Procalcitonin-Guided Antibiotic Therapy
Comparative Effectiveness Review
Number 78

Procalcitonin-Guided Antibiotic Therapy

Prepared for:
Agency for Healthcare Research and Quality
U.S. Department of Health and Human Services
540 Gaither Road
Rockville, MD 20850
www.ahrq.gov

Contract No. 290-2007-10058-I

Prepared by:
Blue Cross and Blue Shield Association Technology Evaluation Center Evidence-based Practice Center
Chicago, IL

Investigators:
Nilam J. Soni, M.D.
David J. Samson, M.S.
Jodi L. Galaydick, M.D.
Vikrant Vats, Ph.D.
David L. Pitrak, M.D.
Naomi Aronson, Ph.D.

AHRQ Publication No. 12(13)-EHC124-EF
October 2012
This report is based on research conducted by the Blue Cross and Blue Shield Association Technology Evaluation Center Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. 290-2007-10058-I). The findings and conclusions in this document are those of the authors, who are responsible for its contents; the findings and conclusions do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services.

The information in this report is intended to help health care decisionmakers—patients and clinicians, health system leaders, and policymakers, among others—make well-informed decisions and thereby improve the quality of health care services. This report is not intended to be a substitute for the application of clinical judgment. Anyone who makes decisions concerning the provision of clinical care should consider this report in the same way as any medical reference and in conjunction with all other pertinent information, i.e., in the context of available resources and circumstances presented by individual patients.

This report may be used, in whole or in part, as the basis for development of clinical practice guidelines and other quality enhancement tools, or as a basis for reimbursement and coverage policies. AHRQ or U.S. Department of Health and Human Services endorsement of such derivative products may not be stated or implied.

This document is in the public domain and may be used and reprinted without special permission except those copyrighted materials that are clearly noted in the document. Further reproduction of those copyrighted materials is prohibited without the specific permission of copyright holders.

Persons using assistive technology may not be able to fully access information in this report. For assistance contact EffectiveHealthCare@ahrq.hhs.gov.

None of the investigators have any affiliations or financial involvement that conflicts with the material presented in this report.

Preface

The Agency for Healthcare Research and Quality (AHRQ) conducts the Effective Health Care Program as part of its mission to organize knowledge and make it available to inform decisions about health care. As part of the Medicare Prescription Drug, Improvement, and Modernization Act of 2003, Congress directed AHRQ to conduct and support research on the comparative outcomes, clinical effectiveness, and appropriateness of pharmaceuticals, devices, and health care services to meet the needs of Medicare, Medicaid, and the Children’s Health Insurance Program (CHIP).

AHRQ has an established network of Evidence-based Practice Centers (EPCs) that produce Evidence Reports/Technology Assessments to assist public- and private-sector organizations in their efforts to improve the quality of health care. The EPCs now lend their expertise to the Effective Health Care Program by conducting comparative effectiveness reviews (CERs) of medications, devices, and other relevant interventions, including strategies for how these items and services can best be organized, managed, and delivered.

Systematic reviews are the building blocks underlying evidence-based practice; they focus attention on the strength and limits of evidence from research studies about the effectiveness and safety of a clinical intervention. In the context of developing recommendations for practice, systematic reviews are useful because they define the strengths and limits of the evidence, clarifying whether assertions about the value of the intervention are based on strong evidence from clinical studies. For more information about systematic reviews, see www.effectivehealthcare.ahrq.gov/reference/purpose.cfm.

AHRQ expects that CERs will be helpful to health plans, providers, purchasers, government programs, and the health care system as a whole. In addition, AHRQ is committed to presenting information in different formats so that consumers who make decisions about their own and their family’s health can benefit from the evidence.

Transparency and stakeholder input are essential to the Effective Health Care Program. Please visit the Web site (www.effectivehealthcare.ahrq.gov) to see draft research questions and reports or to join an email list to learn about new program products and opportunities for input. Comparative effectiveness reviews will be updated regularly.

We welcome comments on this CER. They may be sent by mail to the Task Order Officer named below at: Agency for Healthcare Research and Quality, 540 Gaither Road, Rockville, MD 20850, or by email to epc@ahrq.hhs.gov.

Carolyn M. Clancy, M.D.
Director
Agency for Healthcare Research and Quality

Jean Slutsky, P.A., M.S.P.H.
Director, Center for Outcomes and Evidence
Agency for Healthcare Research and Quality

Stephanie Chang, M.D., M.P.H.
Director, EPC Program
Center for Outcomes and Evidence
Agency for Healthcare Research and Quality

Supriya Janakiraman, M.D., M.P.H.
Task Order Officer
Center for Outcomes and Evidence
Agency for Healthcare Research and Quality
Acknowledgments

The authors gratefully acknowledge the following individuals for their contributions to this project: Claudia Bonnell, R.N., M.L.S.; Lisa Garofalo; Mark Grant, M.D., M.P.H.; Steven Gutman, M.D.; Lisa Sarsany, M.A.; Kathleen Ziegler, Pharm.D.; Elbert Huang, M.D., M.P.H; Ronald Thisted, Ph.D.; Michael Douglas, M.S.; and Jessica Hoag, B.A.

Technical Expert Panel

R. Phillip Dellinger, M.D.
Head, Critical Care Medicine
Cooper University Hospital
Camden, NJ

Jesse Hall, M.D.
Section Chief, Pulmonary and Critical Care Medicine
University of Chicago
Chicago, IL

Stephen Kahn, Ph.D.
Associate Director, Clinical Laboratories
Loyola University Chicago
Maywood, IL

Henry Masur, M.D.
Chief, Critical Care Medicine
National Institutes of Health
Bethesda, MD

Joshua Metlay, M.D., Ph.D.
Professor of Medicine, Epidemiology, and Emergency Medicine
Perelman School of Medicine
University of Pennsylvania
Philadelphia, PA

Emanuel Rivers, M.D., M.P.H.
Vice Chair and Director of Research for the Department of Emergency Medicine
Henry Ford Hospital
Detroit, MI

Gregory Schmidt, M.D.
Director, Critical Care Programs
University of Iowa
Iowa City, IA

Joshua Metlay, M.D., Ph.D.
Professor of Medicine, Epidemiology, and Emergency Medicine
Perelman School of Medicine
University of Pennsylvania
Philadelphia, PA

Peer Reviewers

Derek Angus, M.D., M.P.H.
Professor and Chair, Critical Care Medicine
Professor, Medicine and Health Policy and Management
University of Pittsburgh School of Medicine
Pittsburgh, PA

Rongwei (Rochelle) Fu, Ph.D.
Associate Professor
Oregon Health & Science University
Portland, OR
Procalcitonin-Guided Antibiotic Therapy

Structured Abstract

Objectives. To systematically review comparative studies of the use of procalcitonin in the clinical management of adult and pediatric patients with suspected local or systemic infection.

Data sources. MEDLINE®, Embase®, the Cochrane Database of Systematic Reviews, National Institute for Clinical Excellence, the National Guideline Clearinghouse, and the Health Technology Assessment Programme were searched from January 1, 1990, to December 16, 2011; the MEDLINE, Embase, and Cochrane searches were updated in December 2011. A search of the gray literature included databases with regulatory information, clinical trial registries, abstracts and conference papers, grants and federally funded research, and information from manufacturers.

Review methods. We sought studies that compared procalcitonin-guided versus clinical-criteria-guided initiation, discontinuation, or change of antibiotic therapy. Outcomes were antibiotic use, mortality, morbidity, and adverse drug events of antibiotic therapy. Data were abstracted by a single reviewer and fact-checked by a second reviewer. Study quality was assessed using the U.S. Preventive Services Task Force framework. A meta-analysis on short-term mortality in intensive care unit (ICU) patients was performed using a random-effects model. Strength of the body of evidence was assessed according to the AHRQ Methods Guide.

Results. There were 18 randomized, controlled trials that addressed five patient populations. Procalcitonin guidance reduces antibiotic use when used to discontinue antibiotics in adult ICU patients and to initiate or discontinue antibiotics in patients with respiratory tract infections (high evidence), without increasing morbidity (moderate evidence) and mortality (low evidence). In contrast, procalcitonin-guided intensification of antibiotics in adult ICU patients increases morbidity (moderate evidence). There is moderate evidence from a single good quality study that procalcitonin guidance reduces antibiotic use for suspected early neonatal sepsis, but insufficient evidence on morbidity and mortality outcomes was found. Evidence is insufficient to draw conclusions on outcomes of procalcitonin guidance for: (1) fever of unknown source in children 1–36 months of age; and (2) preemptive antibiotics after surgery.

Immunocompromised hosts and other special populations were generally excluded from procalcitonin guidance studies. Thus, findings from this review should not be extrapolated to patients with the following conditions: pregnancy; absolute neutropenia; immunocompromised states; chronic infections, and infections for which prolonged antibiotic therapy is standard of care (e.g., infective endocarditis).

Conclusions. Procalcitonin guidance reduces antibiotic use when used to discontinue antibiotics in adult ICU patients and to initiate or discontinue antibiotics in patients with respiratory tract infections. Populations for future research include immunocompromised patients, patients with other conditions (e.g., pregnancy, cystic fibrosis), and pediatric patients. Future research should compare procalcitonin guidance with antibiotic stewardship programs and to implementation of guidelines. Outcomes of high interest for future research are the consequences of reduction in antibiotic use for antibiotic resistance and for adverse events of antibiotic therapy.
Antibiotic Use .. 47
Mortality .. 47
Morbidity ... 47
Adverse Events of Antibiotic Therapy .. 47
GRADE Evidence .. 47
Preemptive Postoperative Antibiotic Therapy ... 48
Study Quality ... 48
Antibiotic Use .. 50
Mortality .. 50
Morbidity ... 50
Adverse Effects of Antibiotic Therapy .. 50
GRADE Evidence .. 50
Summary and Discussion ... 52
Summary of the Main Findings ... 52
Intensive Care Unit Patients ... 52
Respiratory Tract Infection .. 52
Neonatal Sepsis .. 53
Fever of Unknown Source in Children Ages 1–36 Months ... 53
Postoperative Patients at Risk of Infection .. 53
Clinical Context and Applicability of Evidence for Decisionmaking 53
Discussion of Present Findings in Context of Other Systematic Reviews 55
Limitations of Present Review ... 58
Future Research ... 58
Summary of Weaknesses or Gaps in the Evidence ... 58
Summary of Methodological Weaknesses in the Evidence .. 61
Abbreviations ... 63
References .. 64

Tables
Table A. Summary characteristics of the included studies .. ES-8
Table B. Summary of outcomes measures, and strength of evidence .. ES-10
Table 1. FDA-cleared procalcitonin assays .. 2
Table 2. Summary of characteristics for five trials included in the analysis of procalcitonin-guided antibiotic discontinuation in the critically ill/ventilator-associated pneumonia patients .. 19
Table 3. Procalcitonin-guided antibiotic discontinuation in the critically ill/ventilator-associated pneumonia patients—study quality ... 21
Table 4. Procalcitonin-guided antibiotic discontinuation in the critically ill/ventilator-associated pneumonia patients—outcomes related to antibiotic use 21
Table 5. Procalcitonin-guided antibiotic discontinuation in the critically ill/ventilator-associated pneumonia patients—mortality ... 23
Table 6. Procalcitonin-guided antibiotic discontinuation in the critically ill/ventilator-associated pneumonia patients—morbidity ... 24
Table 7. Procalcitonin-guided antibiotic discontinuation in the critically ill/ventilator-associated pneumonia patients—GRADE evidence table ... 26
Table 8. Summary of characteristics for two trials included in the analysis of procalcitonin-guided antibiotic intensification in the critically ill/ventilator-associated pneumonia patients ... 27

Table 9. Procalcitonin-guided antibiotic intensification in the critically ill/ventilator-associated pneumonia patients—study quality ... 28

Table 10. Procalcitonin-guided antibiotic intensification in the critically ill/ventilator-associated pneumonia patients—outcomes related to antibiotic use ... 28

Table 11. Procalcitonin-guided antibiotic intensification in the critically ill/ventilator-associated pneumonia patients—28-day mortality ... 29

Table 12. Procalcitonin-guided antibiotic intensification in the critically ill/ventilator-associated pneumonia patients—morbidity ... 29

Table 13. Summary of characteristics for eight trials included in the analysis of procalcitonin-guided antibiotic initiation and/or discontinuation in patients with respiratory tract infections ... 31

Table 14. Procalcitonin-guided antibiotic initiation and/or discontinuation in patients with respiratory tract infections—study quality ... 34

Table 15. Procalcitonin-guided antibiotic initiation and/or discontinuation in patients with respiratory tract infections—outcomes related to antibiotic use ... 36

Table 16. Procalcitonin-guided antibiotic initiation and/or discontinuation in patients with respiratory tract infections—mortality ... 38

Table 17. Procalcitonin-guided antibiotic initiation and/or discontinuation in patients with respiratory tract infections—morbidity ... 40

Table 18. Procalcitonin-guided antibiotic initiation and/or discontinuation in patients with respiratory tract infections—GRADE evidence table ... 41

Table 19. Summary of characteristics for one trial included in the analysis of procalcitonin-guided antibiotic therapy in neonatal sepsis ... 43

Table 20. Procalcitonin-guided antibiotic therapy in neonatal sepsis—study quality ... 43

Table 21. Procalcitonin-guided antibiotic therapy in neonatal sepsis in the study by Stocker et al., 2010 (n=121)—outcomes related to antibiotic use ... 44

Table 22. Mortality and morbidity data for early onset neonatal sepsis in the study by Stocker et al., 2010 (n=121) ... 44

Table 23. Summary of characteristics for one trial included in the analysis of procalcitonin-guided antibiotic therapy in children (ages 1–36 months) with fever of unknown source ... 45

Table 24. Procalcitonin-guided antibiotic therapy in children (ages 1–36 months) with fever of unknown source—study quality ... 46

Table 25. Procalcitonin-guided antibiotic therapy in children (ages 1–36 months) with fever of unknown source—outcomes related to antibiotic use in the study by Manzano et al., 2010 (n=384) ... 47

Table 26. Mortality and morbidity data for fever of unknown source in children ages 1–36 months in the study by Manzano et al., 2010 (n=384) ... 47

Table 27. Summary of characteristics for one trial included in the analysis of procalcitonin-guided preemptive postoperative antibiotic therapy ... 48

Table 28. Procalcitonin-guided preemptive postoperative antibiotic therapy—study quality ... 49

Table 29. Procalcitonin-guided preemptive postoperative antibiotic therapy—outcomes related to antibiotic use in the study by Chromik et al., 2005 ... 50
Table 30. Procalcitonin-guided preemptive postoperative antibiotic therapy—mortality and morbidity data in the study by Chromik et al., 2005 (n=20) .. 50
Table 31. Summary of systematic reviews ... 57

Figures
Figure A. Analytic framework for procalcitonin as a diagnostic indicator for infection and as an indicator of response to therapy .. 7
Figure 1. Analytic framework for procalcitonin as a diagnostic indicator for infection and as an indicator of response to therapy .. ES-4
Figure B. PRISMA diagram for identified trials ... ES-6
Figure 1. PRISMA diagram for identified trials .. 15
Figure 2. PRISMA diagram for identified gray literature... 16
Figure 4. Meta-analysis of mean differences, antibiotic duration (days) in critically ill/ventilator-associated pneumonia patients ... 22
Figure 5. Meta-analysis of risk differences, short-term mortality (in-hospital or 28-day) in critically ill/ventilator-associated pneumonia patients .. 23
Figure 6. Meta-analysis of mean differences, ICU length of stay (days) in critically ill/ventilator-associated pneumonia patients ... 24
Figure 7. Meta-analysis of mean differences, antibiotic duration (days) in patients with respiratory tract infections ... 37
Figure 8. Meta-analysis of risk differences, antibiotic prescription rate in patients with respiratory tract infections ... 37
Figure 9. Meta-analysis of risk differences, short-term mortality (≤6 weeks) in patients with respiratory tract infections ... 38
Figure 10. Meta-analysis of risk differences in ICU admission in patients with respiratory tract infections ... 40

Appendixes
Appendix A. Search Strategy
Appendix B. Excluded Studies
Appendix C. Abstraction Tables
Appendix D. Ongoing Procalcitonin Studies in ClinicalTrials.gov
Appendix E. Screening Guide for Title and Abstract
Appendix F. Screening Guide for Full-Text Articles
Appendix G. Data Abstraction Form
Executive Summary

Background

Sepsis is a serious condition with high morbidity and mortality for which clinical diagnostic criteria lack sensitivity and specificity. Early initiation of appropriate antibiotics and goal-directed therapies reduces mortality. Conversely, overuse and misuse of antibiotics, including continuing antibiotics longer than necessary for cure, can result in adverse events and add to the increasing problem of antibiotic resistance. Although critically ill patients in the intensive care units (ICUs) have higher morbidity and mortality rates, the same issues are also relevant to other clinical conditions, including neonatal sepsis, febrile illness in children, pneumonia, and other respiratory tract infections with respect to the initiation, duration, or change in antibiotic therapy. Again, the duration of antibiotic therapy is often undefined, and clinical features are of limited help in guiding discontinuation of therapy.¹

Several serum biomarkers have been identified in recent years that have the potential to help diagnose local and systemic infections, differentiate bacterial and fungal infections from viral syndromes or noninfectious conditions, prognosticate, and ultimately guide management, particularly of antibiotic therapy. Among these, procalcitonin is the most extensively studied biomarker.²,³

Numerous studies have investigated the potential roles of procalcitonin in diagnosing and managing local and systemic infections.⁴-⁶ There is some evidence that procalcitonin is more specific for bacterial infections, with serum levels rising at the onset of infection and falling rapidly as the infection resolves, as compared with other markers.⁷,⁸ However, its clinical utility in diagnosing and managing patients with suspected infections remains unclear.

In healthy people, procalcitonin levels are very low. In systemic infections, including sepsis, procalcitonin levels are generally greater than 0.5–2 ng/mL, but often reach level greater than 10 ng/mL. Higher levels correlate with the severity of illness and prognosis. In patients with suspected respiratory tract infection, the levels of procalcitonin are not necessarily as elevated, and a cutoff of greater than 0.25 ng/mL seems to be most predictive of a bacterial respiratory tract infection requiring antibiotic therapy, while a level less than 0.25 ng/mL signals resolution of the infection.⁹,¹⁰

The cutoffs for other clinical situations may be quite different. For example, neonates normally show a characteristic increase in procalcitonin after birth, with a rapid return to normal by 48 to 72 hours. In neonates, a nomogram for procalcitonin cutoffs that accounts for the time from birth in hours must be used.¹¹ Likewise, the stress of surgery may increase procalcitonin levels, but again, there is an incremental increase in patients with infection, including subclinical or high risk of infection. The cutoff level of procalcitonin to identify postoperative patients with infection or at risk of infection may be higher than that used for other patient groups. Although procalcitonin may have a role in diagnosis and identification of patients who need initiation of systemic antibiotics, it may have greater applicability in guiding decisions about when to discontinue antibiotic therapy as procalcitonin levels quickly return to less than 0.25 ng/mL as infection resolves.¹²
Objectives

The objective of this systematic review was to synthesize comparative studies examining the various uses of procalcitonin in the clinical management of patients with suspected local or systemic infection.

The patient populations included critically ill adults with suspected sepsis or other serious bacterial infections, neonates with suspected early neonatal sepsis, patients with upper and lower respiratory tract infections, children with fever of unknown source, and postoperative patients with infections. Initial review of the literature during topic development and topic refinement suggested that the most common use for procalcitonin-guided management was in decisionmaking related to the initiation or discontinuation of antibiotic therapy in these various populations. This led us to construct an analytical framework that focused on the following Key Question.

Key Question: In selected populations of patients with suspected local or systemic infection, what are the effects of using procalcitonin measurement plus clinical criteria for infection to guide initiation, discontinuation, or a change of antibiotic therapy when compared with clinical criteria for infection alone on:

- Intermediate outcomes, such as initiation, discontinuation, or change of antibiotic therapy; antibiotic use; and length of stay?
- Health outcomes, such as morbidity, mortality, function, quality of life, and adverse events of antibiotic therapy (persistent or recurrent infection, and antibiotic resistance)?

The PICOTS (Patient, Intervention, Comparator, Outcome, Timing, and Setting) for the Key Question follows:

Patients	Adult and pediatric patients with known or suspected local or systemic infection, including critically ill patients with sepsis syndromes or ventilator-associated pneumonia, adults with respiratory tract infections, neonates with sepsis, children with fever of unknown source, and postoperative patients at risk of infection
Intervention	Initiation, discontinuation, or intensification of antibiotic therapy guided by procalcitonin plus clinical criteria for infection
Comparator	Initiation, discontinuation, or intensification of antibiotic therapy guided by clinical criteria for infection alone
Outcome	Antibiotic use (duration of antibiotic therapy, prescription rate,\(^a\) and total antibiotic exposure\(^b\)), mortality, morbidity (length of stay, severity of illness score) and adverse events of antibiotic therapy (persistent or recurrent infection, and antibiotic resistance)

\(^a\)Defined as the percentage of patients who are initiated on antibiotic therapy, either during initial presentation or subsequent followup.
\(^b\)Calculated by multiplying the total number of antibiotics by the number of days the patient is receiving each antibiotic divided by the total duration of antibiotic therapy.
Timing Three months
Settings ICUs (medical and surgical), inpatient acute care hospitals, emergency departments, and outpatient clinics

As we proceeded to synthesize the evidence, it was apparent that the evidence on initiation, discontinuation, or change of antibiotic therapy was not easily separated. Many studies reported on both discontinuation and change of antibiotic therapy. For example, studies in the ICU population addressed discontinuation only, while studies of respiratory tract infection patients addressed both initiation and discontinuation. Moreover, serum procalcitonin level cutoffs differ for different patient populations, so it could be misleading to synthesize results across, rather than within, populations. Therefore, the results of our systematic review are reported by patient population, rather than in accordance with the Key Questions originally framed in our topic refinement.

Analytic Framework

Following is an analytic framework (Figure A) depicting the potential effects both on intermediate outcomes and on health outcomes from using procalcitonin. Direct evidence of the results of testing on health outcomes is shown by link A (morbidity, function, quality of life, and/or mortality) and link F (adverse events of therapy). Indirect evidence would have to be assembled in the absence of randomized controlled trials (RCTs) of the effects of testing on health outcomes. Link B addresses whether test results influence decisions about therapy, which may affect health outcomes (link C) or intermediate outcomes (link D). Intermediate outcomes—such as antibiotic exposure, duration of antibiotic therapy, length of stay, and response to therapy—may have an association with health outcomes (link E).

Methods

Input From Stakeholders

This systematic review was developed and written by the Evidence-based Practice Center (EPC) with input from stakeholders. Stakeholders were broadly defined as anyone involved with making health care decisions, including patients, clinicians, professional and consumer organizations, and purchasers of health care. Individuals from various stakeholder groups were invited as Key Informants, Technical Experts, and/or Peer Reviewers to guide this systematic review.

Key Informants are end users of research. A Key Informant panel provided input to the EPC to help refine the Key Questions and to focus on the most important aspects of procalcitonin to influence health care decisions in various clinical settings. The Key Questions were then posted on the Agency for Healthcare Research and Quality (AHRQ) Web site for public commentary. The Technical Expert Panel provided input on the research protocol in two phases: (1) initial draft protocol; (2) revised protocol that incorporated the panel’s comments on the draft protocol and preliminary list of relevant studies.

All potential Key Informants, Technical Experts, and Peer Reviewers were required to disclose any potential conflicts of interest in accordance with AHRQ policy. The AHRQ Task Order Officer and the EPC worked to balance, manage, or mitigate any potential conflicts of interest identified. Individuals who had conflicts of interest that precluded participation as
Figure A. Analytic framework for procalcitonin as a diagnostic indicator for infection and as an indicator of response to therapy

AECOPD = acute exacerbations of chronic obstructive pulmonary disease

Note: A–F show links between test results and outcomes. Please see the text above Figure A for more information.
informants, experts or reviewers were able to submit comments through the public comment mechanism. Writing and editing the report was solely the responsibility of the EPC.

Data Sources and Selection

MEDLINE®, Embase® and the Cochrane Controlled Trials Register were searched from 1990 through December 16, 2011, for randomized and nonrandomized comparative studies using the following search terms: procalcitonin AND chronic obstructive pulmonary disease; COPD; critical illness; critically ill; febrile neutropenia; ICU; intensive care; intensive care unit; postoperative complication(s); postoperative infection(s); postsurgical infection(s); sepsis; septic; surgical wound infection; systemic inflammatory response syndrome OR postoperative infection. Searches were limited to English-language and human studies.

The Cochrane Controlled Trials register was also searched, with no date restriction. In addition, a search for systematic reviews was conducted in MEDLINE; the Cochrane Database of Systematic Reviews; and the Web sites of the National Institute for Clinical Excellence, the National Guideline Clearinghouse, and the Health Technology Assessment Programme. A search of the gray literature included databases with regulatory information, clinical trial registries, abstracts and conference papers, grants and federally funded research, and manufacturing information.

The titles and abstracts were screened for studies that looked at antibiotic use, morbidity, and mortality with procalcitonin-guided initiation and/or discontinuation of antibiotic therapy compared with use of clinical criteria in adult and pediatric patients with suspected infections. A single reviewer made decision about a full-text review. Citations marked as uncertain were reviewed by a second reviewer for full-text review. A third reviewer was consulted if necessary. We included RCTs. We also sought, but did not find, nonrandomized comparative studies. The PRISMA diagram (Figure B) depicts the flow of search screening and study selection.

Data Extraction and Quality Assessment

Data were abstracted by a single reviewer, and fact checked by another reviewer. If there were disagreements they were resolved through discussion among the review team. Categories of data elements were abstracted as follows: quality assessment (number of participants and flow of participants, treatment allocation methods, blinding, and independent outcome assessor), applicability and clinical diversity assessment (patient, diagnostic, and treatment characteristics), and outcome assessment (primary and secondary outcomes, response criteria, followup frequency and duration, and data analysis details).

Quality of included studies was assessed using the U.S. Preventive Services Task Force framework based on the following criteria: assembly and maintenance of comparable groups, loss to followup, measurements (equal, reliable, and valid), clear definition of interventions, all important outcomes considered, and analysis (adjustment for potential confounders and intention-to-treat analysis). Three quality categories were used: good, fair, and poor. Quality of the abstracted studies was assessed by at least two independent reviewers, and the final quality rating was assigned by consensus adjudication.
Data Synthesis and Analysis

We anticipated that the decision to incorporate formal data synthesis into this evidence review would be made after completing the formal literature search. Similarly we also anticipated that the decision to pool studies would be based on whether there were a sufficient number of studies available that were designed to ask similar questions and reported similarly defined outcomes. If a meta-analysis could be performed, subgroup and sensitivity analyses would be based on assessment of clinical diversity in available studies. The pooling method would involve inverse variance weighting and a random effects model.

Grading the Strength of the Body of Evidence

The overall strength of evidence grade was determined in compliance with AHRQ’s Methods Guide for Effectiveness and Comparative Effectiveness Reviews and is based on a system developed by the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group. This system explicitly addresses the following domains: risk of bias, consistency, directness, and precision. With respect to precision, studies could contribute to a rating of precise if confidence intervals did not overlap the null value or results were statistically significant, regardless of whether studies were powered to detect a particular effect for that outcome. The grade-of-evidence strength was classified into the following four categories: high, moderate, low, and insufficient. Specific outcomes and comparisons were rated depending on the evidence found in the literature review. The grade rating was made by independent reviewers, and disagreements were resolved by consensus adjudication.
Results

Overview

Eighteen RCTs (Table A) compared procalcitonin guidance with the use of clinical criteria to manage antibiotic therapy in patients with known or suspected infection, or at risk of infection. The evidence addressed five patient populations that were reviewed separately because of different clinical characteristics and predicted outcomes: (1) critically ill adult patients in the ICU, including patients with ventilator-associated pneumonia (VAP) and those critically ill with suspected bacterial infections, severe sepsis, and septic shock; (2) patients with symptoms and signs of various respiratory tract infections; (3) neonates with suspected sepsis; (4) children between 1 and 36 months of age with fever of unknown source; and (5) postoperative patients at risk of infection. Additionally, we separately reviewed two studies in seriously adult ill ICU patients for whom the procalcitonin-guidance was used to guide intensification of antibiotic therapy rather than use procalcitonin to guide initiation or discontinuation of therapy, a very different approach.

Conducting a meta-analysis was precluded in most instances because of heterogeneity of outcome definitions, sparseness of commonly defined outcomes, and lack of sufficient detail in outcome reporting. A meta-analysis was performed on short-term mortality (28-day or in-hospital mortality) in a group of five studies14-18 that included critically ill patients and those with VAP. The pool of studies was too small to permit meaningful subgroup and sensitivity analyses. Additional meta-analyses were performed on antibiotic duration, ICU length of stay and hospital length of stay.

Intensive Care Unit Patients

Procalcitonin-Guided Discontinuation of Antibiotic Therapy

Five trials14-18 (n=938) addressed procalcitonin-guided discontinuation of antibiotic therapy in critically ill patients. There is high strength of evidence (Table B) that procalcitonin guidance reduces antibiotic use. The absolute difference in duration of antibiotic use in these five studies14-18 ranged from –1.7 to –5 days, with relative reductions ranging from 21 to 38 percent. There is moderate evidence that procalcitonin-guided antibiotic discontinuation does not increase morbidity as indicated by ICU length of stay (LOS). A major concern was uncertainty about the appropriate noninferiority margin for mortality in seriously ill patients in the ICU with sepsis and/or VAP. Although there are potential benefits of reducing antibiotic use, only one study18 reported on multidrug-resistant organisms and superinfections. There were limited data on other adverse antibiotic effects reported in these studies.

Procalcitonin-Guided Intensification of Antibiotic Therapy

There is moderate evidence that procalcitonin-guided intensification of antibiotic therapy to broaden the spectrum of bacterial coverage does not improve outcomes in critically ill patients, and in fact, may have adverse consequences. The large (n=1,200), high-quality trial by Jensen and colleagues21 found greater duration and increased total exposure to antibiotics with procalcitonin guidance. There was also increased morbidity, including a 1-day increase (p=0.004) in ICU LOS, a significant increase in days on mechanical ventilation, and increased days with abnormal renal function. A second study22 (n=72) was judged too small to be informative.
Table A. Summary characteristics of the included studies

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Critically Ill/VAP (Antibiotic Discontinuation)</th>
<th>Critically Ill/VAP (Antibiotic Intensification)</th>
<th>Respiratory Tract Infections</th>
<th>Neonatal Sepsis</th>
<th>Fever of Unknown Source (Children Ages 1–36 Months)</th>
<th>Preemptive Postoperative Antibiotic Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Design</td>
<td>RCT=5</td>
<td>RCT=2</td>
<td>RCT=7</td>
<td>RCT=1</td>
<td>RCT=1</td>
<td>RCT=1</td>
</tr>
<tr>
<td>Number of Studies</td>
<td>5</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total N</td>
<td>938</td>
<td>1,272</td>
<td>3,492</td>
<td>121</td>
<td>384</td>
<td>250</td>
</tr>
<tr>
<td>Funding</td>
<td>NR=3 Mixed=2</td>
<td>Nonindustry=1 Mixed=1</td>
<td>Nonindustry=2 NR=1 Mixed=5</td>
<td>Industry=1</td>
<td>Industry=1</td>
<td>NR=1</td>
</tr>
<tr>
<td>Study Quality</td>
<td>Fair=2 Good=3</td>
<td>Fair=1 Good=1</td>
<td>Poor=4 Good=4</td>
<td>Good=1</td>
<td>Poor=1</td>
<td>Good=1</td>
</tr>
<tr>
<td>Conflict of Interest*</td>
<td>Yes=5</td>
<td>Yes=1 NR=1</td>
<td>Yes=6 No=1 NR=1</td>
<td>NR=1</td>
<td>No=1</td>
<td>NR=1</td>
</tr>
<tr>
<td>References</td>
<td>14–18</td>
<td>21–22</td>
<td>23–30</td>
<td>31</td>
<td>32</td>
<td>33</td>
</tr>
</tbody>
</table>

NR = not reported; RCT = randomized controlled trial; VAP = ventilator-associated pneumonia

*Yes implies published paper reported existence of conflict of interest; No implies published paper reported no existence of conflict of interest; and NR implies published paper did not report whether conflict of interest existed.
Respiratory Tract Infection

Eight trials23-30 (n=3,492) addressed initiation and/or discontinuation of antibiotics in patients with acute upper and lower respiratory tract infection. Settings included primary care clinics, emergency departments (EDs), and hospital wards. There is high strength of evidence that procalcitonin guidance reduces antibiotic duration and prescription rates; and moderate evidence of reduction in total antibiotic exposure. Absolute reduction in duration of antibiotic therapy ranged from 1 to 7 days, with relative reductions ranging from -13 to -55 percent. Absolute reduction in prescription rates ranged from -2 to -7 percent with relative reductions ranging from -1.8 to -72 percent. There was moderate evidence that procalcitonin guidance did not increase mortality, hospital LOS, or ICU admission rates. However, a limitation of the evidence is the very large number of study participants that would be required to narrow the confidence interval for estimated mortality. Evidence was insufficient to judge effects on days of restricted activity or on antibiotic adverse events. Three studies24,25,27 reported on adverse antibiotic effects, and there was a statistically significant reduction in the procalcitonin-guided arm versus the control arm that was associated with reduced antibiotic usage. No consistency was found, however, on how adverse effects were defined and details on the types of adverse reactions were lacking.

Neonatal Sepsis

One good-quality31 study (n=121) provided moderate evidence that procalcitonin guidance reduces the use of antibiotic therapy for suspected early neonatal sepsis. The duration of antibiotic use was overall reduced by 22.4 hours (22.0%). Further, the proportion of neonates on antibiotics for longer than 72 hours was reduced by 27 percent. Greatest reductions were seen among neonates who were judged according to clinical criteria to have possible infection or unlikely to have infection as compared with those with proven or probable infection. Strength of evidence was judged insufficient to make conclusions on mortality and morbidity because of the small study size.

Fever of Unknown Source in Children Ages 1–36 Months

The strength of evidence was judged insufficient to draw conclusions on outcomes of procalcitonin-guided antibiotic therapy for fever of unknown source in children 1 to 36 months of age. One good-quality RCT32 (n=384) reported no significant results.

Postoperative Patients at Risk of Infection

The strength of evidence was judged insufficient to draw conclusions on outcomes of procalcitonin guidance to determine preemptive antibiotic therapy for patients after colorectal surgery. The evidence consisted of one small (n=20) trial.33
Table B. Summary of outcomes measures, and strength of evidence

<table>
<thead>
<tr>
<th>Patient Group</th>
<th>Outcome</th>
<th>Unit</th>
<th>No. of Studies</th>
<th>References</th>
<th>No. of Subjects</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>P</th>
<th>Overall Grade</th>
<th>Effect*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critically ill/VAP patients (antibiotic discontinuation)</td>
<td>Antibiotic use</td>
<td>Duration of use, days</td>
<td>5</td>
<td>14–18</td>
<td>938</td>
<td>L</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>High</td>
<td>Improve (Range: −1.7 to −5)</td>
</tr>
<tr>
<td>Mortality</td>
<td></td>
<td>In-hospital, overall or 28-day</td>
<td>5</td>
<td>14–18</td>
<td>938</td>
<td>L</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Low**</td>
<td>No worse</td>
</tr>
<tr>
<td>Morbidity</td>
<td></td>
<td>ICU length of stay, days</td>
<td>5</td>
<td>14–18</td>
<td>837</td>
<td>L</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Moderate</td>
<td>No worse</td>
</tr>
<tr>
<td>Critically ill/VAP patients (antibiotic intensification)</td>
<td>Morbidity</td>
<td>Percent days in ICU with GFR<60</td>
<td>1</td>
<td>21</td>
<td>1,200</td>
<td>L</td>
<td>U</td>
<td>Y</td>
<td>Y</td>
<td>Moderate</td>
<td>Worse (5.0%, 95% CI: 3.0, 6.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent days on ventilator</td>
<td>1</td>
<td>21</td>
<td>1,200</td>
<td>L</td>
<td>U</td>
<td>Y</td>
<td>Y</td>
<td>Moderate</td>
<td>Worse (4.9%, 95% CI: 3.0, 6.7)</td>
</tr>
<tr>
<td>Respiratory tract infection</td>
<td>Antibiotic use</td>
<td>Duration of use, days</td>
<td>7</td>
<td>23-27, 29, 30</td>
<td>3,284</td>
<td>L</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>High</td>
<td>Improve (Range: −1 to −7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prescription rate</td>
<td>7</td>
<td>23–30</td>
<td>3,492</td>
<td>L</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>High</td>
<td>Improve (Range: −2 to −7%)</td>
</tr>
<tr>
<td>Mortality</td>
<td>≤ 6 wks or 6 months</td>
<td>8 (7/1)</td>
<td>23–30</td>
<td>3,492</td>
<td>L</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Moderate</td>
<td>No worse</td>
<td></td>
</tr>
<tr>
<td>Morbidity</td>
<td></td>
<td>Hospital length of stay</td>
<td>5</td>
<td>25, 26, 28–30</td>
<td>2,303</td>
<td>M</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Moderate</td>
<td>No worse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ICU admission rates</td>
<td>5</td>
<td>25, 26, 28–30</td>
<td>2,303</td>
<td>M</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Moderate</td>
<td>No worse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Antibiotic adverse events</td>
<td>3</td>
<td>24, 25, 27</td>
<td>2,367</td>
<td>L</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Insufficient</td>
<td>Unknown</td>
</tr>
<tr>
<td>Neonatal sepsis</td>
<td>Duration of antibiotic use</td>
<td>Hours</td>
<td>1</td>
<td>31</td>
<td>121</td>
<td>L</td>
<td>U</td>
<td>Y</td>
<td>Y</td>
<td>Moderate</td>
<td>Improve (−22.4, p=0.012)</td>
</tr>
<tr>
<td>Morbidity</td>
<td>Recurrence of infection</td>
<td>1</td>
<td>31</td>
<td>121</td>
<td>L</td>
<td>U</td>
<td>Y</td>
<td>N</td>
<td>Insufficient</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>Mortality</td>
<td>In-hospital</td>
<td>1</td>
<td>31</td>
<td>121</td>
<td>L</td>
<td>U</td>
<td>Y</td>
<td>N</td>
<td>Insufficient</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>Fever of unknown source in children</td>
<td>Antibiotic use</td>
<td>Prescription rate</td>
<td>1</td>
<td>32</td>
<td>384</td>
<td>H</td>
<td>U</td>
<td>Y</td>
<td>N</td>
<td>Insufficient</td>
<td>Unknown</td>
</tr>
<tr>
<td>Morbidity</td>
<td>Hospitalization rate</td>
<td>1</td>
<td>32</td>
<td>384</td>
<td>H</td>
<td>U</td>
<td>Y</td>
<td>N</td>
<td>Insufficient</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>Mortality</td>
<td>In-hospital</td>
<td>1</td>
<td>32</td>
<td>384</td>
<td>H</td>
<td>U</td>
<td>Y</td>
<td>N</td>
<td>Insufficient</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>Preemptive postoperative antibiotic therapy</td>
<td>Morbidity</td>
<td>Sepsis/SIRS</td>
<td>1</td>
<td>33</td>
<td>20</td>
<td>L</td>
<td>U</td>
<td>Y</td>
<td>N</td>
<td>Insufficient</td>
<td>Unknown</td>
</tr>
<tr>
<td></td>
<td>Morbidity</td>
<td>In-hospital</td>
<td>1</td>
<td>33</td>
<td>20</td>
<td>L</td>
<td>U</td>
<td>Y</td>
<td>N</td>
<td>Insufficient</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

B = risk of bias; C = consistency; CI = confidence interval; D = directness; GFR = glomerular filtration rate; ICU = intensive care unit; N = no; P = precision; SIRS = systemic inflammatory response syndrome; U = unknown; VAP = ventilator-associated pneumonia; Y = yes

*Comparison between procalcitonin measurement plus clinical criteria versus clinical criteria alone to guide initiation, discontinuation, or a change of antibiotic therapy.

**The overall grade was low based on uncertainty about the appropriate minimum important difference for assessing noninferiority with respect to mortality.
Discussion

Clinical Context and Applicability

The diagnosis of sepsis is challenging because the clinical criteria for the diagnosis overlap with noninfectious causes of systemic inflammation such as the systemic inflammatory response syndrome. Initiation of antibiotic therapy for sepsis is necessary even while the diagnostic evaluation is ongoing because delayed antibiotic therapy is associated with increased mortality. A biomarker, such as procalcitonin, that improves decisions about initiating, discontinuing, or changing antibiotic therapy, could have substantial clinical benefits. Our systematic review found that procalcitonin guidance reduces antibiotic use for adult patients in both medical and surgical ICUs. Studies included patients who had comorbidities that are common in ICU patients (e.g., cardiac disease, diabetes, chronic lung disease, cirrhosis, chronic renal failure, cancer), and thus, the evidence from these studies is applicable to clinical practice in the ICU setting.

Respiratory tract infections contribute significantly to the problem of antibiotic misuse. Approximately 75 percent of all antibiotics prescribed in the ambulatory setting are for acute respiratory tract infections, but the vast majority of these infections are viral and do not benefit from antibiotic treatment. Clinical and microbiological evaluations are neither sensitive nor specific to differentiate bacterial from viral respiratory tract infections. Our systematic review found that procalcitonin guidance for initiation and discontinuation of antibiotic therapy significantly reduced antibiotic prescription rates and duration in patients with acute respiratory tract infections, including acute exacerbations of COPD, community acquired pneumonia (CAP), and acute bronchitis.

Certain populations, however, were excluded from one or more studies of procalcitonin guidance reviewed in this report. Thus, findings from this review should not be extrapolated to these high-risk groups, which include pregnant patients, patients with absolute neutropenia, and other immunocompromised populations (solid organ and stem-cell transplant recipients, patients with advanced HIV infection/AIDS). Patients with chronic infections and infections for which a longer duration of antibiotic therapy is the standard of care, such as infective endocarditis, were also appropriately excluded from these studies. Patients with these conditions account for a significant proportion of the ICU population.

Although such patients were excluded in these studies, future studies may help to determine whether procalcitonin-guided antibiotic therapy is beneficial in these groups as well. For example, febrile neutropenic patients are usually continued on antibiotics until the neutropenia resolves; the most recent guidelines suggest patients can be switched to an oral fluoroquinolone when an infection has been adequately treated, and procalcitonin guidance could potentially be used in this context.

Applicability to pediatric settings is a significant gap in the present evidence. Only two RCTs reported on procalcitonin guidance in pediatric populations. One study included neonates with suspected early sepsis. While antibiotic use was reduced, the trial was underpowered for morbidity and mortality outcomes. The second study evaluated procalcitonin-guided antibiotic therapy in children ages 1–36 months presenting to the ED with fever of unknown source. No significant differences were observed for measures of antibiotic use, morbidity, or mortality with procalcitonin guidance. The evidence from this single study
was judged insufficient to reach conclusions about the use of procalcitonin guidance in this setting. There were no studies of procalcitonin guidance in children ages 3 to 18 years.

Ultimately, the value of procalcitonin-guided antibiotic therapy depends on the clinical benefits of reduced antibiotic use, which is difficult to quantify. Immediate consequences may include decrease in allergic reactions, drug toxicities, and frequency of *Clostridium difficile* infection. A major downstream effect of reducing antibiotic use may be a lower probability of emergence of antibiotic-resistant strains. Antimicrobial resistance contributes to morbidity, mortality, and health care costs. Several studies and indirect lines of evidence suggest that control of antibiotic use can reduce emergence of resistance, but the data are limited.

Reductions in antibiotic course duration have been associated with significant reductions in antibiotic adverse effects, *C. difficile* colitis, and superinfection with multidrug-resistant (MDR) Gram-negative rods. In our systematic review, few studies reported on allergic and adverse events of antibiotic use, and only one reported on antibiotic resistance. The durability in reduction of antibiotic use is not addressed in these trials, which limits their applicability to clinical practice. The setting of a clinical trial, or highly visible introduction of a new practice, can have a halo effect on physician behavior, so the present evidence does not address the long-term outcome of using procalcitonin guidance in a real-world clinical setting. Antibiotic stewardship programs are now recommended for all institutions, and guidelines are available for how they should function. Antibiotic stewardship programs are associated with reduced antibiotic use and also the decreased adverse effects of antibiotic therapy. The evidence in this review does not compare outcomes of using procalcitonin guidance versus antibiotic stewardship programs, nor does it address whether the addition of procalcitonin to an antibiotic stewardship program improves outcomes.

Antibiotic stewardship activities are usually limited to the acute-care hospital setting. Although it would be difficult or impractical for antibiotic stewardship programs to have active interventions in the outpatient setting, the use of procalcitonin might complement other types of outpatient programs, such as educational programs for physicians and patients aimed at reducing the use of antibiotics for viral respiratory tract infections.

Key Findings and Strength of Evidence

Our systematic review concludes that procalcitonin-guided antibiotic therapy can lead to significant reductions in antibiotic use (high strength of evidence [SOE]) without adversely affecting patient outcomes in critically ill patients in the ICU setting (moderate SOE for morbidity, low SOE for mortality). Evidence on mortality was initially rated as stronger but was downgraded to low based on uncertainty about the appropriate noninferiority margin for this outcome. In patients with a variety of respiratory tract infections, procalcitonin-guided antibiotic therapy reduced antibiotic prescription rates and the duration of antibiotic therapy (high SOE) in different clinical settings, again without any increase in morbidity or mortality (moderate SOE). There is insufficient evidence to recommend procalcitonin-guided antibiotic therapy in cases of neonatal sepsis, febrile children, and postoperative patients when procalcitonin has been used to identify patients who may need preemptive antibiotic therapy to prevent local or systemic infections. Use of procalcitonin as an indicator of inappropriate initial antibiotic therapy and the need for intensified antibiotic therapy in the ICU should be discouraged because this approach may lead to increased organ dysfunction (moderate SOE).
Discussion of Present Findings in Context of Other Systematic Reviews

We are aware of four systematic reviews4,42-44 that were published before our review; the findings of our review are discussed in the context of these prior reviews. All the previous reviews (including the present review) came to similar conclusions: procalcitonin-guided antibiotic decisionmaking, compared with clinical criteria-guided antibiotic decisionmaking reduces antibiotic use and is not associated with increased mortality or morbidity.

We reviewed all published RCTs of the use of procalcitonin-guided initiation or discontinuation of antibiotic therapy, as well as studies that used procalcitonin for other interventions in patients with infection and/or sepsis. Eighteen RCTs14-18,21-33 were included in our systematic review. Our systematic review differs from previous systematic reviews in terms of the number of studies included, the scope of indications addressed, and how populations were grouped for clinical relevance. The number of trials included in previous systematic reviews ranged from seven trials4,42,44 to 14 trials.43 Our review addresses pediatric populations separately from adult patients, and it also recognizes that there are distinct patient groups within the pediatric population as stratified by age.

As the most recent systematic review, ours is the only one that includes the Jensen trial.21 This trial was unique in showing that procalcitonin-guided intensification of antibiotic therapy to broaden the spectrum of bacterial coverage does not improve outcomes in critically ill patients, and in fact, may have adverse consequences.

Summary of Gaps in the Evidence

We identified five gaps in the evidence related to specific populations or comparators.

Research Gap 1: What Are the Outcomes of Procalcitonin Guidance in Subgroups of Patients Who Are Immunocompromised?

Patients with certain conditions, including neutropenia, and those in immunocompromised states (solid organ and stem-cell transplant recipients, and patients with advanced HIV infection) were excluded from this study. Immunocompromised patients often comprise a significant portion of the ICU population. In the large PRORATA18 study, immunocompromised patients made up 16.6 percent of the study population and were included in the trial. In the PROVAP16 study of ventilator-associated pneumonia, 27.9 percent of the eligible patients were excluded because of immunosuppression.

Even in community respiratory tract infections, such as CAP (7.6% excluded), and even in other respiratory tract infections (2.5% excluded), there is a significant subpopulation of patients who are immunocompromised or have condition such as cystic fibrosis for whom the efficacy and safety of procalcitonin-guided antibiotic therapy is unknown.29,30

While severely immunocompromised patients presenting with clinical signs of infection are most likely treated empirically with antibiotics, patients with mild to moderate immunosuppression, such as patients on low-dose corticosteroids for chronic inflammatory conditions, may not benefit from antibiotic therapy, even though they are often treated empirically. Procalcitonin guidance may have a potential role in reducing antibiotic use in the ambulatory patients with mild to moderate immunosuppression as compared with standard therapy.
Research Gap 2: What Are the Outcomes of Procalcitonin Guidance in Pediatric Patients?

Only two studies31,32 reported on procalcitonin guidance in pediatric populations, and both were underpowered to assess morbidity and mortality outcomes. Both studies were limited to the acute-care hospital setting. The overuse of antibiotics in pediatrics, in both the inpatient and outpatient setting, is as important among children as it is in adults.

Research Gap 3: What Are the Outcomes of Procalcitonin Guidance in Identifying Patients at Risk of Infection Who Might Benefit From Preemptive Antibiotic Therapy?

The study by Chromik and colleagues33 reported that procalcitonin levels could accurately identify a subpopulation, 8 percent of patients who underwent elective colorectal surgery, who were at risk of a local or systemic infection. Although this was a small study, it suggests that this approach might identify a group who would benefit from preemptive antibiotic therapy given before any infection is clinically evident. Larger studies are needed to confirm that preemptive antibiotic therapy can reduce infection-related complications. Other patient populations who are at risk for infection-related complications include burn patients, ICU patients, and postoperative patients who have undergone procedures other than colorectal surgery.

Research Gap 4: Does the Use of Procalcitonin Guidance Reduce Antibiotic Resistance and Antibiotic Adverse Events?

Although the importance of reducing antibiotic use is recognized, there was insufficient evidence from the RCTs we reviewed that the observed reduction in antibiotic use had benefits with respect to antibiotic adverse reactions, superinfections, or the development of resistance. When designing future studies, there should be consideration for standardized reporting of adverse events from antibiotics, the incidence of \textit{C. difficile}, and active surveillance for colonization of patients with drug-resistant pathogens.

Research Gap 5: How Does Procalcitonin-Guided Antibiotic Therapy Compare With Other Approaches for Reducing Unnecessary Antibiotic Use, Such as Antibiotic Stewardship Programs and Implementation of Practice Guidelines?

In view of the present emphasis on the overuse of antibiotics, other interventions to reduce antibiotic use, such as the institution of antibiotic stewardship programs and the structured implementation of practice guidelines, may be more robust comparators by which to assess the outcomes of procalcitonin-guided decisions on the initiation and discontinuation of antibiotic therapy.

Summary of Methodological Weaknesses in the Evidence

In addition to the research gaps listed above, we also identified four important methodological weaknesses that were common across the studies and bodies of evidence reviewed in this report.
Weakness 1: Measurement of Total Antibiotic Exposure
Total antibiotic exposure is used to capture a patient’s total exposure to all antibiotics and is conventionally reported as mean days per 1,000 days of followup. However, some of the studies in this review only reported relative or absolute differences. Consistent use of the conventional measure would improve accumulation of evidence on the outcomes of procalcitonin guidance.

Weakness 2: Measurement of Morbidity
There were various measures of morbidity across these studies. Although admission rates, LOS, and ICU LOS were easy to compare, other measures were not. In the ICU populations, for example, the need for mechanical ventilation was often reported differently, and studies used a variety of severity of illness scores (SOFA, SAP II, SAP III, and APACHE II). This makes it difficult to compare or pool data across studies.

Weakness 3: Rationale for Noninferiority Margins for Studies of Mortality
Mortality rates in trials of procalcitonin-guided antibiotic therapy implicitly or explicitly pose a question of noninferiority. That is: Can reduction in antibiotic use be achieved without a deleterious effect on survival? The choice of a noninferiority margin incorporates clinical and statistical judgments. Studies should provide an explicit rationale for the choice of a noninferiority margin in specific patient populations.

Weakness 4: Reporting and Interpreting Nonsignificant Differences
A common statistical error in the medical literature is the conclusion that nonsignificant differences (p>0.05) are “similar.” Clearly stating in the abstract that the study was not powered to detect a difference in mortality would provide a more accurate reporting of the results.

