reinforcement</td>
</tr>
<tr>
<td>Conversational IT for Better, Safer Pediatric Primary Care</td>
<td>Boston Medical Center Agency for Healthcare Research and Quality (AHRQ) Active, not recruiting</td>
<td>Start: July 2007 Complete: August 2011</td>
<td>Boston Medical Center</td>
<td>An English speaking child and parent Ages 0 to 11 years</td>
<td>Behavioral: Clinical Decision Support</td>
</tr>
<tr>
<td>EHR-Based Clinical Decision Support to Improve BP Management in Adolescents</td>
<td>HealthPartners Institute for Education and Research National Heart, Lung, and Blood Institute (NHLBI) Recruiting</td>
<td>Start: April 2014 Complete: August 2017</td>
<td>HealthPartners Medical Group</td>
<td>Ages 12 to 19 years</td>
<td>Behavioral: Clinical Decision Support Follow up of an elevated blood pressure within recommended interval Recognition of hypertension Appropriate workup for those with hypertension Appropriate Lifestyle Referral Costs of Care</td>
</tr>
<tr>
<td>Electronic Health Record (EHR) Decision Support to Improve Outpatient Asthma Care</td>
<td>Children's Hospital of Philadelphia Agency for Healthcare Research and Quality (AHRQ) Completed</td>
<td>Start: January 2006 Complete: August 2009</td>
<td>Children's Hospital of Philadelphia</td>
<td>Known patients with asthma</td>
<td>Other: Control (passive EHR) Other: Intervention (interactive decision support system) Primary: Proportion of persistent asthmatic patients with at least one prescription for a controller medication in each period (baseline and intervention) Secondary: Proportion of persistent asthmatic patients with 1)an updated asthma action plan, 2)spirometry as needed 3)problem list with current asthma severity 4)asthma-related quality of life scores 5)absent school and work days.</td>
</tr>
<tr>
<td>Evaluation of a Shared Decision Making Portal for Pediatric Asthma</td>
<td>Children's Hospital of Philadelphia Active, not recruiting</td>
<td>Start: November 2012 Complete: November 2014</td>
<td>Children's Hospital of Philadelphia</td>
<td>Parents/legal guardians of children aged 6 to 12 years with persistent asthma, currently receiving chronic</td>
<td>Other: MyAsthma Patient Portal Primary: Acceptability of the intervention to parents and clinicians Secondary: Shared decision making Parent Activation</td>
</tr>
<tr>
<td>Study Name</td>
<td>Sponsors and Collaborators</td>
<td>Population Disease/Condition Age</td>
<td>Interventions / Groups</td>
<td>Outcomes</td>
<td></td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--</td>
<td>----------------------------------</td>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Improving Otitis Media Care With Clinical Decision Support (OMHIT)</td>
<td>Children's Hospital of Philadelphia (CHOP) Agency for Healthcare Research and Quality (AHRQ)</td>
<td>● All CHOP primary care and ENT practice sites with patients receiving care for otitis media ● Ages 2 months to 18 years</td>
<td>Other: 3-Part Intervention (A combination of training, an otitis media episode grouper, and clinical decision support) Other: 4-Part Intervention (A combination of clinician training, an otitis media episode grouper, clinical decision support, and feedback) Other: 1-part intervention (Provision of feedback on otitis media quality indicators)</td>
<td>Primary: Quality of otitis media care Secondary: Clinician adoption of intervention and Resource Utilization</td>
<td></td>
</tr>
<tr>
<td>Giving Immunizations Through Vaccine Education</td>
<td>Children's Hospital of Philadelphia Agency for Healthcare Research and Quality (AHRQ)</td>
<td>● All clinicians practicing at participating sites ● Parents with an eligible adolescent girl ● Adolescent girls aged 11 to 17 years ● Has a visit at one of the primary care centers within the last 15 months ● Has not completed the teen vaccine series</td>
<td>Behavioral: Family Decision Support (informational vaccine reminder telephone calls) Behavioral: Clinician Decision Support (an EHR-based decision support mechanism including reminders, education, audit and feedback on vaccination success) Other: Family Decision Support and Clinician Decision Support Other: Control</td>
<td>Primary: Rate of HPV vaccination among girls actively cared for at participating sites Secondary: Rates of meningococcal and tetanus, diphtheria, and pertussis vaccines among girls in the study</td>
<td></td>
</tr>
<tr>
<td>Study Name Location Trial Identifier</td>
<td>Sponsors and Collaborators Study Status Population Disease/Condition Outcomes Groups Interventions / Location Collaborators Disease/Condition Outcomes Groups</td>
<td>Maintenance therapy, cared for at a study practice, with consistent access to a computer with an internet connection where they feel comfortable accessing MyChart (patient portal) ● Clinician at study site</td>
<td>Giving Immunizations Through Vaccine Education Children's Hospital of Philadelphia NCT01715389 Completed Start: May 2010 Complete: May 2011</td>
