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Meta-Analytic Statistical Inferences for Continuous 
Measure Outcomes as a Function of Effect Size Metric 
and Other Assumptions  
Structured Abstract 
Introduction. Meta-analysis cannot proceed unless each study outcome is on the same metric 
and has an appropriate sampling variance estimate, the inverse of which is used as the weight in 
meta-analytic statistics. When comparing treatments for trials that use the same continuous 
measures across studies, contemporary meta-analytic practice uses the unstandardized mean 
difference (UMD) to model the difference between the observed means (i.e., ME-MC) rather than 
representing effects in the standardized mean difference (SMD). A fundamental difference 
between the two strategies is that the UMD incorporates the observed variance of the measures 
as a component of the analytical weights (viz., sampling error or inverse variance) in statistically 
modeling the results for each study. In contrast, the SMD incorporates the measure’s variance 
directly in the effect size itself (i.e., SMD=[ME-MC]/SD) and not directly in the analytical 
weights. The UMD approach has been conventional even though its bias and efficiency are 
unknown; these have also not been compared with the SMD. Also unresolved is which of many 
possible available equations best optimize statistical modeling for the SMD in use with repeated 
measures designs (one or two groups).  
 
Methods. Monte Carlo simulations compared available equations in terms of their bias and 
efficiency across the many different conditions established by crossing: (1) number of studies in 
the meta-analysis (k = 10, 20, 50, and 100); (2) mean study sample sizes (5 values of N ranging 
from small to very large); (3) the ratio of the within-study observed measure variances for 
experimental and control groups and at pretest and post-test (ratios: 1:1, 2:1, and 4:1); (4) the 
post-test mean of each pseudo experimental group to achieve 3 parametric effect sizes (δ= 0.25, 
0.50, and 0.80); (5) normal versus nonnormal distributions (4 levels); and (6) the between-studies 
variance (τ2= 0, 0.04, 0.08, 0.16, and 0.32). For the second issue, (7) the correlation between the 
two conditions was manipulated (ρpre-post = 0, 0.25, 0.50, and 0.75). 
 
Results and Conclusions. This investigation provides guidance for statistical practice in relation 
to meta-analysis of studies that compare two groups at one point in time, or that examine 
repeated measures for one or two groups. Simulations showed that neither standardized or 
unstandardized effect size indexes had an advantage in terms of bias or efficiency when 
distributions are normal, when there is no heterogeneity among effects, and when the observed 
variances of the experimental and control groups are equal. In contrast, when conditions deviate 
from these ideals, the SMD yields better statistical inferences than UMDs in terms of bias and 
efficiency. Under high skewness and kurtosis, neither metric has a marked advantage. In general, 
the standardized index presents the least bias under most conditions and is more efficient than 
the unstandardized index. Finally, the results comparing estimations of the SMD and its variance 
suggest that some are preferable to others under certain conditions. The current results imply that 
the choice of effect size metrics, estimators, and sampling variances can have substantial impact 
on statistical inferences even under such commonly observed circumstances as normal sampling 
distributions, large numbers of studies, and studies with large samples, and when effects exhibit 
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heterogeneity. Although using the SMD may make clinical inferences more difficult, use of the 
SMD does permit inferences about effect size magnitude. The Discussion considers clinical 
interpretation of results using the SMD and addresses limitations of the current project. 
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Introduction 
Background 

Over the past 30 years, meta-analytic methods to accumulate knowledge have experienced a 
sharp increase in use across the sciences, and have been applied to many topics of high import to 
public health. Using meta-analysis, the result of every study is quantified by means of a 
statistical index that one can apply to all studies in a given literature, thereby enabling a 
comprehensive summary of the magnitude of the effect in every study and analyses of outcomes 
according to coded study features.1-11 Conventionally, meta-analysis has three main objectives: 
(1) synthesizing different studies’ effect size values to obtain a weighted mean, (2) assessing the 
consistency of the results, and (3) in the case of inconsistency (or heterogeneity), using 
moderator variables in an attempt to explain the variability. To do their work, meta-analysts must 
complete a series of interrelated steps: (1) conceptually define the topic of the review, (2) set 
selection criteria for the sample of studies, (3) comprehensively search for qualified studies, (4) 
code studies for their distinctive substantive, methodological and external characteristics, (5) 
represent the magnitude of each study’s effect on the same metric, (6) analyze the database, and 
(7) interpret and present the results. To the extent that meta-analysts have the best available 
techniques to complete each step, the accuracy of their conclusions will be enhanced; science 
and its applications can accumulate and report its research findings in a more efficient manner. 
The current report focuses on the fifth and sixth steps as applied to literatures of studies that 
report outcomes on a single continuous outcome. Thus, dichotomous outcomes are outside the 
scope of this study, as are literatures of studies for which continuous outcomes are measured on a 
variety of measures. 

Statistical modeling in meta-analysis cannot proceed unless each study outcome is 
represented on the same metric and has an appropriate sampling variance estimate, the inverse of 
which is used as the weight for each study result in meta-regression and other meta-analytic 
statistics (see Tables 1 through 5). In contemporary practice, when comparing treatments for 
trials that use the same continuous measures across studies, meta-analyses routinely use the 
original or unstandardized mean difference (UMD) to model the difference between the observed 
means (i.e., ME-MC) rather than representing effects in the standardized mean difference (SMD). 
A fundamental difference between the two strategies is that the UMD incorporates the observed 
variance of the measures as a component of the analytical weights (viz., sampling error or 
inverse variance) in statistically modeling the results for each study. In contrast, the SMD 
incorporates the measure’s variance directly in the effect size (ES) itself (i.e., 
SMD=[ME-MC]/SD; e.g., see equation 6, Table 2) and not directly in the analytical weights. In 
effect, a UMD approach to meta-analysis (see equation 21, Table 5) more heavily weights 
individual studies’ differences to the extent that they have smaller observed variances and larger 
samples of observations. A SMD approach to meta-analysis more heavily weights studies’ 
differences to the extent that they have larger samples (equation 22, Table 5); the pooled 
standard deviation observed for each study is used to create the standardized difference between 
conditions (equation 6, Table 2). The UMD approach has been conventional even though its bias 
and efficiency are unknown and have not been compared with those of the SMD. Also 
unresolved is which of many possible available equations best optimize statistical modeling for 
the UMD and SMD (Tables 3 and 4). 

Another important and controversial issue is specifically related to the SMD. This estimator 
is used to measure the degree of change between repeated measures or the difference between 
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two groups, using a standardization that can vary depending on the standard deviation used, with 
the assumption that the measures follow a normal distribution. In its between-groups form, SMD 
can be calculated from any two groups whether they are experimental or not; it is assumed that 
the individuals in the compared groups are independent. In its repeated-measures or within-
subjects form, the SMD assumes that the observations are dependent, and while some extant 
meta- analytic procedures account for this dependency, many others do not (Tables 3 and 4); 
scholars will often integrate both types of estimates in a single meta-analysis. Similarly, the 
numerous methods of calculating the SMD and their variances are known to produce discordant 
results (Tables 3 and 4).12,13  

In summary, it is unknown how much bias appears in the weighted effect sizes and 
moderator analyses when two-groups, two-groups repeated measures, or single groups with 
repeated measures are integrated without incorporating assumptions about possible dependence 
arising from the those observations with repeated measures. Further, it is not clear in the 
literature if the different methods of transformation to standardized mean difference from 
different statistical information types are equivalent across design types. There is conflicting 
advice about which specific technique equations to invoke when trials assess an outcome on the 
same measure and/or evaluate outcomes using repeated measures versus between-groups (or 
mixed) designs.  

Objectives 
This report has two objectives: 

 
1. Determine the bias and efficiency of the unstandardized mean difference (UMD) relative 

to the standardized mean difference (SMD) under a wide range of analytic circumstances. 
 

In groups of studies for which a phenomenon is assessed using the same measure in every 
study, meta-analysts have the choice of examining either standardized effect sizes or leaving 
study outcomes in the original, unstandardized, measure.14 For example, blood pressure is always 
assessed in metric units (usually mmHg, or millimeters of mercury) and meta-analyses of blood 
pressure outcomes routinely leave it in these units, showing, say, that aerobic exercise lowers 
systolic blood pressure an average of 6 mmHg relative to controls. Efficacy in antidepressant 
trials is routinely assessed on the Hamilton Rating Scale of Depression (HAM-D), and many 
meta-analyses examine it in this metric. Analysts typically leave study results in the original 
unstandardized measure in order to facilitate their interpretability. Many prominent statisticians 
have even recommended leaving comparisons in unstandardized units in order to facilitate 
comparisons between studies.15,16  

Nonetheless, the assumptions underlying such advice must be evaluated. For example, they 
had primary-level studies in mind rather than comparisons of the results of independent studies, 
such as is the case in meta-analysis. One issue has to do with unequal variances across studies. 
Homogeneity of compared group variances in primary-level research is an analogous assumption 
to the problem that appears in terms of between-studies heterogeneity in observed measurement 
variances. For example, antidepressant trials focusing on very severely depressed individuals 
(e.g., M HAM-D=33) will typically have much larger standard deviations than trials that focus 
on moderately depressed individuals (e.g., M HAM-D=17). Change of, say, 6 units on the HAM-
D is more dramatic change for a sample with a small standard deviation than for a sample with a 
large one. Similarly, parametric inferential statistics, the most developed and used methods in 
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meta-analysis, routinely must meet the normality assumption (lack of skewness and kurtosis). 
For an example, see Pedhauzer, 1997.17  

Weights for unstandardized outcomes in meta-analysis routinely use the sample size and the 
variance (see Table 5),14,18 but it is unclear whether meta-analytic inferences will be equivalent 
for the two solutions. To date, no research has examined the comparability of statistical 
inferences between the UMD and SMD. In the current work, we consider the case of a design 
that compares two independent groups such as an experimental group and a control group. 

The second objective of the current project is: 
 

2. Determine the best techniques to calculate SMD effect size estimates and their sampling 
variances under different design and parametric conditions.  
 

Statistical modeling in meta-analysis cannot proceed unless each study outcome is on the 
same metric and an appropriate sampling variance is calculated. As Tables 1 and 2 show, current 
meta-analytic methods yield conflicting advice about which specific techniques to invoke when 
the outcomes are provided from different designs, specifically, within-, between-subjects, or 
mixed-designs, again with the result that significance testing and interpretation may vary 
depending on how they are integrated.  

An effect size estimator is used to measure the degree of change between repeated measures 
or to compare the difference between two or more groups, with the assumption that the measures 
follow a normal distribution. In its between-groups form, the ES estimator can be calculated 
from any two groups whether they are experimental or not; it is assumed that the individuals in 
the compared groups are independent. To the extent that the ES deviates from the null value, it 
reflects a greater difference between the groups. In its repeated-measures or within-subjects 
form, the ES estimator assumes that the observations are dependent, and while some meta-
analytic procedures account for this dependency, many others do not; scholars often integrate 
both types of estimates in a single meta-analysis or they more simply focus on post-test results 
without incorporating baseline measures. Similarly, there are numerous methods of calculating 
the ES when the outcome is continuous and their available variances are known to vary.12,13 
Further, the literature leaves unclear whether the different methods of transformation to 
standardized mean difference from different statistical information types are equivalent and 
perform well under different parametric conditions.19-22  

Orientation to Method  
For both specific aims, Monte Carlo simulation studies are used to generate data under a 

wide variety of conditions to determine the extent to which parameter estimates, sample sizes, 
and number of studies are unbiased and their standard errors efficient. The simulations will (1) 
evaluate the differences between using unstandardized versus standardized metric of effect size 
(objective 1); and (2) evaluate current solutions to estimate the ES and its sampling variance, 
differentiating among three main design types (i.e., two-groups, two-groups repeated-measures, 
and repeated measures design) (objective 2). The simulations gauge the performance of these 
methods of estimation for both objectives.  
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Significance of Project 
The goals of this project are relevant to any empirical literature that has systematic 

observations; these concern statistical operations that are very commonly used in contemporary 
practice. Even if it turns out that meta-analytic statistics in the original metric are robust to 
underlying deviations in the variance of the measures, the results of this investigation are of great 
interest. If meta-analytic statistics and inferences do depend on choice of unstandardized vs. 
standardized effect sizes under some circumstances, then the findings may have far-ranging 
implications for the practice of meta-analysis. Moreover, it is also important to know the best 
estimates of within-subjects ESs (in single- and in two-group designs) and to determine which 
estimates of variance are best for use in conducting weighted analyses and when those two types 
of designs can be combined in a single meta-analytic database. Knowing how well each effect 
size index for each design performs will enable future analysts a better choice of the most 
appropriate operations and, as a consequence, permit more studies to be integrated and more 
accurate meta-analytic results. Thus, this methodological study offers considerable potential to 
improve the accuracy and progress of science and public health. An overarching goal is to enable 
more accurate empirical generalizations. 
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Table 1. Standardized mean difference ES estimations (and their components) for a one-group repeated-measures design 
No. Source Equation  Components 
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Table 2. Standardized mean difference (SMD) ES estimations (and their components) for two independent groups 
No. Source Equation  Components 
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Table 2. Standardized mean difference (SMD) ES estimations (and their components) for two independent groups (continued) 
No. Source Equation

 
Components
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Table 3. Estimates of sampling variance for the SMD ES in the one-group design with repeated-measures 
No. Metric Equation  

13. Raw-score metric (Becker, 1988)19 
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Note: “Raw-score” implies having the measures’ variability in the original observations and does not imply the unstandardized mean difference (UMD). 
 