Limitations of the Review Process
A challenging aspect of this review was appraising the strength of evidence that procalcitonin-guided antibiotic therapy did not result in any increased morbidity or mortality in critically ill patients and those with respiratory tract infections. In the studies of critically ill patients for whom procalcitonin was used to reduce antibiotic exposure, only the Bouadma study did a power analysis and used a predefined a margin for noninferiority for 28- and 60-day mortality. Meta-analysis was performed looking at early mortality across all five ICU studies. Results show a pooled point estimate of 0.4 percentage point reduction in mortality, and the 95% confidence interval (CI) for the difference in mortality between procalcitonin-guided antibiotic therapy and standard care was between -6 percent and 5 percent, favoring the procalcitonin-guided antibiotic therapy group. There is disagreement, however, over whether this range falls within the appropriate noninferiority margin. The choice of a noninferiority margin only requires sufficient precision to exclude a minimal important difference. Although a 10 percent noninferiority margin for mortality has been recommended by the Infectious Diseases Society of America and American College of Chest Physicians in relevant populations, there is concern, expressed by some of our peer reviewers and in literature, that a 10 percent margin may be too high. Initially, a higher strength of evidence was considered, but because of the uncertainty of the noninferiority margin, the strength of evidence that procalcitonin-guided antibiotic therapy in the ICU does not increase mortality was downgraded to low. Although overall strength of evidence
was low, the results were judged to be precise because the pooled point estimate was centered on the null and the 95% CI was narrow (11 percentage points). While only one study was powered for mortality, one purpose for meta-analysis is to overcome insufficient power, and the group of studies was highly consistent: statistical heterogeneity, as expressed by the I^2 statistic, was found to be 0 percent. Sixty-day mortality was reported by one study18 and was not included in our analysis because late mortality is more likely related to underlying comorbidities. Moreover, there are presently two large trials in progress, which may yield more precise estimates of mortality.

Another limitation of our review is that we did not systematically seek evidence comparing procalcitonin guidance to antibiotic stewardship programs or other programs aimed at reducing antibiotic use. Nor did we seek studies that changed procalcitonin-guided antibiotic therapy into an antibiotic stewardship program.

Implications for Future Research

We identified gaps and opportunities in the available evidence for improving the methods of studies comparing procalcitonin guidance with the use of clinical criteria to guide antibiotic therapy.

Populations of interest for future research on procalcitonin guidance are:
- Immunocompromised patient subgroups
- Patients with other conditions who were excluded from the study (e.g., pregnant women)
- Pediatric populations, stratified by age (neonates; younger than 3 years of age; older than 3 years of age)
- Patients at high risk of infection who may benefit from preemptive antibiotic therapy

Comparators of interest for future research are:
- Procalcitonin guidance compared with antibiotic stewardship programs
- Antibiotic stewardship programs compared with and without procalcitonin guidance
- Procalcitonin guidance compared with implementation of guidelines

Outcomes of interest for future research are:
- Consequences of reduction in antibiotic use on antibiotic resistance
- Consequences of reduction in antibiotic use on antibiotic adverse events
- Establishing the appropriate noninferiority margins for mortality and morbidity outcome

Opportunities for Improving Study Methods

1. Studies should use a consistent measurement of total antibiotic exposure: mean days of total exposure to all antibiotics per 1,000 days of followup.
2. Studies should use consistent measurements of morbidity; for example, the need for mechanical ventilation; severity of illness scores.
3. Studies should provide an explicit rationale for noninferiority margins for mortality in specific patient populations.
4. Studies should provide transparent reporting and interpretation of nonsignificant differences: Clearly stating in the abstract whether the study was not powered to detect a difference in mortality or morbidity.
Glossary

Infection: An infection is an invasion and multiplication of microorganisms or parasites in body tissues.

Procalcitonin: Procalcitonin is a precursor of the hormone calcitonin, which is produced by parafollicular cells (C cells) of the thyroid and other tissues, such as the neuroendocrine cells of the lung and the intestine. Its levels are low in healthy individuals but they rise in a response to a proinflammatory stimulus, especially of bacterial origin.

Sepsis: Sepsis is a clinical syndrome caused by the presence of a microbe or microbial products in the blood or other tissue resulting in a systemic inflammatory state.

References

Introduction

Background and Objectives

Sepsis is a condition with high morbidity and mortality for which clinical diagnostic criteria lack sensitivity and specificity. Rapid diagnosis of sepsis and early initiation of antibiotic and goal-directed therapies have demonstrated a reduction in mortality. Conversely, overuse and misuse of antibiotics can result in adverse events and add to the increasing problem of antibiotic resistance. Several serum biomarkers have been identified in recent years with potential uses to help diagnose local and systemic infections, differentiate bacterial and fungal infections from viral syndromes or noninfectious conditions, prognosticate, and ultimately guide management, particularly antibiotic therapy. Among these potential uses of serum biomarkers, there is particular interest in finding a biomarker for diagnosis of sepsis. Currently, there are at least 178 serum biomarkers that have potential roles in the management of patients with infections, and 34 have been studied specifically as a diagnostic tool for sepsis. Among these, procalcitonin is the most extensively studied biomarker.1,2

Serum levels of procalcitonin were recognized to be elevated in patients with infections during the early 1990s, and since that time, numerous studies have investigated the potential roles of procalcitonin in diagnosing and managing of local and systemic infections.3-5

Procalcitonin is the prohormone precursor of calcitonin that is expressed primarily in C-cells of the thyroid gland and to a smaller extent in neuroendocrine tissue of other organs, such as the lungs and intestines. The final step in conversion of procalcitonin to calcitonin is inhibited by various cytokines and bacterial endotoxins and, therefore, high levels of cytokines and/or bacterial endotoxins cause procalcitonin levels to rise. Cytokines are released nonspecifically in response to inflammation and infection, but endotoxins are released specifically during bacterial infections because they are derived primarily from the Gram-negative bacterial cell wall. There is some evidence that procalcitonin is more specific for bacterial infections, with serum levels rising and falling more rapidly in bacterial infection.6,7

Although viruses, parasites, and fungi can increase procalcitonin levels due to systemic inflammation, procalcitonin’s primary diagnostic utility is thought to be in establishing the presence of local or systemic bacterial infections particularly in bacterial sepsis. In case of fungal infection, the diagnostic utility of procalcitonin is limited because the levels do not rise until 1 to 2 days after the onset of infection. A greater increase in procalcitonin levels would be anticipated in Gram-negative versus Gram-positive bacterial infections due to the release of endotoxin from the Gram-negative bacterial cell wall; however, only few studies have demonstrated higher levels of procalcitonin with Gram-negative bacterial infections when compared to Gram-positive bacterial infections.5 Procalcitonin appears to be a promising serum biomarker for infection, but its exact utility in diagnosing and managing patients with suspected infections remains unclear.

The U.S. Food and Drug Administration (FDA) has cleared for marketing at least three procalcitonin quantitative assays that are commercially available (see Table 1), but the optimal approach to laboratory testing of procalcitonin has yet to be clarified. The labeled indication is the same for all three assays. According to the approved labels, these assays are intended for use in conjunction with other laboratory findings and clinical assessments to aid in the risk assessment of critically ill patients on their first day of intensive care unit (ICU) admission, for progression to severe sepsis and septic shock.8-10 Quantitative and qualitative (semi-quantitative) assays for measuring procalcitonin are currently available. The qualitative tests use test strips,
are rapid (results available in less than 30 minutes), and are designed for point-of-care testing. The quantitative tests use a luminescence immunoassay platform, are slower (results available in a few hours), and are designed for once or twice daily batch testing. Most studies supporting the use of procalcitonin have used the quantitative test, which is neither rapid nor available at the bedside. Whether or not the semiquantitative test will yield similar results to the quantitative test is unknown. 4,11

<table>
<thead>
<tr>
<th>Table 1. FDA-cleared procalcitonin assays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Name</td>
</tr>
<tr>
<td>BRAHMS PCT LIA</td>
</tr>
<tr>
<td>VIDAS BRAHMS PCT LIA Assay</td>
</tr>
<tr>
<td>BRAHMS PCT sensitive KRYPTOR®</td>
</tr>
</tbody>
</table>

LIA = luminescence immunoassay; PCT = procalcitonin

The purpose of this systematic review is to synthesize comparative studies examining the use of procalcitonin in the management of patients with presumed local or systemic infection. Although important, the analytic validity of quantitative and qualitative procalcitonin testing is beyond the scope of this comparative effectiveness review. However, diagnostic accuracy studies that look at the use of procalcitonin in determining the cause of fever or other symptoms and signs of systemic or localized infections will be discussed briefly, since these studies are the basis for the cutoff procalcitonin levels used in the randomized controlled trials (RCTs). The comparator in the diagnostic accuracy studies is usually clinical criteria for the diagnosis of the particular infection, such as the criteria for the diagnosis of systemic inflammatory response syndrome (SIRS) and sepsis, which were developed at a 1992 consensus conference. 12 Unfortunately, clinical criteria for sepsis require identifying a source of infection, which may be difficult. Microbiological evaluation may be helpful, but insensitivity of cultures is problematic. These same issues are also true for clinical criteria for the diagnosis of neonatal sepsis, pneumonia, and other respiratory tract infections. 13

In healthy people, procalcitonin levels are very low. In systemic infections, including sepsis, procalcitonin levels are generally greater than 0.5–2 ng/mL, but often reach levels of greater than 10 ng/mL, and higher levels correlate with the severity of illness and prognosis. Studies indicate procalcitonin is superior to C-reactive protein, interleukin-6, and interleukin-8 for diagnosis of sepsis. 14 Lower respiratory tract infections (LRTIs) are often less serious, although patients with severe community acquired pneumonia (CAP) may have life-threatening disease. Procalcitonin levels in patients with suspected respiratory tract infection (RTI) may be useful in determining if patients require antibiotic therapy. In RTIs, the levels of procalcitonin are not necessarily as elevated, and a cutoff of greater than 0.25 ng/mL seems to be most predictive of a bacterial respiratory tract infection requiring antibiotic therapy, while a level less than 0.25 ng/mL signals resolution of the infection. 15,16

The cutoffs for other clinical situations may be quite different. For example, neonates normally show a characteristic increase in procalcitonin after birth, with a rapid return to normal by 48 to 72 hours. In this circumstance, the elevated procalcitonin levels are an acute phase reactant in response to the stress of the birth process, yet an incremental increase is still
detectable in infants with neonatal sepsis. Unlike adults with systemic bacterial or fungal infection, sepsis, or RTIs that require antibiotic therapy, a nomogram for procalcitonin cutoffs that accounts for the time from birth in hours must be used.17 Likewise, the stress of surgery may increase procalcitonin levels, but again, there is an incremental increase in patients with infection, including subclinical or high risk of infection. Postoperatively, the procalcitonin cutoff level to identify patients with infection or at risk of infection may be higher than that used for other patient groups. Although procalcitonin may have a role in diagnosis and identification of patients who need initiation of systemic antibiotics, it may have greater applicability in guiding decisions about when to discontinue antibiotic therapy as procalcitonin levels quickly return to less than 0.25 ng/mL as infection resolves.18

Most of the RCTs of procalcitonin-guided diagnosis or management use one of the BRAHMS assays cleared for use in the United States and currently being marketed by bioMerieux. The recommendations for clinical cutoffs being marketed are in consensus with the cutoff used and evaluated in the RCTs looking at the use of procalcitonin in patient management. Most of these RCTs of procalcitonin-guided diagnosis or management involve two clinical entities: sepsis/systemic bacterial infections and LRTIs. As a result, two different cutoffs for interpretation of results are being marketed for these two clinical entities. A nomogram for neonates is also recommended.

Although the utility of procalcitonin in clinical management has been reviewed in other meta-analyses and systematic reviews, this report will afford valuable new information. Some of the previous reviews have been limited to selected populations, or have evaluated studies of distinct populations or different procalcitonin-guided therapies together. When this systematic review was initiated, the most recent meta-analysis of the effects of procalcitonin-guided therapy in patients with infections included seven RCTs published through November 2008.3 Since that time, the number of trials, including RCTs, studying procalcitonin-guided therapy has more than doubled. Further, there have also been several comprehensive literature reviews and two very recent systematic reviews of the use of procalcitonin to guide duration of antibiotic therapy in the ICU.19,21 Even though our understanding of the potential clinical benefits of procalcitonin assays is still evolving, clinicians have already begun to request that laboratories perform procalcitonin measurements and, therefore, another systematic review of the use of procalcitonin is needed at the present time. Furthermore, a comprehensive review evaluating different patient populations and all the potential uses of procalcitonin will identify the areas that require further prospective investigation and will serve as a roadmap for future research. The following Key Question and Analytic Framework outline the approach and key issues to be addressed in this review.

Key Questions

During the period the Key Questions were posted for public comment on the Effective Health Care Program Web site (www.effectivehealthcare.ahrq.gov), four general comments were received. The comments varied greatly from being supportive to being skeptical of procalcitonin’s utility in diagnosing and managing infections. The contrasting opinions about procalcitonin’s utility underscore the importance of performing a formal comparative effectiveness review. One comment questioned whether or not pediatric populations will be included in this review; in response, we note that pediatric populations have not been excluded from this review. Some studies have explored the use of procalcitonin in children with suspected infections, such as neonatal sepsis, urinary tract infections, and meningitis. The utility of procalcitonin as a screening tool for bacterial skin colonization or as a diagnostic tool for heat
stroke is beyond the scope of this review and will not be included. No changes were made to the key clinical questions based on the public comments; however, the two Key Questions were combined into a single Key Question in the final report after further refinement.

Key Question: In selected populations of patients with suspected local or systemic infection, what are the effects of using procalcitonin measurement plus clinical criteria for infection to guide initiation, discontinuation, or a change of antibiotic therapy when compared with clinical criteria for infection alone on:

- Intermediate outcomes, such as initiation, discontinuation, or change of antibiotic therapy; antibiotic use; and length of stay?
- Health outcomes, such as morbidity, mortality, function, quality of life, and adverse events of antibiotic therapy (persistent or recurrent infection, and antibiotic resistance)?

The PICOTS (Patient, Intervention, Comparator, Outcome, Timing, and Setting) for the Key Question follows:

Patients

- Adult patients with suspected infection, including, but not limited to, the following:
 - Local infections
 - Acute exacerbation of chronic obstructive pulmonary disease
 - Pneumonia
 - Surgical site infection
 - Osteomyelitis
 - Systemic infections
 - Neutropenic fever
 - Bacteremia
 - Sepsis
 - Septic shock
- Pediatric patients with suspected infection, including, but not limited to, the following:
 - Local infections
 - Pneumonia
 - Urinary tract infection
 - Meningitis
 - Systemic infections
 - Neutropenic fever
 - Bacteremia
 - Sepsis
 - Septic shock
Interventions
• Initiation, discontinuation, or intensification of antibiotics therapy guided by procalcitonin plus clinical criteria for infection

Comparators
• Initiation, discontinuation, or intensification of antibiotic therapy guided by clinical criteria for infection alone

Outcomes
• Intermediate outcomes
 o Antibiotic exposure
 o Duration of antibiotic therapy
 o Length of stay
• Health outcomes
 o Morbidity
 o Mortality
 o Function
 o Quality of life as measured by validated scales
• Adverse events
 o Persistent or recurrent infection
 o Antibiotic resistance

Timing
• Three months

Settings
• Outpatient: ambulatory clinics, urgent care centers
• Inpatient: hospital wards, intensive care units, emergency departments
Methods

Methodological practices followed in this review were derived from the Agency for Healthcare Research and Quality (AHRQ) Methods Guide for Effectiveness and Comparative Effectiveness Reviews (hereafter referred to as the “Methods Guide”) and its subsequent updates.

Topic Development and Refinement

Key Questions were reviewed and refined as needed by the Evidence-based Practice Center (EPC) with input from Key Informants and the Technical Expert Panel (TEP) to ensure that the questions were specific and explicit about what information was being reviewed. In addition, for Comparative Effectiveness reviews, the Key Questions were posted for public comment and finalized by the EPC after review of the comments.

Key Informants are the end users of research, including patients and caregivers, practicing clinicians, relevant professional and consumer organizations, purchasers of health care, and others with experience in making health care decisions. Within the EPC program, the Key Informant role is to provide input into identifying the Key Questions for research that will guide health care decisions. The EPC solicits input from Key Informants when developing questions for systematic review or when identifying high priority research gaps and needed new research. Key Informants are not involved in analyzing the evidence or writing the report and have not reviewed the report, except as given the opportunity to do so through the peer or public review mechanism.

Key Informants had to disclose any financial conflicts of interest greater than $10,000 and any other relevant business or professional conflicts of interest. Because of their role as end-users, individuals were invited to serve as Key Informants and those who presented without potential conflicts were retained. The AHRQ Task Order Officer and the EPC worked to balance, manage, or mitigate any potential conflicts of interest identified.

Analytic Framework

Following is an analytic framework (see Figure 1) depicting the potential impact of using procalcitonin on both intermediate outcomes and health outcomes. Direct evidence of the impact of testing on health outcomes is shown by link A (morbidity, function, quality of life, and/or mortality) and link F (adverse events of therapy). Indirect evidence would have to be assembled in the absence of RCTs of the effects of testing on health outcomes. Link B addresses whether test results influence decisions about therapy, which may have an impact on health outcomes (link C) or intermediate outcomes (link D). Intermediate outcomes—such as antibiotic exposure, duration of antibiotic therapy, length of stay, and response to therapy—may have an association with health outcomes (link E).
Figure 1. Analytic framework for procalcitonin as a diagnostic indicator for infection and as an indicator of response to therapy

AECOPD = acute exacerbations of chronic obstructive pulmonary disease

Note: A–F show links between test results and outcomes. Please see the text above Figure 1 for more information.
Literature Search Strategy

The databases listed below were searched for citations. The full search strings and strategies can be found in Appendix A. The search was limited to English-language references because our EPC’s experience in past projects that included non-English references did not yield high-quality information that justified the resources required for translation. Furthermore, the search was limited to literature published after 1990, which is approximately 10 years before reports of the use of modern serum biomarkers began to appear in the medical literature in the late 1990s.

- MEDLINE® (January 1, 1990, to December 16, 2011)
- Embase® (January 1, 1990, to December 16, 2011)
- Cochrane Controlled Trials Register (through December 16, 2011)

To identify systematic reviews, we searched MEDLINE®, the Cochrane Database of Systematic Reviews, and the websites of the National Institute for Clinical Excellence (www.nice.org.uk), the National Guideline Clearinghouse (www.guidelines.gov), and the Health Technology Assessment Programme (www.hta.ac.uk) from January 1, 1990, to August 6, 2010. The MEDLINE® search was updated in December 2011. We used results from previously conducted meta-analyses and systematic reviews when appropriate.

The TEP and individuals and organizations providing peer review were asked to inform the project team of any studies relevant to the Key Questions that were not included in the draft list of selected studies.

Search results were stored in EndNote9® and ProCite® databases. Using the study selection criteria for screening titles and abstracts, a single reviewer marked each citation as: (1) eligible for review as full-text articles; (2) ineligible for full-text review; or (3) uncertain. Citations marked as uncertain were reviewed by a second reviewer and inclusion and exclusion were decided by consensus opinion; a third reviewer was consulted if necessary. Using the final study selection criteria, full-text articles were reviewed in the same fashion to determine their inclusion in the systematic review. Records of the reason for exclusion for each paper retrieved in full-text, but excluded from the review, were kept in the EndNote9 and ProCite databases. A listing of excluded studies with reasons for exclusion can be found in Appendix B.

Study Selection

Inclusion criteria: Studies were included if they fulfilled all of the following criteria:

- Study was a randomized controlled trial or a nonrandomized comparative study (observational, case-control, and cohort studies).
- Study included adult and/or pediatric patients with known or suspected local or systemic infection, including critically ill patients with sepsis syndromes or ventilator-associated pneumonia, adults with respiratory tract infections, neonates with sepsis, children with fever of unknown source, and postoperative patients at risk of infection.
- Study intervention included initiation, discontinuation, and/or intensification of antibiotic therapy guided by procalcitonin plus clinical criteria for infection.
- Study outcomes included antibiotic use, mortality, morbidity, and adverse events of antibiotic therapy.
Exclusion criteria: Studies were excluded if they fulfilled at least one of the following criteria:

- Published in non-English language
- Did not report primary data (i.e., did not report data from original research)
- Did not use a relevant design
- Did not study relevant disease
- Did not report relevant outcomes

A screening guide for titles and abstracts can be found in Appendix E; a guide for full text articles can be found in Appendix F.

Search Strategies for Gray Literature

The EPC staff conducted a systematic search of the following gray literature sources to identify unpublished studies or studies published in journals that are not indexed in major bibliographic citation database in accordance with guidance from Effective Health Care Scientific Resource Center. The search strategies can be found in Appendix A.

1. Regulatory information
 a. Food and Drug Administration (FDA)

2. Clinical trial registries
 a. ClinicalTrials.gov
 b. Current controlled trials
 c. Clinical study results
 d. World Health Organization (WHO) clinical trials

3. Abstracts and conference papers
 a. Conference Papers Index
 b. Scopus
 c. Annual meeting of Interscience Conference on Antimicrobial Agents and Chemotherapy
 d. Annual meeting of Infectious Diseases Society of America (IDSA)
 e. Annual meeting of American College of Chest Physicians
 f. Annual meeting of Pediatric Academic Societies

4. Grants and federally funded research
 a. NIH RePORTER (a searchable database of federally funded biomedical research projects conducted at universities, hospitals, and other research institutions)
 b. HSRPROJ (a database providing access to ongoing grants and contracts in health services research)
 c. AHRQ GOLD (an online searchable database of AHRQ grants, working papers, and HHS recovery act projects)

5. Manufacturer database: Industry stakeholders were invited to submit the following types of information for possible inclusion as evidence:
 - A current product label;
 - Published RCTs and observational studies relevant to the clinical outcomes; and
 - Unpublished RCTs and observational studies relevant to the clinical outcomes
These sources were searched using sensitive searches similar to the searches in bibliographic databases, except for the following:

- Regulatory information: The FDA Web site was searched for only 510(k) decision summary documents related to procalcitonin assays.
- For clinical registries, NIH RePORTER, HSRPROJ, and AHRQ GOLD searches were limited to completed studies only.
- For abstracts and conferences, studies published prior to 2006 were excluded.

Data Extraction and Data Management

Data Elements

The following data elements from the intervention studies were abstracted, or recorded as not reported. The data elements to be abstracted were defined in consultation with the TEP and included the following: The data abstraction form can be found in Appendix G.

- Quality assessment
 - Number of participants and flow of participants through steps of study
 - Treatment-allocation methods (including concealment)
 - Use of blinding
 - Prospective versus retrospective
 - Use of an independent outcome assessor
 - Additional elements are described below under Assessment of Methodological Quality of Individual Studies
- Study funding sponsorship source acknowledgement
- Assessment of Applicability and Clinical Diversity
 - Patient characteristics, including:
 - Age
 - Sex
 - Race/ethnicity
 - Disease and type
 - Disease duration
 - Other prognostic characteristics (e.g., co-morbidities and other potential confounders and/or effect modifiers)
 - Setting
 - Outpatient
 - Inpatient
 - Diagnostic and treatment characteristics, including:
 - Procalcitonin assay type
 - Other measured indicators of sepsis or of response to treatment (e.g., fever, white blood cell count)
 - Decisionmaking for diagnosis and/or treatment (e.g., when to administer antibiotic therapy)
 - Antibiotic use during study period
 - Duration of observation
 - Other treatment modalities
• Outcome Assessment
 o Identified primary outcome
 o Identified secondary outcomes
 o Response criteria
 o Followup frequency and duration
 o Data analysis details, including:
 - Statistical analyses (statistical test/estimation results)
 ▪ Test used
 ▪ Summary measures
 ▪ Sample variability measures
 ▪ Precision of estimate
 ▪ p values

Evidence Tables

Templates for evidence tables were created in Microsoft Word®. One reviewer performed primary data abstraction of all data elements into the evidence tables, and a second reviewer reviewed the articles and evidence tables for accuracy. Disagreements were resolved by discussion, and if necessary, by consultation with a third reviewer. When small differences occurred in quantitative estimates of data from published figures, the values were calculated by averaging the estimates of the first two reviewers. Data abstraction tables can be found in Appendix C.

Individual Study Quality Assessment

Definition of Ratings Based on Criteria

In adherence with the Methods Guide, the general approach to grading individual comparative studies was performed by using a method used by the U.S. Preventive Services Task Force. The quality of the abstracted studies and the body of evidence were assessed by two independent reviewers. Discordant quality assessments were resolved with input from a third reviewer, if necessary.

• The quality of studies was assessed on the basis of the following criteria:
 o Initial assembly of comparable groups: adequate randomization, including concealment and whether potential confounders (e.g., other concomitant care) were distributed equally among groups.
 o Maintenance of comparable groups (includes attrition, crossovers, adherence, and contamination).
 o Important differential loss to followup or overall high loss to followup.
 o Measurements: equal, reliable, and valid (includes masking of outcome assessment).
 o Clear definition of interventions.
 o All important outcomes considered.
 o Analysis: adjustment for potential confounders and intention-to-treat analysis.
 - Intention-to-treat analysis was defined as no more than 5 percent loss in the analysis or use of a missing data handling procedure and all patients analyzed within the groups to which they were randomized.
The rating of intervention studies encompasses these three quality categories:

- **Good.** Meets all criteria; comparable groups were assembled initially and maintained throughout the study (followup at least 80 percent); reliable and valid measurement instruments were used and applied equally to the groups; interventions were spelled out clearly; all important outcomes were considered; and appropriate attention was given to confounders in analysis. In addition, intention-to-treat analysis was used for RCTs.

- **Fair.** Studies were graded “fair” if any or all of the following problems occurred, without the fatal flaws noted in the “poor” category below: In general, comparable groups were assembled initially, but some questions remained about whether some (although not major) differences occurred with followup; measurement instruments were acceptable (although not the best) and were generally applied equally; some but not all important outcomes were considered; and some but not all potential confounders were accounted for. Intention-to-treat analysis was done for RCTs.

- **Poor.** Studies were graded “poor” if any of the following fatal flaws existed: Groups assembled initially were not close to being comparable or maintained throughout the study; unreliable or invalid measurement instruments were used or not applied at all equally among groups; and key confounders were given little or no attention. Generally, lack of masked outcome assessment is considered a fatal flaw, but due to the nature of the interventions and comparators in this systematic review, it was not considered a fatal flaw. For RCTs, intention-to-treat analysis was lacking.

Data Synthesis

We anticipated that the decision to incorporate formal data synthesis into this evidence review would be made after completing the formal literature search. Similarly we also anticipated that the decision to pool studies would be based if there were sufficient number of studies available that were designed to ask similar questions and reported similarly defined outcomes. Specifically, meta-analysis was performed if a minimum of three studies selected a similar population and reported an outcome that was measured similarly and with sufficient detail. An example of similarly measured outcomes included combining in-hospital mortality, 28-day mortality or 6-week mortality. Several antibiotic outcomes were found not to be similar enough to be pooled, including duration of antibiotic therapy in days, rate of antibiotic prescription as a proportion, and total antibiotic exposure in number of days on antibiotics per total patient-days for an entire group as a rate. Sufficient detail for an outcome measured as a mean, such as length of stay, requires reporting of standard deviations. When meta-analysis could be performed, subgroup and sensitivity analyses would be based on assessment of study-level clinical diversity in a sufficient number of available studies. Degree of statistical heterogeneity is reported by the I² statistic. The pooling method involves inverse variance weighting and a random effects model. Studies reporting zero events in one or both arm are excluded from pooling.
Assessment of Applicability

Applicability of findings in this review was assessed within the EPICOT framework (Evidence, Population, Intervention, Comparison, Outcome, Timestamp). Selected studies were assessed for relevance against target populations, interventions of interest, and outcomes of interest.

Grading the Body of Evidence for Each Key Question

The system used for rating the strength of the overall body of evidence is outlined in the Methods Guide and is based on a system developed by the Grading of Recommendations Assessment, Development and Evaluation (GRADE) Working Group. This system explicitly addressed the following domains: risk of bias, consistency, directness, and precision. With respect to precision, studies could contribute to a rating of precise if confidence intervals did not overlap the null value or results were statistically significant, regardless of whether studies were powered to detect a particular effect for that outcome. The grade of evidence strength was classified into the following four categories:

- **High.** High confidence that the evidence reflected the true effect. Further research was very unlikely to change our confidence in the estimate of effect.
- **Moderate.** Moderate confidence that the evidence reflected the true effect. Further research may have changed our confidence in the estimate of effect and may have changed the estimate.
- **Low.** Low confidence that the evidence reflected the true effect. Further research was likely to change our confidence in the estimate of effect and was likely to change the estimate.
- **Insufficient.** Evidence was either unavailable or did not permit estimation of an effect.

Additional domains including strength of association, publication bias, coherence, dose-response relationship, and residual confounding were addressed if appropriate.

Specific outcomes and comparisons were rated depending on the evidence found in the literature review. The grade rating was made by independent reviewers, and disagreements were resolved by consensus adjudication. In combining information from separate domains into an overall strength of evidence rating, we took into account the following considerations: whether the standard for comparison is superiority or noninferiority, the narrowness of a meta-analysis 95% confidence interval (CI), the consistency of narrow 95% CIs among individual studies, the consistency of statistically significant results, whether the direction of effect or both direction of effect and magnitude were consistent and whether similar outcomes measured differently had consistent findings.

Peer Review and Public Commentary

Peer Reviewers were invited to provide written comments on the draft report based on their clinical, content, or methodological expertise. Peer review comments on the preliminary draft of the report were considered by the EPC in preparation of the final draft of the report. Peer Reviewers did not participate in writing or editing the final report or other products. The synthesis of the scientific literature presented in the final report does not necessarily represent the views of individual reviewers. The dispositions of the peer review comments will be documented and published three months after the publication of the evidence report.
Potential reviewers had to disclose any financial conflicts of interest greater than $10,000 and any other relevant business or professional conflicts of interest. Invited Peer Reviewers could not have any financial conflict of interest greater than $10,000. Peer Reviewers who disclosed potential business or professional conflicts of interest were allowed to submit comments on the draft report through the public comment mechanism.
Results

Literature Search

Of the 2,000 records identified through the literature search, 1,986 were excluded at various stages of screening and 14 records were included. The PRISMA diagram (Figure 2) depicts the flow of search screening and study selection. We sought, but did not find, nonrandomized comparative studies (observational, case-control, and cohort studies) of populations, comparisons, interventions, and outcomes that were not adequately studied in the randomized controlled trials (RCTs).

Gray Literature Search

We evaluated the results of the gray literature search with results summarized in Figure 3.

- **Regulatory information:** The search yielded three 510(k) summaries for procalcitonin assay; BRAHMS PCT LIA,8 VIDAS® BRAHMS PCT,9 and BRAHMS PCT sensitive KRYPTOR®-Test System.10 Citations in the summary documents were screened against the main bibliographic databases. No new studies were identified from this source.

- **Clinical trial registries:** Citations for published articles linked to trials registered at ClinicalTrials.gov were included. The search yielded 91 clinical trials of which 89 were excluded during the title and abstract screen: 47 were duplicate (literature
Figure 3. PRISMA diagram for identified gray literature

ACCP = American College of Chest Physicians; AHRQ GOLD = Agency for Healthcare Research and Quality Grants On-Line Database; CSA = database at www.csa.com; FDA = Food and Drug Administration; HSRPROJ = Health Services Research Projects in Progress; ICAAC = Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; IDSA = Infectious Diseases Society of America; PAS = Annual meeting of Pediatric Academic Societies; PRISMA = Preferred Reporting Items for Systematic Reviews and Meta-Analyses; RePORTER = Research Portfolio Online Reporting Tools; WHO = World Health Organization
citations already included in our reference database), 16 were ongoing studies and 26 met the exclusion criterion (study did not compare procalcitonin-guided antibiotic therapy to an alternative). Two references (Manzano et al., 201026 and Burkhardt et al., 201027) were reviewed in full-text and were included according to the study protocol.

- **Abstracts and conference papers:** The search yielded 450 citations of which 447 were excluded during the title and abstract screen: 183 references were duplicates and 264 met the exclusion criterion. The three remaining references (Jensen et al., 201128; Rho 201029; Sanches et al., 201030) were randomized studies comparing procalcitonin-guided antibiotic therapy to an alternative. Two of these studies (Rho 201029 and Sanches et al., 201030) were published only as abstracts at international meetings and were, therefore, excluded. The remaining study (Jensen et al., 201128) was included in the report.

- **Grants and federally funded research:** The search yielded three citations and all three were excluded as they met the exclusion criterion.

- **Manufacturer database (SIPS):** In response, scientific information packets (SIPs) were received from Thermo Fisher Scientific. The submissions consisted of 67 published references or listings of clinical trials with abstracts; no unpublished data were provided by the company. Of the 67 references, 65 were excluded during abstract and title screen: 52 were duplicate and 12 met the exclusion criterion and one study could not be retrieved. The remaining two references were reviewed in full-text and one was excluded as it met the exclusion criterion. The remaining study (Long et al., 201131) was included in the report.

Overall, search of gray literature yielded four published studies26-28,31 that were included in the present evidence review. No unpublished studies meeting eligibility criteria were found.

We reviewed all published RCTs of the use of procalcitonin-guided initiation or discontinuation of antibiotic therapy, as well as studies that used procalcitonin for other interventions in patients with infection and/or sepsis. A total of 18 RCTs were identified for the review. Data abstraction tables can be found in Appendix C. The studies identified looked at very distinct clinical conditions in different patient populations and therefore, we grouped these 18 studies into 5 patient populations. These were: (1) critically ill adult patients in intensive care unit (ICU), including patients with ventilator-associated pneumonia (VAP) and those critically ill with suspected bacterial infections, severe sepsis, and septic shock; (2) patients with symptoms and signs of various respiratory tract infections; (3) neonates with suspected sepsis; (4) children between 1 to 36 months of age with fever of unknown source; and (5) postoperative patients at risk of infection (pre-emptive antibiotic therapy). In addition to being different patient populations with respect to age, underlying diseases, and morbidity and mortality, some studies also differed with respect to the specific algorithms for procalcitonin-guided management.

Among these different strategies, one strategy used procalcitonin measurements to discontinue antibiotic therapy, while other strategies used procalcitonin levels to intensify or initiate antibiotic therapy. Sixteen studies27,28,31-44 used a BRAHMS® quantitative procalcitonin assay and remaining two studies26,45 used the BRAHMS semi-quantitative assay. The cutoffs for initiation and discontinuation of therapy were for the most part similar in each group, and many of the studies used similar measures for the outcomes of interest.

We also reviewed ongoing clinical trials that use procalcitonin-guided antibiotic therapy listed at ClinicalTrials.gov. The details of these ongoing trials including sample size, presenting condition, primary and secondary outcomes and expected date of completion are summarized in Appendix D.
Critically Ill/Ventilator-Associated Pneumonia

There were a total of seven RCTs28,32-35,39,45 comparing procalcitonin-guided therapy with standard antibiotic therapy in this population. Five studies32-35,39 addressed procalcitonin-guided discontinuation of antibiotics. Two studies28,45 addressed procalcitonin-guided intensification of antibiotic therapy.

Procalcitonin-Guided Antibiotic Discontinuation

Study Characteristics

There were five RCTs32-35,39 comparing procalcitonin-guided therapy with standard antibiotic therapy (Table 2). Analyses of outcomes tested superiority of procalcitonin-guided therapy in all but one case: one study39 conducted a noninferiority analysis for mortality. Sample sizes ranged from 27 to 621, with three studies34,35,39 greater than 100. Overall, 938 patients were enrolled into these trials.

Procalcitonin criteria for discontinuation of antibiotic varied somewhat. Absolute values that prompted antibiotic discontinuation included 0.25, 0.5, and 1 ng/mL. Relative values included 25 to 35 percent of baseline or 80 and 90 percent reductions from baseline. Physicians in the control groups administered antibiotics according to their standard practice. In the largest study by Bouadma et al.,39 local and international guidelines on duration of antibiotic therapy were available on a website. While the lack of specificity about what constituted antibiotic could be viewed as a limitation in study designs, it could also be viewed as a strength regarding applicability to actual practice. Study duration varied, but was for the duration of hospitalization, at least 28 days in three studies,32,35,39 and at 60 days in one study.39

Three studies32,35,39 identified antibiotic use as a primary outcome and two studies33,34 did not mention a primary endpoint. One study39 looked at mortality as a primary outcome, and mortality was a predefined secondary outcome in one other study.32 Mortality data were available from all five studies.
<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Disease State</th>
<th>N</th>
<th>PCT for ABT Discontinuation</th>
<th>Control Interventions</th>
<th>Study Duration</th>
<th>Predefined Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bouadma, 2010, France</td>
<td>Critically ill, suspected bacterial infection</td>
<td>PCT 307 Ctrl 314</td>
<td>PCT <0.5 ng/mL or >/= 80% decrease from peak</td>
<td>Broad-spectrum ABTs started ASAP; de-escalation based on cultures if possible; ABT duration by local and international guidelines</td>
<td>60 days</td>
<td>Primary outcome mortality, number of days without ABT Secondary ABT exposure, morbidity</td>
</tr>
<tr>
<td>Schroeder, 2009, Germany</td>
<td>Severe sepsis</td>
<td>PCT 14 Ctrl 13</td>
<td>PCT ≤1 ng/mL or 25-35% of baseline</td>
<td>Dx of severe sepsis by ACCP guidelines; standard ABT therapy</td>
<td>Not defined</td>
<td>Not defined</td>
</tr>
<tr>
<td>Stolz, 2009, Switzerland & USA</td>
<td>ICU, VAP</td>
<td>PCT 51 Ctrl 50</td>
<td>PCT <0.5 ng/mL or decrease of > >/= 80% from baseline</td>
<td>VAP Dx by ATS guidelines; standard ABT therapy</td>
<td>28 days</td>
<td>Primary outcome ABT-free days at day 28</td>
</tr>
<tr>
<td>Nobre, 2008, Switzerland</td>
<td>Severe sepsis</td>
<td>PCT 39 Ctrl 40</td>
<td>PCT <0.25 ng/mL or decreased by 90% from baseline</td>
<td>Sepsis, septic shock Dx by ACCP criteria; standard broad-spectrum ABT therapy</td>
<td>28 days</td>
<td>Primary outcome ABT exposure Secondary outcomes 28 day mortality, ICU LOS, other</td>
</tr>
<tr>
<td>Hochreiter, 2009, Germany</td>
<td>ICU, sepsis</td>
<td>PCT 57 Ctrl 53</td>
<td>PCT <1 ng/mL or 25-35% of baseline over 3 days</td>
<td>SIRS Dx by ACCP criteria; standard ABT therapy for 8 days</td>
<td>Not defined</td>
<td>Not defined</td>
</tr>
</tbody>
</table>

ABT = antibiotic; ACCP = American College of Chest Physicians; ASAP = as soon as possible; ATS = American Thoracic Society; Ctrl = control; Dx = diagnosis; ICU = intensive care unit; LOS = length of stay; PCT = procalcitonin; SIRS = systemic inflammatory response syndrome; VAP = ventilator-associated pneumonia

Study Quality

The overall rating for three studies was good and fair for the remaining two studies (Table 3). All studies assembled groups appearing to have similarly distributed potential confounders with no obvious imbalances. Two studies did not describe their procedure for allocation concealment.

Judgments of whether outcome measurements were equal, valid and reliable usually depend in part on the requirement for blinded outcome assessor. However, in these studies, it was not feasible to blind the treating physicians to the patient’s assigned treatment. Decisions on antibiotic use were made by unblinded physicians who could take other clinical information into account and override the algorithm based on their clinical judgment. Procalcitonin guidance is intended as an adjunct to, not a replacement for, clinical criteria for assessing and managing infection. In this setting, we did not require use of a blinded outcome assessor as a dimension of study quality.

Intention-to-treat analyses were consistently performed. One study reported both intention-to-treat and per-protocol analyses. The study designed to test noninferiority of mortality in the procalcitonin-guided group was powered to exclude a 10 percent between-group mortality.
difference. No other studies were powered to detect differences in mortality or morbidity outcomes.

Antibiotic Use

Outcomes related to antibiotic use are summarized in Table 4. The duration of antibiotic therapy was reduced in the procalcitonin-guided arm of all five studies. The absolute difference ranged from -1.7 to -5 days, with a percent reduction of 21 to 38 percent. Figure 4 shows the results of a meta-analysis of antibiotic duration. It included three studies that reported sufficient information for pooling and yielded a statistically significant pooled mean difference of 2.05 days (95% CI: -2.59, -1.52) favoring procalcitonin guidance and an I^2 value of 41 percent, indicating moderate statistical heterogeneity. The two excluded studies that did not report sufficient information for pooling reported larger effects than the pooled estimate, so including them would have produced a stronger pooled effect favoring procalcitonin guidance. Three studies reported the reduction in antibiotic use in terms of days without antibiotic therapy. Again, this favored procalcitonin-guided therapy, with an additional 2.3 to 3.8 days without antibiotics, an 18 to 37 percent reduction. Three studies reported total antibiotic exposure, which also accounted for the use of multiple agents (intensity), as well as duration of therapy. Total exposure per 1,000 patient-days ranged from 644 to 1,341 for the control groups, with a longer duration seen for VAP, but in all 3 studies total exposure in the procalcitonin-guided arm was reduced by 16 to 20 percent. The study that reported both intention-to-treat and per-protocol analyses found statistically significant reductions only with the latter for antibiotic duration, days without antibiotic and total antibiotic exposure. In summary, procalcitonin-guided therapy resulted in consistent reductions in antibiotic use by all measures. The range of reduction in antibiotic use was also similar across studies.
Table 3. Procalcitonin-guided antibiotic discontinuation in the critically ill/ventilator-associated pneumonia patients—study quality

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Assembled Comparable Groups</th>
<th>Maintained Comparable Groups</th>
<th>Minimal Followup Loss</th>
<th>Measurements Equal, Valid, and Reliable</th>
<th>Interventions Clearly Defined</th>
<th>Important Outcomes Considered</th>
<th>Appropriate Analysis of Results</th>
<th>Overall USPSTF Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bouadma, 2010¹⁰</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Good</td>
</tr>
<tr>
<td>Schroeder, 2009¹¹</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Fair</td>
</tr>
<tr>
<td>Stolz, 2009⁹</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Good</td>
</tr>
<tr>
<td>Nobre, 2008¹²</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Good</td>
</tr>
<tr>
<td>Hochreiter, 2009⁸</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Fair</td>
</tr>
</tbody>
</table>

USPSTF = United States Preventive Services Task Force; Y = yes

*No details on allocation concealment, but groups were comparable

Table 4. Procalcitonin-guided antibiotic discontinuation in the critically ill/ventilator-associated pneumonia patients—outcomes related to antibiotic use

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Author, Year</th>
<th>N</th>
<th>PCT-Guided Therapy</th>
<th>Control</th>
<th>Difference PCT-CTRL (95% CI)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABT Duration (days)</td>
<td>Hochreiter, 2009¹⁰</td>
<td>110</td>
<td>5.9</td>
<td>7.9</td>
<td>-2.0 (-2.5, -1.5)</td>
<td>< 0.001</td>
</tr>
<tr>
<td></td>
<td>Nobre, 2008 ³²</td>
<td>79</td>
<td>6</td>
<td>9.5 (ITT)</td>
<td>-2.6 (5.5, -0.3), -3.2 (-1.1, -5.4)</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>Schroeder, 2009¹¹</td>
<td>27</td>
<td>6.6</td>
<td>8.3</td>
<td>-1.7 (-2.4, -1.0)</td>
<td>< 0.001</td>
</tr>
<tr>
<td></td>
<td>Stolz, 2009⁹</td>
<td>101</td>
<td>10 (6-16)³‡</td>
<td>15 (10-23)³‡</td>
<td>-5</td>
<td>0.049</td>
</tr>
<tr>
<td></td>
<td>Bouadma, 2010 ¹⁰</td>
<td>621</td>
<td>10.3</td>
<td>13.3</td>
<td>-3.0 (-4.20, -1.80)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Days without ABTs (day 28)</td>
<td>Nobre, 2008 ³²</td>
<td>79</td>
<td>15.3</td>
<td>13</td>
<td>2.3 (-5.9, 1.8)</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>Stolz, 2009⁹</td>
<td>101</td>
<td>13 (2-21)³‡</td>
<td>9.5 (1.5-17)³‡</td>
<td>3.5</td>
<td>0.049</td>
</tr>
<tr>
<td></td>
<td>Bouadma, 2010 ¹⁰</td>
<td>621</td>
<td>14.3</td>
<td>11.6</td>
<td>2.7 (1.4, 4.1)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Total ABT exposure</td>
<td>Nobre, 2008 ³²</td>
<td>79</td>
<td>541</td>
<td>644</td>
<td>1.1² (0.9, 1.3)</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>Stolz, 2009⁹</td>
<td>101</td>
<td>1077</td>
<td>1341</td>
<td>1.3³ (1.1, 1.5)</td>
<td>0.0002</td>
</tr>
<tr>
<td></td>
<td>Bouadma, 2010 ¹⁰</td>
<td>621</td>
<td>653</td>
<td>812</td>
<td>-159 (-185, -131)</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

ABT = antibiotic; CI = confidence interval; CTRL = control; ITT = intention to treat; PCT = procalcitonin; PP = per protocol

* Per 1,000 inpatient days

**Rate ratios

†Values are mean unless specified

⁻⁻ Median (interquartile range)
Mortality

Three studies32,35,39 reported 28-day mortality, one study39 reported both 28- and 60-day mortality, two studies32,35 reported in-hospital mortality, and two studies33,34 reported overall mortality (Table 5). Mortality rates at 28 days in control arms ranged from 20 to 24 percent.

In one study,33 the reduction in 28-day mortality with procalcitonin-guided therapy was 8.3 percent, and in two studies, mortality increased by 0.5 percent32 and 0.8 percent39. None of these differences was statistically significant.

Only one study39 reported 60-day mortality. There was a 3.9 percent increase in mortality in the procalcitonin-guided group that was not statistically significant, but procalcitonin-guided therapy met the predefined criteria for noninferiority with respect to 60-day mortality.

Additionally, deaths between 28 and 60 days were analyzed, and none was related to relapse of infection. In-hospital mortality was higher in the procalcitonin-guided group by 0.6 percent in one study32 and reduced by 8.4 percent in one study,35 but neither difference reached statistical significance. Overall mortality was slightly reduced in the two studies from 0.134 to 1.733 percent reduction, but the differences were not significant.

Most studies were powered to determine if there was a difference in antibiotic use, and not powered to detect differences in morbidity and mortality. Only the study by Bouadma et al.,39 the largest RCT looking at procalcitonin-guided therapy to date, was powered to determine noninferiority of procalcitonin-guided therapy versus standard care. The study was powered to have an 80 percent power to exclude a 10 percent difference in mortality between groups. Noninferiority was met for 28-day and 60-day mortality in this study, but there is concern whether the 10 percent margin chosen is the appropriate noninferiority margin to assure there is no excess mortality associated with procalcitonin-guided antibiotic therapy in this patient population.
Table 5. Procalcitonin-guided antibiotic discontinuation in the critically ill/ventilator-associated pneumonia patients—mortality

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Author, Year</th>
<th>N</th>
<th>Mortality PCT-Guided Therapy</th>
<th>Mortality Control</th>
<th>Difference PCT-CTRL (95% CI)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-day mortality</td>
<td>Nobre, 2008³²</td>
<td>79</td>
<td>8/39 (20.5%)</td>
<td>6/37 (16.2%)</td>
<td>0.5 (-17.2, 18.2), -0.1 (-17.7, 17.5) *</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>Stolz, 2009³³</td>
<td>101</td>
<td>8/51 (15.7%)</td>
<td>12/50 (24.0%)</td>
<td>-8.3 (-23.8, 7.2)</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>Bouadma, 2010 *</td>
<td>621</td>
<td>65/307 (21.2%)</td>
<td>64/314 (20.4%)</td>
<td>0.8 (-5.6, 7.2)</td>
<td>0.81</td>
</tr>
<tr>
<td>60-day mortality</td>
<td>Bouadma, 2010 *</td>
<td>621</td>
<td>92/307 (30.0%)</td>
<td>82/314 (26.1%)</td>
<td>3.9 (-3.2, 10.9)</td>
<td>0.29</td>
</tr>
<tr>
<td>In-hospital mortality</td>
<td>Nobre, 2008³²</td>
<td>79</td>
<td>9/39 (23.1%)</td>
<td>7/37 (19.9%)</td>
<td>0.6 (-17.9, 19.1), 0.4+ (-18.3, 19.2)</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>Stolz, 2009³³</td>
<td>101</td>
<td>10/51 (19.6%)</td>
<td>14/50 (28.0%)</td>
<td>-8.4 (-24.9, 8.1)</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>Hochreiter, 2009³⁴</td>
<td>110</td>
<td>15/57 (26.3%)</td>
<td>14/53 (26.4%)</td>
<td>-0.1 (-16.6, 16.4)</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>Schroeder, 2009³⁵</td>
<td>27</td>
<td>3/14 (21.4%)</td>
<td>3/13 (23.1%)</td>
<td>-1.7 (-33.1, 29.8)</td>
<td>0.92</td>
</tr>
</tbody>
</table>

CI = confidence interval; CTRL = control; PCT = procalcitonin
*Per protocol analysis

A meta-analysis was performed to pool mortality data from all five studies³²-³⁵,³⁹ in order to increase the probability of detecting a significant difference in between-group mortality. Pooling was performed for studies reporting short-term (28-day or in-hospital) mortality. Results show a pooled point estimate of 0.4 percentage point reduction in mortality (95% CI: -6 percent, 5 percent) favoring the procalcitonin-guided therapy group (Figure 5). Statistical heterogeneity, as expressed by the I² statistic, was found to be 0 percent.

Figure 5. Meta-analysis of risk differences, short-term mortality (in-hospital or 28-day) in critically ill/ventilator-associated pneumonia patients

CI = confidence interval; IV = inverse variance weighted; SD = standard deviation

Morbidity

Three studies³²,³⁵,³⁹ evaluated hospital length of stay (LOS), four studies³²-³⁴,³⁹ evaluated ICU LOS, one study³⁵ evaluated ICU-free days alive, three studies³³,³⁴,³⁹ evaluated some type of severity of illness score, and three studies³⁵,³⁹ reported on days without mechanical ventilation (Table 6). Hospital LOS was reduced by 0 to 2.5 days in the procalcitonin-guided arms. This represents a 0 to 11 percent reduction in LOS, but the difference was not statistically significant in any of the studies. ICU LOS similarly was reduced by 0.3 to 4.6 days in three studies, and increased by 1.5 days in another study. The only study reporting a significant decrease in ICU LOS was the Nobre study³² of severe sepsis and septic shock, where ICU LOS was reduced by 43 percent. The study by Stolz³⁵ found that the difference in ICU-free days alive within 28 days
was higher by 1.5 days in the procalcitonin-guided therapy group, but it was not statistically significant. Among studies reporting severity of illness scales, there was a small difference in severity that favored procalcitonin-guided therapy in two out of three studies, but the differences were not significant. Only one study showed a significant increase in the severity of illness at 28 days, but the difference was minimal and the absolute severity scores were extremely low for both groups. One study reported a reduction in mechanical ventilation and one study reported an increase in mechanical ventilation, but none of the differences was significant.

Because ICU LOS was reported by four studies, we considered conducting meta-analysis on this outcome. One study did not report data necessary for calculation, so only three studies were represented in the meta-analysis (Figure 6). The pooled mean difference is 0.33 days, but the 95% CI is between -1.88 days and 2.53 days, suggesting that neither procalcitonin nor control are favored. Statistical heterogeneity was negligible ($I^2=14$ percent).

Table 6. Procalcitonin-guided antibiotic discontinuation in the critically ill/ventilator-associated pneumonia patients—morbidity

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Author, Year</th>
<th>N</th>
<th>PCT<sup>Ψ</sup></th>
<th>Control<sup>Ψ</sup></th>
<th>Difference, PCT-CTRL (95% CI)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nobre, 2008<sup>32</sup></td>
<td>79</td>
<td>17</td>
<td>23.5</td>
<td>-2.5 (-6.5, 1.5)</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>Stolz, 2009<sup>33</sup></td>
<td>101</td>
<td>26</td>
<td>26.1</td>
<td>-0.3 (-3.2, 2.7)</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>Bouadma, 2010<sup>34</sup></td>
<td>621</td>
<td>26</td>
<td>26.4</td>
<td>-4.6 (-8.2, -1.0)</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Hochreiter, 2009<sup>35</sup></td>
<td>110</td>
<td>15</td>
<td>17.7</td>
<td>-2.2</td>
<td>0.046</td>
<td></td>
</tr>
<tr>
<td>Schröder, 2009<sup>36</sup></td>
<td>27</td>
<td>16</td>
<td>16.7</td>
<td>-0.3 (-5.6, 5.0)</td>
<td>NSS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>621</td>
<td>15</td>
<td>14.4</td>
<td>1.5 (-0.9, 3.1)</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>ICU LOS (days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hochreiter, 2009<sup>37</sup></td>
<td>110</td>
<td>40</td>
<td>40.1</td>
<td>-0.4 (-6.4, 5.6)</td>
<td>> 0.05</td>
<td></td>
</tr>
<tr>
<td>Schröder, 2009<sup>38</sup></td>
<td>27</td>
<td>7</td>
<td>8.3</td>
<td>-8.1 (-4.1, 1.7)</td>
<td>NSS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>621</td>
<td>16</td>
<td>16.2</td>
<td>1.5 (-2.4, 1.1)</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>ICU-free days alive, 1-28</td>
<td>Stolz, 2009<sup>39</sup></td>
<td>101</td>
<td>10 (0-18)<sup>‡</sup></td>
<td>8.5 (0-18)<sup>‡</sup></td>
<td>1.5</td>
<td>0.53</td>
</tr>
<tr>
<td>SOFA day 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bouadma, 2010<sup>39</sup></td>
<td>621</td>
<td>1.5</td>
<td>0.9</td>
<td>0.6 (0.0, 1.1)</td>
<td>0.037</td>
<td></td>
</tr>
<tr>
<td>SOFA score max</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schröder, 2009<sup>39</sup></td>
<td>27</td>
<td>7.3</td>
<td>8.3</td>
<td>-8.1 (-4.1, 1.7)</td>
<td>NSS</td>
<td></td>
</tr>
<tr>
<td>SAPS II score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hochreiter, 2009<sup>39</sup></td>
<td>110</td>
<td>40</td>
<td>40.5</td>
<td>-0.4 (-6.4, 5.6)</td>
<td>> 0.05</td>
<td></td>
</tr>
<tr>
<td>Days without MV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stolz, 2009<sup>39</sup></td>
<td>101</td>
<td>21</td>
<td>19 (8.5-22.5)<sup>‡</sup></td>
<td>2.0</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>Bouadma, 2010<sup>39</sup></td>
<td>621</td>
<td>16</td>
<td>16.9</td>
<td>-0.7 (-2.4, 1.1)</td>
<td>0.47</td>
<td></td>
</tr>
</tbody>
</table>

^ΨAll values are mean unless specified.
[‡]Median (interquartile range).

