

Hematopoietic Stem-Cell Transplantation in the Pediatric Population

Comparative Effectiveness Review

Number 48

Hematopoietic Stem-Cell Transplantation in the Pediatric Population

Prepared for:

Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 540 Gaither Road Rockville, MD 20850 www.ahrq.gov

Contract No. HHSA 290-2007-10058

Prepared by:

Blue Cross and Blue Shield Association Technology Evaluation Center Evidence-based Practice Center Chicago, IL

Investigators:

Thomas A. Ratko, Ph.D. Suzanne E. Belinson, M.P.H., Ph.D. Heather M. Brown, M.D. Hussein Z. Noorani, M.S. Ryan D. Chopra, M.P.H. Anne Marbella, M.S. David J. Samson, M.S. Claudia J. Bonnell, R.N., M.L.S. Kathleen M. Ziegler, Pharm.D. Naomi Aronson, Ph.D.

AHRQ Publication No. 12-EHC018-EF February 2012 This report is based on research conducted by the Blue Cross and Blue Shield Association Technology Evaluation Center Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. HHSA 290-2007-10058). The findings and conclusions in this document are those of the authors, who are responsible for its contents; the findings and conclusions do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services.

The information in this report is intended to help health care decisionmakers—patients and clinicians, health system leaders, and policymakers, among others—make well-informed decisions and thereby improve the quality of health care services. This report is not intended to be a substitute for the application of clinical judgment. Anyone who makes decisions concerning the provision of clinical care should consider this report in the same way as any medical reference and in conjunction with all other pertinent information, i.e., in the context of available resources and circumstances presented by individual patients.

This report may be used, in whole or in part, as the basis for development of clinical practice guidelines and other quality enhancement tools, or as a basis for reimbursement and coverage policies. AHRQ or U.S. Department of Health and Human Services endorsement of such derivative products may not be stated or implied.

This document is in the public domain and may be used and reprinted without special permission. Citation of the source is appreciated.

Persons using assistive technology may not be able to full access information in this report. For assistance contact EffectiveHealthCare@ahrq.hhs.gov.

None of the investigators has any affiliations or financial involvement that conflicts with the material presented in this report.

Suggested citation: Ratko TA, Belinson SE, Brown HM, Noorani HZ, Chopra RD, Marbella A, Samson DJ, Bonnell CJ, Ziegler KM, Aronson N. Hematopoietic Stem-Cell Transplantation in the Pediatric Population. Comparative Effectiveness Review No. 48. (Prepared by the Blue Cross and Blue Shield Association Technology Evaluation Center Evidence-based Practice Center under Contract No. HHSA 290-2007-10058.) AHRQ Publication No. 12-EHC018-EF. Rockville, MD: Agency for Healthcare Research and Quality; February 2012. www.effectivehealthcare.ahrq.gov/reports/final.cfm.

Preface

The Agency for Healthcare Research and Quality (AHRQ) conducts the Effective Health Care Program as part of its mission to organize knowledge and make it available to inform decisions about health care. As part of the Medicare Prescription Drug, Improvement, and Modernization Act of 2003, Congress directed AHRQ to conduct and support research on the comparative outcomes, clinical effectiveness, and appropriateness of pharmaceuticals, devices, and health care services to meet the needs of Medicare, Medicaid, and the Children's Health Insurance Program (CHIP).

AHRQ has an established network of Evidence-based Practice Centers (EPCs) that produce Evidence Reports/Technology Assessments to assist public- and private-sector organizations in their efforts to improve the quality of health care. The EPCs now lend their expertise to the Effective Health Care Program by conducting Comparative Effectiveness Reviews (CERs) of medications, devices, and other relevant interventions, including strategies for how these items and services can best be organized, managed, and delivered.

Systematic reviews are the building blocks underlying evidence-based practice; they focus attention on the strength and limits of evidence from research studies about the effectiveness and safety of a clinical intervention. In the context of developing recommendations for practice, systematic reviews are useful because they define the strengths and limits of the evidence, clarifying whether assertions about the value of the intervention are based on strong evidence from clinical studies. For more information about systematic reviews, see www.effectivehealthcare.ahrq.gov/reference/purpose.cfm.

AHRQ expects that CERs will be helpful to health plans, providers, purchasers, government programs, and the health care system as a whole. In addition, AHRQ is committed to presenting information in different formats so that consumers who make decisions about their own and their family's health can benefit from the evidence.

Transparency and stakeholder input are essential to the Effective Health Care Program. Please visit the Web site (www.effectivehealthcare.ahrq.gov) to see draft research questions and reports or to join an email list to learn about new program products and opportunities for input. Comparative Effectiveness Reviews will be updated regularly.

We welcome comments on this CER. They may be sent by mail to the Task Order Officer named below at: Agency for Healthcare Research and Quality, 540 Gaither Road, Rockville, MD 20850, or by email to epc@ahrq.hhs.gov.

Carolyn M. Clancy, M.D. Director, Agency for Healthcare Research and Quality

Stephanie Chang, M.D., M.P.H. Director, EPC Program Center for Outcomes and Evidence Jean Slutsky, P.A., M.S.P.H. Director, Center for Outcomes and Evidence Agency for Healthcare Research and Quality

Supriya Janakiraman, M.D., M.P.H. Task Order Officer Center for Outcomes and Evidence Agency for Healthcare Research and Quality

Acknowledgments

The authors gratefully acknowledge the following individuals for their contributions to this project: Joan Glacy, M.D., for abstract review; Lisa Sarsany, M.A., for government project management; Kimberly Della Fave for administrative support; and Sharon Flaherty, M.A., for contracts support.

Key Informants

Mitchell Cairo, M.D. Chief, Pediatric Blood/Bone Marrow Transplantation Columbia University Medical Center New York, NY

Laurence Cooper, M.D. Professor of Pediatrics M.D. Anderson Cancer Center Houston, TX

Morton Cowan, M.D. Director, Bone Marrow Transplant Program University of California San Francisco San Francisco, CA

Technical Expert Panel

Mitchell Cairo, M.D. Chief, Pediatric Blood/Bone Marrow Transplantation Columbia University Medical Center New York, NY

Laurence Cooper, M.D. Professor of Pediatrics M.D. Anderson Cancer Center Houston, TX

Morton Cowan, M.D. Director, Bone Marrow Transplant Program University of California San Francisco San Francisco, CA Marc Leib, M.D., J.D. Medical Director Arizona Health Care Cost Containment System Phoenix, AZ

Michael L. Nieder, M.D. Medical Director, Blood & Marrow Transplant Program All Children's Hospital St. Petersburg, FL

Marc Leib, M.D., J.D. Medical Director Arizona Health Care Cost Containment System Phoenix, AZ

Eneida Nemecek, M.D. Director, Pediatric Bone Marrow Transplantation Doernbecher Children's Hospital Oregon Health & Science University Portland, OR

Michael Pulsipher, M.D. Associate Professor, Pediatrics University of Utah School of Medicine Salt Lake City, UT

Peer Reviewers

Morton Cowan, M.D. Director, Bone Marrow Transplant Program University of California San Francisco San Francisco, CA

Ira Dunkel, M.D. Pediatric Oncologist, Pediatric Medical Oncology Memorial Sloan-Kettering Cancer Center New York, NY Naynesh Kamani, M.D. Faculty, Blood and Marrow Transplant and Immunology Children's National Medical Center Washington, D.C.

Sharon Gardner, M.D. Associate Professor, Department of Pediatrics (Oncology Division) New York University Pediatric Hematology Oncology New York, NY Naynesh Kamani, M.D. Faculty, Blood and Marrow Transplant and Immunology Children's National Medical Center Washington, D.C.

Michael Pulsipher, M.D. Associate Professor, Pediatrics University of Utah School of Medicine Salt Lake City, UT

Hematopoietic Stem-Cell Transplantation in the Pediatric Population

Structured Abstract

Objectives. Assess comparative benefits and harms of hematopoietic stem-cell transplantation (HSCT) versus standard therapies or disease natural history in pediatric (age ≤ 21 years) patients with malignant solid tumors, inherited metabolic diseases, or autoimmune diseases.

Data Sources. MEDLINE[®], Embase, and the Cochrane Database of Systematic Reviews weresearched from January 1995 through August 2011. Additional studies were identified from reference lists and technical experts.

Review Methods. Major data abstraction elements were patient and treatment characteristics, health outcomes (overall survival, remission, neurocognitive development, adverse events), and data analysis. The strength of the body of evidence for each indication was assessed according to the process developed by the Evidence-based Practice Center (EPC) Program of the Agency for Healthcare Research and Quality using four required domains specified in the EPC Methods Guide for Comparative Effectiveness Reviews: risk of bias, consistency, directness, and precision. In cases where there were no head-to-head comparative studies, directness was based on the outcome (e.g., overall survival) rather than on the comparison. For small series or a compilation of case reports in which the prognosis absent HSCT is uniformly fatal (e.g., Wolman's disease), the known natural history was considered an indirect comparator. An optional domain, strength of association (SOA, magnitude of effect) was applied to the body of evidence when there was an apparent benefit or harm, increasing the overall strength beyond what normally may be considered appropriate for such evidence. SOA was deemed not applicable for diseases where there was no clear evidence of benefit or harm with HSCT versus comparators, or if results of individual studies within a body of literature were inconsistent or conflicted. No quantitative scoring method was applied.

Results. Among 6,416 records screened, 251 primary studies were included. The strength of evidence for specific indications was graded as high for 2 indications, moderate or low for 19, and insufficient for 39.

- Evidence suggesting a benefit of HSCT for overall survival:
 - Wolman's disease compared to disease natural history (high strength)
 - Recurrent/progressive anaplastic astrocytoma compared to conventional therapy (low strength)
- Evidence suggesting a benefit of HSCT for neuromuscular symptoms:
 - Farber's disease Type 2/3 compared to symptom management and disease natural history (high strength)
- Evidence suggesting a benefit of HSCT for neurocognitive symptoms:
 - Infantile ceroid lipofuscinosis compared to symptom management or disease natural history (low strength)
 - Attenuated form of MPS (mucopolysaccharoidosis) II (Hunter's disease) compared to enzyme-replacement therapy (ERT) (low strength)

- Evidence suggesting a benefit of HSCT for neurodevelopmental symptoms:
 - Attenuated and severe forms of MPS II (Hunter's disease) compared to ERT (both low strength)
- Evidence suggesting no benefit of single HSCT for overall survival:
 - Metastatic rhabdomyosarcoma compared to conventional therapy (moderate strength)
 - Extraocular retinoblastoma with central nervous system involvement, high-risk Ewing's sarcoma family of tumors, high-risk relapsed Wilm's tumor compared to conventional therapy (all three low strength)
 - Niemann-Pick Type A compared to symptom management (low strength)
- Evidence suggesting no benefit of HSCT for neurodevelopmental symptoms:
 - Gaucher Type III compared to ERT (low strength)
 - Juvenile form of GM₁, juvenile Tay-Sachs compared to symptom management or disease natural history (both low strength)
 - MPS III (Sanfilippo) compared to symptom management, substrate reduction therapy, or disease natural history (low strength)
- Evidence suggesting no benefit of HSCT for neurocognitive symptoms:
 - Severe form of MPS II (Hunter's disease) compared to symptom management or disease natural history (low strength)
 - MPS III (Sanfilippo) compared to symptom management, substrate reduction therapy, or disease natural history (low strength)
 - Gaucher Type III compared to ERT (moderate strength)
- Evidence suggesting harm of HSCT for overall survival:
 - Nonanaplastic mixed or unspecified ependymoma compared to conventional therapy (both low strength)

Conclusions. Evidence demonstrating benefit or harm of HSCT versus standard therapies or disease natural history was insufficient for most pediatric indications.

Executive Summary	ES-1
Introduction	1
Background	1
Scope and Key Questions	2
Systematic Review Key Questions	7
Methods	10
Topic Development and Refinement	10
Technical Expert Panel and Peer Review	10
Narrative Reviews	10
Systematic Reviews	11
Literature Search	11
Study Selection	11
Data Abstraction	12
Study Quality	14
Data Synthesis	14
Grading the Evidence for Each Key Question	14
Narrative Reviews	18
Narrative Reviews: Malignant, Hematopoietic Disease	18
Acute Lymphoblastic Leukemia	18
Acute Myelogenous Leukemia	29
Chronic Myelogenous Leukemia	35
Myelodysplastic Syndrome/Juvenile Myelomonocytic Leukemia	
Childhood Hodgkin's Lymphoma	
Childhood non-Hodgkin's Lymphoma	41
Narrative Reviews: Malignant, Nonhematopoietic Disease	46
Neuroblastoma	46
Germ-Cell Tumors	49
Central Nervous System Embryonal Tumors	51
Narrative Reviews: Nonmalignant Disease	55
Hemoglobinopathies	55
Bone Marrow Failure Syndromes	62
Primary Immunodeficiencies	82
Inherited Metabolic Diseases: Mucopolysaccharidoses	86
Inherited Metabolic Diseases: Sphingolipidoses	94
Inherited Metabolic Diseases: Glycoproteinoses	102
Inherited Metabolic Diseases: Peroxisomal Storage Disorders	105
Osteopetrosis	109
Systematic Reviews	
Systematic Reviews: Malignant, Nonhematopoietic Disease	113
Ewing's Sarcoma Family of Tumors Systematic Review	
Wilms Tumor Systematic Review	
Rhabdomyosarcoma Systematic Review	146
Retinoblastoma Systematic Review	
Neuroblastoma Systematic Review	178

Contents

Germ-Cell Tumors Systematic Review	185
Central Nervous System/Embryonal Tumors Systematic Review	190
Glial Tumor Systematic Review	199
Systematic Reviews: Nonmalignant Disease	242
Inherited Metabolic Diseases Systematic Review	242
Autoimmune Diseases Systematic Review	295
Summary and Discussion	334
Malignant Solid Tumors (Key Questions 1 and 2)	335
Malignant Diseases: Inherited Metabolic Disorders (Key Questions 3 and 4)	335
Rapidly Progressive Diseases	335
Slowly Progressive Diseases	336
Diseases With Both Rapidly and Slowly Progressive Forms	336
Autoimmune Diseases (Key Questions 5 and 6)	337
Future Research	338
References	340
Acronyms and Abbreviations	380

Tables

Table A. Pediatric HSCT Indications To Be Addressed With Narrative Review	ES-5
Table B. Pediatric HSCT Indications To Be Addressed With Systematic Review	ES-7
Table 1. Pediatric HSCT Indications To Be Addressed With Narrative Review	3
Table 2. Pediatric HSCT Indications To Be Addressed With Systematic Review	5
Table 3. Elements of Evidence Grading for Key Questions	15
Table 4. Prognostic Factors in Pediatric Acute Lymphoblastic Leukemia	19
Table 5. Evidence Base for HSCT in Pediatric Leukemia.	21
Table 6. ASBMT Treatment Recommendations for Therapy of Pediatric Acute	
Lymphoblastic Leukemia	21
Table 7. Benefits and Harms After Treatment for Pediatric Leukemia	23
Table 8. Potential Risk Factors for Pediatric Acute Myelogenous Leukemia	30
Table 9. ASBMT Treatment Recommendations for Therapy of Pediatric Acute	
Myelogenous Leukemia	32
Table 10. Pediatric Lymphomas and the Evidence Base	
Table 11. Benefits and Harms After Treatment for Childhood Hodgkin's Lymphoma	40
Table 12. Benefits and Harms After Treatment for Childhood Non-Hodgkin's Lymphoma	43
Table 13. Neuroblastoma Evidence Base	47
Table 14. Benefits and Harms After Treatment for Neuroblastoma	48
Table 15. Germ-Cell Tumor Evidence Base	50
Table 16. Benefits and Harms After Treatment for Germ Cell Tumors	50
Table 17. CNS Embryonal Tumors Evidence Base	52
Table 18. Benefits and Harms After Treatment for CNS Embryonal Tumors	53
Table 19. Evidence Base for HSCT in Hemoglobinopathies	56
Table 20. Benefits and Harms After Treatment for Hemoglobinopathies	57
Table 21. Listing of Bone Marrow Failure Syndromes and Their Evidence Base	63
Table 22. Benefits and Harms After Treatment for Bone Marrow Failure Syndromes	66
Table 23. Primary Immunodeficiencies Successfully Treated With HSCT	83
Table 24. Evidence Base for HSCT in Primary Immunodeficiencies	84

Table 25. Benefits and Harms After Treatment for Primary Immunodeficiency	85
Table 26. Evidence base for HSCT in MPS I, MPS VI and MPS VII	86
Table 27. Treatment Benefits and Harms for Hurler Syndrome (MPS I), Maroteaux-Lamy	
Syndrome (MPS VI), and Sly Syndrome (MPS VII)	87
Table 28. Evidence Base for HSCT in Sphingolipidoses	95
Table 29. Treatment Benefits and Harms for Gaucher Type I, Niemann-Pick Type B,	
Krabbe Disease, and Metachromatic Leukodystrophy	96
Table 30. Evidence Base for HSCT in Glycoproteinoses	102
Table 31. Treatment Benefits and Harms for Fucosidosis and α -Mannosidosis	104
Table 32. Evidence Base for HSCT in Adrenoleukodystrophy	106
Table 33. Treatment Benefits and Harms for Adrenoleukodystrophy	108
Table 34. Evidence Base for HSCT in Osteopetrosis	110
Table 35. Treatment Benefits and Harms for Osteopetrosis	111
Table 36. Pediatric HSCT Indications To Be Addressed With Systematic Review	112
Table 37. Overall Grade of Strength of Evidence for Overall Survival and the Use	
of Single and Tandem HSCT for the Treatment of High-Risk Ewing's	
Sarcoma Family of Tumors (ESFT)	115
Table 38. Study Selection Criteria for ESFT	116
Table 39. ESFT Study Characteristics and Population	117
Table 40. ESFT Outcomes Reported	127
Table 41. Overall Survival for Treatment (Single HSCT and Tandem Auto HSCT)	
and Comparison (Conventional Chemotherapy +/- Radiation) Groups	129
Table 42. Adverse Effects for Single Auto HSCT and Comparison (Conventional	
Chemotherapy +/- Radiation) Groups	133
Table 43. Overall Grade of Strength of Evidence for Overall Survival and the Use	
of HSCT for the Treatment of High-Risk Relapsed Wilms Tumor	137
Table 44. Wilms Tumor Study Selection Criteria	137
Table 45. Wilms Tumor Study Characteristics and Population	138
Table 46. Wilms Tumor Outcomes Reported	143
Table 47. Overall Survival for Treatment (Single Auto HSCT) and Comparison	
(Conventional Chemotherapy +/- Radiation) Groups	144
Table 48. Adverse Effects for Single Auto HSCT and Comparison (Conventional	
Chemotherapy +/- Radiation) Groups	146
Table 49. Overall Grade of Strength of Evidence for Overall Survival and the Use	
of HSCT for the Treatment of High-Risk Rhabdomyosarcoma	148
Table 50. Rhabdomyosarcoma Study Selection Criteria	151
Table 51. Rhabdomyosarcoma Study Characteristics and Population	153
Table 52. Rhabdomyosarcoma Outcomes Reported.	158
Table 53. Overall Survival for Treatment (Single Auto HSCT) and Comparison	
(Conventional Chemotherapy +/- Radiation) Groups	159
Table 54. Adverse Effects for Single Auto HSCT and Comparison (Conventional	
Chemotherapy +/- Radiation) Groups	161
Table 55. Overall Grade of Strength of Evidence for Overall Survival and the Use	1 / -
of HSC1 for the Treatment of Metastatic Retinoblastoma	165
1 able 56. Retinoblastoma Study Selection Criteria Table 57. Detinoblastoma Study Selection Criteria	168
I able 5 /. Ketinoblastoma Study Characteristics and Population	170

Table 58. Retinoblastoma Outcomes Reported	173
Table 59. Overall Survival for Treatment (Single Auto HSCT) and Comparison	
(Conventional Chemotherapy +/- Radiation) Groups: Retinoblastoma	173
Table 60. Adverse Effects for Single Auto HSCT and Comparison (Conventional	
Chemotherapy +/- Radiation) Groups: Retinoblastoma	177
Table 61 Overall Grade of Strength of Evidence for Overall Survival. Neuroblastoma	180
Table 62 Study Selection Criteria: Neuroblastoma	181
Table 63 Study Characteristics and Population Neuroblastoma	182
Table 64 Outcomes Reported: Neuroblastoma	183
Table 65 Overall Survival for Treatment (Tandem HSCT) and Comparison (Single HSCT)	
Groups: Neuroblastoma	183
Table 66 Adverse Effects for Treatment (Tandem HSCT) and Comparison (Single HSCT)	
Groups: Neuroblastoma	184
Table 67 Overall Grade of Strength of Evidence for Overall Survival. Germ Cell Tumor	186
Table 68 Germ Cell Tumor Study Selection Criteria	187
Table 69 Germ Cell Tumor Study Characteristics and Population	187
Table 70 Germ Cell Tumor Outcomes Reported	188
Table 71 Overall Survival for Tandem HSCT and Comparison (Single HSCT) Groups:	
Germ Cell Tumor	189
Table 72 Adverse Effects for Tandem HSCT and Comparison (Single HSCT) Groups:	
Germ Cell Tumor	190
Table 73 Overall Grade of Strength of Evidence for Overall Survival: CNS	
Fmbryonal Tumors	192
Table 74 Study Selection Criteria: CNS Embryonal Tumors	193
Table 75. Study Characteristics and Population: CNS Embryonal Tumors	104
Table 76. Outcomes Reported: CNS Embryonal Tumors	195
Table 77 Overall Survival for Tandem HSCT and Comparison (Single HSCT) Groups:	175
CNS Embryonal Tumors	196
Table 78 Overall Survival for Single HSCT and Comparison (Conventional Care)	
Groups: CNS Embryonal Tumors	196
Table 79 Adverse Effects for Treatment (Tandem HSCT) and Comparison (Single HSCT)	
Groups: CNS Embryonal Tumors	107
Table 80 Adverse Effects for Treatment (Single HSCT) and Comparison (Conventional	
Care) Groups: CNS Embryonal Tumors	108
Table 81 Overall Grade of Strength of Evidence for Overall Survival and the Use	190
of HSCT for the Treatment of High Risk Glial Tumors	202
Table 82 Study Selection Criteria: Cliel Tumors	210
Table 82. Study Characteristics and Donulation: Clip1 Tumors	210
Table 85. Study Characteristics and Population. Ghar Fumors.	210
Table 84. Outcomes Reported: Gilai Tumors	
Table 85. Overall Survival for Single Auto HSCT and Comparison (Conventional Chamathageners) / Dediction) Crosses Click Typeses	221
Table % Adverse Effects for Single Avta USCT and Conversions (Conversions)	
Table so. Adverse Effects for Single Auto HSCT and Comparison (Conventional	220
Unemotherapy +/- Kadiation) Group: Glial Tumors	239
Table δ /. Ungoing Trials: Glial Tumors	241
Table 88. Overall Grade of Strength of Evidence for Overall Survival with the Use	244
of HSC1 for the Treatment of Inherited Metabolic Diseases with Kapid Progression	

Table 89. Overall Grade of Strength of Evidence for Stabilization of Neurocognitive	
and Neurodevelopmental Symptoms With the Use of HSCT for the Treatment	
of Inherited Metabolic Diseases With Slow Progression	246
Table 90. Overall Grade of Strength of Evidence for Overall Survival and Stabilization	
of Neurocognitive and Neurodevelopmental Symptoms With the Use of HSCT	
for the Treatment of Inherited Metabolic Diseases With Rapid Progression	
and Slow Progression Form	255
Table 91 Study Selection Criteria: Inherited Metabolic Diseases	260
Table 92 Study Characteristics and Population for Wolman Disease	261
Table 93 Study Characteristics and Population for Niemann-Pick Type A	263
Table 94 Study Characteristics and Population for Mucolipidosis II	265
Table 95. Study Characteristics and Population for Muconolysaccharidosis II	
(Hunter Disease)	268
Table 96 Study Characteristics and Population for Mucopolysaccharidosis III	
(Sanfilinno Disease)	270
Table 97 Study Characteristics and Population for Mucopolysaccharidosis IV	270
(Moraujo Syndrome)	272
Table 98 Study Characteristics and Population for Gaucher Type III	272
Table 99. Study Characteristics and Population for Aspartylolucosaminuria	274
Table 100 Study Characteristics and Population for Niemann-Pick Type C	270
Table 101. Study Characteristics and Population for Farber's Disease	277
Table 101. Study Characteristics and Population for GM, Gangliosidosis	202 284
Table 102. Study Characteristics and Population for Tay-Sachs Disease	286
Table 104. Study Characteristics and Population for Ceroid Linofucinosis	280
Table 105. Study Characteristics and Population for Sandhoff's Disease	200
Table 105. Study Characteristics and Population for Sandhoff S Disease	290
Table 100. Adverse Effects for Treatment (TISCT) in IND Fatients	
Lise of HSCT for the Treatment of Autoimmune Type I Disbetes Mellitus	207
Table 109 Study Selection Criterie: Type I Diabeles Mellitus	200
Table 100. Study Selection Chiena. Type I DM	200
Table 109. Type 1 Juvenine Diabetes Mennus Study Characteristics and Population	200
Table 111. Outcomes Reported. Type I DM	298
Table 111. Oligoling Children of Briden on for Drive Free Clinical Demission	299
Table 112. Overall Grade of Strength of Evidence for Drug-Free Clinical Remission	
and the Use of HSC1 for the Treatment of Severe, Refractory Systemic	201
Lupus Eryinematosus	
Table 113. Study Selection Uniteria: SLE	
Table 114. Systemic Lupus Erythematosus Study Characteristics and Population	
Table 115. Outcomes Reported: SLE	304
Table 116. Complete Drug-Free Remission in Patients With SLE Undergoing	204
Autologous HSCI	
Table 117. Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) Score	
Table 118. Ongoing Clinical Trials of HSCT in SLE	305
Table 119. Overall Grade of Strength of Evidence for Drug-Free Clinical Remission	
and the Use of HSCT for the Treatment of Severe, Refractory Juvenile	205
Idiopathic Arthritis.	307
Table 120. Study Selection Criteria: JIA	308

Table 121. Juvenile Idiopathic Arthritis Study Characteristics and Population	308
Table 122. Outcomes Reported: JIA	309
Table 123. Complete Drug-Free Remission in Patients With JIA Undergoing	
Autologous HSCT	309
Table 124. Overall Grade of Strength of Evidence for Drug-Free Clinical Remission	
and the Use of HSCT for the Treatment of Severe, Refractory Systemic Sclerosis	311
Table 125. Study Selection Criteria: Systemic Sclerosis	312
Table 126. Systemic Sclerosis Study Characteristics and Population	312
Table 127. Overall Grade of Strength of Evidence for Drug-Free Clinical Remission	
and the Use of HSCT for the Treatment of Severe, Refractory Malignant	
Multiple Sclerosis	315
Table 128. Study Selection Criteria: MS	316
Table 129. Multiple Sclerosis Study Characteristics and Population	316
Table 130. Overall Grade of Strength of Evidence for Drug-Free Clinical Remission	
and the Use of HSCT for the Treatment of Severe, Refractory Crohn's Disease	319
Table 131. Crohn's Disease Study Selection Criteria	320
Table 132. Crohn's Disease Study Characteristics and Population	320
Table 133. Overall Grade of Strength of Evidence for Drug-Free Clinical Remission	
and the Use of HSCT for the Treatment of Severe, Refractory Myasthenia Gravis,	
Overlap Syndrome, or Diffuse Calcinosis Cutis	324
Table 134. Study Selection Criteria: MG, OS, CC	325
Table 135. Miscellaneous Nonhematologic Autoimmune Disease Study Characteristics	
and Population	326
Table 136. Overall Grade of Strength of Evidence for Drug-Free Clinical Remission	
and the Use of HSCT for the Treatment of Severe, Refractory Evans Syndrome,	
Autoimmune Hemolytic Anemia, or Autoimmune Thrombocytopenia	330
Table 137. Study Selection Criteria: Refractory Evans Syndrome, Autoimmune Hemolytic	
Anemia, or Autoimmune Thrombocytopenia	331
Table 138. Evans Syndrome, Autoimmune Hemolytic Anemia, and Autoimmune	
Thrombocytopenia Study Characteristics and Population	332

Figures

Figure A. Analytic Framework for HSCT for Pediatric Malignant Solid Tumors	ES-2
Figure B. Analytic Framework for HSCT for Pediatric Inherited Metabolic Diseases	ES-3
Figure C. Analytic Framework for HSCT for Pediatric Autoimmune Diseases	ES-3
Figure D. PRISMA Diagram of Articles Included in the Systematic Review	ES-11
Figure 1. Analytic Framework for HSCT for Pediatric Malignant Solid Tumors	8
Figure 2. Analytic Framework for HSCT for Pediatric Inherited Metabolic Diseases	9
Figure 3. Analytic Framework for HSCT for Pediatric Autoimmune Diseases	9
Figure 4. PRISMA Diagram of Articles Included in the Systematic Review	13

Appendixes

- Appendix A. Search Strategies
- Appendix B. Excluded Studies
- Appendix C. Systematic Review Data Abstraction
- Appendix D. Disease-Free/Event-Free Survival
- Appendix E. Neurodevelopmental and Neurocognitive Outcomes
- Appendix F. C-Peptide and HbA1c Outcomes

Executive Summary

Background

Hematopoietic stem-cell transplantation (HSCT) refers to a procedure in which hematopoietic progenitor cells, including repopulating stem cells, are infused to restore bone marrow function in patients.^{1,2,3} HSCT is categorized by the source of the stem cells, with its role in pediatric diseases dependent in part on the indication for which it is being used.⁴ Autologous transplants involve harvesting the patient's own blood stem cells and then returning them, typically after the patient has received doses of chemotherapy that are myeloablative.^{1,2} Allogeneic HSCT uses stem cells from a donor who is either matched or unmatched on human leukocyte antigen (HLA) and either related or unrelated; in malignant diseases, it exploits a graft-versus-tumor effect.^{5,6}

In the pediatric population, HSCT is used to treat a wide variety of diseases, both malignant and nonmalignant.⁷ For many of these diseases, HSCT is a well-established treatment. For example, the literature on the use of HSCT in hematologic malignancies is robust, including randomized controlled trials that date back 20 years, and its practice is supported by evidencebased guidelines. For many less common diseases—for example, the primary immunodeficiencies and hemoglobinopathies—although the evidence consists of case series and case reports, it is sufficient to demonstrate improved outcomes, supporting use of HSCT.

The success of treating many of the pediatric diseases with HSCT has resulted in an increased number of long-term survivors. As improvements in survival have been achieved, there is greater concern about long-term effects and how adverse effects (e.g., graft-vs.-host disease, opportunistic infections, future infertility, developmental delay, and secondary malignancies) might be mitigated.^{7,8,9,10} The Key Questions for this review compared benefits and harms of HSCT and conventional therapy for pediatric diseases.

Objectives

Key Questions addressed in this report are split into three groups of two questions each. They pertain to malignant solid tumors, inherited metabolic diseases, and autoimmune diseases.

- Key Question 1. For pediatric patients with malignant solid tumors, what is the comparative effectiveness of HSCT and conventional chemotherapy regarding overall survival, long-term consequences of HSCT, and quality of life?
- Key Question 2. For pediatric patients with malignant solid tumors, what are the comparative harms of HSCT and conventional chemotherapy regarding adverse effects of treatment, long-term consequences of HSCT, and impaired quality of life?
- Key Question 3. For pediatric patients with inherited metabolic diseases, what is the comparative effectiveness of HSCT, enzyme-replacement therapy (ERT), and substrate reduction with iminosugars regarding overall survival, cure, long-term consequences of HSCT, and quality of life?
- Key Question 4. For pediatric patients with inherited metabolic diseases, what are the comparative harms of HSCT, ERT, and substrate reduction with iminosugars regarding adverse effects of treatment, long-term consequences of HSCT, and impaired quality of life?

- Key Question 5. For pediatric patients with autoimmune diseases, what is the comparative effectiveness of HSCT, immunosuppressants, targeted biologic therapies, and low-dose chemotherapy regarding overall survival, cure, and remission?
- Key Question 6. For pediatric patients with autoimmune diseases, what are the comparative harms of HSCT, immunosuppressants, targeted biologic therapies, and low-dose chemotherapy regarding adverse effects of treatment, long-term consequences of HSCT, and impaired quality of life?

Analytic Framework

Analytic frameworks are detailed in Figures A, B, and C.

HSCT = hematopoietic stem-cell transplantation; KQ = Key Question; QOL = quality of life

Figure B. Analytic framework for HSCT for pediatric inherited metabolic diseases

GVHD = graft-versus-host disease; HSCT = hematopoietic stem-cell transplantation; KQ = Key Question; QOL = quality of life

Figure C. Analytic framework for HSCT for pediatric autoimmune diseases

GVHD = graft-versus-host disease; HSCT = hematopoietic stem-cell transplantation; KQ = Key Question; QOL = quality of life

Methods

Topic Refinement

This report comprises a set of narrative reviews and systematic reviews that were defined during the topic refinement phase of the project. Topic refinement also outlined the frameworks and PICOTS (patients, interventions, comparator, outcome, timing, setting) that were posted for public comments and incorporated into the final version. Following completion of the topic refinement phase, a Technical Expert Panel (TEP) was formed. The TEP included original Key Informant (KI) panel members and clinical experts not previously involved. The TEP provided consultation on the development of the protocol and evidence tables for the review. In particular, the TEP provided advice on appropriate clinical outcome data to compile for both benefits and harms. Ad hoc clinical questions were also addressed to the TEP.

Narrative Reviews

The narrative review approach to the conditions presented in Table A was based on the recognition that there exists a substantial body of evidence from 20 years or more of transplantation research and experience that has been codified into published guidelines and reviews. Thus, systematic review of the evidence for these diseases would not be expected to offer new insights or information. In contrast, the Evidence-based Practice Center (EPC) recognized that there were a number of diseases for which evidence of benefits and harms was less clear or for which clinical practice was less established, so that systematic review of the literature would be more likely to provide new insight to inform the field (Table B).

The final categorization of indications for the narrative reviews was determined in an iterative process. Information sources for the narrative reviews were not identified by a systematic search of the literature. Rather, the EPC relied on recently published reviews of pediatric transplantation studies and publicly available sources, such as the National Guidelines Clearinghouse and the National Cancer Institute Physicians Data Query (PDQ) Web site, to develop an initial list of diseases for discussion with the KI panel. The EPC subsequently reexamined the lists and compared them with existing evidence in the context of the KI discussions. A final list of indications for narrative reviews compiled by the EPC was posted for public comment.

Neuroblastoma, germ cell tumors, and central nervous system embryonal tumors are covered in both narrative and systematic reviews. They are distinguished in each by the specific indication and the type of transplant procedure, as shown in Tables A and B.

Туре	Disease	Indication(s)	Transplant Type
МН	Acute lymphoblastic leukemia (ALL)	In first (high-risk patients), second, or subsequent complete remission (CR)	Allo
МН	Acute myelogenous leukemia (AML)	In first, second, or subsequent CR; early relapse; induction failure	Allo
MH	Juvenile myelomonocytic leukemia (JMML)	As upfront therapy	Allo
МН	Myelodysplastic syndrome (MDS)	As upfront therapy for primary or secondary MDS	Allo
МН	Chronic myelogenous leukemia (CML)	Chronic phase or refractory to tyrosine kinase inhibitor (TKI)	Allo
МН	Non-Hodgkin's lymphoma (NHL)/ Hodgkin's lymphoma (HL)	Induction failure; first, second, third CR/partial remission	Auto/allo
		Consolidate high-risk (initial)	Auto
MNH	Neuroblastoma (NB)	Relapsed/refractory	Auto (allo in selected incidences)
MNH	Germ cell tumor (GCT)	Relapsed	Auto (allo if fail auto and in selected incidences)
MNH	Central nervous system embryonal tumors	Relapsed or residual	Auto
NM	Hemoglobinopathies	Variable	Allo
NM	Bone marrow failure syndromes (BMF)	Variable	Allo

 Table A. Pediatric HSCT indications to be addressed with narrative review

Table A. Pediatric HSCT indications to be addressed with narrative review (continued)

Туре	Disease	Indication(s)	Transplant Type
NM	Inherited metabolic diseases, including: <i>Mucopolysaccharidosis (MPS)</i> MPS I (Hurler), MPS VI (Maroteaux-Lamy), MPS VII (Sly syndrome) <i>Sphingolipidosis</i> Gaucher I, Niemann-Pick disease B, globoid leukodystrophy, metachromatic leukodystrophy <i>Glycoproteinosis</i> Fucosidosis, alpha-mannosidosis <i>Peroxisomal storage disorders</i> Adrenoleukodystrophy	Variable	Allo
NM	Osteopetrosis	Severe	Allo

Table A. Pediatric HSCT indications to be addressed with narrative review (continue

allo = allogeneic; auto = autologous; CR = complete remission; HSCT = hematopoietic stem-cell transplantation; MDS = myelodysplastic syndrome; MH = malignant hematopoietic; MNH = malignant, nonhematopoietic;

MPS = mucopolysaccharidosis; NM = nonmalignant

Systematic Reviews

Table B shows the indications that were systematically reviewed. Neuroblastoma, germ cell tumors, and central nervous system embryonal tumors are covered in both narrative and systematic reviews. They are distinguished in each by the specific indication and the type of transplant procedure, as shown in Tables A and B.

Туре	Disease	Indication(s)	Transplant Type	Comparator
MNH	Ewing sarcoma family of tumors (ESFT)	Consolidate high risk (initial)	Auto	Conventional chemotherapy
		Relapsed/refractory	Auto	Conventional chemotherapy
			Tandem auto auto	Single auto
MNH	Wilms	Consolidate high risk	Auto	Conventional chemotherapy
		Relapsed/refractory	Auto	Conventional chemotherapy
			Tandem auto auto	Single auto
MNH	Rhabdomyosarcoma (RMS)	High-risk disease	Auto	Conventional chemotherapy
			Tandem auto auto	Single auto
MNH	Retinoblastoma	Extraocular spread	Auto	Conventional chemotherapy
			Tandem auto auto	Single auto
MNH	Neuroblastoma (NB)	Consolidate high risk (initial) Relapsed/refractory	Tandem auto auto	Single auto

Table B. Pediatric HSCT indications to be addressed with systematic review

Туре	Disease	Indication(s)	Transplant Type	Comparator
MNH	Germ cell tumor (GCT)	Relapsed	Tandem auto auto	Single auto
MNH	Central nervous system embryonal	Initial therapy	Auto	Conventional chemotherapy
	tumors		Tandem auto auto	Single auto
	Control popyous system gliel tymera	Consolidate high risk	Auto	Conventional chemotherapy
		Relapsed/refractory	Auto	Conventional chemotherapy
	Inherited metabolic diseases:			
NM	Mucopolysaccharidosis (MPS) MPS II (Hunter's), MPS III (Sanfilippo), MPS IV (Morquio) Sphingolipidosis Fabry's, Farber's, Gaucher's II-III.		Allo	Enzyme-replacement therapy, substrate reduction with iminosugars and chaperones
	GM ₁ gangliosidosis, Niemann-Pick disease A, Tay-Sachs disease, Sandhoff's disease			
	<i>Glycoproteinosis</i> Aspartylglucosaminuria, beta- mannosidosis, mucolipidosis III and IV			
	<i>Other lipidoses</i> Niemann-Pick disease C, Wolman disease, ceroid lipofuscinosis	Variable		
	<i>Glycogen storage</i> GSD type II			
	<i>Multiple enzyme deficiency</i> Galactosialidosis, mucolipidosis type II			
	<i>Lysosomal transport defects</i> Cystinosis, sialic acid storage disease, Salla disease			
	Peroxisomal storage disorders Adrenomyeloneuropathy			
NM	Autoimmune, including juvenile rheumatoid arthritis (JRA), systemic lupus erythematosus (SLE), scleroderma, immune cytopenias, Crohn's	Upfront therapy for severe/ refractory or salvage	Auto/allo	Immunosuppressants, targeted biologic therapies and/or low-dose chemotherapy
NM	Autoimmune type 1 diabetes mellitus (DM)	Variable	Auto	Immunosuppressants, targeted biologic therapies and/or low-dose chemotherapy, conventional management (i.e., insulin injections)

Table B Pediatric HSCT indications to be addressed with s	wetomatic roviow	(continued)
Table D. I ediatric ribor mulcations to be addressed with s	by stematic review	continueu)

allo = allogeneic; auto = autologous; HSCT = hematopoietic stem-cell transplantation; MNH = malignant, nonhematopoietic; MPS = mucopolysaccharidosis; NM = nonmalignant

Systematic Review Data Sources and Study Selection

Electronic databases searched were MEDLINE[®], Embase[®], and the Cochrane Controlled Trials Register. Databases were initially searched without restriction on date, using the search strategy shown in Appendix A of the full report. However, during the topic refinement phase of this project, the KIs strongly recommended limiting study selection to the past 15 years to ensure that we identified evidence that is comparable in terms of therapeutic regimens and management protocols. Thus, we reviewed the literature from January 1995 up to August 17, 2011, the latter date just prior to delivery of the final report.

Abstract screening and study selection were performed by a single reviewer who was assigned to a specific section. Included studies reported on pediatric patients (age ≤ 21 years) who had a relevant disease and were treated with HSCT or a comparator of interest using a contemporary regimen; to be included, the study also had to report on an outcome of interest. For inherited metabolic diseases, studies reporting outcomes on the disease natural history were included as comparators if they reported on an outcome of interest.

Systematic Review Data Extraction and Quality Assessment

Major elements for data abstraction were patient characteristics (i.e., age, sex, disease stage), treatment characteristics (i.e., chemotherapy vs. chemoradiotherapy, immunosuppressive therapy, and supportive care), and outcomes and details of any data analysis.

Evidence consisted largely of case series and case reports; therefore, we did not attempt to assess the quality of individual studies. According to an Institute of Medicine report,¹¹ it is well recognized that a common challenge in the study of rare diseases is the preponderance of small uncontrolled studies. Therefore, because studies tended to be homogeneous in design, quality assessment would be unlikely to discriminate between higher and lesser quality studies.

Data were abstracted by a single reviewer and fact checked by another reviewer. If there were disagreements they were resolved through discussion among the review team.

Systematic Review Data Synthesis and Analysis

Data synthesis was qualitative. We attempted to identify subgroups based on prognostic factors such as tumor stage or location in solid tumors, or disease severity or rate of progression in the inborn metabolic disorders, to see if these subgroups showed patterns of treatment success or failure. Quantitative pooling was not attempted. Where possible we calculated confidence intervals for results and reported ranges of results for studies that addressed the same population and treatment.

The strength of the body of evidence for each indication was assessed according to the process specified in the Methods Reference Guide for Effectiveness and Comparative Effectiveness Reviews,¹² developed by the EPC Program of the Agency for Healthcare Research and Quality (AHRQ) This is an iterative, qualitative, consensus-driven process among EPC team members familiar with the summarized literature, using the four required domains specified in the Methods Guide: risk of bias, consistency, directness, and precision. There were no head-to-head comparative studies for most diseases; in those situations, directness was based on the outcome (e.g., overall survival or other clinically important health outcomes) rather than on the comparison. For small series or a compilation of case reports in which the prognosis without HSCT is uniformly fatal (e.g., Wolman's disease), the known natural history was considered an indirect comparator. An optional domain, strength of association (SOA, magnitude of effect) was thus ascribed to the body of evidence when there was an apparent benefit or harm, increasing the

overall strength beyond what normally might be considered appropriate for such evidence. SOA was deemed not applicable for diseases where there was no clear evidence of benefit or harm with HSCT versus comparators, or if results (e.g., overall survival rates) of individual studies within a body of literature were inconsistent or conflicted. No quantitative scoring method was applied.

Systematic Review Results

Figure D shows a PRISMA (Preferred Reporting Items of Systematic reviews and Meta-Analyses) diagram of the studies included in the systematic review. A list of excluded references with reasons for exclusion is available in Appendix B of the full report.

Disease	Total INCL	Total EXCL	(Hand Searched INCL)	(Hand Searched EXCL)	Totals (Total INCL & Total EXCL)
Autoimmune Disease	30	293	0	0	323
Embryonal Tumors	12	54	2	4	66
ESFT	36	88	0	0	124
GCT	4	7	2	7	11
Glial Tumors	38	90	2	1	128
IMD	56	114	0	0	170
Neuroblastoma	9	159	0	0	168
Retinoblastoma	20	21	0	0	41
Rhabdomyosarcoma	26	35	3	0	61
Wilm's Tumor	20	17	0	0	37
Other	0	105	0	0	105
Totals	251	983	9	12	1,234

ESFT = Ewing sarcoma family of tumors; GCT = germ cell tumor; IMD = inherited metabolic diseases; PRISMA = Preferred Reporting Items of Systematic reviews and Meta-Analyses

The strength of the body of evidence for each indication was assessed. For the diseases systematically reviewed here, the strength of evidence for specific indications (see below) was high in 2 instances, moderate or low in 19, and insufficient for the majority (n = 39) of indications and outcomes addressed. The SOA domain provided justification for increasing the overall GRADE (Grading of Recommendations Assessment, Development and Evaluation) evidence strength ratings for several diseases, despite the absence of a robust body of literature. SOA was not deemed applicable for settings where evidence was inconsistent.

Malignant Solid Tumors (Key Questions 1 and 2)

Evidence suggesting benefit of HSCT compared with conventional therapy:

- Low-strength evidence on overall survival suggests a benefit with single HSCT compared with conventional therapy for *high-risk recurrent or progressive anaplastic astrocytoma*. Evidence suggesting harm of HSCT compared with conventional therapy:
- Low-strength evidence on overall survival suggests harm due to higher treatment-related mortality with single HSCT compared with conventional chemotherapy for *nonanaplastic mixed or unspecified ependymoma*.

Evidence suggesting no benefit of HSCT compared with conventional therapy:

- Moderate-strength evidence on overall survival suggests no benefit with single HSCT compared with conventional therapy for *metastatic rhabdomyosarcoma*.
- Low-strength evidence on overall survival suggests no benefit with single HSCT compared with conventional therapy for *extraocular retinoblastoma with CNS* (central nervous system) *involvement*, *high-risk Ewing's sarcoma family of tumors*, and *high-risk relapsed Wilm's tumor*.

Insufficient evidence:

- The body of evidence on overall survival with tandem HSCT compared with single HSCT is insufficient to draw conclusions for *high-risk Ewing's sarcoma family of tumors, neuroblastoma, CNS embryonal tumors,* and *pediatric germ cell tumors.*
- The body of evidence on overall survival with single HSCT compared with conventional therapy is insufficient to draw conclusions for *CNS embryonal tumors, high-risk rhabdomyosarcoma of mixed stages, congenital alveolar rhabdomyosarcoma, cranial parameningeal rhabdomyosarcoma with metastasis, allogeneic transplantation for metastatic rhabdomyosarcoma, extraocular retinoblastoma with no CNS involvement, trilateral retinoblastoma, and six types of glial tumors (newly diagnosed anaplastic astrocytoma, newly diagnosed glioblastoma multiforme, anaplastic ependymoma, choroid plexus carcinoma, recurrent/progressive glioblastoma multiforme, and nonanaplastic, mixed, or unspecified ependymoma).*

Nonmalignant Diseases: Inherited Metabolic Diseases (Key Questions 3 and 4)

The inherited metabolic diseases were split into three categories for this review. Rapidly progressive disease was defined as progression to death within 10 years; the outcome of interest is overall survival. Slowly progressive disease was defined as progression to death of 10 years or greater; the outcomes of interest are neurocognitive and neurodevelopmental outcomes. For diseases that have both rapidly and slowly progressive forms of disease, outcomes of interest are

overall survival for rapidly progressive forms and neurocognitive and neurodevelopmental outcomes for slowly progressive forms.

Rapidly Progressive Diseases

Evidence suggesting benefit of HSCT compared with conventional therapy:

• High-strength evidence on overall survival suggests a benefit with single HSCT compared with conventional management for *Wolman's disease*.

Evidence suggesting no benefit of HSCT compared with conventional therapy:

• Low-strength evidence on overall survival suggests no benefit with single HSCT compared with symptom management or disease natural history for *Niemann-Pick Type A*.

Insufficient evidence:

• The body of evidence on overall survival with single HSCT compared with symptom management is insufficient to draw conclusions for *mucolipidosis II* (I-cell disease), *Gaucher disease type II, cystinosis,* and *infantile free sialic acid disease.*

Slowly Progressive Diseases

Evidence suggesting benefit of HSCT compared with conventional therapy:

- Low-strength evidence on neurodevelopmental outcomes suggests a benefit with single HSCT compared with enzyme replacement therapy for *attenuated and severe forms of MPS* (mucopolysaccharidosis) *II* (Hunter's disease).
- Low-strength evidence on neurocognitive outcomes suggests a benefit with single HSCT compared with enzyme replacement therapy for *attenuated form of MPS II* (Hunter's disease).

Evidence suggesting no benefit of HSCT compared with conventional therapy:

- Low-strength evidence on neurocognitive outcomes suggests no benefit with single HSCT compared with enzyme replacement therapy for *Gaucher disease type III*.
- Low-strength evidence on neurocognitive outcomes suggests no benefit with single HSCT compared with enzyme replacement therapy for the *severe form of MPS II* (Hunter's disease).
- Low-strength evidence on neurocognitive or neurodevelopmental outcomes suggests no benefit with single HSCT compared with symptom management, substrate reduction therapy, or disease natural history for *MPS III* (Sanfilippo).

Insufficient evidence:

 The body of evidence on neurocognitive or neurodevelopmental outcomes with single HSCT compared with symptom management and/or disease natural history is insufficient to draw conclusions for *Niemann-Pick type C*, *MPS IV* (Morquio syndrome), *aspartylglucosaminuria*, *Fabry's disease*, β-mannosidosis, mucolipidosis III, mucolipidosis IV, glycogen storage disease type II (Pompe disease), *Salla disease*, and *adrenomyeloneuropathy*.

Diseases With Both Rapidly and Slowly Progressive Forms

Evidence suggesting benefit of HSCT compared with conventional therapy:

• High-strength evidence on number of subcutaneous nodules and number of joints with limited range of motion suggests a benefit with single HSCT compared with symptom management or disease natural history for *Farber's disease type 2/3*.

Evidence suggesting no benefit of HSCT compared with conventional therapy:

• Low-strength evidence on neurocognitive outcomes suggests no benefit with single HSCT compared with symptom management or disease natural history for *infantile ceroid lipofuscinosis*.

Insufficient evidence:

• The body of evidence on overall survival and/or neurocognitive and neurodevelopmental outcomes with single HSCT compared with symptom management and/or disease natural history is insufficient to draw conclusions for *galactosialidosis* (type unspecified), *Sandhoff disease* (type unspecified), *Farber's disease type I, infantile GM*₁ gangliosidosis, juvenile GM₁ gangliosidosis, infantile Tay-Sachs, juvenile Tay-Sachs, and juvenile ceroid lipofuscinosis.

Autoimmune Diseases (Key Questions 5 and 6)

The main consideration in this systematic review was the comparative balance of long-term benefits and harms of HSCT. With the exception of newly diagnosed type I juvenile diabetes, children in the studies reviewed had severe, typically disabling disease, refractory to a wide variety of standard therapies. Thus, the disease natural history in those cases assumed the role of comparator.

Insufficient evidence:

- The overall body of evidence is insufficient to draw conclusions about the comparative benefits (e.g., increased overall survival) or harms (e.g., treatment-related mortality, secondary malignancies) of single autologous or allogeneic HSCT versus conventional therapy or disease natural history in patients with *newly diagnosed type 1 juvenile diabetes mellitus* or those with severe, refractory, poor-prognosis autoimmune diseases, including *systemic lupus erythematosus, juvenile idiopathic arthritis, systemic sclerosis, malignant multiple sclerosis, Crohn's disease, myasthenia gravis, overlap syndrome, diffuse cutaneous cutis, Evans syndrome, autoimmune hemolytic anemia, and autoimmune cytopenia.*
- Although the overall body of evidence is insufficient to come to conclusions about the relative balance of benefits (e.g., increased overall survival) or harms (e.g., treatment-related mortality, secondary malignancies), moderate-strength evidence suggests that extended periods of drug-free clinical remission can be achieved in some cases with single autologous HSCT for patients with *newly diagnosed type I juvenile diabetes* and patients with severe refractory *juvenile idiopathic arthritis, systemic lupus erythematosus, systemic sclerosis*, and *Crohn's disease*.

Discussion

This systematic review of HSCT in the pediatric population addresses indications for which there is uncertainty or evolving evidence, often consisting of uncontrolled single-arm studies and case reports, although for some solid tumors there were substantial numbers of patients reported. Randomized controlled trials were rare for any of the indications included in this systematic review. HSCT is usually reserved for patients or subgroups of patients who have diseases that have very poor prognosis and often are refractory to the best available treatment.

The strength of the body of evidence for each indication was assessed according to the principles described in Grading the Strength of a Body of Evidence When Comparing Medical Interventions¹³ in the Methods Reference Guide for Effectiveness and Comparative Effectiveness Reviews produced by AHRQ. The four required domains—risk of bias, consistency, directness, and precision-were considered for all indications. An optional domain, strength of association (magnitude of effect), was used in this process where a large magnitude of effect was particularly evident. This is exemplified by Wolman's disease, a very rare inherited metabolic disorder, where without treatment there is uniformly certain mortality in infancy, so that even very small case examples of survival or cure suggest a large effect of the intervention under consideration. Risk of bias is presumed to be high in a body of evidence comprising small numbers of case reports and series, thus reducing the strength of evidence. However, an obvious strength of association (magnitude of effect)-even if only based on case reports and case seriesincreases our confidence that the intervention can be effective, thereby permitting assignment of strength greater than "insufficient." This does not imply that the intervention will succeed in all cases, but that the effects observed can be attributed to the intervention despite the absence of controlled data.

For inherited metabolic diseases, controlled trials with sufficient followup are needed to evaluate the long-term balance of benefit and harms associated with HSCT. Some of these diseases have a homogeneous and dismal natural history. For example, the implications of transplantation for a rapidly progressing lysosomal storage disorder such as Wolman's syndrome are clear; this is a choice between certain death and potential survival, albeit with a risk of adverse effects associated with transplant.

In contrast, type I autoimmune juvenile diabetes can be managed long term satisfactorily, at relatively low risk, in a large proportion of children with intensive insulin therapy (IIT) and lifestyle modifications. The risk-benefit ratio for HSCT compared with IIT must take into account contextual factors, including potential long-term benefit (cure) and harms, particularly those secondary to cytotoxic chemotherapy. The decision to apply a high-risk procedure such as HSCT to this population is not clear cut. For most conditions addressed in this systematic review, evidence is insufficient to draw conclusions as to the relative risk-benefit ratio of HSCT versus other management approaches.

For solid tumors, HSCT studies focused on a single disease and collected detailed information on prognostic factors that may allow for more refined stratification of high-risk categories of patients. A validated prognostic classification would reduce uncertainty in the interpretation of study results.

Overall, the results of this review are applicable primarily to the specific conditions that were evaluated among pediatric patients. We did not address the question of whether evidence from study of HSCT in adults is applicable to pediatric patients.

Explanation of Terms

Hematopoietic stem-cell transplantation (HSCT) refers to a procedure in which hematopoietic stem cells are infused to restore bone marrow function in patients. It is categorized by the source of the stem cells.

Autologous transplants involve returning the patient's own stem cells, typically after the patient has received doses of chemotherapy that are myeloablative or, for autoimmune disorders, lymphoablative.

Allogeneic HSCT uses stem cells from an HLA-matched donor, either related or unrelated. In malignant diseases, it exploits a graft-versus-tumor effect. Myeloablative or reduced-intensity (nonmyeloablative) conditioning regimens may be used.

Pediatric in this document refers to patients aged birth through 21 years. While the upper age limit varies, this definition is consistent with the definition found in several sources.^{14,15,16}

References

- 1. Devetten M, Armitage JO. Hematopoietic cell transplantation: progress and obstacles. Ann Oncol. 2007 Sep;18(9):1450-6.
- 2. Shimoni A, Nagler A. Non-myeloablative stem-cell transplantation in the treatment of malignant and non-malignant disorders. Isr Med Assoc J. 2002 Apr;4(4):272-9.
- Urbano-Ispizua A, Schmitz N, de Witte T, et al. Allogeneic and autologous transplantation for haematological diseases, solid tumours and immune disorders: definitions and current practice in Europe. Bone Marrow Transplant. 2002 Apr;29(8):639-46.
- 4. Pelus LM. Peripheral blood stem cell mobilization: new regimens, new cells, where do we stand. Curr Opin Hematol. 2008 Jul;15(4):285-92.
- 5. Barrett AJ, Savani BN. Stem cell transplantation with reduced-intensity conditioning regimens: a review of ten years experience with new transplant concepts and new therapeutic agents. Leukemia. 2006 Oct;20(10):1661-72.
- Sandmaier BM, Mackinnon S, Childs RW. Reduced intensity conditioning for allogeneic hematopoietic cell transplantation: current perspectives. Biol Blood Marrow Transplant. 2007 Jan;13

(1 Suppl 1):87-97.

- Barfield RC, Kasow KA, Hale GA. Advances in pediatric hematopoietic stem cell transplantation. Cancer Biol Ther. 2008 Oct;7(10):1533-9.
- Eiser C. Practitioner review: long-term consequences of childhood cancer. J Child Psychol Psychiatry. 1998 Jul;39(5):621-33.

- 9. Locatelli F, Giorgiani G, Di-Cesare-Merlone A, et al. The changing role of stem cell transplantation in childhood. Bone Marrow Transplant. 2008 Jun;41(Suppl 2):S3-7.
- 10. Reulen RC, Winter DL, Frobisher C, et al. Long-term cause-specific mortality among survivors of childhood cancer. JAMA. 2010 Jul 14;304(2):172-9.
- Field MJ, Boat TF, eds. Rare Diseases and Orphan Products: Accelerating Research and Development. Washington: The National Academies Press; 2010. http://books.nap.edu/openbook.php?record_i d=12953.
- 12. Agency for Healthcare Research and Quality. Methods Reference Guide for Effectiveness and Comparative Effectiveness Reviews. Rockville, MD. www.effectivehealthcare.ahrq.gov/index.cf m/search-for-guides-reviews-andreports/?productid=318pageaction=displayp roduct.
- Owens DK, Lohr KN, Atkins D, et al. Grading the strength of a body of evidence when comparing medical interventions. In: Agency for Healthcare Research and Quality. Methods Guide for Effectiveness and Comparative Effectiveness Reviews [posted July 2009]. Rockville, MD. www.effectivehealthcare.ahrq.gov/index.cf m/search-for-guides-reviews-andreports/?pageaction=displayproduct&produc tid=318.
- Behrman RE, Kliegman RM, Nelson WE. Nelson Textbook of Pediatrics. 15th ed., Philadelphia: Saunders; 1996.
- Rudolph CD. Rudolph's Pediatrics. 21st ed. New York: McGraw-Hill; 2003.
- Avery MD, First LR. Pediatric Medicine. 2nd ed. Baltimore: Williams & Wilkins; 1994.

Introduction

Background

Hematopoietic stem-cell transplantation (HSCT) involves the infusion of pluripotent hematopoietic progenitor cells to an individual in the course of treatment of a variety of conditions, including certain malignancies, autoimmune diseases, anemias, immunodeficiencies and inborn metabolic disease.¹⁻³ While the term HSCT is used throughout this report, it is important to note that graft preparations actually contain a mixture of hematopoietic progenitor cells at different stages of maturity, including cells with self-renewal capability (stem cells).⁴

Hematopoietic progenitor cells arise in the bone marrow. These cells may be isolated from marrow that is aspirated from long bones or the pelvis; alternatively, they can be obtained from the blood by apheresis, and are termed peripheral blood stem cells (PBSC). The proportion of PBSCs circulating in the blood is normally very low, but can be significantly increased by the administration of cyclophosphamide, growth factors such as G-CSF, antibodies (e.g., anti-VLA-4), polyanions (e.g., fucoidan), chemokines (e.g., GRO β), and some signaling pathway inhibitors (e.g., AMD3100).⁴ Target yields of PBSCs sufficient for transplantation (i.e., more than 2 x 10⁶ CD34+ cells/kg) are usually obtained with one to three aphereses, although this may vary in patients with different malignancies or other conditions (e.g., Fanconi's anemia). PBSCs generally result in faster hematopoietic reconstitution than progenitor cell concentrates isolated from aspirated bone marrow, and are the preferred preparation for autologous transplantation in modern clinical practice.⁴

Two fundamentally different types of HSCT are in clinical use, depending on the indication and the patient.^{1, 2} The first, autologous HSCT, involves infusion of hematopoietic progenitor cells obtained from the patient, with the sole intent to restore hematopoietic function following the administration of bone marrow ablative doses of cytotoxic agents. The effectiveness of autologous HSCT is derived entirely from the high-dose cytotoxic conditioning regimen, particularly for treatment of aggressive but chemosensitive malignancies, such as some Hodgkin's and non-Hodgkin's lymphomas. Tandem autologous HSCT refers to a planned treatment that involves administration of two cycles of myeloablative therapy, each followed by infusion of autologous HSCT.

The second type of HSCT, allogeneic HSCT, refers to the infusion of hematopoietic progenitor cells obtained from a donor, but has two purposes. It recreates a new immunohematopoietic system in patients who receive marrow ablative doses of cytotoxic agents. In addition, the nonself allogeneic immune effector cells contained in a donor stem cell preparation exert a therapeutic graft-versus-malignancy (GVM) effect, and in the case of autoimmune diseases, a possible graft-versus-autoimmune disease effect.

Allogeneic HSCT may involve the use of a fully marrow ablative, high-dose conditioning regimen, with accompanying tumor cytoreduction, or a nonmyeloablative regimen, that is referred to as reduced-intensity conditioning, with clinical benefit primarily secondary to the GVM effect.^{5, 6} Reduced-intensity conditioning regimens have been designed to extend the potential benefits of allogeneic HSCT to patients who for reasons of age, disease, or underlying comorbidities, would not be considered candidates for a high-dose, myeloablative procedure. In essence, autologous HSCT is a lifesaving rescue procedure to restore bone marrow function, whereas allogeneic HSCT may be both a rescue and therapeutic procedure.

Umbilical cord blood (UCB) also is a source of hematopoietic stem cells for transplantation.¹ UCB is technically an allogeneic source of hematopoietic progenitor cells; it is hypothesized, however, that cord blood cells are more immunologically naïve than bone-marrow-derived progenitor cells. As a consequence, the incidence of acute and chronic graft-versus-host disease (GVHD) is lower with the use of UCB transplantation than with bone marrow-derived cell preparations. Human leukocyte antigen (HLA) matching requirements are thus less stringent than with marrow-derived progenitor cell preparations. However, the total number of progenitor cells that can be obtained from a single umbilical cord is relatively low, which has hampered the application of UCB transplantation in adults, even though outcomes are similar to those achieved with matched unrelated bone-marrow-derived cell preparations.¹

HSCT of any type is associated with a number of adverse events, regardless of the conditioning regimen and type of transplant. Acute and chronic GVHD can be highly problematic in patients who undergo an allogeneic HSCT, and represent the major limitation to use of this procedure in older or otherwise debilitated patients.⁵ Short term (i.e., days 0-100 post-transplant) complications of HSCT of either type include mucositis, hemorrhage, infections (e.g., bacterial, fungal, viral), veno-occlusive disease of the liver, and pulmonary complications. Long-term complications include infertility, impaired growth and cognitive development, and secondary malignancies. The long-term complications assume greater importance in pediatric patients than in older recipients, in particular as post-HSCT survival rates have increased and treatment-related mortality has decreased with improved life support and management.⁷⁻¹⁰ Additional background information is presented in the discussion of each condition.

Scope and Key Questions

This comparative effectiveness review consists of two major sections, which were determined through the Agency for Healthcare Research and Quality (AHRQ) topic refinement process with input from Key Informants and AHRQ personnel (see Methods chapter). The first section comprises a set of narrative reviews on the use of HSCT in pediatric malignant and nonmalignant diseases for which HSCT is considered a well-established treatment option. The second section contains a set of systematic reviews of the use of HSCT in malignant and nonmalignant diseases, including solid tumors, inherited metabolic diseases, and autoimmune diseases. The indications systematically reviewed were those for which the therapeutic role of HSCT has not been established by clinical study. Specific settings are outlined in the Methods chapter. For pediatric malignancies, key outcomes of interest included overall survival, treatment-related mortality, and other severe adverse events.

For the inherited metabolic diseases, outcomes of interest were overall survival, neurocognitive and neurodevelopmental measures, treatment-related mortality, and other severe adverse events. For the autoimmune diseases, the key outcomes were drug-free clinical remission, as well as treatment-related mortality and other severe adverse events. No effort was made to systematically review outcomes in the context of different induction chemotherapy or consolidation conditioning regimens, supportive care, or stem-cell preparations. Rather, the document is intended to show the level of evidence in the literature on the use of HSCT for each indication, supposing that treatment will be delivered according to protocols in place at individual clinical institutions. The EPC Methods Guide process was used to provide an overall evaluation of the strength of evidence for each key outcome and for the overall body of evidence for each indication. Table 1 displays the indications to be approached as a narrative review, while Table 2 displays the indications to be addressed in the systematic review. It is important to note that neuroblastoma, germ cell tumors, and central nervous system embryonal tumors are covered in both the narrative and systematic reviews; however, they are distinguished in each by the specific indication and the type of transplant procedure.