Table 4. Estimates of sampling variances for the SMD ES from two-group designs with repeated-measures 
No. Variance Estimate Equation  

15. Raw-score metric for a total ES (Hedges, 
1981)25 ( )

( )

2
_2

_ _ 2
1 2var ( ) 1 ,

4 2
b t

two g b t b t

dNd nd
n N c N

−

−  = + −  −   −  



 

*E C

E C

n nñ
n n

=
+

 

16. Raw-score metric for a function of two ESs 
(Becker, 1988)19 var ( ) var ( ) var ( )E C

two g b one g b one g bd d d− − −= +  

17. Change-score metric for a total ES (Morris 
& DeShon, 2002)22 

( ) ( )( )
( )

2
_2

_ , _ 2
,

1 2var ( ) 1 2 1
42 1 2

g tE
two g g t Pre Post g tE

Pre Post

dNd r nd
Nr n c N

−

  −  = + − −   −−   −    



 

18. Change-score metric for a function of two 
ESs (Morris & DeShon, 2002)22 var ( ) var ( ) var ( )E C C

two g g one g g one g gd d d− − −= +  

Note: “Raw-score” implies having the measures’ variability in the original observations and does not imply the unstandardized mean difference (UMD). 
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Table 5. Statistics related to the standardized mean difference (SMD) and unstandardized mean difference (UMD) for designs with two 
independent groups and continuous measures 

No. Metric Equation  
19. Unstandardized mean difference (UMD) for two independent groups18 𝑈𝑀𝐷 = 𝑌�𝑃𝑜𝑠𝑡𝐸 − 𝑌�𝑃𝑜𝑠𝑡𝐶  
20. Standard error of the UMD18 

𝑆𝐸𝑈𝑀𝐷 = 𝑆𝑃𝑜𝑜𝑙𝑒𝑑�
1
𝑛𝐸

+
1
𝑛𝐶

 

21. Inverse variance of the UMD18 1
𝑉𝑎𝑟𝑈𝑀𝐷

=
𝑛𝐸𝑛𝐶

𝑆𝑃𝑜𝑜𝑙𝑒𝑑(𝑛𝐸 + 𝑛𝐶) 

22. Inverse variance of the SMD18 1
𝑉𝑎𝑟𝑆𝑀𝐷

=
2𝑛𝐸𝑛𝐶(𝑛𝐸 + 𝑛𝐶)

2(𝑛𝐸 + 𝑛𝐶)2 + 𝑛𝐸𝑛𝐶𝑆𝑀𝐷2 

23. Standard error of the SMD18 
𝑆𝐸𝑆𝑀𝐷 = �

𝑛𝐸 + 𝑛𝐶
𝑛𝐸𝑛𝐶

+
𝑆𝑀𝐷2

2(𝑛𝐸 + 𝑛𝐶) 
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Methods 
General Design 

• The data sets from a collection of k single studies were randomly generated using 
commands from the statistical software R, version 2.14.1. Two independent normal 
distributions were simulated for conditions in part 1; and for the conditions in part 2 that 
do not require repeated-measures design, R’s rnorm command was used. Two bivariate 
normal distributions were generated specifically for part 2 when repeated-measures two-
groups conditions were simulated using the R command mvnorm. (Both of these R 
commands rely on the Marsenne-Twister27 random number generator.) The variance-
covariance matrix was manipulated with the identity matrix being a particular condition 
when groups of scores are not correlated and homogeneous variances equal to one are 
assumed between groups and time measures; the appropriate matrix was generated to 
create heterogeneous distributions for each group and time measure. The distributions 
were modified in some conditions, as we describe below. 
 

• We generated two bivariate normal distributions, each with a homogeneous variance-
covariance matrix,  

YE~
2

,

2
,

,
E

Pre Pre PostPre
E
Post Pre Post Post

N
σ σµ

µ σ σ

    
              

, YC~
2

,

2
,

,
C

Pre Pre PostPre
C
Post Pre Post Post

N
σ σµ

µ σ σ

    
              

, 

representing the experimental and control groups, respectively; only the YE matrix was 
generated in the case of single-group designs. The parameters for these distributions in 
the standardized units are E

Preµ = C
Postµ = C

Preµ = 0, with 𝜎𝑃𝑟𝑒,𝑃𝑜𝑠𝑡, 2
Preσ , 2

Postσ , and E
Postµ being 

manipulated factors in the simulation. These values were permitted to remain in their 
unstandardized units to create a comparison for statistical inferences between raw and 
standardized conditions.  

 
• The necessary basic statistics (i.e., means, standard deviations, correlations) were 

estimated from the sampling data for each method using basic R commands. Thus, the 
estimates of ES and the ES sampling variance were calculated using all the effect size 
equations from Tables 1, 2, and 5, as relevant. 
 

• The calculations for the estimations, and their sampling variances were repeated for each 
simulated study (and comparing the equations in Tables 1–5; note that the between-
groups sampling variance is the same as the raw-score metric, that is, Table 4, no. 15). 

 
• In order to evaluate the robustness of the estimates under different conditions the bias of 

the estimate was calculated: 

𝐵𝑖𝑎𝑠 �𝛿� =
∑ �

𝛿�𝑗−𝛿
𝛿 �𝑅𝑛𝑠

𝑗=1

𝑅𝑛𝑠
, 

where 𝛿𝑗 is the sample estimate of population parameter 𝛿 for the jth replication and Rns 
is the number of replications.  
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• The efficiency of the estimates was obtained as the variability of the estimate across 
replications, 

( )2

1

Rns

j
jVAR( ) .

Rns

δ δ
δ =

−
=
∑




 

 
• Finally, the particular formulas for estimating the sampling variances of each index of 

specific aim 2 were computed in each replication and their values averaged over the 
10,000 replications of the same condition. The average of the empirical variability of 
each index was compared with the average of the variance obtained from each sampling 
variance estimate to obtain the adjustment to the theoretical variance. 

Conditions Manipulated 
Monte Carlo simulations established many different conditions by crossing these factors (see 

Table 6) to evaluate Specific Aim 1: 
 

1. The number of studies in a meta-analysis, k = 10, 20, 50, and 100. 
 

2. The mean sample size (N) in the literature. The mean sample size for each generated 
meta-analysis replicated the 10th (N = 30), 40th (N = 50), and 80th (N = 80) percentiles of 
the sample sizes from HIV prevention trials in the Syntheses of HIV and AIDS Research 
Project meta-analytic database at the University of Connecticut, which summarizes over 
700 trials. Three vectors of sample sizes were generated as [12, 16, 18, 20, 84], [32, 36, 
38, 40, 104], and [62, 66, 68, 70, 134], one for each selected averaging 30, 50, and 80, 
respectively. Each vector was replicated either 2, 4, 10, or 50 times for meta-analyses of k 
= 10, 20, 50, and 100. 
 

3. The within-study variances for experimental and control groups and at pretest and post-
test measures were varied using ratios for experimental and control groups, respectively, 
of 1:1, 2:1, and 4:1.28,29 The variance of the experimental group was increased in 
comparison to that of the control group because increases in variability are more 
plausible when there is experimental manipulation (e.g., a psychological treatment) and 
doing so permitted clearer inferences about results.11  
 

4. The mean of the post-test for the experimental group, following the parametric values for 
the standardized mean difference,30 δ = E

postµ = 0.25, 0.5, and 0.8. The means and standard 
deviations of the scores for the experimental and control participants in each pseudo-
study were generated assuming a variety of different distributions: both normal 
distributions and nonnormal distributions: 

a. For the normal distributions, values for means and standard deviations were kept 
as following the parametric normal distributions described above. 

b. To generate nonnormal distributions, the normality pattern was manipulated to 
obtain skewed distributions through use of the Fleishman31 algorithm, with the 
following values of skewness/kurtosis: 0.5/0, 0.75/0, and 1.75/3.75. 
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5. The between-studies variance, τ2, with values 0, 0.04, 0.08, 0.16, 0.32. When τ2 = 0, 
statistical models reduce to a fixed-effects model because there is no between-studies 
variance. The selected values of τ2 are similar to those used in other prominent simulation 
studies in this literature.32,33  

Condition Manipulated Specifically for Specific Aim 2 
6. The correlations between the two conditions were manipulated through the variance-

covariance matrix, where homogeneous variances equal to 1 can be assumed. The 
manipulated correlation was equal to the covariance between the two measures. The 
values were ρpre-post = 0, 0.25, 0.50, and 0.75. 

Table 6. Characteristics of simulated datasets 
Condition Levels 

Specific Aim 1 
Mean population effect size 

δ =  
E
postµ = 0.25 / 0.50 / 0.80 

Relative within-study standard 
deviation for control and 
experimental groups 

σE : σC = 1:1, 2:1, and 4:1 

Sample size vectors 𝑛𝐶  = 𝑛𝐸 = [12, 16, 18, 20, 84], [32, 36, 38, 40, 104], and [62, 66, 68, 70, 134] 
Number of studies k = 10 / 25 / 50 / 100 
Skewness/Kurtosis 0/0, 0.5/0, 0.75/0, and 1.75/3.75 
Between-study variance τ2 = 0 / 0.04 / 0.08 / 0.16 / 0.32 

Only for Specific Aim 2 
Correlation between pretest and 
post-test measures 

ρpre-post = 0 / 0.25 / 0.50 / 0.75 
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Results 
Part One: Unstandardized Versus Standardized Effect Sizes 

Overview 
Monte Carlo simulations (Part 1A) showed that leaving the effect size (ES) index in the 

original metric (UMD) presents little bias or loss of efficiency when distributions were normal, 
when there is no heterogeneity in effect sizes, and when the variances of the experimental and 
control group means are equal; yet, to the extent that these conditions deviate, standardizing 
(SMD) is better. The standardized metric presents the least bias under all conditions and is more 
efficient than the raw metric. Both metrics suffer under high skewness and kurtosis, although the 
SMD less so. A further simulation (Part 2B) showed that the two indexes converge in terms of 
bias, efficiency, and coverage when data are normally distributed and studies are homogeneous 
in gauging the parametric ES. 

Detailed Analysis, Part 1A 
In this section we detail the initial Monte Carlo simulation study that we performed. In 

Detailed Analysis, Part 2, we describe a second simulation study that addressed issues that 
emerged from the first. 