Figure 6. Meta-analysis of mean differences, ICU length of stay (days) in critically ill/ventilator-associated pneumonia patients

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Procalcitonin</th>
<th>Control</th>
<th>Mean Difference</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bouadma 2010</td>
<td>15.9</td>
<td>16.1</td>
<td>0.2%</td>
<td>95% CI</td>
</tr>
<tr>
<td>Hochreiter 2009</td>
<td>15.5</td>
<td>12.5</td>
<td>14.4</td>
<td>50%</td>
</tr>
<tr>
<td>Schröder 2009</td>
<td>16.4</td>
<td>8.3</td>
<td>11.0</td>
<td>50%</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>100%</td>
<td>10.0%</td>
<td>0.33</td>
<td>-1.88, 2.53</td>
</tr>
</tbody>
</table>

Heterogeneity: $τ^2 = 0.63$; $Chi^2 = 2.33$, df = 2 ($P = 0.31$); $I^2 = 14$
Test for overall effect: $Z = 0.29$ ($P = 0.77$)

CI = confidence interval; IV = inverse variance weighted; SD = standard deviation.
Adverse Events of Antibiotic Therapy

Only one study\(^39\) reported on adverse effects of antibiotic therapy. Bouadma et al. reported on emergence of multidrug resistant (MDR) organisms (17.9% vs. 16.6% in the procalcitonin vs. the control group respectively, difference 1.3%, 95% CI: -4.6, 7.2, \(p=0.67\)) and superinfection (34.5% vs. 30.9% in the procalcitonin vs. the control group respectively, difference 3.6%, 95% CI: -3.8, 11, \(p=0.29\)).

GRADE Evidence

Methods for grading strength of evidence\(^25\) developed for the AHRQ Effective Health Care Program were applied to this body of literature (Table 7). The quality of studies reviewed was an important consideration. Three of the five studies\(^32,35,39\) received a good quality rating and two studies\(^33,34\) received a fair rating.

For the body of evidence reviewed here, the strength of evidence was graded high for a reduction in antibiotic use. There were three different measures of antibiotic use: antibiotic duration in days, antibiotic prescription rate as a proportion and total antibiotic exposure as a rate. The consistency of findings across these three measures strengthened our confidence that there was a high strength of evidence. The three studies\(^32,35,39\) judged as good quality included 85 percent of the total patient population (801 of 938) and also reported on all three antibiotic use measures. The results consistently favored procalcitonin-guided therapy, and differences were generally highly statistically significant and were of a magnitude that has been associated with clinical benefits using other approaches to reduction of antibiotic use, such as active interventions of antibiotic stewardship programs and implementation of practice guidelines.\(^46-48\)

The absolute difference in antibiotic use duration, the measure that was reported by all five studies, ranged from -1.7 to -5 days, with a percent reduction of 21 to 38 percent.

The strength of evidence that there was no difference in mortality with procalcitonin-guided discontinuation of antibiotic therapy in the critically ill/VAP patients was graded as low. The results of all five studies\(^32-35,39\) were consistent in finding no significant difference in short-term (28-day or in-hospital) mortality between procalcitonin-guided therapy and control groups. Four of the studies\(^32-35\) were not sufficiently powered to assess mortality. The largest study by Bouadma et al.\(^39\) was a noninferiority study that had 80 percent power to exclude a 10 percent difference in mortality between groups. Meta-analysis was performed to increase the power of detecting a significant difference in between-group mortality. Results show a pooled point estimate of 0.4 percentage point reduction in mortality favoring the procalcitonin-guided therapy group (95% CI: -6%, 5%).

The strength of evidence grading system described by Owens\(^25\) was designed with the assumption of a superiority conclusion. A conclusion of noninferiority only requires sufficient precision to exclude a minimal important difference (MID), i.e., the noninferiority margin.\(^49\) In grading the strength of evidence as low that procalcitonin-guided antibiotic therapy does not increase mortality, a major concern was disagreement about the appropriate noninferiority margin for mortality. Although a 10 percent noninferiority margin has been recommended by the IDSA and American College of Chest Physicians (ACCP) in relevant populations, there is also strong sentiment that this is too high a noninferiority margin for mortality, which was expressed among our peer reviewers and also in the published literature. Moreover, there are presently two large trials in progress, which may in the future yield more precise estimates of mortality.

All five studies\(^32-34,39\) reported on ICU LOS as a measure of morbidity. Risk of bias was rated low due to the preponderance of patients in good quality studies. Evidence was judged consistent
as four of five studies32-34 reported shorter ICU LOS for procalcitonin arm. Evidence was considered direct and sufficiently precise to support the judgment that procalcitonin guidance does not increase morbidity as indicated by ICU LOS. The strength of evidence that procalcitonin does not increase ICU LOS was graded moderate primarily because only three studies reported sufficient details for pooling into a meta-analysis for this outcome.

Table 7. Procalcitonin-guided antibiotic discontinuation in the critically ill/ventilator-associated pneumonia patients—GRADE evidence table

<table>
<thead>
<tr>
<th>Outcome Category</th>
<th>Outcome</th>
<th>No. of Studies (Subjects)</th>
<th>Risk of Bias</th>
<th>Consistency</th>
<th>Directness</th>
<th>Precision</th>
<th>Overall Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibiotic use</td>
<td>Duration</td>
<td>5 RCTs (n=938)32-35,39</td>
<td>Low</td>
<td>Consistent</td>
<td>Direct</td>
<td>Precise</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Days without ABTs (day 28)</td>
<td>3 RCTs (n=801)32,35,39</td>
<td>Low</td>
<td>Consistent</td>
<td>Direct</td>
<td>Precise</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Total exposure</td>
<td>3 RCTs (n=801)32,35,39</td>
<td>Low</td>
<td>Consistent</td>
<td>Direct</td>
<td>Precise</td>
<td>High</td>
</tr>
<tr>
<td>Mortality</td>
<td>In-hospital, overall or 28 day</td>
<td>5 RCTs (n=938)32-35,39</td>
<td>Low</td>
<td>Consistent</td>
<td>Direct</td>
<td>Precise</td>
<td>Low*</td>
</tr>
<tr>
<td>Morbidity</td>
<td>ICU length of stay</td>
<td>5 RCTs (n=837)32-35,39</td>
<td>Low</td>
<td>Consistent</td>
<td>Direct</td>
<td>Precise</td>
<td>Moderate**</td>
</tr>
</tbody>
</table>

ABT = antibiotic; GRADE = grading of recommendations assessment, development, and evaluation; ICU = intensive care unit; RCT = randomized controlled trial

*The overall grade was low based on uncertainty about the appropriate minimum important difference for assessing noninferiority with respect to mortality.

**Only three studies reported sufficient details for pooling into a meta-analysis for this outcome.

Procalcitonin-Guided Antibiotic Intensification

Study Characteristics

There were two RCTs28,45 of procalcitonin-guided antibiotic intensification (Table 8). Both studies evaluated critically ill patients in the ICU. The Svoboda study45 was limited to patients in the surgical ICU, while surgical patients were only a portion, but well represented, subgroup in the Jensen study.28 One study45 followed the patients for the duration of hospitalization, while the other study28 looked at outcomes at 28 days. Both studies reported intention-to-treat to treat analysis. Svoboda et al.45 enrolled 72 patients and Jensen28 enrolled 1,200 patients. In the Svoboda study45 an elevated procalcitonin level prompted IV catheter changes and changes in the antibiotic regimen. In the Jensen study,28 an algorithm for expanded radiographic evaluation and broadening the spectrum of antimicrobial therapy was used for patients with elevated procalcitonin. In the Svoboda study,45 the only description of antibiotic therapy in the control group was that it was standard of care. Jensen,28 in contrast, had a very detailed approach to antibiotic therapy and physicians were educated as to the approach to be taken for empiric therapy and intensification of antibiotic therapy. Mortality was the primary outcome for the large study by Jensen.28 The other study45 did not predetermine outcomes to be assessed.
Table 8. Summary of characteristics for two trials included in the analysis of procalcitonin-guided antibiotic intensification in the critically ill/ventilator-associated pneumonia patients

<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Disease State</th>
<th>N</th>
<th>PCT for ABT Discontinuation</th>
<th>Other PCT-Guided Interventions</th>
<th>Control Interventions</th>
<th>Study Duration</th>
<th>Predefined Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svoboda, 2007, Czechoslovakia</td>
<td>Severe sepsis, septic shock</td>
<td>PCT 38 Ctrl 34</td>
<td>NA</td>
<td>PCT >2, change catheters and ABTs, PCT <2, US or CT and repeat surgery</td>
<td>Standard supportive care; broad-spectrum ABTs; catheter changes as indicated by guidelines</td>
<td>Not defined</td>
<td>Not defined</td>
</tr>
<tr>
<td>Jensen, 2011, Denmark</td>
<td>Critically ill in the ICU</td>
<td>PCT 604 Ctrl 596</td>
<td>NA</td>
<td>PCT >1.0 or less than 10% lower than previous day, enhanced radiographic evaluation and broadened spectrum of ABT therapy</td>
<td>Standard microbiological and radiographic evaluation, ABT therapy</td>
<td>28 days</td>
<td>Primary 28-day mortality; Secondary Duration of organ failure; duration of stay in the ICU</td>
</tr>
</tbody>
</table>

ABT = antibiotic; CT = computed tomography; Ctrl = control; ICU = intensive care unit; NA = not applicable; PCT = procalcitonin; US = ultrasound

Study Quality

The quality ratings for the two studies\(^{28, 45}\) are described in Table 9. Both studies\(^ {28, 45}\) assembled comparable groups and described randomization concealment. The study by Jensen\(^ {28}\) clearly outlined the specific interventions for intensification, while the other study\(^ {45}\) only vaguely described a push to change intravenous (IV) catheter and change antibiotics. One study\(^ {45}\) broadly described an initiative to change antibiotics and IV catheters, pursue radiographic imaging, and reoperation if a local infection was confirmed, but did not give any details regarding these interventions. The outcomes were strictly defined, and in the higher quality study by Jensen,\(^ {28}\) there was assurance that physicians, investigators, and coordinators were unaware of outcomes during the study or procalcitonin levels in the control group.

Antibiotic Use

In the study by Jensen,\(^ {28}\) procalcitonin-guided intensification resulted in a 2-day (50%) increase in the duration of antibiotic therapy (Table 10). It also resulted in greater antibiotic exposure with a 7.9 percent increase in number of days on three or more antibiotics in the ICU.
Table 9. Procalcitonin-guided antibiotic intensification in the critically ill/ventilator-associated pneumonia patients—study quality

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Assembled Comparable Groups</th>
<th>Maintained Comparable Groups</th>
<th>Minimal Followup Loss</th>
<th>Measurements Equal, Valid, and Reliable</th>
<th>Interventions Clearly Defined</th>
<th>Important Outcomes Considered</th>
<th>Appropriate Analysis of Results</th>
<th>Overall USPSTF Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svoboda, 2007<sup>15</sup></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Fair</td>
</tr>
<tr>
<td>Jensen, 2011<sup>16</sup></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Good</td>
</tr>
</tbody>
</table>

N = no; USPSTF = United States Preventive Services Task Force; Y = yes

Table 10. Procalcitonin-guided antibiotic intensification in the critically ill/ventilator-associated pneumonia patients—outcomes related to antibiotic use

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Outcome</th>
<th>N</th>
<th>PCT</th>
<th>Control</th>
<th>Difference PCT-CTRL (95% CI)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jensen, 2011<sup>16</sup></td>
<td>ABT Duration (days)</td>
<td>1200</td>
<td>6 (3-11)<sup>1</sup></td>
<td>4 (3-10)<sup>1</sup></td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Jensen, 2011<sup>16</sup></td>
<td>Days spent in ICU on ≥ 3 ABTs</td>
<td>1200</td>
<td>3,570/5,447 (65.5%)</td>
<td>2,721/4,717 (57.7%)</td>
<td>7.9% (6.0 to 9.7)</td>
<td>0.002</td>
</tr>
</tbody>
</table>

ABT = antibiotic; CI = confidence interval; CTRL = control; ICU = intensive care unit; NR = not reported; PCT = procalcitonin
¹Median (interquartile range)
Mortality

The impact of procalcitonin-guided antibiotic intensification on mortality is described in Table 11. There was a statistically insignificant reduction in mortality in the Svoboda study, which was not powered to show differences in mortality. Jensen was a superiority trial powered to test a 7.5 percent decrease in 28-day mortality, but no significant difference in mortality was observed with procalcitonin-guided intensification. Jensen showed no beneficial or adverse effect on mortality with procalcitonin-guided intensification.

Table 11. Procalcitonin-guided antibiotic intensification in the critically ill/ventilator-associated pneumonia patients—28-day mortality

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>N</th>
<th>PCT</th>
<th>Control</th>
<th>Difference PCT-CTRL (95% CI)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svoboda, 2007</td>
<td>72</td>
<td>10/38 (26.3%)</td>
<td>13/34 (38.2%)</td>
<td>-11.9 (-33.4, 9.6)</td>
<td>0.28</td>
</tr>
<tr>
<td>Jensen, 2011</td>
<td>1200</td>
<td>190/604 (31.5%)</td>
<td>191/596 (32.0%)</td>
<td>-0.6 (-4.7 to 5.9)</td>
<td>0.83</td>
</tr>
</tbody>
</table>

CI = confidence interval; CTRL = control; PCT = procalcitonin

Morbidity

The Svoboda study showed a 3.3-day reduction in ICU stay, which was not statistically significant. Jensen study showed a significant 1-day increase in ICU LOS (Table 12). Furthermore, this larger, good quality study demonstrated a significant increase in organ dysfunction, specifically an extra 5 days of mechanical ventilation and an additional 5 days of abnormal renal function, both of which were statistically significant.

Table 12. Procalcitonin-guided antibiotic intensification in the critically ill/ventilator-associated pneumonia patients—morbidity

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Author, Year</th>
<th>N</th>
<th>PCT</th>
<th>Control</th>
<th>Difference PCT-CTRL (95% CI)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICU LOS (days)</td>
<td>Svoboda, 2007</td>
<td>72</td>
<td>16.1</td>
<td>19.4</td>
<td>-3.3 (-7.0, 0.4)</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>Jensen, 2011</td>
<td>1200</td>
<td>6 (3-12)</td>
<td>5 (3-11)</td>
<td>1</td>
<td>0.004</td>
</tr>
<tr>
<td>SOFA score</td>
<td>Svoboda, 2007</td>
<td>72</td>
<td>7.9</td>
<td>9.3</td>
<td>-1.4 (-2.8, 0.0)</td>
<td>0.06</td>
</tr>
<tr>
<td>Days on MV</td>
<td>Svoboda, 2007</td>
<td>72</td>
<td>10.3</td>
<td>13.9</td>
<td>-3.6 (-7.6, 0.4)</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>Jensen, 2011</td>
<td>1200</td>
<td>3569 (65.5%)</td>
<td>2861 (60.7%)</td>
<td>4.9% (3 to 6.7)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Percent days in</td>
<td>Jensen, 2011</td>
<td>1200</td>
<td>2796 (51.3%)</td>
<td>2187 (46.4%)</td>
<td>5.0% (3.0 to 6.9)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

CI = confidence interval; CTRL = control; GFR = glomerular filtration rate; ICU = intensive care unit; LOS = length of stay; MV = mechanical ventilation; PCT = procalcitonin

Adverse Events of Antibiotic Therapy

None of the studies in this patient group reported the adverse events of antibiotic therapy.

GRADE Evidence

The strength of evidence is moderate that procalcitonin-guided intensification of antibiotic therapy increases morbidity. The large (n=1,200) good quality study by Jensen was judged to have low risk of bias. This study was notable for its specificity in describing study interventions,
especially treatment algorithms. Consistency was rated as unknown (single study). The evidence is direct and sufficiently precise to judge that procalcitonin-guided intensification does not improve outcomes in critically ill patients. A second study (n=72)45 was too small to be informative.

Respiratory Tract Infections

There were eight studies27,31,36-38,40-42 in total, seven randomized controlled trials27,31,36,38,40-42 and one cluster-randomized controlled trial.37 All studies compared procalcitonin-guided initiation and/or discontinuation of antibiotics in patients with respiratory tract infections to standard therapy. The sample size in these studies ranged from 162 to 1,359, with all studies having populations larger than 100. Overall, 3,492 patients were enrolled in these trials.

Study Characteristics

The populations in this study consisted of patients with acute upper and lower respiratory tract infections in the community, including CAP, acute exacerbation of chronic obstructive pulmonary disease (COPD), and acute bronchitis (Table 13). The study populations and settings varied between studies. Three studies31,36,41 looked only at CAP, but the settings varied in these studies. One study31 included patients from the outpatient setting, one study36 included patients from the emergency department, and one study41 included patients admitted to the hospital. Two studies27,42 included patient populations that had upper or lower respiratory tract infections. Both of these studies looked at patients in the outpatient setting (primary care clinics). Two studies37,40 included patients with lower respiratory tract infections only, and both of these studies enrolled patients that presented to emergency departments. One study38 looked only at patients with acute exacerbation of COPD in the emergency department.

All studies27,31,36-38,40-42 evaluated the use of procalcitonin for the initiation of antibiotics. All studies encouraged initiation of antibiotics with procalcitonin levels greater than 0.25 ng/mL, and four studies36,37,40,41 strongly encouraged antibiotics with procalcitonin levels greater than 0.5 ng/mL. Seven studies27,31,36,37,40-42 used procalcitonin measurement to recommend discontinuation of antibiotics. Five studies27,31,37,41,42 recommended discontinuing antibiotics if procalcitonin level was less than 0.25 ng/mL, and one of these studies31 strongly recommended discontinuation if level was less than 0.1 ng/mL. One study40 recommended discontinuation if the procalcitonin level was less than 20 percent of the baseline level, and strongly recommended discontinuation if the level was less than 10 percent. One study36 recommended discontinuation of antibiotics if the procalcitonin level was 10 percent of baseline, if the baseline level was greater than 10 ng/mL.

Physicians in the control groups administered antibiotics according to their own standard practices and/or evidence-based guidelines. Two studies31,36 used international guidelines on standard therapy that were cited in the references. One study40 used evidence-based, international guidelines which were stated in the methods section but not cited in the references.

The study durations ranged from 14 days to 30 days in five studies,27,31,40,37,42 6 weeks in one study,36 and 6 months in one study.38 Study duration was not defined in one study.41
Table 13. Summary of characteristics for eight trials included in the analysis of procalcitonin-guided antibiotic initiation and/or discontinuation in patients with respiratory tract infections

<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Disease State</th>
<th>N</th>
<th>PCT for ABT Initiation</th>
<th>PCT for ABT Discontinuation</th>
<th>Study Duration</th>
<th>Predefined Endpoints</th>
</tr>
</thead>
</table>
| Long, 2011, China | Suspected CAP outpatient | PCT 81, Ctrl 81 | PCT >0.25 ng/mL | PCT < 0.1 ng/mL strongly discouraged | 28 days | Primary: Total ABT use and duration of ABT treatment, ABT prescription rate
Secondary outcomes: Treatment failure, treatment success, death, recurrence, relapse, patients lost to followup |
| Burkhardt, 2010, Germany | Acute respiratory tract infection | PCT 275, Ctrl 275 | PCT ≥0.25 ng/ml | PCT <0.25 ng/mL | 28 days | Primary: Number of days with significant health impairment due to RTI at day 14
Secondary: Prescription rate, duration of ABTs, days with ABT-associated SEs, symptoms on day 14 and 28, revisit within 28 days, change of ABTs within 28 days, hospitalization within 28 days, 28 day mortality |
| Schuetz, 2009, Switzerland | LRTI; (CAP, AECOPD, acute bronchitis) | PCT 671, Ctrl 688 | PCT <0.1 ng/mL, strongly discouraged; PCT ≤0.25 ng/mL, discouraged; PCT > 0.25 ng/mL, encouraged; PCT >0.5 ng/mL, strongly encouraged | PCT <10% of baseline, stopping strongly encouraged; PCT <20% of baseline, stopping discouraged | 30 days | Primary: (Noninferiority) Total adverse event rate at 30 days (composite outcome of death, ICU admission, disease-specific complications, and recurrent LRTI in need of ABTs with or without hospital readmission)
Secondary: ABT exposure, duration, adverse effects, LOS |
| Kristoffersen, 2009, Denmark | LRTI (CAP) | PCT 103, Ctrl 107 | PCT <0.25 ng/mL, discouraged
PCT 0.25-5.0 ng/mL, encouraged
PCT >0.5 ng/mL, strongly encouraged | PCT <0.25 ng/mL, discontinued | Not defined | Primary: ABT duration, LOS
Secondary: Proportion of patients for whom physicians disregarded treatment guidelines |
| Briel, 2008, Switzerland | URTI (cold, sinusitis, pharyngitis, tonsillitis), LRTI (CAP, AECOPD, tracheobronchitis) | PCT 232, Ctrl 226 | PCT >0.25 ng/mL, recommended
PCT 0.1-0.25 ng/mL, not recommended,
PCT increase 50% with worse symptoms, ABTs, recommended | PCT ≤0.25 | 28 days | Primary: (Noninferiority) Number of days of restricted activity due to respiratory infection
Secondary: ABT prescription rate and duration, discomfort scale, days work missed, days with adverse effects of medication, relapse of infection, serious adverse events |
Table 13. Summary of characteristics for eight trials included in the analysis of procalcitonin-guided antibiotic initiation and/or discontinuation in patients with respiratory tract infections (continued)

<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Disease State</th>
<th>N</th>
<th>PCT for ABT Initiation</th>
<th>PCT for ABT Discontinuation</th>
<th>Study Duration</th>
<th>Predefined Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stolz, 2007, Switzerland</td>
<td>Acute exacerbation of COPD</td>
<td>PCT 102 Ctrl 106</td>
<td>PCT <0.1 ng/mL strongly discouraged; PCT >1.0 <0.25 ng/mL, ABTs based on clinical condition; PCT >0.25 ng/mL, encouraged</td>
<td>NA</td>
<td>6 months</td>
<td>Primary: ABT use at index AECOPD ABT use up to 6 months Secondary: Success, LOS, ICU need, CRP, PCT, PFTs on admission, short- and long-term F/U, exacerbation rate, time to next exacerbation</td>
</tr>
<tr>
<td>Christ-Crain, 2006, Switzerland</td>
<td>CAP admitted to ED, single center</td>
<td>PCT 151 Ctrl 151</td>
<td>PCT <0.1 strongly discouraged PCT >0.1, <0.25, discouraged PCT >0.25, <0.5 ng/mL, encouraged PCT >0.5 ng/mL, strongly encouraged</td>
<td>If baseline >10 ng/mL, ABTs discontinued if less than 10% of initial value</td>
<td>6 weeks</td>
<td>Primary: Total ABT use (prescription) and duration Secondary: Laboratory, clinical outcomes</td>
</tr>
<tr>
<td>Christ-Crain, 2004, Switzerland</td>
<td>LRTI (CAP, AECOPD, acute bronchitis, asthma)</td>
<td>PCT 124 Ctrl 119</td>
<td>PCT ≤0.1 ng/mL, strongly discouraged PCT 0.1-0.25 ng/mL, discouraged PCT 0.25-0.5 ng/mL, encouraged PCT ≥0.5 ng/mL, strongly encouraged</td>
<td>PCT <0.25 ng/mL</td>
<td>14 days</td>
<td>Primary: ABT prescription rate, ABT exposure, costs Secondary: QOL, Temp, WBC count, CRP, PCT, Admission rates, LOS, ICU, death for LRTIs, Re-exacerbation, readmission for AECOPD</td>
</tr>
</tbody>
</table>

ABT = antibiotic; AECOPD = acute exacerbation of chronic obstructive pulmonary disease; CAP = community acquired pneumonia; COPD = chronic obstructive pulmonary disease; CRP = C-reactive protein; Ctrl = control; ED = emergency department; F/U = followup; ICU = intensive care unit; LOS = length of stay; LRTI = lower respiratory tract infection; NA = not applicable; PCT = procalcitonin; PFT = pulmonary function test; QOL = quality of life; RTI = respiratory tract infection; SEs = side effects; URTI = upper respiratory tract infection; WBC = white blood cells
The primary endpoints varied by the study. Prescription ratea, antibiotic duration and total antibiotic exposureb were primary endpoints in four studies.31,36-38 Number of days of restricted activity was the primary endpoint in two studies.27,42 LOS was a primary endpoint in one study,41 and cost was a primary endpoint in another study.37 The 2009 study by Schuetz et al.40 was a noninferiority trial that calculated a composite outcome of total adverse events as the primary endpoint.

Study Quality

The overall study rating was good for four studies27,36,40,42 and poor for the other four studies31,37,38,41 (Table 14). Four of the studies were given a poor rating because of lack of intention-to-treat analysis. The studies rated poor because of percentages of excluded patients are: Christ-Crain et al. (2004)37 (8.6%), Kristoffersen et al., (2009)41 (5.8%), Long et al., (2011)31 (5.8%), and Stolz et al., (2007)38 (8.0%). All studies assembled groups appearing to have similarly distributed potential confounders with no obvious imbalances. Allocation concealment was not explicitly stated in two studies,31,38 and concealment was not applicable in the one cluster-randomized controlled trial.37 All studies had clearly defined interventions.

Judgments of whether outcome measurements were equal, valid and reliable usually depend in part on the requirement for blinded outcome assessor. For studies comparing procalcitonin-guided therapy and standard therapy, this requirement was not applied. In these studies, it was not feasible to blind treating physicians to which group participants were allocated. Decisions on antibiotic use were made by unblinded physicians who could take other clinical information into account and override the algorithm based on their clinical judgment. Procalcitonin guidance is intended as an adjunct to, not a replacement for, clinical criteria for assessing and managing infection. In this setting, we did not require use of a blinded outcome assessor as a dimension of study quality.

Five of the trials27,31,36,38,41 were superiority trials with intention-to-treat analyses, and two trials40,42 were noninferiority trials with both intention-to-treat and per-protocol analyses. One study40 tested for noninferiority of the composite adverse event rate, including death, ICU admission, disease-specific complications, or recurrent infection requiring antibiotic treatment within 30 days. A predefined noninferiority boundary of 7.5 percent was used, and based on this noninferiority boundary, a sample size of 1,002 patients was determined to allow for an adverse outcome rate in the control group of 20 percent or less with a power of 90 percent. A second study42 used noninferiority design to compare the number of days of restricted activity due to respiratory infection. Noninferiority was defined as a difference between the procalcitonin-guided therapy and control groups of no more than one day.

aDefined as the percentage of patients that are initiated on antibiotic therapy, either during initial presentation or subsequent followup.

bCalculated by multiplying the total number of antibiotics by the number of days the patient is receiving each of antibiotic divided by total duration of antibiotic therapy.
Table 14. Procalcitonin-guided antibiotic initiation and/or discontinuation in patients with respiratory tract infections—study quality

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Assembled Comparable Groups</th>
<th>Maintained Comparable Groups</th>
<th>Minimal Followup Loss</th>
<th>Measurements Equal, Valid, and Reliable</th>
<th>Interventions Clearly Defined</th>
<th>Important Outcomes Considered</th>
<th>Appropriate Analysis of Results</th>
<th>Overall USPSTF Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schuetz, 2009<sup>40</sup></td>
<td>Y-balanced Y-concealment</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Good</td>
</tr>
<tr>
<td>Christ-Crain, 2004<sup>37</sup> (cluster-randomized controlled trial)</td>
<td>Y-balanced N/A-concealment</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Poor*</td>
</tr>
<tr>
<td>Kristoffersen, 2009<sup>41</sup></td>
<td>Y-balanced Y-concealment</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Poor*</td>
</tr>
<tr>
<td>Briel, 2008<sup>42</sup></td>
<td>Y-balanced Y-concealment</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Good</td>
</tr>
<tr>
<td>Long, 2011<sup>31</sup></td>
<td>Y-balanced U-concealment</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Poor*</td>
</tr>
<tr>
<td>Burkhardt, 2010<sup>27</sup></td>
<td>Y balanced Y-concealment</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Good</td>
</tr>
<tr>
<td>Stolz, 2007<sup>38</sup></td>
<td>Y-balanced U-concealment</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Poor*</td>
</tr>
<tr>
<td>Christ-Crain, 2006<sup>36</sup></td>
<td>Y-balanced Y-concealment</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Good</td>
</tr>
</tbody>
</table>

N = no; U = unknown; USPSTF = United States Preventive Services Task Force; Y = yes

*Overall study rating was poor due to >5% of patients excluded from analyses.
Antibiotic Use

The results consistently demonstrated reduction in antibiotic use, with regard to duration, prescription rates, and total exposure (Table 15). Antibiotic duration was reported in all studies except for one. The duration of antibiotic therapy was reduced with procalcitonin-guided therapy in six of the seven studies, and the absolute reduction ranged from -1.0 to -7.1 days, with a relative reduction of -12.7 to -55 percent. Only one study reported an absolute increase in antibiotic duration of 0.1 days with a relative increase of 1.3 percent. The absolute reduction was statistically significant in four of the five studies in which p values were either reported or calculated. Meta-analysis of 4 studies (Figure 7) found a statistically significant pooled mean difference of -2.35 days favoring procalcitonin (95% CI: -4.38, -0.33). A high degree of statistical heterogeneity was observed (I²=97%). Three studies did not report sufficient detail to be included in the pooling but the largest study, which accounted for more than three quarters of the total patients, had a greater mean difference (-3.0) than the pooled mean difference. Thus, if these studies could have also been pooled, the difference likely would still favor procalcitonin.

Antibiotic prescription rate was reported in all eight studies. An absolute reduction in antibiotic prescription rate was demonstrated with procalcitonin-guided therapy in seven of the eight studies. The absolute reduction in prescription rates ranged from -1.8 to -72 percent, and the reductions were statistically significant in all seven studies, with five being highly statistically significant. Only one study reported an absolute increase in prescription rate by 6.0 percent, which was not statistically significant. Meta-analysis of eight studies (Figure 8) yielded a statistically significant pooled risk difference of -22 percent (95% CI: -41%, -4%). The degree of statistical heterogeneity was quite high (I²=98%).

Four studies reported on total antibiotic exposure, which accounted for the use of multiple agents, as well as duration of therapy. Two studies reported total exposure per 1,000 patient-days with relative reductions of 0.52 and 0.49, which were both highly statistically significant. One study reported an absolute reduction of -31.5 percent, which was highly statistically significant. One study reported a statistically significant relative risk of 0.55, but no additional details were given.

Mortality

Overall, mortality results were consistent and did not suggest higher mortality rates with procalcitonin-guided therapy as compared to the control arm (Table 16). Mortality rates in patients in the control arm ranged from 0 to 13.2 percent. The absolute differences between the procalcitonin and control arms ranged from -3.6 to 1.0 percent. One study reported higher mortality rates in both the procalcitonin-guided therapy and control groups which appear to be due to disease-related mortality. Six studies reported 28-day mortality, and only one study reported a reduction in mortality with procalcitonin-guided therapy by -0.1 percent. The other five studies reported absolute differences ranging from 0 to 1.0 percent. None of the differences in 28-day mortality were statistically significant. One study reported 6-week mortality with an absolute reduction in mortality of 1.3 percent. Studies reporting mortality at 6 weeks or less were pooled in a meta-analysis (Figure 9), but
Table 15. Procalcitonin-guided antibiotic initiation and/or discontinuation in patients with respiratory tract infections—outcomes related to antibiotic use

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Author, Year</th>
<th>N</th>
<th>PCT</th>
<th>Control</th>
<th>Absolute Difference PCT-CTRL (95% CI)</th>
<th>p-Value</th>
<th>Relative Difference PCT-CTRL (95% CI)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABT Duration (days)</td>
<td>Schuetz, 2009<sup>40</sup></td>
<td>1359</td>
<td>5.7</td>
<td>8.7</td>
<td>-3.0</td>
<td>--</td>
<td>-34.8% (-40.3 to -28.7)</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Christ-Crain, 2004<sup>42</sup></td>
<td>243</td>
<td>10.9</td>
<td>12.8</td>
<td>-1.9 (-3.1 to -0.7)</td>
<td>0.002</td>
<td>-14.8%</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Kristoffersen, 2009<sup>43</sup></td>
<td>210</td>
<td>5.1</td>
<td>6.8</td>
<td>-1.7</td>
<td>--</td>
<td>-25%</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>Briel, 2008<sup>44</sup></td>
<td>458</td>
<td>6.2</td>
<td>7.1</td>
<td>-1.0 (-1.7 to -0.4)</td>
<td><0.05</td>
<td>-12.7%</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Long, 2011<sup>45</sup></td>
<td>162</td>
<td>5 (3-6)<sup>1</sup></td>
<td>7 (5-9)<sup>1</sup></td>
<td>-2.0</td>
<td><0.001</td>
<td>-28.6%</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Burkhardt, 2010<sup>46</sup></td>
<td>550</td>
<td>7.8</td>
<td>7.7</td>
<td>0.1 (-0.7 to 0.9)</td>
<td>0.8</td>
<td>1.3%</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Christ-Crain, 2006<sup>47</sup></td>
<td>302</td>
<td>5.8</td>
<td>12.9</td>
<td>-7.1 (-8.4 to -5.8)</td>
<td><0.0001</td>
<td>-55.0%</td>
<td>--</td>
</tr>
<tr>
<td>ABT Prescription Rate (%)</td>
<td>Schuetz, 2009<sup>40</sup></td>
<td>1,359</td>
<td>506/671 (75.4%)</td>
<td>603/688 (87.6%)</td>
<td>-12.2% (-16.3 to -8.1)</td>
<td><0.05</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Christ-Crain, 2004<sup>42</sup></td>
<td>243</td>
<td>55/124 (44.4%)</td>
<td>99/119 (83.2%)</td>
<td>-38.8% (-49.9 to -27.8)</td>
<td><0.0001</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Kristoffersen, 2009<sup>43</sup></td>
<td>210</td>
<td>88/103 (85.4%)</td>
<td>85/107 (79.4%)</td>
<td>6.0% (-4.3 to 16.2)</td>
<td>0.25</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Briel, 2008<sup>44</sup></td>
<td>458</td>
<td>58/232 (25.0%)</td>
<td>219/226 (96.9%)</td>
<td>-72% (-78 to -66)</td>
<td><0.05</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Long, 2011<sup>45</sup></td>
<td>162</td>
<td>NR (84.4%)</td>
<td>NR (97.5%)</td>
<td>-13.1%</td>
<td>0.004</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Stolz, 2007<sup>48</sup></td>
<td>208</td>
<td>41/102 (40.2%)</td>
<td>76/106 (71.7%)</td>
<td>-31.5% (-44.3 to -18.7)</td>
<td><0.0001</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Christ-Crain, 2006<sup>47</sup></td>
<td>302</td>
<td>128/151 (84.8%)</td>
<td>149/151 (98.79%)</td>
<td>-13.9% (-19.9 to -7.9)</td>
<td><0.0001</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Burkhardt, 2010<sup>46</sup></td>
<td>550</td>
<td>84/275 (30.5%)</td>
<td>89/275 (32.4%)</td>
<td>-1.8% (-9.6 to 5.9)</td>
<td>0.701</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Total ABT Exposure</td>
<td>Stolz, 2007<sup>48</sup></td>
<td>208</td>
<td>NR</td>
<td>NR</td>
<td>-31.5% (18.7 to 44.3)</td>
<td><0.0001</td>
<td>44% (0.27 to 0.57)</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Long, 2011<sup>45</sup></td>
<td>162</td>
<td>NR</td>
<td>NR</td>
<td>--</td>
<td>0.55 (0.51 to 0.60)</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Christ-Crain, 2006<sup>47</sup></td>
<td>302</td>
<td>136**</td>
<td>323**</td>
<td>--</td>
<td>--</td>
<td>0.52 (0.48 to 0.55)<sup>‡</sup></td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Christ-Crain, 2004<sup>42</sup></td>
<td>243</td>
<td>332**</td>
<td>661**</td>
<td>--</td>
<td>--</td>
<td>0.49 (0.44 to 0.55)<sup>‡</sup></td>
<td><0.0001</td>
</tr>
</tbody>
</table>

ABT = antibiotic; CI = confidence interval; CTRL = control; NR = not reported; PCT = procalcitonin

^Ψ Values are mean unless specified.

[*] Relative risk.

[‡] Mean per 1,000 days of followup.

¹ Adjusted for potential confounding and possible cluster effects.

^a Rate ratios.

[‡] Median (interquartile range).
Figure 7. Meta-analysis of mean differences, antibiotic duration (days) in patients with respiratory tract infections

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Procalcitonin</th>
<th>Control</th>
<th>Mean Difference</th>
<th>Procalcitonin</th>
<th>Control</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Total</td>
<td>Mean</td>
<td>SD</td>
<td>Total</td>
</tr>
<tr>
<td>Briel 2008</td>
<td>6.2</td>
<td>2.5</td>
<td>231</td>
<td>7.1</td>
<td>2.2</td>
<td>224</td>
</tr>
<tr>
<td>Burkhardt 2010</td>
<td>7.8</td>
<td>2.8</td>
<td>275</td>
<td>7.7</td>
<td>3.3</td>
<td>275</td>
</tr>
<tr>
<td>Christ-Crain 2004</td>
<td>10.9</td>
<td>3.6</td>
<td>124</td>
<td>12.8</td>
<td>5.5</td>
<td>119</td>
</tr>
<tr>
<td>Christ-Crain 2006</td>
<td>5.8</td>
<td>5.3</td>
<td>151</td>
<td>12.9</td>
<td>6.5</td>
<td>151</td>
</tr>
</tbody>
</table>

Total (95% CI) 781 769 100.0% -2.35 [-4.38, -0.33]

Heterogeneity: Tau² = 4.04; Chi² = 99.94, df = 3 (P < 0.00001); I² = 97%
Test for overall effect: Z = 2.28 (P = 0.02)

CI = confidence interval; IV = inverse variance weighted; SD = standard deviation

Figure 8. Meta-analysis of risk differences, antibiotic prescription rate in patients with respiratory tract infections

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Procalcitonin</th>
<th>Control</th>
<th>Risk Difference</th>
<th>Procalcitonin</th>
<th>Control</th>
<th>Risk Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Events</td>
<td>Total</td>
<td>Weight</td>
<td>IV, Random, 95% CI</td>
</tr>
<tr>
<td>Briel 2008</td>
<td>58</td>
<td>232</td>
<td>219</td>
<td>226</td>
<td>12.7%</td>
<td>-0.72 [-0.78, -0.66]</td>
</tr>
<tr>
<td>Burkhardt 2010</td>
<td>84</td>
<td>275</td>
<td>89</td>
<td>275</td>
<td>12.6%</td>
<td>-0.02 [-0.10, 0.06]</td>
</tr>
<tr>
<td>Christ-Crain 2004</td>
<td>55</td>
<td>124</td>
<td>99</td>
<td>119</td>
<td>12.3%</td>
<td>-0.39 [-0.50, -0.28]</td>
</tr>
<tr>
<td>Christ-Crain 2006</td>
<td>128</td>
<td>151</td>
<td>149</td>
<td>151</td>
<td>12.7%</td>
<td>-0.14 [-0.20, -0.08]</td>
</tr>
<tr>
<td>Kristoffersen 2009</td>
<td>88</td>
<td>103</td>
<td>85</td>
<td>107</td>
<td>12.4%</td>
<td>0.06 [-0.04, 0.16]</td>
</tr>
<tr>
<td>Long 2011</td>
<td>65</td>
<td>77</td>
<td>77</td>
<td>79</td>
<td>12.5%</td>
<td>-0.13 [-0.22, -0.04]</td>
</tr>
<tr>
<td>Schuetz 2009</td>
<td>506</td>
<td>671</td>
<td>603</td>
<td>688</td>
<td>12.8%</td>
<td>-0.12 [-0.16, -0.08]</td>
</tr>
<tr>
<td>Stolz 2007</td>
<td>41</td>
<td>102</td>
<td>76</td>
<td>106</td>
<td>12.1%</td>
<td>-0.32 [-0.44, -0.19]</td>
</tr>
</tbody>
</table>

Total (95% CI) 1735 1751 100.0% -0.22 [-0.41, -0.04]

Total events 1025 1397

Heterogeneity: Tau² = 0.07; Chi² = 363.21, df = 7 (P < 0.00001); I² = 98%
Test for overall effect: Z = 2.35 (P = 0.02)

CI = confidence interval; IV = inverse variance weighted; SD = standard deviation
Table 16. Procalcitonin-guided antibiotic initiation and/or discontinuation in patients with respiratory tract infections—mortality

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Author, Year</th>
<th>N</th>
<th>PCT</th>
<th>Control</th>
<th>Absolute Difference</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-month mortality</td>
<td>Stolz, 2007*</td>
<td>208</td>
<td>5/102 (4.9%)</td>
<td>9/106 (8.5%)</td>
<td>-3.6% (-10.3 to 3.2)</td>
<td>0.30</td>
</tr>
<tr>
<td>6-week mortality</td>
<td>Christ-Crain, 2006**</td>
<td>302</td>
<td>18/151 (11.9%)</td>
<td>20/151 (13.2%)</td>
<td>-1.3% (-8.8 to 6.2)</td>
<td>0.73</td>
</tr>
<tr>
<td>≤28-day mortality</td>
<td>Christ-Crain, 2004**</td>
<td>243</td>
<td>4/124 (3.2%)</td>
<td>4/119 (3.4%)</td>
<td>-0.1% (-4.6 to 4.4)</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>Schuetz, 2009 (30-day)**</td>
<td>1359</td>
<td>34/671 (5.1%)</td>
<td>33/688 (4.8%)</td>
<td>0.3% (-2.1 to 2.5)</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>Briel, 2008**</td>
<td>458</td>
<td>0/231 (0%)</td>
<td>1/224 (0.4%)</td>
<td>-0.4% (-1.3 to 0.4)</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>Burkhardt, 2010**</td>
<td>550</td>
<td>0/275 (0%)</td>
<td>0/275 (0%)</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Kristoffersen, 2009**</td>
<td>210</td>
<td>2/103 (1.9%)</td>
<td>1/107 (0.9%)</td>
<td>1.0% (-2.2 to 4.2)</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>Long, 2011**</td>
<td>162</td>
<td>0/81 (0%)</td>
<td>0/81 (0%)</td>
<td>0</td>
<td>--</td>
</tr>
</tbody>
</table>

CI = confidence interval; CTRL = control; PCT = procalcitonin
Note: All studies performed intention-to-treat analyses.

Figure 9. Meta-analysis of risk differences, short-term mortality (≤6 weeks) in patients with respiratory tract infections

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>PCT Events</th>
<th>Total Events</th>
<th>Control Events</th>
<th>Total Weight</th>
<th>Risk Difference, IV, Random, 95% CI</th>
<th>Risk Difference, IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christ-Crain 2004</td>
<td>4</td>
<td>124</td>
<td>4</td>
<td>119</td>
<td>14.1%</td>
<td>-0.00 [-0.05, 0.04]</td>
</tr>
<tr>
<td>Christ-Crain 2006</td>
<td>18</td>
<td>151</td>
<td>20</td>
<td>151</td>
<td>5.1%</td>
<td>-0.01 [-0.09, 0.06]</td>
</tr>
<tr>
<td>Kristoffersen 2009</td>
<td>2</td>
<td>103</td>
<td>1</td>
<td>107</td>
<td>27.3%</td>
<td>0.01 [-0.02, 0.04]</td>
</tr>
<tr>
<td>Schuetz 2009</td>
<td>34</td>
<td>671</td>
<td>33</td>
<td>688</td>
<td>53.6%</td>
<td>0.00 [-0.02, 0.03]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>1049</td>
<td>1065</td>
<td>100.0%</td>
<td>0.00 [-0.01, 0.02]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total events 58 58
Heterogeneity: $\text{Tau}^2 = 0.00$; $\text{Chi}^2 = 0.40$, df = 3 (P = 0.94); $I^2 = 0$
Test for overall effect: $Z = 0.39$ (P = 0.70)

CI = confidence interval; IV = inverse variance weighted; SD = standard deviation
those reporting zero events in either arm were excluded. Combining four studies36,37,40,41 produces a risk difference of 0.3 percent with a very narrow 95% CI (-1 percent, 2 percent). Statistical heterogeneity was nil ($I^2=0$ percent).

One study38 reported 6-month mortality with an absolute reduction in mortality of 3.6 percent. None of the 6-week or 6-month absolute reductions in mortality rate were statistically significant.

Morbidity

Overall, studies did not suggest an increase in-hospital LOS, ICU admission rates, antibiotic adverse events, or days of restricted activity with procalcitonin-guided therapy (Table 17).

Five studies36,38,40-42 reported hospital LOS. Hospital LOS was reduced with procalcitonin-guided therapy in four of five studies with an absolute reduction in days ranging from -0.5 to -1. The differences were not statistically significant in any of the studies. One study40 reported an absolute increase in LOS by 0.2 days.

Five studies36,38,40-42 reported need for ICU admission. ICU admission rates were reduced with procalcitonin-guided therapy with absolute reductions ranging from -0.7 to -2.5 percent. None of the reductions in ICU admissions was statistically significant. Meta-analysis of these five studies (Figure 10) produced a risk difference of -1 percent with a very narrow 95% CI (-4%, 1%). No statistical heterogeneity was detected ($I^2=0$ percent).

Two studies27,42 evaluated days of restricted activity. It was defined as number of self-assessed impaired days of daily work and/or leisure activities within the first 14 days of illness. The absolute differences were -0.25 and 0.2 days and none were statistically significant.

Adverse Events of Antibiotic Therapy

For the respiratory tract infection studies, three studies27,40,42 reported on adverse antibiotic effects, but the definition of antibiotic adverse events differed with each study. Schuetz et al.40 reported a reduction in the proportion of patients with an antibiotic adverse events (19.8% vs. 28.1%, difference – 8.2%, 95% CI: -12.7, -3.7) that favored procalcitonin-guided therapy. Briel et al.42 reported that there was a statistically significant decrease in the days with adverse antibiotic effects in the procalcitonin-guided arm (2.3±4.6 vs. 3.6±6.1, difference -1.1, 95% CI: -2.1, -0.1) that was mainly due to a lower incidence of antibiotic-associated diarrhea. Burkhardt et al.27 reported a lower incidence of antibiotic adverse effects (11/275 vs. 16/275, p=0.331) and fewer days with antibiotic adverse effects (5.6±2.2 vs. 6.1±3.7, p=0.94), but neither difference was statistically significant.

GRADE Evidence

Methods for grading strength of evidence developed for the AHRQ Effective Health Care Program25 were applied to this body of literature. An important consideration in grading the literature was the quality ratings of the studies. Four27,36,40,42 of the eight studies27,31,36-38,40-42 received a good quality rating, but the other four studies31,37,38,41 received a poor quality rating due to lack of intention-to-treat analysis (Table 18). However, the studies receiving a poor rating represent 23.6 percent of the total patients in these studies (823 of 3,492 patients).
Table 17. Procalcitonin-guided antibiotic initiation and/or discontinuation in patients with respiratory tract infections—morbidity

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Author, Year</th>
<th>N</th>
<th>PCT</th>
<th>Control</th>
<th>Absolute Difference PCT-CTRL (95% CI)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (days)</td>
<td>Schuetz, 2009</td>
<td>1,359</td>
<td>9.4</td>
<td>9.2</td>
<td>0.2 days</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Christ-Crain, 2004</td>
<td>224</td>
<td>10.7</td>
<td>11.2</td>
<td>-0.5 days (-3.0 to 2.0)</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>Kristoffersen, 2009</td>
<td>210</td>
<td>5.9</td>
<td>6.7</td>
<td>-0.8 days</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>Stolz, 2007</td>
<td>208</td>
<td>9 (1-15)</td>
<td>10 (1-15)</td>
<td>-1 days</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>Christ-Crain, 2006</td>
<td>302</td>
<td>12.0</td>
<td>13.0</td>
<td>-1 days (-3.0 to 1.0)</td>
<td>0.34</td>
</tr>
<tr>
<td>ICU Admission (%)</td>
<td>Schuetz, 2009</td>
<td>1,359</td>
<td>43/671</td>
<td>60/688</td>
<td>-2.3% (-5.2 to 0.4)</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>Christ-Crain, 2004</td>
<td>224</td>
<td>5/124</td>
<td>6/119</td>
<td>-1.0% (-6.2 to 4.2)</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td>Kristoffersen, 2009</td>
<td>210</td>
<td>7/103</td>
<td>5/107</td>
<td>-2.1% (-4.2 to 8.4)</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>Stolz, 2007</td>
<td>208</td>
<td>8/102</td>
<td>11/106</td>
<td>-2.5% (-10.3 to 5.3)</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>Christ-Crain, 2006</td>
<td>302</td>
<td>20/151</td>
<td>21/151</td>
<td>-0.7% (-8.4 to 7.1)</td>
<td>0.87</td>
</tr>
<tr>
<td>Antibiotic Adverse Events</td>
<td>Schuetz, 2009</td>
<td>1,359</td>
<td>43/671</td>
<td>60/688</td>
<td>-8.2% (-12.7 to -3.7)</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Briel, 2008</td>
<td>458</td>
<td>2.3±4.6 days</td>
<td>3.6±6.1 days</td>
<td>-1.1 days (-2.1 to -0.1)</td>
<td><0.05</td>
</tr>
<tr>
<td></td>
<td>Burkhardt, 2010</td>
<td>550</td>
<td>11 /59 (18.6%)</td>
<td>16/101 (15.8%)</td>
<td>2.8% (-9.4 to 15.0)</td>
<td>0.65</td>
</tr>
<tr>
<td>Restricted Activity (days)</td>
<td>Briel, 2008</td>
<td>458</td>
<td>8.7±3.9</td>
<td>8.6±3.9</td>
<td>0.2 days (-0.4 to 0.9)</td>
<td>>0.05</td>
</tr>
<tr>
<td></td>
<td>Burkhardt, 2010</td>
<td>550</td>
<td>9.1</td>
<td>8.8</td>
<td>0.25 days (-0.52 to 1.03)</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

CI = confidence interval; CTRL = control; ICU = intensive care unit; LOS = length of stay; PCT = procalcitonin

Values are mean unless specified.

Nausea, diarrhea, and rash.

Abdominal pain, diarrhea, nausea, vomiting, and rash.

Antibiotic adverse events not defined.

Days during the first 14 days of illness that work and leisure activities were restricted.

Median (interquartile range).