Туре	Disease	Indication(s)	Transplant Type
МН	Acute lymphoblastic leukemia (ALL)	In first (high-risk patients), second, or subsequent complete remission (CR)	Allo
МН	Acute myelogenous leukemia (AML)	In first, second, or subsequent CR; early relapse; induction failure	Allo
MH	Juvenile myelomonocytic leukemia (JMML)	As upfront therapy	Allo
MH	Myelodysplastic syndrome (MDS)	As upfront therapy for primary or secondary MDS	Allo
MH	Chronic myelogenous leukemia (CML)	Chronic phase or refractory to tyrosine kinase inhibitor (TKI)	Allo
MH	Non-Hodgkin's lymphoma (NHL)/ Hodgkin's lymphoma (HL)	Induction failure; first, second, third CR/partial remission	Auto/allo
		Consolidate high-risk (initial)	Auto
MNH	Neuroblastoma (NB)	Relapsed/refractory	Auto (allo in selected incidences)
MNH	Germ cell tumor (GCT)	Relapsed	Auto (allo if fail auto and in selected incidences)
MNH	Central nervous system embryonal tumors	Relapsed or residual	Auto
NM	Hemoglobinopathies	Variable	Allo
NM	Bone marrow failure syndromes (BMF)	Variable	Allo

Table 1. Pediatric HSCT indications to be addressed with narrative review

	Disease	Indication(s)	Transplant Type
NM	Primary immunodeficiencies, including: Lymphocyte immunodeficiencies Adenosine deaminase deficiency Artemis deficiency Calcium channel deficiency CD 40 ligand deficiency Cernunnos-XLF immune deficiency Cernunnos-XLF immune deficiency Cernunnos-XLF immune deficiency Common gamma chain deficiency Deficiencies in CD45, CD3, CD8 DiGeorge syndrome DNA ligase IV Interleukin-7 receptor alpha deficiency Janus-associated kinase 3 (JAK3) deficiency Major histocompatibility class II deficiency Omenn syndrome Purine nucleoside phosphorylase deficiency Recombinase-activating gene (RAG) 1/2 deficiency Reticular dysgenesis Winged helix deficiency Wiskott-Aldrich syndrome X-linked lymphoproliferative disease Zeta-chain-associated protein-70 (ZAP-70) deficiency Phagocytic deficiencies Chediak-Higashi syndrome Chronic granulomatous disease Griscelli syndrome type 2 Interferon-gamma receptor deficiencies Leukocyte adhesion deficiency Severe congenital neutropenias Shwachman-Diamond syndrome Other immunodeficiencies Autoimmune lymphoproliferative syndrome Cartilage hair hypoplasia CD25 deficiency Familial hemophagocytic lymphohistiocytosis	Variable	Allo

Table 1. Pediatric HSCT indications to be addressed with narrative review (continued)
Туре	Disease	Indication(s)	Transplant Type
NM	Inherited metabolic diseases, including: <i>Mucopolysaccharidosis (MPS)</i> MPS I (Hurler), MPS VI (Maroteaux-Lamy), MPS VII (Sly syndrome) <i>Sphingolipidosis</i> Gaucher I, Niemann-Pick disease B, globoid leukodystrophy, metachromatic leukodystrophy <i>Glycoproteinosis</i> Fucosidosis, alpha-mannosidosis <i>Peroxisomal storage disorders</i>	Variable	Allo
		0	A.U
INIM	Usteopetrosis	Severe	Allo

Table 1. Pediatric HSCT indications to be addressed with narrative review (continued)

ALL = acute lymphoblastic leukemia; allo = allogeneic; AML = acute myelogenous leukemia; auto = autologous; BMF = bone marrow failure; CML = chronic myelogenous leukemia; CR = complete remission; DM = diabetes mellitus; ESFT = Ewing sarcoma family of tumors; GCT = germ cell tumor; HL = Hodgkin's lymphoma; JRA = juvenile rheumatoid arthritis; MA = meta-analysis; MDS = myelodysplastic syndrome; MH = malignant, hematopoietic; MNH = malignant, nonhematopoietic; NB = neuroblastoma; NHL = non-Hodgkin's lymphoma (includes Burkitt/Burkitt-like, diffuse large B-cell lymphoma, lymphoblastic lymphoma and anaplastic large cell lymphoma); NM = nonmalignant; OS = osteosarcoma; PNET = primitive neuroectodermal tumor; SLE = systemic lupus erythematosus; TKI = tyrosine kinase inhibitor

Table 2. Pediatric HSCT indications to be addressed with systematic review

Туре	Disease	Indication(s)	Transplant Type	Comparator
MNH	Ewing sarcoma family of tumors (ESFT)	Consolidate high risk (initial)	Auto	Conventional chemotherapy
		Relapsed/refractory	Auto	Conventional chemotherapy
			Tandem auto auto	Single auto
		Consolidate high risk	Auto	Conventional chemotherapy
MNH	Wilms	Relapsed/refractory	Auto	Conventional chemotherapy
			Tandem auto auto	Single auto
MNH	Rhabdomyosarcoma (RMS)	High-risk disease	Auto	Conventional chemotherapy
			Tandem auto auto	Single auto
MNH	Retinoblastoma	Extraocular spread	Auto	Conventional chemotherapy
			Tandem auto auto	Single auto
MNH	Neuroblastoma (NB)	Consolidate high risk (initial) Relapsed/refractory	Tandem auto auto	Single auto
MNH	Germ cell tumor (GCT)	Relapsed	Tandem auto auto	Single auto
MNH	Central nervous system embryonal	Initial therapy	Auto	Conventional chemotherapy
			Tandem auto auto	Single auto

Туре	Disease	Indication(s)	Transplant Type	Comparator
MNH	Central nervous system dial tumors	Consolidate high risk	Auto	Conventional chemotherapy
		Relapsed/refractory	Auto	Conventional chemotherapy
	Inherited metabolic diseases:			
<u>NM</u>	<i>Mucopolysaccharidosis (MPS)</i> MPS II (Hunter's), MPS III (Sanfilippo), MPS IV (Morquio)			
	Sphingolipidosis Fabry's, Farber's, Gaucher's II-III, GM ₁ gangliosidosis, Niemann-Pick disease A, Tay-Sachs disease, Sandhoff's disease			
	<i>Glycoproteinosis</i> Aspartylglucosaminuria, beta- mannosidosis, mucolipidosis III and IV		Allo	Enzyme-replacement therapy, substrate reduction with iminosugars and chaperones
	<u>Other lipidoses</u> Niemann-Pick disease C, Wolman disease, ceroid lipofuscinosis	Variable		
	<i>Glycogen storage</i> GSD type II			
	<i>Multiple enzyme deficiency</i> Galactosialidosis, mucolipidosis type II			
	<i>Lysosomal transport defects</i> Cystinosis, sialic acid storage disease, Salla disease			
	Peroxisomal storage disorders Adrenomyeloneuropathy			
NM	Autoimmune, including juvenile rheumatoid arthritis (JRA), systemic lupus erythematosus (SLE), scleroderma, immune cytopenias, Crohn's	Upfront therapy for severe/ refractory or salvage	Auto/allo	Immunosuppressants, targeted biologic therapies and/or low-dose chemotherapy
NM	Autoimmune type 1 diabetes mellitus (DM)	Variable	Auto	Immunosuppressants, targeted biologic therapies and/or low-dose chemotherapy, conventional management (i.e., insulin injections)

Table 2. Pediatric HSCT indications to be addressed with systematic rev	view (continued)

allo = allogeneic; auto = autologous; DM = diabetes mellitus; ESFT = Ewing sarcoma family of tumors; GCT = germ cell tumor; HL = Hodgkin's lymphoma; JRA = juvenile rheumatoid arthritis; MDS = myelodysplastic syndrome; MNH = malignant, nonhematopoietic; NM = nonmalignant; OS = osteosarcoma; PNET = primitive neuroectodermal tumor; RMS = rhabdomyosarcoma; SLE = systemic lupus erythematosus; TKI = tyrosine kinase inhibitor

Systematic Review Key Questions

- Key Question 1. For pediatric patients with malignant solid tumors, what is the comparative effectiveness of HSCT and conventional chemotherapy regarding overall survival, long-term consequences of HSCT, and quality of life?
- Key Question 2. For pediatric patients with malignant solid tumors, what are the comparative harms of HSCT and conventional chemotherapy regarding adverse effects of treatment, long-term consequences of HSCT, and impaired quality of life?
- Key Question 3. For pediatric patients with inherited metabolic diseases, what is the comparative effectiveness of HSCT, enzyme-replacement therapy (ERT), and substrate reduction with iminosugars regarding overall survival, cure, long-term consequences of HSCT, and quality of life?
- Key Question 4. For pediatric patients with inherited metabolic diseases, what are the comparative harms of HSCT, enzyme-replacement therapy (ERT), and substrate reduction with iminosugars regarding adverse effects of treatment, long-term consequences of HSCT, and impaired quality of life?
- Key Question 5. For pediatric patients with autoimmune diseases, what is the comparative effectiveness of HSCT, immunosuppressants, target biologic therapies, and low-dose chemotherapy regarding overall survival, cure, and remission?
- Key Question 6. For pediatric patients with autoimmune diseases, what are the comparative harms of HSCT, immunosuppressants, target biologic therapies, and low dose chemotherapy regarding adverse effects of treatment, long-term consequences of HSCT, and impaired quality of life?

The PICOTS (Patient, Intervention, Comparator, Outcome, Timing, and Setting) for the three indications addressed in the systematic review follow.

Indication 1. Malignant Solid Tumors (Key Questions 1 and 2)

- **P:** Pediatric patients with malignant solid tumors including rhabdomyosarcoma and retinoblastoma
- **I:** Hematopoietic stem-cell transplantation (HSCT)
- **C:** Conventional chemotherapy
- **O:** Overall survival (OS); long-term consequences of HSCT; quality of life (QOL)
- **T:** All durations of followup will be included
- S: Inpatient

Indication 2. Inherited Metabolic Disease (Key Questions 3 and 4)

- **P:** Pediatric patients with inherited metabolic diseases
- **I:** Hematopoietic stem-cell transplantation (HSCT)

Enzyme-replacement therapy (ERT) for IMDs with products approved by the U.S.

- **C:** Food and Drug Administration (FDA), substrate reduction with iminosugars disease natural history
- **O:** OS; cure; long-term consequences of HSCT; QOL
- **T:** All durations of followup will be included
- S: Inpatient

Indication 3. Autoimmune Disease (Key Questions 5 and 6)

- **P:** Pediatric patients with autoimmune diseases
- I: Hematopoietic stem-cell transplantation (HSCT)
- C: Immunosuppressants, targeted biologic therapies, low-dose chemotherapy
- **O:** Remission, survival, cure
- T: All durations of followup will be included
- S: Inpatient

Analytic frameworks are detailed in Figure 1, Figure 2, and Figure 3.

Figure 1. Analytic framework for HSCT for pediatric malignant solid tumors

HSCT = hematopoietic stem-cell transplantation; KQ = Key Question; QOL = quality of life

Figure 2. Analytic framework for HSCT for pediatric inherited metabolic diseases

GVHD = graft-versus-host disease; HSCT = hematopoietic stem-cell transplantation; KQ = Key Question; QOL = quality of life

Figure 3. Analytic framework for HSCT for pediatric autoimmune diseases

GVHD = graft-versus-host disease; HSCT = hematopoietic stem-cell transplantation; KQ = Key Question; QOL = quality of life

Methods

Topic Development and Refinement

The topic of this report and preliminary Key Questions were developed through a public process involving the public, the Scientific Resource Center (available at: http://effectivehealthcare.ahrq.gov/index.cfm/who-is-involved-in-the-effective-health-care-program1/about-the-scientific-resource-center1/) for the Effective Health Care program of the Agency for Healthcare Research and Quality (AHRQ), and various stakeholder groups.

Recognizing that the scope was broad and that there were diseases for which 20 years of research had been codified into guidelines and reviews, as described in the Introduction, we took a "narrative review" approach to those diseases, reserving a systematic review approach for those indications for which the role of HSCT was not established by clinical study. This was done in consultation with a Key Informant panel and AHRQ personnel. The Key Informant panel comprised clinical experts in the various diseases covered in this report. The topic refinement process made us aware that the literature base for the systematic review was predominantly case series and case reports. This represents the circumstance that the diseases under consideration are rare diseases or in more common diseases, the subgroups of patients having poor prognosis or are refractory to therapy.

Topic refinement also outlined the frameworks and PICOTS which were also posted for public comment. In summary, the public comments addressed three main points. First, while successes have been seen with HSCT in many pediatric conditions, the measurement of comparative outcomes after HSCT is difficult due to the rarity of the conditions (e.g., retinoblastoma) and/or the number of transplants completed (e.g., autoimmune diseases). Second, comparative harms data are equally difficult to obtain, as separating out the harms associated with HSCT from the harms associated with other prior treatments or disease natural history is not possible in many cases. Third, it was suggested that we contact the Pediatric Blood and Marrow Transplant Consortium and Center for International Blood and Marrow Transplant Research (CIBMTR) to see if they could provide advice to guide the structure of the report. No major changes were made following the public comments. These points were taken into account in the CER.

Technical Expert Panel and Peer Review

With completion of the topic refinement phase, a Technical Expert Panel (TEP) was formed. The TEP included original Key Informant panel members and clinical experts not previously involved. The TEP provided consultation on the development of the protocol and evidence tables for the review. Ad hoc clinical questions were also addressed to the TEP. The draft report was reviewed by five external reviewers, including invited clinical experts and stakeholders. Revisions were made to the draft report based on reviewers' comments.

Narrative Reviews

The narrative review approach to a number of conditions presented in this report was based on recognition that there exists a substantial body of evidence from 20 years or more of transplantation research and experience that had been codified into published guidelines and reviews. Thus, systematic review of the evidence for these diseases would not be expected to offer new insights or information. By contrast, the EPC recognized there were a number of diseases for which evidence of benefits and harms was less clear or for which clinical practice was less established, so that systematic review of the literature would be more likely to provide new insight to inform the field.

The final categorization of indications for the narrative reviews was determined in an iterative process. Information sources were not identified by a systematic review of the literature. Rather, the EPC relied on recently published reviews of pediatric transplantation studies, and publicly available sources such as the National Guidelines Clearinghouse and the National Cancer Institute's Physician Data Query (PDQ) Web site, to develop an initial list of diseases for discussion with the Key Informant panel. The EPC subsequently reexamined the lists, compared them to existing evidence, in the context of the Key Informant discussions. A final list of indications for narrative reviews compiled by the EPC was posted for public comment.

Systematic Reviews

The following methods apply only to the systematic reviews presented in this report.

Literature Search

Electronic databases searched were MEDLINE®, Embase®, and the Cochrane Controlled Trials Register. Databases were initially searched without restriction on date, using the search strategy shown in Appendix A. However, during the Topic Refinement phase of this project, the Key Informants strongly recommended limiting study selection to the past 15 years to ensure we identify evidence that is comparable in terms of therapeutic regimens and management protocols. Thus, we reviewed the literature from January 1995 up to November 9, 2009. Literature searches were updated to August 17, 2011, prior to delivery of the final report to ensure the identification of new literature that potentially had an impact on the review.

All search results were compiled into an EndNote® reference manager database with exclusion of duplicates. Additional details on these materials and results of our review are provided in the Results chapter. Search strategies and results are detailed in Appendix A.

Study Selection

Inclusion and exclusion criteria are for all Key Questions. Inclusion criteria:

- Reports on pediatric patients (age ≤21 years) who have relevant diseases (malignant solid tumors, inherited metabolic diseases, or autoimmune disease).
- Reports on an outcome of interest.
- Reported on HSCT and/or a comparator of interest.
- Intervention and comparator used contemporary regimens with respect to chemotherapy, radiation therapy and supportive care.
- For Key Questions 3 and 4 (inherited metabolic diseases) studies reporting outcomes on the natural history of disease were included as comparators.

Exclusion criteria:

- Studies older than 15 years as they would not represent contemporary regimens except the natural history data for Key Questions 3 and 4.
- Studies where pediatric data could not be separated and abstracted from adult data.
- Duplicate studies or reports with duplicate patients were excluded except the study with the largest number of patients with the longest followup.

Abstract and study selection was performed by a single reviewer for each section of the report. If a reviewer was uncertain whether a study should be selected for inclusion, this was resolved through discussion at team meetings.

Figure 4 shows a PRISMA¹¹ diagram of the studies included in the systematic review. A listing of excluded references with reasons for exclusions is available in Appendix B.

Data Abstraction

Data were abstracted by a single reviewer, and fact checked by another reviewer. If there were disagreements, they were resolved through discussion among the review team. The following data elements of primary studies were abstracted from the articles meeting selection criteria:

- Critical features of the study design
 - Patient inclusion/exclusion criteria
 - Number of participants and flow of participants through steps of study
- Patient characteristics, including:
 - o Age
 - o Sex
 - Race/ethnicity
 - o Disease and stage
 - o Disease duration
 - o Other prognostic characteristics
- Treatment characteristics, including
 - o Stem-cell source
 - Chemotherapy versus chemo-radiotherapy
 - o Immunosuppressive therapy as prophylaxis for graft versus host disease
 - Supportive care
- Outcome assessment details
 - o Identified primary outcome
 - Secondary outcomes
 - Response criteria
 - Use of independent outcome assessor
 - Followup frequency and duration
- Data analysis details
 - Statistical analyses (statistical test/estimation results)
 - Test used
 - Summary measures
 - Sample variability measures
 - Precision of estimate
 - P values

Full data abstraction tables are available in Appendix C. Evidence tables were generated in Microsoft Excel® and Microsoft Word®.

Figure 4. PRISMA diagram of articles included in the systematic review

Disease	Total INCL	Total EXCL	(Hand Searched INCL)	(Hand Searched EXCL)	Totals (Total INCL & Total EXCL)
Autoimmune Disease	30	293	0	0	323
Embryonal Tumors	12	54	2	4	66
ESFT	36	88	0	0	124
GCT	4	7	2	7	11
Glial Tumors	38	90	2	1	128
IMD	56	114	0	0	170
Neuroblastoma	9	159	0	0	168
Retinoblastoma	20	21	0	0	41
Rhabdomyosarcoma	26	35	3	0	61
Wilm's Tumor	20	17	0	0	37
Other	0	105	0	0	105
Totals	251	983	9	12	1,234

Study Quality

Evidence consisted largely of case series and case reports; therefore we did not attempt to assess the quality of individual studies. It is well recognized in the study of rare diseases that a common challenge is the preponderance of small, uncontrolled studies.¹² Therefore, because studies tended to be homogenous in design, quality assessment would be unlikely to discriminate between higher and lesser quality studies.

Data Synthesis

Data synthesis was qualitative. We attempted to identify subgroups based on prognostic factors such as tumor stage or location in solid tumors, or disease severity or rate of progression in the inborn metabolic disorders, to see if these subgroups showed patterns of treatment success or failure. The evidence base was considered insufficient and too heterogeneous to use quantitative pooling methods. Where possible we calculated confidence intervals for results and reported ranges of results for studies that addressed the same population and treatment.

Grading the Evidence for Each Key Question

The strength of the body of evidence for each indication was assessed according to the process developed by the AHRQ EPC Program¹³ for the EPC Methods Guide, based on a system developed by the GRADE Working Group.¹⁴ This comprised an iterative, qualitative consensusdriven process among EPC team members familiar with the summarized literature, using the 4 required domains specified in the EPC Methods Guide: risk of bias, consistency, directness, and precision. There were no head-to-head comparative studies for most diseases; in those situations, directness was based on the outcome (e.g., overall survival or other clinically important health outcomes) rather than on the comparison. For small series or a compilation of case reports in which the prognosis absent HSCT is uniformly fatal (e.g., Wolman's disease), the known natural history was considered an indirect comparator. An optional domain, strength of association (SOA, magnitude of effect) was thus ascribed to the body of evidence when there was an apparent benefit or harm, increasing the overall strength beyond what may be normally considered appropriate for such evidence. SOA was deemed not applicable for diseases where there was no clear evidence of benefit or harm with HSCT versus comparators, or if results (e.g., overall survival rates) of individual studies within a body of literature were inconsistent or conflicted. No quantitative scoring method was applied.

Table 3 displays the EPC Methods Guide definitions and applications of GRADE and describes how we applied the domains in this review.

The overall grade of evidence strength was classified into the following four categories:

- High: Further research is very unlikely to change our confidence in the estimate of effect
- Moderate: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate of effect
- Low: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate
- Insufficient: Any estimate of effect is very uncertain

	Definitions and Elements	Score and Application by PCPSA
Domain	From EPC Methods Guide	in the HSCT Project
Risk of Bias	 Risk of bias is the degree to which the included studies for a given outcome or comparison have a high likelihood of adequate protection against bias (i.e., good internal validity), assessed through two main elements: Study design (e.g., RCTs or observational studies) Aggregate quality of the studies under consideration. Information for this determination comes from the rating of quality (good/fair/poor) done for individual studies. 	 In the application of this domain one of three levels of aggregate risk of bias is typically used: Low risk of bias was applied when evidence was available from randomized comparative trials. Medium risk of bias was applied when evidence was available from large, nonrandomized comparative studies. High risk of bias was applied to all other evidence. Because evidence for the majority of indications considered in the systematic reviews comprised case series or case reports, we did not individually assess study quality. As a consequence, the risk of bias was presumed to be high.
Consistency	 The principal definition of consistency is the degree to which reported effect sizes from included studies appear to have the same direction of effect. This can be assessed through two main elements: Effect sizes have the same sign (that is, are on the same side of "no effect"). The range of effect sizes is narrow. Application Use one of three levels of consistency: Consistent (i.e., no inconsistency) Inconsistent Unknown or not applicable (e.g., single study) As noted in the text, single-study evidence bases (even mega-trials) cannot be judged with respect to consistency. In that instance, use "consistency unknown (single study)."	 In the application of this domain we used one of three levels of consistency: Consistent (results appear to have one direction of effect i.e. HSCT appears to be an improvement over conventional therapy, HSCT appears not to be an improvement over comparator, or HSCT and conventional therapy appear to have the same survival benefit.) Inconsistent (Results have more than one direction of effect leading to more than one conclusion.) Unknown or not applicable (Results may be of unknown consistency is the evidence based consists of a single study or a few case reports.)

Table 3. Elements of evidence grading for Key Questions

Domain	Definitions and Elements From EPC Methods Guide	Score and Application by BCBSA in the HSCT Project
	The rating of directness relates to whether the evidence links the interventions directly to health outcomes. For a comparison of two treatments, directness implies that head-to-head trials measure the most important health or ultimate outcomes.	
Directness	 Two types of directness, which can coexist, may be of concern: Evidence is indirect if: It uses intermediate or surrogate outcomes instead of health outcomes. In this case, one body of evidence links the intervention to intermediate outcomes and another body of evidence links the intermediate to most important (health or ultimate) outcomes. It uses two or more bodies of evidence to compare interventions A and B— e.g., studies of A vs. placebo and B vs. placebo, or studies of A vs. C and B vs. C but not A vs. B. Indirectness always implies that more than one body of evidence is required to link interventions to the most important health outcomes. Directness may be contingent on the outcomes of interest. EPC authors are expected to make clear the outcomes involved when assessing this domain. Application Score dichotomously as one of two levels of directness: Direct Indirect, specify which of the two types of indirectness accounts for the rating (or both, if 	In the application of this domain we addressed the outcome and comparison separately. For the <i>outcome</i> it was scored dichotomously as one of two levels of directness: • Direct • Indirect It was considered direct if the measured outcome was a health outcome, and indirect if the outcome was measured by a surrogate or intermediate outcome. In general this literature commonly reported overall survival and toxicities which are direct health outcomes. For the <i>comparison</i> it was scored dichotomously as one of two levels of directness: • Direct • Indirect It was a direct comparison if outcomes were measured in a head-to head trial and indirect where two or more bodies of evidence were used to compare interventions. Direct comparisons were rare in this literature. For this dimension most were indirect.
	that is the case)—namely, use of intermediate/surrogate outcomes rather than health outcomes and use of indirect comparisons. Comment on the potential weaknesses caused by, or inherent in, the indirect analysis. The EPC should note if both direct and indirect evidence was available, particularly when indirect evidence supports a small body of direct evidence.	

Table 3. Elements of evidence grading for Key Questions (continued)

Domain	Definitions and Elements From EPC Methods Guide	Score and Application by BCBSA in the HSCT Project
Precision	 Precision is the degree of certainty surrounding an effect estimate with respect to a given outcome (i.e., for each outcome separately). If a meta-analysis was performed, this will be the confidence interval around the summary effect size. Application Score dichotomously as one of two levels of precision: Precise Imprecise A precise estimate is an estimate that would allow a clinically useful conclusion. An imprecise estimate is one for which the confidence interval is wide enough to include clinically distinct conclusions. For example, results may be statistically compatible with both clinically important superiority and inferiority (i.e., the direction of effect is unknown), a circumstance that will preclude a valid conclusion.	 In the application of this domain, we scored precision dichotomously as one of two levels of precision: Precise An estimate was considered precise if one of three conditions were met: A beneficial effect, highly unlikely to be affected by confounding, was observed. A decrement was observed (e.g., no increase in survival, a decline in survival or high treatment related mortality) highly unlikely to be affected by confounding. Qualitative comparison of the range of results of HSCT and comparator was plausible. Imprecise An estimate was considered imprecise if none of the above applied.
Strength of association (magnitude of effect)	Strength of association refers to the likelihood that the observed effect is large enough that it cannot have occurred solely as a result of bias from potential confounding factors.	 This optional domain was applied for indications with very large effect sizes evident. This additional domain should be considered if the effect size is particularly large. Use one of two levels: Strong: large effect size that is unlikely to have occurred in the absence of a true effect of the intervention. Weak: small enough effect size that it could have occurred solely as a result of bias from confounding factors.

 Table 3. Elements of evidence grading for Key Questions (continued)

BCBSA = Blue Cross Blue Shield Association; EPC = Evidence-based Practice Center; HSCT = hematopoietic stem cell transplant; RCT = randomized controlled trial

Narrative Reviews

Narrative Reviews: Malignant, Hematopoietic Disease

Acute Lymphoblastic Leukemia

Acute Lymphoblastic Leukemia Background

Acute lymphoblastic leukemia (ALL) is the most common cancer diagnosed in children, accounting for 23 percent of cancer diagnoses among children younger than 15 years.¹⁵ An estimated 2,400 children and adolescents younger than 20 years are diagnosed with ALL annually in the United States. Although acute lymphoblastic leukemia is more common in children than in adults, the incidence shows a slight bimodal distribution, with a very high peak early in life (age 1 to 4 years) and a much lower peak after age 70 years.¹⁶ The incidence of ALL in children younger than 19 years of age in the United States in the year 2000 was 3.0 cases per 100,000. ALL is more common in white children than black children, with highest incidence among Hispanic children.¹⁵

Most cases of ALL do not have an identifiable genetic or environmental cause; it likely develops as a result of a combination of an environmental trigger (e.g., prenatal exposure to ionizing radiation, high postnatal dose of radiation) in individuals who have genetic susceptibilities such as upregulation of oncogenes or loss of inherent tumor suppressor proteins.^{15, 16} A number of germline genetic defects or clinical syndromes (e.g., Down syndrome, neurofibromatosis, Schwachman syndrome, Bloom syndrome, ataxia telangiectasia) have been associated with higher risk for developing acute lymphoblastic leukemia, but these collectively account for a small proportion of cases.

ALL typically presents with nonspecific signs and symptoms that include fever, anemia, fatigue, shortness of breath, petechiae or purpura, and CNS findings such as headache, nausea and vomiting, lethargy, and cranial nerve dysfunction.¹⁶ Total white blood count can be very low, or very high, ranging as high as greater than 100,000 per microliter. Patients may have low levels of neutrophils, erythrocytes, and platelets due to excessive acute lymphoblastic leukemia invasion of the bone marrow.

Morphologic, immunologic, and genetic methods are used to establish the diagnosis of any leukemia, its subtype, and specific type. For ALL, an individual prognostic risk profile is established.¹⁷⁻²³ Childhood acute cases are divided into three risk groups: low, intermediate, and high. These groups also are referred to as standard, high, and very high.²⁴ The Children's Oncology Group has used a four-category system that identifies patients with a very low probability of relapse.¹⁸ Infants fall into a special ALL subgroup that requires different treatment.²⁵ Prognostic risk factors¹⁸ used to direct ALL treatment are summarized in Table 4. Detailed discussion of risk factors is beyond the scope of this review.

Factor Favorable		Intermediate	Unfavorable
Age (yrs)	1 to 9	≥10	<1 and <i>MLL</i> +
WBC count (x 10 ⁹ /L)	<50	≥50	
Immunophenotype Precursor B cell		T cell	
Genetic factors	Hyperdiploidy >50 DNA index >1.16 Trisomy 4, 10, 17 t(12;21)/ETV6-CBFA2	Diploid t(1;19)/ <i>TCF3-PBX1</i>	t(9;22)/ <i>BCR-ABL1</i> t(4:11)/ <i>MLL-AF4</i> Hypodiploid < 44
CNS status	CNS1	CNS2 Traumatic with blasts	CNS3
Minimal residual disease (end of induction)	<0.01%	0.01% to 0.99%	≥1%

Table 4. Prognostic factors in pediatric acute lymphoblastic leukemia

CNS = central nervous system; WBC = white blood cell

Current management adjusts the intensity of ALL protocols according to specific presenting clinical and biologic features, as well as early treatment response, and is evolving with additional investigation. Therapy for most forms of ALL consists of four general phases: induction, intensification/consolidation, maintenance and early CNS prophylaxis. Induction therapy is started immediately, with the goal of achieving a CR, defined as fewer than 5 percent blast cells on morphological examination. Intensification or consolidation treatment is used after the patient achieves CR1, with the goal of long-term disease control and cure. Maintenance therapy typically continues in boys for 3 years and in girls for 2 years, with the goal to kill residual tumor cells.

ALL Evidence Base

The evidence base on the use of HSCT for treatment of pediatric ALL is summarized in Table 5. Evidence comprises systematic reviews, narrative reviews, genetically randomized clinical trials, as well as observational studies. A large number of HSCT procedures have been performed since the late 1960s. Two organizations, the European Group for Blood and Marrow Transplantation (EBMT) and the Center for International Blood and Marrow Transplant Research (CIBMTR) maintain data registries on HSCT procedures.

ALL Guidelines

In 2005, the American Society for Blood and Marrow Transplantation (ASBMT) published a systematic review and expert consensus panel recommendations for the role of cytotoxic therapy and HSCT in children with ALL.²⁶ These remain the most comprehensive recommendations for this indication and population, and are summarized in Table 6. It should be noted, however, that revised guidelines were in preparation at the time this CER was submitted to AHRQ in 2011, and were unavailable for use here.

ALL Summary

Contemporary treatment for newly diagnosed pediatric ALL aims to achieve complete first remission (CR1), with restoration of normal hematopoiesis, in about 1 to 1.5 months using chemotherapy.²³ In most study groups, this is achieved in approximately 98 percent of patients using three agents (a glucocorticoid, vincristine, and L-asparaginase) to which an anthracycline may be added.^{15, 18, 20} Long-term event-free survival can now be expected in some 80 percent of

children overall who achieve CR1 with modern risk-adapted chemotherapy. However, outcomes vary, such that in children who meet good-risk criteria (e.g., age 1 to 9 years, white blood count less than 50,000 per μ L), EFS rates exceed 85 percent, whereas in those with high-risk age and white blood count criteria EFS rates approximate 70 percent. Use of additional criteria to further stratify treatment can identify patient groups with expected EFS rates ranging from less than 40 percent to more than 95 percent.

Among children with standard or good-risk disease who are in CR1, physicians attempt to limit postremission use of alkylating agents or anthracyclines that are associated with increased risk of late toxic effects. HSCT is generally not indicated in these cases.^{21, 23, 26} High-risk cases require more intensive consolidation that may entail the use of higher cumulative doses of multiple agents, including anthracyclines or alkylating agents and combinations thereof. Some 10 to 20 percent of patients with ALL are classified as very high risk, including infants, those with adverse cytogenetic abnormalities (e.g., t[4;11]; t[9;22] or low hypodiploid) and those with poor response to induction therapy with high end-induction minimal residual disease or high absolute blast count. These patients receive multiple cycles of intensive induction and consolidation chemotherapy, often including agents not used upfront for standard and less high-risk cases.

Despite such intense regimens and reported long-term event-free survival rates in high-risk patients (Table 7), they may be considered for allogeneic HSCT in CR1.^{15, 21} Some patients with late bone marrow relapse and isolated extramedullary relapses may be successfully treated with chemotherapy.²⁷ However, HSCT is indicated for pediatric patients with ALL beyond CR1.^{21, 23, 26}

As more pediatric ALL patients become long-term survivors, a host of treatment-related adverse events have assumed growing importance. These include cardiac late effects such as anthracycline-associated cardiomyopathy, neuropsychologic effects associated with methotrexate, endocrine deficits, and secondary malignancies such as AML associated with topoisomerase II inhibitor treatment or brain tumors associated with the use of radiotherapy.^{23, 28-30} Thus, leukemia survivors require regular examinations by physicians who are familiar with leukemia treatment and its associated risks and who are able to recognize early signs of adverse therapeutic sequelae. The Children's Oncology Group has published risk-based, exposure-related clinical practice guidelines intended to promote earlier detection of and intervention for complications secondary to treatment for pediatric malignancies.³¹ However, with the exception of GVHD, it is difficult to separate adverse effects associated with induction therapy and the subsequent consolidation treatment including HSCT.

Disease	Year First HSCT Performed	No. of Transplants to Date	Existing Clinical Evidence	Registries	
A suite lumente de la stis		5,064 HLA-matched sibling and unrelated donor transplants in patients younger than 20 years of age reported to CIBMTR for the period 1998–2007 ³²	Systematic reviews,		
leukemia	late 1960s	More than 10,000 HSCT in patients younger than 18 years old reported to EBMT between 1994 and 2008, of whom 6,315 underwent allogeneic or autologous HSCT for ALL	narrative reviews, observational studies	CIBMTR, EBMT	
Acute and chronic myelogenous leukemia,		9,577 HLA-matched sibling and unrelated donor transplants in patients younger than 20 years of age reported to CIBMTR for the period 1998–2007 ³²	Systematic reviews, narrative reviews,		
juvenile myelomonocytic leukemia	odysplasia, ile omonocytic mia	More than 30,000 HSCT in patients younger than 18 years of age reported to EBMT between 1970 and 2002, of whom about 10,000– 11,000 underwent allogeneic HSCT for AML and myelodysplasia ³³	randomized clinical trials, observational studies		

Table 5. Evidence base for HSCT in pediatric leukemia

AML = acute myelogenous leukemia; CIBMTR = Center for International Bone Marrow Transplant Research; EBMT = European Group for Blood and Marrow Transplantation; HSCT = hematopoietic stem cell transplant

Table 6. ASBMT treatment recommendations for therapy of pediatric acute lymphoblastic leukemia

Indication for SCT	Treatment Recommendation*	Highest Level of Evidence**	Comments
SCT vs. chemotherapy in CR1	В	2++	Demonstrated benefit only for matched related allogeneic SCT in very high-risk (Ph+ only) ALL. Not recommended for standard or other high-risk (i.e., induction failure, hypodiploidy, etc.) patients except in the context of clinical trial.
SCT vs. chemotherapy in CR2	В	2++	Recommended only for matched related allogeneic transplantation vs. chemotherapy; however, the recommendation is tempered because of one prospective trial that did not demonstrate a benefit for transplantation when analyzed by the presence vs. absence of a related donor in an intent-to-treat analysis. Evidence is insufficient to support a recommendation for an unrelated allogeneic transplantation vs. chemotherapy.

Table 6. ASBMT treatment recommendations for therapy of pediatric acute lymphoblastic leukemia (continued)

Indication for SCT	Treatment Recommendation*	Highest Level of Evidence**	Comments
Autologous purged SCT	С	2++	Although a majority of patients with late relapses achieve extended leukemia-free survival (LFS) with an autologous purged SCT, the evidence is insufficient to determine that this is better than chemotherapy alone. For those with an early relapse, the outcomes with autologous purged SCT are even less promising.
Autologous unpurged SCT	N/A	N/A	Data are unavailable on outcomes of unpurged autologous SCT.
Related allogeneic SCT	С	2++	A substantial proportion of patients achieve extended LFS.
Unrelated allogeneic SCT	С	2++	A substantial proportion of patients achieve extended LFS.
Related vs. unrelated allogeneic SCT	None	2++	Outcomes of related vs. unrelated donor allogeneic SCT have not been adequately studied, especially in patients who have had high resolution typing. No recommendation can be made at this time.
Comparison of conditioning regimens	В	1+	TBI-containing regimens have better outcomes than non-TBI containing regimens.
Autologous vs. allogeneic SCT	None	2+	The outcomes of autologous vs. allogeneic SCT have not been adequately studied. No recommendation can be made at this time.

ALL = acute lymphoblastic leukemia; ASBMT = American Society for Blood and Marrow Transplantation; CR = complete remission; LFS = leukemia-free survival; SCT = stem cell transplant; TBI = total body irradiation

*Grades of recommendation:

A At least one meta-analysis, systematic review, or randomized controlled trial (RCT) rated as 1++, and directly applicable to the target population; or a systematic review of RCTs or a body of evidence consisting principally of studies rated as 1+, directly applicable to the target population, and demonstrating overall consistency of results

B A body of evidence including studies rated as 2++ directly applicable to the target population, and demonstrating overall consistency of results; or extrapolated evidence from studies rated as 1++ or 1+

C A body of evidence including studies rated as 2+ directly applicable to the target population and demonstrating overall consistency of results; or extrapolated evidence from studies rated as 2++

D Evidence level 3 or 4; or extrapolated evidence from studies rated as 2+

**Levels of evidence:

1++ High-quality meta analyses, systematic reviews of randomized controlled trials (RCTs), or RCTs with a very low risk of bias

1+ Well-conducted meta analyses, systematic reviews of RCTs, or RCTs with a low risk of bias

1 - Meta-analyses, systematic reviews of RCTs, or RCTs with a high risk of bias

2++ High-quality systematic reviews of case-control or cohort studies. High-quality case-control or cohort studies with a very low risk of confounding, bias, or chance and a high probability that the relation is causal

2+ Well-conducted case control or cohort studies with a low risk of confounding, bias, or chance and a moderate probability that the relation is causal

2- Case control or cohort studies with a high risk of confounding, bias, or chance and a significant risk that the relation is not causal

3 Nonanalytic studies, e.g., case reports, case series

4 Expert opinion

Disease	Source	Treatment	Indications	Benefits	Harms	Comment
	Narrative review ³⁴	allogeneic HSCT		DFS: 65 ± 8% (n=276) ^k OS: 72 ± 8% ^k		DFS p<0.001 MRD vs. chemotherapy at 5 years
		chemotherapy	CR1 Ph+	DFS: 25 ± 4% ^k OS: 42 ± 4% ^a	NR	OS p=0.002 MRD vs. chemotherapy at 5 years
Acute Iymphoblastic Ieukemia Narrative review ¹⁹		allogeneic HSCT	CR1 infants	DFS: 64-76% ^{I-n}	Fully ablative conditioning plus TBI increases risk for late effects on growth and neurocognitive development	Related and unrelated donors
		chemotherapy		DFS: 33%°	Relapse risk is high	
	Narrative review ¹⁹	allogeneic HSCT	CR1 other high- risk	DFS: 56-76% ^{p-r}		B- or T-cell ALL, marked leukocytosis, hypodipolid,
		chemotherapy		DFS: 40-45% ^{p-r}	NR	inadequate response to induction therapy, persistent minimal residual disease
		allogeneic HSCT	Relapsed or salvage	DFS: 40-60% ^{s-v}		It is likely that the response
		chemotherapy		DFS <u><</u> 33-44% ^{u,v}	NR	influenced by the intensity of primary therapy. ¹⁹

Table 7. Benefits and harms after treatment for pediatric leukemia

Disease	Source	Treatment	Indications	Benefits	Harms	Comment
Acute myelogenous leukemia	Systematic review ³⁵	allogeneic HSCT	CR1	DFS RR: 0.71 (95% CI 0.58, 0.95, p=0.00007) versus patients with no MSD who received additional chemotherapy or no further therapy after induction OS RR: 0.68 (95% CI, 0.48, 0.95, p=0.02) vs. patients with no MSD who received additional chemotherapy or no further therapy after induction	TRM RR = 0.97 (95% CI, 0.40, 2.38, p = 0.28) versus patients with no MSD who received additional chemotherapy or no further therapy after induction	DFS analysis based on all 6 included studies in meta- analysis between 1986 and 1995 with 3-7 yrs followup ^{a-f} DFS RR reduction with allogeneic HSCT corresponds to absolute decrease in risk of relapse of -18% (95% CI, -0.24, -0.12) versus chemotherapy OS RR reduction with allogeneic HSCT corresponds to an absolute difference in risk of death of -15% (95% CI, -0.05, -0.25) versus chemotherapy OS analysis based on 4 studies ^{c-f}

Table 7. Benefits and harms after treatment for pediatric leukemia (continued)

Disease	Source	Treatment	Indications	Benefits	Harms	Comment
Acute myelogenous leukemia (continued)	Systematic review ³⁵	autologous HSCT		DFS RR: 0.70-1.10 versus patients with no MSD who received additional chemotherapy or no further therapy after induction (data not pooled due to heterogeneity) OS RR: 0.71-1.34 versus patients with no MSD who received additional chemotherapy or no further therapy after induction (data not pooled due to heterogeneity)	TRM <u>≤</u> 6% - 10% (data not pooled due to heterogeneity, total n = 404)	DFS risk difference= -17% versus patients with no MSD who received additional chemotherapy or no further therapy after induction ^g OS risk difference= -14% versus patients with no MSD who received additional chemotherapy or no further therapy after induction ^f TRM <u><</u> 6% in 2 studies ^{a,d} and 10% in a third study ^f

Table 7. Benefits and harms after treatment for pediatric leukemia (continued)

Disease	Source	Treatment	Indications	Benefits	Harms	Comment
		allogeneic HSCT		DFS: 47 ± 5% OS: 54 ± 5%	TRM = 17 ± 4%	Analysis included 5 consecutive genetic randomization CCG
		autologous HSCT		DFS: 42 ± 7% OS: 49 ± 7%	TRM = 7 ± 4%	studies ^{e,f,h-j} between 1979 and 1996
Acute myelogenous leukemia (continued)	Systematic review ³⁶	chemotherapy	CR1	DFS: 34 ± 4% OS: 42 ± 4%	TRM = 6 ± 3%	DFS p=0.075, 0.004 versus autologous HSCT and chemotherapy, respectively at 8 years followup OS p=0.031, 0.064 versus autologous HSCT and chemotherapy, respectively at 8 years followup TRM p=0.297, <0.001 versus autologous HSCT and chemotherapy, respectively at 8 years followup No statistically significant differences were reported for any outcome between chemotherapy and autologous HSCT

 Table 7. Benefits and harms after treatment for pediatric leukemia (continued)

Disease	Source	Treatment	Indications	Benefits	Harms	Comment
	allogeneic HSCT			DFS: 51-52% OS: 47-70%		3-5 yrs followup for DFS ^{a.g} 5-8 years' followup for OS ^{d-f,i}
Acute myelogenous Narrative leukemia review ³⁷ (continued)		autologous HSCT		DFS: 21-38% OS: 48%		DFS p=0.01, 0.007 allogeneic HSCT versus
	Narrative review ³⁷	Varrative review ³⁷		DES: 27-36%	NR	chemotherapy, respectively
		chemotherapy		OS: 34-60%		versus autologous HSCT
						OS p <u><</u> 0.05–0.13 allogeneic HSCT versus chemotherapy
Chronic myelogenous leukemia	Narrative review ³⁸	allogeneic HSCT	CP1 Ph+	OS: 66% ^w DFS: 55% ^w	TRM: 20% (MSD) TRM: 35% (URD) Grades 2-4 GVHD = 20% with MRD, 35% with URD ^w	Survival data for patients with matched related sibling donor

Table 7. Benefits and harms after treatment for pediatric leukemia (continued)

Table 7. E	3enefits and	harms after	treatment for	pediatric leukemia	(continued)
					· /

Disease	Source	Treatment	Indications	Benefits	Harms	Comment
Myelodysplasia and JMML	Prospective studies	allogeneic HSCT	Upfront, primary or secondary	OS: 31% JMML ^x OS: 50% MDS ^x DFS: 49-55% JMML ^y	TRM: 13% ^y	Patients with JMML and refractory anemia (RA) or RA-excess blasts exhibited high induction failure rates ^x Actuarial OS at 6 years ^x DFS 55% at 5 years with MRD, 49% with matched URD ^y TRM at 5 years ^y

ALL= acute lymphoblastic leukemia; CCG= Children's Cancer Study Group; CR1= complete remission; DFS= disease free survival; GVHD= graft vs. host disease; HSCT= hematopoietic stem-cell transplantation; JMML= Juvenile myelomonocytic leukemia; MDS= myelodysplastic syndromes; MRD=matched related donor; NR= not reported; OS= overall survival; RA= refractory anemia ; RR= relative risk; CI= confidence interval; TRM= treatment related mortality; URD= unrelated donor ^a Amadori et al., 1993³⁹; RCT, n=161 ^b Michel et al., 1996⁴⁰; prospective cohort study, n=171

^c Shaw et al., 1994⁴¹; prospective cohort study, n=43 ^d Stevens et al., 1998⁴²; RCT, n=359

^e Wells et al., 1994⁴³; RCT, n=591 ^f Woods et al., 1996⁴⁴; RCT, n=589

^g Ravindranath et al., 1996⁴⁵; RCT, n=649 ^h Lange et al., 2004⁴⁶; prospective study; n=65

¹ Smith et al., 2005⁴⁷; RCT, n=485 ¹ Woods et al., 1993⁴⁸; prospective cohort study, n=142

^k Arico et al., 2000⁴⁹; retrospective study, n=326

¹ Jacobsohn et al., 2005⁵⁰; prospective study, n=16

^m Kosaka et al., 2004⁵¹; prospective study, n=44

ⁿ Sanders et al., 2005⁵²; retrospective study, n=40

^o Hilden et al., 2006⁵³; prospective study, n=115

^p Ribera et al., 2007⁵⁴; RCT, n=106
 ^q Satwani et al., 2007⁵⁵; prospective study, n=28

^r Schrauder et al., 2006⁵⁶; prospective cohort study, n=387

^s Boulad et al., 1999⁵⁷; retrospective study, n=75

^t Eapen et al., 2008⁵⁸; prospective cohort study, n=209

^u Einsiedel et al., 2005⁵⁹; prospective study, n=207

^v Gaynon et al., 2006⁶⁰; RCT, n=214

^w Cwynarski et al., 2003⁶¹; prospective study, n=314

^x Woods et al., 2002⁶²; prospective study, n=90 ^y Locatelli et al., 2005⁶³; prospective study, n=100

Acute Myelogenous Leukemia

The myelogenous leukemias comprise a spectrum of hematological malignancies. The vast majority (90 percent) are defined as acute, with the rest including chronic or subacute myeloproliferative disorders such as chronic myelogenous leukemia (CML), juvenile myelomonocytic leukemia (JMML) and myelodysplastic syndromes (MDS).⁶⁴

Acute Myelogenous Leukemia Background

Approximately 6,500 children younger than 20 years of age develop an acute leukemia annually in the U.S.; acute myelogenous leukemia (AML) represents about 15 percent, or about 1,000 cases per year. The incidence of AML is stable during childhood, except for a slight increase during adolescence and a peak in the neonatal period.⁶⁵ Some variation in the incidence of AML in children has been reported; for example, black children have an incidence of 5.8 cases per million compared to 4.8 cases per million among white children. The mortality rate from AML is estimated at 0.5 per 100,000 children younger than 10 years, and increases with age.

AML is a clonal malignancy that results from a series of somatic mutations in a hematopoietic multipotential cell, most commonly secondary to chromosomal translocations.⁶⁵ Rarely, it may stem from a more differentiated, lineage-restricted progenitor cell. It is characterized by accumulation of abnormal (leukemic) blast cells, principally in the bone marrow, and impaired production of normal blood cells. Classification of myeloid leukemia as acute requires greater than 20 percent leukemic blasts in the bone marrow. In general, the clinical presentation of AML varies as a function of the leukemic cell burden within the bone marrow, with anemia, thrombocytopenia, and a low or normal absolute neutrophil count depending on the total white blood cell count. Other signs and symptoms may stem from invasion of extramedullary sites such as soft tissues, skin, gingiva, orbit, and brain.

There is a high concordance rate of AML in identical twins, and an estimated 2- to 4-fold risk of fraternal twins both developing AML up to about 6 years of age, suggesting the disease has a genetic component. AML also has been associated with syndromes that predispose to its development secondary to chromosomal translocations or instabilities, DNA repair defects, altered cytokine receptor or signal transduction pathway activation, and altered protein synthesis.⁶⁴

Treatment of AML consists of remission-induction, followed by a course of consolidation therapy and subsequent intensification, which may include autologous or allogeneic HSCT.^{65, 66} Because the AML stem cell is inherently drug resistant, improvements in outcomes have been achieved through escalation of induction regimens to maximally tolerated dose levels that necessitate intensive supportive care measures. Further escalation and improvements in outcomes in AML are thus limited on the therapeutic side.

The therapeutic approach to a newly diagnosed pediatric patient with AML is dictated by a number of prognostic risk factors, including cytogenetics, mutations of signal transduction pathways, response to induction therapy, and others that may be termed novel.^{66, 67} Detailed discussion of risk factors is beyond the scope of this review, but several are summarized in Table 8 and will be referred to in this discussion.

Prognostic Factor Category	Poor Risk	Favorable Risk
	Deletion of chromosome 5q	t(15;17)
	Monosomy of chromosome 5 or 7	inv(16)
Cytogenetics	t(6;9)	t(8;21)
	Abnormal chromosome 3	t(9;11)
	Complex cytogenetics	
	FLT3/ITD, high ITD-AR	CEBP-α mutation
Mutations of signal transduction	c-KIT	NPM mutation
	c-Fms	
patiways	VEGF receptor	
	N- and K-RAS	
Poppone to therapy	Poor response	Rapid response
Response to therapy	Minimal residual disease	
	High WT1 expression	Gene expression profile
	High VEGF expression	Proteomic signature
Nevel markers	High BAALC expression	
NOVELITIAIKEIS	Telomerase activity	
	Gene expression profile	
	Proteomic signature	

Table 8. Potential risk factors for pediatric acute myelogenous leukemia

BAALC = brain and acute leukemia, cytoplasmic; CEBP- α = CCAAT/enhancer binding protein-alpha; FLT3/ITD = FLT3/internal tandem duplication; ITD-AR = internal tandem duplication allelic ratio; NPM = nucleophosmin; VEGF = vascular endothelial growth factor; WT1 = Wilms' tumor

AML Evidence Base

The evidence base available on the use of HSCT for treatment of AML is summarized in Table 5. Published evidence comprises systematic reviews, narrative reviews, genetically randomized clinical trials, as well as observational studies. Two systematic reviews and one narrative review provide the basis for this evaluation. Also shown in Table 5, a large number of allogeneic HSCT procedures have been performed since the late 1960s. Two organizations, the European Group for Blood and Marrow Transplantation (EBMT), and in the U.S., the Center for International Blood and Marrow Transplant Research (CIBMTR), maintain data registries on HSCT procedures.

AML Guidelines

In 2007, the American Society for Blood and Marrow Transplantation (ASBMT) published a systematic review and expert consensus panel recommendations for the role of cytotoxic therapy and HSCT in children with AML.⁶⁸ These remain the most comprehensive recommendations for this indication and population, and are summarized in Table 9. It should be noted, however, that revised guidelines were in preparation at the time this CER was submitted to AHRQ in 2011, and were unavailable for use here.

AML Summary

Survival rates in children with AML have increased with time as a result of numerous clinical trials conducted within pediatric cooperative cancer groups.^{30, 35-38, 69} About 50 to 60 percent of newly diagnosed pediatric AML patients experience long-term survival with modern treatment and supportive care, as shown in Table 7. Chemotherapy and autologous and allogeneic HSCT are established methods in this setting, but there is uncertainty about when to use each. Current practice in European groups limits use of allogeneic HSCT in CR1 to patients with poor risk prognostic factors; in the U.S., patients with a matched sibling donor typically receive allogeneic HSCT in CR1.³⁸ In general, patients who relapse and can be brought into CR2 will receive an allogeneic HSCT if a matched sibling donor is available, or if at very high risk, with an unrelated matched donor.³⁸

Although the data compiled in Table 7 were not stratified according to prognostic risk factors, the evidence generally supports use of allogeneic HSCT in children with poor- to intermediate-risk disease in CR1, and all who have refractory AML or who relapse. Substantial effort is being expended on identification of additional prognostic markers at the genetic level with the aim of personalizing AML therapy to improve survival rates. Risk stratification also has potential to reduce the burden of associated adverse effects of the procedure by targeting therapy intensification to appropriate groups, with less-intensive treatment for those who would not benefit.^{66, 67}

Adverse effects with HSCT in any disease are referable to all major organ systems including cardiovascular, CNS, endocrine, digestive, urinary, and reproductive, and include secondary malignancies and graft-versus-host disease.^{28, 29}

The Children's Oncology Group has published risk-based, exposure-related clinical practice guidelines intended to promote earlier detection of and intervention for complications secondary to treatment for pediatric malignancies.³¹ However, with the exception of GVHD and treatment-related mortality, it is difficult to separate adverse effects associated with induction therapy and the subsequent consolidation treatment including HSCT.

Indication for HSCT	Treatment Recommendation Grade*	Highest Level of Evidence**	Comments
Auto-SCT vs. chemotherapy in CR1	A	1++	Auto-SCT and chemotherapy have equivalent survival outcomes. Lacking data on QOL, secondary malignancies and other late effects of treatment prevents a recommendation of one therapy over the other.
Allo-SCT vs. chemotherapy in CR1	В	2++	Allo-SCT has superior OS and LFS compared with chemotherapy and is recommended Additional prospective data regarding risk subgroups may alter this recommendation.
Allo-SCT vs. chemotherapy in CR2	D	2-	There is a lack of evidence comparing MRD allo-SCT compared to chemotherapy in CR2; however, the consensus recommendation of the expert panel is MRD allo-SCT if available.
Auto-SCT vs. allo-SCT in CR1	A	1++	 MRD allo-SCT has superior survival outcomes compared to auto-SCT in CR1. Additional prospective data regarding risk subgroups may alter this recommendation. The consensus recommendation of the expert panel is to use bone marrow as the stem cell source in the MRD allo-SCT setting based on scientific, ethical, regulatory, and practical issues.
Auto-SCT vs. allo-SCT in CR2	С	2+	The consensus recommendation of the expert panel is to use any suitably matched related or unrelated allo- over auto-SCT; however, there is a lack of evidence that one has better outcomes than the other.

Table 9. ASBMT treatment recommendations for therapy of pediatric acute myelogenous leukemia

	Treatment	Lichaat	
Indication for HSCT	Recommendation Grade*	Level of Evidence**	Comments
Auto-SCT	No recommendation	2+	Current practice is to use PBSCT; however, there are very few patients in the 2 studies that fulfill review criteria. A randomized trial of auto-BMT vs. PBSCT is not feasible due to the infrequent use of auto-SCT for pediatric patients with AML. With current technology, there is a preference for using MUD or alternative donors over auto-SCT if a MRD is not available. There are no effective purging agents currently available, but if one were doveloped, it would increase interact for a trial of nursed vs. unpurged auto-
			SCT.
Related vs. unrelated allo-SCT	D	2+	There are no data indicating that using one type of suitably matched allo-SCT is better than another. There are differences between institutions with regard to transplantation technique; however, there are no apparent differences in outcomes across institutions.
Related allo-SCT	В	2+	MRD allo-SCT is preferred in CR1 or CR2; in CR2, alternative donors could be considered if MRD is not available.
Unrelated allo-SCT	No recommendation	2+	No evidence for one preferred technique for unrelated allo-SCT (i.e., T cell depletion, cord blood vs. PBSCT vs. BMT, etc).
Comparison of allo-SCT myeloablative conditioning regimens	С	2+	There is no difference or preference of one conditioning regimen over another with respect to survival, LFS, or late effects.
Comparison of auto-SCT myeloablative conditioning regimens	No recommendation	NA	No evidence comparing conditioning regimens in the auto-SCT setting.

Table 9. ASBMT treatment recommendations for therapy of pediatric acute myelogenous leukemia (continued)

Table 5. ASDIVIT liealinent recommendations for therapy of periatic acute invelopenous leukenna (continueu	Table 9. ASBMT treatmen	t recommendations for the	rapy of I	pediatric acute m	velogenous leuken	nia (continued)
--	-------------------------	---------------------------	-----------	-------------------	-------------------	-----------------

Indication for HSCT	Treatment Recommendation Grade*	Highest Level of Evidence**	Comments
APL in CR1	Not recommended	4	No evidence of a need for SCT.
APL in CR2	D	3	Standard practice is to use allo-SCT (preferred) or auto-SCT if there is no suitable MRD, MUD, or alternative donor, or a trial comparing haploidentical allo- vs. auto-SCT.

* See Table 6 above for key to recommendation grades. ** See Table 6 above for key to levels of evidence.

Chronic Myelogenous Leukemia

Chronic Myelogenous Leukemia Background

Chronic myelogenous leukemia (CML) is the most common of the chronic myeloproliferative disorders in children, but accounts for only 5 percent of childhood myeloid leukemia.⁶⁴ It occurs in very young children, but the majority is found in patients aged 6 years and older. CML is a clonal panmyelopathy that involves all hematopoietic cell lineages. The white blood count may be extremely elevated in CML without evidence of excess leukemic blasts in the bone marrow, and is often associated with thrombocytosis. The Philadelphia chromosome, which is a translocation between chromosomes 9 and 22 (t[9, 22]), is nearly always present in CML. Bone marrow is hypercellular, with relatively normal granulocytic maturation. Biologically, CML in children is very similar to that in adults, so adult data are often extrapolated to children.³⁸ It is the malignancy for which a graft-versus-leukemia (GVL) effect has most clearly been shown.⁷⁰

CML occurs in three clinical phases: chronic, accelerated, and blast crisis. The chronic phase, which may last for 3 years, is associated with effects secondary to hyperleukocytosis, such as weakness, fever, night sweats, bone pain, and respiratory distress. The accelerated phase is characterized by progressive splenomegaly, thrombocytopenia, and increased proportion of peripheral and bone marrow blasts. In blast crisis, the bone marrow shows more than 30 percent blasts, with a clinical picture indistinguishable from acute leukemia. Patients who enter blast crisis will succumb to the disease within several months.⁷¹ This narrative review focuses on patients with chronic phase CML.

CML Evidence Base

The evidence base available on the use of HSCT for treatment of CML is summarized in Table 5. Published evidence comprises narrative reviews as well as observational studies. Allogeneic HSCT remains the only known curative modality for CML.

CML Guidelines

We identified no clinical guidelines for the use of HSCT in children with CML.

CML Summary

The EBMT reported outcomes in 314 children who received allogeneic HSCT in the preimatinib era. As shown in Table 7, the best results were achieved among children in chronic phase who received a matched sibling donor transplant (75 percent 3-year OS, 63 percent leukemia-free survival).⁶¹ Among patients who received an unrelated donor HSCT, procedural mortality reached 35 percent versus 20 percent with a MSD. Severe graft-versus-host disease (grades 2-3) occurred in 52 percent of unrelated donor HSCT recipients compared to 37 percent of recipients with a matched sibling donor. Similar results were reported by other groups who used allogeneic HSCT to treat children with chronic phase CML.^{72, 73}

The introduction of imatinib mesylate (and newer tyrosine kinase inhibitors dasatinib and nilotinib) altered the paradigm of CML treatment, particularly in adults.⁷⁴ However, there is no consensus how to treat newly diagnosed children with CML if a matched sibling donor is available.^{38, 75} Allogeneic HSCT may be delayed until imatinib fails to produce a major cytogenetic or molecular response, or if secondary resistance develops. However, relapse occurs

in previously responding patients who stop imatinib. Thus, children with CML who achieve molecular disease control are typically managed individually. The decision and timing to proceed to allogeneic HSCT given the necessity for life-long imatinib therapy and the prospect of resistance developing remain uncertain.³⁰

Myelodysplastic Syndrome/Juvenile Myelomonocytic Leukemia

Myelodysplastic Syndrome/Juvenile Myelomonocytic Leukemia Background

In children, the myelodysplastic syndromes (MDS) comprise a heterogeneous group of disorders characterized by a constellation of ineffective hematopoiesis, impaired maturation of myeloid precursors with dysplastic morphologic features, and cytopenias.⁶⁴ Myelodysplastic disorders have been defined by their predilection to evolve into AML, yet not all cases terminate in leukemia. Mortality in myelodysplasia syndrome results from bleeding, recurrent infection, and leukemic transformation. In the absence of treatment, myelodysplasia syndrome can be rapidly fatal, with or without the transformation to AML.

The exact incidence of MDS in childhood has been difficult to estimate because of controversies regarding its classification, the heterogeneity of presentation, and the heterogeneity of risk factors in the population. MDS may occur either de novo or secondary to previous therapy for cancer. The annual incidence internationally is estimated at 0.5 to 4 per million population, and myelodysplasia syndrome accounts for about 2 to 5 percent of hematologic malignancies in children.⁷⁶ Fewer than 100 new cases of myelodysplasia are reported in the U.S. each year in children. The male-to-female ratio varies from 1.7 to 4.8:1 in different series.⁷⁷

The significance of this male predominance is unclear but is attributed, in part, to the increased prevalence of juvenile myelomonocytic leukemia (JMML), which was previously termed "juvenile chronic myelogenous leukemia" (JCML), in boys and monosomy 7 syndrome in children.⁷⁸ JMML is very rare, accounting for less than 1 percent of all childhood leukemias.

MDS/JMML Evidence Base

Given the rarity of MDS in children, randomized trials have not been performed specifically for this disease. Children with MDS have been included in AML studies, with allogeneic HSCT representing the only curative therapy.³⁸ JMML historically has been fatal in more than 90 percent of patients despite the use of chemotherapy.⁶⁴ Allogeneic HSCT is the only intervention that can provide long-term disease control.³⁰ As shown in Table 5, available evidence includes narrative reviews that include information on MDS and JMML, and observational studies.

Outcomes data abstracted from recent narrative review articles on the use of HSCT to treat children with high-risk leukemias are summarized in Table 7.

MDS/JMML Guidelines

We identified no clinical guidelines for the use of HSCT in children with MDS, or JMML.

MDS Summary

Given the rarity of MDS in children, randomized trials have not been performed specifically for this disease. However, allogeneic HSCT is the only curative therapy.³⁸ Children with MDS have been included in AML studies.⁶² This trial enrolled 77 patients with MDS or AML with antecedent MDS, randomly allocated to standard or intensively timed induction and subsequently

to allogeneic HSCT if there was a suitable matched related donor, or to autologous HSCT or chemotherapy in the absence of a donor.⁶² Patients with refractory anemia (RA) or RA with excess blasts (RAEB) had a 45 percent remission rate and 6-year OS rate of 28 percent. Those with RAEB in transformation had a 69 percent remission rate and 30 percent 6 year OS rate. Patients with AML and history of MDS experienced an 81 percent remission rate and 50 percent OS rate with allogeneic HSCT, which was marginally significant compared to chemotherapy (p=0.08). The Children's Cancer Study Group investigators conclude that children with a history of MDS who present with AML (excluding those with monosomy 7) and a proportion with RAEB in transformation will do as well with AML chemotherapy remission induction and HSCT consolidation as those with AML. Among MDS patients who achieve remission following induction, but for whom a suitable stem cell donor is not available, optimum therapy is not established.⁶⁴

JMML Summary

JMML historically has been fatal in more than 90 percent of patients despite the use of chemotherapy.⁶⁴ Allogeneic HSCT is the only intervention that can provide long-term disease control.³⁰ In a study of 100 JMML patients, OS of 64 percent has been reported at 5 years.⁶³ Among patients who had disease recurrence, 7 of 15 who underwent a second allogeneic HSCT survived free of disease. In a retrospective National Marrow Donor Program registry analysis, 46 JMML patients who underwent unrelated donor allogeneic HSCT achieved a 2-year DFS rate of 24 percent with relapse probability of 58 percent.⁷⁹

Childhood Hodgkin's Lymphoma

Lymphomas, which are broadly divided into Hodgkin's lymphoma (HL) and non-Hodgkin's lymphoma (NHL) constitute 15 percent of all childhood cancers, and are the third most common childhood malignancy.⁸⁰

Hodgkin's Lymphoma Background

Hodgkin's lymphoma, which comprises 6 percent of childhood cancers, shows a bimodal age incidence with most patients diagnosed between the ages of 15 and 30, and a second peak in adults 55 years of age and older. In the pediatric population, the incidence is highest among 15 to 19 year olds (29 per million per year), with children ages 10 to 14 years, 5 to 9 years, and 0 to 4 years having threefold, eightfold, and thirtyfold lower rates, respectively.⁸¹

Hodgkin's lymphoma, a B-cell lymphoma, is divided into two distinct subcategories, classical (which is characterized by multinucleated tumor cells known as Reed-Sternberg cells) and nodular lymphocyte predominant type (with large mononuclear tumor cells known as lymphocytic and histiocytic, or "L & H" cells), both with a background of inflammatory cells. Subtypes of classical HL include lymphocytic rich, nodular sclerosis, mixed cellularity and lymphocytic depleted. The most common subtypes seen in the pediatric population are the mixed cellularity, nodular lymphocyte predominant and nodular sclerosis.⁸⁰

Most patients with Hodgkin's lymphoma present with painless adenopathy, commonly in the supraclavicular or cervical area. Whereas mediastinal involvement is present in approximately 75 percent of adolescents and adults, only about 35 percent of young children with Hodgkin's lymphoma have mediastinal presentation, in part because of the tendency of these patients to have disease with mixed cellularity or lymphocyte-predominant histology.⁸¹ Approximately 80 to 85 percent of children and adolescents with Hodgkin's lymphoma have involvement of lymph

nodes and/or the spleen only (stages I-III), with the remaining 15 to 20 percent having noncontiguous extranodal involvement (stage IV).⁸¹ The most common extranodal sites include the lung, liver, bone, and bone marrow.⁸¹

Contemporary treatment programs use a risk-adapted approach in which patients receive multi-agent chemotherapy with or without low-dose involved field radiation.⁸¹ Prognostic factors considered include stage, presence or absence of B symptoms, and/or bulky disease.⁸¹ With current therapy, the long-term disease-free survival (DFS) in children with newly diagnosed localized and advanced-stage Hodgkin's lymphoma ranges between 85 to 100 percent and 70 to 90 percent, respectively.⁸⁰

However, high-risk patients with Hodgkin's lymphoma whose disease is refractory to initial therapy or relapse after primary initial chemotherapy (particularly with early relapse at 12 months or earlier) have a minimal chance for long-term survival with salvage chemotherapy alone (with 5-year OS rates of 20 to 25 percent).⁸⁰ Approximately 10 to 15 percent of patients with HL fail to achieve a complete remission (CR) or relapse, and it is in this population that more aggressive treatment strategies like HSCT are utilized.

Hodgkin's Lymphoma Evidence Base

The evidence compiled includes one review article, which summarizes the experience with autologous HSCT and childhood Hodgkin's lymphoma.⁸⁰ There have been no randomized trials in the pediatric population with Hodgkin's lymphoma using HSCT, and the data consist of several small, retrospective case series as summarized in Table 10. Outcomes with the use of autologous HSCT and pediatric Hodgkin's lymphoma show a wide range, with an overall survival (OS) from 43 to 95 percent and event-free survival (EFS) from 31 to 62 percent (Table 11).⁸²⁻⁸⁶

National Comprehensive Cancer Network (NCCN) clinical practice guidelines exist.⁸⁷ No health technology assessments were identified in the search.

A case-matched comparison of autologous HSCT in the pediatric population (n=81) versus adult patients (n=81) with Hodgkin's lymphoma suggested that pediatric and adult patients with HL have similar EFS and OS.⁸⁶

There have been two randomized trials in adult patients with relapsed or refractory Hodgkin's lymphoma, comparing standard-dose salvage chemotherapy and high-dose chemotherapy with autologous HSCT.^{88, 89} Both trials demonstrated significantly improved EFS and longer time to treatment failure in the HSCT group, but no significant difference in OS was observed between the two groups. Whether survival data from the adult population with Hodgkin's lymphoma can be extrapolated to the pediatric population is somewhat controversial.

In patients with Hodgkin's lymphoma who undergo HSCT, harms include secondary malignancies, including breast cancer and myelodysplastic syndrome/secondary acute myelogenous leukemia (MDS/sAML). In patients with recurrent lymphoma who undergo high-dose chemotherapy and autologous HSCT, the incidence of MDS/sAML is 4 to 20 percent at 5 years.⁸⁰

Hodgkin's Lymphoma Guidelines

NCCN guidelines⁸⁷ for the treatment of Hodgkin's lymphoma with HSCT state the best option for patients with progressive disease or relapse is high-dose therapy with autologous stem-cell rescue and that allogeneic transplant may be an option in select patients with progressive or relapsed disease.

Hodgkin's Lymphoma Summary

Overall there appears to be a favorable risk-benefit profile for the treatment of Hodgkin's disease with HSCT in patients with progressive disease or relapse, with OS and EFS rates ranging from 43 to 95 percent and 31 to 62 percent, respectively.⁸⁰ Patients who fail following autologous HSCT or for patients who cannot mobilize sufficient numbers of autologous stem cells, allogeneic HSCT is an option.