Bias 
Figures 1 through 5 show the primary results comparing the UMD against the SMD in terms 

of bias. As these figures show, the SMD had less bias than did the UMD under all plotted 
circumstances. The two metrics approach the same level of bias only when skewness and 
kurtosis is minimal (Figure 1), but even here the SMD showed a slight advantage. More dramatic 
differences between the two appeared as skewness and kurtosis increase, under fixed-effects 
(τ2=0; see Figure 2), as the parametric effect size increases (Figure 3), as the mean sample size 
increases (Figure 4), and as the difference in variances between the two compared groups 
increases (Figure 5). (No figure for number of studies appears because it did not change the 
trends reported here.) Across these conditions, the UMD was more likely than the SMD to over-
estimate the parametric effect size. 
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Figure 1. Bias of SMD and UMD as a function of asymmetries in the distributions underlying the 
effect size estimates 

  
SMD = standardized mean difference; UMD = unstandardized mean difference 

 
Figure 2. Bias of SMD and UMD as a function of the between-studies variance of the distribution 

 
SMD = standardized mean difference; UMD = unstandardized mean difference 
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Figure 3. Bias of SMD and UMD as a function of the parametric effect size 

  
SMD = standardized mean difference; UMD = unstandardized mean difference 

 
Figure 4. Bias of SMD and UMD as a function of mean sample size 

 
SMD = standardized mean difference; UMD = unstandardized mean difference 
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Figure 5. Bias of SMD and UMD as a function of heteroskedasticity  

  
SMD = standardized mean difference; UMD = unstandardized mean difference 

Efficiency 
Figures 6 through 10 show the primary results comparing the UMD against the SMD in 

terms of efficiency, such that values nearer to 0 are more efficient (i.e., values close to zero 
reflect less variability, so more efficiency to detect a difference between the compared groups’ 
means). The SMD presented more efficient estimations than the UMD under the same 
circumstances as it exhibited less efficiency. Specifically, the two metrics approach the same 
efficiency only when skewness and kurtosis is minimal (Figure 6), but even here the SMD 
showed a slight advantage. More dramatic differences between the two appeared as skewness 
and kurtosis increase, under increasing heterogeneity (τ2>0; see Figure 7), across all levels of the 
parametric effect size (Figure 8), across all levels of mean sample size (Figure 9), and as the 
difference between the variances of the two groups increases (Figure 10). Across these 
conditions, the UMD was a less efficient estimator than the SMD. The efficiency of SMD 
improves when the between-studies variance increases (τ2>0) or the sample size increases; it is 
not affected by the rest of the factors (and these are not plotted in the main report; see Appendix 
A, Tables A1 to A8 for more detailed results). 
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Figure 6. Efficiency of SMD and UMD as a function of asymmetry      

  
SMD = standardized mean difference; UMD = unstandardized mean difference 

 
Figure 7. Efficiency of SMD and UMD as a function of between-studies variance 

 
SMD = standardized mean difference; UMD = unstandardized mean difference 
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Figure 8. Efficiency of SMD and UMD as a function of the parametric effect size 

  
SMD = standardized mean difference; UMD = unstandardized mean difference 
 
 
 
Figure 9. Efficiency of SMD and UMD as a function of mean sample size  

 
SMD = standardized mean difference; UMD = unstandardized mean difference 
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Figure 10. Efficiency of SMD and UMD as a function of the heteroskedasticity  

 
SMD = standardized mean difference; UMD = unstandardized mean difference 

Detailed Analysis, Part 1B 
We followed the same procedures in a subsequent Monte Carlo simulation study in order to 

explore the performance of the two indexes, SMD and UMD, when a weighted mean effect size 
is obtained under particular conditions and evaluating the 95% confidence interval (CI) 
coverage; the previous simulation evaluated only whether individual studies approximated the 
parametric effect size. We envisioned circumstances that might be regarded as “well-behaved 
data” compared with “unruly” data, where both types of data gauged the same parametric 
medium effect size (δ=0.50). For our well-behaved data, we simulated normal distributions with 
no skewness or kurtosis, large sample sizes (M n = 80), and a large number of studies (k = 100). 
We conceived of two unruly data conditions with the same parameters, except that in one the 
experimental vs. control variances very unequal (4:1), and in the other there was an extremely 
nonnormal distribution (skewness/kurtosis = 1.75/3.75). There were 10,000 replications in each 
condition. Note that these conditions do not evaluate random-effects circumstances (i.e., τ2=0 in 
this simulation). 

Bias and efficiency were obtained across the replications as in Part 1, but coverage of the 
confidence interval also was obtained specially for this set of simulations. Thus, the final average 
weighted effect size across the individual studies was generated along with a 95% confidence 
interval around the mean effect size. Then the coverage of their confidence intervals was 
obtained as the proportion of replications in which the confidence interval for each index did not 
include the null value, ES = SMD = UMD = 0. 

In obtaining the weighted ES, the SMD and UMD indexes exhibited bias and efficiency that 
were only trivially different (Table 7). Both slightly overestimated the parametric ES under 
either the normal data circumstance or the nonnormal distributions, and both dramatically 
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overestimated the ES under circumstances of unequal variances. These results serve as a form of 
replication of the results of Part 1A. 

The coverage of their CIs indicates that both the SMD and UMD estimations include the true 
value in 95 percent of the simulations. In some occasions, both CIs missed the parameter under 
unequal variances or when nonnormal distributions are present. 

Table 7. Bias, efficiency, and 95% CI coverage for the SMD and UMD under three different 
inferential circumstances 

Statistic Normal Data, Equal 
Variances, Large 

Samples Unequal Variances (4:1) Skewness/Kurtosis 
(1.75/3.75) 

Bias 
SMD 0.0169 0.3153 0.0256 
UMD 0.0170 0.3250 0.0572 

Efficiency 
SMD 0.0824 0.1055 0.1564 
UMD 0.0852 0.1047 0.1587 

95% CI Coverage 
SMD 0.9521 0.9328 0.9146 
UMD 0.9567 0.9339 0.9197 

CI = confidence interval; SMD = standardized mean difference; UMD = unstandardized mean difference 

Part Two: Using the SMD with Repeated Versus  
Independent Measures  

Overview 
• If one is interested in analyzing the effects of an intervention excluding time-related 

effects, then it is convenient to consider the raw-score metric. That is, research routinely 
controls for the stability of observations of particular cases across time. If a treatment 
affects an outcome uniformly across cases, then a perfect correlation between pre- and 
post-test observations is implied. Treatments that affect the outcome differentially across 
cases and time imply a correlation that is less than 1. Statistical analyses in primary-level 
statistics routinely control for this within-subjects variability (see, for example 
Pedhauzer, 199717). In meta-analytic statistics, debate exists about whether to control for 
this source of variability (see Tables 1–4).  

• The Monte Carlo simulation systematically compared estimates for effect size (Tables 1–
2) and the sampling variance (Tables 3–4) across studies that varied in the magnitude of 
the correlation between the pre- and post-tests (ρ=0, 0.25, 0.50, 0.75). 

• Because the main factor that affected estimates was the magnitude of the correlation 
between the two measures, other simulated conditions are not presented here (see 
Appendix B). 

Detailed Analysis 

One-Group Within-Subjects Design 
The simulation evaluated bias, efficiency for five different indexes designed for the one-

group, within-subjects design, dtra, dtch, db, dg, dhw (see Table 1). The simulation also evaluated 
dhb (Table 2, equation 6) even though it was designed for a two-group comparison.34 As well as 
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the theoretical variance adjustment for the variance estimations that have been presented in the 
literature and combining them across the different indexes. 

Bias 
Figure 11 shows bias of the six different indexes calculated as the difference between the 

mean of the two repeated observations and the parametric ES in raw metric, δraw, over the 
replications in each correlation condition, assuming normality of distributions. Positive values 
reflect an overestimation of this particular parameter, whereas negative values imply an 
underestimation.) 

Figure 11. Bias as a function of the correlation parameter of ES indexes for the one-group, within-
subjects design 

 
db = Becker’s standardized mean difference; dg = Gibbons’s standardized mean difference; dhb = Hedges’s standardized mean 
difference using the between-studies degrees of freedom; dhw = Huedo-Medina and Johnson’s standardized mean difference using 
the within-study degrees of freedom; dtch = the standardized mean difference in change-score metric from td; dtra = standardized 
mean difference in raw-score metric form td 

Of all ES indexes, db and dtra were the least biased across all correlations and their performance 
are exactly the same as dhb. Two others had no bias when the correlation was 0.5, dg and dtch, but 
underestimated the parametric ES when the correlation was smaller and overestimated it when 
the correlation was larger. The remaining index in Figure 11 (one that does not explicitly 
incorporate the correlation in its equation), dhw consistently underestimated the ES regardless of 
the correlation (see Appendix B, Table B2, for more detail).  

Efficiency  
As Figure 12 shows, the most efficient ES index was dhw and its efficiency improved as the 

correlation between the measures grew. Its efficiency was only slightly better than dtch and dg 
when ρ=0. Moreover, db, dtra, and dhb had the lowest efficiency when the repeated measures were 
less correlated but did better when they were highly correlated. The other two indexes, dg and 



22 

dtch, performed worse under high correlation conditions and better under low correlation 
conditions. Estimates for dg and dtch are almost unaffected by increasing the assumed correlation 
between pre- and post-test, although these increase slightly as the correlation increases. Although 
efficiency is similar for all alternatives when the correlation is 0.5, dg and dtch are more variable 
than any other when the correlation is larger than 0.5.  

 

Figure 12. Efficiency as a function of the correlation parameter of the ES indexes  

 
dhb = Hedges’s standardized mean difference using the between-studies degrees of freedom; dhw = Huedo-Medina and Johnson’s 
standardized mean difference using the within-study degrees of freedom; dtra = standardized mean difference in raw-score metric 
form td; dtch = the standardized mean difference in change-score metric from td; db = Becker’s standardized mean difference;  
dg = Gibbons’s standardized mean difference 

The Theoretical Variance Adjustment 
Figure 13 shows how the correlation parameter relates to adjustments to the theoretical 

variance in the two-groups design with repeated measures. Note that here results for dhb, dhw, and 
db used variance equation 13 and dg used equation 14 (see Table 3).The least biased estimations 
of the variance are dg and db. The difference between the theoretical and the empirical variance 
decreases slightly for dg as the correlation increases if the latter is smaller than 0.5, however, an 
opposite pattern is observed if the correlation is larger than 0.5. However, the theoretical 
variance adjustment of db always decreases as the correlation increases. The worst adjustment is 
for dhb and then for dhw; both present a difference that decreases as the correlation increases.  
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Figure 13. The theoretical variance adjustment to the empirical variance as a function of the 
correlation parameter of the ES indexes 

 
dhb = Hedges’s standardized mean difference using the between-studies degrees of freedom (Equation 13, Table 3);  
dhw = Huedo-Medina and Johnson’s standardized mean difference using the within-study degrees of freedom (Equation 13,  
Table 3); db = Becker’s standardized mean difference (Equation 13, Table 3); dg = Gibbons’s standardized mean difference 
(Equation 14, Table 3) 
 
If the theoretical variance is calculated for dhw and db without including the correlation factor, 
2(1 – ρ), and using the df = n – 1 and ñ = n, dhw_nonr and db_nonr, these indexes present opposite 
patterns to their corresponding versions including the correlation factor, as Figure 14 illustrates.  
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Figure 14. The theoretical variance adjustment to the empirical variance as a function of the 
correlation parameter of the ES indexes  

 
db = Becker’s standardized mean difference; db_nonr = Becker’s standardized mean difference without including the correlation 
factor 2(1 – r) in its equation (Equation 13, Table 3); dg = Gibbons’s standardized mean difference (Equation 14, Table 3);  
dhb = Hedges’s standardized mean difference using the between-studies degrees of freedom (Equation 13, Table 3);  
dhw = Huedo-Medina and Johnson’s standardized mean difference using the within-study degrees of freedom (Equation 13,  
Table 3); dhw_nonr = Huedo-Medina and Johnson’s standardized mean difference using the within-study degrees of freedom 
without including the correlation factor 2(1 – r) in its equation (Equation 14, Table 3) 

Two-Group Repeated Measures Designs 
The simulation evaluated bias, efficiency, and theoretical variance adjustment for seven 

different estimates of effect sizes (ESs) for the two-groups designs with repeated measures, dhb, 
db, dg, dhw, ds1, ds2, and ds3 (see Table 2). One of these, dhb (Table 2, equation 6) was designed to 
focus on a two-group comparison at one measurement point (without considering repeated 
measures); the others utilize an earlier measure in some respect. 

Bias 
As Figure 15 shows, two ES indexes present no bias in estimating the parametric ES, ds1 and 

ds2. The denominator for each of these equations incorporates the correlation between the two 
measures in some respect (in the standard deviation or in the mean square error). The other 
indexes ignore the correlation between the measures and usually exhibit a negative bias. The 
only exception is that if the measures are correlated moderately (ρ = 0.5), dg performs with no 
bias; this ES underestimates the parametric effect size when the measures are less correlated and 
overestimates it when they are more correlated.  
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Figure 15. Bias as a function of the correlation parameter of the ES indexes  

 
dhb = Hedges’s standardized mean difference using the between-studies degrees of freedom; dhw = Huedo-Medina and Johnson’s 
standardized mean difference; db = Becker’s standardized mean difference; dg = Gibbons’ standardized mean difference;  
ds1 = standardized mean difference using Shadish’s pooled standard deviation; ds2 = standardized mean difference using the 
ANOVA data; ds3 = standardized mean difference from ANCOVA data 

The three new ES indexes presented for two-groups design are those calculated from 
ANOVAs, ds1 and ds2, and one from ANCOVA, ds3. The performance of the two first is the same 
as those estimating a parametric ES in raw-score metric, so they do not present bias. However, 
the third one underestimates the parameter but improves as the correlation increases.  