<td>● Goal Attainment ● Asthma-Related Quality of Life ● Asthma Control ● Asthma-related Utilization ● Asthma Medication Adherence/Receipt ● Feasibility of Recruitment ● Feasibility of Follow-up ● Feasibility of Portal Use</td>
<td></td>
</tr>
<tr>
<td>Study Name</td>
<td>Sponsors and Collaborators</td>
<td>Population Disease/Condition Age</td>
<td>Interventions / Groups</td>
<td>Outcomes</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------------------------</td>
<td>----------------------------------</td>
<td>------------------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Improving Pediatric Safety and Quality With Health Care Information Technology</td>
<td>Massachusetts General Hospital Agency for Healthcare Research and Quality (AHRQ)</td>
<td>Partners-affiliated pediatric practice providers utilizing Longitudinal Medical Record (LMR), which is an electronic health record system. Also the parents of the patients of the above noted pediatric providers</td>
<td>Other: weight based dosing decision support</td>
<td>Impact on rates of medication errors</td>
<td></td>
</tr>
<tr>
<td>Improving the Medication Management of Patients With Attention-Deficit Hyperactivity Disorder</td>
<td>American Academy of Pediatrics University of Colorado, Denver QED Clinical, Inc. Children's Hospital of Philadelphia Enrolling by invitation</td>
<td>Children aged 5 to 12 years diagnosed with Attention-Deficit Hyperactivity Disorder (ADHD)</td>
<td>Behavioral: Clinical decision support for medication titration</td>
<td>Primary: Improvement in symptoms, as measured by the parent-reported Vanderbilt Assessment Scale Secondary: Side effects as reported on the ADHD Vanderbilt Scale</td>
<td></td>
</tr>
<tr>
<td>Informing Policy to Implement Pediatric Family Engagement in Meaningful Use Stage 3 PROS PeRC</td>
<td>Children's Hospital of Philadelphia Agency for Healthcare Research and Quality (AHRQ) American Academy of Pediatrics DARTNet Institute Recruiting</td>
<td>Child has a diagnosis of asthma on his/her problem list Ages 6 to 12 years</td>
<td>Other: MyAsthma Web Portal</td>
<td>Primary: Use of the MyAsthma Portal Survey Secondary: Asthma management</td>
<td></td>
</tr>
<tr>
<td>Intervention to Improve Adherence in Teen Kidney Transplant Multiple sites</td>
<td>McGill University Health Center Children's Hospital of Philadelphia Children's Hospital Medical Center, Cincinnati Seattle Children's Hospital Washington University Early Recognition Center British Columbia Children's Hospital The Hospital for Sick Children St. Justine's Hospital Recruiting</td>
<td>At least 3 months post kidney transplant Ages 11 to 24 years</td>
<td>Behavioral: Action-focused problem-solving Device: Electronic pillbox monitoring, dosage reminders, and feedback</td>
<td>Taking adherence Timing adherence Clinical outcomes Healthcare system factors</td>
<td></td>
</tr>
<tr>
<td>Study Name Location</td>
<td>Sponsors and Collaborators</td>
<td>Population Disease/Condition Age</td>
<td>Interventions / Groups</td>
<td>Outcomes</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------------</td>
<td>----------------------------------</td>
<td>------------------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>PECARN Emergency Care Registry</td>
<td>Children's Hospital of Philadelphia Agency for Healthcare Research and Quality (AHRQ) Recruiting Start: January 2011 Complete: NR</td>
<td>All patients (0-18) who registered in the ED during 2011 and during a 24 month study period between 2012 and 2015</td>
<td>NR</td>
<td>Improved performance and decreased variability (variation) of care</td>
<td></td>
</tr>
<tr>
<td>NCT01657344 Harvard Pilgrim Health Care Brigham and Women's Hospital Cambridge Health Alliance Harvard Vanguard Medical Associates Completed Start: December 2010 Complete: September 2013</td>
<td>Child's BMI exceeds the 95th percentile for age and sex (CDC criteria)</td>
<td>Behavioral: Usual Care Behavioral: Clinician intervention only Behavioral: Clinician intervention plus Direct-to-parent communication</td>
<td>Primary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study of Technology to Accelerate Research</td>
<td>Parent can respond to interviews and questionnaires in English</td>
<td></td>
<td></td>
<td>Secondary</td>
<td></td>
</tr>
<tr>
<td>NCT01537510</td>
<td>Child has obtained well-child care from HVMA for at least the previous 15 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ages 6 to 12 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Change in screening and assessment of childhood obesity at the point of care, including BMI, blood pressure, and laboratory screening, and provision of nutrition and physical activity counseling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Change in Body Mass Index</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Change in Health Behaviors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Costs (including clinician and family time) and cost-effectiveness in terms of children's change in BMI and weight-related behaviors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix G. Reasons for Exclusion