Current recommendations are based on small numbers from five case series. Future challenges in the treatment of Hodgkin's lymphoma include the development of risk-stratified treatment approaches for patients with high-risk disease and the possible use of allogeneic HSCT where graft versus lymphoma has been demonstrated.⁸⁰

Disease	Year First Transplant Performed	No. of Transplants to Date	Existing Dlinical Data	Registries		
Hodgkin's Lymphoma	Late 1970s	Not determined	Literature Review, case series, registry data	The Center for International Blood and Marrow Transplant Research (CIBMTR) registry describes the use and outcome of autologous and allogeneic hematopoietic cell transplantation in the more than 500 centers participating in the CIBMTR. It is estimated that data are collected on nearly all allogeneic transplants		
Non- Hodgkin's Lymphoma	Late 1970s	Not determined	Literature Review, case series, registry data	performed in the U.S., approximately 25% of allogeneic transplants performed outside of the U.S. and approximately 60% of autologous transplants performed in North and South America. Prior studies suggest that these data are representative of transplants worldwide. For Hodgkin's and non-Hodgkin's lymphomas, the registry reports separate survival statistics for patients ≤20 years and >20 years of age. www.cibmtr.org/ReferenceCenter/SlidesReports/StatRe port/index.html The European Group for Blood and Marrow Transplantation (EBMT) has an international registry which includes NHL and HL, with separate data for the pediatric population. www.ebmt.org/4Registry/registry1.html		

Table 10. Pediatric lymphomas and the evidence base

Disease	Source	Evidence Type	Treatment	Indication	Benefits	Harms
Hodgkin's lymphoma	Bradley and Cairo 2008 ⁸⁰	Literature Review	Autologous HSCT	Relapsed or refractory ^{a.b.c.d,e} First, second and third CR, PR ^{c.e}	5-year OS 43-95% 5-year EFS 31-62% 5-year PFS 63% 5-year FFS 31% a.b.c.d.e 3-year PFS 39% ^e	Transplant-related deaths (including early and late) ranging from 0%-11.1% Risk of MDS/sAML is 4- 20% at 5 years after autologous HSCT.

Table 11. Benefits and harms after treatment for childhood Hodgkin's lymphoma

CR = complete response; EFS = event-free survival; FFS = failure-free survival; HSCT = hematopoietic stem-cell transplantation; MDS = myelodysplastic syndrome;

OS = overall survival; PFS = progression-free survival; PR = partial remission; sAML = secondary acute myelogenous leukemia

a Stoneham et al. 2004^{84} ; n=51 case series, retrospective review of data from 8 centers transplanted between 1982-2000 b Lieskovsky et al. 2004^{83} ; n=41 case series, retrospective review of consecutive patients at one medical center transplanted between 1989-2001 c Verdeguer et al. 2000^{85} ; n=20 case series, retrospective review of clinical records from 8 hospitals transplanted between 1986-1997

d Baker et al. 1999⁸²; n=53 case series transplanted between 1984 and 1996

e Williams et al. 1993⁸⁶; n=81 case series of registry data, cases reported up to 1992. Eighty-one pediatric patients were case matched to adult patients from European Bone Marrow Transplant registry. Conclusions drawn included that pediatric patients with HL have the same outcome as their adult counterparts after autologous HSCT.
Childhood Non-Hodgkin's Lymphoma

Non-Hodgkin's Lymphoma Background

Non-Hodgkin's lymphoma (NHL) accounts for approximately 7 percent of cancers in children younger than 20 years of age.⁹⁰ Whereas NHL in adults is more commonly low or intermediate grade, in the pediatric population almost all non-Hodgkin's lymphomas are high grade, and differ from disease in adults with respect to disease types, staging system, biology, treatment, and outcome.⁹¹ NHLs are broadly classified as being of B-cell, T-cell, or natural killer (NK) cell origin and by differentiation (precursor versus mature cell). NHLs in children and adolescence fall into three therapeutically relevant categories: (1) mature B-cell NHL: Burkitt and Burkitt-like lymphoma/leukemia (BL, 50 percent of pediatric NHL) and diffuse large B-cell lymphoma (DLBCL, 10-20 percent of pediatric NHL); (2) lymphoblastic lymphoma (LBL) primarily precursor T-cell and less frequently precursor B-cell (20 to 30 percent of pediatric NHL); and (3) anaplastic large cell lymphoma (ALCL), mature T-cell or null-cell lymphoma (10 percent). The other 10 percent of NHL observed in the pediatric population are comprised of diseases commonly seen in adults, such as follicular lymphoma, mucosa-associated lymphoid tissue (MALT) lymphoma, cutaneous lymphoma, primary central nervous system lymphoma or mature T-cell or natural killer-cell lymphoma.⁹¹ Approximately 100 of the 1,000 cases of childhood NHL that occur annually in the U.S. occur in children or adolescents with a primary or secondary immunodeficiency, and the majority are associated with Epstein-Barr virus.⁹¹ The ultimate goal in treating these patients is improving immune function.

Burkitt and Burkitt-like lymphoma (BL) consistently exhibit very aggressive clinical behavior and show overlapping characteristics with acute lymphoblastic leukemia. BL exhibits rapid growth rate, and a tendency to involve extranodal sites and to disseminate to the bone marrow and meninges. Common primary sites include the abdomen and pelvis and the head and neck. The diagnosis of Burkitt-like lymphoma is somewhat controversial due to overlapping histologic features with DLBCL. Cytogenetic evidence of C-MYC rearrangement is the gold standard for the diagnosis of BL. BL can be sporadic or endemic, with endemic cases being Epstein-Barr virus-related and occurring commonly in equatorial Africa.

Diffuse large B-cell lymphoma (DLBCL) in the pediatric population occurs more commonly in the second decade of life than the first. DLBCL differs biologically in children and adolescents than in adults (except for those that present as primary mediastinal disease, which represents approximately 20 percent of pediatric DLBCL). The characteristic chromosomal translocation seen in adult DLBCL, t(14;18), is rarely observed in pediatric DLBCL. Outcomes for children with DCBCL are more favorable than those seen in adults.

Lymphoblastic lymphoma (LBL) occurs most commonly in young men as an anterior mediastinal mass. Chromosomal abnormalities in LBL are not well characterized. The disease course is aggressive with frequent involvement of the bone marrow and/or central nervous system. Patients with limited disease may fare well, but those with poor-risk disease (defined as bone marrow or central nervous system involvement or LDH greater than 300 IU/L) or recurrent disease have less favorable outcomes.⁹²

Anaplastic large cell lymphoma (ALCL) has a broad range of clinical presentations, including involvement of lymph nodes and extranodal sites, particularly skin and bone. More than 90 percent of cases have a characteristic chromosomal translocation t(2;5) which leads to expression of a fusion protein NPM/ALK, although variant ALK translocations also occur.

ALCL is classified as a peripheral T-cell lymphoma (PTCL); however, ALK-positive ALCL has a superior prognosis to other forms of PTCL.

The St. Jude (Murphy) staging system is the most widely used for pediatric NHL, and differs from the Ann Arbor staging system (used in adult NHL) in the classification of abdominal, intrathoracic, and paraspinal/epidural disease.⁹¹ The most important prognostic variable in pediatric NHL is tumor burden, evaluated by staging and serum lactate dehydrogenase (LDH) level. Patients with stage III/IV disease and serum LDH greater than 400 U/L have significantly worse outcomes than those with LDH less than 400 U/L.

Unlike adults with NHL, who usually present with lymph node disease, most pediatric patients present with extranodal disease. Approximately 70 percent of children with NHL present with advanced disease and/or have involvement of the bone marrow, central nervous system and/or bone.⁸⁰ The primary therapy for childhood NHL is multi-agent chemotherapy, with the length and intensity of therapy determined by the subtype and stage of disease.⁸⁰ Children with limited stage NHL have an excellent prognosis with conventional chemotherapy with or without radiation, with estimated event-free survival of 90 to 95 percent.⁸⁰ Patients with advanced stage disease have a variable prognosis depending upon disease subtype, with 5-year event-free survival rates ranging from 60 to 90 percent.⁸⁰

If remission can be achieved in children and adolescents with recurrent or refractory B-cell NHL, HSCT is usually pursued.⁹¹ Most pediatric transplant programs reserve the use of HSCT in children with NHL for after first relapse, with disease progression or induction failure.⁸⁰

NHL Evidence Base

The evidence compiled includes one review article which summarizes the experience with autologous HSCT and childhood NHL.⁸⁰ There have been no randomized trials in the pediatric population with NHL using HSCT, and the data consist of five small, retrospective case series⁹³⁻⁹⁷ and one nonrandomized, comparative study ⁹⁸, as summarized in Table 12. Several of the studies report survival data combined for patients with different histologies, with median EFS of 50 percent (range: 27 to 59 percent).^{93-96, 98} Studies that report survival data for one histologic type of NHL include ALCL: EFS 75 percent at 3 years⁹⁷ and OS 95 percent at 7 years;⁹⁹ LL: EFS 39 percent and 5-year OS of 44 percent for autologous HSCT, EFS 36 percent and 5-year OS 39 percent for allogeneic HSCT;⁹² BL: EFS 57 percent.¹⁰⁰

NCCN clinical practice guidelines (for all subtypes of pediatric NHL) and guidelines from the American Society for Blood and Marrow Transplantation (for DLBCL only) exist. No health technology assessments were identified in the search.

Harms associated with HSCT include secondary malignancies, which are a well-recognized complication in patients with lymphoma who undergo chemotherapy and/or radiation treatment. In patients with recurrent lymphoma who undergo high-dose chemotherapy and autologous HSCT, the incidence of myelodysplastic syndrome/secondary acute myelogenous leukemia is 4 to 20 percent at 5 years.⁸⁰

Histology (n)	Source	Evidence Type	Treatment	Indications	Benefits	Harms	Comment
BL (6), LL (14), DLBCL (6), ALCL (7)	Won 2006 ^{98f}	Nonrandomized comparative	Autologous HSCT	Relapsed/ refractory	2-year EFS 59.1% +/- 9.3% (BL 66.7% +/- 27.2% LL 50.5% +/- 14.8% DLBCL 55.6 +/- 24.9% ALCL 100	TRM 2/33 (6.1%)	Median followup 2.4 yrs (0.1-7.6)
			Conventional chemotherapy	Relapsed/ refractory	EFS 16.3% +/- 4.6%		
ALCL	Woessmann 2006 ^{97g}	Case series, retrospective	Allogeneic	Relapsed/ refractory (included first relapse and multiple relapses)	EFS 75% +/- 10% at 3 years	TRM 3/20 (15%). Acute GVHD ≥2 in 8 patients; extensive chronic GVHD in 2 patients.	
LL Le	Levine et al. 2003 ^{92h}	evine et al. 003 ^{92h} Case series from IBMTR and ABMTR	Autologous HSCT	CR1, CR2 or subsequent CR, relapse, primary induction failure	DFS/EFS 39% OS 6 months 75% 1 year 60% 5 year 44%	TRM 3% at 6 months	p values for OS differences between the autologous and allogeneic groups .01, .09 and .47 for 6 months, 1 year and 5 year, respectively.
			Allogeneic HSCT	CR1, CR2 or subsequent CR, relapse, primary induction failure	DFS/EFS 36% OS 6 months 59% 1 year 49% 5 year 39%	TRM 18% at 6 months	Study included adult patients with age range for autologous HSCT 2- 67 (median 31) years and 5-53 (median 27) for allogeneic HSCT.
Mixed HL and NHL (including LL, LCL, BL and NOS)	Kobrinsky et al. 2001 ⁹⁴ⁱ	Case series	Autologous or allogeneic	Recurrent	DFS/EFS 50%	TRM 5/50 (10%)	Median followup 44 months.

Table 12. Benefits and harms after treatment for childhood Non-Hodgkin's lymphoma

Histology (n)	Source	Evidence Type	Treatment	Indications	Benefits	Harms	Comment
ALCL	Fanin et al. 1999 ^{99j}	Case series from EBMT	Autologous HSCT	CR1, CR2, CR≥3, PR1, PR≥2, sensitive relapse, primary refractory	OS for pediatric patients only (≤20 years) ~95% at 7 years.		Median followup 43.3 months. Study included adult patients. Age range was 3.2-53 (median 25). Eighteen of the 64 patients in the study were < 20 years old.
BL	Ladenstein 1997 ^{100k}	Case series from EBMT	Autologous HSCT	Poor initial response to first- line chemotherapy (i.e., PR), sensitive relapse (SR), resistant relapse (RR)	5-year EFS 56.6% for patients in PR and 48.7% for patients in SR. All patients with RR died within one year.	TRM 11.1 %	Median followup 4.3 years (2-12)
LL (21), B-NHL (19), LCL (6)	Bureo et al. 1995 ⁹³¹	Case series	32 autologous and 14 allogeneic HSCT	CR1, CR2, CR3, refractory	EFS 58% [95%Cl 42-73%]	TRM 13% [3/32 auto and 3/14 allo]	Median followup 33 months.
BL (16), LL (8)	Loiseau 1991 ^{95m}	Case series	Autologous HSCT	Relapsed/ refractory	DFS 33%		

Table 12. Benefits and harms after treatment for childhood Non-Hodgkin's lymphoma (continued)

Table 12. Benefits and harms after treatment for childhood Non-Hodgkin's lymphoma (continued)

Histology (n)	Source	Evidence Type	Treatment	Indications	Benefits	Harms	Comment
BL (10), LL (2), DLBCL (5)	Philip 1988 ⁹⁶ⁿ	Case series	Autologous HSCT	PR after first-line induction therapy	OS at 2 yrs 75% DFS/EFS 27%	TRM 2/17 (11.8%)	Median followup 2 yrs. Study included 11 children and 6 adults.

ABMTR = Autologous blood and marrow transplant registry; ALCL = anaplastic large cell lymphoma; BL = Burkitt lymphoma; CS = case series; DLBCL = diffuse large B-cell lymphoma; EBMT = European Group for Blood and Marrow Transplantation; GVHD = graft versus host disease; IBMTR = International Bone Marrow Transplant Registry; LL = lymphoblastic lymphoma; LCL = large cell lymphoma; NOS = not otherwise specified; SR = sensitive relapse; TRM = transplant-related mortality

f Won et al. 2006;⁹⁸ 33 patients underwent autologous HSCT and 73 received conventional chemotherapy; patients transplanted between 1997-2004.

g Woessmann et al. 2006;⁹⁷ n=20; patients transplanted between 1991-2003.

h Levine et al. 2003;⁹² n=128 for autologous HSCT and n=76 for allogeneic HSCT; patients transplanted between 1989-1998.

i Kobrinsky et al. 2001;⁹⁴ n=50; study opened for accrual 1991 and closed 1994- bone marrow transplant was not a formal part of the study, but 42 patients were transplanted after induction therapy at the discretion of the treating physician and the remaining 8 patients underwent transplant between 5 and 84 weeks (median 14 weeks) from study entry. j Fanin et al. 1999;⁹⁹ n=64; patients transplanted between 1983-1996.

k Ladenstein et al. 1997;¹⁰⁰ n=89; patients transplanted between 1979-1991.

l Bureo et al. 1995;⁹³ n=46;

m Loiseau et al. 1991;95 n=24

n Philip et al. 1988;⁹⁶ n=17

NHL Guidelines

The American Society for Blood and Marrow Transplantation (ASBMT) issued a position statement on the use of HSCT in the treatment of diffuse large cell B-cell non-Hodgkin's lymphoma recommending its use in first chemotherapy-sensitive relapse, first complete remission in high/intermediate-high risk international prognostic index (IPI) patients, and as high-dose sequential therapy in intermediate-high/high risk IPI untreated patients.¹⁰¹

Guidelines from the ASBMT specifically addressing NHL and HSCT in the pediatric population were not identified.

NCCN clinical practice guidelines¹⁰² for BL recommend that patients be considered for a clinical trial, which may include autologous or allogeneic stem-cell rescue. The recommendations for DLBCL are for autologous HSCT for relapsed or refractory disease in patients with either partial or complete response to second line therapy. Recommendations for LBL include consolidation of high-dose therapy with autologous or allogeneic stem-cell rescue in poor risk patients, allogeneic HSCT for patients with an initial partial response. Finally, recommendations for peripheral T-cell lymphomas, noncutaneous (including ALCL) include high-dose therapy and stem-cell rescue as first-line consolidation in all patients except those considered low risk (by age adjusted IPI), and autologous or allogeneic HSCT in patients with relapsed or refractory disease with a partial or complete response to additional therapy.

NHL Summary

Overall there appears to be a favorable risk-benefit profile for the treatment of NHL with HSCT in patients with primary refractory or chemosensitive relapse. EFS for the various subtypes of NHL (except for ALCL) range from 27 to 59 percent, ^{92-94, 96, 98, 100} and for ALCL, EFS of 75 percent at 3 years⁹⁷ and OS 95 percent at 7 years⁹⁹ have been reported.

Current recommendations are based on small studies which have included heterogeneous patient populations with various tumor histologies and a mixture of adult and pediatric patients.

Future challenges in the treatment of NHL include the development of risk-stratified treatment approaches for patients with high-risk disease, defining the use of autologous HSCT as upfront consolidation for certain groups of high-risk NHL, and the possible use of allogeneic HSCT where graft versus lymphoma has been demonstrated.⁸⁰

Narrative Reviews: Malignant, Nonhematopoietic Disease

Neuroblastoma

Background

Neuroblastoma is the most common extracranial solid tumor of childhood, and accounts for 8 to 10 percent of all childhood cancers and for approximately 15 percent of cancer deaths in children.¹⁰³ At least 40 percent of all children with neuroblastoma are designated as high-risk patients, based on adverse features including age 18 months or older at presentation, the presence of disseminated disease, unfavorable histologic features, and amplification of the MYCN oncogene.¹⁰³

Low-risk patients are managed with surgery alone because excellent cure rates are achieved even when some tumor is left behind.¹⁰³ Intermediate-risk patients are still at low risk of succumbing to disease but require limited chemotherapy and/or surgery.^{103, 104} The amount of

chemotherapy is determined in part by the biological features. High-risk patients receive treatment with an aggressive regimen of combination high-dose chemotherapy (HDC); long-term survival with current treatments is about 30 percent.¹⁰⁴ Children with aggressively treated, high-risk disease may develop late recurrences, some more than 5 years after completion of therapy.^{103, 104} Many centers have used HDC with HSCT in the setting of high-risk or recurrent disease.^{103, 105-108} Survivors have an increased rate of second malignant neoplasms, relative to the age- and sex-comparable U.S. population, and of chronic health conditions, relative to their siblings, which underscores the need for long-term medical surveillance.¹⁰⁹

Evidence Base

The evidence compiled for this narrative review includes one systematic review,¹¹⁰ of three randomized controlled trials (RCTs).^{105, 107, 108} A followup analysis of one RCT¹¹¹ and reports from two European registries^{112, 113} were also found (Table 13). No health technology assessments or clinical practice guidelines for the treatment of childhood neuroblastoma with HSCT were identified in the literature search.

The systematic review was a report published by the Cochrane Collaboration in May 2010, comparing the effectiveness of HDC with autologous HSCT versus conventional therapy in children with high-risk disease.¹¹⁰ A meta-analysis of the three RCTs including 739 patients, independently identified in our search, showed a significant difference in both event-free and overall survival in favor of the transplant group (Table 14). Overall, no significant differences in the occurrence of adverse effects between treatment groups were identified in the Cochrane review (Table 14). These findings were further validated in a subsequent analysis of one RCT (not included in the Cochrane Review) with an 8-year median followup period (Table 14).¹¹¹

Guidelines

No guidelines for the treatment of neuroblastoma were identified in the search.

Summary

Overall there appears to be a favorable risk-benefit profile for the role of HDC with autologous HSCT in children with high-risk disease, although possible higher levels of adverse effects should be kept in mind. Interpretation of these data is subject to the clinical context of the complete therapy which includes the effect of the induction regimen, the sources of stem cells, and presence and type of consolidation chemotherapy.

Year of	No. of	Existing	Registries
First HSCT	Transplants	Clinical	
Performed	to Date	Evidence	
Early 1980s	>4,100	Systematic review, randomized controlled trials	European Group for Blood and Marrow Transplantation (EBMT) registry (Ladenstein, 2008 ¹¹³): 4,098 procedures were registered between 1978 and 2006. In 3,974 patients, autologous stem cells were reinfused, while 124 patients were allocated for an allogeneic HSCT. Over 90% of patients were under the age of 10 years at diagnosis. The identified cases came from 27 European countries and at least seven international countries. Italian Neuroblastoma Registry (Garaventa, 2009 ¹¹²): 1,924 children were registered between 1979 and 2004.

Table 13. Neuroblastoma evidence base

HSCT = hematopoietic stem cell transplant

Source (Evidence Type)	Treatment	Indications	Benefits	Harms	Comment
Yalçin, 2010 ¹¹⁰ (Systematic Review)	Myeloablative therapy (high- dose chemotherapy and autologous bone marrow or stem-cell rescue (n=370)	Consolidate high-risk	Meta- analysis of three RCTs including 739 children. EFS (HR 0.78; 95% CI 0.67 to 0.90, p=0.0006) and OS (HR 0.74; 95% CI 0.57 to 0.98, p=0.04), both in favor of myeloablative therapy. ^a	No significant difference between groups in treatment-related death (RR 2.53; 95% CI 0.17 to 37.12, p=0.50), ^b secondary malignant disease (RR 0.99; 95% CI 0.14 to 7.00, p=0.99), ^c serious infections (RR 1.02; 95% CI 0.84 to 1.23, p=0.88), and sepsis (RR 0.93; 95% CI 0.67 to 1.30, p=0.67). ^d	All RCTs were multicenter studies, two of which were based in Europe (Berthold 2005 ¹⁰⁵ ; Pritchard 2005 ¹⁰⁸) and one in North America (Matthay 1999 ¹⁰⁷); All trials used different myeloablative treatments. Patients were recruited
	Conventional therapy (conventional chemotherapy or no further treatment) (n=369)	(initial)		Significant difference in favor of conventional therapy for renal effects (RR 2.28; 95% Cl 1.28 to 4.04, p=0.005), interstitial pneumonitis (RR 9.55; 95% Cl 2.26 to 40.43, p=0.002), and veno-occlusive disease (RR 35.18; 95% Cl 2.13 to 580.88, p=0.01) based on data from one RCT. ^d	Patients were recruited between 1982 and 2002; none of the studies mentioned the exact patient age; only the number of cases above and below one year of age was stated; Data on adverse effects were very limited. None of the studies evaluated quality of life.
Matthay, 2009 ¹¹¹ (RCT)	Myeloablative therapy (chemotherapy, total body irradiation, and ABMT)	Consolidate high-risk (initial)	5-year EFS was 30%; (compared to control group, p=0.04)	Treatment-related deaths occurred in 22 of 122 patients (compared to the control group, p=0.7408); AML in one patient at 2.7 years followup; Follicular carcinoma of the thyroid in one patient at 7 years followup.	This report was an 8- year median followup analysis of the RCT by Matthay 1999 ¹⁰⁷ ; treatment-related toxicity data ware
	Conventional therapy (3 cycles of intensive chemotherapy)		5-year EFS was 19%	Treatment-related deaths occurred in 22 of 138 patients; T-cell ALL in one patient at 2 years followup; Clear-cell carcinoma in one patient at 2.5 years' followup	unchanged from previous report.

ABMT = autologous bone marrow transplant; ALL = acute lymphoblastic leukemia; AML = acute myeloblastic leukemia; CI = confidence interval; EFS = event-free survival; HR = hazard ratio; OS = overall survival; RCT = randomized controlled trial a Results from two RCTs could be pooled for overall survival (Berthold 2005^{105} ; Pritchard 2005^{108}). The RCT by Matthay 1999^{107} only provided descriptive results: overall survival was similar for both regimens (n = 379 patients).

b Data on treatment-related death could be extracted from two trials with a total of 574 patients (Berthold 2005¹⁰⁵; Matthay 1999¹⁰⁷). There were 12 cases among 278 patients randomized to the transplant group and five among 296 patients randomized to the control group.

c Data on secondary malignant disease could be extracted from two trials with a total of 674 patients (Berthold 2005¹⁰⁵; Matthay 1999¹⁰⁷).

d Data on serious infections, sepsis, renal effects, interstitial pneumonitis and veno-occlusive disease could be extracted from Matthay 1999¹⁰⁷.

Germ-Cell Tumors

Background

Germ-cell tumors represent 3 percent of all childhood neoplasms.^{114, 115} In the U.S., approximately 900 children and adolescents younger than 20 years of age are diagnosed with these tumors each year.^{115, 116} Childhood germ-cell tumors are composed primarily of extragonadal neoplasms (e.g., mediastinal or retroperitoneal) whereas gonadal (ovarian and testicular) tumors are more common in adults.¹¹⁵⁻¹¹⁸ Prognosis and appropriate treatment depend on factors such as histology (e.g., seminomatous vs. nonseminomatous), age (young children vs. adolescents), stage of disease, and primary site.^{117, 118}

Germ-cell tumors are highly sensitive to chemotherapy.^{114, 117, 118} Cisplatin-based combination chemotherapy, followed by appropriate surgical resection of residual disease, is curative in 80 percent of patients.^{114, 118, 119} Reports of salvage treatment strategies used in adult recurrent germ-cell tumors include larger numbers of patients, but the differences between children and adults regarding the location of the primary tumor site, pattern of relapse, and the biology of childhood disease may limit the applicability of adult salvage approaches to children. Many centers have used HDC with HSCT in the setting of recurrent disease.^{114, 119, 120}

Evidence Base

The evidence compiled for this review (Table 15) includes one cohort study,¹²⁰ two reports based on registry data,^{114, 119} and two NCCN guidelines.^{117, 118} A review of the NCI's PDQ® Cancer Clinical Trials Registry identified at least one ongoing trial involving HSCT in the setting of relapsed childhood germ-cell tumors.¹²¹ No RCTs, systematic reviews or health technology assessments for childhood germ-cell tumors were identified in the literature search.

Agarwal and colleagues¹²⁰ reported their experience at Stanford University Medical Center in treating 37 consecutive patients who received HDC and autologous HSCT between 1995 and 2005 for relapsed disease (Table 16). Only four patients (11 percent) in this cohort were in the pediatric age group. Twenty-nine patients had received prior standard salvage chemotherapy. Three-year overall and event-free survival was 57 and 49 percent, respectively. Treatment-related mortality was reported at 3 percent. In terms of ongoing trials, there is a pilot study underway to assess the feasibility of HDC followed by autologous HSCT in patients with newly diagnosed or relapsed solid tumors (including GCTs). Twenty patients (6 months to 40 years of age) are expected to be enrolled in this single-center U.S. study with the expected final data collection date of December 2010.¹²¹

Table 15. Germ-cell tumor evidence base

Year of First	No. of	Existing	Registries
HSCT	Transplants	Clinical	
Performed	to Date	Evidence	
Late 1980s	>150 (pediatric age-group)	Cohort studies	European Group for Blood and Marrow Transplantation – EBMT (De Giorgi, 2005 ¹¹⁴): 160 patients with a diagnosis of extragonadal GCT registered between 1987 and 1999; analysis was undertaken of 23 children who received HDC with HSCT. Center for International Blood and Marrow Transplant Research – CIBMTR (Lazarus, 2007 ¹¹⁹): 300 patients with testicular cancer registered between 1989 and 2001; 198 patients received single HSCT, and 102 patients received tandem auto-transplants. Approximately 10% of patients were in the pediatric age-group. The identified cases came from 76 centers across eight countries.

HDC = high-dose chemotherapy; HSCT = hematopoietic stem cell transplant

(Evidence Type)	Treatment	Indications	Benefits	Harms	Comment
Agarwal, 2009 ¹²⁰ (cohort)	HDC with autologous HSCT	Relapsed	3-year overall survival of 57% (95% CI, 41- 71%); 3-year event-free survival of 49% (95% CI, 33- 64%).	The treatment- related mortality was 3%; four patients developed signs of mild VOD of liver.	 37 consecutive patients between 1995 and 2005 at Stanford. Median patient age of 28 years at transplant (range: 9-59 years; 92% male); four patients (11%) between 0-19 years. Primary tumor sites included 24 testes/adnexal, 10 chest/neck/ retroperitoneal, and 3 central nervous system.

Table 16. E	Benefits and h	arms after tr	eatment for	germ-cel	ll tumors
Sauraa					

CI = confidence interval; HDC = high-dose chemotherapy; HSCT = hematopoietic stem-cell transplant; VOD = veno-occlusive disease

Guidelines

Our search identified two guidelines for the treatment of GCT. Both guidelines were from NCCN and were not specific to childhood disease.^{117, 118} The NCCN testicular cancer guidelines¹¹⁸ recommend HDC with HSCT as the preferred third-line option for metastatic disease if the patient experiences an incomplete response or relapses after second-line conventional dose chemotherapy. This recommendation is based on lower-level evidence and uniform NCCN consensus (Category 2A) In addition, HDC with HSCT is recommended as one therapeutic option for patients with poor prognostic features including an incomplete response to first-line therapy, high levels of serum markers, high-volume disease and presence of extratesticular primary tumor. This recommendation is based on lower-level evidence, including clinical experience and nonuniform NCCN consensus, but no major disagreement (Category 2B) Alternatively, the patients may be put on best supportive care or salvage surgery if feasible.¹¹⁸ The NCCN ovarian cancer guidelines,¹¹⁷ on the other hand, recommend HDC with HSCT as one therapeutic option for patients having persistently elevated alpha-fetoprotein and/or beta-human chorionic gonadotropin levels after first-line chemotherapy. This recommendation is based on lower-level evidence and uniform NCCN consensus (Category 2A)

Summary

Although there is not sufficient literature to firmly establish the role of HDC with autologous HSCT for relapsed pediatric germ-cell tumor, studies in adult patients with similar tumors show efficacy in poorly responsive or relapsed disease. Further study is needed in young children and adolescents to determine whether the efficacy noted in adult studies can be extrapolated to pediatric patients.

Central Nervous System Embryonal Tumors

Background

Classification of brain tumors is based on both histopathologic characteristics of the tumor and location in the brain.¹²² Central nervous system (CNS) embryonal tumors are the most common malignant brain tumor in childhood. Embryonal tumors of the CNS include medulloblastoma, ependymoblastoma, supratentorial primitive neuroectodermal tumors (PNETs), medulloepithelioma, and atypical teratoid/rhabdoid tumor (AT/RT).¹²²

Medulloblastomas account for 20 percent of all childhood CNS tumors.^{123, 124} The other types of embryonal tumors are rare by comparison ¹²². Surgical resection is the mainstay of therapy with the goal being gross total resection with adjuvant radiation therapy, as medulloblastomas are very radiosensitive tumors.^{124, 125} Treatment protocols are based on risk stratification, as average or high risk. HSCT is used in high-risk disease, including metastatic, and recurrent or residual following surgery and chemotherapy. The average-risk group includes children older than 3 years, without metastatic disease, and with tumors that are totally or near totally resected (i.e., less than 1.5 cm² of residual disease).¹²⁴ In addition, patients with non-anaplastic medulloblastoma are considered to be at average (or standard) risk, and those with anaplastic disease at high risk. The high-risk group includes children aged 3 years or younger, or with metastatic disease, and/or subtotal resection (i.e., more than 1.5 cm² of residual disease).¹²⁴ The treatment of medulloblastoma continues to evolve, and, especially in children younger than 3 years because of the concern of the deleterious effects of craniospinal radiation on the immature nervous system, therapeutic approaches have attempted to delay and sometimes avoid the use of radiation, and have included trials investigating different chemotherapy regimens to improve outcome.¹²²

PNETs are a heterogeneous group of highly malignant neoplasms comprising 3 to 5 percent of all childhood brain tumors, most commonly located in the cerebral cortex and pineal region.^{123, 125} AT/RT, on the other hand, is a tumor of early childhood, with nearly two-thirds of cases diagnosed before the age of 3 years.^{123, 125, 126} The prognosis for these tumors is worse than for medulloblastoma, despite identical therapies.^{122, 123, 125} Recurrence of all forms of CNS embryonal tumors is not uncommon, usually occurring within 18 months of treatment; however, recurrent tumors may develop many years after initial treatment.¹²² Many centers have used HDC with HSCT in the setting of high-risk disease.

Evidence Base

The evidence compiled for this review includes seven case series published since 2005.¹²⁷⁻¹³³ No RCTs, registry reports, or clinical practice guidelines for the treatment of childhood CNS embryonal tumors with HSCT were identified in the literature search. In addition, no systematic reviews or health technology assessments were found on CNS embryonal tumors (Table 17).

Published information on outcome for children with CNS embryonal tumors is based on small series and is retrospective in nature (Table 18).

Year of First HSCT Performed	No. of Transplants to Date	Existing Clinical Evidence	Registries					
Mid 1990s	>150	Retrospective case series	None					
HOCT 1 sector information and								

Table 17. CNS embryonal tumors evidence base

HSCT = hematopoietic stem cell transplant

Guidelines

No guidelines on the treatment of CNS embryonal tumors were identified in the search.

Summary

Overall, there is a favorable risk-benefit profile for the role of HDC with HSCT in young children with high-risk or recurrent medulloblastoma supported by case series published in the past 5 years. Data is limited regarding the use of this therapy for other childhood CNS embryonal tumors. Comparison of the effects of HSCT between treatment trials remains challenging given the heterogeneity of these tumors, use of different combinations of chemotherapy as well as radiation therapies, and varied patient selection.

Source (Evidence Type)	Treatment	Indications	Benefits	Harms	Comment
Butturini et al. 2009 ¹²⁷ (case series)	HDC with autologous HSCT	Relapsed or residual	3-year OS of 83% (SE, 15%); EFS of 83% (SE, 15%) [in patients without prior radiotherapy, n=6]; 3-year OS of 29% (SE, 13%); EFS of 20% (SE, 12%) [in patients with prior radiotherapy, n=13]	Treatment-related deaths in one patient without prior radiotherapy, and in four patients with prior radiotherapy; Post-transplant recurrence in six patients with prior radiotherapy.	19 patients recruited between 1992-2008; Median age at transplant, 4.5 years (range, 1.7- 5.8) in patients with no prior radiotherapy; 9.9 years (4-18.2) in patients with prior radiotherapy; MB and PNET (supratentorial location at diagnosis, 17-30%)
Grodman et al. 2009 ¹²⁹ (case series)	HDC with autologous HSCT	Relapsed or residual	5-year OS of 50% (95% CI, 15- 77%)	Neurotoxicity in two MB patients	8 patients recruited between 1995-2002; Mean age at transplant, 12.9 years (range, 5.6-27.8); MB (n=7, 87.5%) and germinoma (n=1)
Cheuk et al. 2008 ¹²⁸ (case series)	HDC with autologous HSCT	Relapsed or residual	5-year OS of 51.9%; EFS of 53.9%; Subgroup analysis for MB patients (n=9): 5-year OS of 51.9%; EFS of 55.6%	Transplant-related death in one patient; Hepatic VOD in two patients; Grade 4 renal toxicity in one patient	13 patients recruited between 1996-2006; Mean age at transplant, 8.5 years (range: 2.7- 20); MB (n=9, 69%), PNET (n=1), ependymoma (n=1), germ- cell tumor (n=1), and cerebral rhabdoid (n=1)
Kadota et al. 2008 ¹³⁰ (case series)	HDC with autologous HSCT	Relapsed or residual	2-year OS of 59% (SE, 9%); PFS of 34% (9%).	No treatment-related deaths; Infections in 15 patients (52%); Stomatitis in 12 patients	29 patients recruited between 1994-2003; median age of 9.8 years (range, 4.3-17.1); MB (n=22, 76%) and germinoma (n=7)
Shih et al. 2008 ¹³² (case series)	HDC with autologous HSCT	Relapsed or residual	5-year OS of 28% (SE, 9.8%); PFS of 18.5% (SE, 8.4%); 5-year PFS for patients aged <3 years at diagnosis significantly better than older patients (57% vs. 5%, p = 0.02)	Transplant-related death in two patients; 44% of patients experienced grade 3/4 transplant-related toxicity	27 children recruited between 1989-2004; Median age at transplant, 6.7 years (range, 1.1 – 18.5); Six patients aged \leq 3 years at transplant) MB (n=13, 48%), PNET (n=5), AT/RT (n=2) and other CNS tumors (ependymoma, n=3; anaplastic astrocytoma, 2; glioblastoma, n=2)

Table 18. Benefits and harms after treatment for CNS embryonal tumors

Source (Evidence Type)	Treatment	Indications	Benefits	Harms	Comment
Ridola et al. 2007 ¹³¹ (case series)	HDC with autologous HSCT	Relapsed or residual	5-year OS of 77.2% (95%Cl, 58.3-89.1%); EFS of 66.7% (47.8-81.4%) [in patients with local recurrence, n=27] 5-year OS of 50% (95% Cl, 25.4- 74.6%); EFS of 50% (25.4- 74.6%) [in patients with residual disease, n=12]	Two toxic deaths (5) from infections; Severe infections in 28%; Hepatic VOD in 33%	39 children with MB between 1988-2005; Median age at transplant, 3.25 years (range, 0.9-6.7); 64% (n=25) of patients received varied therapy prior to transplant
Sung et al. 2007 ¹³³ (case series)	HDC with autologous HSCT	Relapsed or residual	3-year OS of 25.6% (SE, 15%); EFS of 29.1 ± 15.7%	Transplant-related deaths in two patients	11 patients recruited between 1999-2005; median age, 8.2 years (3.75-17.2); MB (n=7, 64%) and PNET (n=4) 3 (of 11) MB patients received tandem therapy

 Table 18. Benefits and harms after treatment for CNS embryonal tumors (continued)

AT/RT = atypical teratoid/rhabdoid tumor; CI = confidence interval; EFS = event-free survival; HDC = high-dose chemotherapy; HSCT = hematopoietic stem-cell transplant; MB = medulloblastoma; PFS = progression-free survival; PNET = supratentorial primitive neuro-ectodermal tumor; SE = standard error; OS = overall survival; VOD = veno-occlusive disease

Narrative Reviews: Nonmalignant Disease

Hemoglobinopathies

Characterized by inherited lifelong anemia hemoglobinopathies are a class of diseases defined by the abnormal function or synthesis of the hemoglobin molecule.¹³⁴ Within this disease class sickle-cell disease (SCD) and thalassemias are the most common (Table 19). The patients are faced with major morbidity and premature mortality. HSCT is the only treatment with a curative intent.

Sickle-Cell Disease

Background

Sickle-cell disease is a genetic hemoglobin disease causing severe pain crisis and dysfunction across organ systems, ultimately leading to premature death. The disease is caused by amino acid substitutions that alter the structure and function of the hemoglobin molecule. Sickle-cell disease occurs when the hemoglobin S gene is inherited from both parents. Worldwide, approximately 275,000 sickle-cell-affected conceptions and births occur each year.¹³⁵ Average life expectancy is estimated at between 42 and 53 years for men and between 48 and 58 years for women.¹³⁶ At age 5, 95 percent of patients will be asplenic, leaving them highly susceptible to infection and sepsis, the leading cause of death among young patients with sickle-cell disease.¹³⁴ Clinical management includes three major therapeutic options: chronic blood transfusion, hydroxyurea, or HSCT. While the long-term use of blood transfusion has been shown effective at preventing stroke and other sickle-cell complications, it may lead to iron overload, infection, and alloimmunization.¹³⁷ HSCT is the only treatment with a curative intent, aiming to remove sickled red blood cells and progenitor stem cells and replace them with stem cells able to express total or at least partial correction of the abnormal hemoglobin phenotype.¹³⁸

Evidence Base

The evidence compiled for this review includes two literature reviews^{139, 140} and one systematic review on the use of hydroxyurea containing data from one RCT and 22 observational studies.¹⁴¹ One clinical practice guideline for the treatment of sickle-cell disease with HSCT¹⁴² and no health technology assessments were identified in the literature search.

For patients in whom HSCT is indicated, the review of the literature (Table 20) shows for median followup ranging from 0.9 to 17.9 years overall survival of greater than 92 percent and event free survival of greater than 82 percent have been observed. Cord blood and marrow donations from family donations have been used with equal success; although current numbers are small.^{143, 144}

Disease	Year of First HSCT Performed	No. of Transplants to Date	Existing Clinical Data	Registries
Sickle cell disease	1984	Approximately 250	Review, case series, case reports	The Registry and Surveillance System in Hemoglobinopathies (RuSH) is a new collaborative registry with the NHLBI, CDC and six US states (California, Florida, Georgia, Michigan, North Carolina, and Pennsylvania) to study Hemoglobinopathies in the U.S. ¹⁴⁵ EBMT has a hemoglobinopathies registry.
β-thalassemia	1981	>1600	Review, case series, case reports	Registries are maintained in the United Kingdom (National Register of Inherited Disorders), Iran and Oman The Registry and Surveillance System in Hemoglobinopathies (RuSH) is a new collaborative registry, with the NHBIL, CDC and six US states (California, Florida, Georgia, Michigan, North Carolina, and Pennsylvania) to study Hemoglobinopathies in the U.S. ¹⁴⁵ (Under development, in pilot phase) EBMT has a hemoglobinopathies registry.

Table 19. Evidence base for HSCT in hemoglobinopathies

CDC = Centers for Disease Control and Prevention; EBMT = European Group for Blood and Marrow Transplantation; HSCT = hematopoietic stem cell transplant; NHLBI = National Heart, Lung and Blood Institute

Disease	Source	Treatment	Indications	Benefits	Harms	Comment
Sickle cell disease	Inati, 2009 ¹⁴⁰ (literature review)	Blood transfusion with leukoreduced red cells	Acute or episodic symptoms or long term management of SCD Primary stroke prevention	Risk of stroke was 92% lower in the group receiving transfusions compared to the non- transfusion group at 26 months.	Chronic blood transfusion leads to iron overload and organ damage.	Trial was halted at 26 months followup because of ethical concerns of withholding transfusion.
Sickle cell disease	Strouse et al. 2008 ¹⁴¹ (systematic evidence review)	Hydroxyurea (HU)	Primary treatment for patients experiencing recurrent pain crisis or acute chest syndrome Recurrent stroke prevention	Hemoglobin levels increased by a mean of 0.4 g/dl while on treatment. Both hospitalizations and hospitalized days were lower when on treatment 1.1 vs. 2.8 and 7.1 vs. 23.4 days respectively. Observed in 17 studies HbF% increased from 5- 10% at baseline to 15-20% during treatment. Frequency of pain crisis decreased in three of four studies From an average of 3.4 to 1.3 per year, ^{k,I,m} with one study showing no difference ⁿ .	Evidence was graded by the authors as Moderate to support an increased risk of reversible, usually mild, cytopenias and rash or nail changes in children treated with HU.	Systematic evidence review contained data from one RCT and 22 observational studies. Data from the observational studies were largely consistent with the RCT. We summarize the most relevant outcomes from the RCT and observational data. Evidence was graded ¹⁴⁶ by the authors as insufficient to assess the risk of leukemia or other secondary malignancies, splenic sequestration, and leg ulcer development.

Table 20. Benefits and harms after treatment for hemoglobinopathies

Disease	Source	Treatment	Indications	Benefits	Harms	Comment
Sickle cell disease	Bhatia and Walters 2008 ¹³⁹	Allogeneic HSCT	Severe SCD	-Overall survival 92- 94% ^{a,b,c} -Patients with	-15-20% aGVHD ≥ grade 2 -cGVHD 12-20% -Treatment related mortality 6-	Age range at transplant (0.9-22 years) ^{a.b.c}
	(literature review)			asymptomatic disease do better OS 100 vs. 88% and EFS	7% - Graft rejection 7-10% (all data from a,b,c)	Median years of followup ranged from 0.9 to 17.9 years. ^{a,b,c,}
				93 vs. 76% ^b -Event free survival 82-86.1% ^{a,b,c}	- ovarian failure is common among SCD patients after HSCT, however the sample	Infections are the major cause of treatment related mortality.
					sizes are too limited to make inferences. 5/6 females who received Bu16/CY200 had primary amenorrhea, ^b and in the Multicenter collaborative study six of the seven	All patients in these series were conditioned with Bu 14-16 mg/kg or 485 mg/m ² with CY200; ATG was also used in the French and multicenter studies.
					evaluable females had primary amenorrhea ^a . In the three major series of HSCT among SCD, males receiving Bu16/CY200 had normal sexual development.	Note, the intervention (allogeneic HSCT) refers to HLA-identical donors only.

Table 20. Benefits and harms after treatment for hemoglobinopathies (continued)

Disease	Source	Treatment	Indications	Benefits	Harms	Comment
		Transfusion with leukoreduced red cells	Long term management		Chronic blood transfusion leads to Iron overload and organ damage.	
β-thalassemia major	Bhatia and Walters 2008 ¹³⁹	Allogeneic HSCT		-Thalassemia free survival (TFS) 73% ^d -TFS by class; 94, 77 and 53% for class 1,2 and 3 respectively ^d . -Overall survival 65- 100% ^{e,f,g,h} - 2 year event free survival 79% ^f	32-47.3% aGVHD ≥ grade 2 e.g.h 14-37.5% cGVHD ^{e.g.h} 10-34% Treatment related mortality ^{e, g,h} Rates are unclear due to small numbers but a study of endocrine function after HSCT in 15 patients (10 male 5 female) followed for 12 years, 20% of boys (2/10) had gonadal failure, 100% of girls experienced ovarian failure, an additional five girls who had entered puberty prior to HSCT also experienced 100% ovarian failure after HSCT. ⁱ	Overall survival estimate of 100 came from a mixed cohort of thalassemia and SCD ^f . - 2 year EFS came from 33 thalassemia patients in the cohort. ^f Rates for aGVHD and cGVHD include transplants with related and unrelated donors. One study reported aGVHD in 11% and cGVHD of 6% of patients but 25% of that cohort are patients with SCD. ^f The largest study (886 patients) does not report on aGVHD. ^d

Table 20. Benefits and harms after treatment for hemoglobinopathies (continued)

aGVHD = acute graft vs. host disease; ATG = antithymocyte globulin; cGVHD = chronic graft versus host disease;

HSCT = hematopoietic stem cell transplant; RCT = randomized controlled trial; SCD = sickle-cell disease

a Walters et al. 2000¹³⁸ multicenter study of 59 children with SCD treated with HSCT; b Vermylen et al. 1998¹⁴⁷ case series of first 50 patients with SCD transplanted in Belgium; c Bernaudin et al. 2007¹⁴⁸ results from 87 patients with SCD treated with HSCT;

c Bernaudin et al. 2007¹⁴⁷ results from 87 patients with SCD treated with Fi d Lucarelli et al. 2002¹⁴⁹ 886 patients with thalassemia; e La Nasa et al. 2005¹⁵⁰ 68 patients; f Locatelli et al. 2003¹⁴⁴ 33 thalassemia and 11 patients with SCD; g Hongeng et al. 2006¹⁵¹ 49 thalassemia; h Gaziev et al. 2000¹⁵² 29 thalassemia; i Li et al. 2004¹⁵³ study of endocrine function after HSCT for thalassemia;

j Ferster et al. 1996¹⁵⁴ randomized cross-over trial of 25 patients receiving hydroxyurea for SCD at 2 sites; k Olivieri and Vichinsky, 1998¹⁵⁵;

l Santos et al. 2002¹⁵⁶, m Svarch et al. 2006¹⁵⁷; n Hankins et al. 2005¹⁵⁸; o Adams et al. 1998¹⁵⁹ RCT on transfusion for SCD of 130 children

Guidelines

Guidelines for the treatment of sickle-cell disease with HSCT come from the criteria developed by Walters et al.¹⁴²

Patients younger than 16 years old with sickle-cell disease who have an HLA-identical sibling bone marrow donor with one or more of the following are eligible for HSCT:

- Stroke, central nervous system (CNS) hemorrhage or a neurologic event lasting longer than 24 hours or abnormal cerebral magnetic resonance imaging (MRI) scan or cerebral arteriogram or MRI angiographic study and impaired neuropsychological testing
- Acute chest syndrome with a history of recurrent hospitalizations or exchange transfusions
- Recurrent vaso-occlusive pain three or more episodes per year for 3 or more years or recurrent priapism
- Impaired neuropsychological function and abnormal cerebral MRI scan
- Stage I or II sickle lung disease
- Sickle nephropathy (moderate or severe proteinuria or a glomerular filtration rate [GFR] 30–50 percent of the predicted normal value)
- Bilateral proliferative retinopathy and major visual impairment in at least one eye
- Osteonecrosis of multiple joints with documented destructive changes
- Requirement for chronic transfusions but with RBC alloimmunization of more than two antibodies during long-term transfusion therapy

Summary

Overall there appears to be a favorable risk-benefit profile for the treatment of severe sickle cell disease with HSCT for patients aged younger than 16 years who have an HLA-identical sibling donor and are candidates for transplant as indicated by the presence of one of the complications listed above. Approximately 14 to 18 percent of patients with sickle-cell disease have an HLA-identical matched sibling, and therefore the majority of patients rely on transfusion and/or hydroxyurea for their clinical management. The use of well-matched unrelated donors for HSCT for patients with severe sickle cell disease is currently under study (ClinicalTrials.gov record NCT00745420 BMT-CTN trial 0601).

β-Thalassemia Major

Background

Thalassemia is considered to be the most common genetic disorder in the world.¹⁶⁰ Thalassemia is caused by mutations in the globin genes that either reduce or eliminate the production of one of the globin chains.¹⁶¹ Reduction or absence of the β -globin chain results in β thalassemia. The most severe form is β -thalassemia major, where individuals have severe anemia and are dependent on transfusions for survival. Approximately 150 million people carry β thalassemia genes. β -thalassemia major defines the most severe group of patients who have transfusion-dependent anemia with transfusions often beginning as early as 6 months of age. Signs of the disease usually appear within the first year of life and life expectancy is severely reduced among these patients. Prior to 1980, median survival was 17.1 years with 50 percent of patients dying before age 15 years.¹⁶²⁻¹⁶⁵ Among patients who are adherent with iron chelation therapy, there is a 30 to 60 percent chance of being alive at age 30 versus 10 percent for a those who are not.^{164, 166, 167} Clinical management for β -thalassemia major relies on life-long transfusion support, which when adequately provided can prevent much of the morbidity and mortality of the disease. However, the only potentially curative treatment for thalassemia is to correct the genetic defect through HSCT.

Evidence Base

The evidence compiled for this review was contained in a 2008 literature review by Bhatia and Walters.¹³⁹ No clinical practice guidelines or health technology assessments on the use of HSCT for β -thalassemia major were identified in the search.

Patients with β -thalassemia major selected for transplant are placed into one of three risk categories based on clinical features of the disease:

- Adherence to a program of regular iron chelation therapy
- Presence or absence of hepatomegaly
- Presence or absence of portal fibrosis observed by liver biopsy

Patients placed in class 1 have none of the risk factors, class two patients have one or two, and patients in class three have all three risk factors. Outcomes after HSCT vary by class (Table 20).¹⁴⁹

Review of the literature shows thalassemia-free survival after HSCT of 73 percent overall, and 94, 77, and 53 percent for classes 1, 2, and 3, respectively. Overall survival estimates range from 65 to 100 percent.

Guidelines

No guidelines for the treatment of β -thalassemia major with HSCT were identified in the search.

Summary

Overall there appears to be a favorable risk-benefit profile for the treatment of β -thalassemia major with HSCT for patients who have an HLA-identical family donor. Approximately 30 to 36 percent¹⁴⁹ of patients has an HLA-identical family donor, the remainder rely on lifelong transfusion for the clinical management of the disease. For those patients with a suitable donor, avoidance of the complications of long-term transfusion may outweigh the risks of HSCT. However, prior to HSCT, adherence to iron chelation is essential, as rates of thalassemia-free survival are worse for those with complications due to iron overload.

Bone Marrow Failure Syndromes

Bone marrow failure syndromes (BMF) comprise a broad number of diseases with varying etiologies (Table 21). The unifying factor is that hematopoiesis is abnormal or fully arrested in at least one cell line.¹⁶⁸ BMF can either be acquired, as in acquired aplastic anemia, or congenital as is the case in patients with Fanconi anemia, Diamond Blackfan anemia, and Schwachman Diamond syndrome.

Acquired Bone Marrow Failure Syndrome

Acquired Aplastic Anemia

Background

Acquired aplastic anemia is a failure of the bone marrow to produce red and white blood cells, as well as platelets. Approximately 80 percent of all cases of aplastic anemia are acquired versus congenital. While disease onset can occur at any age, it preferentially occurs in young adults and individuals over 60 years of age.¹⁶⁹ Patients with acquired aplastic anemia are classified according to the severity of marrow aplasia.¹⁷⁰ The urgency of treatment is dictated by the patient's absolute neutrophil count and the duration of severe neutropenia, which is correlated to survival.

Disease	Year of First HSCT Performed	No. of Transplants to Date	Existing Clinical Data	Registries
Acquired Aplastic Anemia	Early 1970s	Unclear	RCTs, review, case reports, case series	None
Fanconi Anemia	Early 1970s	Unclear	Review, case series, case reports	The International Fanconi Anemia Registry (est. 1982) to study the features of Fanconi anemia. The registry is housed at Rockefeller University, and contains data on more than 1000 patients with FA in the U.S. (www.rockefeller.edu)
Schwachman Diamond Syndrome	1991	Approximately 30 reported	Review, case series, case reports	The North American SDS Registry, Fred Hutchinson Cancer Research Center, seeks to register all SDS cases in the U.S. and Canada. (www.shwachman- diamond.org/)
Dyskeratosis Congenita	Unclear	30 patients reported	Reviews, case series, case reports	The Dyskeratosis Congenita Registry established in 1995, Hammersmith Hospital, London, and includes data on the epidemiology pathophysiology, genetics and treatment of DC. Information from 200 families, in 40 countries and more than 350 affected individuals. ¹⁷¹
Congenital Amegakaryocytic Thrombocyto- penia	1990	52 patients	Reviews, case series, case reports	None found
Diamond Blackfan Anemia		Unclear	Reviews, case series, case reports	The Diamond Blackfan Anemia registry of North America, established in 1993 and housed at Schneider Children's Hospital, New York includes demographics, lab, and clinical data on over 500 patients with DBA in the U.S. and Canada. (Bagby et al. 2004 ¹⁷² and www.dbar.org)

Table 21. Listing of bone marrow failure syndromes and their evidence base

Table 21. Listing of	of bone marrow failure	syndromes and their	evidence base	(continued)
· •		• • • • • • • • • • • • • • • • • • • •	••••••	(

Disease	Year of First HSCT Performed	No. of Transplants to Date	Existing Clinical Data	Registries
Severe Congenital Neutropenia/ Kostmann Syndrome	1980	40 patients	Reviews, case series, case reports	The Severe Chronic Neutropenia International Registry, est. 1994, University of Washington has the largest collection of SCN long-term data (depts.washington.edu/registry). As of 2003, the French Severe Chronic Neutropenia Registry, created in 1994 included 101 patients with SCN (Ferry et al. 2005 ¹⁷³)

DC = Dyskeratosis congenita; DBA = Diamond Blackfan anemia; FA = Fanconi anemia; RCT = randomized controlled trial; SCN = severe congenital neutropenia; SDS = Schwachman Diamond syndrome

The standard of care for treatment of aplastic anemia is immunosuppression and/or HSCT. The patient's age, medical history (such as number of prior blood transfusions and infections) and the availability of a matched sibling donor guide treatment decisions.¹⁷²

Evidence Base

The evidence compiled for this review includes one literature review.¹⁶⁸ One clinical practice guideline¹⁷² but no health technology assessments for the treatment of childhood acquired aplastic anemia with HSCT were identified in the literature search. The evidence base on the use of HSCT for treatment of acquired aplastic anemia is summarized in Table 22.

The literature review¹⁶⁸ reports for patients without a matched sibling donor immunosuppression can offer 89 percent 10-year survival among responders. Seventeen to 34 percent will eventually require HSCT as salvage therapy and the long term use of immunosuppressants leave the patient at higher risk for infection and an increased rate of MDS/AML of 8 to 25 percent. For patients with a matched sibling donor survival rates after transplant are far better reaching 98 percent in some series. A matched sibling bone marrow transplant may offer better survival 85 percent versus 73 percent with peripheral blood stem cells and a lower risk of graft versus host disease. Various conditioning regimens are available and are associated with varied rates of adverse events.

Guidelines

Guidelines for the treatment of acquired aplastic anemia with HSCT were published by Bagby et al.¹⁷²

The treatment algorithm recommends:

- patients younger than 35 years with a matched sibling donor, HSCT as first-line therapy,
- patients older than 35 years or no matched sibling donor, immunosuppressive therapy as first-line therapy,
- HSCT as treatment for those refractory to immunosuppression.

Summary

Overall there appears to be a favorable risk-benefit profile for the treatment of acquired aplastic anemia with HSCT. Clinical management entails immunosuppression and HSCT. In general younger patients with a matched sibling donor are encouraged to pursue HSCT, while older patients who are less tolerant of transplant or those without a matched sibling donor are

first put on immunosuppressive therapy. For those receiving transplant, control of graft-versushost disease is essential in achieving high rates of survival. Selection of a conditioning regimen influences the harms associated with transplantation.

Disease	Source	Treatment	Indications	Benefits	Harms	Comment
	Acquired Aplastic Anemia	Immuno- suppres- sive therapy	- Front line therapy in those without a matched sibling donor	 - 68%^a-80%^b overall survival at 10 years. - 89%^b overall survival if confined to responders to therapy. - disease free survival 40% at 10 years ^c 	 Patients left at higher risk for infection due to use of IST for 2-3 years. Higher rates of clonal evolution with repeat IS^{d.} increased rates for MDS and AML ranging from 8%-25%^{d, e, f} 	-17-34% of SAA patients treated with IST will eventually require HSCT as salvage therapy ^{g.} Not pediatric patients median age 32 (2- 80) ^{e.}
Acquired Aplastic Anemia		nd re Allogeneic HSCT	- Front line therapy for those with a matched sibling donor	 matched sibling donors overall survival ranges from 85-98% c.g.h.i. Survival for those with GVHD grade 0-1 98% versus 70% in recipients with grade II-IV^{i.} Five year overall survival after transplant with matched sibling peripheral blood stem cells 73% versus 85% after matched sibling bone marrow transplant. 	 -relative risk for mortality of 2.04 (1.09-3.78) for those receiving PBSC versus bone marrow. - relative risk of GVHD 2.82 (1.46-5.44) for PBSC vs. BMT^j. - Kaplan-Meier estimate of risk of secondary malignancy after myeloablative transplantation for SAA 14%^k -Development of GVHD -restrictive or obstructive pulmonary disease 24%¹ 	Age range at transplant 4-46 (median ~19) ^{i.} The type of conditioning regimen seems to have a greater association with adverse outcomes such as stunted growth, altered endocrine and pulmonary function, bone marrow density, and for those receiving radiation-containing regimens affects on fertility.
			- Treatment for those refractory to immuno- suppressive therapy. (Unrelated donor)	-84% 5 year failure free survival for unrelated matched donor HSCT vs. 11% for repeat course of immunotherapy after one failed course. -73% 2 year survival, and 84% for children 14 years or younger -unrelated ^{m.} mismatched donor 34- 40% survival ^{n,0}	-Development of GVHD -restrictive or obstructive pulmonary disease 24% ¹	Age range at transplant = 1.8-67, median 14 years ^{k.} Age range at transplant 1-42, median 18 years ^{l.} Five donors (13%) were HLA mismatched family members ^{m.} Median age of these patients is approximately 18 years with a range of (1-65), and all patients may not be refractory to suppressive therapy ^{o.}

 Table 22. Benefits and harms after treatment for bone marrow failure syndromes

Disease	Source	Treatment	Indications	Benefits	Harms	Comment
Fanconi Anemia	Dufour and Svahn, 2008 ¹⁷⁴ (Literature Review)	Androgen Therapy	- Front line therapy for those with no matched sibling donor	75% of patients will respond to androgen therapy ^p within 2-12 months	 virilization hyperactivity renal toxicity hypertension Possible adverse effect on subsequent HSCT ^{q, r} 	Response is incomplete and generally drug dependent, additionally the age of responders is not mentioned in this article. ^p Age range at transplant = 4-37.4, median 10.8 years ^{q.} Age range at transplant = 7-31, median 8 years ^{r.} Combining androgens with corticosteroids can help to minimize liver toxicity ^{s.} however, age of patients is not discussed in this article.

 Table 22. Benefits and harms after treatment for bone marrow failure syndromes (continued)

Disease	Source	Treatment	Indications	Benefits	Harms	Comment
			- Front line therapy for those with a matched sibling donor	-10 year survival of 89% after transplant with peritransplantation ATG ^{qq} - 88% sustained engraftment and 93% overall survival when Cyclophosphamide (Cy) is used alone as immunosuppressive agent ^{ff}	-acute GVHD 23% -chronic GVHD 12% ^q with peritransplantation ATG -acute GVHD 57% for those receiving 80 mg/kg, 14% aGVHD for patients receiving 60 mg/kg of CY. -chronic GVHD 33% for those receiving 80 mg/kg and 11% for those receiving a dose of 60 mg/kg ^{v.}	Age range at transplant = 5-29, median 9 ^{u.} Age at transplant 2.7-22.9 years, median 7.6 years ^{q.}
Fanconi Anemia	Myers and Davies, 2008 ¹⁶⁸ (Literature Review)	Allogeneic HSCT	- Front line therapy in those using an unrelated donor	-survival rates 38%- 96% when using Flu- based conditioning regimen ^{w,x,y,z,aa} -decrease in treatment related mortality from 81% to 47% ^w - 3 year overall survival 52% for fludarabine containing regimens vs. 13% for fludarabine- free regimens - 42% overall survival (50% for those on fludarabine vs. 25% for those on fludarabine free regimens) when using umbilical cord blood transplant ^{bb}	-acute GVHD 21% with Flu- free ^{ww} -acute GVHD 16% with Flu ^{vv} -chronic GVHD 31% ^{dd} -acute GVHD 32.5% -chronic GVHD 16% when using umbilical cord blood transplant ^{cc}	Of total n=98, 39% (n = 38) \leq 10 years, 44% (n = 43) 11-20 years, and 17% (n = 17) > 20 years at transplant. No age- group analysis of the flu group provided W. Age range at transplant 7-31, median age 8 years, and survival of 38% reported in a group with mixed conditioning regimens ^z . Age range at transplant = 5-24, median 11. Fourteen of 18 patients (78%) < 20 years ^{aa.} For the Flu vs. Flu free sub-group analysis age range 1-45, median age 8.6 years ^{bb.} This is using t-cell depleted stem cells. FA patients have heightened sensitivity to GVHD tissue damage and GVHD likely increases an already high rate of later malignancy

Table 22. Benefits and harms after treatment for bone marrow failure syndromes (continued)

Disease	Source	Treatment	Indications	Benefits	Harms	Comment
Schwachman- Diamond Syndrome	Myers and Davies, 2009 ¹⁶⁸ (Literature Review)	Allogeneic HSCT	SDS patients with marrow aplasia, MDS/AML	 -60% 5-year survival using a fully myeloablative regimen, with a matched or unmatched donor ^{ee, f.} -100% engraftment and 100% survival among 7 patients with marrow aplasia or MDS/AML who received a reduced intensity Flu- based conditioning regimen ⁹⁹. Overall survival 64.5% at 1.1 years ^{hh.} 	- virilization - hyperactivity - renal toxicity - hypertension	Transplants with matched related or unrelated donor. Case report of 3 patients, only one followed >5 years. ^{ee.} Survival >60% if one adult patient who died 32 days after transplant is excluded. ^{f.} Six of seven patients <13, one patient was age 29. ^{gg}
	Burroughs, Woolfrey and Shimamura, 2009 ¹⁷⁵ (Literature Review)		SDS patients with marrow aplasia, MDS/AML		-Grade III and Grade IV GVHD 24% and 29% ^{ii.} Transplant related Mortality 35.5%, with higher rates 67% vs. 20% for those receiving a TBI containing regimen ^{ii.} 19% graft failure (5 patients)	Burroughs, Woolfrey and Shimamura, 2009 ¹⁷⁵ (Literature Review)

Disease	Source	Treatment	Indications	Benefits	Harms	Comment
Dyskeratosis Congenita	Myers and Davies, 2009 ¹⁶⁸ (Literature Review)	Androgen therapy with oxymetholo ne	First line therapy for those in bone marrow failure without a matched donor.	Androgen therapy may produce some improvement in hemopoietic function in some patients for a variable amount of time.	 - increased incidences of chronic pulmonary and vascular complications, particularly pulmonary fibrosis. For patients with matched donor Mortality rates of - 50% using CY and ATG conditioning - 85% using CY alone.^{jj} (ages 2-33, 1/3 of patients were over 18) 	No quantitative data were found. The mechanism of action is also not well understood, but it appears to promote direct growth of hemopoietic progenitors. ^{kk} Long term toxicity and harm data is not available as followup has only reached two years on a few patients alive after transplant.
	De la Fuente and Dokal, 2007 ¹⁷⁶ (Literature Review)	Allogeneic HSCT	First line therapy for those with bone marrow failure who have a matched related donor.	- 86% survival among 7 patients transplanted using nonmyeloablative procedures ^{u -qq.}		These are a mixture of matched related and matched unrelated donors. Long term outcomes do not exist due to the fact that survival from HSCT has historically been low.
Dyskeratosis Congenita	MacMillan et al. 1998 ¹⁷⁷ (two case reports)	Allogeneic HSCT	First line therapy Matched Unrelated		-Patient 1 developed grade 1 GVHD, hemorrhagic cystitis, three episodes of E. coli sepsis and hypertension -Patient 2 developed grade 2 GVHD, hemorrhagic cystitis and hypertension.	

Table 22. Benefits and harms after treatment for bone marrow failure syndromes (continued)

Disease	Source	Treatment	Indications	Benefits	Harms	Comment
Congenital Amegakaryoc ytic Thrombocytop enia	Kudo et al. 2002 ¹⁷⁸ (Case Reports)	Allogeneic HSCT	First line therapy matched unrelated donor	-Patient 1 engrafted after 16 days and survived for one year post-transplant - Patient 2 engrafted on day 14 and was alive at the time of publication		
	MacMillan, et al. 1998 ¹⁷⁷ (Case Reports)			 Patient 1 was alive 16 months after a second transplant (failed engraftment on the first transplant) Patient 2 failed two transplants (UCB, BM), then engrafted after the third transplant (UCB) and was alive 7 months after transplant 		
	Steele et al. 2005 ¹⁷⁹ (Case Report)			Patient was alive 21 months after transplant - engraftment on day 10	-Developed grade 1 GVHD, and alopecia - had a severe allergic and febrile reaction to equine ATG so was switched to rabbit ATG.	
	Al-Ahmari et al. 2004 ¹⁸⁰ (Five Case Reports)		First line therapy matched related	80% of the patients were alive at a median followup of 30 months. - one patient failed to engraft and subsequently died after another failed transplant.	aGVHD ≥ grade 2 was observed in three patients - one patient has cGVHD but symptoms were under control. -80% developed transient hypertension - one patient developed veno- occlusive disease, which resolved with conservative measures	Three donors were siblings and two were parents.

Disease	Source	Treatment	Indications	Benefits	Harms	Comment
Congenital Amegakary- ocytic Thrombocy- topenia	Yesilipek et al. 2000 ¹⁸¹ (Case Report)	- Allogeneic HSCT	First line therapy matched related	- patient alive 20 months post transplant with PSC		
	Lackner et al. 2000 ¹⁸² (Case Series of eight)		First line therapy both matched related and unrelated	 75% of patients were alive at a median of 17 months followup 88% (7) of patients engrafted 	- three patients developed aGVHD grade 2	Five bone marrow One cord blood Two peripheral stem cells
Diamond- Blackfan Anemia (DBA)	Lipton and Ellis, 2009 ¹⁸³ (Literature Review)	Corticoste- roids and/or red cell transfusion	First-line therapy corticosteroids	-~80% of patients respond. Of the 80%; 20% achieve Remission 40% require continued steroid therapy 40% remain transfusion and chelation dependent ^{v.}	-22% develop pathologic fractures and 12% cataracts with the use of corticosteroids. 5/36 deaths reported to the DBAR were due to complications of iron overload from red cell transfusion.	-17% are nonresponsive to corticosteroids. [∨] Steroid use has been modified since these estimates.