Figure 10. Meta-analysis of risk differences in ICU admission in patients with respiratory tract infections

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Procalcitonin Events</th>
<th>Total</th>
<th>Control Events</th>
<th>Total</th>
<th>Weight</th>
<th>Risk Difference</th>
<th>Risk Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IV, Random, 95% CI</td>
<td>IV, Random, 95% CI</td>
</tr>
<tr>
<td>Christ-Crain 2004</td>
<td>5</td>
<td>124</td>
<td>6</td>
<td>119</td>
<td>16.4%</td>
<td>-0.01 [-0.06, 0.04]</td>
<td></td>
</tr>
<tr>
<td>Christ-Crain 2006</td>
<td>20</td>
<td>151</td>
<td>21</td>
<td>151</td>
<td>7.6%</td>
<td>-0.01 [-0.08, 0.07]</td>
<td></td>
</tr>
<tr>
<td>Kristoffersen 2009</td>
<td>7</td>
<td>103</td>
<td>5</td>
<td>107</td>
<td>11.4%</td>
<td>0.02 [-0.04, 0.08]</td>
<td></td>
</tr>
<tr>
<td>Schuetz 2009</td>
<td>43</td>
<td>671</td>
<td>60</td>
<td>688</td>
<td>57.2%</td>
<td>-0.02 [-0.05, 0.00]</td>
<td></td>
</tr>
<tr>
<td>Stolz 2007</td>
<td>8</td>
<td>102</td>
<td>11</td>
<td>106</td>
<td>7.4%</td>
<td>-0.03 [-0.10, 0.05]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>1151</td>
<td>1171</td>
<td>100.0%</td>
<td>-0.01 [-0.04, 0.01]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total events: 83 events
Total observations: 103
Heterogeneity: Tau² = 0.00; Chi² = 1.74, df = 4 (P = 0.78); I² = 0%
Test for overall effect: Z = 1.37 (P = 0.17)

CI = confidence interval; IV = inverse variance weighted; SD = standard deviation
Table 18. Procalcitonin-guided antibiotic initiation and/or discontinuation in patients with respiratory tract infections—GRADE evidence table

<table>
<thead>
<tr>
<th>Outcome</th>
<th>No. of Studies (Subjects)</th>
<th>Risk of Bias</th>
<th>Consistency</th>
<th>Directness</th>
<th>Precision</th>
<th>Overall GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibiotic duration</td>
<td>7 RCTs (n=3,284)</td>
<td>Low</td>
<td>Consistent</td>
<td>Direct</td>
<td>Precise</td>
<td>High</td>
</tr>
<tr>
<td>Antibiotic prescription rate</td>
<td>8 RCTs (n=3,492)</td>
<td>Low</td>
<td>Consistent</td>
<td>Direct</td>
<td>Precise</td>
<td>High</td>
</tr>
<tr>
<td>Total antibiotic exposure</td>
<td>4 RCTs (n=915)</td>
<td>Medium</td>
<td>Consistent</td>
<td>Direct</td>
<td>Precise</td>
<td>Moderate</td>
</tr>
<tr>
<td>Mortality</td>
<td>8 RCTs (n=3,492)</td>
<td>Low</td>
<td>Consistent</td>
<td>Direct</td>
<td>Precise</td>
<td>Moderate</td>
</tr>
<tr>
<td>Hospital length of stay</td>
<td>5 RCTs (n=2,303)</td>
<td>Medium</td>
<td>Consistent</td>
<td>Direct</td>
<td>Precise</td>
<td>Moderate</td>
</tr>
<tr>
<td>ICU admission rates</td>
<td>5 RCTs (n=2,303)</td>
<td>Medium</td>
<td>Consistent</td>
<td>Direct</td>
<td>Precise</td>
<td>Moderate</td>
</tr>
<tr>
<td>Antibiotic adverse events</td>
<td>3 RCTs (n=2,367)</td>
<td>Low</td>
<td>Inconsistent</td>
<td>Direct</td>
<td>Imprecise</td>
<td>Insufficient</td>
</tr>
</tbody>
</table>

GRADE = grading of recommendations assessment, development, and evaluation; ICU = intensive care unit; RCT = randomized controlled trial

Overall, the grade of the strength of evidence was high, and the data demonstrate a reduction in antibiotic duration and prescription rates which were reported in the majority of studies. The risk of bias was low and the evidence was consistent, direct, and precise for these antibiotic outcomes. The reduction in antibiotic duration ranged from -1.0 to -7.1 days and from -1.8 to -72 percent for antibiotic prescription rates.

The overall grade of the evidence for total antibiotic exposure was moderate. Total antibiotic exposure was only reported by four studies, but three of these studies were given a poor quality rating. In general, total antibiotic exposure is difficult to calculate, and the data for this outcome were reported differently in these studies. Two studies reported relative risk ratios without providing additional details, and two studies reported means per 1,000 days of followup. Because the majority of these studies were poor quality and the reporting differed, the data were graded to have a moderate risk of bias. The evidence was graded to be consistent, direct, and precise. All of the absolute or relative reductions reported in total antibiotic exposure were statistically significant, and overall, the data suggest a reduction in total antibiotic exposure.

The mortality data were given a moderate overall grade. All eight studies reported mortality rates. The absolute difference in 28-day mortality rates ranged from -0.3 to 0.4 percent, but none of these differences was statistically significant. The data were graded to have a low risk of bias and be consistent, direct, and precise. Overall grade was moderate, largely due to the low baseline mortality rates in patients with respiratory tract infections. While the confidence interval around the pooled estimate was narrow, uncertainty about the minimum important difference for mortality leads us to rule out high strength of evidence.

The overall grade of the evidence for hospital LOS and ICU admission rates was moderate. Five studies reported these outcomes. The data were graded to have a M risk of bias because three of the five studies were given a poor quality rating. The absolute differences in LOS and ICU admission rates ranged from -1 to 0.2 days and -2.5 to -0.7 percent, respectively, but none of these differences was statistically significant. Thus, the present evidence does not suggest an increase in hospital LOS or ICU admission rates.

The current data do not permit a conclusion regarding the effects of procalcitonin-guided therapy on antibiotic adverse events, and the overall grade was insufficient. Three studies with a low risk of bias reported this outcome; however, the data were inconsistent and imprecise.
Two studies reported percentages with absolute differences of -8.2 percent40 and 2.8 percent,27 and one study42 reported an absolute difference of -1.1 days that was statistically significant. The data for this outcome are limited, and therefore, no conclusions can be drawn on the impact of procalcitonin-guided therapy on antibiotic adverse events.

Neonatal Sepsis

Study Characteristics

There was only one RCT43 of procalcitonin-guided antibiotic therapy for suspected early onset neonatal sepsis that included 101 neonates, both arms stratified by the likelihood of infection (Table 19). Neonatal sepsis was suspected on the basis of risk factors, as well as clinical signs and symptoms including apnea, tachycardia or bradycardia, hypotension, seizures, “floppiness,” irritability, or ileus, and standard laboratory tests, including C-reactive protein and immature leukocyte ratio. Procalcitonin values used to decide on antibiotic initiation and discontinuation were based on a nomogram based on the time since birth, since procalcitonin is elevated in the first three days of life due to birth stress. Antibiotic therapy in the standard group was based on the attending physician’s assessment. The trial was designed to have 90 percent power to detect a 30 percent difference in antibiotic duration. The primary outcomes for this study were the duration of antibiotics and the proportion of neonates on antibiotics longer than 72 hours. Secondary outcomes were recurrence of infection and mortality, but the study was not powered to detect differences in these outcomes. Followup duration was 21 days.

Study Quality

The quality rating for the one study is described in Table 20. In this study43 of neonatal sepsis, neonates in the two arms were comparable at baseline. Details of allocation concealment were described. Analysis was appropriate, but again, this study was not powered to detect differences in morbidity or mortality.
Table 19. Summary of characteristics for one trial included in the analysis of procalcitonin-guided antibiotic therapy in neonatal sepsis

<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Disease State</th>
<th>N</th>
<th>PCT for ABT Initiation</th>
<th>PCT for ABT Discontinuation</th>
<th>Other PCT-Guided Interventions</th>
<th>Study Duration</th>
<th>Predefined Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stocker, 2010, Switzerland(\text{11})</td>
<td>Suspected early onset neonatal sepsis</td>
<td>PCT 60 Ctrl 61</td>
<td>PCT according to nomogram based on age since birth, hours</td>
<td>PCT according to nomogram based on age since birth, hours</td>
<td>NA</td>
<td>30 days</td>
<td>Primary outcome ABTs ≥72 hours, duration of ABTs; Secondary outcomes, Survival, recurrence of infection</td>
</tr>
</tbody>
</table>

ABT = antibiotic; Ctrl = control; PCT = procalcitonin; NA = not applicable

Table 20. Procalcitonin-guided antibiotic therapy in neonatal sepsis—study quality

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Assembled Comparable Groups</th>
<th>Maintained Comparable Groups</th>
<th>Minimal Followup Loss</th>
<th>Measurements Equal, Valid, and Reliable</th>
<th>Interventions Clearly Defined</th>
<th>Important Outcomes Considered</th>
<th>Appropriate Analysis of Results</th>
<th>Overall USPSTF Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stocker, 2010(\text{11})</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Good</td>
</tr>
</tbody>
</table>

USPSTF = United States Preventive Services Task Force; Y = yes
Antibiotic Use

Outcomes related to antibiotic use are summarized in Table 21. The duration of antibiotic use was significantly decreased overall by 22.4 hours (24 percent reduction), with the greatest differences seen for the 80 to 85 percent of neonates who had possible infection or were unlikely to have infection and little difference for the small proportion of neonates with proven of probable infection. The proportion of neonates on antibiotics for 72 or more hours was significantly reduced overall by 27 percent, again with the difference seen only for neonates with possible sepsis (38 percent reduction) or neonates unlikely to have infection (27 percent reduction).

Table 21. Procalcitonin-guided antibiotic therapy in neonatal sepsis in the study by Stocker et al., 2010 (n=121)—outcomes related to antibiotic use

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Patient Subgroup</th>
<th>PCT</th>
<th>Control</th>
<th>Difference PCT-CTRL (95% CI)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABTs >72 hours (%)</td>
<td>All neonates</td>
<td>33/60 (55%)</td>
<td>50/61 (82%)</td>
<td>-27.0 (-42.8 to -11.1)</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>Infection proven/probably</td>
<td>9/9 (100%)</td>
<td>12/12 (100%)</td>
<td>0% (0 to 0)</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Infection possible</td>
<td>13/21 (61.9%)</td>
<td>19/19 (100%)</td>
<td>-38.1 (-58.9 to -17.3)</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>Infection unlikely</td>
<td>11/30 (36.7%)</td>
<td>19/30 (63.3%)</td>
<td>-26.6 (-51.1 to -2.3)</td>
<td>0.038</td>
</tr>
<tr>
<td>ABT duration, hours</td>
<td>All neonates</td>
<td>79.1</td>
<td>101.5</td>
<td>-22.4</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>Infection proven/probably</td>
<td>177.8</td>
<td>170.8</td>
<td>-7</td>
<td>NSS</td>
</tr>
<tr>
<td></td>
<td>Infection possible</td>
<td>83.4</td>
<td>111.5</td>
<td>-28.1 (< 0.001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Infection unlikely</td>
<td>46.5</td>
<td>67.4</td>
<td>-20.9 (0.001)</td>
<td></td>
</tr>
</tbody>
</table>

Mortality

Only in-hospital mortality was reported by Stocker et al. No deaths occurred in either study arm (Table 22).

Morbidity

There was a small but statistically insignificant reduction in the rate of recurrence of infection in the study by Stocker et al., i.e., the neonates treated with antibiotics for 120 or more hours (Table 22).

Table 22. Mortality and morbidity data for early onset neonatal sepsis in the study by Stocker et al., 2010 (n=121)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>PCT</th>
<th>Control</th>
<th>Difference PCT-CTRL (95% CI)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality (in-hospital)</td>
<td>0%</td>
<td>0%</td>
<td>0 (0 to 0)</td>
<td>NA</td>
</tr>
<tr>
<td>Morbidity (recurrence of infection)</td>
<td>32%</td>
<td>39%</td>
<td>-7</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Adverse Events of Antibiotic Therapy

The study by Stocker et al. did not report adverse events of antibiotic therapy.
GRADE Evidence

The strength of evidence was judged to be moderate that use of procalcitonin guidance reduces the use of antibiotic therapy for suspected neonatal sepsis. This good quality study was judged to have low risk of bias. The finding that significant reduction in duration of antibiotic therapy was observed in the subgroups with possible or unlikely infection, rather than those with probable infection, lends face validity to the results. Consistency was rated as unknown (single study). The evidence was direct and sufficiently precise to conclude that procalcitonin guidance reduces antibiotic use. This small study43 (n=121) was not powered to detect mortality or morbidity outcomes, and strength of evidence was judged insufficient to make conclusions on mortality and morbidity.

Fever of Unknown Source (Children Ages 1–36 Months)

Study Characteristics

There was only one RCT26 of procalcitonin-guided antibiotic therapy for fever of unknown source in children 1–36 months of age (Table 23). This study used BRAHMS PCT-Q® semi-quantitative assay method for procalcitonin measurement. Three-hundred and eighty-four children were enrolled. Sixty-two (16 percent) were subsequently diagnosed with a serious bacterial infection and 10 (2.6 percent) were found to be neutropenic. Procalcitonin values used to decide on antibiotic initiation and discontinuation were based on a nomogram based on the time since birth, since procalcitonin is elevated in the first three days of life due to birth stress. Antibiotic therapy in the standard group was based on the attending physician’s assessment. The primary outcome for this study26 was the antibiotic prescription rate. The secondary outcome was difference in hospitalization rate. Sample size needed was calculated based on rates of antibiotic prescription. Followup duration for this study was 30 days.

Table 23. Summary of characteristics for one trial included in the analysis of procalcitonin-guided antibiotic therapy in children (ages 1-36 months) with fever of unknown source

<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Disease State</th>
<th>N</th>
<th>PCT for ABT Initiation</th>
<th>PCT for ABT Discontinuation</th>
<th>Other PCT-Guided Interventions</th>
<th>Study Duration</th>
<th>Predefined Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manzano, 2010, Canada 26</td>
<td>Fever without a source, children 1-36 months of age</td>
<td>PCT 192 Ctrl 192</td>
<td>PCT < 0.5, infection unlikely; PCT ≥ 0.5, moderate risk; PCT ≥ 2.0, high risk</td>
<td>----</td>
<td>----</td>
<td>30 days</td>
<td>Primary outcome ABT prescription rate Secondary outcomes Hospitalization, additional studies</td>
</tr>
</tbody>
</table>

ABT = antibiotic; Ctrl = control; PCT = procalcitonin

Study Quality

The quality rating for the one study is described in Table 24. The two study arms were comparable, but more than 10 percent of patients in each arm were excluded from the analysis
Table 24. Procalcitonin-guided antibiotic therapy in children (ages 1-36 months) with fever of unknown source—study quality

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Assembled Comparable Groups</th>
<th>Maintained Comparable Groups</th>
<th>Minimal Followup</th>
<th>Measurements Equal, Valid, and Reliable</th>
<th>Interventions Clearly Defined</th>
<th>Important Outcomes Considered</th>
<th>Appropriate Analysis of Results</th>
<th>Overall USPSTF Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manzano, 2010<sup>26</sup></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Poor</td>
</tr>
</tbody>
</table>

N = no; USPSTF = United States Preventive Services Task Force; Y = yes
(insufficient blood for assay) and no strategy to adjust for missing data was performed. Details of allocation concealment were described. This study was not powered to detect differences for the morbidity and mortality outcomes.

Antibiotic Use

There were no differences in the antibiotic prescription rates or hospitalization rate, although rates were low for both arms with only one-quarter of children being hospitalized and receiving antibiotics \(^{26}\) (Table 25).

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Subgroup</th>
<th>PCT</th>
<th>Control</th>
<th>Difference PCT-CTRL (95% CI)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibiotic prescription rate (%)</td>
<td>All children</td>
<td>48/192 (25%)</td>
<td>54/192 (28.0%)</td>
<td>-3.1 (-12.0 to 5.7)</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>No SBI or neutropenia</td>
<td>14/158 (9%)</td>
<td>16/154 (10%)</td>
<td>-1.5 (-8.1 to -5.0)</td>
<td>0.65</td>
</tr>
</tbody>
</table>

CI = confidence interval; CTRL = control; PCT = procalcitonin; SBI = serious blood infection

Mortality

Only in-hospital mortality was reported, and mortality was 0 percent in both arms (Table 26).

Morbidity

In this single RCT, \(^{26}\) overall rates of hospitalization were relatively low, with only one quarter of the children being admitted (Table 26). This rate was even lower for those children who did not have a serious bacterial infection or neutropenia. There were no significant differences in the proportion of infants who were started on empiric antibiotic therapy, all children, and the subgroup of children without a serious blood infection or neutropenia. Overall, procalcitonin measurement did not have a statistically significant effect on antibiotic use or hospitalization in this population.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Subgroup</th>
<th>PCT</th>
<th>Control</th>
<th>Difference PCT-CTRL (95% CI)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>All children</td>
<td>0%</td>
<td>0%</td>
<td>0 (0 to 0)</td>
<td>NA</td>
</tr>
<tr>
<td>Morbidity (hospitalization rate)</td>
<td>All children</td>
<td>50/192 (26%)</td>
<td>48/192 (25%)</td>
<td>1 (-8 to 10)</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>No SBI or neutropenia</td>
<td>16/158 (10%)</td>
<td>11/154 (7%)</td>
<td>3 (-3 to 10)</td>
<td>0.34</td>
</tr>
</tbody>
</table>

CI = confidence interval; CTRL = control; NA = not applicable; PCT = procalcitonin; SBI = serious blood infection

Adverse Events of Antibiotic Therapy

The study by Manzano et al. \(^{26}\) did not report adverse events of antibiotic therapy.

GRADE Evidence

The strength of evidence was judged insufficient to draw conclusions on outcome of procalcitonin-guided antibiotic therapy for fever of unknown source in children 1–36 months of age. This RCT \(^{26}\) (n=384) reported no significant results.
Preemptive Postoperative Antibiotic Therapy

There was only one study that evaluated the value of monitoring procalcitonin postoperatively in 250 consecutive patients undergoing colorectal surgery (Table 27). Procalcitonin levels were used to identify patients at risk for local and systemic infectious complications who might benefit from antibiotic therapy (ceftriaxone) given as a prophylaxis or preemptive therapy in patients without other clinical evidence of infection. Of 230 patients with low postoperative procalcitonin, only 16 local wound infections (7.0 percent) not requiring surgery or antibiotics occurred and systemic infection occurred in only 4 patients (1.7 percent). The negative predictive value of procalcitonin for systemic infections requiring antibiotics was 98.3 percent and 93.0 percent for local wound infections that resolved without antibiotics or re-operation.

The other 20 patients had two or more procalcitonin measurements greater than 1.5 ng/mL in the first three postoperative days, and these patients were randomized to receive IV ceftriaxone or standard management. The 10 patients in the control arm of the randomized portion of this study were treated when signs of infection became evident. Patients were followed for the duration of their hospitalization.

Table 27. Summary of characteristics for one trial included in the analysis of procalcitonin-guided preemptive postoperative antibiotic therapy

<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Disease State</th>
<th>N</th>
<th>PCT for ABT Initiation</th>
<th>PCT for ABT Discontinuation</th>
<th>Other PCT-Guided Interventions</th>
<th>Study Duration</th>
<th>Predefined Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromik, 2005, Germany</td>
<td>Colorectal surgery patients</td>
<td>250 patients overall, 230 patients with low PCT, 20 with elevated PCT post-op</td>
<td>PCT > 1.5 post-op randomized to receive preemptive ABTs or standard care</td>
<td>Not defined</td>
<td>Primary outcome, Local and systemic infectious complications, Secondary outcomes, Mortality, decreased LOS, duration of ABTs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ABT = antibiotic; LOS = length of stay; PCT = procalcitonin; Post-op = postoperative

Study Quality

The quality rating for the one study is described in Table 28. The patients in the two arms of the interventional part of this trial were comparable at baseline. Details of allocation concealment were described. Analysis was appropriate, but again, this study was not powered to detect differences in morbidity or mortality.
Table 28. Procalcitonin-guided preemptive postoperative antibiotic therapy—study quality

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Assembled Comparable Groups</th>
<th>Maintained Comparable Groups</th>
<th>Minimal Followup Loss</th>
<th>Measurements Equal, Valid, and Reliable</th>
<th>Interventions Clearly Defined</th>
<th>Important Outcomes Considered</th>
<th>Appropriate Analysis of Results</th>
<th>Overall USPSTF Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromik, 2005</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Good</td>
</tr>
</tbody>
</table>

USPSTF = United States Preventive Services Task Force; Y = yes
Antibiotic Use

Although all patients in the preemptive ceftriaxone arm received this antibiotic for a period of time (range: 4–11 days), the duration of antibiotic therapy was lower by 3.5 days in the procalcitonin-guided therapy group compared with the control group (Table 29). This difference, however, did not reach statistical significance.

Table 29. Procalcitonin-guided preemptive postoperative antibiotic therapy—outcomes related to antibiotic use in the study by Chromik et al., 2005

<table>
<thead>
<tr>
<th>N</th>
<th>Outcome</th>
<th>PCT</th>
<th>Control</th>
<th>Difference PCT-CTRL (95% CI)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABT duration (days)</td>
<td>5.5</td>
<td>9</td>
<td>-3.5</td>
<td>0.27</td>
</tr>
</tbody>
</table>

ABT = antibiotic; CI = confidence interval; CTRL = control; PCT = procalcitonin

Mortality

Mortality was 20 percent higher in the control arm (Table 30). This was not statistically significant.

Morbidity

Patients in the control arm of the study had a more prolonged LOS (12 days longer), and the difference approached statistical significance (Table 30). The control arm also had a higher incidence of local and systemic infection. Patients in the control arm were significantly more likely to have systemic inflammatory response syndrome (SIRS) or sepsis and require vasopressors for shock.

Table 30. Procalcitonin-guided preemptive postoperative antibiotic therapy—mortality and morbidity data in the study by Chromik et al., 2005 (n=20)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>PCT</th>
<th>Control</th>
<th>Difference PCT-CTRL (95% CI)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>1/10 (10%)</td>
<td>3/10 (30%)</td>
<td>-20 (-54.0 to 14.0)</td>
<td>0.07</td>
</tr>
<tr>
<td>Morbidity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospital LOS (days)</td>
<td>18</td>
<td>30</td>
<td>-12</td>
<td>0.057</td>
</tr>
<tr>
<td>Local wound infection (%)</td>
<td>1/10</td>
<td>2/10</td>
<td>-10 (-41.0 TO 21.0)</td>
<td>0.53</td>
</tr>
<tr>
<td>Systemic infection (%)</td>
<td>3/10</td>
<td>7/10</td>
<td>-40.0 (-80.2 to 0.2)</td>
<td>0.07</td>
</tr>
<tr>
<td>Sepsis/SIRS (%)</td>
<td>2/10</td>
<td>8/10</td>
<td>-60.0 (-95.1 to -24.9)</td>
<td>0.007</td>
</tr>
</tbody>
</table>

CI = confidence interval; CTRL = control; LOS = length of stay; PCT = procalcitonin; SIRS = systemic inflammatory response syndrome

Adverse Events of Antibiotic Therapy

The study by Chromik et al. did not report adverse events of antibiotic therapy.

GRADE Evidence

This single RCT suggests procalcitonin levels can identify postoperative patients who are at risk for wound and systemic infection who will benefit from prophylaxis or preemptive antibiotic therapy. Not only did procalcitonin identify a group of patient for whom antibiotics can prevent significant morbidity and mortality, but low procalcitonin levels accurately identified a low-risk group for whom antibiotics were unnecessary. The use of procalcitonin helped limit the use of antibiotic prophylaxis to 8 percent of the entire postsurgical population. Further studies of this strategy are needed to confirm this result. The evidence on procalcitonin-guided preemptive
postoperative antibiotic therapy was deemed insufficient to be graded as only one small study (n=20) was available for peer review.
Summary and Discussion

Summary of the Main Findings

There were 18 randomized controlled trials (RCTs) that compared procalcitonin guidance with the use of clinical criteria to manage antibiotic therapy in patients with known or suspected infection, or at risk of infection. The evidence addressed five patient populations: (1) seriously ill adult patients in the intensive care unit (ICU), including patients with ventilator-associated pneumonia (VAP) and those critically ill with suspected bacterial infections, severe sepsis, and septic shock; (2) patients with symptoms and signs of various respiratory tract infections; (3) neonates with suspected sepsis; (4) children between 1 to 36 months of age with fever of unknown etiology; and (5) postoperative patients without clinical evidence of infection.

Intensive Care Unit Patients

Five trials (n=938) addressed procalcitonin-guided discontinuation of antibiotic therapy. Strength of evidence was judged to be high that procalcitonin guidance reduces antibiotic use. The absolute difference in duration of antibiotic use, the measure that was reported by all five studies, ranged from -1.7 to -5 days, with relative reductions that ranged from 21 to 38 percent. There is moderate evidence that procalcitonin-guided antibiotic discontinuation does not increase morbidity as indicated by ICU and hospital length of stay. The strength of evidence was judged low that procalcitonin guided antibiotic therapy in the ICU does not increase mortality. Evidence on mortality was initially rated as stronger but was downgraded to low based on uncertainty about the appropriate noninferiority margin for this outcome. Although a 10 percent noninferiority margin has been recommended by the Infectious Diseases Society of America (IDSA) and American College of Chest Physicians (ACCP) in relevant populations, there is also strong sentiment that this is too high a noninferiority margin for mortality, which was expressed among our peer reviewers and also in the published literature. Moreover, there are presently two large trials in progress, which may in the future yield more precise estimates of mortality.

There is moderate evidence that procalcitonin-guided intensification of antibiotic therapy that broadens the spectrum of bacterial coverage does not improve outcomes in critically ill patients, and in fact, may have adverse consequences. The large (n=1,200), high-quality trial by Jensen et al. found greater duration and increased total exposure to antibiotics with procalcitonin guidance. There was also increased morbidity, including a 1 day increase (p=0.004) in ICU length of stay (LOS), a significant increase in days on mechanical ventilation, and increased days with abnormal renal function. A second fair quality study (n=72) was judged to be too small to be informative.

Reduced antibiotic use should decrease the number of allergic reactions, antibiotic-related side effects and toxicities, and superinfections, including the emergence of multi-drug resistant (MDR) organism and Clostridium difficile. Only one study reported on the emergence of MDR organisms and superinfections.

Respiratory Tract Infection

Eight trials (n=3,492) addressed initiation and/or discontinuation of antibiotics in patients with acute upper and lower respiratory tract infection. Settings included primary care clinics, emergency department (ED), and hospital wards. There is high strength of evidence that
procalcitonin guidance reduces antibiotic duration and prescription rates; and moderate evidence of reduction in total antibiotic exposure. Absolute reduction in duration of antibiotic therapy ranged from 1 to 7 days with relative reductions ranging from -13 to -55 percent. Absolute reduction in prescription rates ranged from -2 to -7 percent with relative reductions ranging from -1.8 to -72 percent. There was moderate evidence that procalcitonin guidance did not increase mortality, hospital length of stay, or ICU admission rates. However, a limitation of the evidence is the very large number of study participants that would be required to narrow the confidence interval for estimated mortality. There was insufficient evidence to judge effects on days of restricted activity or on antibiotic adverse events. Three studies reported on adverse antibiotic effects, and there was a statistically significant reduction in the procalcitonin-guided arm versus the control arm that was associated with reduced antibiotic use. There was no consistency, however, on how adverse effects were defined and details on the types of adverse reactions were lacking. Only one study reported that the reduction in adverse antibiotic adverse effects was mainly due to a reduction in diarrhea. A more uniform approach to evaluating and reporting adverse effects related to antibiotic use would be useful in future studies.

Neonatal Sepsis

One good quality study (n=121) provided moderate evidence that procalcitonin guidance reduces the use of antibiotic therapy for suspected early neonatal sepsis. The duration of antibiotic use was overall reduced by 22.4 hours (22.0%). Further, the proportion of neonates on antibiotics for longer than 72 hours was reduced by 27 percent. Greatest reductions were seen among neonates who were judged according to clinical criteria to have possible infection or unlikely to have infection as compared with those with proven or probable infection. Strength of evidence was judged insufficient to make conclusions on mortality and morbidity due to small study size.

Fever of Unknown Source in Children Ages 1–36 Months

The strength of evidence was judged insufficient to draw conclusions on outcomes of procalcitonin-guided antibiotic therapy for fever of unknown source in children 1–36 months of age. One good quality RCT (n=384) reported no significant results.

Postoperative Patients at Risk of Infection

The strength of evidence was judged insufficient to draw conclusions on outcomes of procalcitonin-guidance to determine preemptive antibiotic therapy for patients after colorectal surgery. The evidence consisted of one small (n=20) trial.

Clinical Context and Applicability of Evidence for Decisionmaking

The diagnosis of sepsis is challenging because the clinical criteria for the diagnosis overlap with noninfectious causes of systemic inflammation, such as the systemic inflammatory response syndrome. Initiation of antibiotic therapy for sepsis is necessary even while the diagnostic evaluation is ongoing since delayed antibiotic therapy is associated with increased mortality. A biomarker, such as procalcitonin, that improves decisions about initiating, discontinuing, or changing antibiotic therapy, could have substantial clinical benefits. This
systematic review found that procalcitonin guidance reduces antibiotic use for adult patients in both medical and surgical ICUs. Generalizing results from the studies reviewed here, conducted primarily in Europe, would depend on similar use of and adherence with trial-based algorithms guiding antibiotic decision-making. Studies included patients who had co-morbidities that are common in the ICU patients (e.g., cardiac disease, diabetes, chronic lung disease, cirrhosis, chronic renal failure, cancer), and thus, the evidence from these studies are applicable to clinical practice in the ICU setting.

Respiratory tract infections contribute significantly to the problem of antibiotic misuse. Approximately 75 percent of all antibiotics prescribed in the ambulatory setting are for acute respiratory tract infections, but the vast majority of these infections are viral and do not benefit from antibiotic treatment. Clinical and microbiological evaluations are neither sensitive nor specific to differentiate bacterial from viral respiratory tract infections. Because procalcitonin levels rise soon after the onset of a bacterial infection, procalcitonin can help to differentiate bacterial from viral infections. Our systematic review found that procalcitonin guidance for initiation and discontinuation of antibiotic therapy significantly reduced antibiotic prescription rates and duration in patients with acute respiratory tract infections, including acute exacerbations of chronic obstructive pulmonary disease, community acquired pneumonia (CAP) and acute bronchitis. In most of these studies, antibiotic therapy was encouraged if the procalcitonin level was greater than 0.25 ng/mL, because a bacterial infection was likely. Similarly antibiotic therapy was discouraged if the procalcitonin level was less than 0.25 ng/mL because a bacterial infection was unlikely.

Certain populations, however, were excluded from one or more studies of procalcitonin guidance reviewed in this report. These groups might be considered high risk for increased morbidity and/or mortality with delayed initiation or shorter courses of antibiotic therapy, or may not have the same procalcitonin rise in response to infection due to their co-morbidities. Thus, findings from this review should not be extrapolated to these high-risk groups, which include pregnant patients; patients with absolute neutropenia; and other immunocompromised populations (solid organ and stem-cell transplant recipients, patients with advanced HIV infection/AIDS). Although such patients were excluded in these studies, future studies may help to determine if procalcitonin-guided antibiotic therapy is beneficial in these groups, as well. Although febrile neutropenic patients are usually continued on antibiotics until the neutropenia resolves, the most recent guidelines suggest that patients can be switched to an oral fluoroquinolone when an infection has been adequately treated, and procalcitonin guidance could potentially be used in this context. Of note, patients with chronic infections and infections where a longer duration of antibiotic therapy is standard of care, such as infective endocarditis, were also appropriately excluded from these studies.

Applicability to pediatric settings is a significant gap in the present evidence. Only two RCTs reported on procalcitonin guidance in pediatric populations. One study included neonates with suspected early sepsis. While antibiotic use was reduced, the trial was underpowered for morbidity and mortality outcomes. In fact, there were no mortality events in either arm of the study and only 21 of 121 neonates in the study had a probable or proven infection. The second study evaluated procalcitonin-guided antibiotic therapy in children ages 1–36 months presenting to the ED with fever of unknown etiology. No significant differences were observed for measures of antibiotic use, morbidity, or mortality with procalcitonin guidance. The evidence from this single study was judged insufficient to reach conclusions about the use of procalcitonin guidance in this setting. It is important to note that bacterial infections
were uncommon in the study population. Only 25 percent of children were admitted to the hospital and about 27 percent received antibiotics overall. This rate was even lower, 10 and 9 percent respectively, if the children with neutropenia or a serious bacterial infection were excluded. There were no studies in children ages 3 to 18 years.

Ultimately, the value of procalcitonin-guided antibiotic therapy depends on the clinical benefits of reduced antibiotic use, which is difficult to quantify. Immediate consequences may include decrease in allergic reactions, drug toxicities, and frequency of *C. difficile* infection. A major downstream effect of reducing antibiotic use may be a lower probability of emergence of antibiotic-resistant strains. Antimicrobial resistance contributes to morbidity, mortality, and health care costs. Though infection control programs reduce transmission of resistant bacteria between patients, they do not affect development of resistance which occurs, in part, due to antibiotic overuse. There is some evidence that the development of resistance is more related to antibiotic treatment than transmission from patient to patient.\(^{53,54}\) There are several studies and indirect lines of evidence that suggest that control of antibiotic use can reduce emergence of resistance, but the data are limited.\(^{46}\) Reductions in antibiotic course duration have been associated with significant reductions in antibiotic adverse effects, *C. difficile* colitis, and superinfection with multidrug-resistant Gram-negative rods.\(^{46-48}\)

In our systematic review, few studies reported on allergic and adverse events of antibiotic use \(^{27,40,42}\) and only one\(^ {32}\) reported on antibiotic resistance. The durability in reduction of antibiotic use is not addressed in these trials which limits their applicability to clinical practice. The setting of a clinical trial, or highly visible introduction of a new practice, can have a halo effect on physician behavior so the present evidence does not address long-term impact of using procalcitonin guidance in a real-world clinical setting. Antibiotic stewardship programs are now recommended for all institutions and there are guidelines for how they should function.\(^ {55}\) Antibiotic stewardship programs are associated with reduced antibiotic use and also decreased adverse effects of antibiotic therapy. The evidence in this review does not compare outcomes of using procalcitonin guidance versus antibiotic stewardship programs nor does it address whether addition of procalcitonin to an antibiotic stewardship programs improves outcomes. There is at least one report\(^ {56}\) that indicates the use of procalcitonin measurements may be used as part of an antibiotic stewardship program to decrease the duration of antibiotic therapy. Antibiotic stewardship activities are usually limited to the acute care hospital setting. Although it would be difficult or impractical for antibiotic stewardship programs to have active intervention in the outpatient setting, the use of procalcitonin might complement other types of outpatient programs, such as educational programs for physicians and patients aimed at reducing the use of antibiotics for respiratory tract infections.\(^ {51}\)

Discussion of Present Findings in Context of Other Systematic Reviews

We are aware of four systematic reviews\(^ {3,19-21}\) that were published prior to our present review; the findings of our review are discussed in the context of these prior reviews. All of the previous reviews (including the present review) came to similar conclusions: procalcitonin-guided antibiotic decisionmaking compared with clinical criteria-guided antibiotic decision making reduces antibiotic use and is not associated with increased mortality or morbidity. We reviewed all published RCTs of the use of procalcitonin-guided initiation or discontinuation of antibiotic therapy, as well as studies that used procalcitonin for other interventions in patients with infection and/or sepsis. A total of 18 RCTs were included in our systematic review. As the
most recent systematic review, ours is the only one that includes the large (n=1,200) high quality trial by Jensen et al. The Jensen trial is unique in showing that procalcitonin-guided intensification of antibiotic therapy to broaden the spectrum of bacterial coverage does not improve outcomes in critically ill patients, and in fact, may have adverse consequences. Among all the systematic reviews, only ours distinguished between procalcitonin-guided antibiotic intensification therapy, in contrast to procalcitonin-guided antibiotic initiation or discontinuation therapy.

As Table 3 shows, our systematic review differs from previous systematic reviews in terms of number of studies included, scope of indications addressed, and how populations were grouped for clinical relevance. The number of trials included in previous systematic reviews ranged from seven trials to 14 trials. While the three systematic reviews that each included seven studies overlapped to a large degree, none included the same studies. Agarwal and Schwartz included one published abstract not included in any other systematic review. We did not include the published abstract by Layios in our review, since it was not possible to assess study quality from an abstract. Tang included patients in ICUs and patients with respiratory tract infections, but did not analyze the data from each population separately. Kopterides focused on studies in the ICU population but their meta-analysis of antibiotic use outcomes pooled data from neonatal population with the adult population. A strength of the Scheutz review was separate meta-analyses of mortality based on acuity of illness (primary care, ED, and ICU patients), as well as a meta-analysis for the total population. The authors concluded that procalcitonin guidance reduces antibiotic duration in primary care, ED, and ICU patients, and reduces prescription rates only in lower acuity primary care and ED patients. The Scheutz review included the 2009 study by Long, whereas we had access to an overlapping, but more recent report of this study.

A strength of the present review is that it addresses pediatric populations separately from adult patients. In addition, it also recognizes that there are distinct patient groups within the pediatric population stratified by age. In our review, we separately grouped neonates and children ages 1–36 months, each represented by a single study. There were no studies in children ages 3 years to 18 years.
Table 31. Summary of systematic reviews

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tang, 2008</td>
<td>7</td>
<td>1,458</td>
<td>No</td>
<td>Adult ICU (3) and RTI (4)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kopterides, 2010</td>
<td>7</td>
<td>1,131</td>
<td>Yes</td>
<td>ICU [adult (6) and neonates(1)]</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agarwal, 2011</td>
<td>6</td>
<td>1,476</td>
<td>No</td>
<td>Adult ICU (6)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scheutz, 2011</td>
<td>14</td>
<td>4,467</td>
<td>No</td>
<td>Primary care (2)</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ED (6)</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICU (6)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Review</td>
<td>18</td>
<td>4,955</td>
<td>Yes</td>
<td>Adult ICU discontinuation</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adult ICU intensification</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adult RTI</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Neonates</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Children, 1-36 months</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Post-op patients</td>
<td></td>
</tr>
</tbody>
</table>

ED = emergency department; ICU = intensive care unit; post-op = postoperative; RTI = respiratory tract infection
*Published only as an abstract.
Limitations of Present Review

A challenging aspect of this review was appraising the strength of evidence that procalcitonin-guided therapy did not result in any increased morbidity or mortality in the critically ill and respiratory tract infection populations. In the studies of critically ill patients where procalcitonin was used to reduce antibiotic exposure, only the Bouadma study did a power analysis and used a predefined margin for noninferiority for 28- and 60-day mortality. Meta-analysis was performed looking at early mortality across all five ICU studies. Results show a pooled point estimate of 0.4 percentage-point reduction in mortality, and the 95% confidence interval (CI) for the difference in mortality between procalcitonin-guided therapy and standard care was between -6 percent and 5 percent favoring the procalcitonin-guided therapy group. There is disagreement, however, whether or not this falls within the appropriate noninferiority margin. The choice of a noninferiority margin only requires sufficient precision to exclude a minimal important difference (MID). Although a 10 percent noninferiority margin for mortality has been recommended by the IDSA and ACCP in relevant populations, there is concern, expressed by some peer reviewers and in literature, that a 10 percent margin may be too high. Initially, a higher strength of evidence was considered but due to this uncertainty of the noninferiority margin, the strength of evidence was downgraded to low that procalcitonin-guided antibiotic therapy in the ICU does not increase mortality. Even though overall strength of evidence was low, the results were judged to be precise because the pooled point estimate was centered on the null and the 95% CI was narrow (11 percentage points). While only one study was powered for mortality, one purpose for meta-analysis is to overcome insufficient power and the group of studies was highly consistent: statistical heterogeneity, as expressed by the I² statistic, was found to be 0 percent. Sixty-day mortality was reported by one study and was not included in our analysis because late mortality is more likely related to underlying comorbidities. Moreover, there are presently two large trials in progress, which may in the future yield more precise estimates of mortality.

Our systematic review compared procalcitonin guidance with antibiotic therapy based on usual clinical criteria, algorithms, or guidelines. In view of the present emphasis on the overuse of antibiotics, other interventions to reduce antibiotic use, such as institution of antibiotic stewardship programs and implementation of practice guidelines in institutional settings, may have been more robust comparators by which to assess the outcomes of procalcitonin guidance. A limitation of our review is that we did not systematically seek evidence comparing procalcitonin guidance with antibiotic stewardship programs or other programs aimed at reducing antibiotic use. We also did not assess studies that have implemented procalcitonin-guided antibiotic therapy into an antibiotic stewardship program.

Future Research

Summary of Weaknesses or Gaps in the Evidence

This systematic review compared outcomes of procalcitonin guidance compared with clinical criteria alone to initiate, discontinue or intensify antibiotic therapy. We identified five gaps in the evidence related to specific populations or comparators. We also identified methodologic weaknesses that were common across the studies and bodies of evidence reviewed in this report.
Research Gap 1: What Are the Outcomes of Procalcitonin Guidance in Subgroups of Patients Who Are Immunocompromised?

Patients with certain conditions were excluded from these studies, including neutropenia and immunocompromised states (solid organ and stem-cell transplant recipients, and patients with advanced HIV infection). The reasons for excluding such patients were not specifically stated. Because procalcitonin levels are affected by the host cytokine response to infection, the procalcitonin cutoff levels are most likely to differ in these populations. These populations are often excluded from clinical trials because these groups may be at higher risk of adverse outcomes. Finally, for some groups, such as neutropenic patients, antibiotics are continued until the neutropenia resolves, rather than until there is a clinical resolution.

Immunocompromised patients often comprise a significant portion of the ICU population, and in the large PRORATA study, where immunocompromised patients were included, they accounted for 16.6 percent of the population. In the PROVAP study of ventilator-associated pneumonia, 27.9 percent of the eligible patients were excluded because of immunosuppression. Even in community respiratory tract infections, such as CAP (7.6% excluded) and even in other respiratory tract infections (2.5% excluded), there is a significant subgroup of patients who are immunocompromised or have condition such as cystic fibrosis where the efficacy and safety of procalcitonin-guided therapy is unknown.

Six of the eight studies evaluating procalcitonin guidance in patients with acute respiratory tract infections specifically excluded immunocompromised patients. While severely immunocompromised patients presenting with clinical signs of infection are most likely treated empirically with antibiotics, patients with mild to moderate immunosuppression, such as patients on low-dose corticosteroids for chronic inflammatory conditions, may not benefit from antibiotic therapy, even though they are often treated empirically. Procalcitonin guidance may have a potential role in reducing antibiotic use in the ambulatory patients with mild to moderate immunosuppression compared with standard therapy.

Exclusion of immunocompromised patients was common across all five patient populations in this review. Immunocompromised patients are considered high risk for increased morbidity and/or mortality with delayed initiation or shorter courses of antibiotic therapy, or may not have the same procalcitonin rise in response to infection due to their co-morbidities. However, immunocompromised patients may also gain significant clinical benefits if their antibiotic use can be safely reduced, because they are vulnerable to mortality and morbidity from antibiotic resistance and adverse effects of antibiotics.

In addition to immunocompromised patients, future research in needed in patients with certain local or systemic infections, such as skin and soft tissue infections and osteomyelitis. These are relatively common infections in which initiation and/or duration of antibiotic therapy is often unclear, and procalcitonin guidance may have a potential role in reducing antibiotic use.

Research Gap 2: What Are the Outcomes of Procalcitonin Guidance in Pediatric Patients?

Only two studies reported on procalcitonin guidance in pediatric populations, and both were underpowered to assess morbidity and mortality outcomes. Both studies were limited to the acute care hospital setting. In our review, we grouped separately neonates and children ages 1-36 months, each represented by a single study. There were no studies in children ages 3 years to 18 years. Future studies of procalcitonin-guided initiation and discontinuation of antibiotics in
the pediatric population will be extremely important. The overuse of antibiotics in pediatrics, in both the inpatient and outpatient setting, is as important among children, as it is in adults.

Research Gap 3: What Are the Outcomes of Procalcitonin Guidance in Identifying Patients at Risk of Infection Who Might Benefit From Preemptive Antibiotic Therapy?

The study by Chromik et al.\(^4\) reported that procalcitonin levels could accurately identify a subpopulation, 8 percent of patients who underwent elective colorectal surgery, who were at risk of a local or systemic infection. Although this was a small study, the evidence suggests that this approach might identify a group who would benefit from preemptive antibiotic therapy given before any infection is clinically evident. Larger studies are needed to confirm that preemptive antibiotic therapy can reduce infectious complications. Other patient populations who are at risk for infectious complications include burn patients, ICU patients, and postoperative patients who have undergone procedures other than colorectal surgery.

Research Gap 4: Does the Use of Procalcitonin Guidance Reduce Antibiotic Resistance and Antibiotic Adverse Events?

Although the importance of reducing antibiotic use is recognized and accepted, there was insufficient evidence from the RCTs we reviewed that the observed reduction in antibiotic use had any benefits with respect to antibiotic adverse reactions, superinfections, or the development of resistance. Adverse antibiotic effects were reported in only three studies\(^27,40,42\) and the findings were reported in different ways. Only one study\(^39\) reported on the emergence of multidrug resistant bacteria, with no differences found between procalcitonin-guided and standard antibiotic therapy, and none reported on the incidence of *C. difficile*. When designing future studies, there should be consideration for standardized reporting of adverse events from antibiotics, the incidence of *C. difficile*, and active surveillance for colonization with drug-resistant pathogens. Quality of life was not addressed in any of the randomized controlled studies included in this review, and if future research demonstrates a significant reduction in antibiotic adverse events, addressing quality of life would be an important consideration to include in future trials.

Research Gap 5: How Does Procalcitonin-Guided Antibiotic Therapy Compare With Other Approaches for Reducing Unnecessary Antibiotic Use, Such as Antibiotic Stewardship Programs and Implementation of Practice Guidelines?

In view of the present emphasis on the overuse of antibiotics, other interventions to reduce antibiotic use, such as institution of antibiotic stewardship programs and structured implementation of practice guidelines, may have been more robust comparators by which to assess the outcomes of procalcitonin-guided decisions on initiation and discontinuation of antibiotic therapy. Our review did not systematically seek evidence comparing procalcitonin guidance with other interventions to reduce antibiotic use, or evidence assessing whether addition of procalcitonin guidance to other interventions improves outcomes. So a systematic review that addresses a broader range of comparators is likely an initial step to determine whether there is an evidence gap and the nature of any gap or gaps. Given the urgency of
reducing unnecessary use of antibiotics, there may be promising opportunities for future research that can inform clinical practice.

In addition to the research gaps above, we also identified four important methodologic weaknesses that were common across the studies and bodies of evidence reviewed in this report.

Summary of Methodological Weaknesses in the Evidence

Weakness 1: Measurement of Total Antibiotic Exposure

Total antibiotic exposure is used to capture the patient’s total exposure to all antibiotics, and it is calculated by multiplying the total number of antibiotics by the number of days the patient is receiving each of the antibiotics. Total antibiotic exposure is conventionally reported as mean days per 1,000 days of followup, but some of the studies in this review only reported relative or absolute differences. The differences in reporting limited our ability to pool the total antibiotic exposure data in this review. Consistent use of the conventional measure of mean days per 1,000 days of followup would improve accumulation of a robust body of evidence on the outcomes of procalcitonin guidance.

Weakness 2: Measurement of Morbidity

There were various measures of morbidity across these studies, and that was true even between studies that were grouped together because of their similarities. Although admission rates, LOS, and ICU LOS were easy to compare, other measures were not. In the ICU populations, for example, the need for mechanical ventilation was often reported differently and studies used a variety of severity of illness scores (SOFA, SAP II, SAP III, and APACHE II). This makes it difficult to compare or pool data across studies.

Weakness 3: Rationale for Noninferiority Margins for Studies of Mortality

Mortality rates in trials of procalcitonin-guided therapy implicitly or explicitly pose a question of noninferiority, that is, can reduction in antibiotic use be achieved without a deleterious impact on survival? Is mortality no worse than with usual care? The choice of a noninferiority margin incorporates clinical and statistical judgments. The PRORATA 39 trial, which was the largest trial (n=621) of procalcitonin used to discontinue antibiotic in the ICU populations, was designed to have an 80 percent power to exclude a 10 percent difference in mortality between groups. However, there is concern that the 10 percent noninferiority margin chosen was not sufficiently narrow to exclude excess mortality. Studies where mortality is an outcome of interest should provide an explicit rationale for the choice of noninferiority margin in specific patient populations. Moreover, “the choice of margin should be independent of considerations of power as the size of the clinically important difference is not altered by the size of the study.”

Weakness 4: Reporting and Interpreting Nonsignificant Differences

A common statistical error in the medical literature is the conclusion that nonsignificant differences (p>0.05) are “similar.” Most studies included in our systematic review were insufficiently powered to address mortality outcomes. Of the five studies of antibiotic discontinuation in ICU patients, only the Bouadma et al. study 39 was powered to show noninferiority in mortality between procalcitonin-guided and control group antibiotic therapy.
However, three32,33,35 of the four32-35 remaining studies have erroneously concluded that mortality was similar between procalcitonin and control group guided antibiotic therapy based on observed nonsignificant differences in mortality. These three studies reported results as follows: “…without any adverse effects on outcome….”33 “…a similar mortality were observed in procalcitonin and control groups…”32 and “…absence of differences in overall mortality suggest that procalcitonin guided antibiotic reduction is not associated with a worse outcome in VAP…”35 Clearly stating in the abstract that the study was not powered to detect a difference in mortality would provide a more accurate reporting of the results.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABT</td>
<td>antibiotic</td>
</tr>
<tr>
<td>ACCP</td>
<td>American College of Chest Physicians</td>
</tr>
<tr>
<td>AECOPD</td>
<td>acute exacerbations of chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>AIDS</td>
<td>acquired immunodeficiency syndrome</td>
</tr>
<tr>
<td>APACHE</td>
<td>acute physiology and chronic health evaluation</td>
</tr>
<tr>
<td>ATS</td>
<td>American Thoracic Society</td>
</tr>
<tr>
<td>CAP</td>
<td>community acquired pneumonia</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>COPD</td>
<td>chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>ED</td>
<td>emergency department</td>
</tr>
<tr>
<td>EPC</td>
<td>evidence practice center</td>
</tr>
<tr>
<td>EPICOT</td>
<td>evidence, population, intervention, comparison, outcome, timestamp</td>
</tr>
<tr>
<td>FDA</td>
<td>food and drug administration</td>
</tr>
<tr>
<td>GOLD</td>
<td>global initiative for chronic obstructive pulmonary diseases</td>
</tr>
<tr>
<td>GRADE</td>
<td>grading of recommendations assessment, development, and evaluation</td>
</tr>
<tr>
<td>HIV</td>
<td>human immunodeficiency virus</td>
</tr>
<tr>
<td>ICU</td>
<td>intensive care unit</td>
</tr>
<tr>
<td>IDSA</td>
<td>Annual Meeting of Infectious Diseases Society of America</td>
</tr>
<tr>
<td>IL</td>
<td>interleukin</td>
</tr>
<tr>
<td>LOS</td>
<td>length of stay</td>
</tr>
<tr>
<td>LRTI</td>
<td>Lower respiratory tract infection</td>
</tr>
<tr>
<td>NR</td>
<td>not reported</td>
</tr>
<tr>
<td>NSS</td>
<td>not statistically significant</td>
</tr>
<tr>
<td>PCT</td>
<td>procalcitonin</td>
</tr>
<tr>
<td>PFT</td>
<td>pulmonary function test</td>
</tr>
<tr>
<td>PICOTS</td>
<td>patient, intervention, comparator, outcome, timing, and setting</td>
</tr>
<tr>
<td>PRORATA</td>
<td>Procalcitonin to Reduce Antibiotic Treatments In Acutely Ill Patients</td>
</tr>
<tr>
<td>QOL</td>
<td>quality of life</td>
</tr>
<tr>
<td>RCT</td>
<td>randomized controlled trial</td>
</tr>
<tr>
<td>RTI</td>
<td>respiratory tract infection</td>
</tr>
<tr>
<td>SAPS</td>
<td>simplified acute physiology score</td>
</tr>
<tr>
<td>SBI</td>
<td>serious blood infections</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SIPs</td>
<td>scientific information packets</td>
</tr>
<tr>
<td>SIRS</td>
<td>systemic inflammatory response syndrome</td>
</tr>
<tr>
<td>SOE</td>
<td>strength of evidence</td>
</tr>
<tr>
<td>SOFA</td>
<td>Sepsis-Related Organ Failure Assessment</td>
</tr>
<tr>
<td>TEP</td>
<td>technical expert panel</td>
</tr>
<tr>
<td>TOO</td>
<td>Task Order Officer</td>
</tr>
<tr>
<td>URTI</td>
<td>upper respiratory tract infection</td>
</tr>
<tr>
<td>VAP</td>
<td>ventilator-associated pneumonia</td>
</tr>
<tr>
<td>WBC</td>
<td>white blood cells</td>
</tr>
</tbody>
</table>
References

Appendix A. Search Strategy

The following electronic databases were searched for citations.