Efficiency 
In general, in terms of efficiency the best estimator is dhw and then ds1, ds2, ds3, and dg are 

very similar if correlation is lower than 0.5. However, when ρ > 0.5 the efficiency of dg increases 
drastically, as it was shown in one-group design. The indexes dhb and db have very similar 
efficiency, with db being slightly larger when ρ = 0; when ρ = 0.5, the variability of dhb is slightly 
larger than db (see Figure 16). 
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Figure 16. Efficiency as a function of the correlation parameter of the ES indexes  

 
dhb = Hedges’s standardized mean difference using the between-studies degrees of freedom; dhw = Huedo-Medina and Johnson’s 
standardized mean difference; db = Becker’s standardized mean difference; dg = Gibbons’ standardized mean difference;  
ds1 = standardized mean difference using Shadish’s pooled standard deviation; ds2 = standardized mean difference using the 
ANOVA data; ds3 = standardized mean difference from ANCOVA data 

The Theoretical Variance Adjustment 
Figures 17 and 18 present the differences between the sampling variance estimates and the 

actual sampling variance of the effect size index. First, in Figure 17, the estimates illustrated 
using a solid line are calculated as the variance of an ES, and those dashed lines are obtained as a 
variance compound of two variances, one for the ES of each independent group. The effect size 
indexes that require the least theoretical variance adjustment are ds1, ds3, dg, and dhw, with the 
latter two effect sizes defined in such a way that the variance calculated for a total ES is 
calculated as a difference between the ES for each group. The effect size indexes that required 
the largest theoretical variance adjustment are dg, dhw, and dg. The correlation between the 
measures has relatively little role in affecting the theoretical variance adjustment. (Note that ds2 
is not considered in Figure 17 because it has exactly the same performance as ds1.). The 
considerably worse performance appears in those estimates of the sampling variance that are a 
composite of the experimental and control group variance. 
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Figure 17. The theoretical variance adjustment to the empirical variance as a function of the 
correlation parameter of the ES indexes.  

 
 
dhb = Hedges’s standardized mean difference using the between-studies degrees of freedom; dhw = Huedo-Medina and Johnson’s 
standardized mean difference; db = Becker’s standardized mean difference; dg = Gibbons’ standardized mean difference;  
ds1 = standardized mean difference using Shadish’s pooled standard deviation; ds2 = standardized mean difference using the 
ANOVA data; ds3 = standardized mean difference from ANCOVA data 
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Figure 18. The theoretical variance adjustment to the empirical variance as a function of the 
correlation parameter of the ES indexes  

 
dhw = Hedges’s standardized mean difference using the within-study degrees of freedom; db = Becker’s standardized mean 
difference; dg = Gibbons’s standardized mean difference; note that the inclusion or exclusion of the correlation factor, 2(1-ρ), is 
denoted as _r and _nonr, respectively, in the suffix of these terms 

Figure 18 shows the sampling variance estimations for a total ES in different metrics, 
examining those that can include vs. exclude the correlation factor, 2(1 – ρ), dhw, db, and dg. As 
expected, when the correlation factor was not included, all three indexes required the same 
theoretical variance adjustment regardless of the correlation between the measures. When the 
correlation factor is included, all exhibit similar trends, with better performance when ρ < 0.5 
and worse performance when ρ > 0.5. Finally, if ρ = 0.5, all six indexes performed similarly. 
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Discussion 
This report analytically evaluates two controversial topics in meta-analytic methods using 

Monte Carlo simulation techniques. The first is to determine what effect size metric should be 
used when trials assess an outcome on the same continuous measure. The second is to determine 
the best estimates of the standardized mean difference effect size and its variance when the 
comparisons are derived from a repeated-measures or a between-groups design.  

Choice of Metric When Meta-Analyzing Continuous Measures 
Although several statistical methods exist to estimate comparisons of groups at one or more 

points (Tables 1 to 5), none provide unbiased estimations and, before the current report, the 
circumstances under which they produce the most optimal statistical inferences has been 
unknown. In the current simulations, the standardized mean difference outperformed the 
unstandardized version under a broad set of conditions in terms both of bias (Figures 1–5) and of 
efficiency (Figures 6–10) under the conditions we have described on our methods section. The 
standardized mean difference performed better when differences in within-study variability are 
large, when parametric assumptions are poorly met, and when study sample sizes are small. 
When the underlying assumptions are better met, choice of standardized vs. unstandardized mean 
difference mattered little in estimates of the weighted mean effect size (Table 7). Table 8 
summarizes which equations performed best in the current research in terms of operationalizing 
effect sizes and their variances for particular types of designs and inferential circumstances. 

The fact that the current results support the use of the standardized mean difference even 
when it is possible to use the unstandardized version might on the surface imply that that clinical 
interpretations will grow more difficult even while statistical inferences grow clearer and 
cleaner. Of course, most stakeholders can more easily interpret a 10 mmHg drop in blood 
pressure or a $100 reduction in the cost of care than the equivalent result on a standardized effect 
size metric. There are at least two solutions to this problem. The first solution is quantitative and 
entails converting final results from in the standardized mean difference metric to their 
equivalent unstandardized mean differences. One simply multiplies the standardized mean 
difference by the standard deviation. Naturally, standard deviations can and do vary widely 
between studies, which implies that is valuable to meta-analyze the relevant standard deviations 
in order to determine which value or values are best used in such conversions. Many factors 
might affect which standard deviation is presumed to describe a particular inferential situation. 
Investigators may have selected participants within a narrow range on the dependent measure, 
which artificially restricts the standard deviation. Presumably such standard deviations are of 
little use in setting a standard. Scaling issues are also a consideration: Other factors being equal, 
standard deviations will grow smaller as values near the low or high extremes of a particular 
measure (e.g., rating scales); standard deviations grow larger across levels of a measure that has 
infinity at one end (e.g., mmHg in blood pressure studies).6 Understanding when the standard 
deviation is larger or smaller thus facilitates making accurate clinical inferences.
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Table 8. Findings relevant to meta-analytic practice (effect size and variance choice) 
Design Type Inferential Circumstances Best Performing Equation 

and Sources Equation 
Two-group 
comparison without 
repeated measures 

For nearly all inferential 
circumstances involving a 
comparison of two groups on 
one measure.  

SMD dhb (Table 2, No. 6) 
Variance (Table 4, No. 15) 
Hedges (1981)25  
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with equal variances 
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the magnitude of change 
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between the repeated 
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Table 8. Findings relevant to meta-analytic practice (effect size and variance choice) (continued) 

Design Type Inferential Circumstances Best Performing Equation 
and Sources Equation

 Two-group 
comparisons with 
repeated measures 

When attempting to examine 
the magnitude of change 
without controlling for the 
correlation between the 
repeated measures 

SMD db (Table 2, No. 7); 
Becker (1988)19 ( 2)
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Two-group 
comparisons with 
repeated measures 
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the magnitude of change 
controlling for the correlation 
between the repeated 
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Gibbons et al. (1993)23 ( 2)
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The second solution for clinical interpretation hinges on effect size standards, which are 
made possible by using the standardized mean difference effect size. Specifically, Cohen30,35 
tentatively proposed some guidelines for judging effect magnitude, suggesting “that medium 
represents an effect of a size likely to be visible to the naked eye of a careful observer” (Cohen, 
p. 156). Thus, if a standardized mean difference exceeds 0.50, then it is likely to be readily 
noticeable to the careful practitioner. If it is smaller, it is unlikely to be noticeable without the aid 
of statistics. In other words, if at least a medium amount of improvement has occurred between 
two observations, it should be noticeable in practice. Similarly, if a trial yielded a medium effect 
size and one encountered individuals who had been in either the treatment group or the control 
group, one could notice differences between them. It is worth noting that these clinical 
interpretation suggestions also apply to meta-analyses in which individual studies take 
observations on different measures, when the only conventional recourse is to use a standardized 
effect size. Finally, note that interventions with an average small effect can have very large 
public health effects if they apply to large part of the population, even if they are not noticeable 
by clinicians.  

Optimal Estimations of the Standardized Mean Difference 
Effect Size (and its Sampling Variance) 

Tables 1 to 5 show current methods to obtain an effect size and a sampling variance estimate 
for repeated-measures and two-groups designs. These solutions either include the correlation 
between pre- and post-test11,21,26 or exclude it.3,19,23,26 Despite the disagreement about use of the 
correlation in calculating the ES, all solutions except Gibbons et al.,23 use the correlation in 
estimating the variance of ES for subsequent weighted analyses. Finally, these solutions rarely if 
ever distinguish between change- and raw-score metrics; the latter always assumes a 0.5 
correlation between measures in estimating the ES and its variance. The effect size in change-
score metric can be defined as the mean change due to treatment compared with the variability of 
change scores and the effect size in raw-score metric as the mean difference between conditions 
compared with a pooled variability of scores within each condition or to the variance of the 
original scores without having any intervention.  

The second takes into account only the change, without considering the variability of this 
change, and the first considers the change and variability. If the variability of this change is high, 
the ES in change-score formulation will be smaller than it will be in the raw-score formulation 
that considers just the between groups variability implying that the correlation between the two 
conditions is 0.5. Thus, the raw-score ES can be misleading. However, if the variability of the 
change is small, the ES estimation will be higher than if just the ES in raw-metric is considered 
because of the consistency. Consistency implies that for all the subjects, a similar change has 
been produced. Therefore, those metrics will report different definitions of the ES because of the 
different standard deviations that they use. There are different estimates of the sampling variance 
depending on study design (Tables 3 and 4); all present a good adjustment to the theoretical 
variance under most circumstances. Yet, for two-groups designs with repeated measures, there is 
an advantage to use the equations with the total effect size as a component (i.e., Table 4, 
equations 15 and 17). These performed superior to versions that used separate variance estimates 
for the two compared groups to create the total sampling variance (i.e., Table 4, equations 16 and 
18). In general, for one-group repeated-measures designs all ES equations behaved well, but 
Table 8 lists those that performed the best under certain conditions.  
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Based on our results, selections of a formula for repeated measures can have considerable 
effects on statistical inferences. The parametric repeated-measures ES is defined as the 
difference between the means of the post- and pre-test divided by a standard deviation. The 
particular standard deviation chosen in calculating the ES index will also create some 
differences. Those differences can be corrected using the appropriate weights in each case, using 
the sampling variance estimate for change- or raw-score metric, then effect sizes from different 
designs can be integrated. It is worth mentioning that solutions for repeated measures effect sizes 
were most optimal when the correlation between repeated observations was 0.50; to the extent 
that actual observed correlations differ from this value, statistical inferences are likely to be sub-
optimal, especially with some of the competing equations (Tables 1 and 2). 

Limitations and Future Directions 
The present study examined the performance of numerous estimators of effect size across 

widely diverse circumstances but it cannot evaluate all possible circumstances. Although the 
methods were intended to describe the conditions that most often appear in meta-analyses of 
health-related research, it is possible that important conditions have been omitted from the 
current simulations. For example, trials sometimes have far larger samples than the current 
simulations examined. Yet, because sample size had little role in results, this concern would 
seem to be abated. Moreover, in examining circumstances with heterogeneity and with unequal 
variances, the current findings would seem highly germane to many meta-analyses related to 
health. 

It is also possible that our results favoring standardized mean differences over their 
unstandardized counterparts were in part determined by the design of our simulations that are 
more conditioned to the first one than to the latter. A future simulation assuming an 
unstandardized parametric effect size would be a useful replication and check of this possibility. 
Our simulation also does not provide direct evidence about the advisability of mixing ESs from 
between- and within-group designs in the same meta-analysis. Some sources argue against the 
practice (see Lipsey and Wilson, 2001)18

 and others suggest that it is acceptable (for example, see 
Morris and DeShon, 2002 and Johnson and Eagly, 2000).22,34 Future research should directly 
address these issues. 