 Table 22. Benefits and harms after treatment for bone marrow failure syndromes (continued)

Disease	Source	Treatment	Indications	Benefits	Harms	Comment
Diamond- Blackfan Anemia (DBA)	Lipton and Ellis, 2009 ¹⁸³ (Literature Review)	Allogeneic HSCT	For patients who have become transfusion dependent or steroid intolerant	 -overall actuarial survival at greater than 40 years is 75.1% (65.9-84.9) 100% for those in sustained remission 86.7%(73.0-100) for corticosteroid- maintained patients and 57.2 (39.7-74.7) for transfusion dependent patients. 72.7% 5-year survival for matched sibling donor and 19.1% for alternative donor's ^{ss.} 76% 3-year survival after sibling versus 39% with alternative donor transplantation.^{tt.} 90% survival for children under 10 transplanted with matched sibling donor. Unpublished data from the DBAR shows actuarial survival, since 2000, for all DBA patients transplanted using alternative donors to be 80%. Patients were carefully selected when they lacked a suitable matched-related donor. 	14 of 36 deaths reported to the DBAR were complications of HSCT	

Disease	Source	Treatment	Indications	Benefits	Harms	Comment
Severe Congenital Neutropenia/K ostmann Syndrome	Elhasid and Rowe, 2010 ¹⁸⁴ (Literature Review)	Human Granulocyt e colony- stimulating factor (G- CSF)	First-line therapy	>90% of patients respond to G-CSF with an increase in total neutrophil count and ANC as well as a decrease in the incidence of infection uu,vv.	Incidence of MDS/Acute leukemia increases from 2.9% to 8% per year by 12 years of G-CSF therapy ^{ww.} Osteoporosis may develop in as many of 50% of patients on G-CSF therapy ^{xx.} Vasculitis has been reported in 3.3% (9/270) SNC patients ^{xx.} Incidence of splenomegaly increased from baseline 20.6% prior to treatment to 38.9% during the first year and remained (33.8-47.6%) over the course of 10 years of treatment ^{xx.}	It is unclear if the increased incidence is indeed a medication side effect or the natural history of disease as until G- CSF therapy life expectancy was too short to observe these effects.
		Allogeneic HSCT	Refractory to G- CSF	88% engraftment (7/8) among those receiving HLA-identical sibling donor. Three with alternate donors 1/3 survived with excessive cGVHD ^{zz.}	Grade 0-1 acute GVHD, one patient who received UCB had fatal acute grade IV GVHD. Additionally one case of extensive chronic GVHD was observed. Severe infection occurred in 4 pts, 3 were fatal yy.	Eight of nine patients engrafted after HSCT with 61% Five year survival among nine patients (four refractory, one BMF, four MDS/acute leukemia). The three deaths occurred at a median time of 0.7 years after transplant ^{aaa.}
			Occurrence of MDS and acute leukemia	Three of 18 patients survived after HSCT.		

a Pongtanakul, et al. 2008¹⁸⁵ retrospective study of immunosuppressive therapy in AA, n=42; b Scheinberg et al. 2008¹⁸⁶ retrospective study of immunosuppressive therapy in severe AA, n=77; c Kojima et al. 2000¹⁸⁷ retrospective study comparing HSCT and immunosuppressive therapy in AA, n=100;

d Kojima et al., 2002^{187} cohort study of immunosuppressive therapy and the subsequent development of MDS and AML, n=113;

a Kojina et al., 2002^{-1} constitution of minimum suppressive therapy and the subsequent development of MDS and AML, $n=113^{\circ}$, e Frickhofen et al., 2003^{188} ; f Kosaka et al., 2008^{189} cohort study of immunosuppressive therapy in severe and very severe AA, n=201; g Locasciulli et al. 2007^{190} retrospective study comparing immunosuppressive therapy and HSCT in two sequential cohorts, n=2479; h Bacigalupo et al. 2000^{191} outcomes for 1,759 patients treated with matched sibling transplant in Europe ; i Locatelli et al. 2000^{192} randomized trial on the effect of GVHD on survival after matched sibling HSCT, n=71;

j Farzin et al. 2007¹⁹³ cohort study of matched sibling donor HSCT in FA, n=18; j Schrezenmeier et al., 2007¹⁹⁴ retrospective analysis comparing survival after PBSC and BM in 692 (134 PBSC, 558 BM) patients with SAA.: k Deeg et al. 1996¹⁹⁵ analysis of secondary malignancies after myeloablative transplantation for SAA, n=700; 1 Deeg et al. 1998¹⁹⁶ cohort study of long-term survivors of HSCT for AA, n=212; m Bacigalupo et al. 2005¹⁹⁷ prospective cohort of 38 patients with SAA, reporting outcomes after HSCT; n Deeg et al. 2006¹⁹⁸ nonrandomized trial of conditioning regimens for unrelated donor HSCT; n=87; o Viollier et al. 2008¹⁹⁹ retrospective study of unrelated HSCT, n=498; p Dufour and Svahn, 2008¹⁷⁴ review; g Guardiola et al. 2000²⁰⁰ retrospective analysis of 69 allogeneic stem-cell transplants for FA from EGBMT; r de Medeiros et al. 2006^{201} retrospective analysis of FA patients from a single institution who underwent alternative HSCT, n=47: s Dufour and Svahn 2008¹⁷⁴ review; u Zanis-Neto et al. 2005²⁰² nonrandomized trial of low-dose cyclophosphamide conditioning for matched related HSCT, n=30; v Zanis-Neto et al. 2005^{202} nonrandomized trial of low-dose cyclophosphamide conditioning for matched related HSCT, n=30; w Wagner et al. 2007²⁰³ retrospective study of alternative donor transplants in FA, n=98; x Locatelli et al. 2007^{204} , cohort study of outcomes after HSCT, n=26 for those with an unrelated donor : v Yabe et al. 2006^{205} cohort study of alternative donor HSCT. n=27: z de Medeiros et al. 2006^{201} retrospective analysis of FA patients from a single institution who underwent alternative HSCT. n=47: aa Chaudhury et al. 2008²⁰⁶ retrospective study of fludarabine-based conditioning regimen for HSCT in high-risk FA, n=18; bb Gluckman et al. 2007²⁰⁷ retrospective registry review of cord blood transplant in FA, n=93; cc Gluckman et al. 2007²⁰⁷, retrospective registry review of cord blood transplant in FA, n=93; dd Wagner et al. 2007²⁰³ retrospective study of alternative donor transplants for FA, n=98; ee Vibhakar et al. 2005²⁰⁸ case report of umbilical cord blood HSCT for SDS, n=3; ff Donadieu et al. 2005²⁰⁹ retrospective registry analysis of unrelated and identical sibling donor HSCT for SDS, n=10; gg Bhatla et al. 2008^{209, 210} series of 7 SDS patients with marrow aplasia or MDS/AML; hh Cesaro et al. 2005²¹¹ report on 26 patients with SDS; ii Cesaro et al. 2005²¹¹ report on 26 patients with SDS; jj de la Fuente and Dokal 2007¹⁷⁶, review of 28 cases of HSCT for DC: kk Beran et al. 1982²¹² in vitro study of the effects of testosterones on human ervthroid progenitor cells: ll Ayas et al. 2005²¹³ case report; mm Dror et al. 2003²¹⁴ case report: nn Brazzola et al. 2005²¹⁵ case report; oo Gungor et al. 2003²¹⁶ case report; pp Cossu et al. 2002^{217} case report; qq Nobili et al. 2002^{218} case report; rr Vlachos et al. 2008²¹⁹ consensus document from the 2005 Diamond Blackfan Anemia International Consensus Conference; ss Lipton et al. 2006²²⁰ series of 36 patients from the DBA registry; tt Roy et al. 2005²²¹ series of 61 patients with DBA who underwent HSCT; uu Zeidler et al. 2000²²² management of Kostman syndrome with G-CSF; vv Rosenberg et al. 2006²²³ review of harms associated with long-term G-CSF treatment in 29 SCN patients; ww Rosenberg et al. 2006²²³ harms associated with long term G-CSF treatment in 29 SCN patients; xx Yakisan et al. 1997²²⁴ cohort of 30 patients with SCN; yy Ferry et al. 2005¹⁷³ HSCT among 9 patients in the French SCN registry; zz Zeidler et al. 2000²²⁵ HSCT among 11 patients without malignant transformation: aaa Ferry et al. 2005¹⁷³ HSCT among 9 patients in the French SCN registry

Inherited/Congenital Bone Marrow Failure Syndromes

Fanconi Anemia

Background

First described in 1927,^{226, 227} Fanconi anemia is an inherited chromosomal instability that affects all of the bone marrow elements. It is associated with various physical malformations, including pigmentary changes of the skin, and predisposes to malignancy. Fanconi anemia is the most common inherited bone marrow failure syndrome, with thirteen identified subtypes.¹⁷² With the exception of subtype B, all follow an autosomal recessive pattern of inheritance.^{228, 229} Among patients with Fanconi anemia, bone marrow failure, typically occurs between 5 and 10 years of age with a cumulative risk of 50 to 90 percent by age 40. Patients are highly susceptible to cancer, with a cumulative incidence of hematologic malignancy of 22 to 33 percent by age 40.^{223, 230} While malformations are common, approximately 25 to 40 percent of affected individuals have no visible anomalies.¹⁷²

Evidence Base

The evidence compiled for this review includes two literature reviews.^{168, 174} One clinical practice guideline²³¹ but no health technology assessments for the treatment of childhood Fanconi anemia with HSCT were identified in the literature search. The evidence base on the use of HSCT for treatment of Fanconi anemia is summarized in Table 22.

The literature review by Dufour and Svahn¹⁷⁴ reports on androgen therapy, the frontline treatment choice for children without a matched sibling donor. According to the review, approximately 75 percent of such patients respond to androgen therapy within 2-12 months. Reported harms associated with androgen therapy include, but are not limited to, virilization, hyperactivity, renal toxicity, and possible adverse effects on subsequent HSCT. Myers and Davies¹⁶⁸ report survival after HSCT using matched sibling donor of about 90 percent, but with a transplant comes the risk of peritransplant mortality of 10 to 15 percent and a risk of chronic graft-versus-host disease from 12 up to 28.5 percent, based on the conditioning regimen.

Guidelines

Guidelines for the treatment of Fanconi anemia with HSCT were developed at a conference held April 10-11, 2008 in Chicago, Illinois and are published by the Fanconi Anemia Research Fund.²³¹ HSCT is currently the best therapy available to cure the patient of marrow aplasia, to prevent progression to myelodysplastic syndrome or AML, or to cure existing MDS or AML.

Among patients with a matched sibling donor, treatment with HSCT may proceed if there is:

- Platelet count of less than 50,000
- Hemoglobin less than 8 gm/dL
- Transfusion dependence
- Absolute neutrophil count less than 1,000
- Absolute neutrophil count greater than 1,000 with frequent infection

Among patients with no matched related donor and adequate organ function and controlled infection treatment with HSCT may be considered if:

- Persistent and severe cytopenia develops
 - \circ Hemoglobin less than 8 g/dL
- Absolute neutrophil count less than 500/mm³
- And/or platelets less than 20,000/mm³

• There is evidence of myelodysplastic syndrome or leukemia Other indications for transplant:

Absolute indication

• For patients with high-risk myelodysplastic syndrome or AML, HSCT is recommended Relative indication

- For patients with moderate isolated cytopenias or moderate aplastic anemia with evidence toward progression towards transfusion dependence
- For low-risk myelodysplastic syndrome

Summary

Overall there appears to be a favorable risk-benefit profile for the treatment of Fanconi anemia with HSCT. The vast majority of patients with Fanconi anemia will progress to aplastic anemia or myelodysplastic syndrome/AML without transplant. HSCT using matched sibling donor have survival rates of about 90 percent. In general, patients are transplanted prior to the development of myelodysplastic syndrome/AML, as the outcomes are better for patients with aplastic anemia. Age also is considered, as younger age is associated with better outcomes. Androgen therapy has a long history of use in patients with Fanconi anemia; however, due to adverse effects to liver function, other significant adverse effects, and its effect on later adverse effects after transplant, it is generally recommended this therapy be reserved for patients with no matched sibling donor, but not as a definitive long-term treatment.

Schwachman Diamond Syndrome

Background

Schwachman Diamond syndrome is a rare disorder characterized by pancreatic insufficiency, skeletal abnormalities, and bone marrow failure. The disease has an autosomal recessive pattern of inheritance, with almost all affected persons having a mutation in the SBDS gene on chromosome 7q11.232 Approximately 200 cases have been reported, with very few patients being treated with allogeneic HSCT.170, 233 These patients are at higher risk than the general population for myelodysplastic syndrome and leukemia, specifically AML.172 Approximately 20 percent will develop aplastic anemia, 20 to 33 percent develop myelodysplastic syndrome or cytogenetic abnormalities, and 12 to 25 percent will eventually develop acute leukemia.209, 234-236 Nonhematologic malignancies have not been associated with Schwachman Diamond syndrome.171 Median survival in Schwachman Diamond syndrome is more than 35 years, but less for those developing aplastic anemia or leukemia. Clinical management consists of symptom-specific treatments, close monitoring of peripheral blood counts, and annual marrow evaluation allowing for treatment prior to clinical complications. Infections and hemorrhage associated with hematologic abnormalities are the primary causes of Schwachman Diamond syndrome-associated death after infancy.175 HSCT may provide a cure233 but significant cardiac and other organ toxicities have been described.175 Most patients do not require transplantation. Those who develop marrow aplasia or MDS/AML are candidates for HSCT.

Evidence Base

The evidence compiled for this review includes two literature reviews.^{168, 174} No health technology assessments or clinical practice guidelines for the treatment of Schwachman

Diamond syndrome with HSCT were identified in the literature search. The evidence base on the use of HSCT for treatment of Schwachman Diamond is summarized in Table 22.

In the review by Burroughs and colleagues,¹⁷⁵ performance of HSCT is reported to be associated with improved outcomes when performed before the development of overt leukemia. Significant organ toxicities, specifically cardiac, have been reported and are thought to occur by the aggravation of underlying organ dysfunction caused by conditioning regimens. Fludarabine-based regimens appear to reduce the toxicity for these patients, although reported numbers are small.¹⁶⁸ Survival among 7 patients transplanted with myelodysplastic syndrome and/or AML who received fludarabine-based conditioning was 100 percent, compared to 60 percent 5-year survival (n=10) using a fully myeloablative regimen, with matched or unmatched donor.¹⁶⁸

Guidelines

No guidelines for the treatment of Schwachman-Diamond syndrome were identified in the search.

Summary

Overall there appears to be a favorable risk-benefit profile for the treatment of Schwachman-Diamond with HSCT. While supportive measures such as transfusions, pancreatic enzymes, antibiotics are used, the only curative therapy for marrow failure, myelodysplastic syndrome, or leukemia is HSCT. Performance of HSCT is associated with better outcomes when performed prior to the development of overt leukemia. Aggravation of underlying organ dysfunction can occur with various conditioning regimens. Children with Schwachman-Diamond undergoing HSCT may receive a preparative regimen not including high-dose total body irradiation or cyclophosphamide.

Dyskeratosis Congenita

Background

Dyskeratosis congenita is a rare disorder related to a defect in telomere maintenance²³⁷ that is characterized by abnormal skin pigmentation, nail dystrophy, and mucosal leucoplakia.²³⁸ Ninety percent of reported cases are male with observed linkage to Xq28. Autosomal recessive and dominant inheritance have been noted.²³⁹ While precise estimates of incidence are unknown, dyskeratosis congenita has been recognized across racial groups, with an estimated prevalence of 1 in 1,000,000 persons. This disease presents with both clinical and genetic heterogeneity, even within families, making diagnosis and treatment challenging. The dyskeratosis congenita registry includes approximately 350 cases to date,¹⁷¹ and through 2008, approximately 552 cases have been reported in the literature.²⁴⁰ Patients exhibit a predisposition to bone marrow failure, malignancy and pulmonary dysfunction. Eighty to 90 percent of patients develop bone marrow failure by age 30.¹⁷¹ Bone marrow failure accounts for the majority of deaths (approximately 60 to 70 percent), while pulmonary complications (approximately 10 to 15 percent) and malignancies (approximately 10 percent) account for the rest.²⁴¹ Commonly, bone marrow failure and/or other complications present prior to diagnosis.²⁴²

Dyskeratosis congenita has highlighted the critical role of telomerase in human growth and development, the major complication of which is bone marrow failure. The only curative treatment for severe bone marrow failure is allogeneic HSCT; however, in patients with dyskeratosis congenita, this is not a cure for the underlying disease, as HSCT does not address the telomerase defect.¹⁷⁶ The median survival for patients with dyskeratosis congenita is 44 years

of age. For patients with severe subsets of disease, such as Hoyeraal-Hreidarsson syndrome (n=30 cases ever described) and Revesz syndrome (n=20 reported cases), median survival is dramatically reduced to 5 years and approximately 11 years, respectively. There are no cases of either of these severe disease subtypes in patients older than 20 years.²⁴³

Evidence Base

The evidence compiled for this review includes two literature reviews.^{168, 176} No health technology assessments or clinical practice guidelines for the treatment of dyskeratosis congenita with HSCT were identified in the literature search. One clinical practice guideline²⁴³ follows the model of Fanconi anemia to determine treatment for bone marrow failure from dyskeratosis congenita. The evidence base on the use of HSCT for treatment of dyskeratosis congenita is summarized in Table 22.

Survival estimates when using nonmyeloablative regimens are improved over the 50 to 85 percent mortality seen with prior regimens.¹⁶⁸ However, as stated previously, HSCT is not a cure for this disorder as it does not remedy the underlying telomerase defect. Patients who survive transplant are at increased risk of pulmonary and vascular complications, although, due to the small number of patients, complication rates are not available.

Guidelines

No guidelines specific for the treatment of dyskeratosis congenita were identified in the search. However, in a recent publication by Savage and Alter,²⁴³ following the model of Fanconi anemia consensus guidelines, treatment for bone marrow failure is recommended if:

- Hemoglobin is consistently less than 8 g/dL, platelets less than 30,000/mm³, and neutrophils less than 1000/mm³.
- The first consideration for treatment for hematologic problems such as bone marrow failure may be HSCT, if there is a matched related donor.
- HSCT from an unrelated donor can be considered, although a trial of androgen therapy may be chosen.

Summary

Overall there appears to be a favorable risk-benefit profile for the treatment of dyskeratosis congenita with HSCT. For patients who have developed severe bone marrow failure with hemoglobin consistently less than 8 g/dL, platelets less than 30,000/mm³, and neutrophils less than 1000/mm³ and they have a matched related donor, HSCT is first-line treatment. HSCT is not a cure for dyskeratosis congenita as it does not address the underlying telomerase defect. Patients who survive transplant are at increased risk of pulmonary and vascular complications although due to the small numbers of patients, complication rates are not available.

Congenital Amegakaryocytic Thrombocytopenia

Background

Congenital amegakaryocytic thrombocytopenia is an extremely rare disorder characterized by isolated thrombocytopenia, reduction/absence of megakaryocytes in the bone marrow with in most cases no somatic abnormalities.¹⁷¹ It follows an autosomal recessive inheritance pattern and is caused by mutations in the thrombopoietin receptor MPL.²⁴⁴ While disease incidence is unknown, severe thrombocytopenia is observed in 0.12 to 0.24 percent of all newborns, and congenital amegakaryocytic thrombocytopenia represents a very small percentage of those. The

diagnosis is made after excluding other acquired and inherited forms of thrombocytopenia.²⁴⁵ Affected individuals are identified shortly after birth.¹⁷⁰ In the absence of HSCT, patients will develop severe aplastic anemia, leading to death. Median age of progression to severe aplastic anemia is 3.7 years.²⁴⁶

Evidence Base

The evidence compiled for this review includes one case report¹⁸¹ and five case series.¹⁷⁷⁻¹⁸⁰, ¹⁸² No health technology assessments or clinical practice guidelines for the treatment of congenital amegakaryocytic thrombocytopenia with HSCT were identified in the literature search.

Data from the case series are consistent in reporting high levels of engraftment and short-term survival data. The largest case series of eight patients reported 75 percent survival at a median followup of 17 months.¹⁸² In that same series, three patients developed grade 2 acute graft-versus-host disease.

Guidelines

No guidelines for the treatment of congenital amegakaryocytic thrombocytopenia were identified in the search.

Summary

Overall there appears to be a favorable risk-benefit profile for the treatment of congenital amegakaryocytic thrombocytopenia with HSCT. Clinical management utilizes platelet transfusions to prevent a patient from bleeding. HSCT from matched related donors have been encouraging but due to the lack of healthy matched related donors for these patients, often matched unrelated donors are needed, which carry a higher risk of graft failure and transplant-related toxicity. Without HSCT, these children will die at a median age of 3 years.

Diamond Blackfan Anemia

Background

Diamond Blackfan anemia, or congenital pure red cell aplasia, was reported in four children in 1938 by Diamond. It usually presents in infancy, although a subset of cases may present in adulthood, with symptoms of anemia such as pallor or failure to thrive. Most familial cases display an autosomal dominant pattern of inheritance.¹⁷¹ Based on an analysis by the Diamond Blackfan anemia registry of North America, the annual incidence is approximately 5 per million live births with 93 percent of patients presenting in the first year.²²⁰ Rates of cancer among patients with Diamond Blackfan are lower than rates among other hereditary bone marrow failure syndromes; however, with 4 percent of children with Diamond Blackfan diagnosed with cancer by age 15, the rate is much higher than the general population.²¹⁹

Evidence Base

The evidence compiled for this review includes one literature review.¹⁸³ One clinical practice guideline²¹⁹, but no health technology assessments for the treatment of Diamond Blackfan anemia with HSCT were identified in the literature search. The evidence base on the use of HSCT for treatment of Diamond Blackfan is summarized in Table 22.

Data included in the literature review report that 80 percent of patients respond to first-line corticosteroids and that of those, 20 percent achieve remission. Twenty-two percent of patients

develop pathologic fractures and 12 percent develop cataracts as a result of corticosteroid treatment.¹⁸³ Survival after HSCT has been reported at longer than 40 years, 100 percent for those in remission prior to transplant, 87 percent for corticosteroid-maintained patients, and 57 percent for transfusion-dependent patients.¹⁸³

Guidelines

Guidelines for the treatment of DBA with HSCT were published by Vlachos et al.²¹⁹ Treatment with HSCT is recommended in patients with Diamond Blackfan whether corticosteroid responsive or transfusion dependent; patients typically are younger than 10 years of age, preferably between 2 and 5 years of age, if an HLA-matched donor is available.

Summary

Overall there appears to be a favorable risk-benefit profile for the treatment of DBA when an HLA-matched donor is available. HSCT is curative in DBA and deaths after HSCT appear to be attributed to toxicities rather than graft failure. Data on the effects of various conditioning regimens is too limited to draw conclusions.

Severe Congenital Neutropenia/Kostmann Syndrome

Background

First described in 1956 by Kostmann, severe congenital neutropenia is a rare genetic condition. Children with the disorder typically present with severe neutropenia, fever, and recurrent infections of the upper respiratory tract, lungs, and skin. Among the nine inbred families in which severe congenital neutropenia was first noted, the inheritance pattern is autosomal recessive;²⁴⁷ however, most other documented cases follow an autosomal dominant or sporadic pattern of inheritance.²⁴⁸ The incidence is approximately 3 to 4 per million births, with the majority of patients identified in the first three months of life. A subset of patients also has a mutation in the cytoplasmic component of the granulocyte colony-stimulating factor (G-CSF) receptor gene. These patients are at increased risk of developing acute myeloid leukemia.²⁴⁹

Evidence Base

The evidence compiled for this review includes one literature review.¹⁸⁴ No health technology assessments for the treatment of severe congenital neutropenia with HSCT were identified in the literature search. The evidence base on the use of HSCT for treatment of severe congenital neutropenia is summarized in Table 22.

Ninety percent of patients are reported to respond after first-line treatment with G-CSF.¹⁸⁴ However, long term treatment with G-CSF may lead to the development of myelodysplastic syndrome/acute leukemia, or osteoporosis. For patients refractory to G-CSF, Elhasid and Rowe¹⁸⁴ reported 61 percent survival at 5 years, and for those who had developed myelodysplastic syndrome/acute leukemia, three of 18 survived.

Guidelines

Guidelines for treatment of severe congenital neutropenia with HSCT were published by Elhasid and Rowe.¹⁸⁴ These recommendations are broken down into two groups, absolute and probable indications.

Absolute indications:

• Refractory to G-CSF therapy

• Occurrence of MDS and acute leukemia

Probable indications:

- Gly185Arg missense mutation
- Wild-type ELA2 not responding to standard doses of G-CSF

Summary

Overall there appears to be a favorable risk-benefit profile for the treatment of severe congenital neutropenia with HSCT. Development of MDS and acute leukemia are absolute indications for HSCT as this would be the only curative option. Patients with a matched donor are followed closely as outcomes are better if the transplant is completed prior to the development of MDS/acute leukemia. It is important to note that current recommendations are based on very small numbers of patients due to the rarity of this condition.

Primary Immunodeficiencies

Background

The primary immunodeficiencies are a genetically heterogeneous group of diseases that affect distinct components of the immune system (Table 23). More than 120 gene defects have been described, causing more than 150 disease phenotypes.²⁵⁰ The most severe defects (collectively known as "severe combined immunodeficiency" or SCID) cause an absence or dysfunction of T lymphocytes, and sometimes B lymphocytes and natural killer cells.²⁵⁰

Without treatment, patients with severe combined immunodeficiency usually die by 12 to 18 months of age. With supportive care, including prophylactic medication, the lifespan of these patients can be prolonged, but long-term outlook is still poor, with many dying from infectious or inflammatory complications or malignancy by early adulthood.²⁵⁰

Evidence Base

The evidence compiled for this review (Table 24) includes three literature reviews (Table 25).²⁵⁰⁻²⁵² No health technology assessments or clinical practice guidelines for the treatment of primary immunodeficiencies with HSCT were identified in the literature search.

HSCT using HLA-identical sibling donors can provide correction of underlying primary immunodeficiencies such as SCID, Wiskott-Aldrich syndrome, and other prematurely lethal X-linked immunodeficiencies in approximately 90 percent of cases where a donor is available.²⁵¹ According to a European series of 475 patients collected between 1968 and 1999, 3-year survival rates for SCID were 81 percent with a matched sibling donor, 50 percent with a haploidentical donor, and 70 percent with a transplant from an unrelated donor.²⁵³ Since 2000, overall survival for patients with SCID who have undergone HSCT is 71 percent.²⁵⁰ For non-SCID patients, 3 year survival rates were 71 percent, 42 percent, and 59 percent for genotypically HLA-matched, phenotypically HLA-matched and HLA-mismatched related, and HLA-mismatched unrelated, respectively.²⁵³

For Wiskott-Aldrich syndrome, which has a median survival of 15 years, an analysis of 170 patients transplanted between 1968 and 1996 demonstrated the impact of donor type on outcomes.²⁵⁴ Fifty-five transplants were from HLA-identical sibling donors, with a 5-year probability of survival of 87 percent (95 percent CI: 74–93 percent); 48 were from other relatives, with a 5-year probability of survival of 52 percent (37 to 65 percent); and 67 were from unrelated donors with a 5-year probability of survival of 71 percent (58 to 80 percent; p=0.0006).

In patients with genetic immune/inflammatory disorders such as hemophagocytic lymphohistiocytosis the current results with allogeneic HSCT are 60 to 70 percent 5-year disease-free survival. Survival rates for patients with other immunodeficiencies are similar at 74 percent, with even better results (90 percent) when well-matched donors are used for defined conditions such as chronic granulomatous disease. Survival after HSCT for primary immunodeficiencies is good, and data show that patients surviving 12-24 months post-transplant generally have good long-term outcomes since relapse does not occur, as it may with hematologic malignancy.²⁵⁰

	Disease
Γ	Lymphocyte immunodeficiencies
	Adenosine deaminase deficiency
	Artemis deficiency
	Calcium channel deficiency
	CD 40 ligand deficiency
	Cernunnos-XLF immunodeficiency
	CHARGE syndrome with immune deficiency
	Common gamma chain deliciency
	Deliciencies III CD 45, CD5, CD6
	Interleykin-7 recentor alpha deficiency
	Janus-associated kinase 3 (JAK3) deficiency
	Major histocompatibility class II deficiency
	Omenn syndrome
	Purine nucleoside phosphorylase deficiency
	Recombinase-activating gene (RAG) 1/2 deficiency
	Reticular dysgenesis
	Winged helix deficiency
	Wiskott-Aldrich syndrome
	X-linked lymphoproliferative disease
	Zeta-chain-associated protein-70 (ZAP-70) deficiency
	Phagocytic deficiencies
	Chediak-Higashi syndrome
	Chronic granulomatous disease
	Griscelli syndrome, type 2
	Interferon-gamma receptor deficiencies
	Leukocyte adhesion deficiency
	Severe congenital neutropenias*
	Shwachman-Diamond syndrome*
	Other immunodeficiencies
	Autoimmune lymphoproliferative syndrome
	Cartilage hair hypoplasia
	CD25 deficiency
	Familial hemophagocytic lymphohistiocytosis
	Hyper IgD and IgE syndromes
	ICF syndrome
	IPEX syndrome
	NEMU deficiency
	NE-KD IIIIIDILOF, AIPHA (IKB-AIPHA) OETICIENCY
L	angidered mimery immune deficiencies these conditions are described in

Table 25. Frindry minimunouenciencies successivily treated with h5c	Table 23. Primary	<i>immunodeficiencies</i>	successfully	treated with HSCT
---	-------------------	---------------------------	--------------	-------------------

^{*} While considered primary immunodeficiencies these conditions are described in the section dealing with bone marrow failure syndromes.

Disease	Year of First HSCT Performed	No. of Transplants to Date	Existing Clinical Data	Registries
Primary Immunodeficiencies	1968	>2000	Reviews, Case series, Case reports	The Stem Cell Transplantation for Immunodeficiencies registry in France contains outcome data from many European centers. European Blood and Marrow Transplant network and the Center for International Blood and Marrow Transplantation both have registries covering people with Primary Immunodeficiencies. Specific registries exist for diseases such as; X-linked lymphoproliferative disease, chronic granulomatous disease, CD40 ligand deficiency, Wiskott-Aldrich syndrome.

Table 24. Evidence base for HSCT in primary immunodeficiencies

Guidelines

No guidelines for the treatment of primary immunodeficiencies were identified in the search.

Summary

Overall there appears to be a favorable risk-benefit profile for the treatment of SCID and other primary immunodeficiencies, including Wiskott-Aldrich syndrome and congenital defects of neutrophil function.²⁵⁷

While primary immunodeficiency diseases are heterogeneous, it is universally accepted that HSCT offers the only chance of cure. The best outcomes have been reported to occur when children are transplanted in infancy, prior to the development of organ damage.^{258, 259} Conventional therapies including treatment with IVIG may decrease morbidity and mortality but do not address the underlying problem or alter the long-term outcome.²⁵⁰ Gene therapy has been performed for over a decade now for ADA deficiency, X-linked SCID and WAS. It is, however, considered experimental.²⁶

Disease	Source	Treatment	Indications	Benefits	Harms	Comment
	Orange et al. 2006 ²⁵² (Literature review)	IVIG (Intravenous immunoglobulin) SCIG (Subcutaneous immunoglobulin)	Primary treatment for those producing no antibodies, limited antibodies, and those with impaired specific antibody production	Reduction in both acute and chronic infections.	Up to 44% of patients may experience adverse reactions not related to rate of infusion [¥]	Additional harms are associated with the risks of placing a indwelling venous catheter for IVIG or the additional needed sticks for SCIG [¥] from a 2002 Immune Deficiency patient survey.
Primary Immunodeficiency	Ginnery and Cant, 2008 ²⁵⁰ (Literature review)	HSCT	Primary treatment for patients with Severe combined immune- deficiency and second line treatment for other PID	5 year survival 90%*, after transplant from matched sibling donor and 69%* using matched unrelated donor. Other series report overall survival estimates ranging from 92-100% for related matched donors and 78-80% for matched unrelated donors ^{alb} and 52% for mismatched unrelated donors. ^a	Acute GVHD developed in about 31-36% of children transplanted with related identical marrow, 50-73% in those receiving matched unrelated marrow ^{alb} , and 45% in those transplanted with mismatched related donor marrow. ^a	* Survival rates were communicated as personal communication from P Landaus to the review papers authors.
	Filipovich, 2008 ²⁵¹ (Literature review)		Primary treatment for patients with Severe combined immune- deficiency and second line therapy for other PID	3 year survival of approximately 80%, 50% and 70% from matched sibling, haploidentical and unrelated donors. ^c		

Table 25. Benefits and harms after treatment for primary immunodeficiency

^aGrunebaum et al. 2006²⁵⁵ report on 89 infants treated with HSCT for SCID ^bBuckley et al. 1999²⁵⁶ report on 89 infants treated with HSCT for SCID ^cAntoine et al. 2003²⁵³ registry report of 475 SCID and 512 non-SCID transplants

Inherited Metabolic Diseases: Mucopolysaccharidoses

Mucopolysaccharidoses (MPS) are a group of disorders caused by single-gene defects leading to a deficiency in one of the 11 lysosomal enzymes needed to metabolize glycosaminoglycans (Table 26). As glycosaminoglycans accumulate in the cells, blood, and connective tissues, progressive damage to the skeletal structure and multiple organ systems occurs.²⁶¹ Mucopolysaccharidoses are autosomal recessive disorders, with the exception of Hunter disease (MPS II), which is X-linked recessive. The severity of symptoms varies by subtype as well as within each subtype. The overall frequency of these disorders is estimated to be 3.5-4.5 per 100,000.²⁶²⁻²⁶⁴ MPS I, MPS VI, and MPS VII will be discussed in this section (Table 27) and MPS II, MPS III, and MPS IV will be discussed in the context of the Systematic Review.

Hurler Syndrome (MPS I)

Background

Hurler Syndrome is caused by a deficiency of the lysosomal enzyme α -L-iduronidase, which is needed to break down heparan sulfate and dermatan sulfate. The disease is panethnic and has an estimated incidence of 1 per 100,000 live births. The disease is categorized into three types. The most severe form is Hurler (MPS IH), with two attenuated forms, Hurler-Scheie (MPS IH/S) and Scheie (MPS IS). Approximately 50-80 percent of cases are the severe form. In MPS IH, developmental delays are evident by 12 months of age.

Disease	Treatment	Year of First Treatment	No. Patients Receiving Treatment to Date	Type of Research Available	Registries
MPS I	HSCT	1980	>500	Case reports, case series, retrospective studies	Established in 2003: Genzyme Corporation and BioMarin Pharmaceutical initiated international observational database with treatment and outcome information; aggregate data available for research queries. Over 700 patients in registry.
MPS VI	HSCT	1982	>12	Case reports, case series	BioMarin Pharmaceutical and the Women's and Children's Hospital in Adelaide, Australia have coordinated a registry; aggregate data available for research.
MPS VII	HSCT	1994	2	Case reports	None

Table 26. Evidence base for HSCT in MPS I, MPS VI and MPS VII

Disease	Treatment	Source and Evidence Type	Indications	Clinical Benefits	Clinical Harms
		Brady and Schiffman 2004, ²⁶⁵ literature review		- enzyme activity detected within 6-8 wks, with 50-80% reduction in excess glucosaminoglycans (GAG) secretion in urine; 63% mean reduction maintained following 1 year of ERT ^a	
		Wraith 2005, ²⁶⁶ literature review	- all	- liver volume decreased by 19% in ERT grp, increased by 1% in placebo grp ^b - 1 year ERT: mean range of shoulder flexion increased 26-28 degrees, knee extension restriction decreased by 3-3.2 degrees, but skeletal abnormalities persist ^{a,c} - 61% decrease in number of episodes of annoe and hyperpage offer 1 year EPT ^a	infusion related reactions such as fluching, fovor
MPS I	ERT	Tolar and Orchard 2008, ²⁶⁷ literature review	cases - severe cases, dx <u><2</u> years, DQ* <70	 61% decrease in number of episodes of apnea and hypopnea after 1 year ERT^a left ventricular hypertrophy resolves, but mitral and aortic valves remain thickened^c 1 year on ERT: 25% mean reduction in liver size, 20% mean reduction in spleen size^a; 6 years on ERT: liver volume in normal range for 100% pts, spleen volume near normal range in 50% pts^c further coarsening of facial features did not progress as expected after 6 years of ERT in 100% of pts^c worsening of pre-existing neurological symptoms can be expected^c quality of life improvements include: increased energy and endurance, independence in normal daily activities, socializing, setting new goals for future such as college and marriage^c 	 - infusion-related reactions such as flushing, fever, headache, or rash experienced by 32% in ERT grp and 48% in placebo grp^b - IgG antibodies to enzyme develop in 100% of pts, but does not affect clinical efficacy of treatment^b

Table 27. Treatment benefits and harms for Hurler Syndrome (MPS I), Maroteaux-Lamy Syndrome (MPS VI), and Sly Syndrome (MPS VII)

Table 27. Treatment benefits and harms for Hurler Syndrome (MPS I), Maroteaux-Lamy Syndrome (MPS VI), and Sly Syndrome (MPS VII) (continued)

Disease	Treatment	Source and Evidence Type	Indications	Clinical Benefits	Clinical Harms
MPS I		Prasad and Kurtzberg 2010, ²⁶⁸ literature review		 - 67% reach normal enzyme activity level^d - improves hearing in 30-40%, but does not reverse profound conductive and sensorineural abnormalities^e 	
	Allogeneic HSCT	Boelens 2006, ²⁶⁹ literature review	- severe cases with stable cardiopulmo nary function, dx <2 yrs, DQ >70 - consider- ed in rare attenuated cases, dx >2 yrs, DQ >70	 improves joint mobility, but skeletal abnormalities persist in over 90% due to poor enzyme penetration of chondrocytes and failure to replace osteocytes^{f,g} improves respiratory function relating to sleep apnea and persistent rhinorrhea within 3-6 months of transplant^h improves myocardial muscle function and coronary artery patency within 1 year of transplant, but cardiac valvular deformities persistⁱ resolves hepatosplenomegaly within 3 months of transplant^h if transplant at ≤2 years, normal or near normal intellectual development reported in 64% of 12 cases; if transplant at >2 years, normal or near normal intellectual development in 25% of 12 cases^j life expectancy prolonged^{e,j} 	 acute graft vs. nost disease 32% with HLA genotypically identical sibling donors and 55% for HLA haploidentical related donorsⁱ chronic graft vs. host disease 0% for HLA genotypically identical sibling donors and 24% for HLA haploidentical related donorsⁱ 8.3% pulmonary complications (hemorrhages and infections)^d 10% viral, bacterial, and fungal infections^d 15%^d-42%^q treatment-related mortality reported (42% from transplants performed from 1980-1995; 15% from transplants performed 1994-2004 – improvements in donor matching and improved supportive care following transplant may be responsible for decrease in treatment-related mortality rate)
		Peters 2004, ²⁷⁰ literature review			
		Aldenhoven et al. 2008, ²⁷¹ literature review			

Table 27. Treatment benefits and harms for Hurler Syndrome (MPS I), Maroteaux-Lamy Syndrome (MPS VI), and Sly Syndrome (MPS VII) (continued)

Disease	Treatment	Source and Evidence Type	Indications	Clinical Benefits	Clinical Harms
	ERT	Brady and Schiffman 2004, ²⁶⁵ literature review	- all cases as first-line	 statistically significant difference in GAG secretion by week 24 between ERT group and placebo group in phase 3 trial (p<0.001) providing evidence of enzyme activity among ERT group^k 5 of 9 experience improved joint mobility^l hepatosplenomegaly improved in 5 of 9, 	 - >50% experienced one or more infusion-related reactions such as flushing, fever, headache, or rash^m - one report of respiratory difficulty and anaphylaxis resulting in emergency tracheostomy (possibly
MPS VI		Harmatz et al. 2008 ²⁷² (Phase III trial, N=56 age range 5- 29)	therapy	worsened in 2 of 9, and remained stable in 2 of 9 ^l - sustained statistically significant improvement through phase 2 and phase 3 trials in 3-minute stair climb and 6- or 12-minute walk tests ^m	exacerbated by underlying disease)' - if central venous access port required for infusions, risk of infection and possibly endocarditis ^r
MPS VI	Allogeneic HSCT	Peters 2004, ²⁷⁰ literature review	- if ERT fails	 enzyme activity within normal range in 100% of pts^{n,o} hepatosplenomegaly decreasedⁿ facial features became less coarse in 4 of 4 pts^o dysphonia and hoarseness resolves in 2 of 2 pts^o cardiac evaluation normal, but valve disease persists^{n,o} sleep apnea resolvedⁿ significant improvement in posture, but dystosis multiplex persists^o life expectancy prolonged^{n,o} 	- acute graft vs. host disease in 3 of 4 pts ^o

*DQ=developmental guotient ^aKakkis et al. 2001,²⁷³ 10 MPS I pts on ERT weekly for one year ^bWraith et al. 2004,²⁷⁴ RCT of MPS I pts, 22 receiving ERT, 23 receiving placebo ^cSifuentes et al. 2007,²⁷⁵ 6-yr followup study of 5 pts in phase I/II trial for MPS I ERT ^dBoelens et al. 2007,²⁷⁶ retrospective study of 146 MPS I pts in the European Blood and Marrow Transplantation registry ^eKrivit et al. 1995,²⁷⁷ audiological evaluation on 12 MPS I pts following HSCT ^fField et al. 1994,²⁷⁸ followup of skeletal development in 11 MPS I pts up to 13 yrs post-HSCT ^gWeisstein et al. 2004,²⁷⁹ musculoskeletal followup on 7 MPS I up to 7.6 yrs pts post-HSCT ^hSouillet et al. 2003,²⁸⁰ report on 27 MPS I pts following HSCT ⁱBraunlin et al. 2003,²⁸¹ report on cardiac ultrasound findings in 10 MPS I pts following HSCT

^jPeters et al. 1998,²⁸² 46 MPS I pts undergoing HSCT: 28 HLA-genotypically identical sibling donors, 26 HLA-haploidentical related donors ^kHarmatz et al. 2006,²⁸³ Phase III trial of 39 MPS VI pts, 19 ERT and 20 placebo, treated for 48 wks ^lScarpa et al. 2009,²⁸⁴ followup from 6 months to 4.5 yrs of 9 MPS VI pts receiving ERT ^mHarmatz et al. 2008,²⁷² followup report of 56 MPS VI pts receiving ERT, from 3 clinical studies ⁿKrivit et al. 1984,²⁸⁵ case report, MPS VI following HSCT ^oHerskhovitz et al. 1999,²⁸⁶ 1-9 yr followup of MPS VI pts after HSCT ^PYamada et al. 1997,²⁸⁶ 38 MPS I pts undergoing HSCT ^rGiugliani et al. 2007,²⁸⁹ ERT guidelines for MPS VI

Symptoms include respiratory insufficiency, hearing loss, joint movement restriction, distinct facial features such as a flat face and bulging forehead, and enlargement of the heart, spleen, and liver. Life expectancy is less than 10 years, with cause of death most commonly due to obstructive airway disease, upper respiratory infections, or cardiac complications. In MPS IH/S, symptoms begin between the ages of 3 and 8, and include moderate mental retardation, growth deficiencies, deafness, coarse facial features, clouded corneas, umbilical hernia, and heart disease. Life expectancy is the late teen years to early twenties. Children with MPS IS, the mildest form, have normal intelligence or mild learning disabilities and psychiatric problems. Other symptoms include nerve compression, aortic valve disease, sleep apnea, and impaired vision due to glaucoma, retinal degeneration, or clouded corneas. Affected individuals can live into adulthood, although with significant morbidity.^{263, 264}

Clinical management requires coordination of a multidisciplinary team, to assess neurologic, ophthalmologic, auditory, cardiac, respiratory, gastrointestinal, and musculoskeletal symptoms at baseline prior to treatment designation, and subsequently at specified intervals following treatment.^{270, 290} Severity of neurologic symptoms and age at diagnosis are key elements in determining the treatment course for MPS I. Enzyme replacement therapy is available for MPS I, but the manufactured enzyme cannot cross the blood-brain barrier, so it cannot improve cognitive function or central nervous system function.

Evidence Base

The evidence compiled for this review includes seven literature reviews.²⁶⁵⁻²⁷¹ Two clinical practice guidelines^{290, 291} but no health technology assessments for the treatment of MPS I with HSCT were identified in the literature search.

Treatment with enzyme replacement has been shown to be effective in increasing the enzyme activity level, reducing hepatosplenomegaly, and improving joint mobility and respiratory symptoms.²⁷³⁻²⁷⁵ Increased energy and endurance and improvement in the ability to perform normal activities of daily living have been reported following enzyme replacement.²⁷⁵ Because enzyme therapy does not cross the blood-brain barrier, neurologic symptoms persist.²⁷⁵ Like enzyme replacement, HSCT has also been shown to increase enzyme activity, reduce hepatosplenomegaly, improve joint mobility and improve respiratory symptoms.^{279, 280} The most beneficial outcome of HSCT is the potential to preserve intellectual development. Normal or near normal intellectual development has been reported if HSCT is performed prior to the onset of neurological symptoms.²⁸² Disease management for MPS I also consists of a combination of palliative and symptom-specific treatments. Adaptive or supportive devices, physical and occupational therapy, symptom-based medications, and surgery may be necessary.

Guidelines

Guidelines for the treatment of MPS I with HSCT were published by The National Marrow Donor Program, International Bone Marrow Transplant Registry, and the Working Party on Inborn Errors of the European Bone Marrow Transplant Group in a collaborative 2003 publication of practice guidelines regarding HSCT for inherited metabolic diseases.²⁹¹ A set of guidelines specific to MPS I was published in 2009 by a 12-member International Consensus Panel on the Management and Treatment of Mucopolysaccharidosis I.²⁹⁰

Enzyme-replacement therapy is recommended for all MPS I attenuated cases as first-line therapy. Enzyme replacement is also recommended for severe MPS I cases if the diagnosis was made at 2 years of age or younger and the developmental quotient (DQ) is less than 70.

HSCT is recommended for severe cases with stable cardiopulmonary function, if the disease is diagnosed at 2 years of age or younger and the DQ is 70 or greater. HSCT can also be considered in rare attenuated cases in which the diagnosis is made at older than 2 years of age and the DQ is 70 or greater.²⁹⁰

Summary

Overall there appears to be a favorable risk-benefit profile for the treatment of MPS I with HSCT for severe cases with stable cardiopulmonary function, if the disease is diagnosed at 2 years of age or younger and the DQ is 70 or greater. It is also recommended that overall there appears to be a favorable risk-benefit profile for the treatment of MPS I with HSCT for rare attenuated cases in which the diagnosis is made at older than 2 years of age and the DQ is 70 or greater.²⁹⁰

Maroteaux-Lamy Syndrome (MPS VI)

Background

There are three types of Maroteaux-Lamy Syndrome: severe, intermediate, and mild. A deficiency in the arylsufatase B enzyme results in the accumulation of dermatan sulfate. The clinical characteristics are similar to MPS I, except with a later onset and a slower progression of symptoms. Symptoms such as an enlarged head and deformed chest may be present at birth. Growth and development can be normal the first few years of life, but seem to decline around age 6. Other symptoms include coarseness of facial features, bone abnormalities in the hands and spine, corneal clouding, hepatomegaly, umbilical or inguinal hernias, pain from compressed nerves, and thickening and stenosis of the aortic and mitral valves. Mental development is usually normal, but psychomotor skills are affected by the physical and visual impairments of the disease. Life expectancy is less than 20 years.^{263, 264}

Clinical management typically comprises a coordinated effort to address the diverse spectrum of respiratory, cardiac, skeletal, ophthalmologic, and central and peripheral nervous system symptoms.

Evidence Base

The evidence compiled for this review includes two literature reviews^{265, 270} and a Phase III clinical trial.²⁷² Two clinical practice guidelines^{289, 291} but no health technology assessments were identified in the search.

Enzyme replacement therapy has proven to be a successful treatment for MPS VI, increasing enzyme activity level and improving joint mobility. A Phase III enzyme replacement trial showed sustained significant improvements in physical endurance tests such as stair climbing and walking.²⁸³ Because mental development in MPS VI patients is usually normal, there is no need for the manufactured enzyme to cross the blood-brain barrier. HSCT has been shown to increase enzyme activity levels, decrease hepatosplenomegaly, and improve visual acuity, and joint mobility.²⁷⁰

Guidelines

Guidelines for the treatment of MPS VI with HSCT were published by The National Marrow Donor Program, International Bone Marrow Transplant Registry, and the Working Party on Inborn Errors of the European Bone Marrow Transplant Group in a collaborative 2003 publication of practice guidelines regarding HSCT for inherited metabolic diseases.²⁹¹

Guidelines specific to MPS VI were developed in 2004 at the International MPS Symposium and approved by an international consensus panel of specialists in medicine, genetics, and biochemistry.²⁸⁹

Enzyme-replacement therapy is recommended as first-line therapy for all cases of MPS VI. If enzyme replacement fails, then HSCT is recommended.

Summary

Overall there appears to be a favorable risk-benefit profile for the treatment of MPS VI with HSCT when enzyme replacement is not available or after failure of enzyme replacement. Supplemental treatment may include physical therapy, occupational therapy, and treatment-related surgery and medications.²⁸⁹

Sly Syndrome (MPS VII)

Background

Sly syndrome is a rare disease caused by a deficiency in the enzyme β-glucuronidase. There have been fewer than 100 cases reported world-wide. As in the other mucopolysaccharidoses, a wide range in severity of symptoms exists. In most severe cases, neonatal jaundice and hydrops fetalis are present at birth, and survival is a few months. In less severe cases, growth retardation is evident in the first two years of life. Symptoms include coarse facial features, macrocephaly, hepatosplenomegaly, nerve entrapment, short stature, joint stiffness, inguinal and umbilical hernias, and corneal opacities. Respiratory insufficiency and frequent upper respiratory infections may occur. Mental retardation is moderate and nonprogressive. Life expectancy for the milder form is late teenage years through adulthood.^{263, 264}

Clinical management for Sly syndrome is symptom specific. Surgery can relieve some of the respiratory problems and chronic ear infections and physical therapy can improve joint flexibility and range of motion.

Evidence Base

The evidence compiled for this review includes one literature review²⁷⁰ and one case report.²⁸⁷ One clinical practice guideline,²⁹¹ but no health technology assessments were identified in the search.

HSCT has been performed in two patients with Sly syndrome. Enzyme activity levels have increased, upper respiratory infections have decreased, and motor function has improved.²⁸⁷

Guidelines

Guidelines for the treatment of MPS VII with HSCT were published by The National Marrow Donor Program, International Bone Marrow Transplant Registry, and the Working Party on Inborn Errors of the European Bone Marrow Transplant Group in a collaborative 2003 publication of practice guidelines regarding HSCT for inherited metabolic diseases.²⁹¹

Summary

Overall there appears to be a favorable risk-benefit profile for the treatment of MPS VII with HSCT only in cases with severe physical disabilities, if the neuro-psychological and clinical status of the patient is good.²⁹¹

Inherited Metabolic Diseases: Sphingolipidoses

Sphingolipidoses are a group of autosomal recessive diseases characterized by a deficiency in one of several enzymes needed to metabolize lipids. The accumulation of lipids primarily affects the development and functioning of the central nervous system.²⁹² The evidence base for these disorders is in Table 28 and the review of benefits and harms is in Table 29.

Gaucher Disease Type I

Background

Gaucher disease, the most common lysosomal storage disorder, is caused by a deficiency in the enzyme ß-glucocerebrosidase, which leads to an accumulation of glucosylceramide in the spleen, liver, lungs, bone marrow, and sometimes the brain. There are three types of Gaucher disease, based on the absence or presence, and progression of neurologic involvement. Gaucher disease Type II and Type III, the neuronopathic forms, are discussed in the Systematic Review section. Type I is non-neuronopathic, and is the most common form of the disease (about 90 percent), with a prevalence of 1 in 100,000 in the general population.²⁹³ Those of Eastern and Central European (Ashkenazi) Jewish descent are at highest risk for this type (estimated at 1 in 450-1000).^{261, 293} Symptoms can develop from early childhood to late adulthood. Patients presenting in early childhood have a more severe course of the Type I disease; those presenting later in life are more likely of Jewish descent.²⁶¹ Symptoms include anemia, hepatosplenomegaly, skeletal disorders, and lung and kidney impairment. The clinical course, disease progression, severity among the different organ systems, and life expectancy vary markedly among cases.²⁹⁴ There can be both central and peripheral nervous system involvement in this form of the disease, but the nervous system symptoms are distinct from Type II and Type III because there is no neuronal loss in Type I.²⁹⁵ Some developmental delays may occur as a consequence of the persistent clinical symptoms.²⁶¹

Evidence Base

The evidence compiled for this review includes two literature reviews.^{270, 296} Three clinical practice guidelines,^{291, 297, 298} but no health technology assessments were identified in the literature search.

Enzyme-replacement therapy has been shown to be effective in increasing βglucocerebrosidase enzyme activity levels, resulting in improvements in visceral symptoms.²⁹⁶ Evidence from a retrospective analysis of 1,028 patients in the International Collaborative Gaucher Group has shown that enzyme-replacement therapy can provide rapid and sustained improvements in anemia, decrease bone pain, and decrease organomegaly.²⁹⁹ Adverse effects from enzyme replacement are primarily infusion related.³⁰⁰ Treatment of Gaucher Type I is lifelong, in which enzyme-replacement therapy dosages may need to be adjusted,³⁰¹ and ERT may need to be supplemented with medications or surgery to address issues of pain, pre-existing irreversible skeletal complications, and hypertension.

HSCT may be considered for Gaucher Type I if there is a persistence or progression of severe bone pain or if access to ERT is limited.²⁷⁰ HSCT is effective in alleviating most symptoms of Gaucher Type I, in particular, the skeletal symptoms in the early onset severe form of Type I. Cure of Gaucher Type I can be achieved with HSCT if engraftment is successful and complications from the procedure are minimal.³⁰²⁻³⁰⁴ Complications range in severity, including graft-versus-host disease and treatment-related mortality.^{303, 305}

Disease	Year of First HSCT	No. Transplants to Date	Type of Research Available	Registries
Gaucher Disease Type I	1982	unclear	Case reports, case series	Est. 1991: Genzyme Corporation sponsors the International Collaborative Gaucher Group (ICGG) to create an observational longitudinal database of clinical outcomes. Over 3,000 patients in registry.
Niemann-Pick Disease Type B	1987	3	Case reports	None
Globoid Cell Leukodys-trophy (Krabbe Disease)	1998	>34	Case reports, case series	None
Meta-chromatic Leuko-dystrophy	1982	<100	Case reports, case series	None

Table 28. Evidence base for HSCT in sphingolipidoses

Guidelines

Guidelines for the treatment of Gaucher Type I with HSCT have been made by the National Marrow Donor Program, International Bone Marrow Transplant Registry, and the Working Party on Inborn Errors of the European Bone Marrow Transplant Group in a 2003 publication of practice guidelines regarding HSCT for inherited metabolic diseases,²⁹¹ the Global Experts Meeting on Therapeutic Goals for the Treatment of Gaucher Disease,²⁹⁸ and the U.S. regional coordinators of the International Collaborative Gaucher Group (ICGG) Registry.²⁹⁸

Following a multisystem evaluation to assess the severity of symptoms, HSCT is recommended for Gaucher Type I patients if there is a persistence or progression of severe bone pain that is not resolved by enzyme-replacement therapy or if enzyme replacement is unavailable.

Summary

Overall there appears to be a favorable risk-benefit profile for the treatment of Gaucher Type I with HSCT if there is a persistence or progression of severe bone pain or if ERT is unavailable,²⁷⁰, HSCT is effective in alleviating most symptoms of Gaucher Type I, in particular, the skeletal symptoms in the early onset severe form of Type I.²⁹¹

Disease	Treatment	Source, Evidence Type	Indications	Clinical Benefits	Clinical Harms
Gaucher Disease Type I	ERT	Jmoudiak and Futerman 2005, ²⁹⁶ literature review	- all cases, as first line therapy	- rapid and sustained improvements in anemia for about 90% of pts over 2 year period ^a - among pts with bone pain, 52% pain free and 94% report no additional crises after 2 years ^a - hepatomegaly decreased by 30- 40% and splenectomy decreased by 50-60%, but liver and spleen remain larger than normal size ^a	- intravenous catheterization in children can be difficult, causing pain and apprehension in pts ^b - infusion- related adverse events can be expected, including nausea, headache, rash, malaise, chest pain, vomiting; most can be managed through slower infusion rates or pre- treatment with antihistamines ^c
	Allogeneic HSCT	Peters 2004, ²⁷⁰ literature review - recommended for more severe cases		- increase in enzyme activity level, though still below normal ^{d,e} - decrease in liver size, though liver still enlarged, 3-6 months post HSCT ^{d,e,f,g} - growth pattern returned to normal by 3 years post HSCT ^{e,f,g} - psychological development normal ^f	 1 treatment-related mortality due to aspergillosis reported, out of 6 in case series⁹ - 5 of 6 had mild acute GVHD⁹ (- 2 of 2 had grade I acute GVHD^f - 1 of 2 developed septicemia^f
Niemann- Pick Disease Type B		Peters 2004, ²⁷⁰ literature review	- recommended for pts with early severe liver disease or pulmonary	- reduction in liver size, though liver still enlarged ^{h,i,j} - enzyme level increased ^{ij} - interstitial lung disease resolved, though mild restrictive lung disease persists ^{i,j}	- acute and chronic GVHD ^{h,I,j} - septicemia and pneumonitis ^h - veno- occlusive disease ⁱ - mild to moderate respiratory distress ⁱ
	Allogeneic HSCT	Schuchman 2007, ³⁰⁶ literature review	symptoms - considered experimental therapy for pts with neurological symptoms	- 5.5 years post transplant, either stable or improved in cognitive function, verbal skills, performance skills, receptive vocabulary, and expressive vocabulary ⁱ - 10 yrs post transplant, pt can perform majority of activities of daily living without assistance, though mild gross motor delay persists ^j	 - 5.5 years post transplant, either stable or improved in cognitive function, verbal skills, performance skills, receptive vocabulary, and expressive vocabulary¹ - 10 yrs post transplant, pt can perform majority of activities of daily living without assistance, though mild gross motor delay persists¹ - deficits in memory, but not known i underlying disease or transplant are responsible^{1,j} - engraftment decreasing with time, so disease progression continued several yrs post transplant; pt now severely mentally and physically disabled^k

Table 29. Treatment benefits and harms for Gaucher Type I, Niemann-Pick Type B, Krabbe disease, and metachromatic leukodystrophy

Table 29. Treatment benefits and harms for Gaucher Type I, Niemann-Pick Type B, Krabbe disease, and metachromatic leukodystrophy (continued)

(*******								
Disease	Treatment	Source, Evidence Type	Indications	Clinical Benefits	Clinical Harms			
Globoid Cell Leukodyst rophy	Allogeneic HSCT	Peters 2004, ²⁷⁰ literature review	- recommended for severe early onset form if disease is diagnosed antenatally, so that HSCT can be performed during neonatal period, prior to opport of	- enzyme activity levels in pts reached donor levels after 1 year post-transplant ¹ - 2 pts with late onset form and neurologic disability: tremors and ataxia resolved by 6 months, motor incoordination resolved by 1 year, and gait dysfunction resolved slowly over 7 years post-transplant ¹ - 3 late onset pts developed normally in: cognition, language, and memory ¹ - asymptomatic newborns survival better compared to untreated controls (p=0.001) and better than treated	- 3 of 5 pts had graft-vshost disease, grade I-II ^I - complications among 25 transplant pts: 17 graft-vshost disease grades I-IV, 3 brief episodes of autoimmune hemolytic anemia, 1 catheter-related silent brain infarct, 2 asymptomatic hypertrophic cardiomyopathies, 1 cumptomatic by portraphic			
(Krabbe Disease)		Pastores 2009, ³⁰⁷ literature review	performed during neonatal period, prior to onset of symptoms - recommended for late onset form of disease if symptoms are not severe	controls (p=0.001) and better than treated symptomatic patients (p=0.01) ^m -early onset pts with no symptoms prior to transplantation maintained normal vision, hearing, and cognitive development; variable motor function was maintained ^m - central nervous system deterioration reversed in 4 out of 4 pts ⁿ	symptomatic hypertrophic cardiomyopathy ^m - treatment-related mortality among 25 transplant pts: 1 GVHD, 1 aspiration pneumonia, 1 adenoviral infection, 1 complication from liver biopsy for GVHD ^m			

Table 29. Treatment benefits and harms for Gaucher Type I, Niemann-Pick Type B, Krabbe disease, and metachromatic leukodystrophy (continued)

Disease	Treatment	Source, Evidence Type	Indications	Clinical Benefits	Clinical Harms		
Metachro- matic Leukody-	Allogeneic HSCT	Peters 2004 ²⁷⁰ , literature review	- not recommended if neuro-psychologic and/or neurologic symptoms are advanced - recommended in pre-symptomatic pts	 enzyme activity reaches donor levels^{o,p} no further deterioration of white matter in the brain following transplant^o - some mental capabilities preserved (well-developed language, for example), but physical limitations persisted (difficulty with gross and fine motor skills)^o nerve sensory velocities improved from abnormal to normal, 2 years post transplant^q - serial MR findings support neuropsychological and neurophysiological 	- 3 of 4 pts experienced acute GVHD ^p ; 1 of 2 pts experienced chronic GVHD ^r - 4 pts with mild to moderate symptoms at time of		
strophy		Biffi et al. 2008, ³⁰⁸ literature review	(usually diagnosed early post-natally or prenatally) or pts with good neuropsychologic function	tests that show disease stabilization 2-6 years post- transplant ^r - disease progression halted for over 11 years post-transplant, based on clinical, electrophysiological, and neuroradiological data: wheelchair bound, IQ stable at mild mental retardation, auditory evoked responses stable, nerve conduction velocities stable ^s	transplant deteriorated mentally and physically post-HSCT ^p		
^a Weinreb et a	1. 2002, ²⁹⁹ 1028 1. 2003 ²⁹⁷ FRT	Gaucher I pts, 2-:	5 yrs followup of ERT mendations for Gaucher ty	ne I			
^c Starzyk et al.	$.2007^{300}$ review	of adverse event	reports from 1994-2004 for	or ERT			
^d Chan et al. 1	994, ³⁰² Gaucher	type I case report	, 2.8 yrs post HSCT				
^e Yen et al. 1997, ³⁰⁴ Gaucher I case report, 3 yrs post HSCT							
⁸ Ringden et al. 1995, ³⁰⁵ case series of 6 Gaucher type I pts, 3-8 yrs post HSCT							
^h Vellodi et al. 1987, ³⁰⁹ Niemann-Pick Type B case report, 9 months post HSCT							
Shah et al. 2005, ³¹⁰ Niemann-Pick Type B case report, 5.5 yrs post HSCT							
^J Schneiderma	n et al. 2007^{311}	Niemann-Pick Ty	pe B case report, 10 yrs po	ost HSCT			
^l Krivit et al. 1	2003, ³¹² Niemar	in-Pick Type B ca	1-9 yrs post HSC	1			
^m Escolar et al	$2005.^{314}$ case s	eries of 25 GLD pls,	ots. 11 asymptomatic and 1	4 symptomatic, 4 months - 6 yrs post HSCT			
ⁿ Kurtzberg et	al. 2002 , ³¹⁵ case	e series of 5 GLD	pts, 1-9 yrs post HSCT	······································			
°Krivit et al. 1	1990, ³¹⁶ MLD ca	ase report, 5 yrs p	ost HSCT				

^oKrivit et al. 1990,³¹⁶ MLD case report, 5 yrs post HSCT ^pMalm et al. 1996,³¹⁷ case series of 4 MLD pts, 2-3 yrs post HSCT ^qPierson et al. 2008,³¹⁸ case series of 3 MLD siblings, 2 yrs post HSCT ^rStillman et al. 1994,³¹⁹ case series of 2 MLD pts, 2-6 yrs post HSCT ^sGorg et al. 2007,³²⁰ case report of 1 MLD pt, 13-yrs post HSCT

Niemann-Pick Disease Type B

Background

Niemann-Pick disease is characterized by a deficiency in acid sphingomyelinase activity, resulting in the accumulation of lipids in the spleen, liver, lungs, bone marrow, and the brain, causing lack of muscle coordination, brain degeneration, feeding and swallowing difficulties, and hepatosplenomegaly. There are three types of this disease, Type A, B, and C. Type B is discussed in this section and Types A and C are discussed in more detail in the Systematic Review. Type B is panethnic and is the least severe form of the disease. It is usually diagnosed during childhood or preteen years, because of the development of hepatosplenomegaly.²⁶¹ Severity of symptoms varies in Type B, and as the disease progresses, the pulmonary system becomes compromised, and bronchopneumonias may occur. Liver complications develop in more severe cases, leading to cirrhosis or portal hypertension.^{261, 321} This form usually does not involve neurological symptoms, and cases can survive into adulthood.

Evidence Base

The evidence compiled for this review includes two literature reviews.^{270, 306} One clinical practice guideline,²⁹¹ but no health technology assessments were identified in the literature search.

Three transplantations for Niemann-Pick Type B have been reported in the literature. Two have reported successful outcomes,^{310, 311} and one showed initial improvements followed by neurological and physical deterioration after several years post-transplant.³¹² HSCT can be expected to increase enzyme activity level, reduce liver size, stabilize or improve cognitive function, and improve lung function, resulting in the ability to perform activities of daily living without assistance. Adverse events reported from the three transplantations include acute and chronic graft versus host disease, veno-occlusive disease, and infections.

Enzyme-replacement therapy is currently not available for pediatric cases. A Phase I trial in adults is complete, and enrollment in a Phase II trial was begun in 2010.

Guidelines

Recommendations for HSCT for Niemann-Pick Type B can be found in a publication of practice guidelines regarding HSCT for inherited metabolic diseases by the National Marrow Donor Program, International Bone Marrow Transplant Registry, and the Working Party on Inborn Errors of the European Bone Marrow Transplant Group.²⁹¹

HSCT is recommended for Niemann-Pick Type B patients with early severe liver disease or pulmonary symptoms. HSCT is considered experimental therapy for patients with neurologic symptoms.

Summary

Overall there appears to be a favorable risk-benefit profile for the treatment of patients with HSCT who have severe symptoms from Niemann-Pick Type B particularly those with severe liver disease or pulmonary disease. The procedure will ideally be performed as early in the disease process as possible for maximum benefit.^{291, 306}

Globoid Cell Leukosystrophy (Krabbe Disease)

Background

Globoid cell leukodystrophy, is a disease caused by a deficiency of the enzyme galactocerebrosidase, resulting in progressive destruction of central and peripheral myelin. The estimated incidence is 1 to 2 per 100,000 live births. Symptoms in the most common and more severe form of the disease (90 percent), sometimes called Krabbe disease, begin early in life, between 2 and 10 months of age. In the initial stages of the disease, there is irritability, feeding problems, and a general failure to thrive. Subsequent symptoms include stiffness, seizures, and slow development. Progression of the disease is quick, leading to a chronic vegetative state and death usually by 2 years of age.²⁶¹ In the late-onset form of this disease, the juvenile or adult form, symptoms may begin later in childhood or adulthood, beginning with optic atrophy and cortical blindness. Gait disturbances, such as spasticity and ataxia, develop and progress slowly for about a decade, prior to death.³²²

Evidence Base

The evidence compiled for this review includes two literature reviews.^{270, 306} One clinical practice guideline,²⁹¹ but no health technology assessments were identified in the literature search.