- MEDLINE® (inception [1948] through December 16, 2011)
- Cochrane Controlled Trials Register (no date restriction)

MEDLINE search 12/16/11

1. procalcitonin
3. ("Neutropenia"[MeSH] OR neutropenia) AND febrile
4. sepsis OR septic OR "systematic inflammatory response syndrome" OR ICU OR "critically ill" OR "intensive care unit" OR "postoperative infection"
6. (2 OR 3 OR 4 OR 5) AND Limits: Humans, English
7. 1 AND 6 Limits: Humans, English
8. A second result set was created in the database with set number 1 NOT set 7

EMBASE search 12/16/11

1. procalcitonin AND Limit: Humans NOT MEDLINE
2. 'sepsis'/exp OR septic OR 'systemic inflammatory response syndrome'/exp OR 'copd'/exp OR 'chronic obstructive pulmonary disease'/exp OR 'febrile neutropenia'/exp OR 'postoperative infection'/exp OR 'postoperative infections'/exp OR 'postoperative complications'/exp OR 'post-surgical infection' OR 'post-surgical infections' OR 'critically ill'/exp OR icu OR 'intensive care'/exp OR 'intensive care units'/exp AND Limit: Humans
3. 1 AND 2
4. 1 NOT 3
Search Strategy For Gray Literature

Regulatory Information

FDA
Source: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm
Date searched: 6/3/2011
Search strategy: key word “procalcitonin assay”
Records: 3

Clinical trial registries

NIH database
Source: http://clinicaltrials.gov/
Date searched: 7/06/2011
Search strategy: Procalcitonin [ALL-FIELDS] AND “Completed” [OVERALL-STATUS]
Records: 29

BioMed central
Source: http://www.controlled-trials.com/mrct/
Date searched: 6/16/2011
Search strategy: “Procalcitonin” for completed trials
Records: 7

PhRMA
Source: http://www.clinicalstudyresults.org/home/
Date searched: 6/16/2011
Search strategy: Search String = “Procalcitonin”
Records: 0

WHO International Clinical Trials Registry Platform Search Portal
Source: http://apps.who.int/trialsearch/
Date searched: 6/16/2011
Search strategy: Search String = “Procalcitonin” for ALL recruitment status trials
Records: 55

Conference papers and abstracts

Cambridge scientific abstracts
Date searched: 6/28/2011
Search strategy: search string “procalcitonin”
Records: 41

Scopus
Source: http://www.scopus.com/home.url
Date searched: 6/29/2011
Search strategy:
1 TITLE-ABS-KEY(sepsis) RESULT 93,988
2 TITLE-ABS-KEY(biomarker* OR procalcitonin) RESULT 73,083
3 TITLE-ABS-KEY(screen* OR test*) RESULT 3,391,802
4 (TITLE-ABS-KEY(sepsis) AND (TITLE-ABS-KEY(biomarker* OR procalcitonin)) AND (TITLE-ABS-KEY(screen* OR test*)) RESULT 538
LIMIT: SUBJAREA(mult OR agri OR bioc OR immu OR neur OR phar OR mult OR medi OR nurs OR vete OR dent OR heal)
Records: 376
Specific conferences and association meetings
Source:
Annual meeting of Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC)
Annual meeting of Infectious Diseases Society of America (IDSA)
Annual meeting of American College of Chest Physicians (ACCP)
Annual meeting of Pediatric Academic Societies (PAS)
Date searched: 6/21/2011
Search strategy: KW: “procalcitonin” or “sepsis” in the title
Records:33

Government documents

RePORTER
Source: http://projectreporter.nih.gov/reporter.cfm
Date searched: 6/16/2011
Search strategy: key word “procalcitonin” AND "sepsis"
Records:2

HSRPROJ
Source: http://wwwcf.nlm.nih.gov/hsr_project/home_proj.cfm
Date searched: 6/16/2011
Search strategy: key word “procalcitonin” AND "sepsis"
Records:0

AHRQ GOLD
Source: http://gold.ahrq.gov/projectsearch/
Date searched: 6/16/2011
Search strategy: key word “procalcitonin” AND "sepsis"
Records:1

Manufacturer database

Source: Thermo Fisher Scientific
Date posted: 6/13/2011
Date searched:6/15/2011
Search strategy: Not applicable
Records:67

Gray Literature searching

Scopus (performed June 2011) = 376 records
Conference Papers Index (performed June 2011) = 42 records
Clinicaltrials.gov = 2 records
Meeting abstracts from 2006-2010 for:
Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC)
Infectious Disease Society of America (IDSA)
American College of Chest Physicians
Pediatric Academic Societies (PAS)
Appendix B. Excluded Studies

EXC exclude
NRD not relevant disease (not relevant population)
NDE not relevant design
NRO not relevant outcome
SMN small n

Rec#: 4180
Exclusion Codes: SMN, EXC

Rec#: 5940
Exclusion Codes: NDE, EXC

Rec#: 11910
Exclusion Codes: NDE, EXC

Rec#: 11880
Exclusion Codes: NDE, EXC

Rec#: 15470
Exclusion Codes: NRD, EXC

Rec#: 3770
Exclusion Codes: NDE, EXC

Rec#: 2210
Exclusion Codes: NDE, EXC

Rec#: 6910
Exclusion Codes: NDE, EXC
Rec#: 6840
Exclusion Codes: SMN, EXC

Rec#: 6890
Exclusion Codes: NDE, EXC

Rec#: 1360
Exclusion Codes: NDE, EXC

Rec#: 1950
Exclusion Codes: NDE, EXC

Rec#: 5300
Exclusion Codes: NDE, EXC

Rec#: 270
Exclusion Codes: NRD, EXC

Rec#: 8250
Exclusion Codes: NDE, EXC

Rec#: 6010
Exclusion Codes: NDE, EXC

Rec#: 6260
Exclusion Codes: NRO, EXC

Rec#: 1220
Exclusion Codes: NDE, EXC

Rec#: 6930
Exclusion Codes: NRO, EXC

Rec#: 14680
Exclusion Codes: NDE, EXC

Rec#: 5490
Exclusion Codes: NDE, EXC

Rec#: 15670
Exclusion Codes: NDE, EXC

Rec#: 14410
Exclusion Codes: NRD, EXC

Rec#: 580
Exclusion Codes: NDE, EXC

Rec#: 11510
Exclusion Codes: NDE, EXC

Rec#: 170
Exclusion Codes: NDE, EXC

Rec#: 4970
Exclusion Codes: SMN, EXC

Rec#: 4070
Exclusion Codes: NDE, EXC
Rec#: 1600
Exclusion Codes: SMN, EXC

Rec#: 2710
Exclusion Codes: SMN, EXC

Rec#: 5190
Exclusion Codes: SMN, EXC

Rec#: 150
Exclusion Codes: NRO, EXC

Rec#: 5460
Exclusion Codes: SMN, EXC

Rec#: 14500
Exclusion Codes: NRD, EXC

Rec#: 14670
Exclusion Codes: NRD, EXC

Rec#: 5910
Exclusion Codes: NRO, EXC

Rec#: 8770
Exclusion Codes: NRO, EXC

Rec#: 1870
Exclusion Codes: NRD, EXC

Rec #: 300
Exclusion Codes: NDE, EXC

Rec#: 9870
Exclusion Codes: NRO, EXC

Rec#: 4500
Exclusion Codes: NDE, EXC

Rec#: 15440
Exclusion Codes: NDE, EXC

Rec#: 10720
Exclusion Codes: SMN, EXC

Rec#: 1040
Exclusion Codes: NDE, EXC

Rec#: 12380
Exclusion Codes: NDE, EXC

Rec#: 11410
Exclusion Codes: NDE, EXC

Rec#: 6720
Exclusion Codes: NDE, EXC

Rec#: 8990
Exclusion Codes: NRO, EXC

Rec#: 5220
Exclusion Codes: SMN, EXC

Rec#: 6640
Exclusion Codes: NDE, EXC

Rec#: 13240
Exclusion Codes: NDE, EXC

Rec#: 15790
Exclusion Codes: NDE, EXC

Rec#: 8310
Exclusion Codes: NDE, EXC

Rec#: 8730
Exclusion Codes: NDE, EXC

Rec#: 1080
Exclusion Codes: NDE, EXC

Rec#: 6550
Exclusion Codes: NDE, EXC

Rec#: 6070
Exclusion Codes: NRO, EXC

Rec#: 10480
Exclusion Codes: NDE, EXC

Rec#: 5120
Exclusion Codes: NDE, EXC
Rec#: 5980
Exclusion Codes: NDE, EXC

Rec#: 15020
Exclusion Codes: SMN, EXC

Rec#: 6590
Exclusion Codes: NRO, EXC

Rec#: 3410
Exclusion Codes: SMN, EXC

Rec#: 3240
Exclusion Codes: SMN, EXC

Rec#: 7450
Exclusion Codes: NDE, EXC

Rec#: 6020
Exclusion Codes: NDE, EXC

Rec#: 1990
Exclusion Codes: NDE, EXC

Rec#: 6420
Exclusion Codes: NDE, EXC

Rec#: 3570
Exclusion Codes: NDE, EXC
Exclusion Codes: SMN, EXC

Rec#: 11430
Exclusion Codes: NDE, EXC

Rec#: 12070
Exclusion Codes: NRD, EXC

Rec#: 3450
Exclusion Codes: NDE, EXC

Rec#: 3690
Exclusion Codes: NDE, EXC

Rec#: 7560
Exclusion Codes: SMN, EXC

Rec#: 9090
Exclusion Codes: NDE, EXC

Rec#: 13340
Exclusion Codes: NDE, EXC

Rec#: 1010
Exclusion Codes: NDE, EXC

Rec#: 7320
Exclusion Codes: NDE, EXC

Rec#: 5010
Exclusion Codes: NRO, EXC
Rec#: 10670
Exclusion Codes: NRD, EXC

Rec#: 5390
Exclusion Codes: NRO, EXC

Rec#: 6320
Exclusion Codes: NRO, EXC

Rec#: 6360
Exclusion Codes: NRO, EXC

Rec#: 15170
Exclusion Codes: NRO, EXC

Rec#: 17170
Exclusion Codes: NRD, EXC

Rec#: 1770
Exclusion Codes: NDE, EXC

Rec#: 7910
Exclusion Codes: NDE, EXC

Rec#: 7300
Exclusion Codes: NDE, EXC

Rec#: 9580
Exclusion Codes: NDE, EXC

B-9

Rec#: 7260
Exclusion Codes: NDE, EXC

Rec#: 5440
Exclusion Codes: NDE, EXC

Rec#: 4020
Exclusion Codes: SMN, EXC

Rec#: 5240
Exclusion Codes: NDE, EXC

Rec#: 4820
Exclusion Codes: SMN, EXC

Rec#: 3620
Exclusion Codes: SMN, EXC

Rec#: 920
Exclusion Codes: SMN, EXC

Rec#: 3490
Exclusion Codes: NDE, EXC

Rec#: 4170
Exclusion Codes: NDE, EXC

Rec#: 4400
Exclusion Codes: NDE, EXC

Rec#: 3310
Rec#: 1160

Rec#: 16800

Rec#: 3470

Rec#: 4470

Rec#: 480

Rec#: 910

Rec#: 3180

Rec#: 1200
Rec#: 1000
Exclusion Codes: NDE, EXC

Rec#: 3150
Exclusion Codes: NDE, EXC

Rec#: 7380
Exclusion Codes: SMN, EXC

Rec#: 12430
Exclusion Codes: NRD, EXC

Rec#: 1760
Exclusion Codes: SMN, EXC

Rec#: 6700
Exclusion Codes: NDE, EXC

Rec#: 1720
Exclusion Codes: NDE, EXC

Rec#: 6790
Exclusion Codes: NDE, EXC

Rec#: 5020
Exclusion Codes: NDE, EXC

Rec#: 5260
Exclusion Codes: NDE, EXC
Rec#: 10410
Exclusion Codes: SMN, EXC

Rec#: 3380
Exclusion Codes: NDE, EXC

Rec#: 3270
Exclusion Codes: NDE, EXC

Rec#: 2430
Exclusion Codes: NRD, EXC

Rec#: 16360
Exclusion Codes: NRD, EXC

Rec#: 12630
Exclusion Codes: NDE, EXC

Rec#: 2490
Exclusion Codes: NDE, EXC

Rec#: 16860
Exclusion Codes: SMN, EXC

Rec#: 4390
Exclusion Codes: NRO, EXC

Rec#: 9710
Exclusion Codes: NRO, EXC

B-14
Rec#: 6960
Exclusion Codes: NDE, EXC

Rec#: 15320
Exclusion Codes: NDE, EXC

Rec#: 5420
Exclusion Codes: SMN, EXC

Rec#: 4300
Exclusion Codes: SMN, EXC

Rec#: 3500
Exclusion Codes: NDE, EXC

Rec#: 4080
Exclusion Codes: NDE, EXC

Rec#: 10000
Exclusion Codes: NDE, EXC

Rec#: 10370
Exclusion Codes: NDE, EXC

Rec#: 16720
Exclusion Codes: NRO, EXC

Rec#: 1580
Exclusion Codes: SMN, EXC
Rec#: 7250
Exclusion Codes: NDE, EXC

Rec#: 3260
Exclusion Codes: NDE, EXC

Rec#: 1290
Exclusion Codes: NDE, EXC

Rec#: 6350
Exclusion Codes: NDE, EXC

Rec#: 8740
Exclusion Codes: NDE, EXC

Rec#: 7440
Exclusion Codes: NDE, EXC

Rec#: 11030
Exclusion Codes: NRO, EXC

Rec#: 7700
Exclusion Codes: NDE, EXC

Rec#: 460
Exclusion Codes: SMN, EXC

Rec#: 1320
Exclusion Codes: SMN, EXC

Rec#: 3840
Exclusion Codes: NDE, EXC

Rec#: 7510
Exclusion Codes: NDE, EXC

Rec#: 15820
Exclusion Codes: NDE, EXC

Rec#: 4930
Exclusion Codes: NDE, EXC

Rec#: 8890
Exclusion Codes: NDE, EXC

Rec#: 250
Exclusion Codes: NDE, EXC

Rec#: 13140
Exclusion Codes: NRD, EXC

Rec#: 12160
Exclusion Codes: NDE, EXC

Rec#: 16020
Exclusion Codes: NDE, EXC

Rec#: 10020
Exclusion Codes: NDE, EXC

Rec#: 9970
Rec#: 16810
Exclusion Codes: NDE, EXC

Rec#: 5520
Exclusion Codes: NDE, EXC

Rec#: 4420
Exclusion Codes: NDE, EXC

Rec#: 7430
Exclusion Codes: NDE, EXC

Rec#: 8510
Exclusion Codes: NDE, EXC

Rec#: 4520
Exclusion Codes: NDE, EXC

Rec#: 3090
Exclusion Codes: NDE, EXC

Rec#: 4600
Exclusion Codes: SMN, EXC

Rec#: 2160
Exclusion Codes: NRO, EXC

Rec#: 13530
Exclusion Codes: NRD, EXC
Rec#: 14590
Exclusion Codes: SMN, EXC

Rec#: 4720
Exclusion Codes: SMN, EXC

Rec#: 7660
Exclusion Codes: NDE, EXC

Rec#: 7420
Exclusion Codes: NDE, EXC

Rec#: 8710
Exclusion Codes: NDE, EXC

Rec#: 11960
Exclusion Codes: NDE, EXC

Rec#: 10210
Exclusion Codes: SMN, EXC

Rec#: 10900
Exclusion Codes: NDE, EXC

Rec#: 10800
Exclusion Codes: NDE, EXC

Rec#: 15430
Rec#: 15210
Exclusion Codes: NDE, EXC

Rec#: 4480
Exclusion Codes: SMN, EXC

Rec#: 7060
Exclusion Codes: NDE, EXC

Rec#: 8640
Exclusion Codes: NRO, EXC

Rec#: 8820
Exclusion Codes: NDE, EXC

Rec#: 8940
Exclusion Codes: SMN, EXC

Rec#: 1530
Exclusion Codes: SMN, EXC

Rec#: 14710
Exclusion Codes: NDE, EXC

Rec#: 6430
Exclusion Codes: NDE, EXC

Rec#: 13320
Exclusion Codes: NRD, EXC

Rec#: 12000
Exclusion Codes: NDE, EXC

Rec#: 3820
Exclusion Codes: NDE, EXC

Rec#: 13130
Exclusion Codes: NRD, EXC

Rec#: 4640
Exclusion Codes: NDE, EXC

Rec#: 1410
Exclusion Codes: NDE, EXC

Rec#: 2350
Exclusion Codes: NDE, EXC

Rec#: 4620
Exclusion Codes: NDE, EXC

Rec#: 2620
Exclusion Codes: SMN, EXC

Rec#: 1540
Exclusion Codes: NDE, EXC

Rec#: 16000
Exclusion Codes: NDE, EXC

Rec#: 12360
Rec#: 1680
Exclusion Codes: NDE, EXC

Rec#: 5900
Exclusion Codes: NDE, EXC

Rec#: 4150
Exclusion Codes: NRO, EXC

Rec#: 2130
Exclusion Codes: SMN, EXC

Rec#: 10680
Exclusion Codes: NDE, EXC

Rec#: 9850
Exclusion Codes: SMN, EXC

Rec#: 12620
Exclusion Codes: NDE, EXC

Rec#: 13110
Exclusion Codes: NDE, EXC

Rec#: 3280
Exclusion Codes: SMN, EXC

Rec#: 2640
Rec#: 3390
Exclusion Codes: NDE, EXC

Rec#: 2170
Exclusion Codes: NDE, EXC

Rec#: 2900
Exclusion Codes: NDE, EXC

Rec#: 9800
Exclusion Codes: SMN, EXC

Rec#: 4910
Exclusion Codes: NDE, EXC

Rec#: 11370
Exclusion Codes: NDE, EXC

Rec#: 6920
Exclusion Codes: NRO, EXC

Rec#: 6850
Exclusion Codes: NDE, EXC

Rec#: 10520
Exclusion Codes: NDE, EXC

Rec#: 16950
Exclusion Codes: NDE, EXC
Rec#: 17080
Exclusion Codes: FLA, EXC

Rec#: 17130
Exclusion Codes: NDE, EXC

Rec#: 10910
Exclusion Codes: SMN, EXC

Rec#: 10640
Exclusion Codes: NDE, EXC

Rec#: 15480
Exclusion Codes: NRD, EXC

Rec#: 2570
Exclusion Codes: NRD, EXC

Rec#: 4740
Exclusion Codes: SMN, EXC

Rec#: 6830
Exclusion Codes: NRO, EXC

Rec#: 10950
Exclusion Codes: NRO, EXC

Rec#: 10330
Exclusion Codes: SMN, EXC

B-26
Rec#: 730
Exclusion Codes: NRO, EXC

Rec#: 4090
Exclusion Codes: NDE, EXC

Rec#: 5770
Exclusion Codes: NDE, EXC

Rec#: 5170
Exclusion Codes: NDE, EXC

Rec#: 4290
Exclusion Codes: NDE, EXC

Rec#: 60
Exclusion Codes: NDE, EXC

Rec#: 3800
Exclusion Codes: SMN, EXC

Rec#: 2650
Exclusion Codes: SMN, EXC

Rec#: 3860
Exclusion Codes: SMN, EXC

Rec#: 11320
Exclusion Codes: NDE, EXC
Rec#: 14330
Exclusion Codes: NDE, EXC

Rec#: 12040
Exclusion Codes: NDE, EXC

Rec#: 11860
Exclusion Codes: NDE, EXC

Rec#: 720
Exclusion Codes: NRO, EXC

Rec#: 15240
Exclusion Codes: NRD, EXC

Rec#: 17020
Exclusion Codes: NRD, EXC

Rec#: 7070
Exclusion Codes: NDE, EXC

Rec#: 11500
Exclusion Codes: SMN, EXC

Rec#: 1590
Exclusion Codes: NDE, EXC

Rec#: 500
Exclusion Codes: NDE, EXC

Rec#: 2870
Exclusion Codes: NDE, EXC

Rec#: 5430
Exclusion Codes: NDE, EXC

Rec#: 7720
Exclusion Codes: NDE, EXC

Rec#: 9110
Exclusion Codes: NDE, EXC

Rec#: 8670
Exclusion Codes: SNM, EXC

Rec#: 5350
Exclusion Codes: SMN, EXC

Rec#: 8810
Exclusion Codes: SMN, EXC

Rec#: 1460
Exclusion Codes: SMN, EXC

Rec#: 5310
Exclusion Codes: NDE, EXC

Exclusion Codes: NRO, EXC

Rec#: 6390
Exclusion Codes: NDE, EXC

Rec#: 6080
Exclusion Codes: SMN, EXC

Rec#: 16910
Exclusion Codes: SMN, EXC

Rec#: 8280
Exclusion Codes: NDE, EXC

Rec#: 420
Exclusion Codes: NDE, EXC

Rec#: 13360
Exclusion Codes: NDE, EXC

Rec#: 6990
Exclusion Codes: NDE, EXC

Rec#: 5480
Exclusion Codes: NDE, EXC

Rec#: 2750
Exclusion Codes: NDE, EXC

Rec#: 15800
Exclusion Codes: NDE, EXC

Rec#: 10580
Exclusion Codes: SMN, EXC

Rec#: 15960
Exclusion Codes: NDE, EXC

Rec#: 8840
Exclusion Codes: NDE, EXC

Rec#: 11970
Exclusion Codes: NDE, EXC

Rec#: 10260
Exclusion Codes: NDE, EXC

Rec#: 4610
Exclusion Codes: NDE, EXC

Rec#: 3190
Exclusion Codes: SMN, EXC

Rec#: 15340
Exclusion Codes: NRO, EXC

Rec#: 8500
Exclusion Codes: NDE, EXC

Rec#: 15150
Exclusion Codes: NRD, EXC
Rec#: 5800
Exclusion Codes: SMN, EXC

Rec#: 9550
Exclusion Codes: NDE, EXC

Rec#: 6220
Exclusion Codes: NRO, EXC

Rec#: 7230
Exclusion Codes: NDE, EXC

Rec#: 15780
Exclusion Codes: NDE, EXC

Rec#: 570
Exclusion Codes: SMN, EXC

Rec#: 2050
Exclusion Codes: SMN, EXC

Rec#: 3750
Exclusion Codes: NDE, EXC

Rec#: 16250
Exclusion Codes: NRD, EXC
Rec#: 5780
Exclusion Codes: NDE, EXC

Rec#: 4920
Exclusion Codes: NDE, EXC

Rec#: 10360
Exclusion Codes: SMN, EXC

Rec#: 2540
Exclusion Codes: SMN, EXC

Rec#: 12450
Exclusion Codes: NDE, EXC

Rec#: 6610
Exclusion Codes: NRO, EXC

Rec#: 8270
Exclusion Codes: NDE, EXC

Rec#: 8010
Exclusion Codes: NDE, EXC

Rec#: 15200
Exclusion Codes: NDE, EXC

Rec#: 10860
Exclusion Codes: NDE, EXC

Rec#: 4690
Exclusion Codes: SMN, EXC
Rec#: 1520
Exclusion Codes: SMN, EXC

Rec#: 260
Exclusion Codes: NDE, EXC

Rec#: 8170
Exclusion Codes: NDE, EXC

Rec#: 240
Exclusion Codes: SMN, EXC

Rec#: 8340
Exclusion Codes: NDE, EXC

Rec#: 2420
Exclusion Codes: NDE, EXC

Rec#: 3870
Exclusion Codes: SMN, EXC

Rec#: 5050
Exclusion Codes: NRO, EXC

Rec#: 2300
Exclusion Codes: SMN, EXC

Rec#: 860
Exclusion Codes: NDE, EXC
Rec#: 5600
Exclusion Codes: NDE, EXC

Rec#: 110
Exclusion Codes: NDE, EXC

Rec#: 6380
Exclusion Codes: NDE, EXC

Rec#: 8230
Exclusion Codes: SMN, EXC

Rec#: 2550
Exclusion Codes: NDE, EXC

Rec#: 3160
Exclusion Codes: NDE, EXC

Rec#: 1490
Exclusion Codes: NRO, EXC

Rec#: 2590
Exclusion Codes: NRD, EXC

Rec#: 840
Exclusion Codes: NDE, EXC

Rec#: 8780
Exclusion Codes: SMN, EXC
Rec#: 940
Exclusion Codes: SMN, EXC

Rec#: 10290
Exclusion Codes: SMN, EXC

Rec#: 4320
Exclusion Codes: NDE, EXC

Rec#: 11740
Exclusion Codes: NDE, EXC

Rec#: 14750
Exclusion Codes: NDE, EXC

Rec#: 3030
Exclusion Codes: NDE, EXC

Rec#: 760
Exclusion Codes: SMN, EXC

Rec#: 3510
Exclusion Codes: NDE, EXC

Rec#: 120
Exclusion Codes: SMN, EXC

Rec#: 4660
Exclusion Codes: NRO, EXC

Rec#: 13570
Exclusion Codes: NRD, EXC

Rec#: 7020
Exclusion Codes: SMN, EXC

Rec#: 13790
Exclusion Codes: NRD, EXC

Rec#: 12120
Exclusion Codes: NRD, EXC

Rec#: 16270
Exclusion Codes: NRD, EXC

Rec#: 3700
Exclusion Codes: NDE, EXC

Rec#: 8490
Exclusion Codes: SMN, EXC

Rec#: 3290
Exclusion Codes: NDE, EXC

Rec#: 9270
Exclusion Codes: NDE, EXC

Rec#: 8390
Exclusion Codes: SMN, EXC
Rec#: 2770
Exclusion Codes: NDE, EXC

Rec#: 4830
Exclusion Codes: SMN, EXC

Rec#: 2880
Exclusion Codes: NDE, EXC

Rec#: 15730
Exclusion Codes: NRO, EXC

Rec#: 2760
Exclusion Codes: NDE, EXC

Rec#: 15040
Exclusion Codes: NDE, EXC

Rec#: 13870
Exclusion Codes: NDE, EXC

Rec#: 8920
Exclusion Codes: NRO, EXC

Rec#: 17100
Exclusion Codes: NDE, EXC

Rec#: 4430
Exclusion Codes: NDE, EXC
Rec#: 14560
Exclusion Codes: NDE, EXC

Rec#: 16690
Exclusion Codes: NRD, EXC

Rec#: 9950
Exclusion Codes: NDE, EXC

Rec#: 7850
Exclusion Codes: NDE, EXC

Rec#: 8700
Exclusion Codes: NDE, EXC

Rec#: 8610
Exclusion Codes: NRO, EXC

Rec#: 7950
Exclusion Codes: NDE, EXC

Rec#: 10310
Exclusion Codes: NDE, EXC

Rec#: 10060
Exclusion Codes: NDE, EXC

Rec#: 9910
Exclusion Codes: NDE, EXC

Rec#: 7590
Exclusion Codes: SMN, EXC

Rec#: 15940
Exclusion Codes: NDE, EXC

Rec#: 7770
Exclusion Codes: SMN, EXC

Rec#: 6940
Exclusion Codes: NDE, EXC

Rec#: 8210
Exclusion Codes: NDE, EXC

Rec#: 7310
Exclusion Codes: NDE, EXC

Rec#: 14110
Exclusion Codes: NRD, EXC

Rec#: 12310
Exclusion Codes: NDE, EXC

Rec#: 16900
Exclusion Codes: NDE, EXC

Lagabrielle, J.-F., A. Tachet, and V. Boin. Evaluation of two automated immunoassays for procalcitonin measurement: Kryptorregistered trademark (Brahms) and Vidasregistered trademark (BioMerieux): Dosage de la procalcitonine : comparaison des resultats obtenus sur Kryptorregistered trademark (Brahms) et Vidasregistered trademark (BioMerieux). Immuno-Anal. Biol. Spec. 2008 23(4):245-250.
Rec#: 12790
Exclusion Codes: NDE, EXC

Rec#: 160
Exclusion Codes: NDE, EXC

Rec#: 13550
Exclusion Codes: NDE, EXC

Rec#: 7870
Exclusion Codes: SMN, EXC

Rec#: 40
Exclusion Codes: NDE, EXC

Rec#: 13420
Exclusion Codes: SMN, EXC

Rec#: 6760
Exclusion Codes: NDE, EXC

Rec#: 3020
Exclusion Codes: SMN, EXC

Rec#: 10710
Exclusion Codes: NRO, EXC

Rec#: 17140
Exclusion Codes: NRD, EXC
Rec#: 510
Exclusion Codes: NDE, EXC

Rec#: 4810
Exclusion Codes: SMN, EXC

Rec#: 5100
Exclusion Codes: SMN, EXC

Rec#: 8470
Exclusion Codes: NDE, EXC

Rec#: 2460
Exclusion Codes: NDE, EXC

Rec#: 8570
Exclusion Codes: SMN, EXC

Rec#: 8590
Exclusion Codes: NDE, EXC

Rec#: 17120
Exclusion Codes: NRD, EXC

Rec#: 12910
Exclusion Codes: NDE, EXC

Rec#: 11690
Exclusion Codes: NRD, EXC
Rec#: 5630
Exclusion Codes: NDE, EXC

Rec#: 1660
Exclusion Codes: NDE, EXC

Rec#: 8660
Exclusion Codes: NDE, EXC

Liu, L., Y.-Q. Zhen, C.-M. Jing, W. Xie, and C.-L. Li. Dynamic monitoring the levels of endotoxin, IL-6, IL-10, TNF-(alpha) and procalcitonin (PCT) in serum of pediatric patients with systemic inflammatory response syndrome. Chin. J. Antibiot. 2008 33(5):297-299.
Rec#: 12730
Exclusion Codes: NRD, EXC

Rec#: 2860
Exclusion Codes: SMN, EXC

Rec#: 2380
Exclusion Codes: NDE, EXC

Lode, H. MRSA infections: Competent and safe treatment is the standard, but that is no reason for giving the all clear signal: An interview: MRSA-infektionen: Kompetente und sichere therapie ist standard, doch das ist kein grund zur entwarnung! Klinikartz 2007 36(6):350-351.
Rec#: 16310
Exclusion Codes: NDE, EXC

Rec#: 15000
Exclusion Codes: NDE, EXC

Rec#: 8540
Exclusion Codes: NRO, EXC

Rec#: 3330

B-46

Rec#: 7140
Exclusion Codes: NDE, EXC

Rec#: 14190
Exclusion Codes: NDE, EXC

Rec#: 4880
Exclusion Codes: NDE, EXC

Rec#: 4570
Exclusion Codes: SMN, EXC

Rec#: 10700
Exclusion Codes: NRO, EXC

Rec#: 3000
Exclusion Codes: NDE, EXC

Rec#: 5450
Exclusion Codes: SMN, EXC

Rec#: 670
Exclusion Codes: NDE, EXC

Rec#: 11350
Exclusion Codes: SMN, EXC

Rec#: 3790
Exclusion Codes: SMN, EXC

Rec#: 2690

Massaro, K. S., S. F. Costa, C. Leone, and D. A. Chamone. Procalcitonin (PCT) and C-reactive protein (CRP) as severe systemic infection markers in febrile neutropenic adults. BMC Infect Dis 2007 7:137. Rec#: 2270

Rec#: 5230
Exclusion Codes: NDE, EXC

Rec#: 3660
Exclusion Codes: NDE, EXC

Rec#: 13970
Exclusion Codes: NDE, EXC

Rec#: 13910
Exclusion Codes: NRD, EXC

Rec#: 3540
Exclusion Codes: SMN, EXC

Rec#: 5990
Exclusion Codes: NRO, EXC

Rec#: 5850
Exclusion Codes: NRO, EXC

Rec#: 5210
Exclusion Codes: NDE, EXC

Rec#: 14770
Exclusion Codes: NDE, EXC

Rec#: 6690
Exclusion Codes: NDE, EXC
Meisner, M., K. Tschaikowsky, T. Palmaers, and J. Schmidt. Comparison of procalcitonin (PCT) and C-reactive protein (CRP) plasma concentrations at different SOFA scores during the course of sepsis and MODS. Crit. Care 1999 3(1):45-50.
Rec#: 15050
Exclusion Codes: SMN, EXC

Rec#: 5870
Exclusion Codes: NDE, EXC

Rec#: 2720
Exclusion Codes: NDE, EXC

Rec#: 11980
Exclusion Codes: NDE, EXC

Rec#: 8090
Exclusion Codes: NDE, EXC

Rec#: 7600
Exclusion Codes: NDE, EXC

Rec#: 470
Exclusion Codes: NDE, EXC

Rec#: 980
Exclusion Codes: SMN, EXC

Rec#: 17090
Exclusion Codes: NRD, EXC

Rec#: 14790
Exclusion Codes: NDE, EXC
Rec#: 3460
Exclusion Codes: NRO, EXC

Rec#: 8440
Exclusion Codes: NRO, EXC

Rec#: 13880
Exclusion Codes: NRD, EXC

Rec#: 13700
Exclusion Codes: SMN, EXC

Rec#: 3200
Exclusion Codes: NDE, EXC

Rec#: 6780
Exclusion Codes: NDE, EXC

Rec#: 1120
Exclusion Codes: NDE, EXC

Rec#: 4050
Exclusion Codes: NDE, EXC

Rec#: 14350
Exclusion Codes: NDE, EXC

Rec#: 9200
Exclusion Codes: SMN, EXC
Rec#: 7350
Exclusion Codes: NDE, EXC

Rec#: 50
Exclusion Codes: NPD, EXC

Rec#: 3830
Exclusion Codes: SMN, EXC

Rec#: 5000
Exclusion Codes: NRO, EXC

Rec#: 390
Exclusion Codes: NDE, EXC

Rec#: 10180
Exclusion Codes: NRD, EXC

Rec#: 10830
Exclusion Codes: NRD, EXC

Rec#: 6880
Exclusion Codes: NRO, EXC

Rec#: 6620
Exclusion Codes: NDE, EXC

Rec#: 550
Exclusion Codes: NRO, EXC

Rec#: 10760
Rec#: 8420
Exclusion Codes: NRO, EXC

Rec#: 90
Exclusion Codes: NDE, EXC

Rec#: 10170
Exclusion Codes: NDE, EXC

Rec#: 5290
Exclusion Codes: NDE, EXC

Rec#: 10390
Exclusion Codes: SMN, EXC

Rec#: 9340
Exclusion Codes: NDE, EXC

Rec#: 9660
Exclusion Codes: SMN, EXC

Rec#: 2560
Exclusion Codes: NRD, EXC

Rec#: 6170
Exclusion Codes: NDE, EXC

Rec#: 9420
Exclusion Codes: NDE, EXC

Rec#: 2600
Exclusion Codes: NRD, EXC

Rec#: 8520
Exclusion Codes: NDE, EXC

Rec#: 13590
Exclusion Codes: NDE, EXC

Rec#: 2390
Exclusion Codes: NRD, EXC

Rec#: 3070
Exclusion Codes: NDE, EXC

Rec#: 10630
Exclusion Codes: SMN, EXC

Rec#: 11310
Exclusion Codes: NDE, EXC

Rec#: 15090
Exclusion Codes: NDE, EXC

Rec#: 4160
Exclusion Codes: NDE, EXC

Rec#: 1920
Exclusion Codes: NRD, EXC

Rec#: 2700
Exclusion Codes: NDE, EXC
Rec#: 7190
Exclusion Codes: NDE, EXC

Rec#: 3420
Exclusion Codes: NRD, EXC

Rec#: 1180
Exclusion Codes: NDE, EXC

Rec#: 10040
Exclusion Codes: NDE, EXC

Rec#: 4490
Exclusion Codes: SMN, EXC

Rec#: 14700
Exclusion Codes: NDE, EXC

Rec#: 7680
Exclusion Codes: NDE, EXC

Rec#: 15460
Exclusion Codes: NDE, EXC

Rec#: 16770
Exclusion Codes: NDE, EXC

Rec#: 2670
Exclusion Codes: NDE, EXC
Rec#: 1150
Exclusion Codes: NDE, EXC

Rec#: 440
Exclusion Codes: NDE, EXC

Rec#: 1560
Exclusion Codes: SMN, EXC

Rec#: 12300
Exclusion Codes: NRD, EXC

Rec#: 3340
Exclusion Codes: NDE, EXC

Rec#: 4950
Exclusion Codes: NDE, EXC

Rec#: 6900
Exclusion Codes: NRO, EXC

Rec#: 6400
Exclusion Codes: NDE, EXC

Rec#: 15160
Exclusion Codes: NRD, EXC

Rec#: 1730
Exclusion Codes: NDE, EXC
Rec#: 6480
Exclusion Codes: NDE, EXC

Rec#: 3810
Exclusion Codes: NRO, EXC

Rec#: 16870
Exclusion Codes: NDE, EXC

Rec#: 3980
Exclusion Codes: SMN, EXC

Rec#: 6770
Exclusion Codes: NDE, EXC

Rec#: 10740
Exclusion Codes: SMN, EXC

Rec#: 620
Exclusion Codes: SMN, EXC

Rec#: 9720
Exclusion Codes: SMN, EXC

Rec#: 7080
Exclusion Codes: NRO, EXC

Rec#: 1060
Exclusion Codes: NDE, EXC
Rec#: 3890
Exclusion Codes: SMN, EXC

Rec#: 10150
Exclusion Codes: SMN, EXC

Rec#: 16750
Exclusion Codes: NDE, EXC

Rec#: 4230
Exclusion Codes: NDE, EXC

Rec#: 8950
Exclusion Codes: NDE, EXC

Rec#: 11420
Exclusion Codes: NDE, EXC

Rec#: 11990
Exclusion Codes: NRD, EXC

Rec#: 15290
Exclusion Codes: NDE, EXC

Rec#: 15760
Exclusion Codes: NRD, EXC

Rec#: 8300
Exclusion Codes: NDE, EXC
Rec#: 4340
Exclusion Codes: NDE, EXC

Rec#: 2820
Exclusion Codes: NDE, EXC

Rec#: 11380
Exclusion Codes: SMN, EXC

Rec#: 9560
Exclusion Codes: NDE, EXC

Rec#: 8580
Exclusion Codes: NDE, EXC

Rec#: 14360
Exclusion Codes: SMN, EXC

Rec#: 14480
Exclusion Codes: SMN, EXC

Rec#: 1930
Exclusion Codes: SMN, EXC

Rec#: 9690
Exclusion Codes: NRO, EXC

Rec#: 2040
Exclusion Codes: NRO, EXC

Rec#: 8960
Exclusion Codes: NDE, EXC

Rec#: 4240
Exclusion Codes: NDE, EXC

Rec#: 3430
Exclusion Codes: NRO, EXC

Rec#: 4750
Exclusion Codes: NDE, EXC

Rec#: 16280
Exclusion Codes: NDE, EXC

Rec#: 15270
Exclusion Codes: NDE, EXC

Rec#: 7340
Exclusion Codes: NDE, EXC

Rec#: 2060
Exclusion Codes: NDE, EXC

Rec#: 16780
Exclusion Codes: NDE, EXC

Rec#: 9130
Exclusion Codes: NRO, EXC

Rec#: 8650
Exclusion Codes: NDE, EXC

Rec#: 15640
Exclusion Codes: NDE, EXC

Rec#: 1570
Exclusion Codes: SMN, EXC

Rec#: 14340
Exclusion Codes: NDE, EXC

Rec#: 2310
Exclusion Codes: SMN, EXC

Rec#: 13510
Exclusion Codes: NDE, EXC

Rec#: 660
Exclusion Codes: NDE, EXC

Rec#: 16830
Exclusion Codes: NRD, EXC

Rec#: 1810
Exclusion Codes: NDE, EXC

Rec#: 9290
Exclusion Codes: NDE, EXC

Rec#: 1750
Exclusion Codes: NDE, EXC

Rec#: 6800
Exclusion Codes: SMN, EXC

Rec#: 2930
Exclusion Codes: NDE, EXC

Rec#: 2790
Exclusion Codes: NDE, EXC

Rec#: 12480
Exclusion Codes: NDE, EXC

Rec#: 8550
Exclusion Codes: NDE, EXC

Rec#: 11390
Exclusion Codes: NDE, EXC

Rec#: 5340
Exclusion Codes: NDE, EXC

Rec#: 2580
Exclusion Codes: NRD, EXC

Rec#: 6660
Exclusion Codes: NDE, EXC
Rec#: 3210
Exclusion Codes: NDE, EXC

Rec#: 13440
Exclusion Codes: NRO, EXC

Rec#: 15230
Exclusion Codes: NRD, EXC

Rec#: 6630
Exclusion Codes: SMN, EXC

Rec#: 15030
Exclusion Codes: NRD, EXC

Rec#: 1740
Exclusion Codes: NDE, EXC

Rec#: 13430
Exclusion Codes: NRO, EXC

Rec#: 3080
Exclusion Codes: NRO, EXC

Rec#: 9940
Exclusion Codes: NDE, EXC

Rec#: 9880
Exclusion Codes: NDE, EXC
Rec#: 4850
Exclusion Codes: NDE, EXC

Rec#: 2960
Exclusion Codes: SMN, EXC

Rec#: 3370
Exclusion Codes: NRO, EXC

Rec#: 10930
Exclusion Codes: NRO, EXC

Rec#: 14280
Exclusion Codes: NDE, EXC

Rec#: 4870
Exclusion Codes: SMN, EXC

Rec#: 3250
Exclusion Codes: NRO, EXC

Rec#: 5570
Exclusion Codes: SMN, EXC

Rec#: 15830
Exclusion Codes: FLA, EXC

Rec#: 2370
Exclusion Codes: NDE, EXC
Rec#: 6490
Exclusion Codes: NDE, EXC

Rec#: 690
Exclusion Codes: SMN, EXC

Rec#: 1210
Exclusion Codes: NDE, EXC

Rec#: 5410
Exclusion Codes: NDE, EXC

Rec#: 6450
Exclusion Codes: NDE, EXC

Rec#: 6460
Exclusion Codes: NDE, EXC

Rec#: 5640
Exclusion Codes: NDE, EXC

Rec#: 4960
Exclusion Codes: NRO, EXC

Rec#: 10810
Exclusion Codes: NRO, EXC
Rec#: 6410
Exclusion Codes: NDE, EXC

Rec#: 1380
Exclusion Codes: NDE, EXC

Rec#: 1550
Exclusion Codes: NDE, EXC

Rec#: 1420
Exclusion Codes: NDE, EXC

Rec#: 16150
Exclusion Codes: NDE, EXC

Rec#: 630
Exclusion Codes: NDE, EXC

Rec#: 9610
Exclusion Codes: NDE, EXC

Rec#: 15810
Exclusion Codes: NDE, EXC

Rec#: 1260
Exclusion Codes: NDE, EXC

Rec#: 1800
Exclusion Codes: NDE, EXC
Rec#: 1500
Exclusion Codes: NDE, EXC

Rec#: 9590
Exclusion Codes: SMN, EXC

Rec#: 80
Exclusion Codes: NRD, EXC

Rec#: 4770
Exclusion Codes: NDE, EXC

Rec#: 12700
Exclusion Codes: NDE, EXC

Rec#: 13170
Exclusion Codes: NDE, EXC

Rec#: 12220
Exclusion Codes: NRO, EXC

Rec#: 2520
Exclusion Codes: NRD, EXC

Rec#: 6470
Exclusion Codes: NRO, EXC

Rec#: 30
Exclusion Codes: NDE, EXC
Rec#: 7050
Exclusion Codes: NDE, EXC

Rec#: 12570
Exclusion Codes: NDE, EXC

Rec#: 11730
Exclusion Codes: NDE, EXC

Rec#: 2240
Exclusion Codes: NDE, EXC

Rec#: 2450
Exclusion Codes: NRD, EXC

Rec#: 800
Exclusion Codes: NDE, EXC

Rec#: 8370
Exclusion Codes: NDE, EXC

Rec#: 2400
Exclusion Codes: SMN, EXC

Rec#: 2090
Exclusion Codes: NDE, EXC

Rec#: 9990
Exclusion Codes: SMN, EXC

B-72
Rec#: 8720
Exclusion Codes: NDE, EXC

Rec#: 7620
Exclusion Codes: NDE, EXC

Rec#: 6090
Exclusion Codes: SMN, EXC

Rec#: 10730
Exclusion Codes: NRO, EXC

Rec#: 8790
Exclusion Codes: NDE, EXC

Rec#: 9830
Exclusion Codes: NDE, EXC

Rec#: 2950
Exclusion Codes: NDE, EXC

Rec#: 6050
Exclusion Codes: SMN, EXC

Rec#: 3140
Exclusion Codes: SMN, EXC

Rec#: 14820
Exclusion Codes: NRD, EXC
Rec#: 8150
Exclusion Codes: NDE, EXC

Rec#: 9230
Exclusion Codes: NDE, EXC

Rec#: 12350
Exclusion Codes: NDE, EXC

Rec#: 1340
Exclusion Codes: NDE, EXC

Rec#: 5560
Exclusion Codes: NRO, EXC

Rec#: 1110
Exclusion Codes: NDE, EXC

Rec#: 10230
Exclusion Codes: NRO, EXC

Rec#: 3600
Exclusion Codes: NRO, EXC

Rec#: 7400
Exclusion Codes: NDE, EXC

Rec#: 13390
Exclusion Codes: NDE, EXC

Rec#: 15690
Exclusion Codes: FLA, EXC

Rec#: 7010
Exclusion Codes: NDE, EXC

Rec#: 8690
Exclusion Codes: NDE, EXC

Rec#: 2800
Exclusion Codes: NDE, EXC

Rec#: 8400
Exclusion Codes: NDE, EXC

Rec#: 790
Exclusion Codes: NDE, EXC

Rec#: 2200
Exclusion Codes: NRO, EXC

Rec#: 10200
Exclusion Codes: NRO, EXC

Rec#: 10030
Exclusion Codes: NRD, EXC

Rec#: 3930
Exclusion Codes: NDE, EXC

Rec#: 12180
Exclusion Codes: NRO, EXC

Rec#: 7090
Exclusion Codes: NDE, EXC

Rec#: 8320
Exclusion Codes: NDE, EXC

Rec#: 12340
Exclusion Codes: NDE, EXC

Rec#: 5950
Exclusion Codes: NDE, EXC

Rec#: 7540
Exclusion Codes: NRO, EXC

Rec#: 5610
Exclusion Codes: NDE, EXC

Rec#: 4540
Exclusion Codes: NDE, EXC

Rec#: 10240
Exclusion Codes: NDE, EXC

Rec#: 8190
Exclusion Codes: SMN, EXC

Rec#: 13220
Exclusion Codes: NRD, EXC

Rec#: 10550
Exclusion Codes: NDE, EXC

Rec#: 17070
Exclusion Codes: NDE, EXC

Rec#: 12590
Exclusion Codes: NDE, EXC

Rec#: 8290
Exclusion Codes: NDE, EXC

Rec#: 9520
Exclusion Codes: SMN, EXC

Rec#: 13370
Exclusion Codes: NDE, EXC

Rec#: 12580
Exclusion Codes: NRD, EXC

Rec#: 290
Exclusion Codes: SMN, EXC

Rec#: 5330
Exclusion Codes: NRO, EXC
Rec#: 7940
Exclusion Codes: SMN, EXC

Rec#: 10010
Exclusion Codes: NDE, EXC

Rec#: 4980
Exclusion Codes: NRO, EXC

Rec#: 5790
Exclusion Codes: NRO, EXC

Rec#: 5040
Exclusion Codes: SMN, EXC

Rec#: 5140
Exclusion Codes: SMN, EXC

Rec#: 3400
Exclusion Codes: NRO, EXC

Rec#: 3050
Exclusion Codes: NDE, EXC

Rec#: 2830
Exclusion Codes: NDE, EXC

Rec#: 1390
Exclusion Codes: NDE, EXC

Rec#: 1230
Exclusion Codes: NDE, EXC

Rec#: 13490
Exclusion Codes: NDE, EXC

Rec#: 6540
Exclusion Codes: NDE, EXC

Rec#: 2330
Exclusion Codes: NDE, EXC

Rec#: 2260
Exclusion Codes: SMN, EXC

Rec#: 3320
Exclusion Codes: NDE, EXC

Rec#: 3220
Exclusion Codes: SMN, EXC

Rec#: 15980
Exclusion Codes: NDE, EXC

Rec#: 13600
Exclusion Codes: NRD, EXC

Rec#: 12760
Exclusion Codes: NDE, EXC

Rec#: 140
Exclusion Codes: NDE, EXC
Rec#: 5060
Exclusion Codes: SMN, EXC

Rec#: 14160
Exclusion Codes: NRD, EXC

van Dissel, J. T. Procalcitonin and other markers of infection. What should be their role in clinical practice? Clin Microbiol Infect 2002 8(2):70-3.
Rec#: 5400
Exclusion Codes: NDE, EXC

Rec#: 4940
Exclusion Codes: NDE, EXC

Rec#: 5930
Exclusion Codes: NDE, EXC

Rec#: 8160
Exclusion Codes: NDE, EXC

Rec#: 4110
Exclusion Codes: NDE, EXC

Rec#: 13150
Exclusion Codes: NDE, EXC

Rec#: 2610
Exclusion Codes: NRD, EXC

Rec#: 16540
Exclusion Codes: NRO, EXC

Rec#: 3850
Exclusion Codes: NDE, EXC

Rec#: 12270
Exclusion Codes: NDE, EXC

Rec#: 1070
Exclusion Codes: SMN, EXC

Rec#: 3440
Exclusion Codes: NDE, EXC

Verheij, T. Excessive use of antibiotics still a relevant problem in the Netherlands as well: Overmatig gebruik van antibiotica ook in Nederland nog een relevant probleem. Huisarts Wet. 2009 52(12):570-571.
Rec#: 15770
Exclusion Codes: NDE, EXC

Rec#: 15110
Exclusion Codes: NDE, EXC

Rec#: 9050
Exclusion Codes: NRO, EXC

Rec#: 2190
Exclusion Codes: NDE, EXC

Rec#: 16820
Exclusion Codes: NDE, EXC

Rec#: 10690
Exclusion Codes: NDE, EXC

B-84
Exclusion Codes: SMN, EXC

Exclusion Codes: NDE, EXC

Exclusion Codes: NDE, EXC

Exclusion Codes: NDE, EXC

Exclusion Codes: NDE, EXC

Exclusion Codes: NRO, EXC

Exclusion Codes: NDE, EXC

Exclusion Codes: SMN, EXC

Exclusion Codes: NDE, EXC

Exclusion Codes: NDE, EXC
Rec#: 8380
Exclusion Codes: NRO, EXC

Rec#: 12020
Exclusion Codes: NRD, EXC

Rec#: 9920
Exclusion Codes: NDE, EXC

Rec#: 14300
Exclusion Codes: NDE, EXC

Rec#: 6680
Exclusion Codes: SMN, EXC

Rec#: 11680
Exclusion Codes: NDE, EXC

Rec#: 11290
Exclusion Codes: NDE, EXC

Rec#: 12460
Exclusion Codes: NDE, EXC

Rec#: 4410
Exclusion Codes: SMN, EXC

Rec#: 3610
Exclusion Codes: NDE, EXC
Exclusion Codes: NRD, EXC

Exclusion Codes: NDE, EXC

Exclusion Codes: NDE, EXC

Exclusion Codes: NDE, EXC

Exclusion Codes: NDE, EXC

Exclusion Codes: SMN, EXC

Exclusion Codes: NRO, EXC

Exclusion Codes: NRO, EXC

Exclusion Codes: NDE, EXC

Exclusion Codes: NDE, EXC

Exclusion Codes: NDE, EXC
Rec#: 14640
Exclusion Codes: NRD, EXC

Rec#: 380
Exclusion Codes: NRO, EXC

Rec#: 220
Exclusion Codes: NDE, EXC

Rec#: 1480
Exclusion Codes: NDE, EXC

Rec#: 7530
Exclusion Codes: NRO, EXC
Appendix C. Abstraction Tables

Evidence Table 1A. Study Description Table for Bouadma et al., 2010

<table>
<thead>
<tr>
<th>Study Description</th>
<th>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</th>
<th>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</th>
<th>Inclusion/exclusion criteria</th>
<th>Participant characteristics</th>
<th>Participant characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author, year:</td>
<td>Bouadma et al., 2010. PRORATA (procalciton to reduce antibiotic treatments in acutely ill patients)</td>
<td>Design: RCT; 1:1, masked until randomization, stratified by center</td>
<td>Inclusion criteria:</td>
<td>Age, years: [mean (SD), median (range/IQR)]</td>
<td>CHF (NYHA III/IV), n (%):</td>
</tr>
<tr>
<td>Country, institution type:</td>
<td>Country, institution type: France, 5 university-affiliated hospitals</td>
<td>- Superior for antibiotics free days</td>
<td></td>
<td>G1: 61.0 (15.2)</td>
<td>G1: 16 (5%)</td>
</tr>
<tr>
<td>Enrollment period:</td>
<td>Enrollment period: 06/07 – 05/08</td>
<td>- Non-inferior with respect to mortality</td>
<td>Exclusion criteria:</td>
<td>G2: 62.1 (15.0)</td>
<td>G2: 13 (4%)</td>
</tr>
<tr>
<td>Funding:</td>
<td>Funding: Assistance Publique-Hôpitaux de Paris, France, and Brahms, Germany</td>
<td>Interventions: G1: PCT-guided antibiotic therapy G2: Standard antibiotic therapy</td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td>G1/G2:</td>
</tr>
<tr>
<td>Author industry relationship disclosures:</td>
<td>Author industry relationship disclosures: 4 authors disclosed conflicts</td>
<td>Presenting condition: Critically ill patients, suspected bacterial infection on admission to ICU or during stay</td>
<td>Age < 18 years</td>
<td>G1: 27 (9%)</td>
<td>G1: 20 (7%)</td>
</tr>
<tr>
<td>N at enrollment:</td>
<td>Setting: ICU (5 MICU, 2 SICU)</td>
<td>Interventions:</td>
<td>Antibiotics > 24 hours before enrollment</td>
<td>G2: 22 (7%)</td>
<td>G2: 13 (4%)</td>
</tr>
<tr>
<td>G1: 311</td>
<td>N screened, reasons for exclusion</td>
<td>Presenting condition:</td>
<td>Pregnancy</td>
<td>[test, result (p-value, 95% CI)]</td>
<td>G1/G2:</td>
</tr>
<tr>
<td>G2: 319</td>
<td>N at follow-up:</td>
<td></td>
<td>Expected ICU stay < 3 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1: 307</td>
<td>G1: PCT < 0.25 antibiotics strongly discouraged; PCT > 0.25, < 0.5 antibiotics discouraged; PCT > 0.5 and < 1,</td>
<td></td>
<td>Stem cell transplantation</td>
<td>G2: 13 (4%)</td>
<td>G1/G2:</td>
</tr>
<tr>
<td></td>
<td>G2: Procalcitonin (Kryptor, Brahms)</td>
<td></td>
<td>ANC < 500</td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chronic infections</td>
<td></td>
<td>G2: 18 (6%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SAPS II > 65</td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(unlikely to survive)</td>
<td></td>
<td>G2: 11 (4%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Description</td>
<td>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</td>
<td>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</td>
<td>Inclusion/exclusion criteria</td>
<td>Participant characteristics</td>
<td>Participant characteristics</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>---</td>
<td>----------------------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>G2: 314</td>
<td>Average follow-up, days: [mean (SD), median (range/IQR)]</td>
<td>Antibiotics encouraged; PCT ≥ 1.0, antibiotics strongly encouraged</td>
<td>G2: Standard therapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1: NR</td>
<td></td>
<td>For antibiotic discontinuation</td>
<td>G1: PCT < 0.25, stopping antibiotics strongly encouraged; PCT > 80 % decrease from peak or < 0.5 ng/mL, stopping antibiotics encouraged; PCT < 80 % decrease from peak or > 0.5, continuing antibiotics encouraged; PCT > baseline and > 0.5, continuing antibiotics strongly encouraged</td>
<td>G2: Standard therapy</td>
<td></td>
</tr>
<tr>
<td>G2: NR</td>
<td>Follow-up to 60 days</td>
<td></td>
<td>Condition = definition: Suspected bacterial infections</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Condition = definition: Sepsis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evidence Table 2A. Intermediate Outcomes for Bouadma et al., 2010.