The current investigation also leaves some questions without complete answers. Future 
investigations could examine alternative solutions beyond those in Table 5 for gauging the 
magnitude of effect sizes in the original metric. For example, as implied in the preceding sub-
section, it may be fruitful to model the standard deviations in trials. Once the population values 
are estimated they could be used in place of the observed standard deviations in individual 
studies to weight results. This solution might correct many of the deficiencies the current study 
identified. (Or, the population standard deviations could replace the observed standard deviations 
in calculating the standardized mean difference.) Another solution could be taking previous 
transformations of the unstandardized metric and evaluating which ones are the most unbiased 
and efficient depending on different simulated conditions. Similarly, in comparing the 
unstandardized effect size to the standardized one, the current work examined only one version 
(see Table 5). One popular version that was not examined in the current analysis is the 
unstandardized mean gain score. The unstandardized difference’s relatively poor performance in 
the current analysis leaves little faith that it will fare any better in the gain score arena, but only 
by doing the requisite work can this possibility be confirmed. Similarly, the current finding that 
the standardized mean difference performs better than the unstandardized one under unequal 
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variances implies but does not directly show that differing variances of the measures across 
studies will make the unstandardized mean difference perform more poorly. Moreover, the 
current results showed that the standardized mean difference performs better under heterogeneity 
than its unstandardized counterpart; the implication is that moderator testing (viz. sub-group 
analysis or meta-regression) will also exhibit less bias and greater efficiency when the effect size 
is standardized rather than unstandardized. This possibility should be evaluated in a future 
simulation. Other important aspects to evaluate in a future study are the different ratios of the 
mean difference versus pooled standard deviation; the conditions manipulated in the current 
study may statistically benefit the standardized version more than the unstandardized 
counterpart.  
  



35 

References
1. Sutton AJ, Duval SJ, Tweedie RL, et al. 

Empirical assessment of effect of 
publication bias on meta-analyses. BMJ. 
2000;320(7249):1574-7. PMID: 10845965. 

2. Rothstein H, Sutton AJ, Borenstein M. 
Publication bias in meta-analysis. In: 
Rothstein HR, Sutton AJ, & M. Borenstein 
M, eds. Publication bias in meta-analysis: 
prevention, assessment and adjustments. 
Chichester, UK: Wiley; 2005. 

3. Rosenthal R. Meta-analytic procedures for 
social research. Rev. ed. Newbury Park: 
Sage Publications; 1991. 

4. Juni P, Altman DG, Egger M. Systematic 
reviews in health care: assessing the quality 
of controlled clinical trials. BMJ. 
2001;323(7303):42-6. PMID: 11440947. 

5. Johnson BT, Boynton MH. Cumulating 
evidence about the social animal: meta-
analysis in social-personality psychology. 
Society & Personality Psychology Compass.  
2008;2:817-41. 

6. Hunter JE, Schmidt FL. Methods of meta-
analysis: correcting error and bias in 
research findings. 2nd ed. Thousand Oaks, 
CA: Sage; 2004. 

7. Huedo-Medina TB, Johnson BT. Modelos 
Estadísticos en Meta-análisis [Statistical 
Models in Meta-analysis]: La Coruña, 
Spain: Netbiblio; 2010. 

8. Hedges LV, Olkin I. Statistical methods for 
meta-analysis. Orlando: Academic Press; 
1985. 

9. Cooper HM, Hedges LV, Valentine JC. The 
handbook of research synthesis. New York: 
Russell Sage Foundation; 2009. 

10. Cooper H. Integrative research: A guide for 
literature reviews (3rd ed.). Newbury Park, 
CA: Sage; 1998. 

11. Glass GV, McGaw B, Smith ML. Meta-
analysis in social research. Beverly Hills: 
Sage Publications; 1981. 

12. Glaser RR. Accuracy of ES calculation 
methods for repeated measures 
[dissertation]. University of Memphis; 2002. 

13. Ray JW, Shadish WR. How interchangeable 
are different estimators of effects size? J 
Consult Clin Psychol. 1996;64:1316-25. 
PMID: 8991318. 

14. Bond CF Jr, Wiitala WL. Richard FD. Meta-
analysis of raw mean differences. Psychol 
Methods. 2003;8:406-18. 

15. Tukey JW. Analyzing data: sanctification or 
detective work? Am Psychol. 1969;24:83-
91. 

16. Blalock HM. Causal inferences in non-
experimental research. Chapel Hill: 
University of North Carolina Press; 1964. 

17. Pedhazur EJ. Multiple Regression in 
Behavioral Research: Explanation and 
Prediction. New York: Holt, Rinehart and 
Winston; 1997. 

18. Lipsey MW, Wilson DB. Practical Meta-
analysis. Vol 49. Thousand Oaks, CA: Sage 
Publications; 2001. 

19. Becker BJ. Synthesizing standardized mean-
change measures. Br J Math Stat 
Psychol. 1988;41:257-278. 

20. Cortina JM, Nouri H. ES for ANOVA 
designs. Thousand Oaks, CA: Sage; 2000. 

21. Dunlap WP, Cortina JM, Vaslow JB, Burke 
MJ. Meta-analysis of experiments with 
matched groups or repeated measures 
designs. Psychol Methods. 1996;1:170-177. 

22. Morris SB, DeShon RP. Combining effect 
size estimates in meta-analysis with repeated 
measures and independent-group designs. 
Psychol Methods. 2002;7:105-125. PMID: 
11928886. 

23. Gibbons RD, Hedeker DR, Davis JM. 
Estimation of ES from a series of 
experiments involving paired comparisons J 
Educ Stat. 1993;18:271-279. 

24. Huedo-Medina T, Johnson BT. Standardized 
mean difference ES estimations for 
repeated-measures with continuous 
measures. 2011. 

25. Hedges LV. Distribution theory for Glass's 
estimator of effect size and related 
estimators. J Educ Behav Stat. 1981 June 
20;6(2):107-128. 



36 

26. Shadish WR, Robinson L, Lu C. ES: A 
computer programs for ES calculation. St 
Paul, MN: Assesment Systems Corporation; 
1999. 

27. Matsumoto M, Nishimura T. Mersenne 
twister: a 623-dimensionally equidistributed 
uniform pseudo-random number generator. 
ACM Trans Model Comput Simul. 
1998;8(1):3-30. 

28. Wilcox RR. New designs in analysis of 
variance. Annu Rev Psychol. 1987;38:29-
60.  

29. McWilliams L. Variance heterogeneity in 
empirical studies in education and 
psychology. Paper presented at the annual 
colloquium of the American Educational 
Research Association. San Francisco; 1991. 

30. Cohen J. Statistical power analysis for the 
behavioral sciences. 2nd ed. Hillsdale, NJ: 
Lawrence Erlbaum Associates; 1988. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31. Fleishman AI. A method for simulating 
nonnormal distributions. Psychometrika. 
1978;43:521-31.  

32. Overton RC. A comparison of fixed-effects 
and mixed (random-effects) models for 
meta-analysis tests of moderator variable 
effects. Psychol Methods. 1998;3:354-79. 

33. Biggerstaff BJ, Tweedie RL. Incorporating 
variability estimates of heterogeneity in the 
random effects model in meta-analysis. Stat 
Med. 1997;16:753- 68. PMID: 9131763. 

34. Johnson BT, Eagly AH. Quantitative 
synthesis of social psychological research. 
In: Reis HT and Judd CM, eds. Handbook of 
Research Methods in Social and Personality 
Psychology. London: Cambridge University 
Press; 2000: 496-528. 

35. Cohen J. Quantitative methods in 
psychology: A power primer. Psychol Bull. 
1992;112(1):155-9. 

 



37 

Glossary of Terms 
Bias: The extent to which the observed UMD or SMD differs from the parametric value. Positive 
values of bias imply over-estimations of the parametric effect size and negative values imply 
under-estimations. 
 
Change-score metric: The difference between two repeated measures compared with the 
variability of change scores. 
 
Coverage: The proportion of replications for which the 95% confidence interval for each index 
did not include the null value, ES = SMD = UMD = 0. 
 
Effect size (ES): The magnitude or degree of the association between two variables. In the 
current investigation, comparisons between groups, across time, or both, are used (e.g., 
standardized mean difference; unstandardized mean difference). 
 
Efficiency: A measure of the optimality of an estimator that reaches the closest value to the 
parameter with the minimum variance. To the extent that efficiency is positive, statistical power 
is maximized to detect the parametric value.   
 
Mean square error (MSE): A measure of the average of the square of the errors that evaluates 
the quality of an estimator in terms of its variation and unbiasedness. Bias and efficiency are, in 
effect, components of the MSE. 
 
One-group repeated-measures design: A study methodology in which a single sample is 
observed at two or more time points (e.g., before and after a treatment). 
 
Pooled standard deviation: The sample-size weighted mean standard deviations of two or more 
groups. 
 
Raw-score metric: A metric that compares a mean or mean difference between conditions or 
times with the variability of scores within each condition.  
 
Sampling variance of effect size for one-group repeated-measures design: The variance of 
the sampling distribution, which is the distribution of values that result from repeated random 
samples of the same size using a repeated-measures design (see Table 3 for extant estimations of 
this statistic). 
 
Sampling variance of effect size for two independent groups: The same as the preceding one 
but for studies following a two-groups design, so using two independent samples (see Table 4 for 
extant estimations of this statistic). 
 
Standardized mean difference (SMD) effect size: The difference of two means divided by the 
pooled standard deviation. 
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Standardized mean difference (SMD) for one-group repeated-measures design: The effect 
size comparing two means at different times for the same group relative to the standard deviation 
(see Table 1 for extant estimations of this statistic). 
 
Standardized mean difference (SMD) for two independent groups: The effect size reflecting 
the change in means for two independent groups (repeated-measures, between-groups version) or 
the comparison of the means at post-test for two independent groups (between-groups version). 
(See Table 2 for extant estimations of this statistic.) 
 
Two-groups repeated measures design: A study methodology in which two groups (or arms; 
e.g., treatment and control) are observed at two or more times. 
 
Unstandardized mean difference (UMD) effect size: The difference of the two means in their 
original metric or scale. 
 

Following are the Greek terms that appear in this report: 
Term Definition 

δ The parametric difference between two groups 
𝛿̂𝑗 The sample estimate of population parameter δ for the jth replication 

E
postµ

 
Parametric mean at post-test for the experimental group 

E
Preµ  Parametric mean at pretest for the experimental group 

C
Postµ  Parametric mean at post-test for the control group 

C
Preµ  Parametric mean at pretest for the control group 

2
Preσ  Parametric variance at pretest 
2
Postσ  

Parametric variance at post-test 
σPre,Post Covariance between pre- and post-test 

ρ Parametric correlation 
ρpre-post Parametric correlation between pre-and post-test 
σC Parametric standard deviation of the control group 
σE Parametric standard deviation of the experimental group 
τ2 Between-study variance 
 

Following are the Latin abbreviations used in this report: 
Term Definition 

db Standardized mean difference proposed by Becker (See Table 1, No. 3 for details and elements of 
the equation) 

db_nonr Becker’s standardized mean difference, excluding the correlation factor 2(1 – r) in its variance 
estimation  

df Degrees of freedom 
dg Standardized mean difference proposed by Gibbons (See Table 1, No. 4 for details and elements of 

the equation) 
dhb Standardized mean difference proposed by Hedges (See Table 2, No. 6 for details and elements of 

the equation) 
dhw Standardized mean difference proposed by Huedo-Medina & Johnson (See Table 1, No. 5 for details 

and elements of the equation) 
dhw_nonr Hedges’ standardized mean difference using the within-study degrees of freedom and excluding the 

correlation factor 2(1 – r) in its variance estimation. 
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Following are the Latin abbreviations used in this report (continued): 
Term Definition 

ds1 Standardized mean difference proposed by Shadish (See Table 2, No. 10 for details and elements of 
the equation) 

ds2 Standardized mean difference proposed by Shadish using the standard deviation from ANOVA 
results (See Table 2, No. 11 for details and elements of the equation) 

ds3 Standardized mean difference proposed by Shadish using the standard deviation from ANCOVA 
results (See Table 2, No. 12 for details and elements of the equation) 

dtch Standardized mean difference based on t-test for change-score metric (See Table 1, No. 2 for details 
and elements of the equation) 

dtra Standardized mean difference based on t-test for raw-score metric (See Table 1, No. 1 for details 
and elements of the equation) 

ES Effect size 
HAM-D Hamilton rating scale of depression 
k Number of studies 
M HAM-D Mean score on the HAM-D 
MC Mean for control group 
ME Mean for experimental group 
mmHg Millimeters of mercury (used in measures of blood pressure) 
MSE  Mean square error 
N Total sample size 
n Group sample size 
OR Odds ratio 
r Estimated correlation 
Rns The number of replications 
SD Standard Deviation 
SEUMD The standard error for the UMD 
SESMD The standard error for the SMD 
SMD Standardized mean difference (d) 
UMD  Unstandardized mean difference (Equation 19, Table 5) 
varone-g (db) Variance estimate for one group design with repeated measures of the standardized mean difference 

proposed by Becker (See Table 3, No. 13 for details and elements of the equation) 
varone-g (dg) Variance estimate for one group design with repeated measures of the standardized mean difference 

proposed by Gibbons (See Table 3, No. 14 for details and elements of the equation) 
vartwo-g (db) Variance estimate for two group design with repeated measures of the standardized mean difference 

as a function of two effect sizes proposed by Becker (See Table 4, No. 16 for details and elements of 
the equation) 

vartwo-g (db_t) Variance estimate for two group design with repeated measures of the standardized mean difference 
proposed by Hedges (See Table 4, No. 15 for details and elements of the equation) 

vartwo-g (dg) Variance estimate for two group design with repeated measures of the standardized mean difference 
as a function of two effect sizes proposed by Gibbons (See Table 4, No. 18 for details and elements 
of the equation) 

vartwo-g (dg_t) Variance estimate for two group design with repeated measures of the standardized mean difference 
proposed by Gibbons (See Table 4, No. 17 for details and elements of the equation) 

VarUMD The variance estimate for the UMD 
VarSMD The variance estimate for the SMD 
YC Control outcome 
YE Experimental outcome 
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Appendix A. Bias and Efficiency Results  
for Standardized and Raw Mean Differences  

(Specific Aim 1) 
This appendix contains the bias and efficiency results in relation to the two different effect sizes 
metrics, unstandardized (UMD) versus standardized (SMD) mean differences, with results 
divided by simulation conditions that related either to bias, efficiency, or both. 
 