Transplantation in the early onset form of the disease has only been successful if performed during the neonatal period, prior to the development of any symptoms. These cases have been diagnosed antenatally, screened for the disease because an older sibling had died from the disease.³¹⁴

Patients with the late form of the disease have had more success with stem-cell transplantation because the symptoms are less severe and the disease progression is slower. Both improvements in neuromuscular symptoms and continued neurocognitive development have been reported among late-onset patients undergoing transplantation.³¹³⁻³¹⁵ Adverse events reported include acute and chronic graft-versus-host disease, hemolytic anemia, asymptomatic and symptomatic cardiomyopathies, and transplant-related mortality.^{313, 314}

Guidelines

Guidelines for the treatment of globoid cell leukodystrophy with HSCT can be found in a publication of practice guidelines regarding HSCT for inherited metabolic diseases by the National Marrow Donor Program, International Bone Marrow Transplant Registry, and the Working Party on Inborn Errors of the European Bone Marrow Transplant Group.²⁹¹

HSCT is recommended for the severe early onset form of the disease if the disease is diagnosed antenatally, so that HSCT can be performed during the neonatal period, prior to the onset of symptoms. Screening for the disease is recommended in particular for families who have had a child previously diagnosed with the disease, allowing for an antenatal diagnosis and an early transplantation.²⁹¹

HSCT is recommended for patients with the late onset form of disease if symptoms have not become severe.²⁹¹

Summary

Overall there appears to be a favorable risk-benefit profile for the treatment of severe early onset globoid cell leukodystrophy with HSCT, when the disease has been diagnosed antenatally,

and the transplant is performed in the neonatal period prior to the development of symptoms. It is also recommended that there appears to be a favorable risk-benefit profile for the treatment of the late form of globoid cell leukodystrophy with HSCT.

Metachromatic Leukodystrophy

Background

Metachromatic leukodystrophy (MLD) is an autosomal recessive disease caused by either a deficiency in the enzyme arylsulfatase A or a deficiency in a sphingolipid activator protein needed to form the substrate-enzyme complex. Absence of either substance leads to a buildup of cerebroside sulfate in the central nervous system and in peripheral nerves, causing demyelination and a neurodegenerative course.²⁶¹ The incidence is approximately 1 in 40,000 births. There are three forms of the disease: late infantile, juvenile, and adult. The late infantile form is the most common, with the following symptoms occurring in the second year of life: muscle weakness and wasting, muscle rigidity, developmental delays, convulsions, loss of vision, and paralysis. Life expectancy is 5 to 6 years, with death usually due to aspiration or bronchopneumonia.²⁹² The juvenile form presents between the ages of 3 and 12 years, beginning with mental deterioration, dementia, and urinary incontinence, followed by the same symptoms as the late infantile form, but progressing at a slower pace. Life expectancy is through mid-adolescence.²⁶¹ Dementia and behavioral disturbances are the most notable symptoms in the adult form, which may begin in the mid-teenage years through adulthood. Neurological symptoms progress slowly, leading to a bedridden state. Life expectancy can extend beyond a decade following the onset of symptoms.²⁶¹

Evidence Base

The evidence compiled for this review includes two literature reviews.^{270, 308} In addition, one clinical practice guideline,²⁹¹ but no health technology assessments were identified in the literature search.

A wide range of effectiveness of HSCT in the treatment of MLD has been reported. Severity of the disease, in particular, the extent of neurological symptoms at the time of transplant, may determine whether there is a stabilization of symptoms or continued degeneration.³⁰⁸ The most beneficial results occur when HSCT is performed prior to the onset of clinical symptoms and if the donor has homozygous normal arylsulfatase A enzyme activity.²⁷⁰ The benefits of HSCT are primarily to the central nervous system, so symptoms related to the peripheral nervous system remain unresolved.²⁷⁰

Guidelines

Guidelines for the treatment of metachromatic leukodystrophy with HSCT can be found in a publication of practice guidelines regarding HSCT for inherited metabolic diseases by the National Marrow Donor Program, International Bone Marrow Transplant Registry, and the Working Party on Inborn Errors of the European Bone Marrow Transplant Group.²⁹¹

HSCT is recommended for early onset severe patients if they are presymptomatic, usually diagnosed in an early postnatal or prenatal screening, because of an older affected sibling.

HSCT is not recommended for patients with the early onset severe form of the disease if neurophysiologic and neurologic symptoms have already occurred, since stabilization of symptoms is expected to take 6 to 12 months following transplant.

For patients with the juvenile or adult onset form of the disease, HSCT is recommended if comprehensive neurologic, neuropsychologic, neuroradiologic, and neurophysiologic assessments demonstrate the existence of functional abilities.²⁹¹

Summary

Overall there appears to be a favorable risk-benefit profile for the treatment of the late infantile form of MLD, HSCT is recommended for presymptomatic patients only, usually those diagnosed early in the postnatal or prenatal stages, because of an older affected sibling. It is also recommended that overall there appears to be a favorable risk-benefit profile for the treatment of the juvenile and adult forms of MLD with HSCT if comprehensive neurologic, neuropsychologic, neuroradiologic, and neurophysiologic assessments demonstrate the existence of functional abilities.

Inherited Metabolic Diseases: Glycoproteinoses

Glycoproteinoses are a group of lysosomal storage diseases characterized by a deficiency in enzymes needed to break down glycoproteins (Table 30). The accumulation of glycoproteins in the organs and central nervous system causes progressive damage and a neurodegenerative course.²⁶¹

Disease	Year of First Treatment	No. Transplants to Existing Clinical Date Evidence		Registries
Fucosidosis	1995	3	Case reports	None
α-Mannosidosis	1987	<20	Case series	None

Table 30. Evidence base for HSCT in glycoproteinoses

Fucosidosis

Background

Fucosidosis is a rare autosomal recessive disorder caused by a deficiency in the enzyme α -fucosidase, resulting in the accumulation of glycolipids and glycoproteins in the liver, spleen, skin, heart, pancreas, kidneys, and brain.³²³ While cases have been reported throughout the world, most cases have come from Italy, Cuba, and the southwestern portion of the U.S. There are no estimates of incidence of the disease, with less than 100 cases having been reported in the literature. The signs and symptoms of the disease range in severity, presenting in a wide continuous clinical spectrum.³²⁴ The most severe form of the disease presents in the first year of life, beginning with developmental delays and coarse facial features. Growth retardation and mental retardation occur in over 90 percent of cases.³²⁴ Other symptoms include hepatosplenomegaly, seizures, optical abnormalities, frequent upper respiratory infections, angiokeratomas, and visceromegaly. Both physical and mental deterioration progresses with age. In the most severe form, life expectancy is late childhood. The milder form becomes evident at 1 to 2 years of age and life expectancy extends to mid-adulthood.²⁶¹ There is no cure for fucosidosis.

Evidence Base

The evidence compiled for this review (Table 31) includes two literature reviews,^{270, 325} which describe three patients with fucosidosis undergoing HSCT, two reports in the literature and one conference abstract.^{326, 327} No health technology assessments or clinical practice guidelines for the treatment of fucosidosis with HSCT were identified in the literature search.

Both cases reported in the literature were diagnosed early because of disease in an older sibling. Transplantations were performed prior to the onset of symptoms, and the success of the transplants is attributed to the timing of the procedures. Leukocyte enzyme levels rose quickly following engraftment, and remained in the normal range 1 to 3 years post-procedure. Most promising is the detection of enzyme activity in cerebrospinal fluid, indicating that the enzyme had reached the central nervous system.³²⁷ MRIs from 1 to 3 years post-procedure showed a consistent progression of myelination following the transplants. Both cases reported in the literature showed better mental and physical development and improved quality of life compared to their affected siblings. Complications included GVHD and infections.^{326, 327}

Guidelines

No guidelines for the treatment of fucosidosis with HSCT were identified in the search.

Conclusions

Overall there appears to be a favorable risk-benefit profile for the treatment of fucosidosis with HSCT when performed on presymptomatic patients who have had an early diagnosis. HSCT is only recommended for patients who have not shown any signs of central nervous system deterioration.^{270, 325}

α-Mannosidosis

Background

Alpha-mannosidosis is an autosomal recessive disease caused by a deficiency in the enzyme α -mannosidase, resulting in the accumulation of oligosaccharides in the liver, bone marrow, and central nervous system. The estimated incidence of the disease is 1 in 500,000 world-wide. This disease exhibits a wide spectrum of clinical symptoms. Symptoms include mental retardation, impaired hearing, degeneration of previously acquired developmental skills, coarse features, hepatosplenomegaly, immunodeficiency, ataxia, and metabolic myopathy. There is a severe infantile form (Type I), with an onset of symptoms occurring before 12 months of age. Progressive deterioration in this type leads to death between 3 to 12 years of age. Type II is the less severe form, with symptoms beginning in late childhood to adulthood. The symptoms are milder and progress more slowly in this form. Life expectancy can extend through the fifth decade of life.³³¹

Disease	Treatment	Source, Evidence Type	Indications	Clinical Benefits	Clinical Harms
Fucosidosis Al	Allogeneic HSCT HSCT H	Peters 2004, ²⁷⁰ literature review	- recommended only for pre-symptomatic pts with an early diagnosis, before central nervous system starts to deteriorate	 enzyme activity detected in cerebrospinal fluid 1 yr post HSCT, indicating enzyme has reached central nervous system^a myelination proceeding, though delayed compared to cynacted for any of n^a 	 complications: graft vs. host disease, transient episode of idiopathic thrombocytopenic purpura, and repeated sepsis from central venous catheter^b moderately severe graft vs. host disease^b
		Heese 2008, ³²⁵ literature review		 - able to function in slightly low average range, sociable, happy, engaged at 1 yr post^a - progressive rise in enzyme levels, peaking at 30 months post HSCT^b - slight improvement in white matter myelination at 13 months post, more evident improvement by 24 months post, good myelination by 32 months post, near normal by 38-46 months post^b 	
α-Mannosidosis	Allogeneic HSCT	Peters 2004, ²⁷⁰ literature review	 recommended for all pts with severe Type I form prior to onset of significant symptoms recommended for Type II pts if early neurocognitive deficits present 	 hepatosplenomegaly resolved within 1 mo post^{c,d} bony abnormalities improved significantly in skull, thoracolumbar spine, and hands^c trabeculation of long and short bones 	
		Heese 2008, ³²⁵ literature review		normalized ^c - 2 of 3 pts with hearing deficits improved to near normal frequency range, except high frequency difficulties persisted, by 2 yrs post ^d - neuropsychologic testing shows stabilization ^c or improvement ^d of neuropsychologic symptoms - improvement in expressive speech at 3 yrs post in symptomatic pt ^e - overall normal development at 6 yrs post in asymptomatic pt; attends mainstream school ^e	- acute GVHD ^{c,d} - graft vs. host disease led to obliterative bronchiolitis ^e

Table 31. Treatment benefits and harms for fucosidosis and α-mannosidosis

^aVellodi et al. 1995, ³²⁷ case report, fucosidosis pt, 1 yr post HSCT ^bMiano et al. 2001, ³²⁶ case report, fucosidosis pt, 4 yrs post HSCT ^cWall et al. 1998, ³²⁸ case report, α-mannosidosis pt, 15 months post HSCT ^dGrewal et al. 2004³²⁹, case series, 3 pediatric 1 adult α-mannosidosis pts, 1-6 yrs post HSCT ^eBroomfield et al. 2010, ³³⁰ comparison of 2 α-mannosidosis siblings, 1 late transplant to relieve symptoms, 1 presymptomatic transplant, 3-6 yrs post HSC

Evidence Summary

The evidence compiled for this review includes two literature reviews (Table 31).^{270, 325} One clinical practice guideline²⁹¹ but no health technology assessments for the treatment of α -mannosidosis with HSCT were identified in the literature search. Included literature reviews contain all identified reports of HSCT for α -mannosidosis.

Results have shown favorable outcomes, with resolutions in organomegaly, bony disease, and either stabilization or improvement of neuropsychologic symptoms.^{328, 329} A comparison of two α -mannosidosis siblings, one undergoing a late transplant to relieve symptoms, and one receiving a presymptomatic transplant, shows clearly that transplants earlier in the course of the disease are more beneficial.³³⁰ For untreated patients with the severe form of the disease, there is rapid physical and mental degeneration and life expectancy is 3 to 12 years; following HSCT, patients have survived beyond the expected lifespan and several attend mainstream school and participate in sports.^{329, 330}

Guidelines

Guidelines for HSCT in α -mannosidosis can be found in a publication of practice guidelines regarding HSCT for inherited metabolic diseases by the National Marrow Donor Program, International Bone Marrow Transplant Registry, and the Working Party on Inborn Errors of the European Bone Marrow Transplant Group.²⁹¹

HSCT is recommended for all patients with severe Type I form prior to the onset of significant symptoms, and recommended for Type II patients if early neurocognitive deficits are present.

Conclusions

Overall there appears to be a favorable risk-benefit profile for the treatment of severe Type I α -mannosidosis with HSCT, if performed prior to the onset of significant symptoms. It is also recommended that overall there appears to be a favorable risk-benefit profile for the treatment of Type II α -mannosidosis is early neurocognitive deficits are present.

Inherited Metabolic Diseases: Peroxisomal Storage Disorders

Peroxisomal storage disorders are a heterogeneous group of congenital diseases in which there is either a dysfunction of the peroxisomes or a deficiency in the enzymes which are necessary for the metabolism of very-long-chain-fatty-acids (VLCFA). The accumulation of VLCFA in the central nervous system leads to demyelination of the nerve fibers in the brain and nerves, resulting in slower conduction of nerve impulses. Developmental delays and mental retardation are common in all peroxisomal storage disorders.³³² The combined incidence of peroxisomal disorders is estimated at over 1 in 20,000 in the U.S.

Adrenoleukodystrophy

Background

Adrenoleukodystrophy is a demyelinating disorder of the central nervous system caused by the accumulation of very long chain fatty acids in the brain and adrenal cortex, due to a deficiency in the enzyme that breaks down fatty acids. The estimated incidence is 1 in 100,000.³³³ Symptoms range in severity, from the X-linked form which is the most severe form,

to the milder adult-onset form. Onset of symptoms in the severe form occurs between 4 to 8 years of age, and is characterized by adrenal insufficiency in 90 percent and neurological deterioration in 100 percent of the cases.³³⁴ Symptoms include behavioral changes such as withdrawal or aggression, poor memory, and learning disabilities. Physical manifestations of the disease progress quickly and include visual loss, seizures, difficulty swallowing, deafness, fatigue, an increase in skin pigmentation, weakness of the lower limbs, intermittent vomiting, and progressive dementia. This severe form is often referred to as "childhood onset of cerebral adrenoleukodystrophy" (COCALD). In the milder adult-onset form, symptoms begin between the ages of 21 to 35 and progress more slowly. Stiffness, limb weakness, and ataxia may occur, along with deterioration of brain function. Expected survival is 1 to 10 years following the onset of symptoms.³³⁵

The severity and extent of symptoms determines the course of treatment. Patients with adrenocortical insufficiency need steroid hormone replacement therapy. In patients without neurologic symptoms, dietary therapy consisting of fat restriction and an oral supplement called "Lorenzo's oil," a mixture of oleic acid and erucic acid, is recommended. Dietary therapy alone is not effective once neurological symptoms have progressed because erucic acid cannot enter the CNS in significant amounts.³³⁶

The severity of symptoms in adrenoleukodystrophy varies widely from the early onset form through the milder adult onset form. The severity of symptoms determines which therapeutic options to consider. Studies have shown that an MRI severity score of 2-3 in boys younger than 10 years of age, will most likely develop progressive cerebral disease and are therefore candidates for HSCT.²⁹¹

Evidence Base

The evidence compiled for this review (Table 32) includes two literature reviews.^{270, 337} One clinical practice guideline²⁹¹ but no health technology assessments for the treatment of adrenoleukodystrophy with HSCT were identified in the literature search.

Outcomes following HSCT have varied from complete resolution of symptoms to having no effect (Table 33). Disease status prior to the procedure is the best predictor of outcomes.^{338, 339} The most successful outcomes are when the HSCT has been performed prior to the onset of neurologic symptoms. In a report on 94 boys with X-linked adrenoleukodystrophy receiving HSCT, 5-year survival rates were 70 percent with no neurological deficits, 67 percent with one neurological deficit, and 35 percent with two or more neurological deficits. The 5-year survival rates of boys with X-linked adrenoleukodystrophy not receiving HSCT have been reported as less than 40 percent.³³⁹

Disease	Year of First Treatment	No. Transplants to Date	Existing Clinical Evidence	Registries
Adrenoleukodystrophy	1984	>125	Case series, case reports	None

Table 32. Evidence	base for HSCT	in adrenoleukod	ystrophy
--------------------	---------------	-----------------	----------

Guidelines

Guidelines for the treatment of adrenoleukodystrophy with HSCT can be found in a publication of practice guidelines regarding HSCT for inherited metabolic diseases by the

National Marrow Donor Program, International Bone Marrow Transplant Registry, and the Working Party on Inborn Errors of the European Bone Marrow Transplant Group.²⁹¹

HSCT is recommended only for the early onset severe form, once there is definitive evidence of cerebral disease, usually determined by MRI.²⁹¹

Summary

Overall there appears to be a favorable risk-benefit profile for the treatment of severe adrenoleukodystrophy with HSCT. HSCT is indicated at the first signs of demyelination due to the rapid progression of mental deterioration once cerebral disease is detected.²⁹¹

Disease	Treatment	Source, Evidence Type	Indications	Benefits	Harms
Adreno- leukodys- trophy	Allogeneic	Peters 2004, ²⁷⁰ literature review	- recommended as soon as diagnosis for child onset of	 - 18 months post HSCT, behavioral and cognitive functions improved^a - MRI showed complete disappearance of lesions in brain if demyelination moderate^{a,b,c} - MRI showed deterioration stabilized if demyelination more extensive^{b,c} - cognitive function stabilized or improved in 7 of 12 pto^b 	- treatment-related mortality at 3 yrs: 10% with related donor, 18% with unrelated donor ^d
	HSČT	Krivit et al. 1999, ³³⁷ literature review	cerebral adrenoleukody- strophy is confirmed	of 12 pts ^b - 8 of 12 functioning normally in school with no additional support ^b - 5 yr survival: 70% with 0 neurologic deficits, 67% with 1 neurological deficit, 35% with 2 or more neurological deficits ^d - 31 of 58 had no further neurological progression of disease ^d	- severe acute GVHD: 17% with unrelated donor ⁴ - severe acute GVHD: 17% with related donor, 8% with unrelated donor ^d

Table 33. Treatment benefits and harms for adrenoleukodystrophy

^aAubourg et al. 1990,³⁴⁰ case report, 18 months post HSCT ^bShapiro et al. 2000,³⁴¹ case series of 12 pts, 5-10 yrs post HSCT ^cLoes et al. 1994,³⁴² case series of 7 pts, 1-2 yrs post HSCT ^dPeters et al. 2004,²⁷⁰ case series of 94 pts, 0.4-11.2 yrs post HSCT

Osteopetrosis

Background

Osteopetrosis is a group of rare inherited disorders of the skeleton characterized by a defect in the form or function of osteoclasts. Osteoclasts degrade bone in the bone remodeling process, so a decrease in osteoclast activity causes an increase in bone density, an impairment of longitudinal growth of the bone, and bone marrow failure.³⁴³ There is a wide spectrum of presentation and severity of symptoms, which have been classified into three primary clinical types: autosomal recessive infantile ("malignant") osteopetrosis, autosomal recessive "intermediate" osteopetrosis, and autosomal dominant osteopetrosis. The estimated incidence of the autosomal recessive type is 1 in 250,000–300,000 births, though in Costa Rica the incidence is three times as high, and for the autosomal dominant type, the estimated incidence is 1 in 20,000 births.³⁴⁴ The autosomal recessive infantile form is the most severe and is characterized by hepatosplenomegaly, cranial-nerve dysfunction, hearing loss in about one-third of cases, and visual deficits in a majority of the cases, all of which are detected within the first several months of life.

Because of neutrophil defects, anemia, and complications of the ear, nose, and throat, patients with osteopetrosis are susceptible to frequent infections, usually affecting the respiratory tract.³⁴⁵ Life expectancy is less than 10 years, with cause of death most commonly thrombocytopenia, anemia, or infectious complications.³⁴³ There are rare variants of the autosomal recessive type, a neuronopathic form characterized by seizures and a milder form exhibiting renal tubular acidosis are two examples. There is also a rare X-linked form characterized by severe immunodeficiency. Symptoms of the more common, but less severe autosomal dominant form are primarily skeletal, such as fractures, scoliosis, and osteomyelitis, with onset in late childhood or adolescence and a normal life expectancy.³⁴⁴

Clinical management of osteopetrosis is supportive, with fractures and arthritis treated by experienced orthopedic surgeons due to the brittleness of the bone, hypocalcemic seizures treated with calcium and vitamin D supplements, and bone marrow failure treated with red blood cell and platelet transfusions.³⁴⁵

Evidence Base

The evidence compiled for this review (Table 34) includes four literature reviews³⁴⁵⁻³⁴⁸ of osteopetrosis and HSCT (Table 35). In a retrospective study of over 100 osteopetrosis patients undergoing HSCT, 5-year disease free survival rates ranged from 24 percent with a mismatched unrelated donor to 73 percent with a matched sibling donor.³⁴⁹ Some patients experienced improvements in visual symptoms and either stable or improved growth.³⁴⁹ Risks related to HSCT include hypercalcemia, graft versus host disease, and infections.^{349, 350}

Age at transplantation and availability of a suitable HLA matched donor determine the quality and durability of engraftment, which in turn affects the extent of benefit of HSCT.^{345, 350} Engraftment can significantly alter the course of the disease, and prolong life expectancy from less than 10 years of age, to adulthood. Despite successful engraftment, some patients may still experience growth retardation, visual impairment, and damage to permanent teeth.³⁴⁶ Additionally, susceptibility to fractures is expected for some time after successful transplantation. Monitoring of symptoms continues, by a multidisciplinary team including a pediatrician, an ophthalmologist, an audiologist, and a dentist.³⁴⁵

Disease	Year of First Transplant	No. Transplants to Date	Existing Clinical Evidence	Registries
Osteopetrosis	1977	> 125	Case reports, case series, retrospective analyses	None

Table 34. Evidence base for HSCT in osteopetrosis

Guidelines

No guidelines for the management of osteopetrosis were identified in the search.

Summary

Overall there appears to be a favorable risk-benefit profile for the use of HSCT in the severe autosomal recessive infantile malignant form of osteopetrosis. For this indication HSCT is the only curative treatment. HSCT is performed as early as possible, once symptoms clearly indicate the severe form, usually before 3 months of age.^{346, 348} Symptom-specific treatment is recommended for the milder autosomal recessive form and the autosomal dominant form.

Disease	Treatment	Source, Evidence Type	Indications	Clinical Benefits	Clinical Harms
Osteopetrosis	Allogeneic HSCT	Steward 2010, ³⁴⁸ literature review Askmyr et al. 2008, ³⁴⁶ literature review Or et al. 2004, ³⁴⁷ literature review Wilson and Vellodi 2000, ³⁴⁵ literature review	- recommended only for the severe form of autosomal recessive osteopetrosis	 5-yr disease free survival rates: 73% with HLA identical genotype sibling donor, 43% with HLA identical phenotype or one mismatch related donor, 40% with HLA matched unrelated donor, 24% with HLA mismatch related donor^a 56 of 122 have normal osteoclast function following HSCT and 6 of 122 survived with persistent osteopetrosis^a in 42 evaluable pts, 29 had no further visual deterioration; better conservation of vision if HSCT performed before 3 months of age^a in 18 evaluable pts: 11 had same or better percentile growth, 7 had lower percentile growth at last followup^a following HSCT, most children can attend regular school, those with visual disability need special education^a if engraftment successful, no clinical evidence of progressive disease^b 	 - 58 of 122 deaths related to HSCT or osteopetrosis, most common causes: 14 septicemia, 13 pneumonia, 8 veno-occlusive disease, 7 aplasia/hemorrhage^a - hypercalcemia in 8 of 50 evaluable pts; significantly higher risk if HSCT after 2 yrs of age^a - 4 of 10 pts had acute GVHD grades I-III^b - 5 of 10 pts died of transplant complications: 4 of interstitial pneumonitis, 1 of which had chronic GVHD involving respiratory and gastrointestinal tract, and 1 from <i>Aspergillus</i> infection^b

Table 35. Treatment benefits and harms for osteopetrosis

^aDriessen et al. 2003 ³⁴⁹, retrospective analysis of 122 pts, up to 10 yrs post-HSCT, extended followup on patients reported in Gerritsen et al. 1994 ³⁵¹ ^bEapen et al. 1998 ³⁵⁰, case series of 10 pts, 2-18 yrs post-HSCT

Systematic Reviews

Table 36 lists the indications to be addressed as part of the systematic reviews of this report.

Condition	Indication(s)	Type of Transplant	Comparator					
	Malignant Nonhematopoietic							
Ewing sarcoma family of tumors (ESFT)	Consolidate high-risk (initial) Relapsed/refractory	Auto Auto Tandem Auto Auto	Conventional Chemotherapy Conventional Chemotherapy Single Autologous					
Wilms	Consolidate high risk Relapsed/refractory	Auto Auto Tandem Auto Auto	Conventional Chemotherapy Conventional Chemotherapy Single Autologous					
Rhabdomyosarcoma (RMS)	Metastatic Disease	Auto Tandem Auto Auto	Conventional Chemotherapy Single Autologous					
Retinoblastoma	Extraocular Spread	Auto Tandem Auto Auto	Conventional Chemotherapy Single Autologous					
Neuroblastoma (NB)	Consolidate high-risk (initial) Relapsed/refractory	Tandem Auto Auto	Single Autologous					
Germ cell tumor (GCT)	Relapsed	Tandem Auto Auto	Single Autologous					
Central Nervous System Embryonal Tumors	Initial therapy	Auto Tandem Auto Auto	Conventional Chemotherapy Single Autologous					
CNS Glial Tumors	Consolidate high risk Auto Relapsed/refractory Auto		Conventional Chemotherapy					
	Nonmalig	nant						
Inherited metabolic diseases <u>Mucopolysaccharidosis</u> MPS II (Hunter's), MPS III (Sanfilippo), MPS IV (Morquio) <u>Sphingolipidosis</u> Fabry's, Farber's , Gaucher II-III, GM ₁ gangliosidosis, Niemann-Pick disease A, Tay-Sachs, Sandhoff's disease <u>Glycoproteinosis</u> Aspartylglucosaminuria, beta- Mannosidosis, Mucolipidosis III and IV <u>Other lipidoses</u> Niemann-Pick disease C, Wolman disease, Ceroid lipofuscinosis <u>Glycogen storage</u> GSD type II <u>Multiple enzyme deficiency</u> Galactosialidosis, Mucolipidosis type II <u>Lysosomal transport defects</u> Cystinosis, Sialic acid storage disease, Salla disease <u>Peroxisomal storage disorders</u> Adrenomyeloneuropathy	Variable	Allo	Enzyme-replacement therapy, substrate reduction with iminosugars and chaperones					

Table 36. Pediatric HSCT indications to be addressed with systematic review
	Indication(s)	Type of Transplant	Comparator
Autoimmune including juvenile rheumatoid arthritis (JRA), systemic lupus erythematosus (SLE), scleroderma, immune cytopenias, Crohn's	Upfront for severe/ refractory or salvage	Auto/allo	Immunosuppressants, targeted biologic therapies and low-dose chemotherapy
Autoimmune type 1 diabetes mellitus (DM)	Variable	Auto	Immunosuppressants, targeted biologic therapies and low-dose chemotherapy, conventional management (i.e., insulin injections)

Table 36. Pediatric HSCT indications to be addressed with systematic review (continued)

allo = allogeneic; auto = autologous; DM = diabetes mellitus; ESFT = Ewing sarcoma family of tumors; GCT = germ cell tumor; HL = Hodgkin's lymphoma; JRA = juvenile rheumatoid arthritis; MDS = myelodysplastic syndrome; OS = osteosarcoma; PNET = primitive neuroectodermal tumor; RMS = rhabdomyosarcoma; SLE = systemic lupus erythematosus; TKI = tyrosine kinase inhibitor

Systematic Reviews: Malignant, Nonhematopoietic Disease

Ewing's Sarcoma Family of Tumors Systematic Review

Background and Indication

The Ewing's sarcoma family of tumors (ESFT) is the second most common primary malignant bone tumor in children, adolescents and young adults. ESFTs include Ewing tumor of bone (classic Ewing sarcoma and primitive neuroectodermal tumor or PNET) and extraosseous Ewing (i.e., Ewing sarcoma in a site other than bone). The incidence of ESFT is approximately 3 cases per 1,000,000 persons per year. The incidence in the U.S. population is one per 1,000,000 in the population.³⁵² The median age of patients is 15 years, and more than 50 percent of patients are adolescents. Primary sites of bone disease include lower extremity (41 percent), pelvis (26 percent), chest wall (16 percent), upper extremity (9 percent), spine (6 percent) and skull (2 percent).³⁵² Primary sites of extraosseous Ewing's are trunk (32 percent), extremity (26 percent), head and neck (18 percent), retroperitoneum (16 percent) and other sites (9 percent).³⁵² Approximately 25 percent of patients will have metastatic disease at diagnosis.³⁵²

Certain adverse prognostic factors place some patients with ESFT into a high-risk category: relapsed or resistant disease, primary tumor site in the axial skeleton, including pelvis, large tumor volume, and the presence of metastatic disease (patients with isolated lung metastases are considered to have better prognosis than patients with metastases to bone and/or bone marrow). Treatment of ESFT includes systemic chemotherapy in conjunction with either surgery or radiation or both for local tumor control.

Overall survival rates for localized ESFT have dramatically improved over the last 30 years, however, the prognosis for patients with high-risk tumors treated with conventional chemotherapy, radiation and surgery remain poor, with long-term survival rates for patients with metastatic disease less than 35 percent.³⁵² Patients with lung-only metastases have been reported to have 4-year EFS of approximately 40 percent, whereas patients with bone/bone marrow metastases have 4-year EFS of approximately 28 percent and with combined lung and bone/bone marrow metastases 4-year EFS of approximately 14 percent. Relapsed ESFT treated with conventional-dose chemotherapy, radiation and surgery has been reported to have a 2-year event free survival of less than 10 percent.

Chemotherapy for patients with ESFT initially was based on four drugs: doxorubicin, cyclophosphamide, vincristine, and dactinomycin. More recently, treatment has included ifosfamide, with or without etoposide. Dose-intensive chemotherapy regimens as well as HSCT have been investigated in patients with high-risk ESFT in an effort to improve survival.

Evidence Summary

The overall grade of strength of evidence for overall survival and the use of single and tandem HSCT for the treatment of high-risk Ewing's Sarcoma Family of Tumors (ESFT) is shown in Table 37.

Single HSCT

The literature using dose-intensive chemotherapeutic regimens or HSCT consists of case series with small numbers of patients and case reports without direct comparisons between conventional or dose-intensive chemotherapy and HSCT. The evidence compiled for this review includes, for HSCT, 24 case series³⁵³⁻³⁷⁶ (including two Phase II studies) and six case reports.³⁷⁷⁻³⁸² The comparator is conventional chemotherapy and includes seven case series (including one Phase II study).^{116, 376, 383-387} No information on quality of life (QOL) was provided and data on adverse events were sparse and based on small numbers of patients.

The evidence suggests that treatment-related mortality is higher in the patients that underwent HSCT compared to the chemotherapy comparators. The rate of secondary malignancies appeared lower in some reports of dose-intensive chemotherapy compared to HSCT and similar in one report of dose-intensive chemotherapy compared to HSCT.

Tandem Autologous-Autologous HSCT

The literature using tandem HSCT consists of case series with small numbers of patients and a case report.^{355, 380} A direct comparison between tandem HSCT and single HSCT is reported in one case series.³⁵⁴ The evidence compiled for this review includes, for tandem HSCT, two case series and one case report. The comparator is single HSCT and includes 24 case series and six case reports. Data on transplant-related mortality and infectious complications were sparse; data on other adverse effects were not reported.

HSCT Type	Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
Single HSCT	For pediatric patients with high-risk ESFT, what is the comparative effectiveness and harms of HSCT and conventional chemotherapy regarding overall survival? Comparator is conventional chemotherapy. Outcome of interest is overall survival.	The evidence for HSCT consists of 24 case series and 6 case reports. Comparator data consists of 7 case series. Data consist of 446 HSCT patients and 283 conventional chemotherapy patients.	The risk of bias in this evidence is high. Studies consisted of case reports or small case series, and incorporated heterogeneous patient populations.	Results for overall survival are consistent. Among the larger studies, for both HSCT and chemotherapy, the 5-year OS outcomes fall within the same range.	The outcome reported, overall survival, is direct. The comparisons are indirect as the evidence base utilizes two or more bodies of evidence to make comparisons.	The evidence is precise. While the evidence is qualitative, it is unlikely that a clinically important superiority exists for HSCT for the treatment of high-risk ESFT compared to conventional chemotherapy.	Not applicable due to lack of obvious effect size.	Low strength evidence on overall survival suggests no benefit with single HSCT compared to conventional therapy for the treatment of high- risk ESFT.
Tandem autologous- autologous HSCT	For pediatric patients with high-risk ESFT, what is the comparative effectiveness and harms of tandem autologous- autologous HSCT and single HSCT regarding overall survival? Comparator is single HSCT. Outcome of interest is overall survival.	Evidence for tandem HSCT consists of 2 case series and 1 case report. Comparator data used consists of 24 case series and 6 case reports. Data consist of 22 tandem HSCT patients and 446 single HSCT patients.	The risk of bias in this evidence is high. Studies consisted of 1 case report and 2 small case series.	Results for overall survival are unknown. Among the 3 studies using tandem HSCT, overall survival was not reported, and overall survival data could be calculated from one study only.	The outcomes reported are direct. The comparisons are indirect as the evidence base utilizes two or more bodies of evidence to make comparisons.	The evidence is imprecise; effects are uncertain. There is uncertainty on whether tandem HSCT is inferior, equivalent or superior to single HSCT.	Not applicable due to lack of obvious effect size.	The body of evidence on overall survival with tandem HSCT compared to single HSCT for the treatment of high- risk ESFT is insufficient to draw conclusions.

Table 37. Overall grade of strength of evidence for overall survival and the use of single and tandem HSCT for the treatment of high-risk Ewing's Sarcoma Family of Tumors (ESFT)

Results

Table 38 arrays the study selection criteria for ESFT.

Study Design	Population	Intervention	Comparators	Outcomes	Followup	Setting
Any study design	Pediatric patients (0- 21-yr) with high-risk ESFT	Single Auto of Allo HSCT	Chemotherapy +/- RT	OS; EFS (DFS; PFS); adverse	All durations of followup	Inpatient for HSCT and/or conventional
		Tandem	Single auto HSCT	events;		chemotherapy and outpatient for conventional chemotherapy.

Table 38. Study selection criteria for ESFT

Auto = autologous; DFS = disease-free survival; EFS = event-free survival; HSCT = hematopoietic stem-cell transplant; OS = overall survival; PFS = progression-free survival

Table 39 shows the study design and population. Seventeen studies were based in Europe,^{353, 354, 356, 360, 362, 363, 366, 368, 369, 372, 374-376, 378, 380, 385, 386 seven in Asia,^{357, 358, 370, 371, 379, 382, 373} and 12 in the U.S. and Canada.^{355, 359, 361, 364, 365, 367, 377, 381, 383, 384, 387, 388} The total number of patients for which data was abstracted from the 36 studies was 751 (468 HSCT and 283 chemotherapy). Twenty-eight studies included patients who underwent a single autologous or allogeneic HSCT.^{353, 354, 356, 371, 377, 379, 381, 382, 372-376} Three studies reported outcomes for tandem autologous-autologous HSCT.^{354, 355, 380}}

Seven studies included in this analysis involved patients who underwent conventional chemotherapy.^{383-388 376} The patients who underwent conventional therapy were used as the comparators to the single HSCT population and the single HSCT population was used as the comparator to tandem HSCT population.

Table 40 shows the outcomes that were reported across studies.

Overall Survival

Data on overall survival were reported or generated in 20 HSCT studies^{353, 355-358, 360, 362-366, 368-371, 373-376, 389} and four comparator studies (Table 41).³⁸⁵⁻³⁸⁸ No direct comparisons can be made from the published data as there are no comparative studies.

Event-free Survival

Information on event-free survival can be found in Appendix D.

Study	Design	Median Age (Range)	Gender (M,F%)	Histology, Site, Stage (%)	HSCT (N)	Comparator (N)	Treatment Period	Comment
Oberlin, France, 2008 ³⁶⁶ a	case series	12.3 yrs (2 onths-25 years)*	59,41*	ES/PNET Cannot separate out sites of primary tumor and metastases by age <15 yrs old.	Autologous Total study n=97 (patients <15 n=61)	Not applicable	1991-1999	Only abstracted data for patients <15 years old as survival was reported as < 15 and >/= 15 in a univariate analysis
Meyers, USA, 2001 ³⁶⁴ b	case series	13 yrs (1-22 yrs)	63,37	primary site: pelvis n=12 chest wall n=5 femur n=3 multiple sites n=6 other n=6	Autologous n=32	Not applicable	1996-1998	32 pts were eligible for HSCT, 9 did not proceed to consolidation: 4 secondary to progression, 3 secondary to toxicity or death during 1st two courses of induction CT, 1 patient refused therapy during induction, and insufficient data in 1 pt.
Burdach, Germany and Austria, 2003 ³⁵⁴	case series				Single auto HSCT n=18 Tandem auto HSCT n=14	Not applicable		Only abstracted for patients ≤17 yrs

 Table 39. ESFT study characteristics and population

Study	Design	Median Age (Range)	Gender (M,F%)	Histology, Site, Stage (%)	HSCT (N)	Comparator (N)	Treatment Period	Comment
Burdach, Germany and Austria, 2000 ³⁵³ c	case series	At HSCT 15 yrs (8-21 yrs)	50, 50*	Ewing's: Primary tumor site for relapsed patients: long bone n=9, pelvis n=1,scapula n=1, chest wall/ribs n=1 Primary tumor site for multifocal disease: various including long bones, pelvis, rib, vertebrae, skull, sternum, clavicle, liver, bone marrow, thigh, lungs, lymph node	Auto n=21 Allo n=7	Not applicable	1986-1994	Study included a total of 32 patients; data only abstracted for pts <21 yrs at HSCT
Drabko, Poland, 2005 ³⁵⁶ d	case series	At tx 15 yrs (6-21 yrs)	52,48	primary tumor site (reported for 19 patients): long bone n=9 pelvis n=3 clavicle or sternum n=3 scapula n=1 vertebra n=1 skull n=1 rib n=1 metastatic sites: lung n=6 bones n=3 lung/BM n=1 lungs/skull n=1 bone marrow n=3 no data for 4 pts	21 Auto	Not applicable	1996-2002	
Prete, Italy, 1998 ³⁶⁹ e	case series	At tx 8 yrs (5- 14 yrs)	65,35	bone marrow involvement n=3	17 Auto	Not applicable	1993-1997	
Hawkins, USA, 2000 ³⁵⁹ f	case series	At tx 14.6 yrs (6-21)	NR	long bone n=7 Axial n=8 Kidney n=1	16 Auto	Not applicable	1993-1997	

 Table 39. ESFT study characteristics and population (continued)

Study	Design	Median Age (Range)	Gender (M,F%)	Histology, Site, Stage (%)	HSCT (N)	Comparator (N)	Treatment Period	Comment
Ozkaynak, USA, 1998 ³⁶⁷ g	case series	15 yrs (5-21)	53,47	Ewing's/PNET	15 Auto	Not applicable	1992-1995	Study included a total of 27 patients with solid tumors who underwent HSCT; only abstracted those with PNET/Ewing's
Yaniv, Israel, 2004 ³⁷¹ h	case series	13 yrs (0.3- 19)	64,36	primary tumor site long bone n=3; pelvis n=5; cranium n=1; scapula n=1; abdomen n=1	11 Auto	Not applicable	NR	
Kushner, USA, 2001 ³⁶¹ i	case series	16.5 yrs (8-21 yrs)	70,30	primary tumor site pelvis n=4; long bone n=3; perineum n=1; paraspinal n=1; chest wall n=1	10 Auto 5 of the 10 pts did not proceed to HSCT b/c of progressive disease	Not applicable	1990-1998	Study included 21 pts, only abstracted data for pts <21 yrs old.
Navid, USA and Canada, 2006 ³⁶⁵ j	prospective Phase II trial	15 yrs (12-17 yrs)	67,33	primary tumor site long bone n=2; pelvis n=2; rib n=2; kidney n=1; chest wall n=1; thorax n=1 sites of metastases bone n=2; bone, BM n=1; bone, BM, lung n=1; lung n=1; regional LN n=1	9 Auto (4 pts did not undergo HSCT b/c did not achieve a PR or CR to induction CT)	Not applicable	1996-2000	Study included a total of 24 patients with various histologies; only abstracted pts with Ewing's

 Table 39. ESFT study characteristics and population (continued)

Study	Design	Median Age (Range)	Gender (M,F%)	Histology, Site, Stage (%)	HSCT (N)	Comparator (N)	Treatment Period	Comment
Burke, USA, 2007 ³⁵⁵ k	case series	14 yrs (.5-17)	71,29	primary tumor site pelvis n=5 scapula n=1 chest wall n=1 metastatic disease n=4	Tandem auto-auto N=6 Single auto n=1 (pt did not receive the second HSCT b/c of progressive disease)	Not applicable	1992-2003	8 pts in study; only included <21 yrs
Tanaka, Japan, 2002 ³⁷⁰ I	case series	17.5 yrs (8- 19)	67,33	primary tumor site pelvis n=2 sternum n=1 chest wall/lung n=1 long bone n=1 spinal cord n=1	6 Auto	Not applicable	"since 1986"	Study Included 7 pts; only abstracted <21
Kasper, Germany, 2006 ³⁶⁰ m	case series	At tx 19 yrs (17-21)	NR	metastatic sites lung n=2 bone n=1	5 Auto	Not applicable	1998-2004	Study included a total of 30 pts with various histologies; only abstracted Ewing's pts <21 yrs (total of 9 Ewing's pts)
Hara, Japan, 1998 ³⁵⁷ n	case series	5 yrs (2-12 yrs)	NR	stage 3 n=1 stage 4 n=1 relapsed n=1	3 Auto	Not applicable	1993-1997	
Pession, Italy, 1999 ³⁶⁸ o	case series	6 yrs (3-12 yrs)	33,66	Ewing's Site and stage NR	3 Auto	Not applicable	1992-1994	Study included 19 pts with various histologies; only abstracted pts with Ewing's

 Table 39. ESFT study characteristics and population (continued)

Study	Design	Median Age (Range)	Gender (M,F%)	Histology, Site, Stage (%)	HSCT (N)	Comparator (N)	Treatment Period	Comment
Lucidarme, France, 1998 ³⁶³ p	Phase II study	8.5 yrs (2-17 yrs)*	68,32*	Metastatic disease n=3	Single auto n=1 auto x 2 n=2	Not applicable	1987-1995	Study included a total of 22 patients with mixed histologies; only abstracted pts with ESFT. It is not clear whether the 2nd auto HSCTs were planned tandem.
Laws, Germany, 2003 ³⁶² q	case series	9 and 17 yrs	0,100	primary tumor femur n=2 metastatic site scapula n=1 skull, pleura, humerus n=1	2 Auto	Not applicable	1988-1998	Study included a total of 18 pts, but age was only reported for 2.
Harimaya, Japan, 2003 ³⁵⁸ r	case series	13 yrs (12-14 yrs)	50,50	Spinal column	2 Auto	Not applicable	NR	Study included 4 pts; did not abstract for 2 pts treated without HSCT
Costa, USA, 2008 ³⁷⁷	case report	At first HSCT 15 yrs	NR	NR	1 Auto	Not applicable	2000-2007	Pt developed AML at 53 months post HSCT and underwent a second HSCT.
Lucas, USA, 2008 ³⁸¹ s	case report	4 yrs	0,100	primary iliac crest, stage IV	1 Allo	Not applicable	NR	
Kogawa, Japan, 2004 ³⁷⁹ t	case report	7 yrs	0,100	Cervical spine, epidural	1 Auto	Not applicable	NR	
Numata, Japan, 2002 u	case report	20 yrs at HSCT	0,100	Tumor site inguinal	1 Auto	Not applicable	1993	
Fazekas, Austria, 2008 ³⁷⁸ v	case report	13 yrs	100,0	Stage IV	1 Auto	Not applicable	NR	

 Table 39. ESFT study characteristics and population (continued)

Study	Design	Median Age (Range)	Gender (M,F%)	Histology, Site, Stage (%)	HSCT (N)	Comparator (N)	Treatment Period	Comment
Koscielniak, Germany, 2005 ³⁸⁰ w	case report	15 yr	0,100	primary tumor site thorax	1 Tandem auto auto then an allo after relapse	Not applicable	1998	
Diaz, Spain, 2010 ³⁷² x	case series	13 yrs (3-21)	68,32	localized/regional at diagnosis in 57% metastases at diagnosis in 43% primary site of tumor distal extremity 23%, proximal extremity 13%, pelvis 30%, chest 19%, spine/paravertebral 15%	47	Not applicable	1995-2009	
Kwon, Korea, 2010 ³⁷³	case series	8 yrs*	100,0	stage IV	1	Not applicable	2005-2007	Study included a total of 11 patients with mixed histologies; only abstracted pt with ESFT.
llari, Italy, 2010 ³⁷⁴ y	case series	103 mo (12- 192)	42,58	localized n=16 metastatic n=8 primary tumor extremity n=7 axial n=17 Sites of mets lung n=5, BM n=3, bone n=3, other n=2	24	Not applicable	1998-2007	2 patients rapidly progressed during induction and did not proceed to HSCT

 Table 39. ESFT study characteristics and population (continued)

Study	Design	Median Age (Range)	Gender (M,F%)	Histology, Site, Stage (%)	HSCT (N)	Comparator (N)	Treatment Period	Comment
Ladenstein, Austria/France/UK/ Switzerland/ Netherlands/ Germany/ Sweden, 2010 ³⁷⁵ z	case series	NR	NR	disseminated multifocal Ewing's sarcoma Primary not reported separately for ≤ 14 years but for entire study population of 281 patients, extremity 31%, chest/spine/head and neck 24%, abd/pelvis 45% and sites of mets BM plus lung 10%, bone plus lung 45%, bone plus BM plus lungs 36%, other plus lungs 10%	99	Not applicable	1999-2005	Age and gender not reported separately for ≤14 years (entire study included 281 patients median age 16.2 years (range 0.4-49 years) . Survival data divided ≤14 years of age and >14
Burdach, Germany and Austria, 2010 ³⁷⁶ aa	case series	HSCT:15 (6- 17) Comparator: NR	HSCT: 37,63 Comparator: NR	multiple primary bone metastases in 100% sternum n=1, VC n=7, pelvis n=7, lung n=4, LN n=1, MB nonspecified n=1, rib n=1, humerus n=4, cranium n=3, scapula n=1, femur n=3, fibula n=1, tibia=1, talus n=1, clavicle n=1	8	13	HSCT 1999-2000 Comparator1992- 1996	Age and gender not reported separately for ≤17 years (comparator n=26 patients median age 17 yrs (6-37). Survival data for comparator does not separate ≤17 yrs and >17.

 Table 39. ESFT study characteristics and population (continued)

Study	Design	Median Age (Range)	Gender (M,F%)	Histology, Site, Stage (%)	HSCT (N)	Comparator (N)	Treatment Period	Comment
Bernstein, USA/Canada 2006 ³⁸⁸ bb	Phase II study	14.6 yrs (3.0- 27.3)	39,61	Primary extremity 36%, pelvis 29%, spine 5%, chest wall 16%, other 14%) Metastatic sites: Isolated lung 35%, Lung plus other 15%, isolated bone 13%, isolated BM 7%, other 30%	Not applicable	110	NR	Study included 12% of patients between 20 and 30 yrs of age; survival data not separated by age.
Bhatia, USA, 2007 ³⁸³ cc	case series	12 yrs (0-30)*	56,44		Not applicable	60	1992-1994	Study included 578 patients with Ewing's treated with one of three regimens, one of which was high- intensity and it is for this group only that data abstracted.
Sari, Turkey, 2010 ³⁸⁶ dd	case series, retrospective	12 yrs (3-18)*	39;61	Primary tumor site: Extremity 53%, pelvis 28%,vertebrae 8%,chest wall 11%	Not applicable	36	1992-2005	Study included a total of 87 pts- only abstracted data for the 36 patients with metastatic disease (high-risk) and b/c survival was reported by metastatic vs. nonmetastatic disease

 Table 39. ESFT study characteristics and population (continued)

Table 39. ESFT st	tudy characteristics a	and po	pulation ((continued)	
-------------------	------------------------	--------	------------	-------------	--

Study	Design	Median Age (Range)	Gender (M,F%)	Histology, Site, Stage (%)	HSCT (N)	Comparator (N)	Treatment Period	Comment
Kushner, USA, 1995 ³⁸⁴ ee	prospective case series	nonmetastatic disease 15 yrs (1.5-21) metastatic disease 17 yrs (9-21)	Nonmet disease 76,24 Met disease 86,14	Nonmet disease primary tumor site chest wall 24%long bone 41%paraspinal 6%pelvis18%thigh 6% retroperitoneum 6% Metastatic disease primary tumor site illium n=1 Fibula n=1 Femur n=1 Pubis bone n=1 Bone marrow, dura, cranium, sacrum n=1 Pubis, bone marrow n=2	Not applicable	24	NR	Study included 36 patients; only abstracted data for those <21 yrs (17 patients with nonmetastatic disease and 7 with metastatic)
Van Winkle, USA, 2005 ³⁸⁷ ff	case series	14.1 yrs (2.8- 22,5)*	57,43	Ewing's of bone n=21 Extraosseous Ewing's n=1 Sites of recurrence: lung 28%, extremity 28%, pelvis 10%, head/neck10%,other 24%	Not applicable	22	1992-1996	Study included a total of 97 patients with various histologies- only abstracted those with Ewing's.
Milano, Italy, 2006 ³⁸⁵ 99	case series	115 mos (20- 214)	NR	PNET/ES Metastatic disease in 33%	Not applicable	18	1990-2005	Only abstracted data for patients who received ICE/CAV CT (study included a total of 36 pts)

BM = bone marrow; CR = complete remission; CT = chemotherapy; LN = lymph node; NR = not reported; RT = radiation *age or gender reported for all pts in study Therapeutic setting

a Newly diagnosed with metastases; b Newly diagnosed with metastases to bone and/or BM; c Relapsed (early, late or multiple) n=12 primary multifocal disease n=16;

d high risk- poor local control or metastases at presentation (n=14; no data on metastatic status for 4 patients);

e Metastatic disease at diagnosis n=14 localized disease n=3;

f Metastatic disease n=2; Recurrent disease n=14;

g Relapsed or metastatic disease with bone and/or BM involvement;

h Metastatic at diagnosis, poor response defined as <90% necrosis at definitive surgery or primary tumor not resectable with clear margins, relapsed;

i Newly diagnosed with metastases to bone or BM

j Metastatic (n=6) or tumor >8 cm in greatest dimension;

k Pelvic primary and/or metastatic disease;

l Large tumor, pelvic primary, intracranial extension, lung mets or pleural cavity involvement;

m Newly diagnosed with metastatic disease n=3; Newly diagnosed without metastatic disease n=2;

n Relapsed n=1, or advanced stage;

o Relapsed or disseminated disease

p Refractory;

q Relapsed;

r primary tumor, high risk site;

s Relapsed with metastases

t Primary diagnosis, no metastatic disease

u primary diagnosis;

v primary diagnosis;

w Disseminated at diagnosis;

x high-risk localized tumor (tumor volume >200mL, inoperable tumor, or poor histological response to neoadjuvant CT) and those with mets at diagnosis;

y Poor prognosis ESFT (metastasis or axis location, or tumor >200 mL or necrosis <95%);

z primary treatment;

aa high-risk with multiple primary bone mets

bb Metastatic disease at diagnosis;

cc Metastatic disease;

ddMetastatic disease at diagnosis;

ee Newly diagnosed deemed poor-risk because of tumor volume >100 cm³ or metastases to bone or BM.;

ff Recurrent/refractory;

gg high risk including tumor volume >200 mL, site with poor prognosis or lung and/or bone marrow metastases

Table 40. ESFT outcomes reported

Study	OS	EFS (DFS, PFS)	Quality of Life	Treatment- Related Mortality	Second Malignancies	Other Adverse Effects
Oberlin, France, 2008 ³⁶⁶	\checkmark	\checkmark	NR	\checkmark	\checkmark	\checkmark
Meyers, USA, 2001 ³⁶⁴	\checkmark	\checkmark	NR	\checkmark	NR	\checkmark
Burdach, Germany and Austria, 2000 ³⁵³	NR	\checkmark	NR	\checkmark	\checkmark	\checkmark
Drabko, Poland, 2005 ³⁵⁶	\checkmark	\checkmark	NR		NR	\checkmark
Prete, Italy, 1998 ³⁶⁹	\checkmark	\checkmark	NR	\checkmark	NR	NR
Hawkins, USA, 2000 ³⁵⁹	NR	\checkmark	NR	\checkmark	\checkmark	\checkmark
Ozkaynak, USA, 1998 ³⁶⁷	NR	\checkmark	NR		NR	\checkmark
Yaniv, Israel, 2004 ³⁷¹	NR	NR	NR		NR	NR
Kushner, USA, 2001 ³⁶¹	NR	\checkmark	NR	\checkmark	NR	\checkmark
Navid, USA and Canada, 2006 ³⁶⁵	\checkmark	\checkmark	NR	\checkmark	\checkmark	\checkmark
Burke, USA, 2007 ³⁵⁵	NR	NR	NR	\checkmark	NR	\checkmark
Tanaka, Japan, 2002 ³⁷⁰	\checkmark	\checkmark	NR	\checkmark	\checkmark	\checkmark
Kasper, Germany, 2006 ³⁶⁰	\checkmark	\checkmark	NR	NR	NR	\checkmark
Hara, Japan, 1998 ³⁵⁷	NR	NR	NR		NR	\checkmark
Pession, Italy, 1999 ³⁶⁸	NR	NR	NR		NR	\checkmark
Lucidarme, France, 1998 ³⁶³	NR	NR	NR	\checkmark	NR	\checkmark
Harimaya, Japan, 2003 ³⁵⁸	NR	NR	NR	NR	NR	NR
Laws, Germany, 2003 ³⁶²	\checkmark	\checkmark	NR	NR	NR	NR
Numata, Japan, 2002 ³⁸²	NR	NR	NR	NR	\checkmark	NR
Costa, USA, 2008 ³⁷⁷	NR	NR	NR	NR	\checkmark	NR
Lucas, USA, 2008 ³⁸¹	NR	NR	NR	NR	NR	\checkmark
Kogawa, Japan, 2004 ³⁷⁹	NR	NR	NR	NR	NR	\checkmark
Fazekas, Austria, 2008 ³⁷⁸	NR	NR	NR	NR	NR	\checkmark
Koscielniak, Germany, 2005 ³⁸⁰	NR	NR	NR	NR	NR	\checkmark
Diaz, Spain, 2010 ³⁷²	NR	\checkmark	NR	NR	NR	\checkmark
Kwon, Korea, 2010 ³⁷³	\checkmark	NR	NR	NR	NR	NR
llari, Italy, 2010 ³⁷⁴	\checkmark	\checkmark	NR		\checkmark	\checkmark

Study	OS	EFS (DFS, PFS)	Quality of Life	Treatment- Related Mortality	Second Malignancies	Other Adverse Effects
Ladenstein, Austria/France/UK/ Switzerland/ Netherlands/ Germany/ Sweden, 2010 ³⁷⁵	\checkmark	\checkmark	NR	V	V	V
Burdach, Germany and Austria, 2010 ³⁷⁶	\checkmark	NR	NR	\checkmark	\checkmark	\checkmark
Bernstein, USA/Canada 2006 ³⁸⁸	\checkmark	\checkmark	NR	\checkmark	\checkmark	\checkmark
Bhatia, USA, 2007 ³⁸³	NR	NR	NR	NR	\checkmark	NR
Sari, Turkey, 2010 ³⁸⁶	\checkmark	\checkmark	NR	\checkmark	\checkmark	\checkmark
Kushner, USA, 1995 ³⁸⁴	NR	\checkmark	NR	\checkmark	\checkmark	\checkmark
Van Winkle, USA, 2005 ³⁸⁷	\checkmark	NR	NR	\checkmark	NR	
Milano, Italy, 2006 ³⁸⁵			NR	NR	NR	

 Table 40. ESFT outcomes reported (continued)

DFS = disease-free survival; EFS = event-free survival; NR = not reported; OS = overall survival; PFS = progression-free survival

Followup	Intervention Single (%; ± 95% Cl)	Comparator Chemo (%; ± 95% Cl)	P Value	Study
	~75%	Not applicable		Meyers, USA, 2001 ³⁶⁴ (n=32)
	54% (35-72)*	Not applicable		Burdach, Germany and Austria, 2000 ³⁵³ (n=28)
	82% (59-100)*	Not applicable		Yaniv, Israel, 2004 ³⁷¹ (n=11)
	89% (68-100%)*	Not applicable		Navid, USA and Canada, 2006 ³⁶⁵ (n=9)
	71% (38-100)*	Not applicable		Burke, USA, 2007 ³⁵⁵ (n=7)
	100%*	Not applicable		Tanaka, Japan, 2002 ³⁷⁰ (n=6)
	100*	Not applicable		Kasper, Germany, 2006 ³⁶⁰ (n=5)
	100%*	Not applicable		Kasper, Germany, 2004 ³⁸⁹ (n=4)
	67% (13-100%)*	Not applicable		Hara, Japan, 1998 ³⁵⁷ (n=3)
1	67% (13-100%)*	Not applicable		Pession, Italy, 1999 ³⁶⁸ (n=3)
i year	33% (0-87%)*	Not applicable		Lucidarme, France, 1998 ³⁶³ (n=3)
	100% (0-100%)*	Not applicable		Harimaya, Japan, 2003 ³⁵⁸ (n=2)
	50% (0-100%)*	Not applicable		Laws, Germany, 2003 ³⁶² (n=2)
	DOD at 11 mo	Not applicable		Kwon, Korea, 2010 ³⁷³
	Not applicable	77% (+/-4%) [isolated lung mets vs. other or more than isolated lung mets 82% +/-6% and 74% +/-5% p=0.47]		Bernstein, USA/Canada 2006 ³⁸⁸ (n=110)
	Not applicable	~68%		Sari, Turkey, 2010 ³⁸⁶ (n=36)
	Not applicable	43%		Van Winkle, USA, 2005 ³⁸⁷ (n=22)
1 year OS ranges	54-75% ^{353, 364}	43-77% ³⁸⁶⁻³⁸⁸		

Table 41. Overall survival for treatment (single HSCT and tandem auto HSCT) and comparison (conventional chemotherapy +/- radiation) groups

Table 41. Overall survival for treatment (single HSCT and tandem auto HSCT) and comparison (conventional chemotherapy +/- radiation) groups (continued)

Time Period	Intervention Single (%; ± 95% CI)	Comparator Chemo (%; ± 95% Cl)	P Value	Study
	~35	Not applicable		Meyers, USA, 2001 ³⁶⁴ (n=32)
	68%	Not applicable		Drabko, Poland, 2005 ³⁵⁶ (n=21)
	70%	Not applicable		Prete, Italy, 1998 ³⁶⁹ (n=17)
	33% (0-87%)*	Not applicable		Lucidarme, France, 1998 ³⁶³ (n=3)
	50% (0-100%)*	Not applicable		Laws, Germany, 2003 ³⁶² (n=2)
2 year	Not applicable	46% (+/-5%) [isolated lung mets vs. other or more than isolated lung mets 49% +/-8% and 44% +/-6% p=0.47]		Bernstein, USA/Canada 2006 ³⁸⁸ (n=110)
	Not applicable	~36%		Sari, Turkey, 2010 ³⁸⁶ (n=36)
	Not applicable	33%		Van Winkle, USA, 2005 ³⁸⁷ (n=22)
	39% (21-57)*	Not applicable		Burdach, Germany and Austria, 2000 ³⁵³ (n=28)
	54% (16-75)*	Not applicable		Yaniv, Israel, 2004 ³⁷¹ (n=11)
	56% (23-88%)*	Not applicable		Navid, USA and Canada, 2006 ³⁶⁵ (n=9)
	71% (38-100)*	Not applicable		Burke, USA, 2007 ³⁵⁵ (n=7)
	83% (54-100)*	Not applicable		Tanaka, Japan, 2002 ³⁷⁰ (n=6)
	80% (52-100)*	Not applicable		Kasper, Germany, 2006 ³⁶⁰ (n=5)
	75% (33-100)*	Not applicable		Kasper, Germany, 2004 ³⁸⁹ (n=4)
	67% (13-100%)*	Not applicable		Hara, Japan, 1998 ³⁵⁷ (n=3)
3 year	67% (53-100%)*	Not applicable		Pession, Italy, 1999 ³⁶⁸ (n=3)
	50% (0-100%)*	Not applicable		Harimaya, Japan, 2003 ³⁵⁸ (n=2)
	46%	Not applicable	<.001	Ladenstein, Austria/France/UK/ Switzerland/ Netherlands/ Germany/ Sweden, 2010 ³⁷⁵
	Not applicable	isolated lung mets ~34% other or more than isolated lung mets ~24%		Bernstein, USA/Canada 2006 ³⁸⁸ (n=110)
	Not applicable	~32%		Sari, Turkey, 2010 ³⁸⁶ (n=36)
	Not applicable	67% +/-12%		Milano, Italy, 2006 ³⁸⁵ (n=18)
3 year OS ranges	32-39% ³⁵³	24-67% ^{385, 388}		

Table 41. Overall survival for treatment (single HSCT and tandem auto HSCT) and comparison (conventional chemotherapy +/- r	adiation)
groups (continued)	

Time Period	Intervention Single (%; ± 95% CI)	Comparator Chemo (%; ± 95% Cl)	P Value	Study
	49%	Not applicable		Oberlin, France, 2008 ³⁶⁶ (n=61)
	24% (8-40)*	Not applicable		Burdach, Germany and Austria, 2000 ³⁵³ (n=28)
	18% (0-41%)*	Not applicable		Yaniv, Israel, 2004 ³⁷¹ (n=11)
	56% (23-88%)*	Not applicable		Navid, USA and Canada, 2006 ³⁶⁵ (n=9)
	54% (14-93%)*	Not applicable		Burke, USA, 2007 ³⁵⁵ (n=7)
	83% (54-100)*	Not applicable		Tanaka, Japan, 2002 ³⁷⁰ (n=6)
	80% (52-100)*	Not applicable		Kasper, Germany, 2006 ³⁶⁰ (n=5)
	67% (13-100%)*	Not applicable		Hara, Japan, 1998 ³⁵⁷ (n=3)
	67% (53-100%)*	Not applicable		Pession, Italy, 1999 ³⁶⁸ (n=3)
5 year	50% (0-100%)*	Not applicable		Harimaya, Japan, 2003 ³⁵⁸ (n=2)
-	A NED at 73+ months	Not applicable		Costa, USA, 2008 ³⁷⁷ (n=1)
	A NED 60 months after surgery	Not applicable		Kogawa, Japan, 2004 ³⁷⁹ (n=1)
	64% (38-81)	Not applicable		llari, Italy, 2010 ³⁷⁴
	50%*	Not applicable		Burdach, Germany and Austria, 2010 ³⁷⁶
	Not applicable	isolated lung mets ~24% other or more than isolated lung mets ~20%		Bernstein, USA/Canada 2006 ³⁸⁸ (n=110)
	Not applicable	27%		Sari, Turkey, 2010 ³⁸⁶ (n=36)
	Not applicable	~67%		Milano, Italy, 2006 ³⁸⁵ (n=18)
5 year OS ranges	24-49% ^{353, 366}	20-67% ^{385, 386, 388}		

A = alive; NED = no evidence of disease; DOD = dead of disease ~= estimated from K-M curve in study *=generated for this SR Costa- pt underwent 2nd HSCT at 53 months for AML- at 73 months NED (ESFT or AML)

Adverse Effects

None of the studies evaluated quality of life. Data on treatment-related mortality was reported in 14 HSCT studies^{353, 355, 356, 363-365, 367-371, 374, 375 376} and three comparative studies.^{385, ^{387, 388} (Table 42). Eleven HSCT^{353, 355, 356, 359, 360, 364, 370, 372, 374, 375 376} and two comparator studies^{385, 388} reported serious infectious complications. Six HSCT studies^{353, 365, 374, 375, 377 376} and four comparator studies^{383, 384, 386, 388} reported a secondary malignancy. Seven HSCT studies^{359, 361, 381 372, 374, 375} and one comparator study³⁸⁵ reported other long-term complications involving severe organ dysfunction.}

Ongoing Studies

Two ongoing Phase III trials will include an HSCT arm in the treatment of patients with high-risk ESFT:

- A study in localized and disseminated Ewing Sarcoma (EWING 2008; NCT00987636) will include a randomized trial arm for high-risk Ewing's (localized and unfavorable histological response or tumor volume greater than 200 mL) examining whether HSCT compared with standard chemotherapy improves EFS. Patients with pulmonary metastases will be randomized to HSCT versus standard chemotherapy and whole lung irradiation. Very high-risk patients (with primary disseminated disease) will be randomized to HSCT versus standard chemotherapy. Estimated enrollment is 1,383 with an estimated study completion date of March 2018.
- A randomized trial is comparing chemotherapy with or without peripheral stem-cell transplantation, radiation, and/or surgery (EURO-EWING 99; NCT00020566). Primary outcome measures include EFS and OS. Estimated enrollment is 1,200 with an estimated primary completion date of December 2011.

Conclusion

Low strength evidence on overall survival suggests no benefit with single HSCT compared to conventional therapy for the treatment of high-risk ESFT.

The body of evidence on overall survival with tandem HSCT compared to single HSCT for the treatment of high-risk ESFT and overall survival is insufficient to draw conclusions.