<table>
<thead>
<tr>
<th>Antibiotic treatment duration</th>
<th>Antibiotic prescription rate, number of courses of antibiotics</th>
<th>Antibiotic classes</th>
<th>Hospital length of stay</th>
<th>ICU admission, length of stay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days without antibiotics at 28 days (superiority): [mean (SD), median (range/IQR)]</td>
<td>G1: 14.3 (9.1) G2: 11.6 (8.2) [test, result (p-value, 95% CI)] p < 0.0001</td>
<td>NR</td>
<td>NR</td>
<td>Days: [mean (SD), median (range/IQR)] G1: 26.1 (19.3) G2: 26.4 (18.3) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
</tr>
<tr>
<td>Duration of first episode antibiotic treatment, mean (std dev):</td>
<td>G1: 6.1 (6.0) G2: 9.9 (7.1) [test, result (p-value, 95% CI)] p < 0.0001 G1/G2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Days antibiotic exposure/1,000: (rate days exposed per #patient-days)</td>
<td>G1: 653 G2: 812 [test, result (p-value, 95% CI)] G1/G2: -159(-185 to -131)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evidence Table 3A. Morbidity Outcomes for Bouadma et al., 2010.

<table>
<thead>
<tr>
<th>Morbidity</th>
<th>Morbidity</th>
<th>Recurrence</th>
<th>Sepsis/SIRS frequency</th>
<th>RTI symptoms, overall health, cure, success</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOFA day 28, mean (std dev):</td>
<td>Mechanical ventilation-free days: [mean (SD), median (range/IQR)]</td>
<td>Relapse, n, (%):</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>G1: 1.5 (3.0) G2: 0.9 (2.4) [test, result (p-value, 95% CI)] G1/G2:</td>
<td>G1: 16.2 (11.1) G2: 16.9 (10.9) [test, result (p-value, 95% CI)] G1/G2:</td>
<td>G1: 20 (6.5 %) G2: 16 (5.1 %) [test, result (p-value, 95% CI)] G1/G2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nosocomial superinfection, n, (%):</td>
<td>G1: 106 (34.5 %) G2: 97 (30.9 %) [test, result (p-value, 95% CI)] G1/G2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi drug resistant, n (%):</td>
<td>G1: 55 (17.9 %) G2: 52 (16.6 %) [test, result (p-value, 95% CI)] G1/G2:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evidence Table 4A. Mortality Outcomes for Bouadma et al., 2010.¹

<table>
<thead>
<tr>
<th></th>
<th>28-day mortality</th>
<th>60-day mortality</th>
<th>Pneumonia-related death</th>
<th>Proportion surviving hospitalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-hospital mortality</td>
<td>Proportion (%):</td>
<td>Proportion (%):</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>G1: 21.2 %</td>
<td>G1: 30.0 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G2: 20.4 %</td>
<td>G2: 26.1 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1/G2:</td>
<td>Non-inferiority, 10 % margin</td>
<td>Non-inferiority, 10 % margin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evidence Table 5A. Function and Quality of Life Outcomes for Bouadma et al., 2010.¹

<table>
<thead>
<tr>
<th></th>
<th>Days < 14 days of baseline with daily activities restricted by RTI</th>
<th>Days work missed</th>
<th>Visual analog functional scale</th>
<th>Quality of life score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 6A. Adverse Effects, Adherence for Bouadma et al., 2010.¹

<table>
<thead>
<tr>
<th></th>
<th>Combined adverse outcome < 30 days</th>
<th>Antibiotic adverse effects, days with adverse effects from medication, antibiotic resistance</th>
<th>Pain, bleeding, local infection</th>
<th>Adherence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 7A. Randomized Trial Study Quality Ratings for Bouadma et al., 2010.¹

<table>
<thead>
<tr>
<th></th>
<th>Assembled comparable groups</th>
<th>Maintained comparable groups</th>
<th>Minimal follow-up loss</th>
<th>Measurements equal, valid, and reliable</th>
<th>Interventions clearly defined</th>
<th>Important outcomes considered</th>
<th>Appropriate analysis of results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Study Description</td>
<td>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</td>
<td>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</td>
<td>Inclusion/exclusion criteria</td>
<td>Participant characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>---</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author, year:</td>
<td>Design: RCT, open, multicenter, non-inferiority</td>
<td>Primary outcome: Intent to treat and per protocol</td>
<td>Inclusion criteria:</td>
<td>Age, years: [mean (SD), G1: 48 (18), G2: 48 (18)]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Briel et al., 2008</td>
<td>Interventions: G1: Procalcitonin-guided therapy</td>
<td>Primary outcomes: Number of days in first 14 days after baseline with restricted activities due to RTI</td>
<td>Cold</td>
<td>G1: 33 (14 %)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country, institution type: Switzerland</td>
<td>G2: Standard therapy</td>
<td>Intent to treat and per protocol</td>
<td>Sinusitis</td>
<td>G2: 37 (16 %)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enrollment period:</td>
<td>Presenting condition: Adults with acute respiratory tract infection in need of antibiotics</td>
<td>Secondary outcomes: Only per protocol analysis</td>
<td>Pharyngitis</td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>December 13, 2004-April 30, 2006</td>
<td>Setting: 53 primary care physicians, multi-center, non-inferiority trial, monitored by independent monitoring board</td>
<td>Antibiotic prescription rate</td>
<td>Tracheobronchitis</td>
<td>Men, n (%): G1: 98 (42 %)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funding:</td>
<td>Enrollment: 8162 patients consulted for RTI</td>
<td>Duration of antibiotic Discomfort scale</td>
<td>AECOPD,</td>
<td>G2: 87 (38 %)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swiss National Science Foundation; Assoc. for the Promotion of Science and Postgraduate Training of the University Hospital of Basel; Brahms</td>
<td>1480 assessed because of perceived need for antibiotics</td>
<td>Days of work missed</td>
<td>CAP</td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author industry relationship disclosures: 1 author consultant and recipient of funds from Brahms for travel, speaking</td>
<td>1022 excluded</td>
<td>Days with adverse medication effects</td>
<td>Intention to prescribe antibiotics</td>
<td>Days with restricted activities, mean (SD): G1: 5.8 (4.7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>67 with symptoms> 28 days</td>
<td>Ongoing or relapsed RTI</td>
<td>Not available for follow-up</td>
<td>G2: 6.5 (4.7)</td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21 given antibiotics within 28 days</td>
<td>SAEs within 28 days</td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>180 not fluent</td>
<td>275 needed to show hat at worst PCT-guided therapy increased antibiotic duration by 1 day, alpha error 5 %</td>
<td></td>
<td>G1: 12 (5.2 %)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>41 psych issues</td>
<td>Response criteria, independent outcome assessor:</td>
<td></td>
<td>G2: 14 (6.2 %)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35 needed immediate hospitalization</td>
<td>Assay type: Kryptor, Brahms</td>
<td>Discomfort score, mean (SD): G1: 6.1 (2.6)</td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>63 with severe immunosuppression</td>
<td>Results available within</td>
<td>G2: 6.2 (2.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>152 not available for</td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td>G1: 6 (2.6 %)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td>G2: 7 (3.1 %)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inclusion/exclusion criteria:

- **Primary outcomes:**
 - Cold
 - Sinusitis
 - Pharyngitis
 - Tonsillitis,
 - Tracheobronchitis
 - AECOPD,
 - CAP
 - Intention to prescribe antibiotics
- **Secondary outcomes:**
 - Antibiotics in previous 28 days
 - Psych disorders
 - Severe immunosuppression
 - Cystic fibrosis
 - TB
 - Need for immediate hospitalization
 - Not available for follow-up
- **Response criteria, independent outcome assessor:**
 - Assay type: Kryptor, Brahms
 - Results available within

Secondary outcomes:

- Antibiotics in previous 28 days
- Psych disorders
- Severe immunosuppression
- Cystic fibrosis
- TB
- Need for immediate hospitalization
- Not available for follow-up

Inclusion criteria:

- Cold
- Sinusitis
- Pharyngitis
- Tonsillitis,
- Tracheobronchitis
- AECOPD,
- CAP
- Intention to prescribe antibiotics

Exclusion criteria:

- Antibiotics in previous 28 days
- Psych disorders
- Severe immunosuppression
- Cystic fibrosis
- TB
- Need for immediate hospitalization
- Not available for follow-up
- Not fluent in German

Participant characteristics:

- Any co-morbidities, n (%): [test, result (p-value, 95% CI)]
 - G1: 12 (5.2 %)
 - G2: 7 (3.1 %)
 - G1/G2: NSS

Diagnosis:

- Common cold, n (%):
 - G1: 13 (5.6 %)
 - G2: 18 (8.0 %)
 - [test, result (p-value, 95% CI)]
- Acute sinusitis, n (%):
 - G1: 52 (22 %)

Other:

- G1: 7 (3.0 %)
- G2: 10 (4.4 %)
- [test, result (p-value, 95% CI)]
- G1/G2: NSS
<table>
<thead>
<tr>
<th>Study Description</th>
<th>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</th>
<th>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</th>
<th>Inclusion/exclusion criteria</th>
<th>Participant characteristics</th>
<th>Participant characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>follow-up</td>
<td>217 physician not able to follow 246 refused consent</td>
<td>2-4 hours</td>
<td>G2: 52 (23 %)</td>
<td>[test, result (p-value, 95% CI)]</td>
<td>G2: 0.25 (1.3) [test, result (p-value, 95% CI)]</td>
</tr>
<tr>
<td>N at enrollment:</td>
<td>G1: 232</td>
<td>Decision-making: G1: For PCT 0.01, antibiotics discouraged For PCT between 0.1-0.25, antibiotics not recommended For PCT > 0.25, antibiotics recommended Also if second PCT in 6-24 hours was increased by 50 %</td>
<td>G1/G2: NSS</td>
<td>G1/G2: NSS</td>
<td></td>
</tr>
<tr>
<td>N at follow-up:</td>
<td>G1: 262</td>
<td>G2: Physicians encouraged to use evidence-based guidelines</td>
<td>Pharyngitis/tonsillitis, n, (%)</td>
<td>G1: 42 (18 %)</td>
<td>CRP, mean (SD): G1: 51 (65)</td>
</tr>
<tr>
<td>Average follow-up, days:</td>
<td>[mean (SD), median (range/IQR)]</td>
<td>G2: 226</td>
<td>G2: 33 (15 %)</td>
<td>[test, result (p-value, 95% CI)]</td>
<td>G2: 51 (55) [test, result (p-value, 95% CI)]</td>
</tr>
<tr>
<td>Condition = definition:</td>
<td>Physician diagnosis</td>
<td>G1/G2: NSS</td>
<td>Laryngitis/tracheitis, n, (%)</td>
<td>G1: 8 (3.5 %)</td>
<td>G1/G2: NSS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decision-making: G1: If PCT < 0.25 at day 3, discontinuation recommended</td>
<td>Acute otitis media, n, (%)</td>
<td>G1: 0</td>
<td>Acute otitis media, n, (%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Influenza, n, (%)</td>
<td>G1: 3 (1.3 %)</td>
<td>Influenza, n, (%)</td>
</tr>
<tr>
<td>Study Description</td>
<td>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</td>
<td>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</td>
<td>Inclusion/exclusion criteria</td>
<td>Participant characteristics</td>
<td>Participant characteristics</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evidence Table 2B. Intermediate Outcomes for Briel et al., 2008.2

<table>
<thead>
<tr>
<th>Antibiotic treatment duration</th>
<th>Antibiotic prescription rate, number of courses of antibiotics</th>
<th>Antibiotic classes</th>
<th>Hospital length of stay</th>
<th>ICU admission, length of stay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days with antibiotics: mean (SD)</td>
<td>Any antibiotic use, antibiotic prescription rate (%)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>G1: 6.2 (2.5)</td>
<td>G1: 58 (25 %)</td>
<td>G1/G2: Difference -72 % (-78 to -66)</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>G2: 7.1 (2.2)</td>
<td>G2: 219 (97 %)</td>
<td>G1/G2: Adjusted odds ratio (95 % CI) 0.01 (0.002 to 0.02)</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>
Evidence Table 3B. Morbidity Outcomes for Briel et al., 2008.2

<table>
<thead>
<tr>
<th>Morbidity</th>
<th>Morbidity</th>
<th>Recurrence</th>
<th>Sepsis/SIRS frequency</th>
<th>RTI symptoms, overall health, cure, success</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>Intent to treat</td>
<td>NR</td>
<td>NR</td>
<td>RTI symptoms at 28 days (%)</td>
</tr>
<tr>
<td></td>
<td>Restricted activities, days: [mean (SD), median (range/IQR)]</td>
<td></td>
<td></td>
<td>G1: 69 (30 %)</td>
</tr>
<tr>
<td></td>
<td>G1: 8.7 (3.9)</td>
<td></td>
<td></td>
<td>G2: 67 (30 %)</td>
</tr>
<tr>
<td></td>
<td>G2: 8.6 (3.0)</td>
<td></td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
</tr>
<tr>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
</tr>
<tr>
<td></td>
<td>G1/G2: Adjusted difference (95 % CI)</td>
<td></td>
<td></td>
<td>0.2 (-0.4 to 0.9)</td>
</tr>
<tr>
<td>Days of work missed within 14 days: [mean (SD), median (range/IQR)]</td>
<td></td>
<td></td>
<td>Degree of discomfort score at 14 days: [mean (SD)]</td>
<td></td>
</tr>
<tr>
<td>G1: 4.9 (4.6)</td>
<td></td>
<td></td>
<td>G1: 1.9 (2.7)</td>
<td></td>
</tr>
<tr>
<td>G2: 4.8 (4.2)</td>
<td></td>
<td></td>
<td>G2: 1.1 (1.9)</td>
<td></td>
</tr>
<tr>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
</tr>
<tr>
<td>G1/G2: Adjusted difference (95 % CI)</td>
<td></td>
<td></td>
<td>G1/G2:</td>
<td></td>
</tr>
<tr>
<td>0.3 (-0.6 to 1.2)</td>
<td></td>
<td></td>
<td>Adjusted difference (95 % CI)</td>
<td></td>
</tr>
</tbody>
</table>

Evidence Table 4B. Mortality Outcomes for Briel et al., 2008.2

<table>
<thead>
<tr>
<th>In-hospital mortality</th>
<th>28-day mortality</th>
<th>Death</th>
<th>Pneumonia-related death</th>
<th>Proportion surviving hospitalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 5B. Function and Quality of Life Outcomes for Briel et al., 2008.2

<table>
<thead>
<tr>
<th>Days < 14 days of baseline with daily activities restricted by RTI</th>
<th>Days work missed</th>
<th>Visual analog functional scale</th>
<th>Quality of life score</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 6B. Adverse Effects and Adherence for Briel et al., 2008.2

<table>
<thead>
<tr>
<th>Combined adverse outcome < 30 days</th>
<th>Antibiotic adverse effects, days with adverse effects from medication, antibiotic resistance</th>
<th>Pain, bleeding, local infection</th>
<th>Adherence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion (%):</td>
<td>Days of AEs within 14 days: [mean (SD), median (range/IQR)]</td>
<td>Pain, bleeding, local infection</td>
<td>Adherence</td>
</tr>
<tr>
<td>G1:</td>
<td>G1: 2.3 (4.6)</td>
<td>Pain, bleeding, local infection</td>
<td>Adherence</td>
</tr>
<tr>
<td>G2:</td>
<td>G2: 3.6 (6.1)</td>
<td>Pain, bleeding, local infection</td>
<td>Adherence</td>
</tr>
<tr>
<td>[test, result (p-value, 95% CI)]</td>
<td>[test, result (p-value, 95% CI)]</td>
<td>Pain, bleeding, local infection</td>
<td>Adherence</td>
</tr>
<tr>
<td>G1/G2:</td>
<td>G1/G2: Adjusted difference (95 % CI) -1.1 (-2.1 to -0.1)</td>
<td>Pain, bleeding, local infection</td>
<td>Adherence</td>
</tr>
<tr>
<td>Mainly due to number with diarrhea (47/231 vs 76/224)</td>
<td>Mainly due to number with diarrhea (47/231 vs 76/224)</td>
<td>Pain, bleeding, local infection</td>
<td>Adherence</td>
</tr>
</tbody>
</table>
Evidence Table 7B. Randomized Trial Study Quality Ratings for Briel et al., 2008.²

<table>
<thead>
<tr>
<th>Based on</th>
<th>Assembled comparable groups</th>
<th>Maintained comparable groups</th>
<th>Minimal follow-up loss</th>
<th>Measurements equal, valid, and reliable</th>
<th>Interventions clearly defined</th>
<th>Important outcomes considered</th>
<th>Appropriate analysis of results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y-balanced</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Y-concealment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evidence Table 1C. Study Description Table for Burkhardt et al., 2010.

<table>
<thead>
<tr>
<th>Study Description</th>
<th>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</th>
<th>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</th>
<th>Inclusion/exclusion criteria</th>
<th>Participant characteristics</th>
<th>Participant characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author, year:</td>
<td>Burkhardt et al., 2010.</td>
<td>Design: RCT, intent to treat analysis</td>
<td>Primary outcome: Number of days with significant health impairment due to RTI at day 14</td>
<td>Inclusion criteria:</td>
<td>Age, years: [mean (SD), median (range/IQR)]</td>
</tr>
<tr>
<td>Country, institution type:</td>
<td>Germany, Medical Hospital Hannover</td>
<td>Interventions: G1: PCT-guided antibiotic therapy G2: Standard care</td>
<td>Non-inferior of the 95 % CI for the difference between groups in number of days with impairment was < 1 day</td>
<td></td>
<td>G1: 15/275 (5.5 %)</td>
</tr>
<tr>
<td>Enrollment period:</td>
<td>Not given</td>
<td>Presenting condition: Acute respiratory tract infection</td>
<td>90 % chance to show that PCT-guided therapy does not lead to > 1 additional day of impairment with 275 patients per group</td>
<td></td>
<td>G2: 9/275 (3.3 %)</td>
</tr>
<tr>
<td>Funding:</td>
<td>Not given</td>
<td>Setting: Primary care offices</td>
<td>Secondary outcomes: Prescription rate, duration of antibiotic, days with antibiotic-associated SEs, symptoms on day 14 and 28, revisit within 28 days, change of antibiotics within 28 days, hospitalization within 28 days, 28 day mortality</td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
</tr>
<tr>
<td>Author industry relationship disclosures:</td>
<td>Conflicts for 7 authors available at www.erj.ersjournals.com/misc/statements.dtl, 3 authors from Brahms Research Dept.</td>
<td>N at enrollment: G1: 275 G2: 275</td>
<td>Kruskal-Willis and Pearson’s Chi-squared test</td>
<td></td>
<td>G1/G2: NSS</td>
</tr>
<tr>
<td>N at follow-up:</td>
<td>G1: NR G2: NR</td>
<td>Average follow-up, days: [mean (SD), median (range/IQR)]</td>
<td>Assay type: Brahms Kryptor PCT</td>
<td></td>
<td>COPD, n (%):</td>
</tr>
<tr>
<td>Design:</td>
<td>G1: 14 day G2: 28 day</td>
<td>Decision-making: G1: PCT < 0.25, no antibiotics; PCT > 0.25, antibiotics recommended G2: Standard care</td>
<td></td>
<td></td>
<td>G1: 4/275 (1.5 %)</td>
</tr>
<tr>
<td>Interventions:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G2: 9/275 (3.3 %)</td>
</tr>
</tbody>
</table>
| **Inclusion/exclusion criteria:** | | | | | [test, result (p-value, 95% CI)]
| **Secondary outcomes:** | | | | | **G1/G2: NSS** |
| **Inclusion criteria:** | | | | | **Insulin-dependent diabetes, n (%):** |
| **Exclusion criteria:** | | | | | **G1: 15/275 (5.5 %)** |
| **Presenting condition:** | | | | | **G2: 9/275 (3.3 %)** |
| **Setting:** | | | | | [test, result (p-value, 95% CI)]
| **N at enrollment:** | | | | | **G1/G2: NSS** |
| **Average follow-up, days: [mean (SD), median (range/IQR)]** | | | | | **Congestive heart failure, n (%):** |
| **Design:** | | | | | **G1: 5/275 (1.8 %)** |
| **Interventions:** | | | | | **G2: 5/275 (1.8 %)** |
| **Inclusion/exclusion criteria:** | | | | | [test, result (p-value, 95% CI)]
| **Secondary outcomes:** | | | | | **G1/G2: NSS** |
| **Inclusion criteria:** | | | | | **COPD, n (%):** |
| **Exclusion criteria:** | | | | | **G1: 4/275 (1.5 %)** |
| **Presenting condition:** | | | | | **G2: 9/275 (3.3 %)** |
| **Setting:** | | | | | [test, result (p-value, 95% CI)]
| **N at enrollment:** | | | | | **G1/G2: NSS** |
Evidence Table 2C. Intermediate Outcomes for Burkhardt et al., 2010.3

<table>
<thead>
<tr>
<th>Antibiotic treatment duration</th>
<th>Antibiotic prescription rate, number of courses of antibiotics</th>
<th>Antibiotic classes</th>
<th>Hospital length of stay</th>
<th>ICU admission, length of stay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days: [mean (SD), median (range/IQR)]</td>
<td>Any antibiotic use, antibiotic prescription rate (%): G1: 59/275 (21.5 %) G2: 101/275 (36.8 %) [test, result (p-value, 95% CI)]</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>G1: 7.8 ± 2.8</td>
<td>G1/G2: p = 0.68</td>
<td>G2: 7.7 ± 3.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evidence Table 3C. Morbidity Outcomes for Burkhardt et al., 2010.3

<table>
<thead>
<tr>
<th>Morbidity</th>
<th>Morbidity</th>
<th>Recurrence</th>
<th>Sepsis/SIRS frequency</th>
<th>RTI symptoms, overall health, cure, success</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 4C. Mortality Outcomes for Burkhardt et al., 2010.3

<table>
<thead>
<tr>
<th>In-hospital mortality</th>
<th>28-day mortality</th>
<th>Death</th>
<th>Pneumonia-related death</th>
<th>Proportion surviving hospitalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 5C. Function and Quality of Life Outcomes for Burkhardt et al., 2010.3

<table>
<thead>
<tr>
<th>Days ≤ 14 days of baseline with daily activities restricted by RTI</th>
<th>Days work missed</th>
<th>Visual analog functional scale</th>
<th>Quality of life score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modified intention to treat analysis Days: [mean (SD), median (range/IQR)]</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>G1: 9.04</td>
<td>G2: 9.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[test, result (p-value, 95% CI)]</td>
<td>G1/G2: difference between G1 and G2 0.04 days, 95% CI -0.53 to 0.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worst case sensitivity analysis Days: [mean (SD), median (range/IQR)]</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>G1: 9.06</td>
<td>G2: 8.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[test, result (p-value, 95% CI)]</td>
<td>G1/G2: difference between G1 and G2 0.25 days, 95% CI -0.52 to 1.03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evidence Table 6C. Adverse Effects and Adherence for Burkhardt et al., 2010.³

<table>
<thead>
<tr>
<th>Combined adverse outcome < 30 days</th>
<th>Antibiotic adverse effects, days with adverse effects from medication, antibiotic resistance</th>
<th>Pain, bleeding, local infection</th>
<th>Adherence</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>Antibiotic adverse effects (%): G1: 11 G2: 16 [test, result (p-value, 95% CI)]</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 7C. Randomized Trial Study Quality Ratings for Burkhardt et al., 2010.³

<table>
<thead>
<tr>
<th>Assembled comparable groups</th>
<th>Maintained comparable groups</th>
<th>Minimal follow-up loss</th>
<th>Measurements equal, valid, and reliable</th>
<th>Interventions clearly defined</th>
<th>Important outcomes considered</th>
<th>Appropriate analysis of results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y balanced</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Y-concealment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evidence Table 1D. Study Description Table for Christ-Crain et al., 2004.4

<table>
<thead>
<tr>
<th>Study Description</th>
<th>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</th>
<th>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</th>
<th>Inclusion/exclusion criteria</th>
<th>Participant characteristics</th>
<th>Participant characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author, year:</td>
<td>Christ-Crain et al., 2004.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country, institution type:</td>
<td>Switzerland, University Hospital</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enrollment period:</td>
<td>December 16, 2002, April 13, 2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funding:</td>
<td>Brahms, Dept of Medicine, Freiwillige Akadimische Gesellschaft Basel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author industry relationship disclosures:</td>
<td>1 author consultant, recipient of payments from Brahms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design:</td>
<td>Prospective, cluster-randomized, single-blinded study</td>
<td>Primary outcome:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interventions:</td>
<td>G1: Procalcitonin-based therapeutic strategy</td>
<td>Use of antibiotics % prescription</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setting:</td>
<td>ED</td>
<td>Patient-days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presenting condition:</td>
<td>LRTI</td>
<td>RR antibiotic exposure for LRTI and AECOPD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exclusion criteria:</td>
<td>• Severely immunocompromised</td>
<td>95 % chance of detecting a 30 % reduction in antibiotic exposure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary outcomes:</td>
<td>• Clinical and laboratory outcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inclusion criteria:</td>
<td>• QOL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, years: mean (SD):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men, n (%):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current smoker, n (%):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pack-years: mean (SD):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abnormal CXR, n (%):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coronary artery disease, n (%):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congestive heart failure, n (%):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peripheral vascular disease, n (%):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerebrovascular disease, n (%):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal dysfunction, n (%):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inclusion criteria:
- Cough
- Dyspnea
- Both
- Lower RTI

Exclusion criteria:
- Severely immunocompromised
- Neutropenic
- SCT
- Cystic fibrosis
- TB
- Nosocomial pneumonia
- HIV with CD4 < 200/mm³

Participant characteristics:
- Age, years: mean (SD): G1: 62.8 (19.8) G2: 65.3 (17.3) [test, result (p-value, 95% CI)] G1/G2: NSS
- Men, n (%): G1: 67 (54 %) G2: 61 (51 %) [test, result (p-value, 95% CI)] G1/G2: NSS
- Current smoker, n, (%): G1: 27 (22 %) G2: 35 (29 %) [test, result (p-value, 95% CI)] G1/G2: NSS
- Pack-years: mean (SD): G1: 41.4 (25.0) G2: 40.0 (26.0) [test, result (p-value, 95% CI)] G1/G2: NSS
- Abnormal CXR, n, (%): G1: 48 (39 %) G2: 46 (39 %) [test, result (p-value, 95% CI)] G1/G2: NSS
- CAP, n, (%): G1: 42 (34 %) G2: 45 (38 %) [test, result (p-value, 95% CI)]

Coronary artery disease, n (%): G1: 27 (22 %) G2: 32 (27 %) G1/G2: NSS
Congestive heart failure, n (%): G1: 11 (9%) G2: 7 (6 %) G1/G2: NSS
Peripheral vascular disease, n (%): G1: 10 (8 %) G2: 9 (8 %) G1/G2: NSS
Cerebrovascular disease, n (%): G1: 4 (3 %) G2: 5 (4.5) G1/G2: NSS
Renal dysfunction, n (%): 22 (18 %) G1: 18 (15 %) G2: 22 (18 %) G1/G2: NSS
<table>
<thead>
<tr>
<th>Study Description</th>
<th>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</th>
<th>Inclusion/exclusion criteria</th>
<th>Participant characteristics</th>
<th>Participant characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</td>
<td>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</td>
<td>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</td>
<td>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</td>
<td>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCT 0.25-0.5, antibiotics encouraged PCT 0.5 or greater, antibiotics strongly encouraged</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G2: Standard therapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decision-making: G1: For antibiotic discontinuation PCT < 0.25, d/c antibiotics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G2: Standard therapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Condition = definition:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AECOPD, n, (%): G1: 29 (23 %) G2: 31 (26 %) [test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acute bronchitis, n, (%): G1: 28 (23 %) G2: 31 (26 %) [test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asthma attack, n, (%): G1: 10 (8 %) G2: 3 (3 %) [test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other, n, (%): G1: 15 (12 %) G2: 9 (8 %) [test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCT: mean (SD): G1: 1.6 (7.7) G2: 1.6 (4.2) [test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liver dysfunction, n (%): 6 (5 %) G1: 6 (5 %) G2: [test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diabetes mellitus, n (%): G1: 15 (12 %) G2: 17 (14 %) [test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Initial VAS: [mean (SD), median (range/IQR)] G1: 42.5 (20.4) G2: 43.1 (21.0) [test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Initial Quality of life: [mean (SD), median (range/IQR)] G1: 41.3 (14.3) G2: 39.3 (13.2) [test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evidence Table 2D. Intermediate Outcomes for Christ-Crain et al., 2004.

<table>
<thead>
<tr>
<th>Antibiotic treatment duration</th>
<th>Antibiotic prescription rate, number of courses of antibiotics</th>
<th>Antibiotic classes</th>
<th>Hospital length of stay</th>
<th>ICU admission, length of stay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days: [mean (SD), median (range/IQR)]</td>
<td>Antibiotic prescription rate, number of courses of antibiotics</td>
<td>Antibiotic classes</td>
<td>Hospital length of stay</td>
<td>ICU admission, length of stay</td>
</tr>
<tr>
<td>G1: 10.9 +/- 3.6</td>
</tr>
<tr>
<td>G2: 12.8 +/- 5.5</td>
</tr>
</tbody>
</table>

- **Test, result (p-value, 95% CI):**
 - G1/G2: p = 0.03
 - G1/G2: p = 0.03
 - G1/G2: p < 0.001
 - G1/G2: p < 0.0001

Evidence Table 3D. Morbidity Outcomes for Christ-Crain et al., 2004.

<table>
<thead>
<tr>
<th>Morbidity</th>
<th>Morbidity</th>
<th>Recurrence</th>
<th>Sepsis/SIRS frequency</th>
<th>RTI symptoms, overall health, cure, success</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 4D. Mortality Outcomes for Christ-Crain et al., 2004.

<table>
<thead>
<tr>
<th>In-hospital mortality</th>
<th>28-day mortality</th>
<th>Death</th>
<th>Pneumonia-related death</th>
<th>Proportion surviving hospitalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Test, result (p-value, 95% CI):**
 - G1/G2: NSS
 - G1/G2: NSS
 - G1/G2: NSS
 - G1/G2: NSS

- **Proportion (%):**
 - G1: 4 (3 %)
 - G2: 4 (3 %)
 - Test, result (p-value, 95% CI)
 - G1/G2: NSS

- **ICU admission (%)**:
 - G1: 5 (4 %)
 - G2: 6 (5 %)
 - Test, result (p-value, 95% CI)
 - G1/G2: NSS

- **Days:** [mean (SD), median (range/IQR)]
 - G1: 10.7 (8.9)
 - G2: 11.2 (10.6)
 - Test, result (p-value, 95% CI)
 - G1/G2: NSS

- **ICU admission, length of stay:**
 - G1/G2: NSS

- **NR**
Evidence Table 5D. Function and Quality of Life Outcomes for Christ-Crain et al., 2004.4

<table>
<thead>
<tr>
<th>Days ≤ 14 days of baseline with daily activities restricted by RTI</th>
<th>Days work missed</th>
<th>Visual analog functional scale</th>
<th>Quality of life score</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>Final VAS: [mean (SD), median (range/IQR)]</td>
<td>Final Quality of life: [mean (SD), median (range/IQR)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1: 65.1 (21.8)</td>
<td>G1: 21.9 (14.7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G2: 64.1 (21.5)</td>
<td>G2: 22.9 (15.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[test result (p-value, 95% CI)]</td>
<td>[test result (p-value, 95% CI)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td>G1/G2: NSS</td>
</tr>
</tbody>
</table>

Evidence Table 6D. Adverse Effects and Adherence for Christ-Crain et al., 2004.4

<table>
<thead>
<tr>
<th>Combined adverse outcome < 30 days</th>
<th>Antibiotic adverse effects, days with adverse effects from medication, antibiotic resistance</th>
<th>Pain, bleeding, local infection</th>
<th>Adherence</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td></td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 7D. Randomized Trial Study Quality Ratings for Christ-Crain et al., 2004.4

<table>
<thead>
<tr>
<th>Assembled comparable groups</th>
<th>Maintained comparable groups</th>
<th>Minimal follow-up loss</th>
<th>Measurements equal, valid, and reliable</th>
<th>Interventions clearly defined</th>
<th>Important outcomes considered</th>
<th>Appropriate analysis of results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y-balanced</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>N/A-concealment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Description</td>
<td>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</td>
<td>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</td>
<td>Inclusion/exclusion criteria</td>
<td>Participant characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------------</td>
<td>---</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author, year: Christ-Crain et al., 2006.</td>
<td>Design: RCT, 1:1, intent-to-treat Interventions: G1: Procalcitonin guidance G2: Usual practice Presenting condition: CAP admitted to ED, single center Setting: ED N at enrollment: G1: 151 G2: 151</td>
<td>Primary outcome: Total antibiotic use (prescription) and duration Study powered to detect a 30% reduction in antibiotic exposure (95%). This also gave the study a 74% chance to detect a 10% increase in failure or complications Secondary outcomes: Laboratory, clinical outcomes Also cost assessment, direct (PCT, antibiotics) Indirect (adverse events, multidrug resistance, etc.) not considered Response criteria, independent outcome assessor: Assay type: Kryptor PCT, Brahms Decision-making: G1: 2 interventions For antibiotic initiation and discontinuation PCT < 0.1 antibiotics strongly discouraged PCT > 0.1, < 0.25, antibiotics discouraged</td>
<td>Inclusion criteria: > 18 years of age CAP principle diagnosis defined by new infiltrate on CXR and one of the following: cough, sputum production, dyspnea, fever > 38°C, abnormal breath sounds, white blood count > 10,000 or < 4,000 Exclusion criteria: Current smoker, n (%): G1: 34 (23%) G2: 39 (26%) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
<td>Age, years: mean (SD) G1: 70 (17) G2: 70 (17) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country, institution type: Switzerland, University Hospital of Basel Enrollment period: November 2003-February 2005</td>
<td>Funding: Brahms, Pfizer, Mepha, University Hospital of Basel Author industry relationship disclosures: 1 author received grants and lecture fees from Brahms, 1 author was on the Brahms advisory board for lecture fees</td>
<td>N at follow-up: G1: 131 (20 died) G2: 131 (18 died, 2 LTFU) Average follow-up, days: [mean (SD), median (range/IQR)] G1: NR G2: NR 6 weeks</td>
<td>Men, n (%): G1: 94 (62%) G2: 93 (62%) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
<td>Coronary artery diseases, n (%): G1: 49 (33%) G2: 48 (32%) G1/G2: NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funding:</td>
<td>Hypertensive heart failure, n (%): G1: 42 (28%) G2: 36 (24%) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
<td>Congestive heart failure, n (%): G1: 7 (5%) G2: 9 (6%) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
<td>Peripheral vascular disease, n (%): G1: 11 (7%) G2: 9 (6%) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
<td>Cerebrovascular disease, n (%): G1: 8 (5%) G2: 8 (5%) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author industry relationship disclosures: 1 author received grants and lecture fees from Brahms, 1 author was on the Brahms advisory board for lecture fees</td>
<td>Renal dysfunction, n (%):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Description</td>
<td>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</td>
<td>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</td>
<td>Inclusion/exclusion criteria</td>
<td>Participant characteristics</td>
<td>Participant characteristics</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>---</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCT ≥ 0.25, ≤ 0.5, antibiotics encouraged PCT > 0.5, antibiotics strongly encouraged If baseline > 10, antibiotics discontinued if less than 10 % of initial value</td>
<td>G2: Standard therapy</td>
<td>G1/G2: NSS</td>
<td>G1: 36 (24 %) G2: 45 (30 %) [test, result (p-value, 95% CI)]</td>
<td>Liver disease, n (%): G1: 12 (8 %) G2: 19 (13 %) [test, result (p-value, 95% CI)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Diabetic mellitus, n (%): G1: 32 (21 %) G2: 29 (19 %) [test, result (p-value, 95% CI)]</td>
<td>G1/G2: NSS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COPD, n (%): G1: 44 (29 %) G2: 32 (21 %) [test, result (p-value, 95% CI)]</td>
<td>G1/G2: NSS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cancer, n (%): G1: 25 (17 %) G2: 23 (15 %) [test, result (p-value, 95% CI)]</td>
<td>G1/G2: NSS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
</tr>
</tbody>
</table>

CRP: median (range) G1: 111 (57-204) G2: 152 (72-212) [test, result (p-value, 95% CI)]

G1/G2: NSS

WBC count: [mean (SD)] G1: 13.7 (6.7) G2: 13.4 (6.6) [test, result (p-value, 95% CI)]

G1/G2: NSS

QOL score: mean (SD) G1: 40 (13) G2: 39 (13) [test, result (p-value, 95% CI)]

G1/G2: NSS

VAS, %: mean (SD) G1: 43 (20) G2: 39 (21) [test, result (p-value, 95% CI)]

G1/G2: NSS

PSI points: mean (SD) G1: 99.7 (36.1) G2: 99.2 (34.5) [test, result (p-value, 95% CI)]

G1/G2: NSS
<table>
<thead>
<tr>
<th>Study Description</th>
<th>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</th>
<th>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</th>
<th>Inclusion/exclusion criteria</th>
<th>Participant characteristics</th>
<th>Participant characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PSI class I, II, III, n (%):</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G1: 54 (36 %)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G2: 66 (44 %)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PSI class IV, n (%):</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G1: 68 (45 %)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G2: 62 (41 %)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PSI class V, n (%):</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G1: 29 (19 %)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G2: 23 (15 %)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
</tr>
</tbody>
</table>
Evidence Table 2E. Intermediate Outcomes for Christ-Crain et al., 2006.5

<table>
<thead>
<tr>
<th>Antibiotic treatment duration</th>
<th>Antibiotic prescription rate, number of courses of antibiotics</th>
<th>Antibiotic classes</th>
<th>Hospital length of stay</th>
<th>ICU admission, length of stay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days: [mean (SD), median (range/IQR)]</td>
<td>Any antibiotic use, antibiotic prescription rate (%): G1: 128 (85 %) G2: 149 (99 %) [test, result (p-value, 95% CI)] G1/G2: p < 0.001</td>
<td>NR</td>
<td>Hospitalization (%): G1: 146 (97 %) G2: 146 (97 %) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
<td>ICU admission (%): G1: 20 (13 %) G2: 21 (14 %) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
</tr>
<tr>
<td>Days, if prescribed: [mean (SD), median (range/IQR)]</td>
<td>Days: [mean (SD), median (range/IQR)] G1: 6.8 (5.1) G2: 13.1 (6.4) [test, result (p-value, 95% CI)] G1/G2: p < 0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Days if bacteremic: [mean (SD), median (range/IQR)]</td>
<td>Incidence density antibiotic exposure: (rate days exposed per 1,000 patient-days) G1: 136 (95% CI 126 to 146) G2: 323 (95% CI 309 to 338) [test, result (p-value, 95% CI)] G1/G2: p < 0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antibiotic cost, US $: G1: 29,248 G2: 59,535 [test, result (p-value, 95% CI)] G1/G2: p < 0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antibiotic cost per patient, US $: G1: 100 (33-186) G2: 190 (133-337) [test, result (p-value, 95% CI)] G1/G2: p < 0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morbidity</td>
<td>Morbidity</td>
<td>Recurrence</td>
<td>Sepsis/SIRS frequency</td>
<td>RTI symptoms, overall health, cure, success</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>NR</td>
<td>NR</td>
<td>Microbiological recurrence of infection (%):</td>
<td>NR</td>
<td>Success at follow-up, n, (%):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1: 1 (1 %) G2: 0</td>
<td>G1/G2: NSS</td>
<td>G1: 127/151 (84 %)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td>G2: 124/151 (82 %)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
<td>G1/G2: NSS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clinical/radiological recurrence (%):</td>
<td></td>
<td>Clinical cure, n, (%):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1: 4 (3 %) G2: 4 (3 %)</td>
<td>G1/G2: NSS</td>
<td>G1: 108/127 (85 %)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td>G2: 105/124 (85 %)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Persistent of pneumonia:</td>
<td></td>
<td>Improved, n, (%):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1: 1 (1 %) G2: 3 (2 %)</td>
<td>G1/G2: NSS</td>
<td>G1: 19/127 (15 %)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td>G2: 19/124 (15 %)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Empyema, n (%):</td>
<td></td>
<td>G1/G2: NSS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1: 4 (3 %) G2: 7 (5 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ARDS, n (%):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1: 1 (1 %) G2: 1 (1 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evidence Table 4E. Mortality Outcomes for Christ-Crain et al., 2006.5

<table>
<thead>
<tr>
<th>In-hospital mortality</th>
<th>28-day mortality</th>
<th>Death</th>
<th>Pneumonia-related death</th>
<th>Proportion surviving hospitalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>Proportion (%): G1: 18 (12 %) G2: 20 (13 %)</td>
<td>Proportion (%): G1: 10 (56 %) G2: 10 (50 %)</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 5E. Function and Quality of Life Outcomes for Christ-Crain et al., 2006.5

<table>
<thead>
<tr>
<th>Days < 14 days of baseline with daily activities restricted by RTI</th>
<th>Days work missed</th>
<th>Visual analog functional scale</th>
<th>Quality of life score</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>Function: [mean (SD), median (range/IQR)]</td>
<td>Quality of life: [mean (SD)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1: 79 (18) G2: 74 (20)</td>
<td>G1: 10 (10) G2: 11 (10)</td>
</tr>
</tbody>
</table>

Evidence Table 6E. Adverse Effects and Adherence for Christ-Crain et al., 2006.5

<table>
<thead>
<tr>
<th>Combined adverse outcome < 30 days</th>
<th>Antibiotic adverse effects, days with adverse effects from medication, antibiotic resistance</th>
<th>Pain, bleeding, local infection</th>
<th>Adherence</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td></td>
<td></td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 7E. Randomized Trial Study Quality Ratings for Christ-Crain et al., 2006.5

<table>
<thead>
<tr>
<th>Assembled comparable groups</th>
<th>Maintained comparable groups</th>
<th>Minimal follow-up loss</th>
<th>Measurements equal, valid, and reliable</th>
<th>Interventions clearly defined</th>
<th>Important outcomes considered</th>
<th>Appropriate analysis of results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y- balanced</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Study Description</td>
<td>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</td>
<td>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</td>
<td>Inclusion/exclusion criteria</td>
<td>Participant characteristics</td>
<td>Participant characteristics</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>---</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>Author, year:</td>
<td>Chromik et al., 2005.</td>
<td>Inclusion/exclusion criteria:</td>
<td>Participant characteristics:</td>
<td>Participant characteristics:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country, institution type:</td>
<td>Germany, University Hospital of Würzburg</td>
<td>Inclusion criteria:</td>
<td>Age, years: [mean (SD), median (range/IQR)] G1: 62 (38-82) G2: 70 (62-89) [test, result (p-value, 95% CI)] G1/G2: NR</td>
<td>Participant characteristics:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enrollment period:</td>
<td>Not given</td>
<td>Primary outcome: Post-op complications; local wound or systemic infection</td>
<td>Exclusion criteria: > 24 hours of peri-operative antibiotic prophylaxis</td>
<td>Participant characteristics:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funding:</td>
<td>Not given</td>
<td>Secondary outcomes: Mortality for post-op infections, complications, fever, WBC, duration of antibiotics, LOS</td>
<td>SZ</td>
<td>Participant characteristics:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author industry relationship disclosures:</td>
<td>Not given</td>
<td>No power calculation</td>
<td>pregnancy or lactation</td>
<td>Participant characteristics:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design:</td>
<td>RCT, 1:1, single arm with respect to PCT</td>
<td>Response criteria, independent outcome assessor:</td>
<td>cephalosporin allergy</td>
<td>Participant characteristics:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interventions:</td>
<td>G1: Preemptive treatment G2: Standard treatment</td>
<td>Assay type: Kryptor, Brahms</td>
<td>renal failure</td>
<td>Participant characteristics:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presenting condition:</td>
<td>250 consecutive colorectal surgery patients</td>
<td>Decision-making: G1: PCT-guided pre-emptive antibiotics</td>
<td>HIV</td>
<td>Participant characteristics:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setting:</td>
<td>Inpatient hospital, surgical service</td>
<td>If PCT > 1.5 post-op, randomized 1:1 to receive Ceftriaxone or placebo</td>
<td>immune deficiency</td>
<td>Participant characteristics:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N at enrollment:</td>
<td>G1: 10 G2: 10</td>
<td>G2: No pre-emptive antibiotics, patients followed for signs of post-op infections</td>
<td>investigational treatment within last 30 days</td>
<td>Participant characteristics:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N at follow-up:</td>
<td>G1: 10 G2: 10</td>
<td>Condition = definition: Colorectal surgery</td>
<td>current cytostatic immunosuppressive medications</td>
<td>Participant characteristics:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evidence Table 2F. Intermediate Outcomes for Chromik et al., 2005.6

<table>
<thead>
<tr>
<th>Antibiotic treatment duration</th>
<th>Antibiotic prescription rate, number of courses of antibiotics</th>
<th>Antibiotic classes</th>
<th>Hospital length of stay</th>
<th>ICU admission, length of stay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days: median (range):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1: 5.5 (4-20)</td>
<td>NR</td>
<td>NR</td>
<td>Days: median (range):</td>
<td>NR</td>
</tr>
<tr>
<td>G2: 9 (3-16)</td>
<td></td>
<td></td>
<td>G1: 18 (10-49)</td>
<td></td>
</tr>
<tr>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
<td>G2: 30 (9-82)</td>
<td></td>
</tr>
<tr>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
</tr>
</tbody>
</table>

Evidence Table 3F. Morbidity Outcomes for Chromik et al., 2005.6

<table>
<thead>
<tr>
<th>Morbidity</th>
<th>Recurrence</th>
<th>Sepsis/SIRS frequency</th>
<th>RTI symptoms, overall health, cure, success</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>SIRS (C1), sepsis (C2), severe sepsis (C3), septic shock (C4), (%)</td>
<td></td>
</tr>
<tr>
<td>Wound infection (%)</td>
<td></td>
<td>G1: 1/10 G2: 2/10</td>
<td>G1-C1 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td>G1-C2 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1 + G2: 3/20 (15%)</td>
<td>G1-C3 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G3: 16/230 (7.0%)</td>
<td>G1-C4 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No antibiotics or further surgery</td>
<td>G2-C1 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G2-C2 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G2-C3 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G2-C4 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total G1: 2</td>
<td>Total G2: 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1/G2: p = 0.001</td>
<td>G1/G2: p = 0.007 for total</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systemic infection (%)</td>
<td></td>
<td>Requiring pressors (%)</td>
<td></td>
</tr>
<tr>
<td>G1: 3/10</td>
<td></td>
<td>G1: 1</td>
<td></td>
</tr>
<tr>
<td>G2: 8/10</td>
<td></td>
<td>G2: 6</td>
<td></td>
</tr>
<tr>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1/G2: p = 0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No antibiotics or further surgery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPV for wound 93 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.3 % for systemic infection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple systemic infections (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1: 0/3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2: 1/7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1/G2:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evidence Table 4F. Mortality Outcomes for Chromik et al., 2005.

<table>
<thead>
<tr>
<th>In-hospital mortality</th>
<th>28-day mortality</th>
<th>Death</th>
<th>Pneumonia-related death</th>
<th>Proportion surviving hospitalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1: 1/10 (10%)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>G2: 3/10 (30%)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Proportion (%):

G1/G2: NR/NR/NR/NR

Evidence Table 5F. Function and Quality of Life Outcomes for Chromik et al., 2005.

<table>
<thead>
<tr>
<th>Days < 14 days of baseline with daily activities restricted by RTI</th>
<th>Days work missed</th>
<th>Visual analog functional scale</th>
<th>Quality of life score</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 6F. Adverse Effects and Adherence for Chromik et al., 2005.

<table>
<thead>
<tr>
<th>Combined adverse outcome < 30 days</th>
<th>Antibiotic adverse effects, days with adverse effects from medication, antibiotic resistance</th>
<th>Pain, bleeding, local infection</th>
<th>Adherence</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 7F. Randomized Trial Study Quality Ratings for Chromik et al., 2005.

<table>
<thead>
<tr>
<th>Assembled comparable groups</th>
<th>Maintained comparable groups</th>
<th>Minimal follow-up loss</th>
<th>Measurements equal, valid, and reliable</th>
<th>Interventions clearly defined</th>
<th>Important outcomes considered</th>
<th>Appropriate analysis of results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

C-25
Evidence Table 1G. Study Description Table for Hochreiter et al., 2009.

<table>
<thead>
<tr>
<th>Study Description</th>
<th>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</th>
<th>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</th>
<th>Inclusion/exclusion criteria</th>
<th>Participant characteristics</th>
<th>Participant characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author, year: Hochreiter et al., 2009.</td>
<td>Design: RCT, 1:1 randomization</td>
<td>Primary outcome:</td>
<td>Inclusion criteria:</td>
<td>Age, years: Mean (SD)</td>
<td>SAPS II, Mean (SD):</td>
</tr>
<tr>
<td>Country, institution type: Germany, University affiliate</td>
<td>Interventions: G1: PCT-guided antibiotics therapy G2: Standard therapy</td>
<td>Response criteria, independent outcome assessor:</td>
<td>[test, result (p-value, 95% CI)]</td>
<td>G1: 67.3 (14.4) G2: 66.6 (15.5)</td>
<td>G1: 40.1 ± 17.1 G2: 40.5 ± 15.1</td>
</tr>
<tr>
<td>Enrollment period: January 2006-March 2007</td>
<td>Presenting condition: Proven or suspected post-op bacterial infection</td>
<td>Exclusion criteria:</td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funding: Not listed</td>
<td>Setting: ICU</td>
<td>Inclusion criteria:</td>
<td>Disease, n, (%):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author industry relationship disclosures: 1 author speaker’s bureau, no other conflicts</td>
<td>N at enrollment: G1: 57 G2: 53</td>
<td>Response criteria:</td>
<td>Pneumonia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N at follow-up: G1: 57 G2: 53</td>
<td>Assay type: Kryptor, Brahms</td>
<td>G1: 24/57 G2: 19/53</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average follow-up, days: [mean (SD), median (range/IQR)] G1: NR G2: NR</td>
<td>Also CRP, IL-6, WBC</td>
<td>[test, result (p-value, 95% CI)]</td>
<td>G1/G2: NSS</td>
<td>G1/G2: NSS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decision-making: G1: PCT Algorithm</td>
<td>Condition = definition:</td>
<td>Peritonitis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCT < 1.0 and clinical signs resolved, stop antibiotics; PCT > 1.0 but dropped to 25-35 % of initial value over 3 days; stop antibiotics</td>
<td></td>
<td>G1: 29/57 G2: 30/53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G2: Antibiotics standard regimen for 8 days</td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td>G1/G2: NSS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Skin, soft tissue infection</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G1: 2/57 G2: 1/53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td>G1/G2: NSS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UTI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G1: 2/57</td>
<td></td>
</tr>
<tr>
<td>Study Description</td>
<td>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</td>
<td>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</td>
<td>Inclusion/exclusion criteria</td>
<td>Participant characteristics</td>
<td>Participant characteristics</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>---</td>
<td>----------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evidence Table 2G. Intermediate Outcomes for Hochreiter et al., 2009.