Skewness/Kurtosis δ n SMD UMD 

0/3 

0.25 
30 -0.0003 0.0210 
50 -0.0005 0.0239 
80 -0.0003 0.0261 

0.50 
30 -0.0003 0.0284 
50 -0.0005 0.0309 
80 -0.0003 0.0333 

0.80 
30 -0.0003 0.0078 
50 -0.0005 0.0099 
80 -0.0003 0.0122 

0.75/0 

0.25 
30 -0.1021 0.1389 
50 -0.1035 0.1322 
80 -0.1043 0.1346 

0.50 
30 -0.1021 0.1605 
50 -0.1035 0.1639 
80 -0.1043 0.1667 

0.80 
30 -0.1021 0.1923 
50 -0.1035 0.1955 
80 -0.1043 0.1985 

1.75/3.75 

0.25 
30 0.2001 0.2369 

50 -0.2104 0.2404 

80 -0.2002 0.2431 

0.50 
30 0.2001 0.2925 

50 -0.2104 0.2967 

80 -0.2002 0.3001 

0.80 
30 0.2001 0.3767 

50 -0.2104 0.3812 
80 -0.2002 0.3848 
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Skewness/Kurtosis δ n SMD UMD 

0/3 

0.25 
30 0.0001 0.0175 
50 0.0019 0.0257 
80 0.0017 0.0279 

0.50 
30 0.0001 0.0259 
50 0.0019 0.0334 
80 0.0017 0.0353 

0.80 
30 0.0001 0.0066 
50 0.0019 0.0131 
80 0.0017 0.0146 

0.75/0 

0.25 
30 0.1001 0.1750 
50 0.1019 0.1839 
80 0.1017 0.1864 

0.50 
30 0.1001 0.1573 
50 0.1019 0.1663 
80 0.1017 0.1688 

0.80 
30 0.1001 0.1907 
50 0.1019 0.1991 
80 0.1017 0.2012 

1.75/3.75 

0.25 
30 0.1001 0.1325 

50 0.1019 0.1421 

80 0.1017 0.1448 

0.50 
30 0.1001 0.2887 

50 0.1019 0.2992 

80 0.1017 0.3023 

0.80 
30 0.1001 0.3748 

50 0.1019 0.3851 

80 0.1017 0.3879 
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Skewness/Kurtosis δ n SMD UMD 

0/3 

0.25 
30 0.0001 0.0175 
50 0.0019 0.0257 
80 0.0017 0.0279 

0.50 
30 0.0001 0.0259 
50 0.0019 0.0334 
80 0.0017 0.0353 

0.80 
30 0.0001 0.0066 
50 0.0019 0.0131 
80 0.0017 0.0146 

0.75/0 

0.25 
30 0.1001 0.1750 
50 0.1019 0.1839 
80 0.1017 0.1864 

0.50 
30 0.1001 0.1573 
50 0.1019 0.1663 
80 0.1017 0.1688 

0.80 
30 0.1001 0.1907 
50 0.1019 0.1991 
80 0.1017 0.2012 

1.75/3.75 

0.25 
30 0.1001 0.1325 

50 0.1019 0.1421 

80 0.1017 0.1448 

0.50 
30 0.1001 0.2887 

50 0.1019 0.2992 

80 0.1017 0.3023 

0.80 
30 0.1001 0.3748 

50 0.1019 0.3851 

80 0.1017 0.3879 



A-4 

0/3 

1:1 
0 0.0001 0.0175 
0.08 0.0019 0.0257 
0.32 0.0017 0.0279 

1:2 
0 0.0001 0.0259 
0.08 0.0019 0.0334 
0.32 0.0017 0.0353 

4:1 
0 0.0001 0.0366 
0.08 0.0019 0.0431 
0.32 0.0017 0.0546 

0.75/0 

1:1 
0 0.1001 0.1750 
0.08 0.1019 0.1839 
0.32 0.1017 0.1864 

1:2 
0 0.2101 0.3573 
0.08 0.2119 0.3663 
0.32 0.2117 0.3688 

4:1 
0 0.3101 0.4907 
0.08 0.3219 0.4991 
0.32 0.3317 0.4012 

1.75/3.75 

1:1 
0 0.1001 0.1325 

0.08 0.1019 0.1421 

0.32 0.1017 0.1448 

1:2 
0 0.3101 0.4887 

0.08 0.3119 0.4992 

0.32 0.3117 0.4023 

4:1 
0 0.3801 0.5748 

0.08 0.3819 0.5851 

0.32 0.3917 0.5879 
Note. E:C=Variance of experimental group relative to variance of control group.
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Skewness/Kurtosis δ n SMD UMD 

0/3 

0.25 
30 0.1104 0.1108 
50 0.0492 0.0500 
80 0.0276 0.0281 

0.50 
30 0.1104 0.1109 
50 0.0492 0.0500 
80 0.0276 0.0282 

0.80 
30 0.1104 0.1106 
50 0.0492 0.0499 
80 0.0276 0.0281 

0.75/0 

0.25 
30 0.1868 0.2117 
50 0.0718 0.1504 
80 0.0690 0.1284 

0.50 
30 0.1868 0.2131 
50 0.0718 0.1510 
80 0.0690 0.1287 

0.80 
30 0.1868 0.2137 
50 0.0718 0.1513 
80 0.0690 0.1289 

1.75/3.75 

0.25 
30 0.2286 0.3126 

50 0.1568 0.2508 

80 0.1318 0.2286 

0.50 
30 0.2286 0.3157 

50 0.1568 0.2522 

80 0.1318 0.2294 

0.80 
30 0.2286 0.3177 

50 0.1568 0.2531 

80 0.1318 0.2299 
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Skewness/Kurtosis δ n SMD UMD 

0/3 

0.25 
30 0.1104 0.1118 
50 0.0492 0.0505 
80 0.0276 0.0284 

0.50 
30 0.1104 0.1117 
50 0.0492 0.0504 
80 0.0276 0.0284 

0.80 
30 0.1104 0.1112 
50 0.0492 0.0502 
80 0.0276 0.0283 

0.75/0 

0.25 
30 0.1867 0.2127 
50 0.0718 0.1509 
80 0.0690 0.1286 

0.50 
30 0.1867 0.2139 
50 0.0718 0.1514 
80 0.0690 0.1289 

0.80 
30 0.1867 0.2143 
50 0.0718 0.1516 
80 0.0690 0.1290 

1.75/3.75 

0.25 
30 0.2286 0.3136 

50 0.1568 0.2513 

80 0.1318 0.2289 

0.50 
30 0.2286 0.3165 

50 0.1568 0.2526 

80 0.1318 0.2296 

0.80 
30 0.2286 0.3183 

50 0.1568 0.2534 

80 0.1318 0.2301 
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Skewness/Kurtosis δ n SMD UMD 

0/3 

0.25 
30 0.0552 0.1149 
50 0.0246 0.0519 
80 0.0138 0.0292 

0.50 
30 0.0552 0.1143 
50 0.0246 0.0516 
80 0.0138 0.0290 

0.80 
30 0.0552 0.1132 
50 0.0246 0.0511 
80 0.0138 0.0288 

0.75/0 

0.25 
30 0.0983 0.2158 
50 0.0759 0.1523 
80 0.0445 0.1294 

0.50 
30 0.0983 0.2165 
50 0.0759 0.1526 
80 0.0445 0.1296 

0.80 
30 0.0983 0.2162 
50 0.0759 0.1525 
80 0.0445 0.1295 

1.75/3.75 

0.25 
30 0.1642 0.3167 

50 0.1284 0.2527 

80 0.1159 0.2297 

0.50 
30 0.1642 0.3191 

50 0.1284 0.2538 

80 0.1159 0.2303 

0.80 
30 0.1642 0.3202 

50 0.1284 0.2543 

80 0.1159 0.2306 
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Skewness/Kurtosis 
Ratio of variances 

(E:C) τ2 SMD UMD 

0/3 

1:1 
0 0.0001 0.0175 
0.08 0.0019 0.0257 
0.32 0.0017 0.0279 

1:2 
0 0.0001 0.0259 
0.08 0.0019 0.0334 
0.32 0.0017 0.0353 

4:1 
0 0.0001 0.0066 
0.08 0.0019 0.0131 
0.32 0.0017 0.0146 

0.75/0 

1:1 
0 0.0111 0.0750 
0.08 0.0119 0.0839 
0.32 0.0117 0.0864 

1:2 
0 0.0101 0.1573 
0.08 0.0119 0.1663 
0.32 0.0117 0.1688 

4:1 
0 0.0101 0.1907 
0.08 0.0119 0.1991 
0.32 0.0117 0.2012 

1.75/3.75 

1:1 
0 0.0180 0.1325 

0.08 0.0216 0.1421 

0.32 0.0225 0.1448 

1:2 
0 0.0180 0.2887 

0.08 0.0216 0.2992 

0.32 0.0225 0.3023 

4:1 
0 0.0180 0.3748 

0.08 0.0216 0.3851 

0.32 0.0225 0.3879 
Note. E:C=Variance of experimental group relative to variance of control group. 
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Appendix B. Bias, Efficiency, and Theoretical Variance 
for All Effect Size Indexes and Their Variances 

(Specific Aim 2) 
 

This appendix provides detailed tables for the results of the Specific Aim 2, including the bias, 
efficiency, and theoretical variance adjusted for all the effect size indexes and their variances. 
 