Outcome Intervention Control (HSCT [%]) (C		Comparator (Chemo [%])	Study
	12%	Not applicable	Meyers, USA, 2001 ³⁶⁴
	18%	Not applicable	Burdach, Germany and Austria, 2000 ³⁵³
	5%	Not applicable	Drabko, Poland, 2005 ³⁵⁶
	13%	Not applicable	Ozkaynak, USA, 1998 ³⁶⁷
	18%	Not applicable	Yaniv, Israel, 2004 ³⁷¹
Treatment-related	2%*	Not applicable	Ladenstein,Austria/France/UK/Switzerland/Netherl ands/Germany/Sweden, 2010 ³⁷⁵
mortality	0%	Not applicable	Navid, 2006 ³⁶⁵ ; Prete, 1998 ³⁶⁹ ; Burke, 2007 ³⁵⁵ ; Tanaka, 2002 ³⁷⁰ ; Pession, 1999 ³⁶⁸ ; Lucidarme, 1998 ³⁶³ Ilari, 2010 ³⁷⁴
	38%	Not applicable	Burdach, Germany and Austria, 2010 ³⁷⁶
	Not applicable	5%	Bernstein, USA/Canada 2006 ³⁸⁸
	Not applicable	0.6%*	Van Winkle, USA, 2005 ³⁸⁷
	Not applicable	0%	Milano, Italy, 2006 ³⁸⁵
	5% septic death	Not applicable	Meyers, USA, 2001 ³⁶⁴
	18% septic death	Not applicable	Burdach, Germany and Austria, 2000 ³⁵³
	5% septic death	Not applicable	Drabko, Poland, 2005 ³⁵⁶
	6% death due to CMV infection	Not applicable	Hawkins, USA, 2000 ³⁵⁹
	Sepsis 28% (not leading to death)	Not applicable	Burke, USA, 2007 ³⁵⁵
Infectious complications	4/24 (17%) cases of sepsis	Not applicable	Ilari, Italy, 2010 ³⁷⁴
	1/47 (2%) septic shock 1/47 (2%) fungal infection	Not applicable	Diaz, Spain, 2010 ³⁷²
	13%	Not applicable	Burdach, Germany and Austria, 2010 ³⁷⁶
	0%	Not applicable	Tanaka, 2002 ³⁷⁰ ; Kasper, 2006 ³⁶⁰
	Not applicable	6/110 (5%) septic deaths	Bernstein, USA/Canada 2006 ³⁸⁸
	Not applicable	2/18 (11%) cases of sepsis	Milano, Italy, 2006 ³⁸⁵

 Table 42. Adverse effects for single auto HSCT and comparison (conventional chemotherapy +/- radiation) groups

Outcome	Intervention (HSCT [%])	Comparator (Chemo [%])	Study
	11% (MDS n=2 liposarcoma n=1)	Not applicable	Burdach, Germany and Austria, 2000 ³⁵³
	0%	Not applicable	Navid, 2006 ³⁶⁵ , Ilari, 2010 ³⁷⁴ , Ladenstein, 2010 ³⁷⁵
	n=1 (AML)	Not applicable	Costa, USA, 2008 ³⁷⁷
	25%	Not applicable	Burdach, Germany and Austria, 2010 376
Secondary malignancies	Not applicable	1/110 (1%) MDS	Bernstein, USA/Canada 2006 ³⁸⁸
	Not applicable	10% (MDS/AML)	Bhatia, USA, 2007 ³⁸³
	Not applicable	1/1 CML	Numata, Japan, 2002 ³⁸²
	Not applicable	0%	Sari, Turkey, 2010 ³⁸⁶
	Not applicable	1/24 (4%) AML	Kushner, USA, 1995 ³⁸⁴
	10% n=1 died (pulmonary failure)	Not applicable	Kushner, USA, 2001 ³⁶¹
	n=1 dilated CMP, pulmonary HTN, renal failure, interstitial pneumonia	Not applicable	Lucas, USA, 2008 ³⁸¹
Long-term complications	n=1 short stature/growth retardation n=5 ovarian impairment	Not applicable	llari, Italy, 2010 ³⁷⁴
	Not applicable	0/18 (0%)	Milano, Italy, 2006 ³⁸⁵
	10% (n=2 moderate/severe VOD)	Not applicable	Drabko, Poland, 2005 ³⁵⁶
Veno-occlusive disease	6% (n=1 severe VOD)	Not applicable	Hawkins, USA, 2000 ³⁵⁹
veno-occlusive disease	n=5* (grade 3 VOD)	Not applicable	Ladenstein,Austria/France/UK/Switzerland/Netherl ands/Germany/Sweden, 2010 ³⁷⁵

Table 42. Adverse effects for single auto HSCT and comparison (conventional chemotherapy +/- radiation) groups (continued)

AML = acute myelogenous leukemia; MDS = myelodysplastic syndrome; vod = veno-occlusive disease

* For total population

Wilms Tumor Systematic Review

Background and Setting

Wilms tumor is the fifth most common pediatric malignancy and the most common type of renal tumor in children. The incidence of Wilms tumor is approximately 0.8 cases per 100,000 persons, with approximately 500 new cases diagnosed each year in the U.S., 6 percent involving both kidneys.³⁹⁰ Most cases occur sporadically, whereas some are hereditary or associated with certain syndromes. Wilms tumor is diagnosed at a mean age of 3.5 years, and is unusual after the age of 6.³⁹¹Overall survival rates for Wilms tumor are approximately 90 percent with first-line therapy consisting of surgery, chemotherapy and in some cases radiation therapy (to the abdomen and/or lungs).³⁹⁰ However, approximately 15 percent of patients with favorable (nonanaplastic) histology and 50 percent of patients with anaplastic histology experience tumor recurrence.³⁸¹ Recurrent Wilms tumor is a heterogeneous disease and treatment is generally based upon patient risk stratification. For patients with favorable prognostic features, standard-dose chemotherapy may be curative.

Patients with relapsed disease and adverse prognostic factors are considered as a high-risk relapse category. Adverse prognostic factors include initial advanced tumor stage, anaplastic histology, early recurrence (less than 6 months after diagnosis), recurrence in multiple organs or in a previously irradiated field, and initial chemotherapy consisting of vincristine, actinomycin D, and doxorubicin (versus vincristine and actinomycin D alone). Since the identification of this high-risk group of patients with relapsed disease and the poor outcome after initial treatment with chemotherapy consisting of vincristine, actinomycin D, and doxorubicin (VAD) and radiation therapy, investigation now focuses on the activity of ifosfamide, etoposide, and platinum analogs as single agents or in combination, and in more intensive doses. Other intensive dose strategies include the use of myeloablative chemotherapeutic regimens and HSCT.

Evidence Summary

The overall grade of strength of comparative study evidence for overall survival and the use of HSCT for the treatment of high-risk relapsed Wilms tumor is shown in Table 43.

The literature using dose-intensive chemotherapeutic regimens consists of case series with small numbers of patients, without direct comparisons between conventional intensive chemotherapy and HSCT.

The evidence compiled for this review includes 13 case series^{364, 392-403} and seven case reports.^{378, 404-409} The comparator is conventional chemotherapy. Although direct comparisons are difficult to make between dose-intensive chemotherapy and HSCT in high-risk relapsed Wilms, based on the current systematic review, there does not appear to be a difference in progression-free or overall survival between the two groups. No information on quality of life was provided and data on adverse events was sparse and therefore insufficient to make conclusions regarding adverse effects and quality of life.

Results

Thirty-eight articles were retrieved for full-text screening. Twenty reports were included in this review, and the remaining 18 articles were excluded. Table 44 arrays the criteria that were used to select studies for this section.

Table 45 shows the study designs and population. Of the included publications, 13 were case series^{364, 392-403} and seven were case reports.^{378, 404-407} Nine studies were based in Europe,^{378, 392-394, 397, 398, 400, 404, 405} one in Asia,⁴⁰¹ two in South America,^{399, 410} and eight in the U.S.^{395, 396, 402, 403}, 406-409

The total number of patients for which data was abstracted from the twenty studies was 202:

114 patients received HSCT, whereas 88 patients received chemotherapy. Fifteen studies included patients who underwent HSCT,^{378, 392-400, 404, 406, 407} two studies contained data for patients treated either with HSCT or conventional therapy,^{401, 410} one study contained a report of double sequential high-dose chemotherapy with HSCT,⁴⁰⁵ and two studies included in this analysis contained only patients that underwent conventional chemotherapy.⁴⁰², ⁴⁰³ The patients who underwent conventional therapy were used as the comparators to the HSCT population. No studies were identified using tandem autologous HSCT. Patients from these 20 studies received HSCT or conventional chemotherapy for relapsed (first or subsequent), progressive disease, or metastatic disease and one study included patients in first complete remission with bilateral disease (stage V).

Table 43. Overall grade of strength of evidence for overall survival and the use of HSCT for the treatment of high-risk relapsed Wil	ms
tumor	

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
For pediatric patients with high- risk relapsed Wilms tumor, what is the comparative effectiveness and harms of HSCT and conventional chemotherapy regarding overall survival? Outcome of interest is overall survival. The comparator is conventional chemotherapy.	The data for HSCT consists of 11 case series and 7 case reports. The comparator data used consists of 2 case series. Total number of patients HSCT n=114 Comparator n=88	The risk of bias in this evidence is high. Studies consisted of case reports or small case series and incorporated heterogeneous patient populations.	Results for overall survival are consistent. Ranges of outcomes across the different studies are similar.	Where outcomes were reported, the evidence is direct. The comparators are indirect in that the evidence base utilizes two or more bodies of evidence to make comparisons.	The evidence is precise. While the evidence is qualitative, it is unlikely that a clinically important superiority exists for HSCT for the treatment of high- risk relapsed Wilms compared to conventional chemotherapy.	Not applicable due to lack of obvious effect size.	Low strength evidence on overall survival suggests no benefit with single HSCT compared to conventional therapy for the treatment of high-risk relapsed Wilms tumor.

Table 44. Wilms tumor study selection criteria

Study Design	Population	Intervention	Comparators	Outcomes	Followup	Setting
Any study design	Pediatric patients (0-21-yr) with high-risk relapsed or resistant Wilms tumor	Single Auto HSCT Tandem Auto HSCT	Chemotherapy +/- RT Single auto HSCT	OS; EFS (DFS; PFS); adverse events;	All durations of followup	Inpatient (HSCT and /or comparator chemotherapy) and outpatient (comparator chemotherapy)

Auto = autologous; DFS = disease-free survival; EFS = event-free survival; HSCT = hematopoietic stem-cell transplant; OS = overall survival; PFS = progression-free survival

Study	Design	Median Age (Range)	Sex (M, F%)	Histology, Site, Stage (%)	HSCT (N)	Comparator (N)	Treatment Period	Comment
Pein, France, 1998 ³⁹⁸	Case Series	6 years (2- 16 years)	41, 59	Initial stage: I n=4 II n=12 (5 were LN +) III n=5 IV n=6 V n=2 FH n=23 UH n=6	Autologous HSCT (n=28)	Not applicable	1988-1994	Includes 3 patients with clear cell sarcoma of the kidney 1 pt. lost to follow up
Kremens, Germany, 2002 ³⁹²	Case Series	at diagnosis 74 months (11-210 months)	52, 48	Initial stage: I n=4 II n=4 III n=3 IV n=13 (does not total 23) Intermediate risk n=14 High-risk n=5 Completely necrotic tumor n=1	Autologous HSCT (n=23)	Not applicable	1992-1998	Includes one patient with clear cell sarcoma
Spreafico, Italy, 2008 ³⁹⁴	Case Series	at diagnosis 4.1 years (1.1-11.2 years)	30, 70	High risk n=3 relapsed in prior RT field Initial stage: I n=1 II n=2 III n=8 IV n=8 Wilms n=19 CCSK n=1	Autologous HSCT (n=20)	Not applicable	2001-2006	20 patients were enrolled; 5 did not receive HSCT (3 due to progressive disease and 2 at the discretion of the treating physician) Includes one patient with clear cell sarcoma
Campbell, USA, 2004 ³⁹⁵	Case Series	at diagnosis 4.8 years (1- 15 years)	31, 69	Initial stage: I n=2 II n=1 III n=5 IV n=5 FH n=12 UH n=1	Autologous HSCT (n=13)	Not applicable	1991-2001	

Table 45. Wilms tumor study characteristics and population

Study	Design	Median Age (Range)	Sex (M, F%)	Histology, Site, Stage (%)	HSCT (N)	Comparator (N)	Treatment Period	Comment
Hempel, Germany, 1996 ⁴⁰⁰	Case Series	at HSCT 6.25 years (3.9-14.8 years)*	86, 14	UH n=1, FH n=6	Autologous HSCT (n=7)	Not applicable	1992-1995	Study included 8 patients; one patient was misdiagnosed as Wilms (had a rhabdomyosarcoma) and is not included in this analysis.
Kullendorff, Sweden, 1997 ³⁹⁷	Case Series	at diagnosis median 55 months (43- 119 months)	33,66	Initial stage: I n=2 III n=2 FH n=3 UH n=1 Site of relapse lung n=2 and bone n=2	Autologous HSCT (n=4)	Not applicable	1987-1992	Includes one patient with clear cell sarcoma of the kidney
Valera, Brazil, 2004 ³⁹⁹	Case Series	at diagnosis 7 years (3-9 years)	66,33	Initial stage: II n=1 III n=1 IV n=1	Autologous HSCT (n=3)	Not applicable		
Saarinen- Pihkala, Finland, 1998 ³⁹³	Case Series	at diagnosis 46 months (6-60 months)	66,33	Stage: V n=3 Metastases to lung n=1 FH n=2, rhabdomyomatous n=1	Autologous HSCT (n=3)	Not applicable		
Termuhlen, USA, 2006 ³⁹⁶	Case Series phase 1 study	40.5 months (21-60 months)	0,100	Stage V n=2	Autologous HSCT (n=2)	Not applicable		Study included 4 patients (2 had neuroblastoma)
Fazekas, Austria, 2008 ³⁷⁸	Case Report	5 yrs at HSCT	100,0	"intermediate risk"- not further defined	Autologous HSCT (n=1)	Not applicable		
Goldman, USA, 2001 ⁴⁰⁶	Case Report	2 years at HSCT	100,0	Relapse 6 months after diagnosis Initial stage III Relapse in lungs and abdomen	Autologous HSCT (n=1)	Not applicable	1994-1998	Study included 8 patients with various histologies; only abstracted Wilms.

Study	Design	Median Age (Range)	Sex (M, F%)	Histology, Site, Stage (%)	HSCT (N)	Comparator (N)	Treatment Period	Comment
Dagher, USA, 1998 ⁴⁰⁷	Case Report	7 years at HSCT	0,100	Recurred in right-sided tumor bed	Autologous HSCT (n=1)	Not applicable		Patient had a left-sided Wilms tumor, FH, stage II at age 9 months and underwent L nephrectomy and CT. At age 6 years, patients developed a right kidney Wilms tumor for which she underwent right nephrectomy, CT and RT. At 7 years of age she had a right- sided recurrence and underwent HSCT.
Hempel, Germany, 1998 ⁴⁰⁴	Case Report	11 months	100,0	Stage II "medium" malignancy	Autologous HSCT (n=1)	Not applicable		
Maurer, Austria, 1997 ⁴⁰⁵	Case Report	at diagnosis 8 years	0,100	Initial stage IV with lung metastases UH	Double sequential high-dose chemotherap y and autologous HSCT (n=1)	Not applicable		

Table 45. Wilms tumor study characteristics and population (continued)

Study	Design	Median Age (Range)	Sex (M, F%)	Histology, Site, Stage (%)	HSCT (N)	Comparator (N)	Treatment Period	Comment
Park, Korea, 2006 ⁴⁰¹	Case Series	2 yrs (2-3 yrs)	70,30	Autologous HSCT: Initial stage: II n=3 FH n=1 UH n=2 Site of relapse lung n=2 abdomen n=1 Comparator: Initial stage: I n=1 II n=3 III n=1 IV n=2 FH =7 Site of relapse lung n=6 Abdomen n=4 Liver n=1 BM n=1 Bone n=1	Autologous HSCT (n=3)	Chemotherapy +/- RT (n=7)	1994-2004	Comparators were relapsed with at least one risk factor.
Tucci, Brazil, 2007 ⁴¹⁰	Case Series	2 years*		Metastases in the liver and lungs.	Autologous HSCT (n=1)	Chemotherapy +/- RT (n=10)		One patient included in the comparator group underwent HSCT. Overall the study included 53 patients. Only abstracted relapsed patients for comparators and one of the relapsed patients had favorable prognostic factors.
Malogolowkin, USA, 2008 ⁴⁰³	Case Series	at diagnosis 0-23 months n=4 24-47 months n=21 48+ n=35	47,53	Initial stage II n=1 III n=39 IV n=20 FH n=56 Focal anaplasia n=3 Diffuse anaplasia n=1	Not applicable	Chemotherapy +/- RT (n=60)	1995-2002	

Table 45. Wilms tumor study characteristics and population (continued)

Study	Design	Median Age (Range)	Sex (M, F%)	Histology, Site, Stage (%)	HSCT (N)	Comparator (N)	Treatment Period	Comment
Abu-Ghosh, USA, 2002 ⁴⁰²	Case Series	at diagnosis 36 months (13-192 months)		High-risk Initial stage: I 18% II 9% III 36% IV 27% V 9% FH 82%, UH 18% Site of relapse: lung 36%, pleura 9%, kidney 18%, kidney and lung 18%, liver 9%	Not applicable	Chemotherapy +/- RT (n=11)	1992-1999	
Brown, USA, 2010 ⁴⁰⁸	Case Report	At diagnosis 48 months	100,0	Initial stage I n=1	Autologous HSCT (n=1)	Not applicable		Patient treated with chemotherapy, surgical resection, and high-dose chemotherapy with autologous stem-cell transplant in CR3 followed by radiation
Lucas, USA, 2010 ⁴⁰⁹	Case Report	At diagnosis 12 months	100,0	favorable histology, Wilms - left kidney plus right lung nodules	Allogeneic HSCT (n=1)	Not applicable		

Table 45. Wilms tumor study characteristics and population (continued)

CR = complete remission; CSSK = clear cell sarcoma of the kidney; CT = chemotherapy; FH = favorable histology; LN = lymph node; NR = not reported; RT = radiation;

UH = unfavorable histology * Included all patients in study.

Table 46 shows the outcomes that were reported across studies.

Study	os	EFS (DFS, PFS)	Quality of Life	Treatment- Related Mortality	Second Malignancies	Other Adverse Effects
Fazekas, Austria, 2008 ³⁷⁸	\checkmark	NR	NR	\checkmark	NR	NR
Spreafico, Italy, 2008 ³⁹⁴	\checkmark	\checkmark	NR	\checkmark	NR	\checkmark
Malogolowkin, USA, 2008 ⁴⁰³	\checkmark	\checkmark	NR	\checkmark	\checkmark	\checkmark
Tucci, Brazil, 2007 ⁴¹⁰	\checkmark	\checkmark	NR	NR	NR	\checkmark
Termuhlen, USA, 2006 ³⁹⁶	NR	NR	NR	NR	NR	\checkmark
Park, Korea, 2006 ⁴⁰¹	\checkmark	\checkmark	NR	NR	NR	\checkmark
Campbell, USA, 2004 ³⁹⁵	\checkmark		NR	\checkmark	NR	\checkmark
Valera, Brazil, 2004 ³⁹⁹	NR	NR	NR	NR	NR	\checkmark
Kremens, Germany, 2002 ³⁹²	\checkmark	\checkmark	NR	\checkmark	NR	\checkmark
Abu-Ghosh, USA, 2002 ⁴⁰²	\checkmark	\checkmark	NR	\checkmark	NR	\checkmark
Goldman, USA, 2001 ⁴⁰⁶	NR	NR	NR	\checkmark	NR	\checkmark
Saarinen-Pihkala, Finland, 1998 ³⁹³	NR	\checkmark	NR	NR	NR	\checkmark
Pein, France, 1998 ³⁹⁸	\checkmark		NR	\checkmark	NR	\checkmark
Dagher, USA, 1998 ⁴⁰⁷	NR	NR	NR	NR	NR	\checkmark
Hempel, Germany, 1998 ⁴⁰⁴	NR	NR	NR	NR	NR	\checkmark
Kullendorff, Sweden, 1997 ³⁹⁷	NR	NR	NR	\checkmark	NR	NR
Maurer, Austria, 1997 ⁴⁰⁵	NR	NR	NR	NR	NR	\checkmark
Hempel, Germany, 1996 ⁴⁰⁰	NR	NR	NR	\checkmark	NR	\checkmark
Brown, USA, 2010 ⁴⁰⁸	NR	\checkmark	NR	NR	NR	\checkmark
Lucas, USA, 2010 ⁴⁰⁹	NR		NR	NR	NR	NR

 Table 46. Wilms tumor outcomes reported

DFS = disease-free survival; EFS = event-free survival; NR = not reported; OS = overall survival; PFS = progression-free survival

Overall Survival

Data on overall survival were reported in fifteen studies (Table 47).^{378, 392, 394-398, 400-403, 405-407, 410} No direct comparisons can be made from the published data as there are no comparative studies.

Event-free Survival

Information on event-free survival can be found in Appendix D.

Followup	Intervention Single (%; ± 95% Cl)	Comparator Chemo (%; ± 95% CI)	Study	
	1 yr 86% [73-100] (n=28)	Not applicable	Pein,1998 ³⁹⁸	
	Not applicable	1 yr ~73% (n=11)	Abu-Ghosh, 2002 ⁴⁰²	
	1 yr 70% [51-88] (n=23)	Not applicable	Kremens, 2002 ³⁹²	
	1yr 90% [77-100]% (n=20)	Not applicable	Spreafico,2008 ³⁹⁴	
	1 yr 100%* (n=7)	Not applicable	Hempel, 1996 ⁴⁰⁰	
1 year	All patients 1 year 75% [33-100]* (n=4) Only Wilms 1 year 100%* (n=3)	Not applicable	Kullendorf, 1997 ³⁹⁷	
	median 53+ months (31+-76+) (n=3)	Median 15 months (2-30 months) (n=5)	Park, 2006 ⁴⁰¹	
	1yr 100% (n=2)	Not applicable	Termuhlen, 2006 ³⁹⁶	
	A NED at 12 mos (n=1)	Not applicable	Fazekas, 2008 ³⁷⁸	
	A NED at 16+ mos (n=1)	Not applicable	Goldman,2001 ⁴⁰⁶	
	1.8 years (n=1)	Not applicable	Dagher, 1998 ⁴⁰⁷	
	2 yr 60% [41-78] (n=28)	Not applicable	Pein,1998 ³⁹⁸	
	2 yr 61% [41-81] (n=23)	Not applicable	Kremens, 2002 ³⁹²	
	Not applicable	2 yr 64% (n=11)	Abu-Ghosh, 2002 ⁴⁰²	
2 year	2 yr 86% [60-100]* (n=7)	Not applicable	Hempel, 1996 ⁴⁰⁰	
	All patients 2 year 75% [33-100]* Only Wilms 2 year 100%* (n=4)	Not applicable	Kullendorf, 1997 ³⁹⁷	
	2 yr 100% (n=2)	Not applicable	Termuhlen, 2006 ³⁹⁶	
	3yr 60% [41-78] (n=28)	Not applicable	Pein, 1998 ³⁹⁸	
	3 yr 61% [41-81] (n=23)	Not applicable	Kremens, 2002 ³⁹²	
3 year	3yr 55% +/-13% (n=20)	Not applicable	Spreafico,2008 ³⁹⁴	
	Not applicable	3 yr 64% (n=11)	Abu-Ghosh, 2002 ⁴⁰²	
	Not applicable	3 year 83.3% [*] (n=10)	Tucci, 2007 ⁴¹⁰	
	4 yr 50% [29-70] (n=28)	Not applicable	Pein, 1998 ³⁹⁸	
	Not applicable	4 yr 48% [33-62] (n=60)	Malogolowkin, 2008 ⁴⁰³	
	4 yr 61% [41-81] (n=23)	Not applicable	Kremens, 2002 ³⁹²	
4 year	Not applicable	4yr 64% (n=11)	Abu-Ghosh, 2002 ⁴⁰²	
	4-year 73% (n=13)	Not applicable	Campbell, 2004 ³⁹⁵	
	4 yr 100% (n=2)	Not applicable	Termuhlen, 2006 ³⁹⁶	
	A NED at 4 yrs (n=1)	Not applicable	Maurer, 1997 ⁴⁰⁵	
	5 yr 50% [29-70]* (n=28)	Not applicable	Pein, 1998 ³⁹⁸	
	5 yr 61% [41-81]* (n=23)	Not applicable	Kremens, 2002 ³⁹²	
5 year	Not applicable	5 yr 64% (n=11)	Abu-Ghosh, 2002 ⁴⁰²	
	Not applicable	5 year 43% [*] (n=10)	Tucci, 2007 ⁴¹⁰	
	5 yr 100% (n=2)	Not applicable	Termuhlen, 2006 ³⁹⁶	
5 year OS range across studies	50%-61% ^{392, 398}	43-64% ^{402, 410}		

Table 47. Overall survival for treatment (single auto HSCT) and comparison (conventional chemotherapy +/- radiation) groups

A = alive; DOD = dead of disease; NED = no evidence of disease * Survival generated for this review.

Adverse Effects

None of the studies evaluated quality of life. Data on treatment-related mortality was reported in 10 studies (Table 48).^{378, 392, 394, 395, 397, 398, 400, 402, 403, 406} Two studies reported a case of serious infection leading to death^{394, 403} and one study reported no serious infectious complications.⁴⁰⁷ One study reported a secondary malignancy.⁴⁰³ One study reported a case of mild veno-occlusive disease.⁴⁰⁸ There were no reports of other long-term complications.

Ongoing Studies

One Phase II trial is ongoing studying chemotherapy followed by surgery and radiation, with or without HSCT in patients with relapsed or refractory Wilms tumor or clear cell sarcoma of the kidney. The study design is interventional and uses one of three regimens (one of which includes HSCT) depending upon patient risk stratification. Primary outcome measures include unified treatment strategy, improvement of current survival rates, efficacy and toxicity and prognostic variables. Estimated enrollment is 75 (50 for HSCT and 25 for each of the non-HSCT regimens). Estimated final data collection date is November 2008 (NCT00025103).

Table 48. Adverse effects for single auto HSCT and comparison (conventional chemotherapy +/-radiation) groups

Outcome	Intervention HSCT (%)	Comparator Chemo (%)	Study		
Treatment-related mortality	0	Not applicable	Fazekas, 2008 ³⁷⁸ ; Spreafico, 2008 ³⁹⁴ ; Campbell, 2004 ³⁹⁵ ; Kremens, 2002 ³⁹² ; Goldman, 2001 ⁴⁰⁶ ; Pein, 1998 ³⁹⁸ ; Kullendorff, 1997 ³⁹⁷ ; Hempel, 1996 ⁴⁰⁰		
	Not applicable	0	Abu-Ghosh, 2002 ⁴⁰² ; Malogolowkin, 2008 ⁴⁰³		
	Died of sepsis 4 months after HSCT in CR n=1 (7%)	Not applicable	Spreafico, 2008 ³⁹⁴		
	0% (n=1)	Not applicable	Dagher, 1998 ⁴⁰⁷		
Infectious complications	Not applicable	Died of influenza B and aspergillus n=1 (2%)	Malogolowkin, 2008 ⁴⁰³		
	33% septic (n=1)	Not applicable	Saarinen-Pihkala, Finland, 1998 ³⁹³		
Secondary malignancies	Not applicable	n=1 MDS (2%)	Malogolowkin, 2008 ⁴⁰³		
Other adverse effects	100% (n=1) mild VOD and mucositis	Not applicable	Brown, 2010 ⁴⁰⁸		

MDS = myelodysplastic syndrome; VOD = veno-occlusive disease

Conclusion

Low strength evidence on overall survival suggests no benefit with single HSCT compared to conventional therapy for the treatment of high-risk relapsed Wilms tumor.

Rhabdomyosarcoma Systematic Review

Background and Setting

The incidence of rhabdomyosarcoma is 4 to 7 cases per 1 million children age 15 or younger;⁴¹¹ approximately 350 new cases are diagnosed each year in the United States.⁴¹² The majority of children have an initial presentation of nonmetastatic disease. In this setting conventional treatments have produced at least a 60-70 percent chance of cure.⁴¹¹ Metastatic rhabdomyosarcoma in comparison is generally a lethal disease, with less than 20 percent of patients being cured from their disease.⁴¹¹ Despite the development of new chemotherapy options, the prognosis of these patients remains generally poor.

Some centers have used HDC with HSCT in the setting of high-risk rhabdomyosarcoma. High-risk rhabdomyosarcoma includes primary metastatic or stage III or greater disease and relapsed or refractory disease. Patients with relapsed or refractory disease experience 5-year survival of approximately 30 percent.⁴¹³ In most series, numbers remain small as the majority of rhabdomyosarcoma cases are cured with conventional treatment; no randomized controlled trials exist.

Data are generally from case series, save two comparative studies^{414, 415} with patients who received high-dose chemotherapy and HSCT; case reports are also available. While comparative, the study by McDowell and colleagues⁴¹⁵ is treated here as two single arms. The focus was to treat a subgroup of high-risk patients with sequential HDC and HSCT and compare them to

standard high-risk patients receiving standard chemotherapy. This stratification makes this patient population treated with HSCT not comparable to other treated groups, as they are of generally higher risk than is found in other studies. Prognostic factors identified in prior research were used in identifying those with the poorest prognosis.^{366, 416, 417} This study provides outcome data for the stratified high-risk rhabdomyosarcoma group, and tested the hypothesis that the highest risk patients may benefit from sequential HDC and stem-cell rescue. Patients traditionally viewed as high-risk, may not have uniform survival outcomes, and may be further stratified based on prognostic factors. Evidence was evaluated in three groups: studies confined to patients with metastatic disease, studies of mixed tumor stage, and "other" (congenital alveolar, cranial parameningeal disease with metastases, and allogeneic transplantation for metastatic disease).

Evidence Summary

The overall grade of strength of evidence for overall survival and the use of HSCT for the treatment of high-risk rhabdomyosarcoma is shown in Table 49.

The evidence compiled for this review includes two comparative studies,^{414, 418} one study comprising two single arms,⁴¹⁵ 15 case series (nine on HSCT^{357, 363, 365, 419-424} and six on the comparator conventional chemotherapy^{387, 413, 416, 425-427}) and eight case reports on HSCT.⁴²⁸⁻⁴³⁵ Two case reports on allogeneic transplantation were also included.^{420, 436} The total number of patients abstracted from the 26 studies was 887: 340 patients received HSCT, whereas 547 patients received conventional chemotherapy. Patients with embryonal tumors have a better prognosis than those with alveolar histology. Prognostic factors such as age at diagnosis and location of the metastatic disease may help stratify high-risk patients into two groups, those of standard risk and those of poor risk. Treatment with conventional chemotherapy offers three-year survival of about 39 percent.⁴¹⁶ Treatment with HSCT does not appear to alter the survival for patients with metastatic rhabdomyosarcoma above what is already achieved with conventional chemotherapy.

The effects of HSCT on survival for pediatric patients with high-risk rhabdomyosarcoma of mixed tumor stage and those with congenital alveolar rhabdomyosarcoma, cranial parameningeal rhabdomyosarcoma with metastasis or the use of allogeneic transplantation for metastatic rhabdomyosarcoma is uncertain. No information on quality of life (QOL) was provided, and data on adverse events was sparse and therefore insufficient to make conclusions regarding adverse effects and quality of life. Two ongoing trials focused on treatment for malignant solid tumors are enrolling children with rhabdomyosarcoma. One is focused on the toxicity of killer IG-like receptor mismatched cord blood, and the other is investigating a tumor lysate-pulsed dendritic cell vaccine for immune augmentation after stem-cell transplantation. Future research aimed to further stratify high-risk pediatric patients with nonmetastatic disease will be important as the field moves towards more targeted therapies.

Results

Sixty articles were retrieved for full-text screening, including articles identified from the bibliography of identified articles and articles containing patients with rhabdomyosarcoma identified in another disease search. Twenty-six reports were included in this review, and the remaining 34 articles were excluded. The total number of patients abstracted from the 26 studies was 887: 346 patients received HSCT, whereas 547 patients received conventional chemotherapy.

Table 49. Overall grade of strength of evidence for overall survival and the use of HSCT for the treatment of high-risk rhabdomyosarcoma

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
For pediatric patients with high-risk metastatic rhabdomyosarcoma, what is the comparative effectiveness and harms of HSCT and conventional chemotherapy regarding overall survival? Outcome of interest is overall survival. The comparator is conventional chemotherapy	There are three comparative studies; one study was comprised of two single arms. Seven case series (four on HSCT and three on the comparator conventional chemotherapy) and three case reports on HSCT. Data from 255 patients treated with HSCT and 429 treated with conventional therapy were abstracted for this review.	The risk of bias in this evidence is high. In our synthesis we incorporated larger studies with adequate descriptions of patient populations with complete reporting of overall survival.	Overall survival data are consistent. Evidence is from the European Collaborative Studies in which patients with similar disease characteristics were assigned to a protocol. A modification to the protocol to include HDC and stem cell rescue offered the opportunity for comparison and showed no difference in survival. While not powered to detect a 10-15% absolute difference the other studies, with some variation show essentially the same survival. Evidence suggests no survival advantage for HSCT over conventional therapy.	The primary outcome, overall survival, is direct. The comparisons are indirect as the evidence base utilizes two or more bodies of evidence to make comparisons. The best evidence was comparative but the comparison was made with historical controls entered in a previous protocol.	The evidence is precise suggesting no overall survival advantage for HSCT over conventional therapy. While the evidence is qualitative it is unlikely that a clinically important superiority exists for HSCT.	Not applicable due to lack of obvious effect size.	Moderate strength evidence on overall survival suggests no benefit with single HSCT compared to conventional therapy for the treatment of high-risk metastatic rhabdomyosarcoma.
Table 49. Overall grade of strength of evidence for overall survival and the use of HSCT for the treatment of high-risk rhabdomyosarcoma (continued)

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
For pediatric patients with high-risk rhabdomyosarcoma, of mixed tumor stage what is the comparative effectiveness and harms of HSCT and conventional chemotherapy regarding overall survival? Outcome of interest is overall survival. The comparator is conventional chemotherapy	There are six case series (five on HSCT and one on the comparator conventional chemotherapy) and one case reports on HSCT. Data from seventy-nine patients treated with HSCT and twenty-seven treated with conventional therapy were abstracted for this review.	The risk of bias in this evidence is high. In our synthesis we incorporated studies containing a mixture of tumor stages. Tumor stage may modify the overall survival within the high-risk category.	Results for overall survival are inconsistent. Five year survival for the three largest studies reporting overall survival range from 12.5 to 57%.	The outcomes reported are direct. The comparisons are indirect as the evidence base utilizes two or more bodies of evidence to make comparisons.	The evidence is imprecise. There is uncertainty on whether HSCT is inferior, equivalent or superior to conventional chemotherap y. While no comparator data was available a commonly used estimate is 30% overall survival at 5 years (Pappo, 1999). In these data survival ranged from 12.5 to 57%.	Not applicable due to lack of obvious effect size.	The body of evidence on overall survival with single HSCT compared to conventional therapy for the treatment of high-risk rhabdomyosarcoma of mixed tumor type is insufficient to draw conclusions.

Table 49. Overall grade of strength of evidence for overall survival and the use of HSCT for the treatment of high-risk rhabdomyosarcoma (continued)

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
For pediatric patients with congenital alveolar rhabdomyosarcoma, cranial parameningeal rhabdomyosarcoma with metastasis or the use of allogeneic transplantation for metastatic rhabdomyosarcoma, what is the comparative effectiveness and harms of HSCT and conventional chemotherapy regarding overall survival? Outcome of interest is overall survival. The comparator is conventional chemotherapy	There are two case reports for congenital alveolar, one case series for cranial parameningeal, and three case studies of allogeneic transplantation for metastatic rhabdomyosarco ma. Data from two patients with congenital alveolar rhabdomyosarco ma and treated with HSCT, four treated with allogeneic HSCT and ninety-one with cranial parameningeal rhabdomyosarco ma treated with conventional therapy were abstracted for this review.	The risk of bias in the evidence for congenital alveolar rhabdomyosar coma is high. Very few cases of this disease have ever been diagnosed, but the natural history is well known. The risk of bias in the evidence for cranial parameningea I rhabdomyosar coma and allogeneic transplantatio n is high.	Consistency cannot be assessed for these diseases as the data is limited to either one case series (cranial parameningeal) or a few case reports (congenital alveolar and allogeneic transplantation) For congenital alveolar rhabdomyosarcoma available evidence may suggest a survival advantage for HSCT over conventional therapy.	The outcomes reported are direct. The comparisons are indirect as the evidence base utilizes two or more bodies of evidence to make comparisons.	The evidence is precise for congenital alveolar rhabdomyosa rcoma and imprecise for cranial parameninge al rhabdomyosa rcoma with metastasis or the use of allogeneic transplantatio n for metastatic rhabdomyosa rcoma.	Not applicable due to lack of obvious effect size.	The body of evidence on overall survival with HSCT compared to conventional therapy for the treatment of pediatric patients with congenital alveolar rhabdomyosarcoma, cranial parameningeal rhabdomyosarcoma with metastasis or the use of allogeneic transplantation for metastatic rhabdomyosarcoma is insufficient to draw conclusions.

Table 50 shows the criteria that were used to select studies for this section.

Study Design	Population	Intervention	Comparators	Outcomes	Followup	Setting
Any study design	Pediatric patients (0-21-yr) with high-risk disease	Single Auto HSCT Tandem Auto HSCT	Chemotherapy +/- RT Chemotherapy +/- RT	OS; EFS (DFS; PFS); long-term adverse events; QOL	All durations of followup	In-patient for HSCT In or out- patient for conventional chemotherapy

Table 50. Rhabdomyosarcoma study selection criteria

Auto = autologous; DFS = disease-free survival; EFS = event-free survival; HSCT = hematopoietic stem-cell transplant; OS = overall survival; PFS = progression-free survival; QOL = quality of life

Table 51 shows the study design and population. Of the included publications, two were comparative studies (McDowell et al.⁴¹⁵ was abstracted as two single arms); one study was comprised of two single arms. There were 15 case series (nine on HSCT^{357, 363, 365, 419-424} and six on the comparator conventional chemotherapy^{387, 413, 416, 425-427}) and seven case reports on HSCT.⁴²⁸⁻⁴³⁵ Two case reports on allo-transplantation were also included.^{420, 436} Eight studies were based in Europe,^{363, 414, 415, 419, 420, 428, 429, 436} eight in Asia,^{357, 421, 422, 430-434} one in the Middle East,⁴²³ and nine in North America.^{365, 387, 416, 418, 424-427, 435}

All patients across 18 treatment studies received autologous HSCT as consolidation of primary treatments. Patients in three studies received allogeneic HSCT as consolidation of primary treatments. All patients were considered to have high-risk disease prior to transplant.

For the comparison of tandem to single HSCT, no studies were identified in the search.

All studies were specific to the pediatric age group, with age primarily reported as age at diagnosis; 15 studies reported either mean age or only had one patient. Mean age at diagnosis was approximately 8 years with a range of birth to 17 years. Median or categorical age at diagnosis, reported by 15 studies, was 8 years with a range of 3 to 13.1 years. Across all studies patients were approximately split equally by gender. Studies included patients with diverse histology, approximately 40-50 percent of the patients of alveolar histology, save two studies^{419, 424} where 63 percent were of alveolar histology. The majority of the remaining patients had embryonal tumors with a small proportion diagnosed with a tumor not otherwise specified or unknown. Induction regimens varied across and within study (i.e., different chemotherapeutic agents and different (cumulative) dosages). The induction regimen consisted of multiple cycles of chemotherapy with or without radiation and/or surgery.

Conditioning regimens also varied across and within studies. The most common regimens included the following agents: melphalan, thiotepa, busulfan, cyclophosphamide, carboplatin and etoposide, either alone or in combination; MEC (melphalan, VP16, and carboplatin) is a common backbone used alone or in combination with radiation therapy or additional drugs. Treatment periods ranged from 1989 to 2005.

Table 52 shows the pediatric outcomes that were reported across the 26 included studies.

Overall Survival

Data on overall survival were reported in all but two studies^{420, 422} (Table 52). Survival data is presented (Table 53). Individual studies varied in their method for calculating overall survival. In general studies of patients with metastatic disease used time since diagnosis, where studies with patients of mixed tumor stage used time from treatment. Similar trends were observed in the 1-, 3-, and 5-year OS across studies. While not direct, comparisons with adequate numbers of participants can be made from both the McDowell⁴¹⁵ and Carli⁴¹⁴ studies.

The study published by McDowell and colleagues⁴¹⁵ stratified patients with metastatic rhabdomyosarcoma into two groups, poor risk and standard risk. Poor-risk patients were identified as those 10 years of age or older with bone or bone marrow involvement.⁴¹⁵ These patients were given sequential HDC and HSCT, while the standard-risk patients (younger than 10 years of age and not bone or bone marrow involvement) were treated with conventional chemotherapy. Patients in the standard risk group had 3 year EFS and OS of 54.92 percent and 62.14 percent, respectively, comparable to rates in other studies. While those in the poor-risk group had 3 year EFS and OS of 16.17 percent and 23.17 percent, respectively, statistically worse than those in the standard-risk group in this study and no improvement on prior studies.

Carli et al.⁴¹⁴ published results from the European Collaborative MMT4-91. Fifty-two patients in complete remission after induction were given HDC and stem-cell rescue. Outcomes were then compared to 44 patients also in complete remission after induction, but went onto receive conventional chemotherapy. No differences in OS were observed.

The data from additional case series and case reports appear consistent with these findings.

Event-free Survival

Information on event-free survival can be found in Appendix D.

Setting	Study	Design	Median Age	Range	Mean Age	Gender (%)	Histology [Site] (%)	HSCT (N)	Comparator (N)	Treatment Period
Metastatic	Carli, Italy, 1999 ⁴¹⁴	Comparative	<u>Tx.</u> 60% <10 40% >10 <u>Comp.</u> 7% < 1 61% < 10 32% ≥ 10	NR	NR	NR	<u>Treatment</u> 44% Alveolar 56% Embryonal [Primary extremity, parameningeal, other (75%) genitourinary tract and H&N (25%)] <u>Comparator</u> 30% Alveolar 70% Embryonal or unspecified [Primary extremity parameningeal, other (80%) genitourinary tract and H&N (20%)]	52	44	1989-1996
HSCT	McDowell, UK, 2010 ⁴¹⁵	Two single arms	<u>high risk</u> 10.6 <u>Standard</u> <u>risk</u> 4.28	<u>high risk</u> 1.7-17.5 <u>Standard</u> <u>risk</u> 0.52- 9.93	NR	high risk 56% Male 44% Female <u>Standard</u> risk 60% Male 40% Female Standard risk	high risk64%Alveolar22% Embryonal8% Undifferentiated6%Unknown[most commonprimary siteOrbit (28%)]Metastatic33%standard risk33%Alveolar57% Embryonal9% Unspecified or unknown[most common primary siteparameningeal (22%) andpelvis (31%)]71% hadMetastatic disease to lung	101	45	1998-2005

Table 51. Rhabdomyosarcoma study characteristics and population

Setting	Study	Design	Median Age	Range	Mean Age	Gender (%)	Histology [Site] (%)	HSCT (N)	Comparator (N)	Treatment Period
	Williams, Canada, 2004 ⁴¹⁸	retrospective review two single arms	<u>Tx.</u> 4 <10 <u>Comp</u> 7 <10 6 >10	NR	NR	Tx. 25% Male 75% Female <u>Comp</u> 53% Male 47% female	TreatmentEmbryonal with metastatic disease to lung[Primary H&N, parameningeal, bladder/prostate]Stage IVComparator69%Alveolar8%23% Embryonal8%Mixed[Primary Trunk, bladder/prostate, extremity, genitourinary]Stage IV	4	13	1989-1999
	Bisogno, Italy, 2009 ⁴¹⁹	prospective single arm	NR	NR	<1 (1) <10 (38) ≥10 (32)	47% Male 53% Female	63% Alveolar 36% Embryonal 1% Not otherwise specified [Primary sites H&N, limbs, abdomen/pelvis]	70	NA	1999-2006
Metastatic Autologous HSCT	Navid, USA, 2006 ³⁶⁵	case series	15.5	1.5-18.7	13.1	38% Male 62% Female	Alveolar [various primary sites] Metastatic	8	NA	1996-2000
	Walterhouse, USA, 1999 ⁴²⁴	case series	14	3-17	12.5	37% Male 63% Female	63% Alveolar 25% Embryonal 12% Unknown Stage IV	8	NA	1992-1994
	Moritake, Japan, 1998 ⁴³³	case report	NA	NA	10 at diagnosi s	Male	Unspecified metastatic to bone marrow [Primary nasal tumor]	1	NA	1994
	Kwan, Hong Kong, 1996 ⁴³¹	case report	NA	NA	14 years	Female	Alveolar [primary site was left thenar, metastatic to breast] Stage IV	1	NA	NR
	Shaw, Israel, 1996 ⁴²³	prospective case series	8 years at diagnosis	4-15	8.8 years at diagnosi s	NR	Various primary sites Stage IV	9	NA	NR

Table 51. Rhabdomyosarcoma study characteristics and population (continued)

Setting	Study	Design	Median Age	Range	Mean Age	Gender (%)	Histology [Site] (%)	HSCT (N)	Comparator (N)	Treatment Period
	Oue, Japan, 2003 ⁴³⁴	Case report from a case series. Abstracted only one patient receiving a tandem transplant	NA	NA	4.5	Female	Lt. buttock primary site metastatic to lt. femur	1	NA	1991-2001
Metastatic	Breneman, USA, 2003 ⁴¹⁶	Case series	7	0-19	NR	56% Male 44% Female	46% Alveolar 36% Embryonal 3% Undifferentiated [most common 1° site extremity (28%), parameningeal (20%), trunk (20%)] Stage IV Lung most common metastatic site followed by bone marrow and lymph nodes	NA	127	1991-1997
HSCT	Pappo, USA, 2001 ⁴²⁵	Case series	10 at diagnosis	0-19	NR	52% Male 48% Female	48% Alveolar 29% Embryonal 4% Undifferentiated 19% Unspecified [most common 1° site retroperitoneum/perineum/tru nk (43%), extremity (23%), GU/bladder/prostate (15%), other (19%)] Metastatic	NA	48	1994-1996
	Sandler, USA, 2001 ⁴²⁷	Case series	8.5	0-19	NR	58% Male 42% Female	37% Alveolar 48% Embryonal 15% Unspecified [most common 1° site extremity (31%), H&N (7%) retroperitoneum (18%) other (44%)] Metastatic	NA	152	1988-1991

Table 51. Rhabdomyosarcoma study characteristics and population (continued)

Setting	Study	Design	Median Age	Range	Mean Age	Gender (%)	Histology [Site] (%)	HSCT (N)	Comparator (N)	Treatment Period
	Doelken, Germany, 2005 ⁴³⁶	Case reports	NA	NA	Pt 1-11.5 Pt 2- 13	M 100%	Alveolar with metastatic disease Stage IV	2	NA	NR
Metastatic Allo Transplant	Donker, Netherlands, 2009 ⁴²⁸	Case study Allo transplant	NA	NA	8 years	Female	Stage IV Metastatic	1	NA	NR
	Misawa, Japan, 2003 ⁴³²	Case Study Allo transplant	NA	NA	17 at diagnosi s	Female	Alveolar Stage I, group III undifferentiated	1	NA	1997
	Matsubara**, Japan, 2003 ⁴²¹	Case series	8 at transplant	2-20	9.5	62% Male 38% Female	33% Alveolar 67% Embryonal [Parameningeal most common primary site n=7] Group III/IV at transplant	21	NA	1990-1999
	Scully, USA, 2000 ⁴³⁵	Case report	NA	NA	~5 at trans- plant	Female	Embryonal [Primary site was upper arm] Local recurrence	1	NA	NR
Mixed	Hara, Japan, 1998 ³⁵⁷	Case series	3	1-18	6.8	NR	43% Alveolar 57% Embryonal Stage III (2) Stage IV (3) Relapsed (2)	7	NA	1993-1997
tumor stage	Lucidarme, France, 1998 ³⁶³	single arm phase II	NR for our subset	2-17 for the whole study	NR	NR	63% metastatic at transplant Relapsed or Refractory	8	NA	1987-1995
	Sato, Japan, 1998 ⁴²²	case series	7 at diagnosis	.7-10 year	5.34 at diagnosi s	60% Male 40% Female	60% Embryonal 40% Undifferentiated [Primary retroperitoneum, parameningeal, femur, orbit] Stage III	5	NA	1993-1998
	Koscielniak*, Germany, 1997 ⁴²⁰	retrospective case series	6 at diagnosis	<1-22	NR	NR	61% Alveolar 36% Embryonal 3% Undifferentiated Stage IV	36	NA	1986-1994

 Table 51. Rhabdomyosarcoma study characteristics and population (continued)

Setting	Study	Design	Median Age	Range	Mean Age	Gender (%)	Histology [Site] (%)	HSCT (N)	Comparator (N)	Treatment Period
Mixed tumor stage	Van Winkle, USA, 2005 ³⁸⁷	Case series	NR	2.1-20.5	11.3	52% Male 48% Female	37% Alveolar 41% Embryonal 11% Undifferentiated 11% Unknown At recurrence 4% Stage I, 0 Stage II, 11% stage III, 63% Stage IV, 22% unknown	NA	27	1992-1996
Congenital	Kuroiwa, Japan, 2009 ⁴³⁰	case report	NA	NA	<1 at transplan t		Congenital Alveolar RMS [Primary skin lesions]	1	NA	NR
RMS	Grundy, UK, 2001 ⁴²⁹	case report	NA	NA	Diagnos ed at birth	Male	Congenital alveolar RMS [primary right thigh and multiple skin lesions]	1	NA	NR
Cranial Paramening eal	Raney, USA, 2008 ⁴²⁶	case series	5 at diagnosis	<1-19	NR	59% Male 41% Female	15% Alveolar 71% Embryonal 13% Unspecified Cranial parameningeal with metastatic disease	NA	91	1978-1997

NR = not reported *This paper contains both Allo and Auto transplants as they could not be separated, as well as at least one patient over the age of 21. ** study included one patient who was 22, his survival was similar when compared to a 16 and a 20 year old with similar site of relapse and status at transplant.

Setting	Study	os	EFS (DFS, PFS)	Quality of Life	Treatment- Related Mortality	Second Malignancies	Other Adverse Effects
	Carli, Italy, 1999 ⁴¹⁴	\checkmark	\checkmark	NR	\checkmark	NR	\checkmark
	McDowell, UK, 2010 ⁴¹⁵	\checkmark	NR	NR	\checkmark	NR	\checkmark
	Williams, Canada, 2004 ⁴¹⁸	\checkmark	\checkmark	NR	NR	NR	NR
	Bisogno, Italy, 2009 ⁴¹⁹	\checkmark	NR	NR	\checkmark	NR	\checkmark
	Navid, USA, 2006 ³⁶⁵		NR	NR	\checkmark	NR	\checkmark
Metastatic	Walterhouse, USA, 1999 ⁴²⁴	\checkmark	NR	NR	\checkmark	NR	NR
Auto transplant	Moritake, Japan, 1998 ⁴³³	\checkmark	NR	NR	NR	NR	NR
	Kwan, Hong Kong, 1996 ⁴³¹	\checkmark	NR	NR	NR	NR	NR
	Shaw, Israel, 1996423	\checkmark	NR	NR	\checkmark	NR	\checkmark
	Oue, Japan, 2003 ⁴³⁴	\checkmark	NR	NR	\checkmark	NR	NR
	Breneman, USA, 2003 ⁴¹⁶	\checkmark	\checkmark	NR	NR	NR	NR
	Pappo, USA, 2001 ⁴²⁵	\checkmark	\checkmark	NR	\checkmark	NR	NR
	Sandler, USA, 2001 ⁴²⁷	\checkmark	\checkmark	NR	\checkmark	NR	\checkmark
	Doelken, Germany, 2005 ⁴³⁶	\checkmark	NR	NR	NR	NR	NR
Metastatic Allo Transplant	Donker, Netherlands, 2009 ⁴²⁸	\checkmark	NR	NR	NR	NR	NR
	Misawa, Japan, 2003 ⁴³²	\checkmark	NR	NR	NR	NR	NR
	Matsubara**, Japan, 2003 ⁴²¹	\checkmark	\checkmark	NR	NR	\checkmark	NR
	Scully, USA, 2000 ⁴³⁵		NR	NR	NR	\checkmark	NR
	Hara, Japan, 1998 ³⁵⁷		NR	NR	\checkmark	NR	\checkmark
Mixed tumor	Lucidarme, France, 1998 ³⁶³	\checkmark	NR	NR	\checkmark	NR	\checkmark
Stage	Sato, Japan, 1998 ⁴²²	NR	\checkmark	NR	NR	NR	NR
	Koscielniak*, Germany, 1997 ⁴²⁰	NR	\checkmark	NR	NR	NR	\checkmark
	Van Winkle, USA, 2005 ³⁸⁷	\checkmark	NR	NR	\checkmark	NR	NR
Congenital	Kuroiwa, Japan, 2009 ⁴³⁰	\checkmark	NR	NR	NR	NR	NR
Alveolar	Grundy, UK, 2001 ⁴²⁹		NR	NR	NR	NR	NR
Cranial Parameningeal with metastatic disease	Raney, USA, 2008 ⁴²⁶	\checkmark	\checkmark	NR	NR	NR	NR

Table 52. Rhabdomyosarcoma outcomes reported

DFS = disease-free survival; EFS = event-free survival; NR = not reported; OS = overall survival; PFS = progression-free survival

Setting	Outcome	Intervention Single (%; ± 95% CI)	Comparator Chemo (%; ± 95% Cl)	P Value	Study
		~86% at 1 year ^a (n=52)	~66% at one year ^a (n=44)		Carli, Italy, 1999 ⁴¹⁴
		66.7 (35.9, 97.5) at 1 year (n=9)	Not applicable		Shaw, Israel, 1996 ^{b 423}
		50.0 (15.4, 84.6) at 1 year (n=8)	Not applicable		Navid, USA, 2006 ^{b 365}
		87.5 (64.6, 100) (n=8)	Not applicable		Walterhouse, USA, 1999 ^{b 424}
Metastatic Auto		NED 3 months post transplant (n=1)	Not applicable		Kwan, Hong Kong, 1996 ⁴³¹
	1 Year	DOD 21 months after transplant (n=1)	Not applicable		Moritake, Japan, 1998 ⁴³³
		NED 19 months after diagnosis (n=1)	Not applicable		Oue, Japan, 2003 ⁴³⁴
		Not applicable	~75% at 1 year ^a (n=152)		Sandler, USA, 2001 ⁴²⁷
		Not applicable	~75% at 1 year ^a (n=127)		Breneman, USA, 2003 ⁴¹⁶
		37.5% (4, 71.0) at 1 year (n=8)	Not applicable		Lucidarme, France, 1998 ^{b 363}
stage		57.1 (20.5, 93.8) at 1 years (n=7)	Not applicable		Hara, Japan, 1998 ^{b 357}
		Not applicable	56 ±10 at 1 year (n=27)		Van Winkle, USA, 2005 ³⁸⁷
Metastatic Allo		DOD at 5.5 months after transplant (n=1)	Not applicable		Misawa, Japan, 2003 ⁴³²
		40.0 (25.5-54.7) at 3 years (n=52)	27.7 (13.3-42.1) at 3 years (n=44)	0.2	Carli, Italy, 1999 ⁴¹⁴
		23.7 at 3 years (n=101)	62.14 at 3 years (n=45)		McDowell, UK, 2010 ⁴¹⁵
		All 35% (13-58) at 3 years HSCT only (n=4) 100% at 3 years	15% (-4-35) at 3 years (n=13)		Williams, Canada, 2004 ⁴¹⁸
Metastatic Auto		42.3% (30.5-53.6) at 3 years (n=70)	Not applicable		Bisogno, Italy, 2009 ⁴¹⁹
		53.3 (19.4, 87.3) at 3 years (n=9)	Not applicable		Shaw, Israel, 1996 ^{b 423}
	3 year	37.5 (4-71) at 2 years (n=8)	Not applicable		Navid, USA, 2006 ^{b 365}
		12.5 (0, 35.4) (n=8)	Not applicable		Walterhouse, USA, 1999 ^{b 424}
		Not applicable	~40% at 3 years (n=152)		Sandler, USA, 2001 ⁴²⁷
		Not applicable	39% (30-48) at 3 years (n=127)		Breneman, USA, 2003 ⁴¹⁶
		12.5 (0, 35.4) at 3 years (n=8)	Not applicable		Lucidarme, France, 1998 ^{b 363}
Mixed tumor		57.1 (20.5, 93.8) at 3 years (n=7)	Not applicable		Hara, Japan, 1998± ³⁵⁷
		Alive with secondary malignancy at 3 years post transplant (n=1)	Not applicable		Scully, USA, 2000 ⁴³⁵

Table 53. Overall survival for treatment (single auto HSCT) and comparison (conventional chemotherapy +/- radiation) groups

Setting	Outcome	Intervention Single (%; ± 95% CI)	Comparator Chemo (%; ± 95% Cl)	P Value	Study
Congenital	3 year	NED at 46 months after diagnosis (n=1)	Not applicable		Kuroiwa, Japan, 2009 ⁴³⁰
Alveolar	1 pt DOD at 2 years (n=1) Not appl		Not applicable		Grundy, UK, 2001 ⁴²⁹
		~40% at 5 years (n=52)	~26% at 5 years (n=44)		Carli, Italy, 1999 ⁴¹⁴
		17.9 at 5 years (n=101)	47.7% at 5 years (n=45)		McDowell, UK, 2010 ⁴¹⁵
Metastatic		12.5 (0, 35.4) (n=8)	Not applicable		Walterhouse, USA, 1999 ^{b 424}
		Not applicable	~34% at 5 years (n=152)		Sandler, USA, 2001 ⁴²⁷
		Not applicable	~25% at 5 years (n=127)		Breneman, USA, 2003 ⁴¹⁶
Mixed tumor stage		48% at 5 years (n=21)	Not applicable		Matsubara, Japan, 2003 ^{c 421}
Cranial Parameningea I with metastatic disease	5 year	Not applicable	33% (23-43) at 10 years (n=91)		Raney, USA, 2008 ⁴²⁶
		1 pt alive in CR at 4 years (n=1)	Not applicable		Donker, Netherlands, 2009 ⁴²⁸
Metastatic Allo		 4.8 months post allotransplant 1 pt died Approximately 6 years after allo transplant pt. 2 died (pt had a allotransplant 5 years after the auto transplant) (n=2) 	Not applicable		Doelken, Germany, 2005 ⁴³⁶
	OS range for 3-5	40-42.3% ^{414, 419}	27.7-39% 414, 416, 427		This range does not include the McDowell ⁴¹⁵ study as
Metastatic	years for studies with > 20 patients	Survival estimates are measured from the time since diagnosis	Survival estimates are measured from the time since diagnosis		the patients in the treatment arm are not comparable to other studies due to their higher risk category.
Mixed Tumor stage	OS range for 3-5 years for studies with > 5 patients	12.5-57% ^{357, 363, 421} Survival estimates are measured from the time since treatment	No Comparator		

Table 53. Overall survival for treatment (single auto HSCT) and comparison (conventional chemotherapy +/- radiation) groups (continued)

 ^a Estimates preceded by a ~ were estimated from published Kaplan-Meier curves.
 ^b Survival curves were constructed using the raw data published in the articles.
 ^c Study included one patient who was 22, his survival was similar when compared to a 16- and a 20-year-old with similar site of relapse and status at transplant.

Adverse Effects

None of the studies evaluated quality of life, and serious adverse events were reported by fifteen studies (Table 52). Data on treatment-related mortality was reported in twelve studies (Table 54).^{357, 363, 365, 387, 414, 415, 419, 423-425, 427, 434} McDowell reported two cases of treatment-related mortality in the comparator group and there were seven serious adverse events in the treatment group with five resulting in death; however it is unclear how many occurred in 100 days of treatment.⁴¹⁵ Toxic death from sepsis was reported in the treatment group in two studies.^{414, 420} Bisogno et al.⁴¹⁹ reported seven of 55 evaluable patients experienced serious infectious complications while Sandler and colleagues⁴²⁷ reported 40 percent of patients experiencing serious infection with seven leading to death. One study reported a secondary malignancy, myelodysplastic syndrome related to alkylating agents.⁴³⁵ No treatment related mortality was observed in 11 studies.^{363, 421, 422, 424, 429-433, 435, 436} Two studies^{416, 426} did not report on adverse events. There were no reports of secondary malignancies, serious hemorrhagic events, irreversible veno-occlusive disease or other long term complications.

Ongoing Research

Twenty children age 21 or younger were to be enrolled in a Phase I study examining the toxicity of killer IG-like receptor mismatched umbilical cord blood for pediatric patients with malignant solid tumors. This study is ongoing and no longer recruiting, and no results have been published.

There are no trials specifically looking at HSCT outcomes in patients with rhabdomyosarcoma; however, ongoing trials are investigating support networks for transplant recipients (NCT00782145), prevention of fungal infection (NCT00079222) and genetic susceptibility (NCT00949052) to secondary malignancy among stem-cell recipients.

Outcome	Intervention (HSCT [%])	Comparator Chemo (%)	Study
	0 ^a	Not applicable	Dolken, 2005 ⁴³⁶ ; Grundy, 2001 ⁴²⁹ ; Kurioiwa, 2009 ⁴³⁰ ; Kwan, 1996 ⁴³¹ ; Lucidarme, 1998 ³⁶³ ; Matsubara, 2003 ⁴²¹ ; Misawa, 2003 ⁴³² ; Moritake, 1998 ⁴³³ ; Sato, 1998 ⁴²² ; Scully, 2000 ⁴³⁵ ; Walterhouse, 1999 ⁴²⁴
	1.9	2.2	Carli, 1999 ⁴¹⁴
	4.3	Not applicable	Bisogno, 2009 ⁴¹⁹
Treatment- related mortality	1/7 of RMS patients *one additional patient non- RMS experienced TRM; of all patients 2/28 (7.1%)	Not applicable	Hara, 1998 ³⁵⁷
	Not applicable	5.9% Unclear if these were within 100 days	Sandler, 2001 ⁴²⁷
	5.0% This represents 5 adverse events resulting in death, unclear how many occurred within 100 days of treatment	4.4%	McDowell, 2010 ⁴¹⁵

Table 54. Adverse effects for single auto HSCT and comparison (conventional chemotherapy +/- radiation) groups

Table 54. Adverse effects for single auto HSCT and comparison (conventional chemother	rapy
+/- radiation) groups (continued)	

Outcome	Intervention (HSCT [%])	Comparator Chemo (%)	Study
	25% Two of eight RMS patients in a study of mixed cancers	Not applicable	Navid, 2006 ³⁶⁵
Tastast	8.3 In a mixed tumor study. Neither patient had RMS.	Not applicable	Oue, 2003 ⁴³⁴
related mortality	6.6 In a mixed tumor study. Neither patient had RMS.	Not applicable	Shaw, 1996 ⁴²³
	Not applicable	6.2%	Pappo, 2001 ⁴²⁵
	Not applicable	0.6 (TRM rate from infection among 336 chemo courses)	Van Winkle, 2005 ³⁸⁷
Secondary malignancies	1 patient in a case report	Not applicable	Scully, 2000 ⁴³⁵
	12.7	Not applicable	Bisogno, 2009 ⁴¹⁹
Infectious	Not applicable	4 (8.3%) bacteremia 1 (2.1%) pneumonia	Pappo, 2001 ⁴²⁵
complications	2.8 ^b	Not applicable	Koscielniak, 1997 ⁴²⁰
≥ grade III	Not applicable	40 7 infections lead to death	Sandler, 2001 ⁴²⁷
	4 (50%) Sepsis 1 (13%) Fungal infection	Not applicable	Walterhouse, 1999 ⁴²⁴
Serious hemorrhagic event	NR	NR	
Veno- occlusive disease	NR	NR	
Long-term complications	NR	NR	

HSCT = hematopoietic stem-cell transplantation; NR = not reported

^a No cases of TRM occurred in these studies.

^b Unclear if this occurred in first 100 days.

One ongoing open-label nonrandomized study, at the University of Michigan Cancer Center, is investigating a tumor lysate-pulsed dendritic cell vaccine for immune augmentation after stemcell transplantation for pediatric patients with high-risk solid tumors (NCT00405327). This study is ongoing and no longer recruiting patients, and final data collection for the primary outcome is scheduled for June 2012.

Conclusion

Moderate strength evidence on overall survival suggests no benefit with single HSCT compared to conventional therapy for the treatment of high-risk metastatic rhabdomyosarcoma.

The body of evidence on overall survival with single HSCT compared to conventional therapy for the treatment of high-risk rhabdomyosarcoma of mixed tumor type is insufficient to draw conclusions

The body of evidence on overall survival with single HSCT compared to conventional therapy for the treatment of congenital alveolar rhabdomyosarcoma, cranial parameningeal rhabdomyosarcoma with metastasis, or the use of allogeneic transplantation for metastatic rhabdomyosarcoma was insufficient to draw conclusions.

Retinoblastoma Systematic Review

Background and Setting

Retinoblastoma is the most common primary intraocular tumor in children, with an incidence of 1 in 15,000 births,⁴³⁷ and accounts for 4 percent of all childhood cancers. Majority of children present with intraocular disease where conventional treatments have produced at least a 90 percent chance of cure.⁴³⁸ Patients with trilateral retinoblastoma have an initial diagnosis of intraocular disease, with the subsequent development of a primary intra-cranial primitive neuro-ectodermal tumor and have traditionally had extremely poor prognosis and are included in this review. Extraocular or metastatic retinoblastoma in comparison to intraocular disease is generally lethal specifically when the disease has reached the central nervous system. Despite the development of new chemotherapy options, the prognosis of these patients is generally poor. Some centers have used HDC with HSCT in the setting of extraocular and trilateral retinoblastoma are rare conditions; no randomized controlled trials exist. Evidence was evaluated in three groups; studies confined to patients with CNS involvement, those with patients without CNS disease and patients with trilateral retinoblastoma.

Evidence Summary

The overall grade of strength of evidence for overall survival and the use of HSCT for the treatment of metastatic retinoblastoma is shown in Table 55.

The evidence compiled for this review includes five case reports⁴³⁹⁻⁴⁴³ on HSCT and 15 case series (eight on HSCT^{438, 444-450} and five on the comparator conventional chemotherapy⁴⁵¹⁻⁴⁵⁵ and two retrospective reviews with data on both HSCT and conventional chemotherapy^{456, 457}). The total number of patients abstracted from the 20 studies was 267: 91 patients in 15 studies received HSCT, whereas 176 patients in seven studies received conventional chemotherapy.

Prognostic factors are not well defined except that patients with metastatic disease to the CNS have shorter survival than those with metastatic disease to other areas. Treatment with HSCT does not appear to alter the survival for patients with metastatic retinoblastoma to the CNS. These patients continue to have very poor prognosis. Treatment with HSCT may alter the 5-year survival for patients with metastatic retinoblastoma to sites other than the CNS, but these effects are uncertain. Treatment with HSCT may alter the 5-year survival for patients with these effects are uncertain. Additional research with more patients is needed to confirm these findings. No information on quality of life was provided and data on

adverse events was sparse and therefore insufficient to make conclusions regarding adverse effects and quality of life. One Phase III multicenter study of multimodal therapy (induction, HDC, and HSCT and/or radiotherapy) for young children with extraocular retinoblastoma is ongoing.

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
For pediatric patients with extraocular retinoblastoma with CNS involvement what is the comparative effectiveness and harms of HSCT and conventional chemotherapy regarding overall survival? Outcome of interest is overall survival. The comparator is conventional chemotherapy	There are two case reports on HSCT and nine case series (three on HSCT and six on the comparator conventional chemotherapy. Data from 16 patients treated with HSCT and 49 treated with conventional therapy were abstracted for this review.	The risk of bias in this evidence is high as our review consisted of small case series and case reports.	Results for overall survival are of unknown consistency. While in most cases confidence intervals may overlap and clinical heterogeneity exists the data consistently show poor outcome for both HSCT and conventional therapy.	The outcomes reported are direct. The comparisons are indirect as the evidence base utilizes two or more bodies of evidence to make comparisons.	The evidence is precise suggesting no overall survival advantage for HSCT over conventional therapy. While the evidence is qualitative it is unlikely that a clinically important superiority exists for HSCT for the treatment of extraocular retinoblastoma with CNS involvement.	Not applicable due to lack of obvious effect size.	Low strength evidence on overall survival suggests no benefit with single HSCT compared to conventional therapy for the treatment of extraocular retinoblastoma with CNS involvement .