<table>
<thead>
<tr>
<th>Antibiotic treatment duration</th>
<th>Antibiotic prescription rate, number of courses of antibiotics</th>
<th>Antibiotic classes</th>
<th>Hospital length of stay</th>
<th>ICU admission, length of stay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days: [mean (SD), median (range/IQR)]</td>
<td>NR</td>
<td>No differences in antibiotics used</td>
<td>NR</td>
<td>ICU LOS, days, Mean (SD): G1: 15.5 (12.5) G2: 17.7 (10.1) [test, result (p-value, 95% CI)] G1/G2: p = 0.046</td>
</tr>
<tr>
<td>G1: 5.9 (1.7)</td>
<td>G2: 7.9 (0.5) [test, result (p-value, 95% CI)]</td>
<td>G1/G2: p < 0.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evidence Table 3G. Morbidity Outcomes for Hochreiter et al., 2009.

<table>
<thead>
<tr>
<th>Morbidity</th>
<th>Morbidity</th>
<th>Recurrence</th>
<th>Sepsis/SIRS frequency</th>
<th>RTI symptoms, overall health, cure, success</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 4G. Mortality Outcomes for Hochreiter et al., 2009.

<table>
<thead>
<tr>
<th>In-hospital mortality</th>
<th>28-day mortality</th>
<th>Death</th>
<th>Pneumonia-related death</th>
<th>Proportion surviving hospitalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>Proportion, (%): G1: 15/57 G2: 14/53 [test, result (p-value, 95% CI)] G1/G2: NSS</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 5G. Function and Quality of Life Outcomes for Hochreiter et al., 2009.

<table>
<thead>
<tr>
<th>Days ≤ 14 days of baseline with daily activities restricted by RTI</th>
<th>Days work missed</th>
<th>Visual analog functional scale</th>
<th>Quality of life score</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>
Evidence Table 6G. Adverse Effects and Adherence for Hochreiter et al., 2009.

<table>
<thead>
<tr>
<th>Combined adverse outcome < 30 days</th>
<th>Antibiotic adverse effects, days with adverse effects from medication, antibiotic resistance</th>
<th>Pain, bleeding, local infection</th>
<th>Adherence</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 7G. Randomized Trial Study Quality Ratings for Hochreiter et al., 2009.\(^7\)

<table>
<thead>
<tr>
<th>Assembled comparable groups</th>
<th>Maintained comparable groups</th>
<th>Minimal follow-up loss</th>
<th>Measurements equal, valid, and reliable</th>
<th>Interventions clearly defined</th>
<th>Important outcomes considered</th>
<th>Appropriate analysis of results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y*</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

No details on allocation concealment but groups were comparable
<table>
<thead>
<tr>
<th>Study Description</th>
<th>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</th>
<th>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</th>
<th>Inclusion/exclusion criteria</th>
<th>Participant characteristics</th>
<th>Participant characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author, year: Jensen et al., 2011.</td>
<td>Design: RCT; Open label</td>
<td>Primary outcome: 28 day mortality</td>
<td>Inclusion criteria:</td>
<td>Age, years: median (range/IQR)</td>
<td>Surgical patient, n (%):</td>
</tr>
<tr>
<td>Country, institution type: Denmark, Tertiary Care Public University Hospital</td>
<td>Interventions: G1: expanded diagnostic radiology and expanded spectrum of antibiotic therapy for "alert procalcitonin"; de-escalation only after PCT < 1.0 for 3 days G2: Standard microbiologic sampling, radiology, and antibiotic therapy</td>
<td>Secondary outcomes: Shorter ICU LOS; shorter duration of organ failure</td>
<td>G1: > 18 years of age</td>
<td>G1: 67 (58-76) G2: 67 (58-75) [test, result (p-value, 95% CI)]</td>
<td></td>
</tr>
<tr>
<td>Enrollment period: 2006-2009</td>
<td>Presenting condition: Critically ill in ICU</td>
<td>Response criteria, independent outcome assessor: Investigators, treating physicians, and coordinator were unaware of outcomes as well as procalcitonin measurements in the control group</td>
<td>Expected ICU stay ≥ 24 hours</td>
<td>G1/G2: Women, n (%): G1: 274 (45.4 %) G2: 263 (44.1 %) [test, result (p-value, 95% CI)]</td>
<td></td>
</tr>
<tr>
<td>Author industry relationship disclosures: One author disclosed speaking and travel reimbursement from Brahms</td>
<td>N at enrollment: G1: 604 G2: 596</td>
<td>Decision-making: G1: Intervention algorithm based on "alert procalcitonin" (> 1.0 ng/mL that was not decreasing by at least 10 % from the previous day). At baseline a single measurement of > 1.0 ng/mL was also considered alert procalcitonin; G2: Standard of care algorithm</td>
<td>High bilirubin (> 40 mg/dL) or High triglycerides (> 1,000 mg/dL) Patients judged to be at an increased risk from blood sampling</td>
<td>G1/G2: NSS</td>
<td></td>
</tr>
<tr>
<td>N at follow-up: G1: 604 G2: 596</td>
<td>Average follow-up, days: [mean (SD), median (range/IQR)] G1: 28 days G2: 28 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Infection, Clinical Assessment					
No infection, n, (%): G1: 86 (14.2 %) G2: 118 (19.8 %)	Infection, n, (%): G1: 271 (44.9 %) G2: 266 (44.6 %)				
G1/G2: NSS					
1 chronic co-morbidity, n (%): G1: 257 (42.6 %) G2: 279 (46.8 %)					
G1/G2: NSS					
2 chronic co-morbidities, n (%): G1: 171 (28.3 %) G2: 173 (29.0 %)					
G1/G2: NSS					
3 chronic co-morbidities, n (%): Congestive heart failure, n (%): G1: 53 (8.8 %) G2: 42 (7.1 %)					
G1/G2: NSS					
Evidence Table 2H. Intermediate Outcomes for Jensen et al., 2011.

<table>
<thead>
<tr>
<th>Antibiotic treatment duration</th>
<th>Antibiotic prescription rate, number of courses of antibiotics</th>
<th>Antibiotic classes</th>
<th>Hospital length of stay</th>
<th>ICU admission, length of stay</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1: 6 (3-11) G2: 4 (3-10)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>Days: median (range/IQR)</td>
</tr>
<tr>
<td>[test, result (p-value, 95% CI)]</td>
<td>G1: 3570 (65.5 %) G2: 2721 (57.7 %) G1/G2: 7.8, p = 0.002</td>
<td></td>
<td></td>
<td>G1: 6 (3-12) G2: 5 (3-11)</td>
</tr>
<tr>
<td>[test, result (p-value, 95% CI)]</td>
<td>Days spent in ICU with ≥ 3 antibiotics, n (%): G1: 3570 (65.5 %) G2: 2721 (57.7 %) G1/G2: 7.8, p = 0.002</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evidence Table 3H. Morbidity Outcomes Jensen et al., 2011.

<table>
<thead>
<tr>
<th>Morbidity</th>
<th>Morbidity</th>
<th>Recurrence</th>
<th>Sepsis/SIRS frequency</th>
<th>RTI symptoms, overall health, cure, success</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>ICU days on mechanical ventilation: [mean (SD), median (range/IQR)] G1: 3569 (65.5 %) G2: 2861 (60.7 %) [test, result (p-value, 95% CI)] G1/G2: 4.9 (3.0 to 6.7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR</td>
<td>ICU days with GFR < 60 mL/1.73 ml on mechanical ventilation: [mean (SD), median (range/IQR)] G1: 2796 (51.3 %) G2: 2187 (46.4 %) [test, result (p-value, 95% CI)] G1/G2: 5.0 (3.0 to 6.9)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evidence Table 4H. Mortality Outcomes for Jensen et al., 2011.

<table>
<thead>
<tr>
<th>In-hospital mortality</th>
<th>28-day mortality</th>
<th>Death</th>
<th>Pneumonia-related death</th>
<th>Proportion surviving hospitalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>Proportion (%): G1: 190/604 (31.5 %) G2: 191 /596 (32.0 %) [test, result (p-value, 95% CI)] G1/G2: -0.6 % (-4.7 to 5.9 %)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>
Evidence Table 5A Function and Quality of Life Outcomes for Jensen et al., 2011.8

<table>
<thead>
<tr>
<th>Days < 14 days of baseline with daily activities restricted by RTI</th>
<th>Days work missed</th>
<th>Visual analog functional scale</th>
<th>Quality of life score</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 6H. Adverse Effects and Adherence for Jensen et al., 2011.8

<table>
<thead>
<tr>
<th>Combined adverse outcome < 30 days</th>
<th>Antibiotic adverse effects, days with adverse effects from medication, antibiotic resistance</th>
<th>Pain, bleeding, local infection</th>
<th>Adherence</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>Proportion of patients with baseline PCT alert who received antibiotics (G1) (%): G1: 256/312 (82.1 %) Proportion of patients at baseline who were judged to have severe sepsis or septic shock and who received antibiotics (G2) G2: 172/209 (82.4 %) [test, result (p-value, 95% CI)] G1/G2:</td>
</tr>
</tbody>
</table>

Evidence Table 7H. Randomized Trial Study Quality Ratings for Jensen et al., 2011.8

<table>
<thead>
<tr>
<th>Assembled comparable groups</th>
<th>Maintained comparable groups</th>
<th>Minimal follow-up loss</th>
<th>Measurements equal, valid, and reliable</th>
<th>Interventions clearly defined</th>
<th>Important outcomes considered</th>
<th>Appropriate analysis of results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

C-31
<table>
<thead>
<tr>
<th>Study Description</th>
<th>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</th>
<th>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</th>
<th>Inclusion/exclusion criteria</th>
<th>Participant characteristics</th>
<th>Participant characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author, year: Kristoffersen et al., 2009.</td>
<td>Design: RCT, multi-center</td>
<td>Primary outcome: Primary-intent to treat analysis Antibiotics use (days of antibiotics during hospitalization) LOS hospital</td>
<td>Inclusion criteria: • > 18 years of age • Suspected pneumonia • One or more symptoms of cough, expectoration, dyspnea, fever > 38°C</td>
<td>Age, years: [mean (SD), median (range/IQR)]</td>
<td>Diabetes mellitus, n (%): G1: 13 (13 %) G2: 11 (10 %)</td>
</tr>
<tr>
<td>Country, institution type: Denmark</td>
<td>Interventions: G1: Procalcitonin-guided treatment G2: Standard treatment</td>
<td>Secondary outcome: Proportion of patients for whom physicians disregarded treatment guidelines 90 % power to detect a 20 % decrease in antibiotic exposure</td>
<td>G1/G2: NSS</td>
<td>[test, result (p-value, 95% CI)]</td>
<td>G1/G2: NSS</td>
</tr>
<tr>
<td>Enrollment period: June 1, 2006 to April 30, 2007</td>
<td>Presenting condition: Hospitalized patients with LRTI, suspicion of pneumonia based on history (cough, sputum, dyspnea, and fever > 38°C) and physical (no CXR requirement)</td>
<td>Response criteria, independent outcome assessor: Assay type: Kryptor, Brahms</td>
<td>Men, n (%): G1: 54 (52 %) G2: 58 (54 %)</td>
<td>[test, result (p-value, 95% CI)]</td>
<td>G1/G2: NSS</td>
</tr>
<tr>
<td>Funding: Danish Medical Research Council, Danish Lung Association</td>
<td>Setting: 223 enrolled 210 analyzed</td>
<td>Decision-making: G1: PCT guided continuation or cessation of antibiotics</td>
<td>Antibiotics pretreatment, n (%): G1: 48 (47 %) G2: 46 (43 %)</td>
<td>[test, result (p-value, 95% CI)]</td>
<td>G1/G2: NSS</td>
</tr>
<tr>
<td>Author industry relationship disclosures: No conflicts</td>
<td>N at enrollment: G1: 103 G2: 107</td>
<td>If PCT < 0.25 ng/mL, antibiotics should be discouraged PCT 0.25-5.0, antibiotic encouraged PCT > 0.5, antibiotic strongly encouraged</td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average follow-up, days: [mean (SD), median (range/IQR)]</td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td>G1/G2: NSS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1: NR G2: NR</td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COPD, n (%): G1: 38 (37 %) G2: 51 (48 %)</td>
<td>G1/G2: NSS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td>G1/G2: NSS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Final Diagnosis</td>
<td>CAP, n (%):</td>
</tr>
<tr>
<td>Category</td>
<td>G1:</td>
<td>G2:</td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------</td>
<td>---------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSI, IV, n (%):</td>
<td>G1: 35</td>
<td>G2: 27</td>
<td>NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G1: 34%</td>
<td>G2: 25%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS1, V, n (%):</td>
<td>G1: 3</td>
<td>G2: 2</td>
<td>NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G1: 3%</td>
<td>G2: 2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abnormal CXR, n (%):</td>
<td>G1: 40</td>
<td>G2: 43</td>
<td>NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G1: 39%</td>
<td>G2: 40%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WBC, mean (SD):</td>
<td>G1: 13.2</td>
<td>G2: 12.1</td>
<td>NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G1: 7.5</td>
<td>G2: 5.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRP, mean (SD):</td>
<td>G1: 1091</td>
<td>G2: 971</td>
<td>NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G1: 1080</td>
<td>G2: 1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCT, median (range):</td>
<td>G1: 0.14</td>
<td>G2: 0.13</td>
<td>NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G1: 0.05-42.13</td>
<td>G2: 0.02-30.12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evidence Table 2I. Intermediate Outcomes for Kristoffersen et al., 2009.9

<table>
<thead>
<tr>
<th>Antibiotic treatment duration</th>
<th>Antibiotic prescription rate, number of courses of antibiotics</th>
<th>Antibiotic classes</th>
<th>Hospital length of stay</th>
<th>ICU admission, length of stay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days: [mean (SD), median (range/IQR)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1: 5.1 (95 % CI 4.4-6.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2: 6.8 (95 % CI 5.9-7.7) [test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1/G2: p = 0.007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In 42/103 patients (41 %), treatment guidelines were ignored 47 % due to clinical presentation, 41 % due to late report 1.6 days to get report.

<table>
<thead>
<tr>
<th>Antibiotic classes</th>
<th>Any antibiotic use, antibiotic prescription rate (%)</th>
<th>Days: [mean (SD), median (range/IQR)]</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>G1: 88 (85 %) G2: 85 (79 %) [test, result (p-value, 95% CI)]</td>
<td>G1: 5.9 (95 % CI 5.1-6.9) G2: 6.7 (95 % CI 5.9-7.7) [test, result (p-value, 95% CI)]</td>
<td>G1/G2: NSS</td>
<td>G1/G2: NSS</td>
</tr>
</tbody>
</table>

In 42/103 patients (41 %), treatment guidelines were ignored 47 % due to clinical presentation, 41 % due to late report 1.6 days to get report.

Evidence Table 3I. Morbidity Outcomes for Kristoffersen et al., 2009.9

<table>
<thead>
<tr>
<th>Morbidity</th>
<th>Morbidity</th>
<th>Recurrence</th>
<th>Sepsis/SIRS frequency</th>
<th>RTI symptoms, overall health, cure, success</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 4I. Mortality Outcomes for Kristoffersen et al., 2009.9

<table>
<thead>
<tr>
<th>In-hospital mortality</th>
<th>28-day mortality</th>
<th>Death</th>
<th>Pneumonia-related death</th>
<th>Proportion surviving hospitalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion (%):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1: 2 (2 %) G2: 1 (1 %) [test, result (p-value, 95 % CI)]</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evidence Table 5I. Function and Quality of Life Outcomes for Kristoffersen et al., 2009.9

<table>
<thead>
<tr>
<th>Days ≤ 14 days of baseline with daily activities restricted by RTI</th>
<th>Days work missed</th>
<th>Visual analog functional scale</th>
<th>Quality of life score</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 6I. Adverse Effects and Adherence for Kristoffersen et al., 2009.9

<table>
<thead>
<tr>
<th>Combined adverse outcome < 30 days</th>
<th>Antibiotic adverse effects, days with adverse effects from medication, antibiotic resistance</th>
<th>Pain, bleeding, local infection</th>
<th>Adherence</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>
Evidence Table 7J. Randomized Trial Study Quality Ratings for Kristoffersen et al., 2009.9

<table>
<thead>
<tr>
<th>Assembled comparable groups</th>
<th>Maintained comparable groups</th>
<th>Minimal follow-up loss</th>
<th>Measurements equal, valid, and reliable</th>
<th>Interventions clearly defined</th>
<th>Important outcomes considered</th>
<th>Appropriate analysis of results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y- balanced</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Y-concealment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evidence Table 1J. Study Description Table for Long et al., 2011.10

<table>
<thead>
<tr>
<th>Study Description</th>
<th>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</th>
<th>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</th>
<th>Inclusion/exclusion criteria</th>
<th>Participant characteristics</th>
<th>Participant characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author, year:</td>
<td>Long et al., 2011.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country, institution type:</td>
<td>Shanghai China, University hospital</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funding:</td>
<td>Grant Shanghai Fifth People’s Hospital Science Foundation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author industry relationship disclosures:</td>
<td>Not stated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design:</td>
<td>RCT, intention to treat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interventions:</td>
<td>G1: PCT-guided antibiotic therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G2: standard antimicrobial therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presenting condition:</td>
<td>Suspected CAP outpatient</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setting:</td>
<td>ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N at enrollment:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1: 86</td>
<td>G2: 86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N at follow-up:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1: 77</td>
<td>4 lost to follow-up</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 withdrew</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 lung CA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2: 79</td>
<td>2 lost to follow-up</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 withdrew</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary outcome:</td>
<td>Total antibiotic use and duration of antibiotic treatment, antibiotic prescription rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary outcomes:</td>
<td>Treatment failure, treatment success, death, recurrence, relapse, patients lost to follow-up</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response criteria, independent outcome assessor:</td>
<td>Assay type: Kryptor-Brahms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assay type:</td>
<td>Kryptor-Brahms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decision-making:</td>
<td>G1: PCT< 0.1 µg/L strongly discourage antibiotic use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCT 0.1-0.25 µg/L antibiotics discouraged</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCT >0.25 antibiotics encouraged</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2: Standard PCT levels tested at 6-12 hours then 3.6 and 8 days antibiotics were discontinued based on</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inclusion criteria:</td>
<td>> 18 years of age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PSI class I-III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exclusion criteria:</td>
<td>Age 65 or older</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pregnancy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antibiotic 48-hour before enrollment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>systemic immune deficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Withholding life-support</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Active TB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, years:</td>
<td>[mean (SD), median (range/IQR)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1: 44 +/- 16</td>
<td>G2: 47 +/- 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males, n (%):</td>
<td>G1: 46 (59.7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G2: 49 (62.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body temperature n:</td>
<td>[mean (SD), median (range/IQR)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1: 34 (44.2)</td>
<td>G2: 33 (41.8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Smokers, n (%):</td>
<td>G1: 22 (28.6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G2: 34 (30.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Former Smokers, n (%):</td>
<td>G1: 41 (53.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G2: 45 (56.9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, years:</td>
<td>[mean (SD), median (range/IQR)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1: 44 +/- 16</td>
<td>G2: 47 +/- 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males, n (%):</td>
<td>G1: 46 (59.7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G2: 49 (62.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body temperature n:</td>
<td>[mean (SD), median (range/IQR)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1: 34 (44.2)</td>
<td>G2: 33 (41.8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C-35
| 2 TB | Average follow-up, days: 28 day follow-up | previous defined values | PCT n : [mean (SD), median (range/IQR)]; G1: 0.39 (0.26-1.12) G2: 0.42 (0.28-1.19) [test, result (p-value, 95% CI)] |

Evidence Table 2J. Intermediate Outcomes for Long et al., 2011.10

<table>
<thead>
<tr>
<th>Antibiotic treatment duration</th>
<th>Antibiotic prescription rate, number of courses of antibiotics</th>
<th>Antibiotic classes</th>
<th>Hospital length of stay</th>
<th>ICU admission, length of stay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per protocol analysis median duration of therapy: Days: [mean (SD), median (range/IQR)] G1: 5 (3-6) G2: 7 (5-9) [test, result (p-value, 95% CI)] G1/G2: p<0.001</td>
<td>Antibiotic use on initial assessment, antibiotic prescription rate (%): G1: 84.4% G2: 97.5% [test, result (p-value, 95% CI)] G1/G2: p=0.0004 Total rate antibiotics exposure decreased in G1 RR 0.55 95% CI: 0.51-0.60 p=0.003</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 3J. Morbidity Outcomes for Long et al., 2011.10

<table>
<thead>
<tr>
<th>Morbidity</th>
<th>Morbidity</th>
<th>Recurrence</th>
<th>Sepsis/SIRS frequency</th>
<th>RTI symptoms, overall health, cure, success</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patient survived</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>Clinical success (%): ITT analysis G1: 69 (85.2) G2: 72 (88.9) [test, result (p-value, 95% CI)] G1/G2: absolute difference -3.7 (14.1-6.7)</td>
</tr>
</tbody>
</table>

Evidence Table 4J. Mortality Outcomes for Long et al., 2011.10

<table>
<thead>
<tr>
<th>In-hospital mortality</th>
<th>28-day mortality</th>
<th>Death</th>
<th>Pneumonia-related death</th>
<th>Proportion surviving hospitalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 5J. Function and Quality of Life Outcomes for Long et al., 2011.10

<table>
<thead>
<tr>
<th>Days ≤ 14 days of baseline with daily activities restricted by RTI</th>
<th>Days work missed</th>
<th>Visual analog functional scale</th>
<th>Quality of life score</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

C-36
Evidence Table 6J. Adverse Effects and Adherence for Long et al., 2011.10

<table>
<thead>
<tr>
<th>Combined adverse outcome < 30 days</th>
<th>Antibiotic adverse effects, days with adverse effects from medication, antibiotic resistance</th>
<th>Pain, bleeding, local infection</th>
<th>Adherence</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 7J. Randomized Trial Study Quality Ratings for Long et al., 2011.10

<table>
<thead>
<tr>
<th>Assembled comparable groups</th>
<th>Maintained comparable groups</th>
<th>Minimal follow-up loss</th>
<th>Measurements equal, valid, and reliable</th>
<th>Interventions clearly defined</th>
<th>Important outcomes considered</th>
<th>Appropriate analysis of results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y- balanced U-concealment</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

Evidence Table 1K. Study Description Table for Manzano et al., 2010.11

<table>
<thead>
<tr>
<th>Study Description</th>
<th>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</th>
<th>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</th>
<th>Inclusion/exclusion criteria</th>
<th>Participant characteristics</th>
<th>Participant characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author, year:</td>
<td>Manzano et al., 2010.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country, institution type:</td>
<td>Canada, CHU Ste-Justine, Montreal, Tertiary care center</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enrollment period:</td>
<td>Not given</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funding:</td>
<td>PCT-Q supplied by Brahms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author industry relationship disclosures:</td>
<td>None disclosed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design:</td>
<td>RCT, 1:1 block randomization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interventions:</td>
<td>G1: PCT result available, no recommendations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCT < 0.5, low risk of bacterial infection; PCT >= 0.5 moderate risk; PCT >= 2.0 high risk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G2: Blinded to PCT result</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presenting condition:</td>
<td>Fever</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setting:</td>
<td>Pediatric ED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N at enrollment:</td>
<td>G1: 220</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G2: 220</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary outcome:</td>
<td>Antibiotic prescription rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80 % power to detect a difference in rate of Antibiotic prescriptions Needed 335-419</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary outcomes:</td>
<td>Hospitalization rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Additional studies, i.e., CXR, lumbar puncture; prescription rates without excluding patients treated for a bacterial infection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response criteria, independent outcome assessor:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assay type:</td>
<td>PCT-Q, Brahms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inclusion criteria:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Age 1-36 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T > 38°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No identified source of infection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exclusion criteria:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Congenital immune deficiencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Known bacterial infection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANC < 500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Children already treated with antibiotics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, years:</td>
<td>[mean (SD), median (range/IQR)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1: 12 +/- 8 mos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2: 12 +/- 8 mos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triage level (5), n (%):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1-1: 0 (0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1-2: 26 (14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1-3: 77 (40)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1-4: 88 (46)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1-5: 1 (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2-1: 0 (0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2-2: 34 (18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2-3: 74 (39)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2-4: 83 (43)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2-5: 1 (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tmax:</td>
<td>[mean (SD), median (range/IQR)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C-37
Study Description

<table>
<thead>
<tr>
<th>Study Design, interventions, presenting condition, setting, enrollment and follow-up numbers</th>
<th>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</th>
<th>Inclusion/exclusion criteria</th>
<th>Participant characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>N at follow-up: G1: 192 G2: 192 Insufficient blood for 28 in each group</td>
<td>G1: PCT result revealed to treating physician G2: PCT result not revealed to treating physician</td>
<td></td>
<td>G1: 39.6 +/- 0.7 G2: 39.6 +/- 0.6 [test, result (p-value, 95% CI)] G1/G2: NSS</td>
</tr>
</tbody>
</table>

Fever duration, hours: [mean (SD), median (range/IQR)]
G1: 62 +/- 48 G2: 64 +/- 50 [test, result (p-value, 95% CI)] G1/G2: NSS

VAS for serious bacterial infection, %: median (range/IQR)
G1: 19 (12-29) G2: 19 (11-31) [test, result (p-value, 95% CI)] G1/G2: NSS
Evidence Table 2K. Intermediate Outcomes for Manzano et al., 2010.\(^{11}\)

<table>
<thead>
<tr>
<th>Antibiotic treatment duration</th>
<th>Antibiotic prescription rate, number of courses of antibiotics</th>
<th>Antibiotic classes</th>
<th>Hospital length of stay</th>
<th>ICU admission, length of stay</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>All children</td>
<td>NR</td>
<td>All children</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>Any antibiotic use, antibiotic prescription rate (%):</td>
<td></td>
<td>Hospitalization rate, n (%):</td>
<td>Children without SBI or neutropenia</td>
</tr>
<tr>
<td></td>
<td>G1: 48/192 (25)</td>
<td></td>
<td>G1: 50/192 (26)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G1/G2: -3 (-12 to 6)</td>
<td></td>
<td>G1/G2: 1 (-8 to 10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Children without SBI or neutropenia</td>
<td></td>
<td>Hospitalization rate, n (%):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any antibiotic use, antibiotic prescription rate (%):</td>
<td></td>
<td>G1: 16/158 (10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G1: 14/158 (9)</td>
<td></td>
<td>G2: 11/154 (7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G2: 16/154 (10)</td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td>G1/G2: 3 (-3 to 10)</td>
<td></td>
</tr>
</tbody>
</table>
Evidence Table 3K. Morbidity Outcomes for Manzano et al., 2010.¹¹

<table>
<thead>
<tr>
<th>Morbidity</th>
<th>Morbidity</th>
<th>Recurrence</th>
<th>Sepsis/SIRS frequency</th>
<th>RTI symptoms, overall health, cure, success</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 4K. Mortality Outcomes for Manzano et al., 2010.¹¹

<table>
<thead>
<tr>
<th>In-hospital mortality</th>
<th>28-day mortality</th>
<th>Death</th>
<th>Pneumonia-related death</th>
<th>Proportion surviving hospitalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 5K. Function and Quality of Life Outcomes for Manzano et al., 2010.¹¹

<table>
<thead>
<tr>
<th>Days ≤ 14 days of baseline with daily activities restricted by RTI</th>
<th>Days work missed</th>
<th>Visual analog functional scale</th>
<th>Quality of life score</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 6K. Adverse Effects and Adherence for Manzano et al., 2010.¹¹

<table>
<thead>
<tr>
<th>Combined adverse outcome < 30 days</th>
<th>Antibiotic adverse effects, days with adverse effects from medication, antibiotic resistance</th>
<th>Pain, bleeding, local infection</th>
<th>Adherence</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 7K. Randomized Trial Study Quality Ratings for Manzano et al., 2010.¹¹

<table>
<thead>
<tr>
<th>Assembled comparable groups</th>
<th>Maintained comparable groups</th>
<th>Minimal follow-up loss</th>
<th>Measurements equal, valid, and reliable</th>
<th>Interventions clearly defined</th>
<th>Important outcomes considered</th>
<th>Appropriate analysis of results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
</tr>
</tbody>
</table>
Evidence Table 1L: Study Description Table for Nobre et al., 2008.

<table>
<thead>
<tr>
<th>Study Description</th>
<th>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</th>
<th>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</th>
<th>Inclusion/exclusion criteria</th>
<th>Participant characteristics</th>
<th>Participant characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author, year: Nobre et al., 2008. Country, institution type: Switzerland, University Hospital, ICU</td>
<td>Design: RCT, 1:1 randomization Intent to treat</td>
<td>Primary outcome: Systemic antibiotic exposure</td>
<td>Inclusion criteria:</td>
<td>Age, years: [mean (SD), median (range/IQR)]</td>
<td>Cancer, n (%):</td>
</tr>
<tr>
<td>Country, institution type:</td>
<td>Interventions: G1: PCT-guided antibiotics G2: Standard antibiotic therapy</td>
<td>90 % power to detect a 33 % (4 day) difference in antibiotic duration</td>
<td>Exclusion criteria:</td>
<td>G1: 64.0 (12.3)</td>
<td>G1: 4 (12.9 %)</td>
</tr>
<tr>
<td>Funding: Not listed</td>
<td>Setting: ICU 282 assessed 203 excluded 42 > 48 hours antibiotics 35 severe immuno-suppression 37 long-term antibiotics anticipated 20 DNR 32 with consent issues 8 PSAR 7 endocarditis 6 early ICU discharge 16 other</td>
<td>Response criteria, independent outcome assessor:</td>
<td>G1/G2: NSS</td>
<td>G1/G2: NSS</td>
<td>G1/G2: NSS</td>
</tr>
<tr>
<td>Author industry relationship disclosures: 2 authors with research funding from Brahms, and 1 author Brahms speaker’s bureau</td>
<td>N at enrollment: G1: 39 G2: 40</td>
<td>Assay type: Kryptor, Brahms</td>
<td>Disease</td>
<td>Pneumonia, n, (%):</td>
<td>Immunosuppression, n (%):</td>
</tr>
<tr>
<td>Design: RCT, 1:1 randomization Intent to treat</td>
<td>Interventions: G1: PCT-guided antibiotic discontinuation Baseline PCT > 1.0, PCT decreased by 90 % from peak or < 0.25, stop antibiotic Baseline PCT < 1.0, PCT < 0.1, discontinue antibiotics</td>
<td>Decision-making: G1: PCT-guided antibiotic discontinuation G2: Standard antibiotic therapy</td>
<td>Male, n (%):</td>
<td>G1: 21 (71.0 %)</td>
<td>G1: 11 (35.5 %)</td>
</tr>
<tr>
<td>N at follow-up: G1: 31 G2: 37 G1 4 decreased or</td>
<td>N at follow-up: G1: 31 G2: 37</td>
<td>Condition = definition: Sepsis, ATS, RCCM, 1992</td>
<td>Abdominal sepsis, n, (%):</td>
<td>G1: 2 (6.5 %)</td>
<td>G1: 2 (6.5 %)</td>
</tr>
<tr>
<td>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</td>
<td></td>
<td></td>
<td>Abdominal sepsis, n, (%):</td>
<td>G1: 2 (6.5 %)</td>
<td>G1/G2: NSS</td>
</tr>
<tr>
<td>Inclusion/exclusion criteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COPD, n (%):</td>
</tr>
<tr>
<td>Participant characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G1: 12 (38.7 %)</td>
</tr>
<tr>
<td>Participant characteristics</td>
<td></td>
<td></td>
<td></td>
<td>G2: 7 (18.9 %)</td>
<td></td>
</tr>
<tr>
<td>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</td>
<td></td>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td>G1/G2: NSS</td>
</tr>
<tr>
<td>Participant characteristics</td>
<td></td>
<td></td>
<td></td>
<td>Insulin-dependent diabetes, n (%):</td>
<td>Non-insulin-dependent diabetes, n (%):</td>
</tr>
<tr>
<td>Participant characteristics</td>
<td></td>
<td></td>
<td></td>
<td>G1: 0</td>
<td>G1/G2:</td>
</tr>
<tr>
<td>Participant characteristics</td>
<td></td>
<td></td>
<td></td>
<td>G2: 2 (5.4 %)</td>
<td></td>
</tr>
<tr>
<td>Participant characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Description</td>
<td>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</td>
<td>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</td>
<td>Inclusion/exclusion criteria</td>
<td>Participant characteristics</td>
<td>Participant characteristics</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>---</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
</tbody>
</table>
| transferred early, 4 complicated infection G2 2 deceased of transferred, 1 complicated | Condition = definition: Septic shock, ATS, RCCM, 1992 | G2: 1 (2.7 %) [test, result (p-value, 95% CI)]
G1/G2: NSS | | G1: 4 (12.9 %) [test, result (p-value, 95% CI)]
G2: 6 (16.2 %) [test, result (p-value, 95% CI)]
G1/G2: NSS | |
<p>| | | Septic shock, n, (%): G1: 15 (48.4 %) G2: 16 (43.2 %) [test, result (p-value, 95% CI)] G1/G2: NSS | | Chronic renal failure, n (%): G1: 2 (6.5 %) G2: 6 (16.2 %) [test, result (p-value, 95% CI)] G1/G2: NSS | |
| | | SAPS III, mean (SD): G1: 68.5 (12.1) G2: 70.1 (13.1) [test, result (p-value, 95% CI)] G1/G2: NSS | | Peripheral vascular disease, n (%): G1: 1 (3.2 %) G2: 1 (2.72 %) [test, result (p-value, 95% CI)] G1/G2: NSS | |
| | | SOFA, Mean (SD): G1: 6.4 (3.3) G2: 6.6 (3.0) [test, result (p-value, 95% CI)] G1/G2: NSS | | Chronic liver disease, n (%): G1: 5 (16.1 %) G2: 5 (13.5 %) [test, result (p-value, 95% CI)] G1/G2: NSS | |
| | | Baseline PCT, Median (range): G1: 7.3 (0.1-93) G2: 5.4 (0.1-354) [test, result (p-value, 95% CI)] G1/G2: NSS | | | |
| | | Baseline PCT < 1.0, n, (%): G1: 7 (22.5 %) G2: 6 (16.2) [test, result (p-value, 95% CI)] G1/G2: NSS | | | |
| Average follow-up, days: [mean (SD), median (range/IQR)] G1: NR G2: NR | Follow-up 28 days | | | | |</p>
<table>
<thead>
<tr>
<th>Evidence Table 2L. Intermediate Outcomes for Nobre et al., 2008.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibiotic treatment duration</td>
</tr>
<tr>
<td>Intent to treat</td>
</tr>
<tr>
<td>G1: 6 (3-24)</td>
</tr>
<tr>
<td>G2: 9.5 (2-33)</td>
</tr>
<tr>
<td>[test, result (p-value, 95% CI)]</td>
</tr>
<tr>
<td>Incidence density antibiotic exposure: (rate days exposed per 1,000 patient-days)</td>
</tr>
<tr>
<td>Days alive without antibiotics, mean (SD):</td>
</tr>
<tr>
<td>G1: 15.3 (8.9)</td>
</tr>
<tr>
<td>G2: 13 (8.2)</td>
</tr>
<tr>
<td>[test, result (p-value, 95% CI)]</td>
</tr>
<tr>
<td>Per protocol</td>
</tr>
<tr>
<td>Duration antibiotics, Days: Median (range)</td>
</tr>
<tr>
<td>G1: 6 (4-16)</td>
</tr>
<tr>
<td>G2: 10 (3-33)</td>
</tr>
<tr>
<td>[test, result (p-value, 95% CI)]</td>
</tr>
<tr>
<td>Incidence density antibiotic exposure: (rate days exposed per 1,000 patient-days)</td>
</tr>
<tr>
<td>G1: 504</td>
</tr>
<tr>
<td>Antibiotic treatment duration</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>G1/G2: Mean difference 1.3 (1.1 to 1.5), p = 0.0002</td>
</tr>
<tr>
<td>Days alive without antibiotics, mean (SD):</td>
</tr>
<tr>
<td>G1: 17.4 (7.6)</td>
</tr>
<tr>
<td>G2: 13.6 (7.6)</td>
</tr>
<tr>
<td>[test, result (p-value, 95% CI)]</td>
</tr>
<tr>
<td>G1/G2: Mean difference 3.8 (0.1 to 7.5), p = 0.04</td>
</tr>
</tbody>
</table>

Evidence Table 3L: Morbidity Outcomes for Nobre et al., 2008.¹²

<table>
<thead>
<tr>
<th>Morbidity</th>
<th>Morbidity</th>
<th>Recurrence</th>
<th>Sepsis/SIRS frequency</th>
<th>RTI symptoms, overall health, cure, success</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>Intent to treat Relapse infection rate, n (%):</td>
<td>NR</td>
<td>Intent to treat Clinical cure (%):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1: 1 (2.6 %)</td>
<td>G1: 31 (79.4 %)</td>
<td>G1: 31 (79.4 %)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G2: 1 (2.5 %)</td>
<td>G2: 32 (80 %)</td>
<td>G2: 32 (80 %)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td>[test, result (p-value, 95% CI)]</td>
<td>[test, result (p-value, 95% CI)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td>G1/G2: NSS</td>
<td>G1/G2: NSS</td>
</tr>
<tr>
<td>Per protocol Relapse infection rate, n (%):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1: 1 (3.2 %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2: 1 (2.7 %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per protocol Clinical cure (%):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1: 28 (90.3 %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2: 31 (83.8 %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evidence Table 4L. Mortality Outcomes for Nobre et al., 2008.

<table>
<thead>
<tr>
<th></th>
<th>In-hospital mortality</th>
<th>28-day mortality</th>
<th>Death</th>
<th>Sepsis–related death</th>
<th>Proportion surviving hospitalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intent to treat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1: 9 (23.1 %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2: 9 (22.5 %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per protocol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1: 6 (19.4 %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2: 7 (18.9 %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intention to treat

<table>
<thead>
<tr>
<th></th>
<th>G1:</th>
<th>G2:</th>
<th>p-value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Per protocol

<table>
<thead>
<tr>
<th></th>
<th>G1:</th>
<th>G2:</th>
<th>p-value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evidence Table 5L. Function and Quality of Life Outcomes for Nobre et al., 2008.

<table>
<thead>
<tr>
<th></th>
<th>Days ≤ 14 days of baseline</th>
<th>Days work missed</th>
<th>Visual analog functional scale</th>
<th>Quality of life score</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 6L: Adverse Effects and Adherence for Nobre et al., 2008.

<table>
<thead>
<tr>
<th></th>
<th>Antibiotic adverse effects</th>
<th>Pain, bleeding, local infection</th>
<th>Adherence</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 7L. Randomized Trial Study Quality Ratings for Nobre et al., 2008.

<table>
<thead>
<tr>
<th></th>
<th>Assembled comparable groups</th>
<th>Maintained comparable groups</th>
<th>Minimal follow-up loss</th>
<th>Measurements equal, valid, and reliable</th>
<th>Interventions clearly defined</th>
<th>Important outcomes considered</th>
<th>Appropriate analysis of results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Study Description</td>
<td>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</td>
<td>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</td>
<td>Inclusion/exclusion criteria</td>
<td>Participant characteristics</td>
<td>Participant characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Author, year:** Schuetz et al., 2009. (ProHOSP) | **Design:** RCT, 1:1, non-inferiority | **Primary outcome:** Overall adverse event rate within 30 days (death, ICU, disease-specific complications, recurrence), non-inferiority Both intent to treat and per protocol analysis performed for primary outcomes Study powered to detect a 7.5 % increase in combined endpoint; 90 % chance of detection, needed 1002 patients | **Inclusion criteria:**
- ED patients with LRTIs
- Age > 18 years
- Duration of illness < 28 days
- 1 respiratory symptom, 1 physical finding OR fever OR leukocytosis | **Age, years:** [mean (SD), median (range/IQR)]
G1: 73 (59-82)
G2: 72 (59-82) | **Coronary artery disease, n (%):**
[test, result (p-value, 95% CI)]
G1: 146 (21.8 %)
G2: 136 (19.8 %)
G1/G2: |
| | **Interventions:** G1: PCT-guided initiation of antibiotics; PCT-guided discontinuation of antibiotics
G2: Standard therapy | **Secondary outcome:** Antibiotic exposure Duration of antibiotics Adverse antibiotic effects LOS Superiority | | **Male, n (%):**
G1: 402 (59.9 %)
G2: 380 (55.2 %) | **Cerebrovascular disease, n (%):**
[test, result (p-value, 95% CI)]
G1: 54 (8.1 %)
G2: 56 (8.1 %)
G1/G2: |
| | **Presenting condition:** LRTI; CAP, AECOPD, acute bronchitis, other | **Response criteria, independent outcome assessor:** Outcomes assessed by blinded investigators | | **Disease**
CAP, n, (%): [mean (SD), median (range/IQR)]
G1: 460 (68.6 %)
G2: 465 (67.6 %) | **Renal dysfunction, n (%):**
[test, result (p-value, 95% CI)]
G1: 156 (23.3 %)
G2: 146 (21.2 %)
G1/G2: |
| | **Setting:** EDs | **Assay type:** Rapid Kryptor, Brahms | | **PSI for CAP, n, (%):** [mean (SD), median (range/IQR)]
G1: 91 (67-117)
G2: 91 (66-114) | **COPD, n, (%):**
[test, result (p-value, 95% CI)]
G1: 265 (39.5 %)
G2: 268 (39.0 %)
G1/G2: |
| | **N at enrollment:**
G1: 687
G2: 694 | **Decision-making:**
G1:
G2: Algorithm for PCT guided therapy | | **Cancer, n (%):**
G1: 69 (10.3 %)
G2: 98 (14.2 %) | **G1/G2:** |
| | **N at follow-up:**
G1: 671
G2: 688 | **AECOPD, n, (%):** [mean (SD), median (range/IQR)] | | **Diabetes mellitus, n (%):** |
<table>
<thead>
<tr>
<th>Study Description</th>
<th>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</th>
<th>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</th>
<th>Inclusion/exclusion criteria</th>
<th>Participant characteristics</th>
<th>Participant characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of follow-up 30 days (phone interview)</td>
<td>For antibiotic initiation PCT < 0.1, antibiotics strongly discouraged; PCT ≤ 0.25, antibiotics discouraged; PCT > 0.25, antibiotics encouraged; PCT > 0.5, antibiotics strongly encouraged</td>
<td>For antibiotic discontinuation PCT < 10 % of baseline, stopping antibiotics strongly encouraged; PCT < 20 % of baseline, stopping antibiotics discouraged</td>
<td>Protocol could be overruled if ICU, hemodynamic instability, + Legionella Other interventions adequate antibiotic therapy</td>
<td>Acute bronchitis, n, (%): [mean (SD), median (range/IQR)] G1: 69 (10.3 %) G2: 82 (11.9 %) [test, result (p-value, 95% CI)] G1/G2: NSS Other, n, (%): [mean (SD), median (range/IQR)] G1: 27 (4.0 %) G2: 28 (4.0 %) [test, result (p-value, 95% CI)] G1/G2: NSS Hospitalized, n, (%): [mean (SD), median (range/IQR)] G1: 628 (93.7 %) G2: 629 (91.4 %) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
<td>G1: 115 (17.1 %) G2: 113 (16.4 %) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
</tr>
</tbody>
</table>
Evidence Table 2M. Intermediate Outcomes for Schuetz et al., 2009.13

<table>
<thead>
<tr>
<th>Antibiotic treatment duration</th>
<th>Antibiotic prescription rate, number of courses of antibiotics</th>
<th>Antibiotic classes</th>
<th>Hospital length of stay</th>
<th>ICU admission, length of stay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days: Mean, (median/ IQR) G1: 5.7 (5/1-8) G2: 8.7 (9/6-11)</td>
<td>Any antibiotic use, antibiotic prescription rate, n, (%): G1: 506/671 (75.4 %) G2: 603/688 (87.7 %) [test, result (p-value, 95% CI)] G1/G2: % difference 95 % CI, -34.8 (-40.3 to -28.7)</td>
<td>NR</td>
<td>Days: Mean, (median/IQR) G1: 9.4 (8/4-12) G2: 9.2 (8/4-12) [test, result (p-value, 95% CI)] G1/G2: Relative mean change 1.8 (-6.9 to 11.0)</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 3M. Morbidity Outcomes for Schuetz et al., 2009.13

<table>
<thead>
<tr>
<th>Morbidity</th>
<th>Morbidity</th>
<th>Recurrence</th>
<th>Sepsis/SIRS frequency</th>
<th>RTI symptoms, overall health, cure, success</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intent to Treat Overall adverse outcome, n, (%): G1: 103/671 (15.4 %) G2: 130/688 (18.9 %) [test, result (p-value, 95% CI)] G1/G2: CI for difference by Mantel-Haenszel weights stratified by site of infection. -3.5 (-7.6 to 0.4) Kaplan-Meier curves for time to first adverse event were calculated</td>
<td>Antibiotic adverse effects, n, (%): [mean (SD), median (range/IQR)] G1: 133/671 (19.8 %) G2: 193/688 (28.1 %) [test, result (p-value, 95% CI)] G1/G2: CI -8.2 (-12.7 to -3.7)</td>
<td>Intent to Treat Recurrence of infection (%): G1: 25/671 (3.7 %) G2: 45/688 (6.5 %) [test, result (p-value, 95% CI)] G1/G2: CI -2.8 (-5.1 to -0.4)</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>ICU, n, (%): G1: 43/671 (6.4 %) G2: 60/688 (8.7 %) [test, result (p-value, 95% CI)] G1/G2: CI -2.3 (-5.2 to 0.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disease-specific complications (%): G1: 17/671 (2.5 %) G2: 14/688 (2.0 %) [test, result (p-value, 95% CI)] G1/G2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per protocol Overall adverse outcome, n, (%): G1: 95/633 (15.0 %) G2: 123/650 (18.9 %) [test, result (p-value, 95% CI)] G1/G2: -3.9 (-8.2 to 0.03)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evidence Table 4M. Mortality Outcomes for Schuetz et al., 2009.¹³

<table>
<thead>
<tr>
<th></th>
<th>In-hospital mortality</th>
<th>30-day mortality</th>
<th>Death</th>
<th>Pneumonia-related death</th>
<th>Proportion surviving hospitalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>Intent to treat</td>
<td></td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>Proportion, n, (%):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G1: 34/671 (5.1 %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G2: 33/688 (4.8 %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G1/G2: CI 0.3 (-2.1 to 2.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per protocol</td>
<td>Proportion, n, (%):</td>
<td></td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>G1: 29/633 (4.6 %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G2: 31/650 (4.8 %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G1/G2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evidence Table 5M. Function and Quality of Life Outcomes for Schuetz et al., 2009.¹³

<table>
<thead>
<tr>
<th>Days ≤ 14 days of baseline with daily activities restricted by RTI</th>
<th>Days work missed</th>
<th>Visual analog functional scale</th>
<th>Quality of life score</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 6M. Adverse Effects and Adherence for Schuetz et al., 2009.¹³

<table>
<thead>
<tr>
<th>Combined adverse outcome < 30 days</th>
<th>Antibiotic adverse effects, days with adverse effects from medication, antibiotic resistance</th>
<th>Pain, bleeding, local infection</th>
<th>Adherence</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 7M. Randomized Trial Study Quality Ratings for Schuetz et al., 2009.¹³

<table>
<thead>
<tr>
<th>Assembled comparable groups</th>
<th>Maintained comparable groups</th>
<th>Minimal follow-up loss</th>
<th>Measurements equal, valid, and reliable</th>
<th>Interventions clearly defined</th>
<th>Important outcomes considered</th>
<th>Appropriate analysis of results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y-balanced</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Y-concealment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evidence Table 1N. Study Description Table for Schroeder et al., 2009.

<table>
<thead>
<tr>
<th>Study Description</th>
<th>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</th>
<th>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</th>
<th>Inclusion/exclusion criteria</th>
<th>Participant characteristics</th>
<th>Participant characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author, year: Schroeder et al., 2009.</td>
<td>Design: RCT, 1:1 Interventions: G1: PCT-guided antibiotic therapy G2: Standard therapy Presenting condition: Status-post abdominal surgery Setting: SICU N at enrollment: G1: 14 G2: 13 N at follow-up: G1: 14 G2: 13 Average follow-up, days: [mean (SD), median (range/IQR)] G1: NR G2: NR</td>
<td>Primary outcome: Response criteria, independent outcome assessor: No power calculation Assay type: Kryptor, Brahms Also CRP, IL-6, WBC Decision-making: G1: PCT decreased to 1 or 25-35 % of baseline over 3 days G2: Standard Condition = definition: Severe sepsis, 1992 ATS, RCCM</td>
<td>Inclusion criteria: None listed</td>
<td>Age, years: [mean (SD), median (range/IQR)] G1: 69.3 (10.6) G2: 68.4 (13.7) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
<td>Male, n (%): G1: 8/14 G2: 7/13 [test, result (p-value, 95% CI)] G1/G2: NSS</td>
</tr>
</tbody>
</table>
Evidence Table 2N. Intermediate Outcomes for Schroeder et al., 2009

<table>
<thead>
<tr>
<th>Antibiotic treatment duration</th>
<th>Antibiotic prescription rate, number of courses of antibiotics</th>
<th>Antibiotic classes</th>
<th>Hospital length of stay</th>
<th>ICU admission, length of stay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days: [mean (SD), median (range/IQR)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1: 6.6 (1.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2: 8.3 (0.7)</td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1/G2: p < 0.001</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>ICU admission, days: [mean (SD), median (range/IQR)]</td>
</tr>
<tr>
<td></td>
<td>G1: 16.4 (8.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G2: 16.7 (5.6)</td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G1/G2: NSS</td>
<td>NR</td>
<td>NR</td>
<td></td>
</tr>
</tbody>
</table>

Evidence Table 3N. Morbidity Outcomes for Schroeder et al., 2009

<table>
<thead>
<tr>
<th>Morbidity</th>
<th>Morbidity</th>
<th>Recurrence</th>
<th>Sepsis/SIRS frequency</th>
<th>RTI symptoms, overall health, cure, success</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 4N. Mortality Outcomes for Schroeder et al., 2009

<table>
<thead>
<tr>
<th>In-hospital mortality</th>
<th>28-day mortality</th>
<th>Death</th>
<th>Pneumonia-related death</th>
<th>Proportion surviving hospitalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>Proportion (%): G1: 3/14</td>
<td>G2: 3/13</td>
<td>[test, result (p-value, 95% CI)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 5N. Function and Quality of Life Outcomes for Schroeder et al., 2009

<table>
<thead>
<tr>
<th>Days < 14 days of baseline with daily activities restricted by RTI</th>
<th>Days work missed</th>
<th>Visual analog functional scale</th>
<th>Quality of life score</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 6N. Adverse Effects and Adherence

<table>
<thead>
<tr>
<th>Combined adverse outcome < 30 days</th>
<th>Antibiotic adverse effects, days with adverse effects from medication, antibiotic resistance</th>
<th>Pain, bleeding, local infection</th>
<th>Adherence</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 7N. Randomized Trial Study Quality Ratings for Schroeder et al., 2009

<table>
<thead>
<tr>
<th>Assembled comparable groups</th>
<th>Maintained comparable groups</th>
<th>Minimal follow-up loss</th>
<th>Measurements equal, valid, and reliable</th>
<th>Interventions clearly defined</th>
<th>Important outcomes considered</th>
<th>Appropriate analysis of results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y*</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

*No details on allocation concealment but groups were comparable
<table>
<thead>
<tr>
<th>Study Description</th>
<th>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</th>
<th>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</th>
<th>Inclusion/exclusion criteria</th>
<th>Participant characteristics</th>
<th>Participant characteristics</th>
</tr>
</thead>
</table>
| **Author, year:** Stocker et al., 2010. | **Design:** RCT; 1:1, masked until randomization | **Primary outcome:** Proportion of infants treated with antibiotics ≥ 72 hours | **Inclusion criteria:**
• Gestational age ≥ 34 weeks
• Early-onset sepsis (3 days) | Gestational age (weeks), mean (std dev):
G1: 39.4 (34.4-42.0)
G2: 39.7 (34.0-41.7) | **APGAR 5, mean (std dev):**
G1: 9
G2: 9 |
| **Country, institution type:** Switzerland, single tertiary care institution | **Interventions:**
G1: Procalcitonin-guided decision-making
G2: Standard treatment | Absolute reduction in duration of antibiotic therapy | **Exclusion criteria:**
• Severe congenital malformations, chromosomal abnormalities
• Surgery in first 3 days of life | Birth weight (grams), mean (std dev):
G1: 3,200 (2,000-4,640)
G2: 3,330 (1,800-4,900) | **APGAR 10, mean (std dev):**
G1: 9
G2: 10 |
| **Enrollment period:** June 1, 2005-December 31, 2006 | **Presenting condition:** Suspected early-onset neonatal sepsis | Trial 90% powered to detect a 30% difference in duration of antibiotic therapy | **Birth weight (grams), mean (std dev):**
G1: 3,200 (2,000-4,640)
G2: 3,330 (1,800-4,900) | **G1/G2:** NSS | **APGAR 10, mean (std dev):**
G1: 9
G2: 10 |
| **Funding:** Brahms supplied test kits | **Setting:** Neonatal and Pediatric ICU | **Secondary outcome:** Survival | **Birth weight (grams), mean (std dev):**
G1: 3,200 (2,000-4,640)
G2: 3,330 (1,800-4,900) | **G1/G2:** NSS | **APGAR 10, mean (std dev):**
G1: 9
G2: 10 |
| **Author industry relationship disclosures:** Not given | **N at enrollment:**
G1: 60
G2: 61 | **Assay type:** Kryptor, Brahms | **Male sex, n, (%):**
G1: 35 (58%)
G2: 40 (65%) | **Infection proven/probable, n, (%):**
G1: 9/0 (15%)
G2: 11/1 (20%) | **APGAR 5, mean (std dev):**
G1: 9
G2: 9 |
| **Inclusion/exclusion criteria:**
• Gestational age ≥ 34 weeks
• Early-onset sepsis (3 days) | **N at follow-up:**
G1: 60
G2: 61 | **Decision-making:**
G1: PCT age-adjusted for 0-120 hours of age, peak at 18-30 hours of 10 ng/mL
G2: Standard therapy | **Infection possible, n, (%):**
G1: 21 (35%)
G2: 19/1 (31%) | **APGAR 10, mean (std dev):**
G1: 9
G2: 10 | **APGAR 5, mean (std dev):**
G1: 9
G2: 9 |
| **Participant characteristics:**
Condition = definition:
Sepsis Diagnosis by risk factors, group B streptococcus, premature rupture of membranes, clinical status, including respiratory distress, tachycardia, bradycardia, hypotension, seizures, irritability, vomiting, feeding intolerance, ileus, WBC count, immature to total granulocytes, CRP | **Average follow-up, days:** [mean (SD), median (range/IQR)]
G1: 3 days to 1 month
G2: 3 days to 1 month | **APGAR 1, median:**
G1: 8
G2: 8 | **Infection unlikely, n, (%):**
G1: 30 (50%)
G2: 30.1 (49%) | **APGAR 5, mean (std dev):**
G1: 9
G2: 9 | **APGAR 10, mean (std dev):**
G1: 9
G2: 10 |

C-52
Evidence Table 2O. Intermediate Outcomes for Stocker et al., 2010.