n r dhb dhw dtra dtch db dg 

50 

.00 0.0001 -0.1491 0.0074 -0.1412 -0.0004 -0.1467 

.25 -0.0007 -0.1497 0.0059 -0.0869 -0.0010 -0.0933 

.50 0.0019 -0.1478 0.0084 0.0084 0.0010 0.0006 

.75 0.0034 -0.1468 0.0084 0.3038 0.0009 0.2914 

75 

.00 0.0010 -0.1475 0.0066 -0.1418 0.0011 -0.1454 

.25 0.0002 -0.1481 0.0052 -0.0875 -0.0002 -0.0917 

.50 -0.0005 -0.1486 0.0040 0.0040 -0.0009 -0.0011 

.75 0.0017 -0.1471 0.0048 0.2982 0.0001 0.2901 

100 

.00 0.0012 -0.1469 0.0051 -0.1428 0.0011 -0.1455 

.25 0.0004 -0.1475 0.0034 -0.0890 0.0003 -0.0921 

.50 -0.0003 -0.1480 0.0031 0.0031 -0.0006 -0.0007 

.75 0.0020 -0.1464 0.0043 0.2974 0.0008 0.2913 

250 

.00 0.0001 -0.1469 0.0014 -0.1455 0.0002 -0.1465 

.25 0.0003 -0.1467 0.0016 -0.0904 0.0004 -0.0916 

.50 -0.0004 -0.1473 0.0010 0.0010 -0.0007 -0.0005 

.75 0.0001 -0.1469 0.0014 0.2928 -0.0005 0.2904 

500 

.00 0.0002 -0.1466 0.0011 -0.1457 0.0005 -0.1462 

.25 0.0010 -0.1460 0.0018 -0.0903 0.0010 -0.0909 

.50 0.0003 -0.1465 0.0014 0.0014 0.0000 0.0006 

.75 0.0000 -0.1467 0.0005 0.2913 -0.0005 0.2902 

750 

.00 -0.0001 -0.1467 0.0003 -0.1462 0.0000 -0.1466 

.25 -0.0006 -0.1470 -0.0001 -0.0918 -0.0008 -0.0923 

.50 0.0002 -0.1465 0.0005 0.0005 0.0001 0.0000 

.75 0.0007 -0.1461 0.0008 0.2919 0.0006 0.2911 
Note. See Tables 1 and 2 in the main report for definitions of each effect size index. Bias is defined as the M difference between 
the estimate of the ES and the parametric value. db=Becker’s standardized mean difference; dg=Gibbons’s standardized mean 
difference. dhb=Hedges’s standardized mean difference using the between-studies degrees of freedom; dhw=Huedo-Medina and 
Johnson’s standardized mean difference using the within-study degrees of freedom; dtch=the standardized mean difference in 
change-score metric from td; dtra=standardized mean difference in raw-score metric form td. 
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r dhb dhw dtra dtch db dg 
.00 0.0004 -0.1473 0.0037 -0.1439 0.0037 -0.1462 
.25 0.0001 -0.1475 0.0030 -0.0893 0.0032 -0.0920 
.50 0.0002 -0.1475 0.0031 0.0031 0.0031 -0.0002 
.75 0.0013 -0.1467 0.0034 0.2959 0.0035 0.2908 
Note. See Tables 1 and 2 in the main report for definitions of each effect size index. Bias is defined as the M difference between 
the estimate of the ES and the parametric value. db=Becker’s standardized mean difference; dg=Gibbons’s standardized mean 
difference. dhb=Hedges’s standardized mean difference using the between-studies degrees of freedom; dhw=Huedo-Medina and 
Johnson’s standardized mean difference using the within-study degrees of freedom; dtch=the standardized mean difference in 
change-score metric from td; dtra=standardized mean difference in raw-score metric form td. 
 

n r dhb dhw dtra dtch db dg 

50 

.00 0.0413 0.0206 0.0426 0.0224 0.0432 0.0217 

.25 0.0303 0.0152 0.0312 0.0222 0.0321 0.0215 

.50 0.0212 0.0106 0.0217 0.0230 0.0226 0.0223 

.75 0.0101 0.0051 0.0103 0.0274 0.0107 0.0266 

75 

.00 0.0269 0.0135 0.0275 0.0144 0.0282 0.0141 

.25 0.0210 0.0105 0.0214 0.0151 0.0221 0.0147 

.50 0.0146 0.0073 0.0149 0.0158 0.0155 0.0155 

.75 0.0066 0.0033 0.0067 0.0176 0.0070 0.0173 

100 

.00 0.0202 0.0101 0.0206 0.0108 0.0210 0.0106 

.25 0.0159 0.0079 0.0161 0.0112 0.0167 0.0110 

.50 0.0106 0.0053 0.0108 0.0115 0.0113 0.0113 

.75 0.0051 0.0025 0.0051 0.0131 0.0053 0.0129 

250 

.00 0.0081 0.0040 0.0081 0.0042 0.0083 0.0042 

.25 0.0062 0.0031 0.0062 0.0043 0.0065 0.0043 

.50 0.0043 0.0022 0.0044 0.0046 0.0045 0.0046 

.75 0.0021 0.0010 0.0021 0.0053 0.0021 0.0053 

500 

.00 0.0041 0.0020 0.0041 0.0021 0.0042 0.0021 

.25 0.0032 0.0016 0.0032 0.0023 0.0034 0.0022 

.50 0.0021 0.0011 0.0021 0.0023 0.0022 0.0023 

.75 0.0010 0.0005 0.0010 0.0026 0.0010 0.0026 

750 

.00 0.0027 0.0013 0.0027 0.0014 0.0028 0.0014 

.25 0.0021 0.0011 0.0021 0.0015 0.0022 0.0015 

.50 0.0015 0.0007 0.0015 0.0015 0.0015 0.0015 

.75 0.0007 0.0003 0.0007 0.0018 0.0007 0.0018 
Note. See Tables 1 and 2 in the main report for definitions of each effect size index. db=Becker’s standardized mean difference; 
dg=Gibbons’s standardized mean difference. dhb=Hedges’s standardized mean difference using the between-studies degrees of 
freedom; dhw=Huedo-Medina and Johnson’s standardized mean difference using the within-study degrees of freedom; dtch=the 
standardized mean difference in change-score metric from td; dtra=standardized mean difference in raw-score metric form td. 
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r dhb dhw dtra dtch db dg 
.00 0.0172 0.0086 0.0176 0.0092 0.0180 0.0090 
.25 0.0131 0.0066 0.0134 0.0094 0.0138 0.0092 
.50 0.0091 0.0045 0.0092 0.0098 0.0096 0.0096 
.75 0.0043 0.0021 0.0043 0.0113 0.0045 0.0111 
Note. See Tables 1 and 2 in the main report for definitions of each effect size index. db=Becker’s standardized mean difference; 
dg=Gibbons’s standardized mean difference. dhb=Hedges’s standardized mean difference using the between-studies degrees of 
freedom; dhw=Huedo-Medina and Johnson’s standardized mean difference using the within-study degrees of freedom; dtch=the 
standardized mean difference in change-score metric from td; dtra=standardized mean difference in raw-score metric form td. 
 

n r dhb dhw db dg 

50 

.00 0.0375 0.0226 0.0018 0.0217 

.25 0.0284 0.0176 0.0023 0.0120 

.50 0.0171 0.0118 0.0013 0.0017 

.75 0.0037 0.0047 0.0005 -0.0102 

75 

.00 0.0252 0.0149 0.0012 0.0142 

.25 0.0177 0.0110 0.0004 0.0071 

.50 0.0107 0.0073 0.0001 0.0001 

.75 0.0025 0.0031 0.0003 -0.0067 

100 

.00 0.0188 0.0110 0.0008 0.0105 

.25 0.0132 0.0081 0.0000 0.0053 

.50 0.0083 0.0056 0.0003 0.0003 

.75 0.0018 0.0022 0.0001 -0.0051 

250 

.00 0.0075 0.0043 0.0002 0.0042 

.25 0.0054 0.0032 0.0001 0.0021 

.50 0.0032 0.0021 0.0000 0.0000 

.75 0.0007 0.0008 0.0000 -0.0022 

500 

.00 0.0037 0.0021 0.0001 0.0020 

.25 0.0025 0.0015 -0.0001 0.0009 

.50 0.0016 0.0011 0.0000 0.0000 

.75 0.0004 0.0004 0.0000 -0.0011 

750 

.00 0.0025 0.0014 0.0001 0.0014 

.25 0.0017 0.0010 0.0000 0.0006 

.50 0.0011 0.0007 0.0000 0.0000 

.75 0.0002 0.0003 0.0000 -0.0008 
Note. See Tables 1 and 2 in the main report for definitions of each effect size index. db=Becker’s standardized mean difference; 
dg=Gibbons’s standardized mean difference. dhb=Hedges’s standardized mean difference using the between-studies degrees of 
freedom; dhw=Huedo-Medina and Johnson’s standardized mean difference using the within-study degrees of freedom. 
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r dhb dhw dhw_nonr db db_nonr dg 
.00 0.0159 0.0094 0.0007 0.0007 -0.0080 0.0003 
.25 0.0115 0.0071 0.0028 0.0005 -0.0039 0.0003 
.50 0.0070 0.0048 0.0048 0.0003 0.0003 0.0003 
.75 0.0016 0.0019 0.0071 0.0002 0.0054 0.0005 
Note. db_nonr= Becker’s standardized mean difference without including the correlation factor 2(1 – r). dhw_nonr=Hedges’s 
standardized mean difference using the within-study degrees of freedom without including the correlation factor 2(1 – r). See 
main report, Tables 1 and 2 for definitions of the other ES indexes.  

n r dhb dhw db dg ds1 ds2 ds3 

50 

.00 0.0042 -0.1492 -0.0004 -0.1467 0.0037 0.0038 -0.1191 

.25 0.0041 -0.149 0.0000 -0.0927 0.0033 0.0041 -0.1143 

.50 0.0036 -0.1487 -0.0002 -0.0006 0.0025 0.0045 -0.0977 

.75 0.0041 -0.1473 0.0003 0.2906 0.0029 0.0066 -0.0527 

75 

.00 0.0022 -0.1485 -0.0003 -0.1464 0.0022 0.0023 -0.1288 

.25 0.0028 -0.1481 -0.0003 -0.0917 0.0022 0.0028 -0.1230 

.50 0.0023 -0.1479 0.0001 -0.0001 0.0018 0.0031 -0.1059 

.75 0.0026 -0.1471 0.0001 0.2902 0.0018 0.0042 -0.0590 

100 

.00 0.0020 -0.1477 0.0002 -0.1463 0.0021 0.0021 -0.1330 

.25 0.0023 -0.1475 0.0002 -0.0920 0.0019 0.0023 -0.1274 

.50 0.0017 -0.1475 0.0001 0.0000 0.0013 0.0023 -0.1099 

.75 0.0018 -0.1470 0.0000 0.2903 0.0012 0.0031 -0.0621 

250 

.00 0.0007 -0.1470 0.0001 -0.1466 0.0007 0.0007 -0.1412 

.25 0.0010 -0.1467 0.0005 -0.0916 0.0010 0.0012 -0.1354 

.50 0.0006 -0.1470 -0.0003 -0.0002 0.0003 0.0007 -0.1173 

.75 0.0007 -0.1468 -0.0003 0.2908 0.0003 0.0011 -0.0676 

500 

.00 0.0000 -0.1468 0.0002 -0.1464 0.0003 0.0003 -0.1441 

.25 0.0004 -0.1466 0.0002 -0.0916 0.0004 0.0005 -0.1381 

.50 0.0005 -0.1467 -0.0002 0.0004 0.0002 0.0004 -0.1194 

.75 0.0005 -0.1466 -0.0003 0.2905 0.0002 0.0005 -0.0693 

750 

.00 0.0002 -0.1466 0.0001 -0.1464 0.0003 0.0003 -0.1447 

.25 0.0005 -0.1466 -0.0001 -0.0917 0.0003 0.0003 -0.1389 

.50 0.0003 -0.1466 0.0000 -0.0002 0.0002 0.0003 -0.1204 

.75 0.0004 -0.1464 0.0001 0.2904 0.0003 0.0005 -0.0700 
Note. See Tables 1 and 2 in the main report for definitions of each effect size index. Bias is defined as the M difference between 
the estimate of the ES and the parametric value. db=Becker’s standardized mean difference; dg=Gibbons’s standardized mean 
difference. dhb=Hedges’s standardized mean difference using the between-studies degrees of freedom. dhw=Huedo-Medina and 
Johnson’s standardized mean difference using the within-study degrees of freedom. ds1=Standardized mean difference proposed 
by Shadish (See Table 2, No. 10). ds2=Standardized mean difference proposed by Shadish using the standard deviation from 
ANOVA results (See Table 2, No. 11). ds3=Standardized mean difference proposed by Shadish using the standard deviation from 
ANCOVA results (See Table 2, No. 12). 
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r dhb dhw db dg ds1 ds2 ds3 
.00 0.0016 -0.1476 0.0000 -0.1465 0.0016 0.0016 -0.1352 
.25 0.0019 -0.1474 0.0001 -0.0919 0.0015 0.0019 -0.1295 
.50 0.0015 -0.1474 -0.0001 -0.0001 0.0011 0.0019 -0.1118 
.75 0.0017 -0.1469 0.0000 0.2905 0.0011 0.0027 -0.0635 
Note. See Tables 1 and 2 in the main report for definitions of each ES index. Bias is defined as the M difference between the 
estimate of the ES and the parametric value. db=Becker’s standardized mean difference; dg=Gibbons’s standardized mean 
difference. dhb=Hedges’s standardized mean difference using the between-studies degrees of freedom. dhw=Huedo-Medina and 
Johnson’s standardized mean difference using the within-study degrees of freedom. ds1=Standardized mean difference proposed 
by Shadish (See Table 2, No. 10). ds2=Standardized mean difference proposed by Shadish using the standard deviation from 
ANOVA results (See Table 2, No. 11). ds3=Standardized mean difference proposed by Shadish using the standard deviation from 
ANCOVA results (See Table 2, No. 12). dtch=the standardized mean difference in change-score metric from td. dtra=standardized 
mean difference in raw-score metric form td. 
 