Table 55. Overall grade of strength of evidence for overall survival and the use of HSCT for the treatment of metastatic retinoblastoma

Table 55. Overall grade of strength of evidence for over	rall survival and the use of HSC7	for the treatment of metastatic retinoblast	ioma
(continued)			

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
For pediatric patients extraocular retinoblastoma without CNS involvement what is the comparative effectiveness and harms of HSCT and conventional chemotherapy regarding overall survival? Outcome of interest is overall survival. The comparator is conventional chemotherapy.	There are two case reports on HSCT and ten case series (five on HSCT and four on the comparator conventional chemotherapy and one retrospective review with data on both HSCT and conventional chemotherapy). Data from 41 patients treated with HSCT and 118 treated with conventional therapy were abstracted for this review.	Risk of bias in this evidence is high as our review consisted of small case series and case reports; these reports also included patients with various metastatic sites. Prognostic factors not well defined. The clinical course of disease may be modified by site of metastasis.	Results for overall survival of unknown consistency. While in most cases confidence intervals may overlap and clinical heterogeneity exists the range of results for overall survival are similar for both HSCT and conventional tx. However, some studies report high in the range while others report lower. With small numbers it is impossible to assess consistency.	The outcomes reported are direct. The comparisons are indirect as the evidence base utilizes two or more bodies of evidence to make comparisons.	The evidence is imprecise, effects are uncertain. There is uncertainty on whether HSCT is inferior, equivalent or superior to conventional chemotherapy.	Not applicable due to lack of obvious effect size.	The body of evidence on overall survival with single HSCT compared to conventional therapy for the treatment of extraocular retinoblastoma without CNS involvement is insufficient to draw conclusions.

Key Question	Key Question	Key Question	Key Question	Key Question	Key Question	Key Question	Key Question
For pediatric patients with trilateral retinoblastoma what is the comparative effectiveness and harms of HSCT and conventional chemotherapy regarding overall survival? Outcome of interest is overall survival. The comparator is conventional chemotherapy	There is one case series. Data from thirteen patients treated with HSCT were abstracted for this review. No comparator data was abstracted.	The risk of bias in this evidence is high as our review consisted of one case series with thirteen patients.	Consistency cannot be assessed as the data is limited to one case series.	The outcomes reported are direct. No comparator studies were identified.	The evidence is imprecise, effects are uncertain. There is uncertainty on whether HSCT is inferior, equivalent or superior to conventional chemotherapy.	Not applicable due to lack of obvious effect size.	The body of evidence on overall survival with single HSCT compared to conventional therapy for the treatment of trilateral retinoblastoma is insufficient to draw conclusions.

Table 55. Overall grade of strength of evidence for overall survival and the use of HSCT for the treatment of metastatic retinoblastoma (continued)

Results

Forty-one articles were retrieved for full-text screening. Twenty reports were included in this review, and the remaining 21 articles were excluded. The total number of patients abstracted from the twenty studies was 267: 91 patients in 15 studies received HSCT, whereas 176 patients in seven studies received conventional chemotherapy.

Table 56 shows the criteria that were used to select retinoblastoma studies.

Study Design	Population	Intervention	Comparators	Outcomes	Followup	Setting
Any study design	Pediatric patients (0- 21-yr) with extraocular disease	Single Auto HSCT Tandem Auto HSCT	Chemotherapy +/- RT Chemotherapy +/- RT	OS; EFS (DFS; PFS); long-term adverse events; QOL	All durations of followup	In patient for HSCT. In or out- patient for conventional chemotherapy

Auto = autologous; DFS = disease-free survival; EFS = event-free survival; HSCT = hematopoietic stem-cell transplant; OS = overall survival; PFS = progression-free survival; QOL = quality of life

Table 57 shows the study design and population. Of the included publications, five were case reports on HSCT and 15 were case series (eight on HSCT^{438, 444-450} and five on the comparator conventional chemotherapy⁴⁵¹⁻⁴⁵⁵ and two retrospective reviews with data on both HSCT and conventional chemotherapy^{456, 457}). Five studies were based in Europe,^{441, 445, 447, 454, 456} three in Asia,^{439, 446, 452} three in South America,^{451, 453, 455} and nine in North America.^{438, 440, 442-444, 448-450, 457}

All patients across the 15 treatment studies received HSCT as consolidation of primary treatments. Other than the patients with trilateral retinoblastoma^{442, 444} all patients had metastatic disease prior to transplant. For the comparison of tandem HSCT to single HSCT; no studies were identified in the search.

All studies were specific to the pediatric age group, with age primarily reported as age at diagnosis; 14 studies reported either mean age or only had one patient. Mean age at diagnosis was 21.8 months with a range of 4 months to 51.8 months. Median age, reported by 13 studies, was 26.3 months with a range of 1 week to 145 months. Patients were approximately split equally by gender. Induction regimens varied across and within study (i.e., different chemotherapeutic agents and different (cumulative) dosages). The induction regimen consisted of multiple cycles of chemotherapy with or without radiation, following primary enucleation.

Conditioning regimens also varied across and within studies. The most common regimens included the following agents; cyclophosphamide, thiotepa, etoposide, carboplatin and etoposide either alone or in combination, ICE (ifosfamide, carboplatin, and etoposide) is a common backbone used alone or in combination with radiation therapy or additional drugs. Treatment periods ranged from 1982 to 2007.

Table 58 shows the outcomes that were reported across studies.

Overall Survival

Data on overall survival were reported in all 20 studies (Table 58). Survival data are presented stratified by if patients were identified as having metastatic spread to the CNS, then by year (Table 59). A study of trilateral retinoblastoma was also separated into its own category. Ten studies presented data for patients with CNS involvement^{442, 443, 447, 449, 451, 453-457} and the same ten studies plus nine more ^{438-441, 445, 446, 448, 450} presented data on patients without CNS

involvement. One study presented data exclusively on trilateral retinoblastoma.⁴⁴⁴ The individual studies either did not define overall survival or used different starting points for this variable (i.e., either years from diagnosis or years from first transplant). No direct comparisons can be made from the published data as there are no comparative studies.

Study	Design	Median age	Range	Mean Age	Gender (%)	Histology [Site] (%)	HSCT (N)	Comparator (N)	Treatment Period
Cozza, Italy, 2009 ⁴⁵⁶	retrospective review case series	41.5 months at diagnosis (n=6)	3-110 months (n=6)	NR	50% Male, 50% Female (n=6)	CSF, Pineal, orbit, bone and bone marrow	HSCT (n=3)	Chemotherapy +/- RT (n=3)	1988-2007
Jubran, USA, 2004 ⁴⁵⁷	retrospective review case series	11.5 months at diagnosis	2-96 months	23.7 month at diagnosis	NR	distant no CNS involvement	HSCT (n=4)	Chemotherapy +/- RT (n=6)	1991-1999
Dunkel, USA, 2010 ⁴⁴⁴	case series	8 months at diagnosis	1 week-20 months	NR	NR	suprasellar (n=2) pineal (n=11)	HSCT (n=13)	NA	1997-2005
Dai, Canada, 2008 ⁴⁴²	case report	NR	NR	4 months at diagnosis 12 months at treatment	Female	with CSF involvement	HSCT (n=1)	NA	NR
Matsubara, Japan, 2005 ⁴⁴⁶	case series	16 months at diagnosis	3-41 months at diagnosis	17.6 months at diagnosis	20% Male 80% Female	distant metastasis	HSCT (n=5)	NA	1986-2000
Taguchi, Japan, 2005 ⁴³⁹	case report	NA	NA	4	Male	maxilla and mandible	HSCT (n=1)	NA	NR
Kremens, Germany, 2003 ⁴⁴⁵	case series	34 months at diagnosis	20-110 months at diagnosis	51.8 months at diagnosis	NR	bone marrow, extra- ocular tumor	HSCT (n=5)	NA	1992-2001
Rodriguez- Galindo, USA, 2003 ⁴⁴⁸	case series	30.5 at diagnosis	17-36 months	28.5 age at diagnosis	75% Male 25% Female	distant metastasis no CNS involvement	HSCT (n=4)	NA	NR
Moshfeghi et al. USA, 2002 ⁴⁴⁰	case report	NA	NA	5	Female	bone marrow, right humerus, both supraorbital bones, and both tibias, ovary	HSCT (n=1)	NA	NR
Hertzberg et al. Germany, 2001 ⁴⁴¹	case report	NA	NA	7	Female	lymph nodes, bones and bone marrow	HSCT (n=1)	NA	NR

 Table 57. Retinoblastoma study characteristics and population

Study	Design	Median age	Range	Mean Age	Gender (%)	Histology [Site] (%)	HSCT (N)	Comparator (N)	Treatment Period
Dunkel, USA, 2000 ⁴³⁸	case series	30.5 months at diagnosis	17-44 months	30.5 months at diagnosis	50% Male 50 % Female	distant metastasis (BM, Orbit, liver, bone) no CNS involvement	HSCT (n=4)	NA	1993-1996
Namouni, France, 1997 ⁴⁴⁷	case series	34 months	9-125 months	NR	76% Male 24% Female	cut end of optic nerve (n=5) disruption of ocular globe(n=1) isolated orbital relapse (n=7) various metastases (n=8) CNS/spinal axis (n=4)	HSCT (n=25)	NA	1989-1994
Chang, Taiwan, 2006 ⁴⁵²	case series	26.3 months at diagnosis for all patients*	1.7 months- 89 months*	NR	NR	most common sites Orbit (n=7) and CNS (n=7)	NA	Chemotherapy +/- RT (n=15)	1982-2004
Gunduz, Turkey, 2006 ⁴⁵⁴	case series	NR	13-86	45 months at diagnosis	NR	distant and CNS (n=5) CNS (n=9) distant only (n=4)	NA	Chemotherapy +/- RT (n=18)	1999-2005
Antoneli, Brazil, 2003 ⁴⁵¹	case series	32.9 months at diagnosis	2-145	NR	53% Male 47% Female	69 class I/III CCG classification 14 Class IV/V	NA	Chemotherapy +/- RT (n=83)	1987-1991 period 1 1992-2000 period 2
Chantada, Argentina, 1999 ⁴⁵³	case series	24 months	1-7 years	37 months	30% Male 70% Female	Orbit with only one patient with CNS involvement	NA	Chemotherapy +/- RT (n=10) 1 pt dead of parental abuse	1995-1998

|--|

Study	Design	Median age	Range	Mean Age	Gender (%)	Histology [Site] (%)	HSCT (N)	Comparator (N)	Treatment Period
Schvartzman, Argentina, 1996 ⁴⁵⁵	case series	Age NR for the subgroup abstracted	NR	NR	NR	Orbital (n=29) intracranial (n=6) hematogenous metastasis (n=6)	NA	Chemotherapy +/- RT (n=41) Stage II(n=29) Stage III (n=6) Stage Iv (n=6)	1987-1993
Dimaras, Canada, 2009 ⁴⁴³	case report	NA	NA	4 months at diagnosis	Male	with CSF involvement	HSCT (n=1)	NA	2001
Dunkel, USA, 2010 ⁴⁴⁹	case series	24.5 months	4-38 months	22 months at diagnosis	NR	With CNS involvement	HSCT (n=8)	NA	2000-2006
Dunkel, USA, 2010 ⁴⁵⁰	case series	26 months	1-44 months	25 months at diagnosis	NR	Orbit (n=9), bone (n=11), bone marrow (n=14), liver (n=4)	HSCT (n=15)	NA	1993-2006

 Table 57. Retinoblastoma study characteristics and population (continued)

NR = not reported *This age estimate included patients excluded from the report for having intraocular disease.

Study	os	EFS (DFS, PFS)	Quality of Life	Treatment- Related Mortality	Second Malignancies	Other Adverse Effects
Cozza, Italy, 2009 ⁴⁵⁶	\checkmark	NR	NR	NR	NR	NR
Jubran, USA, 2004 ⁴⁵⁷	\checkmark	NR	NR	NR	NR	NR
Dunkel, USA, 2010 ⁴⁴⁴	\checkmark	\checkmark	NR	\checkmark	NR	\checkmark
Dai, Canada, 2008 ⁴⁴²	\checkmark	NR	NR	NR	NR	NR
Matsubara, Japan, 2005 ⁴⁴⁶	\checkmark	NR	NR	NR	NR	\checkmark
Taguchi, Japan, 2005 ⁴³⁹	\checkmark	NR	NR	NR	NR	NR
Kremens, Germany, 2003 ⁴⁴⁵	\checkmark	NR	NR	NR	NR	\checkmark
Rodriguez-Galindo, USA, 2003 ⁴⁴⁸	\checkmark	NR	NR	NR	NR	\checkmark
Moshfeghi, USA, 2002 ⁴⁴⁰	\checkmark	NR	NR	NR	NR	NR
Hertzberg, Germany, 2001 ⁴⁴¹	\checkmark	NR	NR	NR	NR	NR
Dunkel, USA, 2000 ⁴³⁸	\checkmark	NR	NR	\checkmark	NR	\checkmark
Namouni, France, 1997447	\checkmark	\checkmark	NR	NR	NR	\checkmark
Chang, Taiwan, 2006 ⁴⁵²	\checkmark	NR	NR	NR	\checkmark	NR
Gunduz, Turkey, 2006 ⁴⁵⁴		NR	NR	NR	NR	NR
Antoneli, Brazil, 2003 ⁴⁵¹	\checkmark	NR	NR	NR	\checkmark	NR
Chantada, Argentina, 1999 ⁴⁵³	\checkmark	NR	NR	\checkmark	NR	NR
Schvartzman, Argentina, 1996 ⁴⁵⁵	\checkmark	NR	NR	NR	NR	\checkmark
Dimaras, Canada, 2009 ⁴⁴³	\checkmark	NR	NR	NR	NR	NR
Dunkel, USA, 2010 ⁴⁴⁹	\checkmark	NR	NR	\checkmark	NR	NR
Dunkel, USA, 2010 ⁴⁵⁰		\checkmark	NR	NR		NR

Table 58. Retinoblastoma outcomes reported

DFS = disease-free survival; EFS = event-free survival; NR = not reported; OS = overall survival; PFS = progression-free survival

Table 59. Overall survival for treatment (single auto HSCT) and comparison (conventional chemotherapy +/- radiation) groups: Retinoblastoma

Outcome	Intervention Single (%; ± 95% Cl)	Comparator Chemo (%; ± 95% Cl)	P Value	Study
	50% (0.01-99) at 1 years (n=4)	Not applicable	0.248@	Namouni, 1997±
	50% (0,100) at 1 year (n=2) ^b	Not applicable		Matsubara, 2005 ⁴⁴⁶
	Not applicable	71.4% (47.8,95.1) at 1 year (n=14)		Gunduz, 2006 ⁴⁵⁴
1 year CNS	Not applicable	0% at median 2 months (1-3)* (n=4)		Jubran, 2004 ⁴⁵⁷
	Not applicable	33.3% (0, 86.7) at 1 year (n=3)		Cozza, 2009 ⁴⁵⁶
	Not applicable	DOD at 3 months (n=1)		Chantada, 1999 ⁴⁵³
	Trilateral retinoblastoma with CNS DOD at 32 months (n=1)	Not applicable		Dai, 2008 ⁴⁴²
	50%	Not applicable		Dunkel, 2010449

Outcome	Intervention Single (%; ± 95% CI)	Comparator Chemo (%; ± 95% Cl)	P Value	Study
	25% (0-67.4) at 3 years (n=4)	Not applicable	0.248@	Namouni, 1997±
	50% (0,100) at 3 years (n=2) ^b	Not applicable		Matsubara, 2005 ⁴⁴⁶
3 Year CNS	Not applicable	14.3 (0, 42.9) at 3 years (n=14)		Gunduz, 2006 ⁴⁵⁴
	0% at 16 months (n=1)	0% at 3 years (n=3)		Cozza, 2009 ⁴⁵⁶
	NED at 2.7+ years	Not applicable		Dimaras, 2009 ⁴⁴³
	50%	Not applicable		Dunkel, 2010 ⁴⁴⁹
	25% (0-67.4) at 5 years (n=4)	Not applicable	0.248@	Namouni, 1997± 447
	0% at 5 year (n=2) ^b	Not applicable		Matsubara, 2005 ⁴⁴⁶
5 years CNS	Not applicable	0% survival** at 5 years (t1, n=7) 20% survival at 5 years (t2, n=7)	0.003^^ <0.001	Antoneli, 2003 ⁴⁵¹
	Not applicable	Stage III (CNS) 0% survival (n=6)		Schvartzman, 1996 # 455
	75% (33-100) at 1 year (n=4)	0% at 12 months (n=2)		Jubran, 2004± 457
	Patients with Trilateral retinoblastoma (n=13) 78% (37-104) at 1 year	Not applicable		Dunkel, 2010 ⁴⁴⁴
1 year No CNS	Disease at cut end of optic nerve or in the ocular globe (n=6) 80% (44.9-100)1 years Bone or Bone marrow disease (n=8) 87.5 (64.6-100) at 1 year	Not applicable	0.248@	Namouni, 1997±
	Bone and bone marrow metastasis (n=4) 100% at 1 year	Not applicable		Rodriguez-Galindo, 2003± ⁴⁴⁸
	100% at 1 years (n=2)	Not applicable		Cozza et al. 2009 ⁴⁵⁶
	DOD at 16 months (n=1)	Not applicable		Moshfeghi, 2002 ⁴⁴⁰
	DOD at 19 months (n=1)	Not applicable		Taguchi, 2005 ⁴³⁹
	Not applicable	68.6% (32.1 – 100.0) at 1 year (n=8)		Chantada,1999 ⁴⁵³

 Table 59. Overall survival for treatment (single auto HSCT) and comparison (conventional chemotherapy +/- radiation) groups: Retinoblastoma (continued)

Outcome	Intervention Single (%; ± 95% CI)	Comparator Chemo (%; ± 95% Cl)	P Value	Study
	Patients with trilateral retinoblastoma (n=13) ~38 at 3 years	Not applicable		Dunkel, 2010 ⁴⁴⁴
	Disease at cut end of optic nerve or in the ocular globe (n=6) 80% (44.9-100) 3 years Bone or bone marrow disease (n=8) 58.3 (22-94.7) at 3 years	Not applicable	0.248@	Namouni, 1997±
3 year No CNS	Bone and bone marrow metastasis (n=4) 100% at 3 years	Not applicable		Rodriguez-Galindo, 2003± ⁴⁴⁸
	50% (0-100) at 3years (n=4)	Not applicable		Jubran, 2004± 457
	100% at mean Followup of 86 months (n=3)	Not applicable		Matsubara, 2005 ⁴⁴⁶
	100% at 3years (n=2)	Not applicable		Cozza et al. 2009 ⁴⁵⁶
	NED at 4+ years (n=1)	Not applicable		Hertzberg, 2001 ⁴⁴¹
	Not applicable	100% at mean 37 months followup (9-62) (n=4)		Gunduz, 2006 ⁴⁵⁴
	Bone or bone marrow disease (n=8) 58.3 (22-94.7) at 5 years	Not applicable	0.248@	Namouni, 1997± 447
	Bone or bone marrow disease (n=4) 100% survival at median follow up of 57 months (46-80)	Not applicable		Dunkel, 2000 ⁴³⁸
	Bone and bone marrow metastasis (n=4) 75% at 5 years ^b	Not applicable		Rodriguez-Galindo, 2003± ⁴⁴⁸
5	100% at 5 years (n=2)	Not applicable		Cozza et al. 2009 ⁴⁵⁶
5 year No CNS		65.3% at 5 years	0.003^^	
	Not applicable	(t1, n=36) 75.5% at 5 years (t2, n=33)	<0.001	Antoneli, 2003 ⁴⁵¹
	Not applicable	Stage II 85% ± 0.06 (n=29) Stage IV 50% ± 0.20^ (n=6)		Schvartzman, 1996 # 455
	67% survival (38-85) at 5 years	Not applicable		Dunkel, 2010 ⁴⁵⁰
	Patients with trilateral retinoblastoma (n=13) 38% (14-63) at 5 years	Not applicable		Dunkel, 2010 ⁴⁴⁴

Table 59. Overall survival for treatment (single auto HSCT) and comparison (conventional
chemotherapy +/- radiation) groups: Retinoblastoma (continued)

Outcome	Intervention Single (%; ± 95% Cl)	Comparator Chemo (%; ± 95% Cl)	P Value	Study
Overall Survival mixed	~88% at 1 year ^c ~ 60% at 2 years ~57% at 3 years ~52% at 4-5years (n=34) ^a	Not applicable		Namouni, 1997 447
	Not applicable	39.2 ± 14.7% at 5 years (n=15)		Chang, 2006 ⁴⁵²
5 year OS range in studies with > 1 patients with extraocular retinoblasto- ma with CNS involvement	25% ⁴⁴⁷	0-20% ^{451, 455}		
5 year OS range in studies with > 2 patients with extraocular retinoblasto- ma without CNS involvement not including trilateral retinoblasto ma	58.3-100% ^{447, 448, 450} Dunkel, 2000 ^{d 438}	50-75.5% ^{451, 455}		
5 year OS range in studies with > 1 patients with trilateral retinoblasto- ma	38% (14-63) ⁴⁴⁴	No comparator study identified		

Table 59. Overall survival for treatment (single auto HSCT) and comparison (conventional chemotherapy +/- radiation) groups: Retinoblastoma (continued)

DOD = dead of disease; DOT = dead of toxicity; NED = no evidence of disease

* Only one of these patients was treated.

^ Three of these patients had CNS involvement.

** Two treatment periods are displayed.

^^ P-values are for the comparison of class IV/V (CNS and bone and lymph) to class I/III (non CNS bone or lymph mets).

^a This includes all patients including those who died prior to treatment.

^b Two patients developed CNS disease and died.

^c Estimated preceded by a ~ were estimated from published Kaplan-Meier curves.

 \pm Survival curves were constructed using the raw data published in the articles.

(a) Comparison of the three overall survival curves for cut end of optic nerve, bone mets, and CNS disease. ^d Survival was 100% at a median followup of 57 months (46-80).

Event-free Survival

Information on event-free survival can be found in Appendix D.

Adverse Effects

No studies evaluated quality of life, and adverse effects were only reported by intervention studies. Data on treatment-related mortality was reported in two intervention studies (Table 60). Two patients died from septicemia and multi-organ failure during induction therapy.^{444, 449} Two studies reported cases of serious infection, both attributed to *Candida albicans*.^{447, 448} One comparator study⁴⁵¹ reported three secondary malignancies (two osteogenic sarcoma, and one nonlymphocytic leukemia) and one intervention study⁴⁵⁰ reported three secondary malignancies (osteosarcoma, two occurring in irradiated fields). There were no reports of serious hemorrhagic events, irreversible veno-occlusive disease or other long-term complications among patients treated with HSCT or conventional chemotherapy.

Outcome	Disease	Intervention HSCT (%)	Comparator Chemo (%)	Study	
		0 ^a	NA	Dai, 2008 ⁴⁴² ; Gunduz, 2006 ⁴⁵⁴ ; Matsubara, 2005 ⁴⁴⁶ ; Namouni, 1997 ⁴⁴⁷ ; Dimaras, 2009 ⁴⁴³	
	CNS	NA	0 ^a	Cozza, 2009 ^{456.} Chantada, 1999 ⁴⁵³ ; Jubran, 2004 ⁴⁵⁷ ;	
Treatment related mortality		12.5 ^b	NA	Dunkel, 2010 ⁴⁴⁹	
	No CNS	0 ^a	NA	Dunkel, 2000 ⁴³⁸ ; Hertzberg, 2001 ⁴⁴¹ ; Kremens, 2003 ⁴⁴⁵ ; Matsubara, 2005 ⁴⁴⁶ ; Moshfeghi, 2002 ⁴⁴⁰ ; Taguchi, 2005 ⁴³⁹ ; Dunkel, 2010 ⁴⁵⁰	
		NA	0 ^a	Gunduz, 2006 ⁴⁵⁴ ; Jubran, 2004 ⁴⁵⁷ ;	
	Trilateral retinoblastoma	7.7 ^b	NA	Dunkel, 2010 ⁴⁴⁴	
	CNS	NR	NR		
Secondary	No CNS		3.6	Antoneli, 2003 ⁴⁵¹	
mangnancies		20	NA	Dunkel, 2010 ⁴⁵⁰	
	Trilateral retinoblastoma	NR	NR		
Infectious	CNS	4	NR	Namouni, 1997 ⁴⁴⁷	
complications	No CNS	25	NR	Rodriguez-Galindo, 2003 ⁴⁴⁸	
	Trilateral retinoblastoma	NR	NR		
Serious	CNS				
hemorrhagic event	No CNS	NR	NR	There were no reports from any study	
	Trilateral retinoblastoma				
Veno-occlusive	CNS				
disease	No CNS	NR	NR	There were no reports from any study	
	Trilateral retinoblastoma				

 Table 60. Adverse effects for single auto HSCT and comparison (conventional chemotherapy +/- radiation) groups: Retinoblastoma

Outcome	Disease	Intervention HSCT (%)	Comparator Chemo (%)	Study	
l ong-term	CNS				
complications	No CNS	NR	NR	There were no reports from any study.	
	Trilateral retinoblastoma				

 Table 60. Adverse effects for single auto HSCT and comparison (conventional chemotherapy +/- radiation) groups: Retinoblastoma (continued)

^aNo cases of TRM occurred in these studies.

^bDeath occurred during induction chemo.

Ongoing Studies

A Phase III multicenter study of multimodal therapy (induction, HDC, and HSCT and/or radiotherapy) for young children with extraocular retinoblastoma was identified (NCT00554788). This trial estimates it will enroll 60 children ages 10 years of age and younger and will be complete in February 2014. Event-free survival is the primary outcome measure.

Twenty children ages 21 or younger were to be enrolled in a Phase I study examining the toxicity of killer IG-like receptor mismatched umbilical cord blood for pediatric patients with malignant solid tumors. This study is ongoing and no longer recruiting, and no results have been published.

Conclusion

Low strength evidence on overall survival suggests no benefit with single HSCT compared to conventional therapy for the treatment of extraocular retinoblastoma with CNS involvement.

The body of evidence on overall survival with single HSCT compared to conventional therapy for the treatment of extraocular retinoblastoma without CNS involvement was insufficient to draw conclusions.

The body of evidence on overall survival with single HSCT compared to conventional therapy for the treatment of trilateral retinoblastoma without CNS involvement was insufficient to draw conclusions.

Neuroblastoma Systematic Review

Background and Setting

Neuroblastoma is the most common extracranial solid tumor of childhood, and accounts for 8 to 10 percent of all childhood cancers and for approximately 15 percent of cancer deaths in children.¹⁰³ At least 40 percent of all children with neuroblastoma are designated as high-risk patients.^{103, 104} Despite the development of new treatment options, the prognosis of patients with high-risk neuroblastoma is generally poor; more than half of patients experience disease recurrence and long-term survival with current treatments is about 30 percent.¹⁰⁴

Many centers have used HDC with HSCT in the setting of high-risk or recurrent disease.^{103,} ¹⁰⁶ Results from randomized controlled trials (RCTs) comparing HDC/HSCT with conventional therapy have shown higher survival rates with HSCT, although higher levels of adverse effects have been reported and overall rates are unsatisfactory.^{105, 107, 108} Sequential tandem HSCT has been developed to improve further the outcome of patients with high-risk neuroblastoma.

Evidence Summary

The overall grade of strength of evidence for overall survival in pediatric patients with highrisk neuroblastoma is shown in Table 61.

The evidence compiled for this review includes six observational studies on HSCT, and three RCTs reporting outcomes data on single HSCT. The total number of patients included in the nine studies was 4,044: 682 patients received tandem HSCT, whereas 3,362 patients received single HSCT.

Tandem HSCT results in no significant differences in survival rates than single HSCT. In addition, no significant differences in secondary malignant disease and treatment-related mortality between treatment groups were identified. No information on QOL was provided and data on adverse effects are very limited; no definitive conclusions can be made regarding adverse effects and quality of life.

The ongoing randomized trial by the Children's Oncology Group will address whether tandem HSCT is superior to single HSCT in patients with high-risk neuroblastoma.

Key Question Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/ Conclusion
For pediatric patients with high- risk neuroblastoma, what is the comparative effectiveness and harms of tandem HSCT and single HSCT regarding overall survival? Outcome of interest is overall survival. The comparator is single HSCT.	The risk of bias in this evidence is medium. The EBMT cohort represents the largest cohort of patients in this setting. While this is an uncontrolled design, the risk of bias is mitigated by the similarity of the study patients given well established staging and prognostic factors.	Results for overall survival for tandem HSCT are inconsistent. Recruitment of patients in the EBMT cohort spans over 25 years and includes various treatment regimens and reports similar survival rates. Two more recent case series report higher survival rates. Results for overall survival for single HSCT consistently show improved outcome compared to conventional therapy.	The outcomes reported are direct. The comparisons are indirect as the evidence base utilizes two or more bodies of evidence to make comparisons.	The evidence is imprecise, effects are uncertain. There is uncertainty on whether tandem HSCT is inferior, equivalent or superior to single HSCT.	Not applicable due to lack of obvious effect size.	The body of evidence on overall survival with tandem HSCT compared to single HSCT for the treatment of high- risk neuroblastoma was insufficient to draw conclusions.

 Table 61. Overall grade of strength of evidence for overall survival: Neuroblastoma

Results

Eighteen reports describing nine unique studies were included in this review. Data from the European Group for Blood and Marrow Transplantation (EBMT) registry on outcomes for single and tandem HSCT have been reported in two publications.^{113, 458} George et al. have reported outcomes of tandem HSCT across four U.S. centers in seven publications.⁴⁵⁹⁻⁴⁶⁵ Two further studies have been reported in multiple publications; two reports by Sung et al. on tandem HSCT^{466, 467} and two reports of the RCT by Matthay et al. on single HSCT.^{107, 111} The report with the largest sample size and longest followup period from each of the above series was included in the primary analysis for this review. The total number of patients included in the nine studies was 4,044: 682 patients received tandem HSCT, whereas 3,362 patients received single HSCT.

Table 62 shows the criteria that were used to select studies for this section.

Study Design	Population	Intervention	Comparators	Outcomes	Time	Setting
Controlled trial, cohort, case-series	Pediatric patients (0- 21 yr) with high-risk or relapsed/refractory disease	Tandem (Auto Auto) HSCT	Single (Auto) HSCT	OS; EFS (DFS; PFS); long-term adverse events; QOL	All durations of followup	In- patient

Table 62. Study selection criteria: Neuroblastoma

Auto = autologous; DFS = disease-free survival; EFS = event-free survival; HSCT = hematopoietic stem-cell transplant; OS = overall survival; PFS = progression-free survival; QOL = quality of life

Table 63 shows the study design and population. Of the included publications, six were observational studies (three provided comparisons of tandem vs. single HSCT^{466, 468, 469}; three of tandem HSCT^{459, 462}), and three were RCTs reporting outcomes data on single HSCT.^{105, 107, 108, 111} Five were multicenter studies (two reporting on outcomes for tandem HSCT and three trials on single HSCT). Three studies were based in Europe,^{105, 108, 113} three in Asia,^{466, 468, 469} and three in North America.^{107, 459, 462}The EBMT data represents the largest cohort of patients recruited over 28 years (1978–2006).¹¹³

All patients across eight (of nine) studies received HSCT as consolidation of primary treatments, Eighty percent of patients in the EBMT cohort received HSCT as consolidation therapy; relapse was the indication in another 10 percent while the status prior to HSCT was not specified in a further 10 percent of patients.¹¹³ The vast majority of patients across studies presented with stage IV disease at diagnosis (range: 81 to 100 percent For the EBMT data, the stage was reported only in 53 percent of the cohort but there was a high prevalence for advanced disease with stage IV in more than 90 percent of the reported cases.¹¹³

Eight studies were specific to the pediatric age group; the EBMT cohort consisted of 2 percent (of 3,421) patients over 18 years of age. Eight studies reported the age of the participants at diagnosis; Sung et al. (2007) reported age at both diagnosis and HSCT.⁴⁶⁶ The median age was reported in six studies on tandem HSCT; the remaining three trials on single HSCT reported only the number of cases above and below one year of age. The majority of patients (86 to 97 percent across all studies were over 12 months of age at diagnosis.

All studies used different induction regimens (i.e., different chemotherapeutic agents and different (cumulative) dosages). The induction regimen across studies consisted of multiple cycles (1-10) of chemotherapy followed by surgery for resection of the primary tumor. The

timing of surgery varied during induction and took place at diagnosis or after 2 to 7 cycles of chemotherapy. Tumor-field radiotherapy was used in patients with residual tumor and/or metastatic disease in at least six (of nine) studies: Sung et al. employed radiotherapy in the early study period (diagnosis by December 2003).⁴⁶⁶ There was no postoperative radiotherapy in Pritchard et al.; in this latter study, 41 percent of patients randomized to the single HSCT arm received nine or more cycles of induction chemotherapy.¹⁰⁸

Study	Design	Median Age in Months (Range)	Sex (M%)	Histology [Site] (%)	Tandem	Single	Treatment Period
Ladenstein, 2008;1998 ^{113, 458}	Cohort	47 (4-744)	59	NR	455	2,895	1978-2006
Kim, 2007 ⁴⁶⁸	Case- Series	36 (7-121)	69	NR [Abdomen (89); Other (11)]	9	27	1996-2004
Sung, 2007 ⁴⁶⁶	Case- Series	36 (13-129); 45.5 (24- 140) ^a	NR	Favorable (27); Unfavorable (71); Unknown (2)	52	NA	1997-2005
George, 2006 ⁴⁵⁹	Case- Series	35 (6-216)	NR	[Adrenal (54); Abdomen (37); Other (9)] ^b	82 ^b	NA	1994-2002
Hobbie, 2008 ⁴⁶²	Case- series	22 (13-72)	85	NR	13	NA	1997-2001
Sung, 2010 ⁴⁶⁹	Case- series	36 (13-144) ^c 39 (13-159) ^d	46 ^c 50 ^d	NR	71	70	2000-2005
Matthay, 2009; 1999 ^{107, 111}	RCT	(0-216)	NR	Favorable (3); Unfavorable (63); Unknown (33)	NA	189	1991-1996
Berthold, 2005 ¹⁰⁵	RCT	(0-240)	NR	NR	NA	149	1997-2002
Pritchard, 2005 ¹⁰⁸	RCT	(6-240)	50%	[Abdomen (88); Other (12)]	NA	32	1982-1985

Table 63. Study characteristics and population: Neuroblastoma

M = male; NA = not applicable; NR = not reported; RCT = randomized controlled trial

^a Age at transplant.

^b Population characteristics based on 97 study patients.

^c Tandem HSCT group.

^d Single HSCT group.

Various conditioning regimens were used across studies. The primary conditioning regimen consisted of carboplatin, etoposide and melphalan. Total body radiation was used as part of the treatment regimen in six studies.^{107, 113, 459, 462, 466, 469} In at least four studies, there were also differences in treatment that patients received within the study itself (for example, in external radiotherapy, immunotherapy, and retinoic acid).

Peripheral blood stem cells were used as the sole source of support in six studies,^{105, 459, 462, 466, 468, 469} and bone marrow in two studies;^{107, 108} the EBMT cohort used peripheral stem cells (56 percent), bone marrow (41 percent) and a combination of both (3 percent) as a source of support after HDC.¹¹³ The median follow-up durations from first transplant across three studies comparing tandem and single HSCT were 2.3 years, 9 years, and 5 years, respectively.^{113, 468, 469}

Table 64 shows the outcomes that were reported across nine studies. Of note, the study by Hobbie et al.⁴⁶² was a subgroup analysis of George et al.⁴⁵⁹ reporting on the long-term adverse

events of tandem HSCT for high-risk disease. For purposes of data analysis and synthesis, these two reports were considered as unique studies; George et al.⁴⁵⁹ reported on overall survival (OS), event-free survival (EFS), treatment-related mortality and secondary malignancies, while Hobbie et al.⁴⁶² reported on other adverse effects of HSCT.

Study	OS	EFS (DFS, PFS)	QOL	Treatment-related Mortality	Second Malignancies	Other Adverse Effects
Ladenstein, 2008 ¹¹³	\checkmark	\checkmark	NR	NR	NR	NR
Kim, 2007 ⁴⁶⁸	\checkmark	\checkmark	NR	NR	NR	NR
Sung, 2007 ⁴⁶⁶	\checkmark	\checkmark	NR	\checkmark	\checkmark	\checkmark
George, 2006 ⁴⁵⁹	\checkmark	\checkmark	NR	\checkmark	\checkmark	\checkmark
Hobbie, 2008 ⁴⁶²	NR	NR	NR	NR	NR	\checkmark
Matthay, 2009 ¹¹¹	\checkmark	\checkmark	NR	\checkmark	\checkmark	\checkmark
Berthold, 2005 ¹⁰⁵	\checkmark	\checkmark	NR	\checkmark	\checkmark	NR
Pritchard, 2005 ¹⁰⁸	\checkmark	\checkmark	NR	\checkmark	NR	\checkmark
Sung, 2010 ⁴⁶⁹	NR	\checkmark	NR			NR

Table 64. Outcomes reported: Neuroblastoma

DFS = disease-free survival; EFS = event-free survival; NR = not reported; OS = overall survival; PFS = progression-free survival; QOL = quality of life

Overall Survival

Data on OS were reported in seven (of nine) primary studies (Table 64). Six studies presented 3- and/or 5-year rates and the study by George et al.⁴⁵⁹ also presented 7-year rates (Table 65). No significant differences in either the 3-year or 5-year OS between treatment groups were identified in the two comparative studies (Table 65).^{113,468} Multivariate analysis of EBMT data showed significantly better OS rates in patients younger than 2 years of age at diagnosis (Hazard Ratio [HR], 1.6; 95 percent; Confidence Interval [CI], 1.4-1.9; p<0.0001).¹¹³ It should be noted that the individual studies either did not define OS or used different starting points for this variable (i.e., either years from diagnosis or years from first transplant).

Table 65. Overall survival for treatment (tandem HSCT) and comparison (single HSCT) groups	;;
Neuroblastoma	

Outcome	Intervention Tandem (%; ± 95% CI; SE) [N]	Comparator Single (%; ± 95% Cl; SE) [N]	P Value	Study
	66.7 (19.3) [9]	55.1 (13.9) [27]	>0.05	Kim, 2007 ⁴⁶⁸
	74 (62-82) [82]	Not applicable	NR	George, 2006 ⁴⁵⁹
S-year rate	Not applicable	43 (4) [189]	NR	Matthay, 2009 ¹¹¹
	Not applicable	62 (54-70) [149]	NR	Berthold, 2005 ¹⁰⁵
	33 (3) [455]	38 (1) [2,895]	0.105	Ladenstein, 2008 ¹¹³
	64 (52-74) [82]	Not applicable	NR	George, 2006 ⁴⁵⁹
5-year rate	64.3 (14.3) [52]	Not applicable	NR	Sung, 2007 ⁴⁶⁶
	Not applicable	29 (4) [189]	NR	Matthay, 2009 ¹¹¹
	Not applicable	47 (30-64) [32]	NR	Pritchard, 2005 ¹⁰⁸
7	54 (38-67) [82]	Not applicable	NR	George, 2006 ⁴⁵⁹
7-year rate	Not applicable	~25 [189]	NR	Matthay, 2009 ¹¹¹
OS range for ≥5 years, studies with >10 pts	33-64	29-47	NR	

CI = confidence interval; N = number of patients; NR = not reported; SE = standard error

Event-free Survival

Information on event-free survival can be found in Appendix D.

Adverse Effects

None of the studies evaluated quality of life (Table 64). Data on treatment-related mortality were reported in six studies (Table 66). There were 20 (of 197) cases in the tandem group and 36 (of 373) cases in the single HSCT group. Secondary malignancies were reported in five studies (Table 66). There were three (of 212) cases in the tandem group (one synovial cell sarcoma, one myelodysplasia with clonal trisomy 8, and one thyroid cancer); two cases were reported in the George et al.⁴⁵⁹ study. The case of thyroid cancer was reported in the 2010 study by Sung et al.⁴⁶⁹, and occurred in a patient receiving only the first HSCT. Three (of 408) cases of secondary malignancies were reported in the single HSCT group (two acute myeloblastic leukemias and one follicular carcinoma of the thyroid).

Infectious complications were reported in four studies (Table 66). Sepsis was more prevalent in the single HSCT group (n=219) compared to the tandem group (n=126) (26 vs. 2 percent). All infectious complications were attributed to sepsis in the single HSCT group. Further serious infections in the tandem group included two cases of viral pneumonia and three cases of Epstein-Barr virus and cytomegalovirus, all resulting in toxicity-related deaths. Other reported serious adverse effects included one case of pulmonary hemorrhage in the tandem group and three cases of bleeding in the single HSCT group.

The frequency of veno-occlusive disease was reported across four studies (Table 66).^{108, 111, 459, 466} There were nine (of 126) cases in the tandem group and two (of 30) cases in the single HSCT group. Only one study (n=13) by Hobbie et al.⁴⁶² reported further long-term complications including developmental delays (i.e., hearing loss, 92 percent), cataracts (54 percent), and growth-hormone deficiency (54 percent) following tandem HSCT.

Outcome	Intervention Tandem (%)	Comparator Single (%)	Study
	16	Not applicable	Sung, 2007 ⁴⁶⁶
	6	Not applicable	George, 2006 ⁴⁵⁹
Troatmont related mortality	Not applicable	6	Matthay, 2009 ¹¹¹
Treatment-related mortality	Not applicable	3.3	Berthold, 2005 ¹⁰⁵
	Not applicable	7	Pritchard, 2005 ¹⁰⁸
	11	13	Sung, 2010 ⁴⁶⁹
	0	Not applicable	Sung, 2007 ⁴⁶⁶
	2	Not applicable	George, 2006 ⁴⁵⁹
Secondary malignancies	Not applicable	1	Matthay, 2009 ¹¹¹
	Not applicable	1	Berthold, 2005 ¹⁰⁵
	1	0	Sung, 2010 ⁴⁶⁹
	3.8	Not applicable	Sung, 2007 ⁴⁶⁶
	5	Not applicable	George, 2006 ⁴⁵⁹
Infectious complications	Not applicable	26	Matthay, 2009 ¹¹¹
	Not applicable	23	Pritchard, 2005 ¹⁰⁸
	2	Not applicable	Sung, 2007 ⁴⁶⁶

 Table 66. Adverse effects for treatment (tandem HSCT) and comparison (single HSCT) groups:

 Neuroblastoma
Outcome	Intervention Tandem (%)	Comparator Single (%)	Study
Sorious homorrhagia avent	Not applicable	10	Pritchard, 2005 ¹⁰⁸
Senous nemormagic event	18	Not applicable	Sung, 2007 ⁴⁶⁶
	1	Not applicable	George, 2006 ⁴⁵⁹
Veno-occlusive disease	Not applicable	9	Matthay, 2009 ¹¹¹
	Not applicable	7	Pritchard, 2005 ¹⁰⁸
Long-term complications	(8-92) ^a	Not applicable	Hobbie, 2008 ⁴⁶²

Table 66. Adverse effects for treatment (tandem HSCT) and comparison (single HSCT) groups: Neuroblastoma (continued)

^arange of late-effects including endocrine, sensory, musculoskeletal, pulmonary, dental, renal, and cardiovascular complications

Ongoing Research

In North America, the Children's Oncology Group is studying, in a randomized fashion, whether tandem HDC/HSCT is superior to a single HDC/HSCT in patients with high-risk neuroblastoma up to 30 years of age. This is an international trial (U.S., Canada, Australia, New Zealand) being undertaken across 142 centers and is currently recruiting patients with an expected enrollment of 495 patients. The primary outcomes of interest include 3-year EFR, response after induction therapy, and incidence rate of local recurrence. The projected completion of accrual is spring 2012 (NCT00567567).^a

Conclusion

The body of evidence on overall survival with tandem HSCT compared to single HSCT for the treatment of high-risk neuroblastoma was insufficient to draw conclusions.

Germ-Cell Tumors Systematic Review

Background and Setting

Germ cell tumors (GCT) are rare in children younger than 15 years, accounting for approximately 3 percent of cancer cases in this age group.¹¹⁵ Childhood GCT can be divided into gonadal (ovarian and testicular) and extragonadal (e.g., mediastinal or retroperitoneal) neoplasms.¹¹⁸ Gonadal GCT (particularly testicular GCT) are much more common among adolescents aged 15 to 19 years, representing approximately 14 percent of cancer diagnoses in this age group.¹¹⁵ GCTs are highly sensitive to chemotherapy. Cisplatin-based combination chemotherapy, followed by appropriate surgical resection of residual disease, is curative in 80 percent of patients; however, about 20-30 percent of patients may develop recurrent disease.^{114, 118, 119} HDC with HSCT has been explored primarily in adults with relapsed testicular GCT through observational studies.^{115, 118, 119, 470}

Reports from salvage treatment strategies used in adult recurrent GCT include larger numbers of patients, but the differences between children and adults regarding the location of the primary GCT site, pattern of relapse, and the biology of childhood disease may limit the applicability of adult salvage approaches to children. Sequential tandem HSCT has been developed to improve further the outcome for children with relapsed GCT.

^a The projected date was confirmed as personal communication to Hussein Noorani by Dr. Julie Park, Study Chair of the Children's Oncology Group, October 15, 2010.

Evidence Summary

The overall grade of strength of evidence for overall survival in pediatric patients with tandem HSCT compared to single HSCT for the treatment of relapsed germ cell tumors is shown in Table 67. The evidence compiled for this review includes four observational studies.^{114, 119, 120, 470} The total number of pediatric patients included in the four studies was 71: 29 patients received tandem HSCT, whereas 42 patients received single HSCT. Tandem HSCT results in no significant differences in survival rates than single HSCT. No information on QOL was provided, and data on adverse effects are very limited; no definitive conclusions can be made regarding adverse effects and QOL. Results to date are based on small observational studies that have focused on adult patients with gonadal disease. Tandem HSCT may be particularly beneficial in patients with more advanced testicular cancer at diagnosis and greater likelihood of exhibiting cisplatin resistance when compared to single HSCT. However, the reports have great variability in patient selection, prior treatments, the choice of the conditioning regimen and variability of doses within the same regimen. Furthermore, many reports have either combined the data from single and tandem transplants or the numbers are very small.

Randomized (prospective) trials focused on young children and adolescents will be needed to determine if tandem HSCT transplants is superior to single HSCT utilizing an optimal conditioning regimen.

	<u> </u>	<u> </u>					
Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/ Conclusion
For pediatric patients with relapsed germ cell tumors, what is the comparative effectiveness and harms of tandem HSCT and single HSCT regarding overall survival? Outcome of interest is overall survival. The comparator is single HSCT.	There are two observational studies on tandem HSCT (one provided comparison of tandem vs. single HSCT, and one of tandem HSCT). There are two observational studies on single HSCT.	The risk of bias in this evidence is high as our review consisted of small cohorts and case series.	Results for overall survival are inconsistent. Confidence intervals overlap and clinical heterogeneity exists between studies.	The outcomes reported are direct. The comparisons are indirect as the evidence base utilizes two or more bodies of evidence to make comparisons	The evidence is imprecise; effects are uncertain. There is uncertainty on whether tandem HSCT is inferior, equivalent or superior to single HSCT.	Not applicable due to lack of obvious effect size.	The body of evidence on overall survival with tandem HSCT compared to single HSCT for the treatment of relapsed pediatric germ cell tumors was insufficient to draw conclusions.

Table 67. Overall grade of strength of evidence for overall survival: Germ cell tumor

Results

Seventeen articles were retrieved for full-text screening. Four reports were included in this review, and the remaining 13 articles were excluded. The total number of pediatric patients included in the four studies was 71 (of 539): 29 patients received tandem HSCT, whereas 42 patients received single HSCT. Table 68 shows the study selection criteria.

Study Design	Population	Intervention	Comparators	Outcomes	Time	Setting
Controlled trial, cohort, case-series	Pediatric patients (0- 21-yr) with relapsed disease	Tandem (Auto Auto) HSCT	Single (Auto) HSCT	OS; EFS (DFS; PFS); long-term adverse events; QOL	All durations of followup	In-patient

Table 68. Germ cell tumor study selection criteria

Auto = autologous; DFS = disease-free survival; EFS = event-free survival; HSCT = hematopoietic stem-cell transplant; OS = overall survival; PFS = progression-free survival; QOL = quality of life

Table 69 shows the study design and population. All four publications were observational studies. Tandem transplants were performed in two (50 percent) studies. Only one study reported outcomes data of tandem versus single HSCT.¹¹⁹ Two were multicenter studies (Center for International Blood and Marrow Transplant Research [CIBMTR] cohort by Lazarus et al.¹¹⁹ and a European Group for Blood and Marrow Transplantation [EBMT] cohort by De Giorgi et al.¹¹⁴ and two were U.S. single-center studies.^{120, 470}

Study	Design	Median Age in Years (range)	Sex (M%)	Histology [Site] (%)	Tandem	Single	Treatment Period
Lazarus, 2007 ¹¹⁹ [CIBMTR, 2010 ⁴⁷¹]	Cohort	19 (15-20) ^a 20 (17-20) ^b	NR	NS (53 ^a , 67 ^b); SM (21 ^a , 0 ^b); CC (16 ^a ,0 ^b); EB (5 ^a ,33 ^b); Other (5 ^a ,0 ^b) [Testes (90 ^a , 100 ^b); Extragonadal (10 ^a , 0 ^b)]	12	20	1989-2001
Einhorn, 2007 ⁴⁷⁰	Case series	20 (17-21) ^c	NR	NS (81); SM (19) [Testes]	17 ^c	0	1996-2004
Agarwal, 2009 ¹²⁰	Case series	NR (0-19) ^d	92	NS (84); SM (16) [Testes (65); Chest/ Neck/RP (27); CNS (8)]	0	4 ^d	1995-2005
De Giorgi, 2005 ¹¹⁴	Cohort	6.5 (1-18)	56	NG (94); GM (6) [CNS (39); Sacr (39); Retr (17); Med (6)]	0	18	1987-2003

Table 69. Germ cell tumor study characteristics and population

CC = pure choriocarcinoma; CNS = central nervous system; EB = pure embryonal; GM = germinoma; M = male;

NG = nongerminoma; NR = not reported; NS = nonseminoma; RP = retroperitoneal; SM = seminoma

^a Single transplant.

^b Tandem transplant.

^c 184 patients in study (median age of 31 yrs (range, 15-58 yrs).

^d 37 patients in study (median age of 28 yrs (range, 9-59 yrs).

Only one small study by De Giorgi et al.¹¹⁴ was specific to the pediatric age group; approximately 10 percent of all patients across the remaining three studies were in the pediatric age range (Einhorn, 2007: n=17 [of 184];⁴⁷⁰ Lazarus, 2007: n=32 [of 300];¹¹⁹ Agarwal, 2009: n=4 [of 37]¹²⁰). The corresponding authors for the three studies were approached for outcomes data (and if available, patient characteristics) specific to the pediatric age groups.^b Data on study

^b Data from Einhorn et al. (2007) were provided as personal communication to Hussein Noorani by Dr. Lawrence Einhorn, August 11 and September 1, 2010, respectively; data on outcome events from Agarwal et al. (2009) was provided as personal communication to Hussein Noorani by Dr. Rajni Agarwal, August 10, 2010.

variables and outcome events for the pediatric age range (11-20 years) for Lazarus et al.¹¹⁹ were obtained from the CIBMTR.^{471c}

All study patients received HSCT as salvage treatment for relapsed disease. The majority of patients (65-100 percent) across three studies had advanced testicular cancer; the EBMT cohort consisted of pediatric patients with extragonadal GCT.¹¹⁴ Most patients received a cisplatin-based chemotherapy regimen initially and surgery for residual disease when appropriate. Various conditioning regimens were used across studies. The primary conditioning regimen consisted of carboplatin and etoposide. Peripheral blood stem cells were used as either the sole or primary source of support in all studies.

For the CIBMTR cohort, the tandem and single HSCT groups were comparable for median age, testicular versus abdominal origin, number of chemotherapy regimens prior to HSCT, and year of HSCT (over 50 percent of transplants were performed between 1996 and 1998).⁴⁷¹ The interval from diagnosis to first HSCT for the CIBMTR cohort was 12 (range: 2-34) months for the tandem group and 9 (range: 3-17) months for the single HSCT group. Eighty-three percent and 65 percent of patients had residual cancer at time of HSCT, respectively.⁴⁷¹ There were observed differences in the intensity of the transplant preparative regimen between the two study groups; 58 percent of the tandem group received a regimen containing 3 or more chemotherapeutic agents in contrast to 95 percent in the single HSCT group.⁴⁷¹ In addition, in comparison to the single HSCT group, the tandem group had a greater likelihood of cisplatin-resistance at time of transplantation (58 percent vs. 10 percent), and was more likely to receive blood (83 percent vs. 60 percent) rather than marrow as the stem cell source.⁴⁷¹ Median followup in the CIBMTR cohort was 56 (range: 45-74) months for the tandem group and 59 (range: 13-124) months for the single HSCT group, respectively.⁴⁷¹

The Einhorn et al.⁴⁷⁰ tandem series exhibited more favorable prognostic features compared to the CIBMTR tandem cohort. No patients in this series received more than two chemotherapeutic agents as part of their transplant preparative regimen.⁴⁷⁰ Seventy-eight percent of patients exhibited platinum sensitivity and all patients received peripheral-blood stem cells.⁴⁷⁰ Median followup in the Einhorn series was comparable to the CIBMTR cohort (48 [range: 14-118] months).⁴⁷⁰

Table 70 shows the pediatric outcomes that were reported across the four studies.

Study	OS	EFS (DFS, PFS)	Quality of Life	Treatment-related Mortality	Second Malignancies	Other Adverse Effects
CIBMTR, 2010 ⁴⁷¹	\checkmark	\checkmark	NR	\checkmark	NR	\checkmark
Einhorn, 2007 ⁴⁷⁰	\checkmark	\checkmark	NR	NR	NR	NR
Agarwal, 2009 ¹²⁰	\checkmark	\checkmark	NR	\checkmark	\checkmark	\checkmark
De Giorgi, 2005 ¹¹⁴			NR			

Table 70. Germ cell tumor outcomes reported

DFS = disease-free survival; EFS = event-free survival; NR = not reported; OS = overall survival; PFS = progression-free survival

Overall Survival

Data on OS were reported in all four studies (Table 70). Data were available to compute three-year rates across all studies, and five-year rates for three studies (Table 71). Similar trends were observed between treatment groups in the one-, three-, and five-year OS across studies

c The data presented here are preliminary and were obtained from the Statistical Center of the Center for International Blood and Marrow Transplant Research. The analysis has not been reviewed or approved by the Advisory or Scientific Committees of the CIBMTR.

(Table 71). For the CIBMTR cohort, five-year survival probability was 36 percent (95 percent confidence interval (CI), 10-69 percent) in the tandem group compared to 49 percent (24-68 percent) in the single HSCT group.⁴⁷¹ OS was defined across three studies as the interval between salvage chemotherapy or transplant and death from any cause.

Outcome	Intervention Tandem (%; ± 95% CI) [N]	Comparator Single (%; ± 95% CI) [N]	p Value	Study
	67 (34-86) [12]	65 (40-82) [20]		CIBMTR, 2010 ⁴⁷¹
1-year rate	76.5 (59-99.5) [17]	NA	NR	Einhorn, 2007 ⁴⁷⁰
	NA	67 (45-88) [18]		De Giorgi, 2005 ¹¹⁴
	42 (15-67) [12]	49 (24-68) [20]		CIBMTR, 2010 ⁴⁷¹
	63 (43-92) [17] NA		ND	Einhorn, 2007 ⁴⁷⁰
3 year rate	NA	50 (7-93) [4]	NR	Agarwal, 2009 ¹²⁰
	NA	56 (33-78.5) [18]		De Giorgi, 2005 ¹¹⁴
	36 (10-59) [12]	49 (24-68) [20]		CIBMTR, 2010 ⁴⁷¹
5 year rate	63 (43-92) [17]	NA	NR	Einhorn, 2007 ⁴⁷⁰
	NA	49 (25-72) [4]		De Giorgi, 2005 ¹¹⁴
OS range for 5 years for studies with > 10 patients	36-63	49	NA	

Table 71. Overall survival for tandem HSCT and comparison (single HSCT) groups: Germ cell tumor

CI = confidence interval; N = number of patients; NA = not applicable; NR = not reported

Event-free Survival

Information on event-free survival can be found in Appendix D.

Adverse Effects

None of the studies evaluated quality of life (Table 70). Data on treatment-related mortality was available from three studies (Table 72).^{114, 120, 471} There was no reported cases of treatment-related mortality in the two single HSCT series (N=22). For the CIBMTR cohort, cumulative incidence of treatment-related mortality was 10 percent (2-27 percent) at 5 years for the single HSCT group (n=20); none of the 12 patients in the tandem group had treatment-related mortality (Table 72). Relapse/progression incidence, on the other hand, was 64 percent (30–85 percent) for the tandem group up to five years after transplant compared to 41 percent (20–62 percent) for the single HSCT group.⁴⁷¹ Other adverse events were reported in only two single HSCT studies. There were no secondary malignancies (Table 72). Veno-occlusive disease occurred in two (of 18) patients in the EBMT cohort by De Giorgi et al.¹¹⁴

Outcome	Intervention Tandem (%)	Comparator Single (%)	Study
Treatment related mortality	Not applicable	0 ^a	De Giorgi, 2005 (77240); Agarwal, 2007 (72940)
	0	10	CIBMTR, 2010
Secondary malignancies	Not applicable	0 ^b	De Giorgi, 2005 (77240); Agarwal, 2007 (72940)
Vana applusiva diagona	Not applicable	11	De Giorgi, 2005 (77240)
veno-occlusive disease	Not applicable	0	Agarwal, 2007 (72940)

 Table 72. Adverse effects for tandem HSCT and comparison (single HSCT) groups: Germ cell tumor

^a No cases of treatment-related mortality reported in both studies.

^b No cases of secondary malignancies reported in both studies.

Ongoing Research

Two U.S. nonrandomized studies are underway on tandem transplants. The first is a twocenter (M.D. Anderson Cancer Center; Fred Hutchinson Cancer Research Center) Phase II study being undertaken to evaluate if bevacizumab, when given in combination with two cycles of HDC, can help to control GCTs in patients aged 12 to 65 years. The study is currently recruiting patients with an estimated enrollment of 25 participants. The primary outcome of interest is 2year EFS. The estimated final data collection date for this trial is June 2014. (NCT00936936).

The second study (Phase I/II) is being undertaken at the Children's Memorial Hospital in Chicago to assess the feasibility and toxicity of tandem rescue with peripheral blood cells following HDC as consolidation in pediatric patients with high risk solid tumors, including relapsed GCT. The study is currently recruiting patients with an estimated enrollment of 12 participants. The estimated final data collection date is September 2012 (NCT00179816).

Conclusion

The body of evidence on overall survival with tandem HSCT compared to single HSCT for the treatment of relapsed pediatric germ cell tumors was insufficient to draw conclusions.

Central Nervous System/Embryonal Tumors Systematic Review

Background and Setting

Classification of brain tumors is based on both histopathologic characteristics of the tumor and location in the brain.¹²² Central nervous system (CNS) embryonal tumors are the most common malignant brain tumor in childhood. Embryonal tumors of the CNS primarily include medulloblastoma (MB), supratentorial primitive neuroectodermal tumor (PNET), and atypical teratoid/rhabdoid tumor (AT/RT).¹²² MBs account for 20 percent of all childhood CNS tumors.^{123, 124} The other types of embryonal tumors are rare by comparison.¹²²

PNETs are a heterogeneous group of highly malignant neoplasms comprising 3 to 5 percent of all childhood brain tumors, most commonly located in the cerebral cortex and pineal region.^{123, 125} AT/RT, on the other hand, comprise approximately 2-3 percent of these tumors with a peak incidence in children less than three years of age, and is associated with characteristic genetic abnormalities.^{123, 125} The prognosis for these tumors is worse than for MB, despite identical therapies.^{122, 123, 125}

Recurrence of all forms of CNS embryonal tumors is not uncommon, usually occurring within 18 months of treatment; however, recurrent tumors may develop many years after initial treatment.¹²² The treatment of these tumors continues to evolve especially in children less than three years of age because of the concern of the deleterious effects of craniospinal radiation on the immature nervous system. Therapeutic approaches have attempted to delay and sometimes avoid the use of radiation, and have included trials investigating different chemotherapy regimens to improve outcome.¹²² Many centers have used HDC with HSCT to improve further the outcome for children with CNS embryonal tumors.

Evidence Summary

The overall grade of strength of evidence for overall survival with tandem HSCT compared to single HSCT for the treatment of CNS embryonal tumors is shown in Table 73.

The evidence compiled for this review includes ten observational studies^{133, 472-480} and two randomized clinical trials (RCT).^{481, 482} Nine studies reported outcomes for HSCT,^{133, 473-477, 481} ^{479, 480} and three studies (including two RCTs) were multi-institutional treatment protocols on CNS embryonal tumors.^{478, 481, 482} For HSCT studies, 15 patients received tandem transplant, whereas 132 patients received single HSCT.

Based on the currently available evidence, it is not possible to clarify the role of HSCT (single or tandem procedure), as studies are limited individually by low numbers of patients enrolled and collectively by inconsistencies in the patients' ages. The prognosis and treatment varies depending upon the age of the patient and type of embryonal tumor. Most studies to date have focused on children with newly diagnosed medulloblastoma. Comparison between studies, moreover, remains challenging, given the heterogeneity of these tumors and the varied therapies used across centers.

Key Question	Study Design	Risk of bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/ Conclusion
For pediatric patients with CNS embryonal tumors, what is the comparative effectiveness and harms of tandem HSCT and single HSCT regarding overall survival? Outcome of interest is overall survival. The comparator is single HSCT.	There are three observational studies on tandem HSCT. There are seven observational studies on single HSCT.	The risk of bias in this evidence is high. There are differences in conditioning regimens and source of stem cell support across studies.	Results for overall survival are of unknown consistency. Studies consist of multiple tumor types. There is variability in prognostic features between studies.	The outcomes reported are direct. The comparisons are indirect as the evidence base utilizes two or more bodies of evidence to make comparisons.	The evidence is imprecise, effects are uncertain. There is uncertainty on whether tandem HSCT is inferior, equivalent or superior to single HSCT.	Not applicable due to lack of obvious effect size.	The body of evidence on tandem HSCT compared to single HSCT for the treatment of CNS embryonal tumors was insufficient to draw conclusions.
For pediatric patients with CNS embryonal tumors, what is the comparative effectiveness and harms of single HSCT and conventional therapy regarding overall survival? Outcome of interest is overall survival. The comparator is conventional therapy.	There are five observational studies on single HSCT. There are two RCTs and one observational study on conventional therapy.	The risk of bias in this evidence is high. One RCT was performed earlier in the mid-90s; There are differences in treatment regimens and supportive care across studies.	Results are of unknown consistency. Studies consist of multiple tumor types. There is variability in prognostic features between studies.	The outcomes reported are direct. The comparisons are indirect as the evidence base utilizes two or more bodies of evidence to make comparisons.	The evidence is imprecise, effects are uncertain. There is uncertainty on whether single HSCT is inferior, equivalent or superior to conventional chemotherapy.	Not applicable due to lack of obvious effect size.	The body of evidence on single HSCT compared to conventional therapy for the treatment of CNS embryonal tumors was insufficient to draw conclusions.

 Table 73. Overall grade of strength of evidence for overall survival: CNS embryonal tumors

Results

Twelve reports were included in this review. Table 74 shows the criteria that were used to select studies for this section. For HSCT studies, 15 patients received tandem transplant (MB, n=13; PNET, n=1; AT/RT, n=1), whereas 132 patients received single HSCT (MB, n=61; PNET, n=52; AT/RT, n=19).

Study Design	Population	Intervention	Comparators	Outcomes	Time	Setting
Controlled	Pediatric patients (0-	Tandem (Auto Auto) HSCT	Single (Auto) HSCT	OS; EFS (DFS; PFS);	All durations	In- patient
case-series	diagnosed disease	Single (Auto) HSCT	Conventional therapy	adverse events; QOL	of followup	out- patient

Table 74. Study	y selection	criteria: C	CNS embr	yonal tumors

Auto = autologous; DFS = disease-free survival; EFS = event-free survival; HSCT = hematopoietic stem-cell transplant; OS = overall survival; PFS = progression-free survival; QOL = quality of life

Table 75 shows the study design and population. Ten publications were observational studies^{133, 472-480} and two were randomized clinical trials (RCTs).^{481, 482} Nine studies reported outcomes for HSCT, and three studies (including two RCTs) were multi-institutional treatment protocols on CNS embryonal tumors.^{478, 481, 482} Of the nine HSCT studies, tandem transplants were performed in three studies, one of which reported comparative data of tandem vs. single HSCT.¹³³ Sixty percent of these patients were considered as average-risk (i.e., Chang stage M0 having no metastasis), and 40 percent as high-risk (i.e., Chang stage M1-M4 having metastasis).

All patients across the nine transplant studies received HSCT as consolidation of primary treatments. All studies used different induction regimens (i.e., different chemotherapeutic agents and different (cumulative) dosages). The induction regimen across studies primarily consisted of five cycles of chemotherapy followed by consolidation phase. Various conditioning regimens were used across studies. The conditioning regimen primarily consisted of carboplatin, thiotepa, etoposide, busulfan and/or melphalan. Approximately 30 percent of patients (29-37 percent) also received radiation therapy across these studies. Peripheral blood stem cells were used as the sole source of support in five studies (two on single HSCT and three on tandem HSCT); combination of peripheral blood and bone marrow was used across the remaining four studies.

Data on conventional care were based on results from three multi-institutional treatment protocols on CNS embryonal tumors (one on multiple tumor types which consisted of MB, PNET and AT/RT; and two on MB).^{478, 481, 482} The study by Geyer et al.⁴⁸¹ was a RCT from the U.S. Children's Cancer Group (COG) of two multi-agent chemotherapy regimens (with deferred radiotherapy) for children younger than 3 years of age with various malignant brain tumors in a large cohort of patients. Maintenance therapy for all patients in the COG protocol comprised of eight cycles of vincristine, carboplatin and cyclophosphamide; over 40 percent of patients received radiotherapy.⁴⁸¹ Two studies reported on outcomes for MB patients; the RCT by Packer et al.⁴⁸² reported on outcomes with radiotherapy and adjuvant chemotherapy for children three years and older with nonmetastatic disease, and the European multicenter study by Taylor et al.⁴⁷⁸ reported on outcomes for ages three years and older with metastasis.

Table 76 shows the outcomes that were reported across the 12 studies.