<table>
<thead>
<tr>
<th>Antibiotic treatment duration</th>
<th>Antibiotic prescription rate, number of courses of antibiotics</th>
<th>Antibiotic classes</th>
<th>Hospital length of stay</th>
<th>ICU admission, length of stay</th>
</tr>
</thead>
<tbody>
<tr>
<td>All newborns</td>
<td>Proportion treated with antibiotics > 72 hours, n, %: [mean (SD), median (range/IQR)]</td>
<td></td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>G1: 79.1</td>
<td>G1: 33/60 (55 %)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>G2: 101.5</td>
<td>G2: 50/61 (82 %)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>G1/G2: Abs reduction 22.4, Mann-Whitney U test, p = 0.012</td>
<td>G1/G2: RR 27 %, Fisher’s exact test, p = 0.002</td>
<td>NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infection proven/probably</td>
<td>Proportion treated with antibiotics > 72 hours, n, %: [mean (SD), median (range/IQR)]</td>
<td></td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>G1: 177.8</td>
<td>G1: 9/9 (100 %)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>G2: 170.8</td>
<td>G2: 12/12 (100 %)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>G1/G2: Abs reduction 7, NSS</td>
<td>G1/G2: RR 0 %, NSS</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Infection possible</td>
<td>Proportion treated with antibiotics > 72 hours, n, %: [mean (SD), median (range/IQR)]</td>
<td></td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>G1: 83.4</td>
<td>G1: 13/21 (61.9 %)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>G2: 111.5</td>
<td>G2: 19/19 (100 %)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>G1/G2: Abs reduction 28.1, p < 0.001</td>
<td>G1/G2: RR 38.1 %, p < 0.001</td>
<td>NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infection unlikely</td>
<td>Proportion treated with antibiotics > 72 hours, n, %: [mean (SD), median (range/IQR)]</td>
<td></td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>G1: 46.5</td>
<td>G1: 11/30 (36.7 %)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>G2: 67.4</td>
<td>G2: 19/30 (63.3 %)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>G1/G2: Abs reduction 20.9, p = 0.001</td>
<td>G1/G2: RR, 26.6 %, p = 0.038</td>
<td>NR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evidence Table 3. Morbidity Outcomes for Stocker et al., 2010.15

<table>
<thead>
<tr>
<th>Morbidity</th>
<th>Morbidity</th>
<th>Recurrence</th>
<th>Sepsis/SIRS frequency</th>
<th>RTI symptoms, overall health, cure, success</th>
</tr>
</thead>
</table>
| NR | NR | Recurrence (%):
G1: 32%
G2: 39%
[test, result (p-value, 95% CI)]
G1/G2: OR 0.71, 95% CI 0.34/1.51, Fisher’s exact test, non-inferiority, NSS | NR | NR |

Evidence Table 4. Mortality Outcomes for Stocker et al., 2010.15

<table>
<thead>
<tr>
<th>In-hospital mortality</th>
<th>28-day mortality</th>
<th>Death</th>
<th>Pneumonia-related death</th>
<th>Proportion surviving hospitalization</th>
</tr>
</thead>
</table>
| Proportion (%):
G1: 0%
G2: 0%
[test, result (p-value, 95% CI)]
G1/G2: NSS | NR | NR | NR | NR |

Evidence Table 5. Function and Quality of Life Outcomes for Stocker et al., 2010.15

<table>
<thead>
<tr>
<th>Days < 14 days of baseline with daily activities restricted by RTI</th>
<th>Days work missed</th>
<th>Visual analog functional scale</th>
<th>Quality of life score</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 6. Adverse Effects and Adherence for Stocker et al., 2010.15

<table>
<thead>
<tr>
<th>Combined adverse outcome < 30 days</th>
<th>Antibiotic adverse effects, days with adverse effects from medication, antibiotic resistance</th>
<th>Pain, bleeding, local infection</th>
<th>Adherence</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 7. Randomized Trial Study Quality Ratings for Stocker et al., 2010.15

<table>
<thead>
<tr>
<th>Assembled comparable groups</th>
<th>Maintained comparable groups</th>
<th>Minimal follow-up loss</th>
<th>Measurements equal, valid, and reliable</th>
<th>Interventions clearly defined</th>
<th>Important outcomes considered</th>
<th>Appropriate analysis of results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
Evidence Table 1P. Study Description Table for Stolz et al., 2007.¹⁶

<table>
<thead>
<tr>
<th>Study Description</th>
<th>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</th>
<th>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</th>
<th>Inclusion/exclusion criteria</th>
<th>Participant characteristics</th>
<th>Participant characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author, year:</td>
<td>Stolz et al., 2007.</td>
<td>Design: RCT; 1:1, masked until randomization, single center</td>
<td>Primary outcome: Antibiotic use at index AECOPD Antibiotic use up to 6 months</td>
<td>Age, years: median (range/IQR)</td>
<td>Diabetes mellitus, n (%): G1: 5 (4.9 %) G2: 12 (11.3 %) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
</tr>
<tr>
<td>Country, institution type:</td>
<td>Switzerland, University Hospital of Basel</td>
<td>Interventions: G1: Procalcitonin guidance G2: Standard therapy</td>
<td>Secondary outcomes: Success, LOS, ICU need, CRP, PCT, PFTs on admission, short- and long-term follow-up, exacerbation rate, time to next exacerbation</td>
<td>Men, n (%): G1: 50 (49 %) G2: 44 (41.5 %) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
<td></td>
</tr>
<tr>
<td>Enrollment period:</td>
<td>November 2003-March 2005</td>
<td>Presenting condition: AECOPD</td>
<td>Exclusion criteria:</td>
<td>Current smoker, n (%): G1: 40 (39.2 %) G2: 54 (50.9 %) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
<td></td>
</tr>
<tr>
<td>Funding:</td>
<td>Clinic of Pulmonary Medicine; Clinic of Endo, Diabetes, and Clinical Nutrition; ED of University Hospital of Basel; Brahms supplied the kits</td>
<td>Setting: ED</td>
<td>Response criteria, independent outcome assessor:</td>
<td>Pack-years: median (range/IQR): G1: 43 (30-58.5) G2: 50 (30-60) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
<td></td>
</tr>
<tr>
<td>Author industry relationship disclosures:</td>
<td>I author a consultant and recipient of payments for meetings, travel, speaking, and research; no other conflicts reported</td>
<td>N at enrollment: G1: 102 G2: 106</td>
<td>Assay type: Kryptor PCT, Brahms</td>
<td>COPD duration, months: [mean (SD): G1: 128 (82) G2: 123 (85) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
<td>HTN, n (%): G1: 23 (22.5 %) G2: 27 (25.5 %) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
</tr>
<tr>
<td>Design: RCT; 1:1, masked until randomization, single center</td>
<td>N at 14 days follow-up: blinded G1: 99 (3 deaths) G2: 104 (2 deaths)</td>
<td>Decision-making: G1: For antibiotic initiation PCT < 0.1 antibiotics strongly discouraged; PCT > 1.0 < 0.25</td>
<td>AECOPD previous year: [mean (SD):</td>
<td>Osteoporosis, n (%): G1: 17 (16.7 %) G2: 9 (8.5 %) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
<td></td>
</tr>
<tr>
<td>Interventions: G1: Procalcitonin guidance G2: Standard therapy</td>
<td>N at 6 months follow-up: blinded G1: 97 (2 deaths) G2: 97 (7 deaths)</td>
<td>Inclusion criteria:</td>
<td>Cancer, n (%): G1: 12 (11.8 %) G2: 14 (13.2 %)</td>
<td>**G1/G2: NSS</td>
<td></td>
</tr>
<tr>
<td>Study Description</td>
<td>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</td>
<td>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</td>
<td>Inclusion/exclusion criteria</td>
<td>Participant characteristics</td>
<td>Participant characteristics</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>---</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Antibiotics based on clinical condition; PCT > 0.25, antibiotics encouraged</td>
<td>G2: Standard management</td>
<td>G1: 2.4 (2.1) G2: 1.9 (1.8) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
<td>G1- I: 6 (5.9 %) G1- II: 15 (14.7 %) G1- III: 47 (46.1 %) G1- IV: 34 (33.3 %) G2- I: 5 (4.7 %) G2- II: 25 (23.6 %) G2- III: 51 (48.1 %) G2- IV: 25 (23.6 %) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
<td>Home oxygen, n, (%): G1: 21 (20.6 %) G2: 13 (12.3 %) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
<td></td>
</tr>
<tr>
<td>G2: Standard management</td>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td>Severity of AECOPD, n, (%): G1 - 1: 51 (50 %) G1 - 2: 24 (23.5 %) G1 - 3: 27 (26.5 %) G2 - 1: 49 (46.2 %) G2 - 2: 28 (26.4 %) G2 - 3: 29 (27.4 %) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G1: 0.88 (0.41)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C-56
<table>
<thead>
<tr>
<th>Study Description</th>
<th>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</th>
<th>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</th>
<th>Inclusion/exclusion criteria</th>
<th>Participant characteristics</th>
<th>Participant characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>G2: 0.98 (0.41) [test, result (p-value, 95% CI)]</td>
<td>G1/G2: p = 0.02</td>
<td>Positive sputum culture, n, (%): G1: 37 (36 %) G2: 40 (38 %) [test, result (p-value, 95% CI)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
<td>PCT: mean,(SD): G1: 0.274 (1.049) G2: 0.244 (0.516) [test, result (p-value, 95% CI)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
<td>CRP, mean,(SD): G1: 32 (42) G2: 44 (55) [test, result (p-value, 95% CI)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
<td>WBC count: mean,(SD): G1: 11.7 (8.4) G2: 11.5 (4.6) [test, result (p-value, 95% CI)]</td>
</tr>
<tr>
<td>Antibiotic treatment duration</td>
<td>Antibiotic prescription rate, number of courses of antibiotics</td>
<td>Antibiotic classes</td>
<td>Hospital length of stay</td>
<td>ICU admission, length of stay</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>------------------</td>
<td>------------------------</td>
<td>------------------------------</td>
<td></td>
</tr>
<tr>
<td>Antibiotic exposure: (rate days exposed per #patient-days)</td>
<td>G1: NR</td>
<td>Any antibiotic use, antibiotic prescription rate (%):</td>
<td>G1-1 antibiotic: 80%</td>
<td>ICU admission (%)</td>
<td></td>
</tr>
<tr>
<td>G2: NR</td>
<td>G2: 72%</td>
<td>G1: 40%</td>
<td>G1-2 antibiotic: 15%</td>
<td>G1: 8 (7.8%)</td>
<td></td>
</tr>
<tr>
<td>[test, result (p-value, 95% CI)]</td>
<td>G1/G2:</td>
<td>G1-3 antibiotic: 2%</td>
<td>G2: 11 (10.4%)</td>
<td>G1/G2: NSS</td>
<td></td>
</tr>
<tr>
<td>Absolute risk reduction</td>
<td>G2-1 antibiotic: 68%</td>
<td>[test, result (p-value, 95% CI)]</td>
<td>G1-2: 10 (1-15)</td>
<td>ICU LOS, days: mean (SD)</td>
<td></td>
</tr>
<tr>
<td>31.5 (18.7 to 44.3), p < 0.0001</td>
<td>G2-2 antibiotic: 29%</td>
<td>G1/G2: NSS</td>
<td>G1: 3.3 (2.7)</td>
<td>G1/G2: NSS</td>
<td></td>
</tr>
<tr>
<td>RR 0.56 (0.43 to 0.73), p < 0.0001</td>
<td>G2-3 antibiotic: 3%</td>
<td>[test, result (p-value, 95% CI)]</td>
<td>G2: 3.7 (2.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RRR 44% (27 to 57%), p < 0.0001</td>
<td>[test, result (p-value, 95% CI)]</td>
<td>G1/G2: NSS</td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At 6 months</td>
<td>G1/G2: NSS</td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RR 0.76, (0.64 to 0.92), p = 0.004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subsequent antibiotic use within 6 months (%):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1: 46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2: 43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steroid use, n, (%):</td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1: 89 (87.3%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2: 93 (87.7%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steroid dose, median, range:</td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1: 250 (119-400)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2: 280 (183-421)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibiotics prescribed were amino penicillin’s (62%), fluoroquinolones (16%), cephalosporin’s (11%), macrolides (8%), anti-Pseudomonas aeruginosa penicillin’s (2%), and other (1%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evidence Table 3P. Morbidity Outcomes for Stolz et al., 2007.16

<table>
<thead>
<tr>
<th>Morbidity</th>
<th>Morbidity</th>
<th>Recurrence</th>
<th>Sepsis/SIRS frequency</th>
<th>RTI symptoms, overall health, cure, success</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>FEV1 at 14 days, mean (SD): G1: 1.04 (0.48) G2: 1.01 (0.57) G1/G2: NSS</td>
<td>Recurrence of AECOPD 6 months, n, (%): G1: 44 (43.1 %) G2: 43 (40.1 %) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FEV1 at 6 months, mean (SD): G1: 1.07 (0.55) G2: 1.11 (0.57) G1/G2: NSS</td>
<td>Hospitalization for recurrence of AECOPD 6 months, n, (%): G1: 18 (17.7 %) G2: 22 (20.8 %) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
<td>Clinical cure (%): G1: 84 (82.4 %) G2: 89 (83.9 %) [test, result (p-value, 95% CI)] G1/G2:</td>
<td></td>
</tr>
</tbody>
</table>

Evidence Table 4P. Mortality Outcomes for Stolz et al., 2007.16

<table>
<thead>
<tr>
<th>In-hospital mortality</th>
<th>28-day mortality</th>
<th>Death within 6 months</th>
<th>Pneumonia-related death</th>
<th>Proportion surviving hospitalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>Death of any cause, n (%): G1: 5 (4.9 %) G2: 9 (8.5 %) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
<td>NR</td>
<td></td>
</tr>
</tbody>
</table>

Evidence Table 5P. Function and Quality of Life Outcomes for Stolz et al., 2007.16

<table>
<thead>
<tr>
<th>Days < 14 days of baseline with daily activities restricted by RTI</th>
<th>Days work missed</th>
<th>Visual analog functional scale</th>
<th>Quality of life score</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 6P. Adverse Effects and Adherence for Stolz et al., 2007.16

<table>
<thead>
<tr>
<th>Combined adverse outcome < 30 days</th>
<th>Antibiotic adverse effects, days with adverse effects from medication, antibiotic resistance</th>
<th>Pain, bleeding, local infection</th>
<th>Adherence</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 7P. Randomized Trial Study Quality Ratings for Stolz et al., 2007.16

<table>
<thead>
<tr>
<th>Assembled comparable groups</th>
<th>Maintained comparable groups</th>
<th>Minimal follow-up loss</th>
<th>Measurements equal, valid, and reliable</th>
<th>Interventions clearly defined</th>
<th>Important outcomes considered</th>
<th>Appropriate analysis of results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y-balanced</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Study Description</td>
<td>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</td>
<td>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</td>
<td>Inclusion/exclusion criteria</td>
<td>Participant characteristics</td>
<td>Participant characteristics</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>---</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>Author, year: Stolz et al., 2009. (ProVAP)</td>
<td>Design: Multi-national, RCT, 1:1, open interventional, 7 ICUs</td>
<td>Primary outcome: Antibiotic-free days alive assessed at 28 days After enrollment Secondary outcomes Vent-free days, ICU-free days, clinical evidence of progression, and mortality Superiority trial for antibiotic free days. 84 patients needed to have a 90 % chance of detecting a 5 day difference 100 enrolled assuming 8 % lost to follow-up</td>
<td>Inclusion criteria: • In ICU on vent > 48 hours • Age > 18 years • VAP by ATS criteria Exclusion criteria: • Pregnant • Enrolled in another trial • On immuno-suppressants or long-term corticosteroids (> 1 month) • Severely immunosuppressed (AIDS, etc.) • Extra-pulmonary infections</td>
<td>Age, years: [mean (SD), median (range/IQR)] G1: 53 (21-88) G2: 59 (18-83) [test, result (p-value, 95% CI)] G1/G2:</td>
<td>Age, years: [mean (SD), median (range/IQR)] G1: 9 (18 %) G2: 4 (8 %) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
<td></td>
</tr>
<tr>
<td>Country, institution type: Switzerland, USA</td>
<td>Interventions: G1: Procalcitonin guidance G2: Treatment according to guidelines</td>
<td>Response criteria, independent outcome assessor: Assay type: Kryptor, Brahms Decision-making: Measured at baseline, at 72 hours, and daily up to 10 days After 72 hours of empiric antibiotics, daily PCT reported to physician G1: PCT < 0.25, d/c antibiotics strongly</td>
<td></td>
<td>Male, n (%): G1: 38 (75 %) G2: 37 (74 %) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
<td>Male, n (%): G1: 8 (16 %) G2: 8 (16 %) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
<td></td>
</tr>
<tr>
<td>Enrollment period: Not given</td>
<td>Presenting condition: VAP</td>
<td></td>
<td></td>
<td></td>
<td>Hypertensive heart failure, n (%): G1: 21 (41 %) G2: 27 (54 %) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
<td></td>
</tr>
<tr>
<td>Funding: Swiss Nat’l Foundation; Margarete and Walter Liechtenstein Foundation; Friedwillige Akademische Gesellschaft Basel; Will Rogers Foundation; Clinic of Pulmonary Medicine-University Hospital Basel; Brahms, Germany</td>
<td>Setting: ICU</td>
<td></td>
<td></td>
<td></td>
<td>Congestive heart failure, n (%): G1: 23 (45 %) G2: 20 (40 %) [test, result (p-value, 95% CI)] G1/G2: NSS</td>
<td></td>
</tr>
<tr>
<td>Author industry relationship disclosures: Statement at website</td>
<td>N at enrollment: G1: 51 G2: 50</td>
<td></td>
<td></td>
<td></td>
<td>Renal dysfunction, n (%): G1: 9 (18 %) G2: 7 (14 %) G1/G2: NSS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N at follow-up: G1: 51 G2: 50</td>
<td></td>
<td></td>
<td></td>
<td>Liver disease, n (%): G1: 4 (8 %) G2: 3 (6 %) G1/G2: NSS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average follow-up, days: [mean (SD), median (range/IQR)] G1: NR G2: NR</td>
<td></td>
<td></td>
<td></td>
<td>Diabetes mellitus, n</td>
<td></td>
</tr>
<tr>
<td>Study Description</td>
<td>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</td>
<td>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</td>
<td>Inclusion/exclusion criteria</td>
<td>Participant characteristics</td>
<td>Participant characteristics</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>--</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td></td>
</tr>
</tbody>
</table>
| 3 physician refused 17 immunocompromised 5 CAP 4 death before inclusion 4 other study | encouraged, PCT 0.25-0.5 or decrease by 80% from day 0, d/c antibiotics encouraged, PCT 0.5 or greater or decrease of less than 80% from baseline, antibiotics encouraged, PCT > 1, antibiotics strongly encouraged | (range):
G1: 6 (3-7)
G2: 6 (4-10)
[test, result (p-value, 95% CI)]
G1/G2: NSS | Antibiotics before VAP, n (%):
G1: 35 (69%)
G2: 41 (82%)
[test, result (p-value, 95% CI)]
G1/G2: NSS | (%):
G1: 10 (20%)
G2: 13 (26%)
[test, result (p-value, 95% CI)]
G1/G2: NSS |
| G2: Standard antibiotic therapy based on respiratory secretions | Condition = definition: VAP by ATS definition | Shock, n (%):
G1: 11 (22%)
G2: 12 (24%)
[test, result (p-value, 95% CI)]
G1/G2: NSS | COPD, n (%):
G1: 8 (16%)
G2: 11 (22%)
[test, result (p-value, 95% CI)]
G1/G2: NSS |
| | | Bacteremia, n (%):
G1: 14 (28%)
G2: 18 (36%)
[test, result (p-value, 95% CI)]
G1/G2: NSS | Cancer, n (%):
G1: 3 (6%)
G2: 5 (10%)
G1/G2: NSS |
| | | SAPS II, mean (SD):
G1: 42 (13)
G2: 45 (14)
[test, result (p-value, 95% CI)]
G1/G2: NSS | Substance abuse, n (%):
G1: 5 (10%)
G2: 8 (16%)
G1/G2: NSS |
<p>| | | PCT correlated with severity of disease, SAPSII (r²=0.358, p < 0.001) | | |</p>
<table>
<thead>
<tr>
<th>Study Description</th>
<th>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</th>
<th>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</th>
<th>Inclusion/exclusion criteria</th>
<th>Participant characteristics</th>
<th>Participant characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ODIN, mean (SD):</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1: 1.9 (0.9)</td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G2: 2.3 (1.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOFA, mean (SD):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1: 7.3 (3.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G2: 8.2 (3.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WBC, mean (SD):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1: 12.0 (6.6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G2: 13.3 (5.9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCT, mean (SD):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1: 0.66 (0.22-2.69)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G2: 0.73 (0.21-2.36)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibiotic treatment duration</td>
<td>Antibiotic prescription rate, number of courses of antibiotics</td>
<td>Antibiotic classes</td>
<td>Hospital length of stay</td>
<td>ICU admission, length of stay</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>-------------------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>Superiority</td>
<td>Any antibiotic use,</td>
<td>NR</td>
<td>Days: [mean (SD), median (range/IQR)]</td>
<td>ICU free days alive:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Superiority</td>
<td></td>
<td>G1: 26 (7-21)</td>
<td>G1: 10 (0-18)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antibiotic-free days at day 28: [mean (SD), median (range/IQR)]</td>
<td></td>
<td>G2: 26 (17-22.3)</td>
<td>G2: 8.5 (0-18)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G1: 13 (2-21)</td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G2: 9.5 (1.5-17)</td>
<td></td>
<td>G1/G2: NSS</td>
<td>G1/G2: NSS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td>Did not depend on Micro</td>
<td>Did not depend on Micro</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G1/G2: p = 0.049</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidence density antibiotic exposure: (rate days exposed per #patient-days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G1: 1,077</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G2: 1,341</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G1/G2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibiotic duration:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G1: 10 (6-16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G2: 15 (10-23)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibiotics > 7 days, n, %:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G1: 65 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G2: 82 %, p = 0.044</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibiotic discontinuation at day 10, HR:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.235 (CI 1.077-4.64, p = 0.031)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Duration of antibiotic longer for PSAR, Acinetobacter,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stenotrophomonas, and Klebsiella</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evidence Table 3Q. Morbidity Outcomes for Stolz et al., 2009.17

<table>
<thead>
<tr>
<th>Morbidity</th>
<th>Morbidity</th>
<th>Recurrence</th>
<th>Sepsis/SIRS frequency</th>
<th>RTI symptoms, overall health, cure, success</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vent-free days, mean (std dev):</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>G1: 21 (2-24)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2: 19 (8.5-22.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[test, result (p-value, 95% CI)]</td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICU-free days, mean (std dev):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1: 10 (0-18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2: 8.5 (0-18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[test, result (p-value, 95% CI)]</td>
<td>G1/G2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAP-related deterioration days 1-28, n, %:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1: 5 (10 %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2: 7 (14 %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[test, result (p-value, 95% CI)]</td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discharge home days 1-28, n, (%):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1: 5 (10 %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2: 3 (6 %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[test, result (p-value, 95% CI)]</td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discharge elsewhere, n, (%):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1: 35 (69 %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2: 32 (64 %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[test, result (p-value, 95% CI)]</td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evidence Table 4Q. Mortality Outcomes for Stolz et al., 2009.17

<table>
<thead>
<tr>
<th>In-hospital mortality</th>
<th>28-day mortality</th>
<th>Death</th>
<th>Pneumonia-related death</th>
<th>Proportion surviving hospitalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion (%):</td>
<td>NR</td>
<td>All causes days 1-28 (%)</td>
<td>Proportion surviving hospitalization</td>
<td></td>
</tr>
<tr>
<td>G1: 20 %</td>
<td></td>
<td>G1: 8 (16 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2: 28 %</td>
<td></td>
<td>G2: 12 (24 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1/G2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evidence Table 5Q. Function and Quality of Life Outcomes for Stolz et al., 2009.\(^\text{17}\)

<table>
<thead>
<tr>
<th>Days < 14 days of baseline with daily activities restricted by RTI</th>
<th>Days work missed</th>
<th>Visual analog functional scale</th>
<th>Quality of life score</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 6Q. Adverse Effects and Adherence for Stolz et al., 2009.\(^\text{17}\)

<table>
<thead>
<tr>
<th>Combined adverse outcome < 30 days</th>
<th>Antibiotic adverse effects, days with adverse effects from medication, antibiotic resistance</th>
<th>Pain, bleeding, local infection</th>
<th>Adherence</th>
<th>Acquisition or persistence of pathogens up to day 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Evidence Table 7Q. Randomized Trial Study Quality Ratings for Stolz et al., 2009.\(^\text{17}\)

<table>
<thead>
<tr>
<th>Assembled comparable groups</th>
<th>Maintained comparable groups</th>
<th>Minimal follow-up loss</th>
<th>Measurements equal, valid, and reliable</th>
<th>Interventions clearly defined</th>
<th>Important outcomes considered</th>
<th>Appropriate analysis of results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

C-65
Evidence Table 1R. Study Description Table for Svoboda et al., 2007.\(^8\)

<table>
<thead>
<tr>
<th>Study Description</th>
<th>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</th>
<th>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</th>
<th>Inclusion/exclusion criteria</th>
<th>Participant characteristics</th>
<th>Participant characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author, year:</td>
<td>Svoboda et al., 2007.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country, institution type:</td>
<td>Czech, Academic medical center</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enrollment period:</td>
<td>May, 2003-September, 2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funding:</td>
<td>Grant from IGA MZ CR ND 7676-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author industry relationship disclosures:</td>
<td>Not given</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design:</td>
<td>Single center, RCT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interventions:</td>
<td>G1: Procalcitonin guidance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G2: Standard treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presenting condition:</td>
<td>Multiple trauma (289 ISS> 25)settings, 164 major abdominal surgeries (time > 120 minutes) admitted to ICU with severe sepsis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setting:</td>
<td>ICU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>453 screened</td>
<td>72 enrolled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N at enrollment:</td>
<td>G1: 38</td>
<td>G2: 34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N at follow-up:</td>
<td>G1: NR</td>
<td>G2: NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average follow-up, days:</td>
<td>[mean (SD), median (range/IQR)]</td>
<td>G1:</td>
<td>G2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary outcome:</td>
<td>No defined prospectively</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response criteria, independent outcome assessor:</td>
<td>No power calculation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assay type:</td>
<td>PCT-Q, Brahms; good correlation with PCT LUMI</td>
<td>Also WBC, CRP, IL-6, TNF, and AT III</td>
<td>G1/G2: NSS</td>
<td>G1/G2: NSS</td>
<td>G1/G2: NSS</td>
</tr>
<tr>
<td>Decision-making:</td>
<td>G1: PCT-guided treatment, PCT > 2, change antibiotics and IV catheters; PCT < 2 get US and/or CT with repeat surgical treatment</td>
<td>G2: Standard treatment</td>
<td>G1/G2: NSS</td>
<td>G1/G2: NSS</td>
<td>G1/G2: NSS</td>
</tr>
<tr>
<td>Condition = definition:</td>
<td>Severe sepsis. ATS/RCCM definition, 1992.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Age, years:** median (range)
 - G1: 43 (19-88)
 - G2: 49 (20-86)
 - [test, result (p-value, 95% CI)]
 - G1/G2: NSS
- **Male, n (%):**
 - G1: 23 (61 %)
 - G2: 23 (68 %)
 - [test, result (p-value, 95% CI)]
 - G1/G2: NSS
- **Septic shock, n, (SD):**
 - G1: 27 (71 %)
 - G2: 23 (68 %)
 - [test, result (p-value, 95% CI)]
 - G1/G2: NSS
- **APACHE II, mean (SD):**
 - G1: 15.7 (7.9)
 - G2: 17.3 (9.3)
 - [test, result (p-value, 95% CI)]
 - G1/G2: NSS
- **Multiple trauma, n (%):**
 - G1: 27 (71 %)
 - G2: 22 (65 %)
 - G1/G2: NSS
- **Abdominal surgery, n (%):**
 - G1: 11 (29 %)
 - G2: 12 (35 %)
 - [test, result (p-value, 95% CI)]
 - G1/G2: NSS

C-66
Evidence Table 2R. Intermediate Outcomes for Svoboda et al., 2007.18

<table>
<thead>
<tr>
<th>Antibiotic treatment duration</th>
<th>Antibiotic prescription rate, number of courses of antibiotics</th>
<th>Antibiotic classes</th>
<th>Hospital length of stay</th>
<th>ICU admission, length of stay</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>ICU LOS, days, mean (SD):</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G1: 16.1 (6.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G2: 19.4 (8.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G1/G2: p = 0.09</td>
</tr>
</tbody>
</table>

Evidence Table 3R. Morbidity Outcomes for Svoboda et al., 2007.18

<table>
<thead>
<tr>
<th>Morbidity</th>
<th>Morbidity</th>
<th>Recurrence</th>
<th>Sepsis/SIRS frequency</th>
<th>RTI symptoms, overall health, cure, success</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOFA, mean (DS):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1: 7.9 (2.8)</td>
<td>G1: 10.3 (7.8)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>G2: 9.3 (3.3)</td>
<td>G2: 13.9 (9.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[test, result (p-value, 95% CI)]</td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1/G2: p = 0.06</td>
<td>G1/G2: p = 0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evidence Table 4R. Mortality Outcomes for Svoboda et al., 2007.18

<table>
<thead>
<tr>
<th>In-hospital mortality</th>
<th>28-day mortality</th>
<th>Death</th>
<th>Pneumonia-related death</th>
<th>Proportion surviving hospitalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>Proportion (%):</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>G1: 10 (26%)</td>
<td>G1: 10 (26 %)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2: 13 (38 %)</td>
<td>G2: 13 (38 %)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[test, result (p-value, 95% CI)]</td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1/G2: NSS</td>
<td>G1/G2: NSS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evidence Table 5R. Function and Quality of Life Outcomes for Svoboda et al., 2007.18

<table>
<thead>
<tr>
<th>Days ≤ 14 days of baseline with daily activities restricted by RTI</th>
<th>Days work missed</th>
<th>Visual analog functional scale</th>
<th>Quality of life score</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evidence Table 6R. Adverse Effects and Adherence for Svoboda et al., 2007.18

<table>
<thead>
<tr>
<th>Combined adverse outcome < 30 days</th>
<th>Antibiotic adverse effects, days with adverse effects from medication, antibiotic resistance</th>
<th>Pain, bleeding, local infection</th>
<th>Adherence</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td></td>
<td></td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evidence Table 7R. Randomized Trial Study Quality Ratings18

<table>
<thead>
<tr>
<th>Assembled comparable groups</th>
<th>Maintained comparable groups</th>
<th>Minimal follow-up loss</th>
<th>Measurements equal, valid, and reliable</th>
<th>Interventions clearly defined</th>
<th>Important outcomes considered</th>
<th>Appropriate analysis of results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
References

Appendix D. Ongoing Procalcitonin Studies in ClinicalTrials.gov

<table>
<thead>
<tr>
<th>NCT ID</th>
<th>Title</th>
<th>Presenting condition(s)</th>
<th>n</th>
<th>Primary outcome</th>
<th>Secondary outcome</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT00914550</td>
<td>Use Of Procalcitonin Level For Guidance of The Treatment of Suspected Community Acquired Pneumonia</td>
<td>• Pneumonia • Radiographic Lung Infiltrates</td>
<td>100</td>
<td>• Differences in antibiotic discontinuation as an effect of the caregivers learning Procalcitonin levels for the therapy of new radiographic lung infiltrates</td>
<td>-</td>
<td>1-Jun-10</td>
</tr>
<tr>
<td>NCT01139489</td>
<td>Safety and Efficacy of Procalcitonin Guided Antibiotic Therapy in Adult Intensive Care Units (ICU's)</td>
<td>• Sepsis • Severe Sepsis • Septic Shock</td>
<td>2246</td>
<td>• 28-day mortality • Consumption of antibiotics (defined daily dosage and duration of antibiotic therapy)</td>
<td>• Length of ICU stay • Acquisition costs of antibiotics • Acquisition costs of procalcitonin</td>
<td>1-Jul-11</td>
</tr>
<tr>
<td>NCT01379547</td>
<td>Procalcitonin to Shorten Antibiotics Duration in ICU Patients</td>
<td>• Sepsis</td>
<td>1700</td>
<td>• Average antibiotics duration • 28-day mortality</td>
<td>• % of antibiotics use • Length of ICU stay • Recurrence of fever • Re-infection • APACHE-II score or SOFA score • 90-day mortality • 90-day infection related readmission rate</td>
<td>1-Jun-13</td>
</tr>
<tr>
<td>NCT00854932</td>
<td>Neonatal Procalcitonin Intervention Study</td>
<td>• Sepsis</td>
<td>1600</td>
<td>• The absolute reduction of the duration of antibiotic therapy with unchanged outcome</td>
<td>• Duration of hospitalization</td>
<td>1-Jul-12</td>
</tr>
<tr>
<td>NCT ID</td>
<td>Title</td>
<td>Presenting condition(s)</td>
<td>n</td>
<td>Primary outcome</td>
<td>Secondary outcome</td>
<td>Date</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>--</td>
<td>------</td>
<td>--</td>
<td>---</td>
<td>------------</td>
</tr>
</tbody>
</table>
| 5 NCT00832039 | Placebo Controlled Trial of Sodium Selenite and Procalcitonin Guided Antimicrobial Therapy in Severe Sepsis | • Severe Sepsis
• Septic Shock | 1180 | • All cause mortality | • SOFA and SOFA subscores
• Frequency and duration of mechanical ventilation
• Frequency and duration of vasopressor support
• Frequency of adverse events and severe adverse events
• Clinical cure and microbiological cure
• Duration of antimicrobial therapy
• Costs of antimicrobial therapy
• Time to change of antibiotic therapy
• Days alive without antimicrobial therapy
• Frequency of resistance against antibiotics
• ICU length of stay
• Hospital length of stay
• Rate of surgical procedures for focus control
• Rate of procedures to diagnose infections
• Frequency of new infections | 1-Apr-14 |
| 6 NCT01018199 | Procalcitonin Versus C-reactive Protein to Guide Therapy in Community Acquired Pneumonia | • Community-Acquired Pneumonia | 66 | • Duration of antibiotic therapy
• Total antibiotic exposure days per 1,000 days
• Days alive without antibiotics | • All cause 28-day mortality
• clinical cure rate
• Infection relapse
• Length of hospitalization stay
• In-hospital mortality
• Nosocomial infection rate
• Nosocomial superinfection
• Isolation of resistant bacteria
• All cause 90-day mortality
• Costs of hospitalization | 1-Dec-10 |
| 7 NCT00987818 | Procalcitonin Guided Versus Conventional Antibiotic Therapy in Patients With Sepsis in the ICU | • Sepsis
• Intensive Care | 50 | • Duration of antibiotic therapy | • 28 day mortality | 1-Apr-10 |
<table>
<thead>
<tr>
<th>NCT ID</th>
<th>Title</th>
<th>Presenting condition(s)</th>
<th>n</th>
<th>Primary outcome</th>
<th>Secondary outcome</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT01250574</td>
<td>Neutrophil CD64 and Procalcitonin as Novel Biomarkers for Postoperative Infections*</td>
<td>Bacterial Infection • Postoperative Infection • Abdominal Infection</td>
<td>150</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NCT00870623</td>
<td>Procalcitonin and Endotoxin Sequential Levels to Optimize the Treatment of Bloodstream Infections*</td>
<td>Infection of Bloodstream</td>
<td>136</td>
<td>Length of treatment by observing the normalization of procalcitonin (PCT) and Endotoxin levels, compared with the length of treatment by standard of care.</td>
<td>Treatment failure • Complications • Survival, cost • Length of stay • Progression to severe sepsis or superinfections</td>
<td>-</td>
</tr>
<tr>
<td>NCT00934011</td>
<td>Use of Inflammatory Biomarkers to Guide Antibiotic Therapy in Patients With Severe Infections*</td>
<td>Severe Sepsis • Septic Shock</td>
<td>124</td>
<td>Duration of antibiotic therapy • Total antibiotic exposure days per 1,000 days • Days alive without antibiotics</td>
<td>28-day mortality • Clinical cure rate • Infection relapse • Length of ICU stay • Nosocomial infection rate • In-hospital mortality • Sepsis-associated death • Nosocomial superinfection • Isolation of resistant bacteria • Length of hospital stay</td>
<td>1-Aug-11</td>
</tr>
<tr>
<td>NCT01264549</td>
<td>Stroke Adverse Outcome is Associated With Nosocomial Infections: PCTus- Guided Antibacterial Therapy in Severe Ischemic Stroke Patients (STRAWINSKI) *</td>
<td>Ischemic Stroke</td>
<td>200</td>
<td>Modified Rank scale</td>
<td>% of patients receiving any antibiotic therapy • % of patients receiving any antibiotic therapy for any duration within 90 days • Barthel Index score • Days alive and out of hospital • Time to first event of death, re-hospitalization or recurrent stroke • Proportion of events of post stroke infections • Median number of days with fever (≥ 37.5°C) per patient Stroke volume analysis</td>
<td>1-Dec-12</td>
</tr>
<tr>
<td>NCT ID</td>
<td>Title</td>
<td>Presenting condition(s)</td>
<td>n</td>
<td>Primary outcome</td>
<td>Secondary outcome</td>
<td>Date*</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>-------------------------</td>
<td>----</td>
<td>--</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>12</td>
<td>Comparison of a Serum PRO-CT Guided Treatment and the Recommended Antibiotic Treatment for COPD</td>
<td>COPD</td>
<td>200</td>
<td>Rate of severe ECOPD</td>
<td>Costs</td>
<td>1-Dec-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Duration of antibiotic therapy Hospital re-admissions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Any cause deaths</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FEV1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Duration of hospitalization for severe ECOPD</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Utility of Antibiotic Treatment in Non-purulent Exacerbations of Chronic Obstructive Pulmonary Disease: a Double Blinded, Randomized, Placebo-controlled Trial of Security and Efficacy</td>
<td>COPD</td>
<td>224</td>
<td>Efficacy of treatment WITHOUT antibiotics in non-purulent exacerbations of COPD</td>
<td>Re-hospitalizations at six months.</td>
<td>1-Mar-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>In-hospital stay (days)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>All cause mortality</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Procalcitonin levels</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Quality of Life (QoL) (Saint George Respiratory Questionnaire)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CRP levels</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cytokines levels (IL-1, IL-6, IL-8, IL-10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TNF- alpha levels</td>
<td></td>
</tr>
<tr>
<td>NCT ID</td>
<td>Title</td>
<td>Presenting condition(s)</td>
<td>n</td>
<td>Primary outcome</td>
<td>Secondary outcome</td>
<td>Date</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-------------------------</td>
<td>-----</td>
<td>--</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>14 NCT01311765</td>
<td>Duration of Antibiotic Therapy in the Treatment of Severe Postoperative Peritonitis Admitted in ICU*</td>
<td>Postoperative Peritonitis</td>
<td>620</td>
<td>Number of antibiotic-free days at D28 after inclusion • Mortality at D45 after inclusion</td>
<td>Duration of ICU and hospital stay • Changes in SOFA score • Number of days alive without organ failure • Failure rate for clinically evaluable patients • Failure rate for microbiologically evaluable patients • Rate of relapse within 45 days • Emergence of multidrug resistant microorganisms in clinical isolates and hygiene samples • Total cost of antibiotic agents • Evolution of procalcitonin plasma concentration • Rate of death within 45 days • Total cost of hospital stay and evaluation of costs and resources impact for the hospital administration</td>
<td>1-Nov-14</td>
</tr>
<tr>
<td>15 NCT01232140</td>
<td>CRP-guided Antibiotic Treatment in COPD Exacerbations Admitted to the Hospital**</td>
<td>COPD • ECOPD • Bronchitis</td>
<td>220</td>
<td>Number of patients treated with antibiotics during hospital stay</td>
<td>Time to treatment failure within 30-days • Length of stay • Time to next exacerbation • Symptom scores (VAS-LRTI, George's Respiratory Questionnaire) • Adverse events</td>
<td>1-Jul-13</td>
</tr>
</tbody>
</table>

*Expected date of completion of the study, *Study listed as recruiting, ** Study listed as not yet recruiting
Appendix E. Screening Guide for Title and Abstract

Key Questions	Not relevant question
Study Design	administrative database
	animal study
	cost/cost-effectiveness analysis
	case-control study
	cohort study
	commentary
	case report (n<5)
	case series
	design unclear/possibly relevant
	diagnostic accuracy study
	editorial
	guideline
	in vitro
	letter
	meta-analysis
	no abstract
	not relevant design
	no primary data
	narrative review article
	phase I trial
	phase II trial
	physics study
	phantom study
	patient positioning study
	prognostic study
	prospective single-arm study
	quasi-experimental study (nonrandomized comparative)
	radiology/imaging study
	randomized controlled trial
	registry
	retrospective study
	systematic review
	disease staging study
	cross-sectional study
Study Setting	emergency department
	hospital wards
	medical intensive care unit
	primary care clinic
	surgical intensive care unit
	teaching hospital
Age	adult
	geriatrics
	neonate
	pediatrics
Disease	acute bronchitis
	autoimmune diseases
	acute lymphoblastic leukemia
	acute pyelonephritis
	aspiration syndromes
	bacteremia
	bacterial infection
	community-acquired pneumonia
	culture-negative sepsis
	chronic obstructive pulmonary disease
	chronic bronchitis
	diabetic foot infection

| **Biomarker** | atrial natriuretic peptide
| | CD14
| | complement 3
| | complement 4
| | C-reactive protein
| | C-terminal pro-atrial vasopressin
| | cell-free plasma DNA
| | interleukin-1b
| | interleukin-4
| | interleukin-6
| | interleukin-8
| | interleukin-10
| | interleukin-12
| | lipopolysaccharide binding protein
| | Mid-regional pro-atrial natriuretic peptide
| | macrophage migration inhibitory factor
| | neutrophilic CD64
| | neopterin
| | procalcitonin (alveolar)
| | procalcitonin (serum)
| | procalcitonin (pleural fluid)
| | soluble triggering receptor expressed on myeloid cells-1
| | thioredoxin
| | tumor necrosis factor-α
| | TNF receptor II
| | TREM-1
| **Labs** | bronchoalveolar lavage
| | bone biopsy
| | blood cultures
| | erythrocyte sedimentation rate
| | endotracheal aspirate
| | ferritin
| | Gram staining
| | magnetic resonance imaging |
| nuclear medicine scan |
| real-time polymerase chain reaction |
| pleural fluid culture |
| swab culture |
| serum sodium |
| urine culture |
| plain radiographs |
| white blood cell count |

<table>
<thead>
<tr>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>antibiotic resistance</td>
</tr>
<tr>
<td>antibiotic-free days</td>
</tr>
<tr>
<td>antibiotic side effects</td>
</tr>
<tr>
<td>prediction of bacterial infection</td>
</tr>
<tr>
<td>detection of complications of infection</td>
</tr>
<tr>
<td>diagnosis of bacterial infection</td>
</tr>
<tr>
<td>diagnosis of sepsis</td>
</tr>
<tr>
<td>duration of intravenous antibiotic</td>
</tr>
<tr>
<td>total duration of antibiotic therapy</td>
</tr>
<tr>
<td>initiation of antibiotic therapy</td>
</tr>
<tr>
<td>length of stay in ICU</td>
</tr>
<tr>
<td>length of stay in hospital</td>
</tr>
<tr>
<td>mortality</td>
</tr>
<tr>
<td>not relevant outcome (or no follow-up)</td>
</tr>
<tr>
<td>persistent or recurrent fever</td>
</tr>
<tr>
<td>response to antibiotic therapy</td>
</tr>
<tr>
<td>septic shock development</td>
</tr>
<tr>
<td>termination of antibiotic therapy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assay type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brahms PCT Kryptor</td>
</tr>
<tr>
<td>rapid PCT test (semi-quantitative)</td>
</tr>
<tr>
<td>Vidas Brahms PCT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>n < 10</td>
</tr>
<tr>
<td>10 ≤ n < 25</td>
</tr>
<tr>
<td>25 ≤ n < 50</td>
</tr>
<tr>
<td>50 ≤ n < 100</td>
</tr>
<tr>
<td>n > 100</td>
</tr>
<tr>
<td>n unclear</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>APACHE II</td>
</tr>
<tr>
<td>CRB</td>
</tr>
<tr>
<td>Clinical Pulmonary Infection</td>
</tr>
<tr>
<td>CURB-65</td>
</tr>
<tr>
<td>Sequential Organ Failure Assessment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Retrieval</th>
</tr>
</thead>
<tbody>
<tr>
<td>do not retrieve full copy</td>
</tr>
<tr>
<td>retrieve full copy</td>
</tr>
<tr>
<td>uncertain; needs check by second reviewer</td>
</tr>
</tbody>
</table>
Appendix F. Screening Guide for Full-Text Articles

<table>
<thead>
<tr>
<th>Population</th>
<th>Does the study include adults or children with suspected local or systemic infection?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>Was study designed to compare procalcitonin-guided treatment and comparator-guided treatment (RCT or QEX)?</td>
</tr>
</tbody>
</table>
| Outcome | Does the study mention at least one of these outcomes:
• changes in patient management
• duration of antibiotic therapy
• length of stay
• antibiotic exposure
• morbidity
• mortality
• function
• quality of life
• adverse events (associated with testing, persistent/recurrent infection, antibiotic resistance) |
Table 1. Study Description

<table>
<thead>
<tr>
<th>Study Description</th>
<th>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</th>
<th>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</th>
<th>Inclusion/exclusion criteria</th>
<th>Participant characteristics</th>
<th>Participant characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author, year:</td>
<td>Design:</td>
<td>Primary outcome:</td>
<td>Inclusion criteria:</td>
<td>Age, years: [mean (SD), median (range/IQR)]</td>
<td>Age, years: [mean (SD), median (range/IQR)]</td>
</tr>
<tr>
<td></td>
<td>Interventions: G1: G2:</td>
<td>Assay type:</td>
<td>Exclusion criteria:</td>
<td>G1: G2:</td>
<td>G1: G2:</td>
</tr>
<tr>
<td></td>
<td>Presenting condition: G1: G2:</td>
<td>Decision-making:</td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td>[test, result (p-value, 95% CI)]</td>
</tr>
<tr>
<td></td>
<td>Setting:</td>
<td>Condition = definition:</td>
<td></td>
<td>G1/G2:</td>
<td>G1/G2:</td>
</tr>
<tr>
<td></td>
<td>N at enrollment: G1: G2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N at follow-up: G1: G2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average follow-up, days: [mean (SD), median (range/IQR)] G1: G2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author, year:</td>
<td>Design:</td>
<td>Primary outcome:</td>
<td>Inclusion criteria:</td>
<td>CHF (NYHA III/IV), n (%):</td>
<td>CHF (NYHA III/IV), n (%):</td>
</tr>
<tr>
<td></td>
<td>Interventions: G1: G2:</td>
<td>Assay type:</td>
<td>Exclusion criteria:</td>
<td>G1: G2:</td>
<td>G1: G2:</td>
</tr>
<tr>
<td></td>
<td>Presenting condition: G1: G2:</td>
<td>Decision-making:</td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td>[test, result (p-value, 95% CI)]</td>
</tr>
<tr>
<td></td>
<td>Setting:</td>
<td>Condition = definition:</td>
<td></td>
<td>G1/G2:</td>
<td>G1/G2:</td>
</tr>
<tr>
<td></td>
<td>N at enrollment: G1: G2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N at follow-up: G1: G2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average follow-up, days: [mean (SD), median (range/IQR)] G1: G2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Participant characteristics

- **Age, years:** [mean (SD), median (range/IQR)]
- **CHF (NYHA III/IV), n (%):** [test, result (p-value, 95% CI)]
- **Insulin-dependent diabetes, n (%):** [test, result (p-value, 95% CI)]
- **Cirrhosis, n (%):** [test, result (p-value, 95% CI)]
- **Home oxygen, n (%):** [test, result (p-value, 95% CI)]
- **CRF on hemodialysis, n (%):** [test, result (p-value, 95% CI)]
<table>
<thead>
<tr>
<th>Study Description</th>
<th>Study design, interventions, presenting condition, setting, enrollment and follow-up numbers</th>
<th>Primary outcome, procalcitonin assay, decision-making processes, definitions of sepsis and related conditions</th>
<th>Inclusion/exclusion criteria</th>
<th>Participant characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Metastatic cancer, n (%):</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G1:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G2:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G1/G2:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Immunocompromised, n (%) :</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G1:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G2:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G1/G2:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAPS II, mean (std dev):</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G1:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G2:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SOFA, mean (std dev):</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G1:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G2:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Septic shock, n (%):</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G1:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G2:</td>
</tr>
</tbody>
</table>
Table 2. Intermediate Outcomes

<table>
<thead>
<tr>
<th>Antibiotic treatment duration</th>
<th>Antibiotic prescription rate, number of courses of antibiotics</th>
<th>Antibiotic classes</th>
<th>Hospital length of stay</th>
<th>ICU admission, length of stay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days without antibiotics at 28 days (superiority): [mean (SD), median (range/IQR)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1/G2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration of first episode antibiotic treatment, mean (std dev):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1/G2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Days antibiotic exposure/1,000: (rate days exposed per #patient-days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1/G2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Morbidity Outcomes

<table>
<thead>
<tr>
<th>Morbidity</th>
<th>Morbidity</th>
<th>Recurrence</th>
<th>Sepsis/SIRS frequency</th>
<th>RTI symptoms, overall health, cure, success</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOFA day 28, mean (std dev):</td>
<td>Mechanical ventilation-free days: [mean (SD), median (range/IQR)]</td>
<td>Relapse, n, (%):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1:</td>
<td>G1:</td>
<td>G1:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2:</td>
<td>G2:</td>
<td>G2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1/G2:</td>
<td>G1/G2:</td>
<td>G1/G2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nosocomial superinfection, n, (%):</td>
<td>Multi drug resistant, n (%):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1:</td>
<td>G1:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2:</td>
<td>G2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1/G2:</td>
<td>G1/G2:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Mortality Outcomes

<table>
<thead>
<tr>
<th></th>
<th>In-hospital mortality</th>
<th>28-day mortality</th>
<th>60-day mortality</th>
<th>Pneumonia-related death</th>
<th>Proportion surviving hospitalization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Proportion (%):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[test, result (p-value, 95% CI)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G1/G2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Function and Quality of Life Outcomes

<table>
<thead>
<tr>
<th>Days ≤ 14 days of baseline with daily activities restricted by RTI</th>
<th>Days work missed</th>
<th>Visual analog functional scale</th>
<th>Quality of life score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6. Adverse Effects and Adherence

<table>
<thead>
<tr>
<th>Combined adverse outcome < 30 days</th>
<th>Antibiotic adverse effects, days with adverse effects from medication, antibiotic resistance</th>
<th>Pain, bleeding, local infection</th>
<th>Adherence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7. Study Quality Ratings

<table>
<thead>
<tr>
<th>Assembled comparable groups</th>
<th>Maintained comparable groups</th>
<th>Minimal follow-up loss</th>
<th>Measurements equal, valid, and reliable</th>
<th>Interventions clearly defined</th>
<th>Important outcomes considered</th>
<th>Appropriate analysis of results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>