<table>
<thead>
<tr>
<th>Exclusion Code</th>
<th>Exclusion Reason</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-1</td>
<td>Not youth</td>
<td>11</td>
</tr>
<tr>
<td>X-2</td>
<td>Does not address pediatric-specific functionality or feature of an EHR</td>
<td>147</td>
</tr>
<tr>
<td>X-3</td>
<td>Not a health care setting</td>
<td>40</td>
</tr>
<tr>
<td>X-4</td>
<td>Not specific to outpatient</td>
<td>53</td>
</tr>
<tr>
<td>X-5</td>
<td>Does not address a guiding question</td>
<td>53</td>
</tr>
<tr>
<td>X-6</td>
<td>Unavailable/ non-English</td>
<td>4</td>
</tr>
<tr>
<td>X-7</td>
<td>Duplicate</td>
<td>2</td>
</tr>
</tbody>
</table>
References with reason(s) for exclusion

17. Ben Said M, Robel L, Vion E, et al. Implementation and experimentation of TEDIS: an information system dedicated to patients with pervasive developmental

42. Crossno CL, Cartwright JA, Hargrove FR. Using CPOE to improve communication, safety, and policy compliance when ordering pediatric chemotherapy. Hospital Pharmacy 2007 April;42(4):368-73. PMID: 2007199187. X-4

60. Finkel E. Caring for kids, with technology by their side. Children's Medical's Durovich sees IT as tool to 'help us do what we do better'. Mod Healthc 2011 Jun 13;41(24):25-6. PMID: 21714400. X-2

61. Finnell SM, Stanton JL, Downs SM. Actionable recommendations in the Bright Futures child health supervision guidelines.

132. Lykowski G, Mahoney D. Computerized provider order entry improves workflow and outcomes. Nurs Manage 2004 Feb;35(2):40g-h. PMID: 14767222. X-4

195. Sloane EB. Using a decision support system tool for healthcare technology

200. Spooner SA. We are still waiting for fully supportive electronic health records in pediatrics. Pediatrics 2012 Dec;130(6):e1674-6. PMID: 23166347. X-5 X-

205. Stuart K. You can't get there from here: misplaced incentives can undermine the goals of health care reform in the NICU setting. J Perinatol 2012 Aug;32(8):570-3. PMID: 22842801. X-5 X-

217. Trotter A, Maier L. Computerized physician order entry system in pediatric inpatients: Prevention of medication errors and adverse drug events. [German].