n r dhb dhw db dg ds1 ds2 ds3 

50 

.00 0.0027 0.0006 0.0027 0.0013 0.0013 0.0013 0.0016 

.25 0.0028 0.0007 0.0027 0.0017 0.0014 0.0014 0.0016 

.50 0.0026 0.0008 0.0027 0.0026 0.0017 0.0017 0.0015 

.75 0.0027 0.0011 0.0027 0.0068 0.0022 0.0022 0.0017 

75 

.00 0.0018 0.0004 0.0017 0.0009 0.0009 0.0009 0.0010 

.25 0.0018 0.0004 0.0017 0.0011 0.0009 0.0009 0.0010 

.50 0.0017 0.0005 0.0017 0.0017 0.0011 0.0011 0.0009 

.75 0.0018 0.0007 0.0018 0.0044 0.0014 0.0014 0.0010 

100 

.00 0.0013 0.0003 0.0013 0.0006 0.0006 0.0006 0.0007 

.25 0.0013 0.0003 0.0013 0.0009 0.0007 0.0007 0.0007 

.50 0.0013 0.0004 0.0013 0.0013 0.0008 0.0008 0.0007 

.75 0.0013 0.0005 0.0013 0.0033 0.0010 0.0010 0.0007 

250 

.00 0.0005 0.0001 0.0005 0.0003 0.0003 0.0003 0.0003 

.25 0.0005 0.0001 0.0005 0.0003 0.0003 0.0003 0.0003 

.50 0.0005 0.0002 0.0005 0.0005 0.0003 0.0003 0.0003 

.75 0.0005 0.0002 0.0005 0.0013 0.0004 0.0004 0.0003 

500 

.00 0.0003 0.0001 0.0003 0.0001 0.0001 0.0001 0.0001 

.25 0.0002 0.0001 0.0003 0.0002 0.0001 0.0001 0.0001 

.50 0.0003 0.0001 0.0002 0.0003 0.0002 0.0002 0.0001 

.75 0.0002 0.0001 0.0003 0.0006 0.0002 0.0002 0.0001 

750 

.00 0.0002 0.0000 0.0002 0.0001 0.0001 0.0001 0.0001 

.25 0.0002 0.0000 0.0002 0.0001 0.0001 0.0001 0.0001 

.50 0.0002 0.0001 0.0002 0.0002 0.0001 0.0001 0.0001 

.75 0.0002 0.0001 0.0002 0.0004 0.0001 0.0001 0.0001 
Note. See Tables 1 and 2 in the main report for definitions of each ES index. Bias is defined as the M difference between the 
estimate of the ES and the parametric value. db=Becker’s standardized mean difference; dg=Gibbons’s standardized mean 
difference. dhb=Hedges’s standardized mean difference using the between-studies degrees of freedom. dhw=Huedo-Medina and 
Johnson’s standardized mean difference using the within-study degrees of freedom. ds1=Standardized mean difference proposed 
by Shadish (See Table 2, No. 10). ds2=Standardized mean difference proposed by Shadish using the standard deviation from 
ANOVA results (See Table 2, No. 11). ds3=Standardized mean difference proposed by Shadish using the standard deviation from 
ANCOVA results (See Table 2, No. 12). 
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r dhb dhw db dg ds1 ds2 ds3 
.00 0.0011 0.0003 0.0011 0.0006 0.0006 0.0006 0.0006 
.25 0.0011 0.0003 0.0011 0.0007 0.0006 0.0006 0.0006 
.50 0.0011 0.0004 0.0011 0.0011 0.0007 0.0007 0.0006 
.75 0.0011 0.0005 0.0011 0.0028 0.0009 0.0009 0.0007 
Note. See Tables 1 and 2 in the main report for definitions of each ES index. db=Becker’s standardized mean difference; 
dg=Gibbons’s standardized mean difference. dhb=Hedges’s standardized mean difference using the between-studies degrees of 
freedom. dhw=Huedo-Medina and Johnson’s standardized mean difference using the within-study degrees of freedom. 
ds1=Standardized mean difference proposed by Shadish (See Table 2, No. 10). ds2=Standardized mean difference proposed by 
Shadish using the standard deviation from ANOVA results (See Table 2, No. 11). ds3=Standardized mean difference proposed by 
Shadish using the standard deviation from ANCOVA results (See Table 2, No. 12). 
 

n r dhb dhw dhw_total db db_total dg dg_total ds1 ds3 

50 

.00 0.0395 0.2800 0.0408 0.2581 0.0395 0.2367 0.0202 0.0409 0.0400 

.25 0.0394 0.2697 0.0408 0.2592 0.0395 0.2503 0.0271 0.0408 0.0401 

.50 0.0395 0.2603 0.0407 0.2600 0.0394 0.2601 0.0412 0.0405 0.0402 

.75 0.0395 0.2489 0.0404 0.2593 0.0395 0.2104 0.0818 0.0400 0.0402 

75 

.00 0.0262 0.2637 0.0270 0.2574 0.0262 0.2358 0.0133 0.0271 0.0266 

.25 0.0262 0.2550 0.0270 0.2549 0.0262 0.2468 0.0178 0.0270 0.0266 

.50 0.0262 0.2470 0.0269 0.2536 0.0262 0.2535 0.0269 0.0268 0.0266 

.75 0.0262 0.2414 0.0268 0.2557 0.0262 0.2095 0.0532 0.0265 0.0267 

100 

.00 0.0196 0.2549 0.0202 0.2556 0.0196 0.2340 0.0099 0.0202 0.0199 

.25 0.0196 0.2482 0.0202 0.2534 0.0196 0.2453 0.0132 0.0202 0.0199 

.50 0.0196 0.2426 0.0201 0.2534 0.0195 0.2532 0.0199 0.0200 0.0199 

.75 0.0196 0.2388 0.0200 0.2549 0.0196 0.2092 0.0394 0.0198 0.0200 

250 

.00 0.0078 0.2386 0.0080 0.2520 0.0078 0.2304 0.0039 0.0080 0.0079 

.25 0.0078 0.2364 0.0080 0.2516 0.0078 0.2433 0.0052 0.0080 0.0079 

.50 0.0078 0.2339 0.0080 0.2511 0.0078 0.2511 0.0078 0.0080 0.0079 

.75 0.0078 0.2320 0.0080 0.2513 0.0078 0.2072 0.0155 0.0079 0.0079 

500 

.00 0.0039 0.2337 0.0040 0.2511 0.0039 0.2297 0.0019 0.0040 0.0039 

.25 0.0039 0.2331 0.0040 0.2514 0.0039 0.2431 0.0026 0.0040 0.0039 

.50 0.0039 0.2316 0.0040 0.2510 0.0039 0.2510 0.0039 0.0040 0.0040 

.75 0.0039 0.2302 0.0040 0.2506 0.0039 0.2072 0.0077 0.0039 0.0040 

750 

.00 0.0026 0.2317 0.0027 0.2504 0.0026 0.2290 0.0013 0.0027 0.0026 

.25 0.0026 0.2305 0.0027 0.2498 0.0026 0.2415 0.0017 0.0027 0.0026 

.50 0.0026 0.2306 0.0027 0.2506 0.0026 0.2506 0.0026 0.0026 0.0026 

.75 0.0026 0.2302 0.0026 0.2510 0.0026 0.2077 0.0051 0.0026 0.0026 
Note. See the text in the main report for definitions of each ES index. db=Becker’s standardized mean difference; dg=Gibbons’s 
standardized mean difference. dhb=Hedges’s standardized mean difference using the between-studies degrees of freedom. 
dhw=Huedo-Medina and Johnson’s standardized mean difference using the within-study degrees of freedom. ds1=Standardized 
mean difference proposed by Shadish (See Table 2, No. 10). ds3=Standardized mean difference proposed by Shadish using the 
standard deviation from ANCOVA results (See Table 2, No. 12). dtch=the standardized mean difference in change-score metric 
from td. dtra=standardized mean difference in raw-score metric form td. 
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r dhb dhw dhw_total db db_total dg dg_total ds1 ds3 
.00 0.0166 0.2504 0.0171 0.2541 0.0166 0.2326 0.0169 0.0172 0.0168 
.25 0.0166 0.2455 0.0171 0.2534 0.0166 0.2451 0.0168 0.0171 0.0168 
.50 0.0166 0.2410 0.0171 0.2533 0.0166 0.2533 0.0166 0.0170 0.0169 
.75 0.0166 0.2369 0.0170 0.2538 0.0166 0.2085 0.0155 0.0168 0.0169 
Note. See the text in the main report for definitions of each ES index. Bias is defined as the M difference between the estimate of 
the ES and the parametric value. db=Becker’s standardized mean difference; dg=Gibbons’s standardized mean difference. 
dhb=Hedges’s standardized mean difference using the between-studies degrees of freedom. dhw=Huedo-Medina and Johnson’s 
standardized mean difference using the within-study degrees of freedom. ds1=Standardized mean difference proposed by Shadish 
(See Table 2, No. 10). ds3=Standardized mean difference proposed by Shadish using the standard deviation from ANCOVA 
results (See Table 2, No. 12). dtch=the standardized mean difference in change-score metric from td. dtra=standardized mean 
difference in raw-score metric form td. 
 

n r dhw_total_r dhw_total_nonr db_total_r db_total_nonr dg_total_r dg_total_nonr 

50 

.00 0.0208 0.0408 0.0195 0.0395 0.0202 0.0402 

.25 0.0279 0.0408 0.0266 0.0395 0.0271 0.0400 

.50 0.0423 0.0407 0.0411 0.0394 0.0412 0.0396 

.75 0.0855 0.0404 0.0845 0.0395 0.0818 0.0368 

75 

.00 0.0137 0.0270 0.0129 0.0262 0.0133 0.0266 

.25 0.0184 0.0270 0.0176 0.0262 0.0178 0.0265 

.50 0.0277 0.0269 0.0269 0.0262 0.0269 0.0262 

.75 0.0556 0.0268 0.0550 0.0262 0.0532 0.0244 

100 

.00 0.0102 0.0202 0.0096 0.0196 0.0099 0.0199 

.25 0.0136 0.0202 0.0130 0.0196 0.0132 0.0198 

.50 0.0205 0.0201 0.0199 0.0195 0.0199 0.0195 

.75 0.0412 0.0200 0.0408 0.0196 0.0394 0.0182 

250 

.00 0.0040 0.0080 0.0038 0.0078 0.0039 0.0079 

.25 0.0054 0.0080 0.0051 0.0078 0.0052 0.0079 

.50 0.0081 0.0080 0.0078 0.0078 0.0078 0.0078 

.75 0.0162 0.0080 0.0160 0.0078 0.0155 0.0073 

500 

.00 0.0020 0.0040 0.0019 0.0039 0.0019 0.0039 

.25 0.0027 0.0040 0.0025 0.0039 0.0026 0.0039 

.50 0.0040 0.0040 0.0039 0.0039 0.0039 0.0039 

.75 0.0080 0.0040 0.0079 0.0039 0.0077 0.0036 

750 

.00 0.0013 0.0027 0.0013 0.0026 0.0013 0.0026 

.25 0.0018 0.0027 0.0017 0.0026 0.0017 0.0026 

.50 0.0027 0.0027 0.0026 0.0026 0.0026 0.0026 

.75 0.0053 0.0026 0.0053 0.0026 0.0051 0.0024 
Note. See the text in the main report for definitions of each ES index. db=Becker’s standardized mean difference; dg=Gibbons’s 
standardized mean difference. dhw=Huedo-Medina and Johnson’s standardized mean difference using the within-study degrees of 
freedom.  
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r dhw_total_r dhw_total_nonr db_total_r db_total_nonr dg_total_r dg_total_nonr 
.00 0.0087 0.0171 0.0082 0.0166 0.0084 0.0169 
.25 0.0116 0.0171 0.0111 0.0166 0.0113 0.0168 
.50 0.0176 0.0171 0.0170 0.0166 0.0171 0.0166 
.75 0.0353 0.0170 0.0349 0.0166 0.0338 0.0155 
Note. See the text in the main report for definitions of each ES index. Bias is defined as the M difference between the estimate of 
the ES and the parametric value. db=Becker’s standardized mean difference; dg=Gibbons’s standardized mean difference. 
dhw=Huedo-Medina and Johnson’s standardized mean difference using the within-study degrees of freedom.  
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