Study	Design	Median Age in Months (Range)	Sex (M%)	Sex Histology [Tumor M%) Type] (%)		Single HSCT	сс	Rx Period
Sung, 2007 ⁴⁶⁶	Case series	31 (17-198)	50	M0 (64); M1 (7); M3 (29) [MB (79); PNET (21)]	11	3	NA	1999- 2005
Gidwani, 2008 ⁴⁷²	Case report	4	100	M0 [AT/RT (100)]	1	NA	NA	NR
Fangusaro, 2008 ⁴⁷³	Case series	37 (0-120)	51	M0 (82); M1-M3 (18) [PNET (100)]	NA	43	NA	1991- 2002
Dhall, 2008 ⁴⁷⁴	Case series	21 (5-35)	50	M0 (100) [MB (100)]	NA	21	NA	1991- 2002
Chi, 2004 ⁴⁷⁵	Case series	38 (7-119)	76	M1 (19); M2 (9.5); M3 (71) [MB (100)]	NA	21	NA	1997- 2003
Gardner, 2008 ⁴⁷⁶	Case series	35 (4-52)	54	M0 (77); M1 (8); M3 (15) [AT/RT (100)]	NA	13	NA	1992- 2002
Perez-Martinez, 2005 ⁴⁷⁷	Case series	3 (1-14) years	61.5	M1-M4 (NR) [MB (69); PNET (31)]	NA	13	NA	1995- 2002
Packer, 2006 ⁴⁸²	RCT	(36-228)	59	M0 (100) [MB (100)]	NA	NA	379	1996- 2000
Geyer, 2005 ⁴⁸¹	RCT	(0-36)	53	M0 (68); M1+ (32) [MB (44); PNET (22); AT/RT (13) Other (21)]	NA	210	284	1993- 1997
Taylor, 2005 ⁴⁷⁸	Case series	94 (34-197)	29	M2 (19); M3 (81) [MB (100)]	NA	NA	68	1992- 2000
Bandopadhayay, 2011 ⁴⁷⁹	case series	20.5 (3-37)	61	M0 (91); M1 (6); M3 (3) [MB (50); AT/RT (33); PNET (17)]	NA	18	NA	1999- 2005
Aihara, 2010 ⁴⁸⁰	case report	144 (84- 156)	100	M3 (100) [MB (100)]	3	NA	NA	NR

Table 75. Study characteristics and population: CNS embryonal tumors

AT/RT = atypical teratoid/rhabdoid tumor; CC = conventional care; HSCT = hematopoietic stem-cell transplant; M0 = no evidence of metastasis; M1 = tumor cells found in cerebrospinal fluid (by lumbar puncture and cytology study); M2 = tumor beyond primary site but still in brain; M3 = tumor deposits ("seeds") in spine area that are easily seen on MRI; M4 = tumor spread to areas outside the CNS (outside both brain and spine); M = male; MB = medulloblastoma; NR = not reported; PNET = supratentorial primitive neuroectodermal tumor; RCT = randomized controlled trial

Study	os	EFS (DFS, PFS)	QOL	Treatment- related Mortality	Second Malignancies	Other Adverse Effects
Sung, 2007 ⁴⁶⁶	\checkmark	\checkmark	NR	\checkmark	NR	\checkmark
Gidwani, 2008 ⁴⁷²	\checkmark	\checkmark	NR	NR	\checkmark	\checkmark
Fangusaro, 2008 ⁴⁷³	\checkmark	\checkmark	NR	\checkmark	\checkmark	\checkmark
Dhall, 2008 ⁴⁷⁴	\checkmark	\checkmark	\checkmark	\checkmark	NR	\checkmark
Chi, 2004 ⁴⁷⁵	\checkmark	\checkmark	NR	\checkmark	NR	NR
Gardner, 2008 ⁴⁷⁶	\checkmark	\checkmark	NR	\checkmark	NR	\checkmark
Perez-Martinez, 2005477	NR	\checkmark	NR	\checkmark	\checkmark	\checkmark
Packer, 2006 ⁴⁸²	\checkmark	\checkmark	NR	\checkmark	\checkmark	\checkmark
Geyer, 2005 ⁴⁸¹	\checkmark	\checkmark	NR	\checkmark	\checkmark	\checkmark
Taylor, 2005 ⁴⁷⁸	\checkmark	\checkmark	NR	\checkmark	NR	\checkmark
Bandopadhayay, 2011 479	\checkmark	NR	NR	\checkmark	NR	\checkmark
Aihara, 2010 ⁴⁸⁰	NR		NR		NR	

Table 76. Outcomes reported: CNS embryonal tumors

DFS = disease-free survival; EFS = event-free survival; NR = not reported; PFS = progression-free survival; QOL = quality of life

Overall Survival

Data on OS were reported in ten (of 12) studies (Table 76). For comparisons between tandem vs. single HSCT, data were available to compute 2-year rates for two studies, 3-year rates for two studies, and 5-year rates for four studies (Table 77). For Sung et al.⁴⁶⁶ (n=14), 2-year survival probability was 82 percent (95 percent confidence interval (CI), 59-100 percent) in the tandem group (MB, n=10; PNET, n=1) compared to 67 percent (13-100 percent) in the single HSCT group (MB, n=1; PNET, n=2). The AT/RT patient reported in Gidwani et al.⁴⁷² has remained disease free for two years following tandem HSCT. OS was defined across studies as the interval between diagnosis to death or last followup.

For the conventional-care group of studies, data were available to compute 3-year rates for one study,⁴⁷⁸ and 5-year rates for three studies (Table 78).^{478, 481, 482} There were no comparative studies between single HSCT vs. conventional care. For Geyer et al.⁴⁸¹ on multiple tumor types, five-year survival probability overall was 43 percent (3 percent) for children under three years of age; for MB, PNET and AT/RT, the corresponding rates were 43 percent (5 percent), 31 percent (7 percent), and 29 percent (9 percent), respectively. Similar rates were observed for MB patients with metastatic disease in the multicenter study by Taylor et al.⁴⁷⁸ Packer et al.⁴⁸² reported higher survival rates in their cohort of MB patients without metastasis.

Outcome	Tumor type	Intervention Tandem (%; ± 95% CI; SE) [N]	Comparator Single (%; ± 95% CI; SE) [N]	p Value	Study
	MB-PNET	82 (59-100) [11]	67 (13-100) [3]		Sung, 2007 ⁴⁶⁶
2-year	AT/RT	[One patient alive without disease]	Not applicable		Gidwani, 2008 ⁴⁷²
	MB AT/RT	Not applicable	50 [4.5] 20 [1.2]*		Bandopadhayay, 2011
0	MB	Not applicable	60 (36-84) [21]	NR	Chi, 2004 ⁴⁷⁵
5-year	AT/RT	Not applicable	23 (11) [13]		Gardner, 2008 ⁴⁷⁶
	MB-PNET	82 (59-100) [11]	NA		Sung, 2007 ⁴⁶⁶
	PNET	Not applicable	49 (33-62) [43]		Fangusaro, 2008 ⁴⁷³
5-year	MB	Not applicable	70 (10) [21]		Dhall, 2008 ⁴⁷⁴
	MB	50 [4.5]	Not applicable	<.01	Bandopadhayay, 2011
OS range for 5 years for studies with >10 patients	All	82	49-70	Not applicable	Not applicable

Table 77. Overall survival for tandem HSCT and comparison (single HSCT) groups:CNS embryonal tumors

AT/RT = atypical teratoid/rhabdoid tumor; CI = confidence interval; MB = medulloblastoma; N = number of patients; NA = not available; PNET = supratentorial primitive neuro-ectodermal tumors; SE = standard error *18-month OS.

Table 78. Overall survival for single HSCT and comparison (conventional care) groups	3:
CNS embryonal tumors	

Outcome	Tumor type	Intervention Single (%; ± 95% CI; SE) [N]	Comparator CC (%; ± 95% CI; SE) [N]	p Value	Study
	MB	60 (36-84) [21]	Not applicable		Chi, 2004 ⁴⁷⁵
3-year	AT/RT	23 (11) [13]	Not applicable		Gardner, 2008 ⁴⁷⁶
	MB	Not applicable	50 (38-62) [68]		Taylor, 2005 ⁴⁷⁸
	PNET	49 (33-62) [43]	Not applicable		Fangusaro, 2008 ⁴⁷³
	MB	70 (10) [21] Not applicable			Dhall, 2008 ⁴⁷⁴
	MB	Not applicable	86 (1.9) [379]		Packer, 2006 ⁴⁸²
5-year	MB-PNET- AT/RT-Other	Not applicable	43 (3) [284] all pts 43 (5) [92] MB 31 (7) [46] PNET 29 (9) [28] Rhabdoid		Geyer, 2005 ⁴⁸¹
	MB	Not applicable	44 (32-56) [68]		Taylor, 2005 ⁴⁷⁸
OS range for 5 years for studies with > 10 patients	All	49-70	43-86	Not applicable	Not applicable

AT/RT = atypical teratoid/rhabdoid tumor; CC = conventional care; CI = confidence interval; MB = medulloblastoma;

N = number of patients; NA = not available; PNET = supratentorial primitive neuro-ectodermal tumors; SE = standard error

Adverse Effects

Only one HSCT study on MB patients evaluated quality of life (Table 76).⁴⁷⁴ Dhall et al.⁴⁷⁴ reported that mean intellectual functioning and QOL for children less than three years of age surviving without radiotherapy (n=4 [of 21]) was within the average range at both followup periods of testing (using the Parent Form of the Child Health Questionnaire [which is a 50-item QOL measure]). Data on treatment-related mortality were reported in 11 studies (Table 79).^{133, 474-479, 481-483} There was one (of 15) case (7 percent) in the tandem group, nine (of 132) cases (8 percent) in the single HSCT group, and 71 (of 663) cases (11 percent) in the conventional care group.

Outcome	Tumor Type	Intervention Tandem (%)	Comparator Single (%)	Study
	MB-PNET	18	33	Sung, 2007 ⁴⁶⁶
	AT/RT	0 ^a	NA	Gidwani, 2008 ⁴⁷²
Treatment-Related Mortality	PNET	NA	5	Fangusaro, 2008 ⁴⁷³
	MB	NA	0	Chi, 2004 ⁴⁷⁵
	MB	NA	19	Dhall, 2008 ⁴⁷⁴
	AT/RT	NA	0	Gardner, 2008 ⁴⁷⁶
	MB-PNET	NA	15	Perez-Martinez, 2005477
	AT/RT	0 ^a	NA	Gidwani, 2008 ⁴⁷²
	PNET	NA	2	Fangusaro, 2008 ⁴⁷³
	MB-PNET- AT/RT	3	NA	Bandopadhayay, 2011 479
	AT/RT	NA	8	Gardner, 2008 ⁴⁷⁶
Secondary Maliananaiaa	MB-PNET	NA	8	Perez-Martinez, 2005477
Secondary Manghancies	MB-PNET	9	0	Sung, 2007 ⁴⁶⁶
	Tumor TypeTumor TypeMB-PNETAT/RTPNETMBMBMBMBMBAT/RTMB-PNETAT/RTMB-PNETAT/RTMB-PNET-AT/RTMB-PNET-AT/RTMB-PNETMB-PNETMB-PNETAT/RTMB-PNETMB-PNETMB-PNETAT/RTMB-PNETMB-PNETMB-PNETAT/RTMB-PNETMB-PNETMBAT/RTMBAT/RTMBAT/RTMB-PNET-AT/RTMB-PNET-AT/RTMB-PNET-AT/RTMB-PNET-AT/RTMB-PNET-AT/RTMB-PNET-AT/RTMB-PNET-AT/RTMB-PNET-AT/RTMB-PNET-AT/RTMB-PNET-AT/RTMB-PNET-AT/RTMB-PNET-AT/RTMB-PNET-AT/RT <td>0</td> <td>NA</td> <td>Gidwani, 2008⁴⁷²</td>	0	NA	Gidwani, 2008 ⁴⁷²
	PNET	NA	5	Fangusaro, 2008 ⁴⁷³
	MB	NA	9.5	Dhall, 2008 ⁴⁷⁴
	AT/RT	NA	8	Gardner, 2008 ⁴⁷⁶
Infectious Complications	MB-PNET	NA	38	Perez-Martinez, 2005477
	AT/RT	NA	8	Gardner, 2008 ⁴⁷⁶
	MB-PNET	NA	15	Perez-Martinez, 2005477
	MB-PNET- AT/RT	3	NA	Bandopadhayay, 2011 479
Serious Hemorrhagic Events	MB-PNET	NA	8	Perez-Martinez, 2005477
Veno-Occlusive Disease		Not reported	Not reported	

Table 79. Adverse effects for treatment (tandem HSCT) and comparison (single HSCT) groups
CNS embryonal tumors

AT/RT = atypical teratoid/rhabdoid tumor; MB = medulloblastoma; NA = not applicable; PNET = supratentorial primitive neuroectodermal tumors

^a Case report.

Secondary malignancies were reported in three single HSCT studies476, 477, 483and three studies on conventional care (Table 79 and Table 80).478, 481, 482 Three (of 69) cases (4 percent) of secondary malignancies were reported in the single HSCT group, and 12 (663) cases (2 percent) in the conventional care group. Other adverse events across studies are reported in Table 79 and Table 80, respectively.

Outcome	Tumor Type	Intervention Single (%)	Comparator CC (%)	Study
	PNET	5	Not applicable	Fangusaro, 2008 ⁴⁷³
	МВ	0	Not applicable	Chi, 2004 ⁴⁷⁵
	МВ	19	Not applicable	Dhall, 2008 ⁴⁷⁴
Treatment- related Mortality	AT/RT	0	Not applicable	Gardner, 2008 ⁴⁷⁶
	MB-PNET	15	Not applicable	Perez-Martinez, 2005 ⁴⁷⁷
	MB	Not applicable	14	Packer, 2006 ⁴⁸²
	MB-PNET-AT/RT-Other	Not applicable	6	Geyer, 2005 ⁴⁸¹
	МВ	0 ^a	Not applicable	Aihara, 2010 ⁴⁸⁰
	PNET	2	Not applicable	Fangusaro, 2008 ⁴⁷³
	AT/RT	8	Not applicable	Gardner, 2008 ⁴⁷⁶
Secondary Malignancies	MB-PNET	8	Not applicable	Perez-Martinez, 2005 ⁴⁷⁷
	MB	Not applicable	2	Packer, 2006 ⁴⁸²
	MB	Not applicable	1	Taylor, 2005 ⁴⁷⁸
	MB-PNET-AT/RT-Other	Not applicable	2	Geyer, 2005 ⁴⁸¹
	PNET	5	Not applicable	Fangusaro, 2008 ⁴⁷³
	МВ	9.5	Not applicable	Dhall, 2008 ⁴⁷⁴
Infectious Complications	AT/RT	8	Not applicable	Gardner, 2008 ⁴⁷⁶
	MB-PNET	38	Not applicable	Perez-Martinez, 2005 ⁴⁷⁷
	MB	Not applicable	24	Packer, 2006 ⁴⁸²
	MB-PNET-AT/RT-Other	Not applicable	21	Geyer, 2005 ⁴⁸¹
Serious	AT/RT	8	Not applicable	Gardner, 2008 ⁴⁷⁶
Hemorrhagic Events	MB-PNET	15	Not applicable	Perez-Martinez, 2005 ⁴⁷⁷
	MB-PNET-AT/RT-Other	Not applicable	4	Geyer, 2005 ⁴⁸¹
Veno-occlusive	MB-PNET	8	Not applicable	Perez-Martinez, 2005 ⁴⁷⁷
Disease	MB	Not applicable	1	Taylor, 2005 ⁴⁷⁸
	MB-PNET-AT/RT-Other	Not applicable	2	Geyer, 2005 ⁴⁸¹

Table 80. Adverse effects for treatment (single HSCT) and comparison (conventional care) groups: CNS embryonal tumors

AT/RT = atypical teratoid/rhabdoid tumor; CC = conventional care; MB = medulloblastoma; N = number of patients; PNET = supratentorial primitive neuroectodermal tumors

^a Case report.

Ongoing Research

In North America, the Children's Hospital of Los Angeles is leading a Phase III trial ("Head Start III") studying combination chemotherapy with or without etoposide followed by single HSCT in treating patients (10 years or younger) with newly diagnosed brain tumors including MB, PNET, and AT/RT. This is an international trial (U.S., Canada, Australia, New Zealand, Switzerland) being undertaken across 37 centers and is currently recruiting patients with an expected enrollment of 120 patients. The primary outcomes of interest include time to tumor progression, disease recurrence or death of any cause, EFS at 2 years and toxicity. The projected completion of accrual is December 2010 (NCT00392886).

The St. Jude Children's Research Hospital is leading a Phase III trial studying two different regimens of radiation therapy when given together with chemotherapy and HSCT (1 to 3 procedures) to see how this regimen works in treating patients (3 years to 21 years) with newly diagnosed MB, PNET, or AT/RT. This is an international trial (U.S., Canada, Australia) being undertaken across nine centers and is currently recruiting patients with an expected enrollment of 342 patients. The primary outcomes of interest include the relationship of protein expression in tumors and PFS up to seven years of followup. The projected completion of accrual is April 2011 (NCT00085202).

In addition to the above studies, there are two trials underway by the Children's Oncology Group (COG). The first trial is open for children aged 3 years or younger at diagnosis with newly diagnosed PNET or high-risk medulloblastoma (NCT00336024). The second trial is a Phase III study for patients under 21 years of age with AT/RT. Both studies are using multi-agent chemotherapy, radiation, and high-dose chemotherapy with hematopoietic stem-cell rescue (NCT00653068)."

Conclusion

The body of evidence on overall survival with tandem HSCT compared to single HSCT for the treatment of CNS embryonal tumors was insufficient to draw conclusions.

The body of evidence on overall survival with single HSCT compared to conventional therapy for the treatment of CNS embryonal tumors was insufficient to draw conclusions.

Glial Tumor Systematic Review

Background and Setting

Glial tumors comprise a heterogeneous group of neoplasms that are the largest single group of primary brain tumors in children and adolescents and contribute significant morbidity and mortality.⁴⁸⁴ The World Health Organization (WHO) classifies glial tumors into four major categories: astrocytic, ependymal, oligodendroglial or mixed gliomas, and choroid plexus tumors. According to SEER data, pediatric age-adjusted incidence rate of primary CNS glial tumors per 100,000 persons was:

- Astrocytoma (excluding pilocytic), 0.411
- Glioblastoma, 0.138
- Ependymoma/anaplastic ependymoma, 0.226
- Choroid plexus tumor, 0.025
- Oligodendroglioma, 0.083
- The age-adjusted mortality rate of brain and other nervous system tumors was 0.65 per 100,000 persons.

Data on glial tumors are primarily from case series, save one comparative study with an historic cohort⁴⁸⁵ with patients who received high-dose chemotherapy and HSCT. Case reports were also available. Differences in patient selection, accrual of small numbers of patients with patient data not stratified by tumor type, and differences in conditioning regimens make differences in overall survival between HSCT and conventional chemotherapy difficult to interpret. Although randomized evidence for gross total resection is lacking, retrospective analysis reaffirms the value of surgical resection in prolonging survival.

A greater than 90 percent surgical resection of newly diagnosed malignant gliomas, both anaplastic astrocytoma and glioblastoma multiforme, in childhood and adolescence confers a statistically significant survival advantage when followed by local field irradiation and conventional chemotherapy, or autologous stem-cell rescue.⁴⁸⁵ Evidence was evaluated in five groups: anaplastic astrocytoma and glioblastoma multiforme (astrocytic tumors), choroid plexus tumor, ependymoma, and other glial tumor patients. Data for other glial tumors was presented but separate analysis by type was not possible. Patients were classified into newly diagnosed or recurrent/progressive disease due to a poorer overall survival for recurrent/progressive patients.

High-Grade Glioma: Anaplastic Astrocytoma (AA)/Glioblastoma Multiforme (GBM)

The prognosis for patients diagnosed with high-grade glioma is poor. The median survival is less than 1 year, the majority die within two years despite some exceptional survivors.⁴⁸⁶ Patients with grade II astrocytoma may survive for 5 or more years while patients with AA often die within 2 or 3 years and frequently show progression to GBM with survival times substantially less than 2 years.⁴⁸⁷

Choroid Plexus Carcinomas

Choroid plexus carcinomas are rare typically occurring among children under 12 years of age with the greatest prevalence among children less than 2 years of age. ⁴⁸⁸ Choroid plexus tumors account for 1-4 percent of all childhood brain tumors with 25 percent of these patients developing progressive disease. ⁴⁸⁸ The role of surgery is well established in these tumors. Total resection of the tumor is often limited by tumor vascularity, large tumor size, and the tumor's tendency to invade the brain.⁴⁸⁸ The added benefits of radiation and chemotherapy on overall survival after total resection are unclear.⁴⁸⁸

Ependymomas

Ependymomas are significantly more prevalent in infants and young children, than in adults, and account for 6-10 percent of brain tumors in children.⁴⁸⁹ Sixty percent of ependymal tumors in children are infratentorial with 40 percent supratentorial. With conventional therapy the estimated 5-year OS and PFS are 50-64 percent and 23-45 percent, respectively.⁴⁹⁰ Factors significant in the prognosis of patients are extent of tumor resection and age.⁴⁹⁰ Patients with gross total resection have higher survival rates compared to incompletely resected gliomas (67-80 percent and 22-47 percent 5-year OS, respectively), and younger children tend to have a worse prognosis (more aggressive biological behavior of the tumor, avoidance of irradiation, and unacceptable neurotoxicity).⁴⁹⁰

Evidence Summary

The overall grade of strength of evidence for overall survival with HSCT for the treatment of high-risk glial tumors is shown in Table 81. The evidence compiled for this review includes one comparative cohort study of HSCT versus conventional therapy, one noncomparative cohort study, four randomized clinical trials, three Phase II trials, and 30 case series. The total number of patients abstracted was 1012: 215 patients received HSCT and 797 received conventional therapy.

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
For pediatric patients with high- risk, newly diagnosed anaplastic astrocytoma what is the comparative effectiveness and harms of HSCT and conventional chemotherapy regarding overall survival? Outcome of interest is overall survival. The comparator was conventional therapy.	Three studies examined overall survival for newly diagnosed anaplastic astrocytoma tumors. All studies were case-series and no studies were comparative between HSCT and conventional therapy. Survival data was available for 30 conventional therapy patients and 11 autologous transplant patients. Patients from Bertolone ⁴⁹¹ (N=76) were not included due to grouping of AA and GBM patients and presence in an analysis by Finlay ⁴⁸⁵ *Patients from Massimo included two oligoastrocytoma patients and nine anaplastic astrocytoma patients.	The risk of bias in this evidence is high. Patient characteristics such as newly diagnosed astrocytoma or recurrent/progress ive tumors provide some prognostic information. Data for HSCT patients is limited to only 11 patients.	Results for overall survival are not applicable. One study with N ≥10 is available for HSCT and two for conventional therapy. Studies use several different time points to calculate overall survival. In additional different patient characteristics prohibit direct comparison of patients for all studies.	The outcomes reported are direct. The comparisons are indirect as the evidence base utilizes two or more bodies of evidence to make comparisons.	The evidence is imprecise.	Not applicable due to lack of obvious effect size.	The body of evidence on overall survival with HSCT compared to conventional therapy for the treatment of high- risk newly diagnosed anaplastic astrocytoma was insufficient to draw conclusions.

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
For pediatric patients with high- risk recurrent or progressive anaplastic astrocytoma what is the comparative effectiveness and harms of HSCT and conventional chemotherapy regarding overall survival? Outcome of interest is overall survival. The comparator was conventional therapy.	Ten studies examined overall survival for recurrent anaplastic astrocytoma tumors. One study was comparative with a historical cohort. The remaining studies were case-series. Survival data was available for 71 conventional therapy patients and 17 autologous transplant patients. *Patients from Bertolone (N=76) ⁴⁸¹ were not included due to grouping of AA and GBM patients and presence in an analysis by Finlay ⁴⁸⁵ *Patients from Gilheeney included 1 anaplastic astrocytoma patient, 1 oligoastrocytoma patient, and 2 GBM patients. ⁴⁹²	The risk of bias in this evidence is high. Patient characteristics such as newly diagnosed astrocytoma or recurrent/progress ive tumors provide some prognostic information. Data for HSCT patients is limited to only 17 patients.	Results for overall survival are consistent One study with N ≥10 is available for HSCT and one for conventional therapy. Studies use several different time points to calculate overall survival. In additional different patient characteristics prohibit direct comparison of patients for all studies.	The outcome reported, overall survival, is direct. The comparisons are indirect as the evidence base utilizes two or more bodies of evidence to make comparisons. The best evidence was comparative, but the comparison was made with historical controls entered in a previous protocol.	The evidence is precise. While the evidence is qualitative it is likely that an important superiority exists for HSCT compared to conventional therapy for these patients. The results from Finlay <i>et</i> <i>al.</i> with a historic conventional therapy comparison group give 5- year overall survival estimates of 40% for HSCT patients and 0% for conventional therapy . This information is limited due to the HSCT group's small sample size (N=10).	The strength of association is strong. The results from Finlay <i>et</i> <i>al.</i> with a historic conventional therapy comparison group give 5- year overall survival estimates of 40% for HSCT patients and 0% for conventional therapy . This information is limited due to the HSCT group's small sample size (N=10).	Low strength evidence on overall survival suggests a benefit with single HSCT compared to conventional therapy for the treatment of high- risk recurrent or progressive anaplastic astrocytoma.

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
For pediatric patients with high- risk newly diagnosed glioblastoma multiforme what is the comparative effectiveness and harms of HSCT and conventional chemotherapy regarding overall survival? Outcome of interest is overall survival. The comparator was conventional therapy.	Five studies examined overall survival for newly diagnosed glioblastoma multiforme. All studies were case-series and no studies were comparative between HSCT and conventional therapy. Survival data was available for 40 conventional therapy patients and 27 autologous transplant patients. *Patients from Bertolone (N=76) ⁴⁹¹ were not included due to grouping of AA and GBM patients and presence in an analysis by Finlay. ⁴⁸⁵	The risk of bias in this evidence is high. Patient characteristics such as newly diagnosed astrocytoma or recurrent/progress ive tumors provide some prognostic information.	Results for overall survival are not applicable. Two studies with N ≥10 are available for HSCT and one for conventional therapy. Studies use several different time points to calculate overall survival. In additional different patient characteristics prohibit direct comparison of patients for all studies. However, newly diagnosed glioblastoma multiforme survival outcomes seem to be similar for both HSCT and conventional therapy.	The outcomes reported are direct. The comparisons are indirect as the evidence base utilizes two or more bodies of evidence to make comparisons.	The evidence is imprecise. Survival estimates between groups overlap.	Not applicable due to lack of obvious effect size.	The body of evidence on overall survival with HSCT compared to conventional therapy for the treatment of high- risk newly diagnosed glioblastoma multiforme was insufficient to draw conclusions.

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
For pediatric patients with high- risk recurrent or progressive glioblastoma multiforme what is the comparative effectiveness and harms of HSCT and conventional chemotherapy regarding overall survival? Outcome of interest is overall survival. The comparator was conventional therapy.	Nine studies examined overall survival for recurrent/progressive glioblastoma multiforme. One study was comparative with a historical cohort. The remaining studies were case-series. Survival data was available for 35 conventional therapy patients and 22 autologous transplant patients. Patients from Bertolone (N=76) ⁴⁹¹ were not included due to grouping of AA and GBM patients and presence in an analysis by Finlay ⁴⁸⁵ Patients from Gilheeney included 1 anaplastic astrocytoma patient, 1 oligoastrocytoma patient, and 2 GBM patients ⁴⁹²	The risk of bias in this evidence is high. Patient characteristics such as newly diagnosed glioblastoma multiforme or recurrent/progress ive tumors provide some prognostic information.	Results for overall survival are consistent One study with N ≥10 is available for HSCT and one for conventional therapy. Studies use several different time points to calculate overall survival. In additional different patient characteristics prohibit direct comparison of patients for all studies.	The outcomes reported are direct. The comparisons are indirect as the evidence base utilizes two or more bodies of evidence to make comparisons. The best evidence was comparative, but the comparison was made with historical controls entered in a previous protocol.	The evidence is imprecise.	Not applicable due to lack of obvious effect size.	The body of evidence on overall survival with single HSCT compared to conventional therapy for the treatment of high- risk recurrent glioblastoma multiforme is insufficient to draw conclusions.

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
Key Question For pediatric patients with newly diagnosed anaplastic, nonanaplastic, mixed, or unspecified ependymoma, what is the comparative effectiveness and harms of HSCT and conventional chemotherapy regarding overall survival? Outcome of interest is overall survival. The comparator was conventional therapy (CT).	Study Design Eight studies examined overall survival for newly diagnosed nonanaplastic, mixed, or unspecified ependymoma which includes WHO grade II tumors and WHO grade III tumors. Survival data was reported for 329 patients with ependymal tumors who underwent CT and 29 autologous transplant patients. Four studies examined anaplastic ependymoma exclusively. Survival data were reported for 39 patients with anaplastic ependymal tumors who underwent CT and 1 autologous HSCT patient. All were case-series, and no studies were comparative between HSCT and CT.	Risk of Bias The risk of bias in this evidence is high. Patient characteristics such as newly diagnosed astrocytoma or recurrent/progress ive tumors provide some prognostic information. Studies often mixed anaplastic with non- anaplastic tumors which has been found to be a predictor of patient prognosis in some studies. (Jaing, 2004)	Consistency Results for overall survival not applicable. One study with nonanaplastic, mixed, or unspecified ependymoma ≥10 is available for HSCT and 5 for CT. Two CT studies were available for anaplastic ependymoma alone. Studies use different timepoints to calculate OS. Different patient characteristics prohibit direct comparison of patients for all studies. Survival data for newly diagnosed ependymoma	Directness The outcomes reported are direct. The comparisons are indirect as the evidence base utilizes two or more bodies of evidence to make comparisons.	Precision The evidence is imprecise for newly diagnosed ependymoma and imprecise for anaplastic ependymoma patients.	Strength of Association Not applicable due to lack of obvious effect size.	Overall Grade/Conclusion The body of evidence on overall survival with single HSCT compared to conventional therapy for the treatment of newly diagnosed anaplastic, nonanaplastic, mixed, or unspecified ependymoma was insufficient to draw conclusions.
and conventional	patients.	Studies often	anaplastic	evidence to			ependymoma was
regarding overall	anaplastic ependymoma	with non-	alone.	comparisons.			conclusions.
survival?	exclusively. Survival data were reported for 39	anaplastic tumors which has been	Studies use different timepoints				
Outcome of	patients with anaplastic	found to be a	to calculate OS.				
survival.	underwent CT and 1	patient prognosis	characteristics				
The comparator	autologous HSCT patient.	in some studies.	prohibit direct				
therapy (CT).	studies were comparative	(Jaing, 2004)	patients for all				
	between HSCT and CT.		studies.				
			Survival data for				
			ependymoma				
			treated with HSCT				
			advantage for CT				
			over HSCT.				
			No comparison can				
			anaplastic disease.				

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
For pediatric patients with recurrent/progres sive ependymoma, what is the comparative effectiveness and harms of HSCT and conventional chemotherapy regarding overall survival? Outcome of interest is overall survival. The comparator was conventional therapy.	Four studies examined overall survival for recurrent/progressive non-anaplastic, mixed, or unspecified ependymoma which includes WHO grade II tumors and WHO grade III tumors. Survival data was reported for 23 patients with ependymal tumors who underwent autologous transplant. All studies were case-series, and no studies were comparative between HSCT and conventional therapy.	The risk of bias in this evidence is high. Patient characteristics such as newly diagnosed astrocytoma or recurrent/progress ive tumors provide some prognostic information. There were no recurrent ependymoma patients available for comparison in the conventional therapy group. Studies often mixed anaplastic with non- anaplastic tumors which has been found to be a predictor of patient prognosis in some studies. (Jaing, 2004)	Results for overall survival are not applicable. Studies use several different time points to calculate overall survival. In additional different patient characteristics prohibit direct comparison of patients for all studies. No comparison can be made for recurrent disease.	The outcomes reported are direct. The comparisons are indirect as the evidence base utilizes two or more bodies of evidence to make comparisons.	The evidence is imprecise.	Not applicable due to lack of obvious effect size.	The body of evidence on overall survival with single HSCT compared to conventional therapy for the treatment of recurrent ependymoma was insufficient to draw conclusions.

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
For pediatric patients with choroid plexus carcinoma, what is the comparative effectiveness and harms of HSCT and conventional chemotherapy regarding overall survival?	Five studies examined overall survival for choroid plexus tumors. Survival data were reported for 4 patients with choroid plexus carcinoma tumors who underwent autologous transplant and 64 conventional therapy patients.	The risk of bias in this evidence is high. Data is available for only four patients with this tumor type who underwent HSCT in either case reports or a component of a case-series.	Results for overall survival are consistent. Autologous stem cell transplant demonstrated no improvement on overall survival for the four transplanted patients with deaths between 5 and 25	The outcomes reported are direct. The comparisons are indirect as the evidence base utilizes two or more bodies of	The evidence is imprecise. Survival data for HSCT patients is available only from case reports and does not permit a precise measure of	Not applicable due to lack of obvious effect size.	The body of evidence on overall survival with single HSCT compared to conventional therapy for the treatment of choroid plexus carcinoma was insufficient to draw conclusions.
Outcome of interest is overall survival. The comparator was conventional therapy.			months, and HSCT studies reported 21.5-36% five-year OS.	evidence to make comparisons.	this outcome.		

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
For pediatric patients with other gliomas (oligodendroglio ma, pontine glioma, high- grade glioma, brainstem glioma, malignant glioma and other glioma [unspecified]), what is the comparative effectiveness and harms of HSCT and conventional chemotherapy regarding overall survival? Outcome of interest is overall survival. The comparator was conventional therapy.	Fifteen studies examined overall survival for other glial tumors. Survival data were reported for 2 oligodendroglioma, 40 pontine glioma, 1 ganglioma, and 10 other glioma [unspecified] patients who underwent autologous transplant and 33 brain stem glioma, 19 high-grade glioma, and 28 other glioma [unspecified] conventional therapy patients.	The risk of bias in this evidence is high. Tumors in the other glioma category were poorly characterized by histology and do not allow for direct comparison.	Results for overall survival are not applicable. Consistency cannot be assessed for these diseases as the data is limited to either a few case reports (oligodendroglioma) , have no comparative treatment (pontine glioma, ganglioma, brain stem glioma) or are not given a specific histology (other glioma)	Where outcomes were reported, the evidence is indirect. The evidence base utilizes two or more bodies of evidence to make comparisons or there.	The evidence is imprecise. There is uncertainty on whether HSCT is inferior, equivalent or superior to conventional chemotherap y for these conditions.	Not applicable due to lack of obvious effect size.	The body of evidence on overall survival with HSCT compared to conventional therapy for the treatment of other gliomas was insufficient to draw conclusions.

Table 81. Overall grade of strength of evidence for overall survival and the use of HSCT for the treatment of high-risk glial tumors (continued)

Results

Thirty-eight publications comprising 40 studies were included in this review. The total number of patients abstracted from the 39 studies was 1,012: 215 patients received HSCT, whereas 797 patients received conventional chemotherapy. Study selection criteria are shown in Table 82.

Table 83 shows the study design and population. Of the included publications for HSCT, sixteen were case series, ^{367, 488, 492-504} two were cohort studies, ^{485, 490} and one was a Phase II trial. ⁵⁰⁵ One study, by Finlay et al. ⁴⁸⁵, compared myeloablative chemotherapy with autologous stemcell transplant to conventional therapy and used a group of historic controls from a trial by the children's cancer group (CCG-945). All studies were published after 1995 with treatment periods ranging from 1986-2005. Four studies were conducted in France^{488, 493, 494, 497}, two in Italy^{495, 502}, one in the U.K. ⁵⁰⁴, and twelve in the U.S. ^{132, 367, 485, 490, 496, 498-501, 503, 506} A total of 215 patients were treated with autologous bone marrow transplantation; Two-hundred and two of these were given single autologous stem-cell transplants while 11 patients received tandem or sequential transplant. ^{367, 504} Due to the small number of patients in each tumor histology (AA 4, GBM 6, BSG 2, EPD 2, CPC 1), and similar survival outcomes to single autologous transplant, these patients were not analyzed separately. Stem cell source varied by study. Six studies treated patients with peripheral blood stem cells, ^{367, 488, 490, 500, 502, 503} ten studies treated patients with bone marrow transplant, ^{132, 485, 493-496, 499, 501, 504, 506} and two studies used multiple sources. ^{497, 498} Eight studies investigated patients with newly diagnosed high-risk disease^{488, 490, 494, 495, 495, 495, 495, 500, 503, ⁵⁰⁴ and the remaining studies contained patients who had recurrent or relapsed disease. ⁴⁹²}

Study Design	Population	Intervention	Comparators	Outcomes	Followup	Setting
Any study design	Pediatric patients (0- 21-yr) with high-risk or relapsed/refractory disease	Single Auto HSCT Tandem Auto HSCT	Chemotherapy +/- RT Chemotherapy +/- RT	OS; EFS (DFS; PFS); long-term adverse events; QOL	All durations of followup	Inpatient for HSCT; In or outpatient for conventional chemotherapy

Table 82. Study selection criteria: Glial tumors

Auto = autologous; DFS = disease-free survival; EFS = event-free survival; HSCT = hematopoietic stem-cell transplant; OS = overall survival; PFS = progression-free survival; QOL = quality of life

Conventional therapy included 14 case series, ^{132, 488, 507-519} one cohort study, ⁴⁸⁵ two Phase II trials, ^{505, 520} and four clinical trials. ^{489, 491, 521, 522} Case reports were excluded as comparators. All studies were published after 1995 with treatment periods ranging from 1986-2005. Four studies were conducted in France^{488, 508, 510, 511}, two in Germany^{520, 522}, Italy⁵⁰⁹, Taiwan⁵¹⁶, Turkey⁵⁰⁷, and the U.K. ⁵¹², and ten in the U.S. ^{485, 489, 491, 505, 513-515, 517, 518, 521} A total of 797 patients were treated with conventional chemotherapy; the vast majority of these patients were given chemotherapy alone (N=458; 57 percent) in 16 studies. Patients received combination radiotherapy alone (N=126; 16 percent). Twelve studies investigated newly diagnosed high-risk patients (60 percent) and the remaining studies contained patients who had recurrent or relapsed disease. Previous treatments included a mix of excision, chemotherapy, and radiotherapy.

All studies were specific to the pediatric age group, with age primarily reported as age at diagnosis or transplant; only one study⁵²⁰ lacked information about participant's median age. Three studies^{495, 499, 517} did not provide information on patient age. Median ages ranged from

under one year of age to 18 years of age. Five studies reported no patient gender^{132, 492, 504, 510, 520}, but among the remaining studies with five or more patients gender was distributed equally. Studies included patients of diverse histology:

Nineteen HSCT studies (N=215):

- Astrocytoma 31 (14.4 percent)
- Choroid plexus tumor 4 (1.9 percent)
- Ependymoma 70 (32.6 percent)
- High-grade glioma 2 (0.93 percent)
- Glioblastoma multiforme 56 (26.0 percent)
- Oligodendroglioma 4 (1.9 percent)
- Glioma [unspecified] 1 (0.47 percent)
- Pontine glioma [unspecified] 40 (18.6 percent)
- Ganglioma 1 (0.47 percent)

Twenty-one conventional treatment studies (N=797):

- Astroblastoma 1 (0.1 percent)
- Astrocytoma 109 (13.7 percent)
- Brainstem glioma 54 (6.8 percent)
- Choroid plexus tumor 69 (8.6 percent)
- Ependymoma 435 (54.6 percent)
- Ganglioma 1 (0.1 percent)
- Glioblastoma multiforme 80 (10 percent)
- Glioma [unspecified] 14 (1.8 percent)
- Oligodendroglioma 2 (0.3 percent)
- Other 9 (1.1 percent)
- Pontine glioma [unspecified] 0 (0 percent)

Study	Design	Median Age (mo.)	Range	Male (%)	Disease Stage/Category	Histology [Site]%	HSCT (N)	Comparator (N)	Treatment Period
Finlay, 2008 ⁴⁸⁵	Cohort	133.3	2.4-250	56	NR	GBM 17 (63) AA 10 (37)	27	Not applicable	NR
Shih, 2008 ¹³²	Case- Series	89	5-199	NR	NR	EPD 1(20) AA 2(40) GBM 2(40)	5	Not applicable	1989-2004
Zacharoulis, 2007 ⁴⁹⁰	Cohort	25	8-107	62	24 M0 (83) 1 M1 (3) 0 M2 4 M3 (14)	EPD: Posterior fossa 22(76) supratentorial 7 (24)	29	Not applicable	1991-1997 (Head Start 1) 1997 - 2002 (Head Start 2)
Thorarins- dottir, 2007 ⁵⁰³	Case- Series	ODG 27 months, Ganglioma 25 months, Anaplastic glioma 18 months , EPD 6 months	Anaplastic glioma: 9- 29	ODG 100 Ganglioma 100 Anaplastic glioma 67 EPD 0	All WHO grade III	ODG right frontal 1 (16) Ganglioma temporal 1 (16) Anaplastic glioma 1 c- spine 1 (16) BSG 1 (16) EPD IV ventricle 1 (16)	6	Not applicable	1998 - 2005
Massimino, 2005 ⁵⁰²	Case- Series	120	42-228	33	NR, All high-grade	GBM 10 (48), AA 9(42) Anaplastic ODG 2 (10) spine 2 (10) Posterior fossa 2(10) Supratentorial 17(80)	21	Not applicable	1996- 2003
Ozkaynak, 2004 ³⁶⁷	Case- Series	132	54-216	50	3 progressive (50) 3 recurrent (50)	AA 2 (33) GBM 1 (17) BSG 2 (33) EPD 1 (17)	6	Not applicable	1995-2002
Bouffet, 1997 ⁴⁹³	Case- Series	84	34-204	42	Diffuse pontine glial tumor	At least 2/3rd of tumor had to be in the pons	24	Not applicable	March 1990-?
Grovas, 1999 ⁴⁹⁸	Case- Series	144	60-216	63	NR, patients with neuraxis dissemination excluded	GBM 11	11	Not applicable	1993-1995
Jakacki, 1999 ⁵⁰⁰	Case- Series	86	37-151	36	High grade glial tumor or a diffuse pontine tumor	GBM 3 (27), AA 2(18) Pons 6 (55)	11	Not applicable	1997 - 1998
Mason, 1998 ⁵⁰⁶	PII trial	22	5-144	53	9 low-grade EPD (60) 6 anaplastic (40)	posterior fossa 13 (87) supratentorial 2 (13)	15	Not applicable	1986 - 1993

Table 83. Study characteristics and population: Glial tumors

Study	Design	Median Age (mo.)	Range	Male (%)	Disease Stage/Category	Histology [Site]%	HSCT (N)	Comparator (N)	Treatment Period
Dunkel, 1998 ⁴⁹⁶	Case- Series	95	42-179	70	10 High-grade glial malignancies	PON 10	10	Not applicable	NR
Gururangan 1998 ⁴⁹⁹	Case- series	AA 23mo CPC 19mo EPD 18mo GBM 24, 4, 11, and 58mo	4-58	AA 0 CPC 100 EPD 0 GBM 50	All tumors were recurrent	EPD 1 GBM 4 AA 1 CPC 1	7	Not applicable	1989-1996
Berger, 1998 ⁴⁸⁸	Case- Series	27.5	22-33	0	Newly diagnosed 1 metastatic 1 unknown progression	CPC 2	2	Not applicable	1984-1995
Busca, 1997 ⁴⁹⁵	Case- Series	132 (36-192) years for total group of 11 patients,	NR	46	1 GBM patient was newly diagnosed 5 patients were relapsed.	AA 1 (16) EPD 2 (33) GBM 2(33) ODG 1 (16)	6	Not applicable	1991 - 1996
Bouffet, 1999 ^{494 493}	Case- Series	72	36-168	60	All high-grade glioma	parieto-occipital 1 (20) BSG 3 (60) thalamus 1 (20)	5	Not applicable	NR
Yule, 1997 ⁵⁰⁴	Case- Series	120	12-168	NR	NR	anaplastic EPD 1(20%) CPC 1 (20) recurrent GBM 1(20) GBM 1 (20) suprasellar GBM 1(20)	5	Not applicable	1993-1995
Grill, 1996 ⁴⁹⁷	Case- Series	36	6-180	50	EPD, 2 patients had tumor cells in CSF 3 WHO low-grade tumors 13 WHO high-grade tumors	EPD: Supratentorial 6 (38) Infratentorial 10(62)	16	Not applicable	1988 - 1994

Table 83. Study characteristics and population: Glial tumors (continued)

Study	Design	Median Age (mo.)	Range	Male (%)	Disease Stage/Category	Histology [Site]%	HSCT (N)	Comparator (N)	Treatment Period
Mahoney, 1996 ⁵⁰¹	Case- Series	AA 144 EPD 60 GBM 186 BSG 60	AA: 96- 192 EPD: 36-90 GBM:186 BSG: 60	AA 100 EP 33 GBM 100 BSG 0		AA 2 (29) EPD 3(43) GBM 1 (14) BSG 1 (14)	6	Not applicable	1990 - 1993
Gilheeney, 2010 ⁴⁹²	Case- Series	AA 98 GBM 139	AA 89-107 GBM 53- 226	NR	NR	NR	4	Not applicable	1999 - 2002
Finlay, 2008 ⁴⁸⁵	Cohort	133.3	1.2-232	52	NR	GBM 27 (48) AA 29(52)	Not applicable	56	1985-1990
Grundy, 2010 ⁵¹³	Case- Series	BSG 30 CPC 10 High Grade Glioma 22	BSG: 8.2- 36 CPC: 4-34 HGG 4-37	Glioma 69, CPC 93	HGG: AA 7 1 Astroblastoma 2 Anaplastic ODGODG 5 Glioblastoma 3 unknown Diffuse pontine glioma: 1 diffuse AST 1 glioblastoma 1 unclassified 4 Inoperable	HGG 18(45) PON 7 (18) CPC 15(38) HGG metastatic 2 (11) HGG in posterior fossa 2 (11) HGG in supratentorial 17 (89) BSG metastatic 0 BSG 7 (100) CPC metastatic 4 (27) CPC posterior fossa 5(33) CPC supratentorial 10(77)	Not applicable	40	1993 - 2003
Conter, 2009 ⁵⁰⁸	Case- Series	103	60-204	67	EPD, 13 Grade II (57) 10 Grade III (43)	Supratentorial 4 (17) Infratentorial 20 (83)	Not applicable	24	1996 - 2002

Table 83. Study characteristics and population: Glial tumors (continued)

Study	Design	Median Age (mo.)	Range	Male (%)	Disease Stage/Category	Histology [Site]%	HSCT (N)	Comparator (N)	Treatment Period
Wrede, 2009 ⁵²²	RCT	27.6	4-205	50	Histologically confirmed CPC	CPC 29 Metastatic 5 (17) Lateral Ventricle 30 (88) Fourth Ventricle 4(12)	Not applicable	34	2000-2008
Grundy 2007 ⁵¹²	Case- series	Median Non- metastatic 23.16 Metastatic 16.32	Non- Metastatic: .6-38 Metastatic: 2.88-27	65	All Newly Diagnosed 9 metastatic (10)	89 EPD Metastatic 9 (10) Nonmetastatic 80 (90)	Not applicable	89	1992 - 2003
De Sio, 2006 ⁵⁰⁹	Case- Series	101	50-235	64	Recurrent/progressive histologically confirmed (except BSG)	EPD 2 (14) AA 3 (21) BSG 8 (57) GBM 1 (7)	Not applicable	14	1998 - 2004
Korones, 2006 ⁵¹⁸	Case- Series	108	60-252	77	NR	Glioblastoma 5 (56) AA 2 (22) BSG 2(22)	Not applicable	9	2002 - 2003
Macdonald, 2005 ⁵²¹	RCT	144	36- 240	48	All patients had histologic verification of high-grade AST	AA 30 (39) GBM variant 40 (53) 6 Other 6 (8) Supratentorial tumor 66 (86.8) Infratentorial tumor 10 (13.2) patients had metastatic disease 5 (7)	Not applicable	76	1993-1998
Jaing, 2004 ⁵¹⁶	Case- Series	79	8 - 216	58	EPD, 22 Grade II (47) 24 Grade III (53)	Supratentorial 15 (35) Infratentorial27 (65)	Not applicable	46	1985-2002

Table 83. Study characteristics and population: Glial tumors (continued)

Study	Design	Median Age (mo.)	Range	Male (%)	Disease Stage/Category	Histology [Site]%	HSCT (N)	Comparator (N)	Treatment Period
Bertolone, 2003 ⁴⁹¹	RCT	48	<12 - 192	58	NR	AA 11 (61) EPD 3 (17) GBM 2 (11) Anaplastic mixed glioma 1 (6) anaplastic ganglioglioma 1 (6)	Not applicable	18	1985 - 1990
Merchant, 2002 ⁵⁰⁵	PII trial	36	13.2-275	50	Histologically confirmed EPD w/ no current radio or chemotherapy	differentiated EPD 35(70) anaplastic EPD 19(30)	Not applicable	54	June 1997 - ?
Grill, 2001 ⁵¹¹	Case- Series	27	5-62	55	56 of patients had a high grade tumor (82) 12 had a low-grade tumor (18)	EPD 73 (100)	Not applicable	73	1990 - 1998
Hurwitz, 2001 ⁵¹⁵	Case- Series	92.4	4-228	56	Recurrent or progressive disease	AST 4 (9) EPD 13 (29) Malignant Glioma 13 (29) BSG 15(33)	Not applicable	45	1993 - 1998
Horn, 1999 ⁵¹⁴	Case- Series	52	8-240	60	EPD, 61 M0 (85) 11 M1-M3 (15)	EPD: WHO II grade 2 51 (61) WHO II grade 3 31 (37) 1 missing Infratentorial 64 (77) Supratentorial 19 (23)	Not applicable	83	1987-1991
Kobrinsky, 1999 ⁵¹⁷	Case- Series	NR	NR	55	NR	High grade AST 20 (48) BSG 22 (52)	Not applicable	42	1988 - 1992

Table 83. Study characteristics and population: Glial tumors (continued)

Study	Design	Median Age (mo.)	Range	Male (%)	Disease Stage/Category	Histology [Site]%	HSCT (N)	Comparator (N)	Treatment Period
Doireau, 1999 ⁵¹⁰	Case- Series	63	3-132	NR	Relapsed or unresectable intramedullar gliomas	Anaplastic oligo-AST 1 (17) OligoAST 3 (50) AA 1 (17) AST otherwise not specified 1 (17)	Not applicable	6	1992-1998
Robertson, 1998 ⁴⁸⁹	RCT	84	24-208	53	12 Anaplastic EPD (38)	posterior fossa EPD 21 (66) supratentorial EPD 11 (34)	Not applicable	32	1986 - 1992
Kuhl, 1998 ⁵²⁰	PII trial	NR	36-192	66	19 anaplastic (90) 29% of patients had microscopic tumor cells in CSF	EPD 21	Not applicable	21	1987 - 1991
Berger, 1998 ⁴⁸⁸	Case- Series	57.5	4-111	55	Newly diagnosed CPC	metastatic 3 (15) nonmetastatic 4 (20) unknown 13 (65)	Not applicable	20	1984-1995
White, 1998 ⁵¹⁹	Case- Series	20	3-47	NR	No documented disseminated disease at diagnosis	EPD 14	Not applicable	14	1991 - 1995
Ayan, 1995 ⁵⁰⁷	Case- Series	150	60 - 180	75	4 Anaplastic (100)	frontal lobe EPD 1(25) parietal-temporal- occipital lobe EPD1 (25) Multiple parenchymal meningeal lesion EPD 1 (25) Temporoparietal lobe EPD 1 (25) CSF cytology positive 1 (25)	Not applicable	4	1990 - 1991

Table 83. Study characteristics and population: Glial tumors (continued)

BMT = bone marrow transplant; BSG = brainstem glioma; CPC = choroid plexus carcinoma; EPD = ependymoma; GBM = glioblastoma multiforme; GLI = glioma; HGG = high-grade glioma; M = male; NR = not reported; OAST = oligoAST; ODG = oligodendroglioma; PBSCT = peripheral blood stem cell transplant; PON = Pontine glioma;

RCT = randomized clinical trial

Induction regimens varied across and within studies (i.e., different chemotherapeutic agents and different (cumulative) dosages) and consisted of multiple cycles of chemotherapy and/or radiation and/or surgery. Conditioning regimens also varied. The most common regimens included thiotepa, etoposide, carboplatin, cyclophosphamide (with or without mesna), busulfan and carmustine (either alone or in combination with radiation therapy or additional drugs). Table 84 shows the pediatric outcomes that were reported across the 39 included studies.

Overall Survival

Data on overall survival were reported in all but three studies,^{505, 515, 518} and calculated from the raw data from the additional studies (Table 84). Survival data are presented by five histologic categories (Table 85). Individual studies varied in their method for calculating overall survival.

categories (Table 85). Individual studies varied in their method for calculating overall survival. Fourteen studies examined overall survival for astrocytic gliomas.^{123, 132, 367, 485, 491, 492, 495, 500-502, 509, 510, 517, 518} Survival data were reported for 20 patients with astrocytic tumors who underwent autologous transplant and 106 conventional therapy patients. Fourteen studies examined overall survival for glioblastoma multiforme.^{123, 132, 367, 485, 491, 492, 495, 498, 500-502, 504, 509, 518}

⁵¹⁸ Survival data was reported for 45 patients with glioblastoma multiforme who underwent autologous transplant and 92 conventional therapy patients. Of the noncomparative studies reporting yearly OS, none had HSCT treatment. OS at 5 years ranged from 0 percent in recurrent patients to 25 percent for newly diagnosed patients. One study grouped OS of newly diagnosed AA and GBM patients and stratified by noninfant or infant status. These patients had a 5-year OS of 36 ± 13 for noninfants and 25 ± 15 for infants.

Finlay et al.⁴⁸⁵, compared a historic chemotherapy cohort (CCG-945) to astrocytoma and GBM patients receiving HSCT. This study provided 5-year recurrent HSCT and conventional therapy OS estimates of 40 percent and 4 percent for astrocytoma and 12 percent and 0 percent for glioblastoma multiforme respectively. The OS was statistically significantly better for HSCT compared to chemotherapy at p=0.010 and retained this significance when stratified by tumor histology. The authors also found evidence that degree of surgical debulking impacted survival. OS estimates stratified by treatment and degree of debulking minimized the treatment effect and yielding a nonsignificant survival difference of p=0.39 due to the poor prognosis of patients with bulky tumor in both treatment types. However, when the authors looked at HSCT versus chemotherapy treatment among only surgically debulked patients the HSCT patients had a better survival (p=0.017).

Three noncomparative studies reported yearly GBM OS with a 5-year OS estimate for autologous transplant of newly diagnosed GBM of 0-22 percent and newly diagnosed conventional therapy of 22 percent.^{498, 502, 521} Data comparing HSCT to conventional therapy was provided by Finlay et al.⁴⁸⁵ for recurrent/progressive GBM and AA showed an increase in survival for HSCT. No comparison was made for newly diagnosed AA due to a lack of HSCT studies. Data for newly diagnosed GBM seems to show a similarly poor prognosis for both HSCT and conventional therapy patients.

Seventeen studies examined overall survival for ependymoma^{132, 367, 489, 490, 495, 497, 501, 504, 507-509, 511-514, 516, 520} Survival data was reported for 71 patients with ependymal tumors who underwent transplant and 442 conventional therapy patients. No studies were comparative between HSCT and conventional therapy. Five studies reported overall survival with a 5 year overall survival estimates for autologous transplant of recurrent tumor of 10 percent and newly diagnosed of 38 percent.^{367, 490, 495, 497, 504} Conventional therapy did not include recurrent disease and found estimates of 35.2 percent to 64 percent for newly diagnosed anaplastic ependymoma

with newly diagnosed nonanaplastic, mixed or unspecified ependymoma estimates of 52-74 percent.^{489, 508, 511, 513, 514, 516, 520} One study stratified by metastatic/nonmetastatic disease and obtained a 5-year OS of 33 percent and 59 percent respectively.⁵¹² For patients with newly diagnosed ependymoma, patients treated with HSCT appear to have inferior overall survival when compared to those treated with conventional therapy.

Sixty-four patients with choroid plexus carcinoma were in three conventional therapy studies and four patients with HSCT across three studies reported survival.^{488, 499, 504, 513, 522} All HSCT patients died between five and 25 months. A conventional therapy study of 29 patients had survival of 35 percent at last followup (median 25 months, range 3-85 months). Two studies reported 5-year OS of 21.5 and 36 percent.

Event-free Survival

Data on event-free survival can be found in Appendix D.

Author, Year	OS	EFS (DFS, PFS)	Quality of Life	Treatment- Related Mortality	Secondary Malignancies	Other Adverse Effects
Finlay, 2008 ⁴⁸⁵	\checkmark	\checkmark	NR	\checkmark	NR	NR
Shih, 2008 ¹³²	\checkmark	\checkmark	NR	NR	NR	NR
Zacharoulis, 2007 ⁴⁹⁰	\checkmark	\checkmark	NR	\checkmark	NR	\checkmark
Thorarinsdottir, 2007 ⁵⁰³	\checkmark	\checkmark	NR	NR	NR	\checkmark
Massimino, 2005 ⁵⁰²	\checkmark	\checkmark	NR	NR	NR	NR
Ozkaynak, 2004 ³⁶⁷	\checkmark	NR	NR	NR	NR	NR
Bouffet, 1997 ⁴⁹³	\checkmark	\checkmark	NR	\checkmark	NR	\checkmark
Grovas, 1999 ⁴⁹⁸	\checkmark	\checkmark	NR	NR	\checkmark	\checkmark
Jakacki, 1999 ⁵⁰⁰	\checkmark	\checkmark	NR	NR	NR	\checkmark
Mason, 1998 ⁵⁰⁶	\checkmark	\checkmark	NR	\checkmark	NR	NR
Dunkel, 1998 ⁴⁹⁶	\checkmark	NR	NR	NR	NR	NR
Gururangan, 1998 ⁴⁹⁹	\checkmark	\checkmark	NR	\checkmark	NR	NR
Berger, 1998 ⁴⁸⁸	\checkmark	NR	NR	NR	NR	NR
Busca, 1997 ⁴⁹⁵	\checkmark	\checkmark	NR	NR	NR	NR
Bouffet, 1999 ⁴⁹⁴	\checkmark	NR	NR	NR	NR	NR
Yule, 1997 ⁵⁰⁴	\checkmark	NR	NR	NR	NR	NR
Grill, 1996 ⁴⁹⁷	\checkmark	\checkmark	NR	\checkmark	NR	NR
Mahoney, 1996 ⁵⁰¹	\checkmark	\checkmark	NR	\checkmark	NR	\checkmark
Grundy, 2010 ⁵¹³	\checkmark	\checkmark	NR	NR	NR	NR
Conter, 2009 ⁵⁰⁸	\checkmark	\checkmark	NR	NR	NR	NR
Wrede, 2009 ⁵²²	\checkmark	\checkmark	NR	NR	NR	NR
Grundy 2007 ⁵¹²	\checkmark	\checkmark	NR	\checkmark	NR	\checkmark
De Sio, 2006 ⁵⁰⁹	\checkmark	\checkmark	NR	NR	NR	NR
Korones, 2006 ⁵¹⁸	NR	NR	NR	NR	NR	NR
Macdonald, 2005 ⁵²¹	\checkmark	\checkmark	NR	NR	NR	\checkmark
Jaing, 2004 ⁵¹⁶			NR	NR	NR	NR
Bertolone, 2003 ⁴⁹¹	\checkmark	\checkmark	NR	NR	NR	
Merchant, 2002 ⁵⁰⁵	NR	\checkmark	NR	NR	NR	NR
Grill, 2001 ⁵¹¹			NR	NR	NR	NR

Table 84. Outcomes reported: Glial tumors

Table 84. Outcomes reported: Gilai tumors (continued)											
Author, Year	os	EFS (DFS, PFS)	Quality of Life	Treatment- Related Mortality	Secondary Malignancies	Other Adverse Effects					
Hurwitz, 2001 ⁵¹⁵	NR	\checkmark	NR	NR	NR	NR					
Horn, 1999 ⁵¹⁴	\checkmark	\checkmark	NR	NR	NR	NR					
Kobrinsky, 1999 ⁵¹⁷	\checkmark	NR	NR	NR	NR	NR					
Doireau, 1999 ⁵¹⁰	\checkmark	\checkmark	NR	NR	NR	NR					
Robertson, 1998 ⁴⁸⁹	\checkmark	\checkmark	NR	NR	NR	NR					
Kuhl, 1998 ⁵²⁰	\checkmark	\checkmark	NR	NR	NR	NR					
Berger, 1998 ⁴⁸⁸	\checkmark	NR	NR	NR	NR	NR					
White, 1998 ⁵¹⁹	\checkmark	NR	NR	NR	NR	NR					
Ayan, 1995 ⁵⁰⁷	\checkmark	\checkmark	NR	NR	NR	NR					
Gilheeney, 2010 ⁴⁹²		NR	NR		NR	NR					

Table 84. Outcomes reported: Glial tumors (continued)
Indication	Outcome	Intervention Single (%; ± 95% CI)	Comparator Chemo (%; ± 95% Cl)	P Value	Study
		~41 (N=10)	~26 (N=29)	Chemo vs. ABMR unstratified comparison of survival p=.0018 HR 1.9 (1.1-3.1) Chemo versus ABMR comparison stratified by histology: p=.010 Chemo/nonbulky versus ABMR/non-bulky unstratified exact comparison: p=0.017 [hazard ratio=9.1 (95% confidence interval 1.7–47.2) Minimal residual disease status (<3 cm tumor diameter) at time of myeloablative chemotherapy p=.003	Finlay, 2008 ⁴⁸⁵
		Not applicable	2 AA patients dead at median 7.1 mo (n=2)	Not reported	Shih, 2008 ¹³²
	1 year	Not applicable	3 AA dead at median 5mo (4- 10mo) (n=3)	Not reported	De Sio, 2006 ⁵⁰⁹
Astrocytoma		Not applicable	1 patient DOD at 4 mo (50%), one patient alive with disease progression at 10+ months (n=2)	Not reported	Korones, 2006 ⁵¹⁸
		Not applicable	~46 (n=30)	Not reported	Macdonald, 2005 ⁵²¹
		Other Glioma ~91 (Anaplastic astrocytoma (N=9) and anaplastic oligodendroglio ma (N=2)) (N=11)	Not applicable	OS for glioblastoma multiforme compared to other histotypes (AA and ODG) were significantly worse p=.004	Massimino, 2005 ⁵⁰²
			Not applicable	~83 GBM and AA Non-Infants (n=16) ~52 GBM and AA Infants (n=6)	Not reported
		Not applicable	28±10% (n=35)	Not reported	Kobrinsky, 1999 ⁵¹⁷
		2 AA patients dead at 7 and 9 mo (N=2)	Not applicable	Not reported	Jakacki, 1999 ⁵⁰⁰

Table 85. Overall survival for single auto HSCT and comparison (conventional chemotherapy +/- radiation) groups: Glial tumors

Indication	Outcome	Intervention Single (%; ± 95% CI)	Comparator Chemo (%; ± 95% CI)	P Value	Study
		40±14% (N=10)	7±4% (N=29)	Chemo vs. ABMR unstratified comparison of survival p=.0018 HR 1.9 (1.1-3.1) Chemo versus ABMR comparison stratified by histology: p=.010 Chemo/nonbulky versus ABMR/non-bulky unstratified exact comparison: p=0.017 [hazard ratio=9.1 (95% confidence interval 1.7–47.2) Minimal residual disease status (<3 cm tumor diameter) at time of myeloablative chemotherapy p=.003	Finlay, 2008 ⁴⁸⁵
		Not applicable	~25 (N=30)	Not reported	Macdonald, 2005 ⁵²¹
Astrocytoma	3 Year	Other Glioma ~73 (Anaplastic astrocytoma (N=9) and anaplastic oligodendroglio ma (N=2)) (N=11)	Not applicable	OS for glioblastoma multiforme compared to other histotypes (AA and ODG) were significantly worse P=.004	Massimino, 2005 ⁵⁰²
		Not applicable	~57 GBM and AA Non-Infants (N=16) ~25 GBM and AA Infants (N=6)	Not reported	Bertolone, 2003 ⁴⁹¹
		Not applicable	~5 (N=35)	Not reported	Kobrinsky, 1999 ⁵¹⁷
		Not applicable	3 OA patients alive median 3 yr.	Not reported	Doireau, 1999 ⁵¹⁰
		1 patient died at 15 mo (N=1)	Not applicable	Not reported	Busca, 1997 ⁴⁹⁵

Indication	Outcome	Intervention Single (%; ± 95% Cl)	Comparator Chemo (%; ± 95% CI)	P Value	Study
		40±14% (N=10)	0-4% (N=29)	Chemo vs. ABMR unstratified comparison of survival p=.0018 HR 1.9 (1.1-3.1) Chemo versus ABMR comparison stratified by histology: p=.010 Chemo/nonbulky vs. ABMR/non-bulky unstratified exact comparison: p=0.017 [hazard ratio=9.1 (95% confidence interval 1.7–47.2) Minimal residual disease status (<3 cm tumor diameter) at time of myeloablative chemotherapy P=.003	Finlay, 2008 ⁴⁸⁵
		Not applicable	25±8% (N=30)	Not reported	Macdonald, 2005 ⁵²¹
Astrocytoma	5 Year	Other glioma ~73 (Anaplastic astrocytoma (N=9) and AOA (N=2)) (N=11)	Not applicable	OS for GBM compared to other histotypes (AA and ODG) were worse p=.004	Massimino, 2005 ⁵⁰²
		2 Anaplastic astrocytoma pts. alive with stable disease at follow up of 41 and 80 mo (N=2)	Not applicable	Not reported	Ozkaynak, 2004 ³⁶⁷
		Not applicable	36±13 GBM and AA Non-Infants (N=11) 25±15 GBM and AA Infants (N=6)	Not reported	Bertolone, 2003 ⁴⁹¹
		Not applicable	0% (N=35)	Not reported	Kobrinsky, 1999 ⁵¹⁷

Indication	Outcome	Intervention Single (%; ± 95% CI)	Comparator Chemo (%; ± 95% CI)	P Value	Study
		Not applicable	 1 AA patient died (car accident) before last FU. 1 AOA patient alive at 5.5 year. 1 Astrocytoma patient with unspecified disease alive at 5.5 years (N=6) 	Not reported	Doireau, 1999 ⁵¹⁰
		2 AA patients died at 1 mo and 4 mo (N=2)	Not applicable	Not reported	Mahoney, 1996 ⁵⁰¹
Astrocytoma	5 Year	50 (N=2) 1 AA patient alive with residual disease at 7.7 years 1 oligoastrocytom a patient DOT at 1 mo	Not applicable	Not reported	Gilheeney, 2010 ⁴⁹²
Glioblastoma multiforme	1 Year	~43% (N=17)	~22% (N=27)	Chemo vs. ABMR unstratified comparison of survival p=.0018 HR 1.9 (1.1-3.1) Chemo versus ABMR comparison stratified by histology: p=.010 Chemo/nonbulky versus ABMR/non-bulky unstratified exact comparison: p=0.017 [hazard ratio=9.1 (95% confidence interval 1.7–47.2) Minimal residual disease status (<3 cm tumor diameter) at time of myeloablative chemotherapy p=.003	Finlay, 2008 ⁴⁸⁵
		Not applicable	1 patient dead at 4 mo (N=2)	Not reported	Shih, 2008 ¹³²
		Not applicable	1 patient AWD at 12 mo (N=1)	Not reported	De Sio, 2006 ⁵⁰⁹
		Not applicable	57% (n=7)	Not reported	Korones, 2006 ⁵¹⁸
		Not applicable	~45 (N=40)	Not reported	Macdonald, 2005 ⁵²¹

Indication	Outcome	Intervention Single (%; ± 95% CI)	Comparator Chemo (%; ± 95% Cl)	P Value	Study
		~90% (N=10)	Not applicable	OS for GBM compared to other histotypes (AA and ODG) were worse p=.004	Massimino, 2005 ⁵⁰²
		1 progressive patient DOD at 1 mo (N=1)	Not applicable	Not reported	Ozkaynak, 2004 ³⁶⁷
		Not applicable	~83 GBM and AA Non-Infants (N=16) ~52 GBM and AA Infants (N=6)	Not reported	Bertolone, 2003 ⁴⁹¹
		73±13% (N=11)	Not applicable	Not reported	Grovas, 1999 ⁴⁹⁸
Glioblastoma multiforme	1 Year	1 patient DOD at 6 months, 1 patient had stable disease at last 12 mo FU, 1 patient died of treatment toxicity (N=3)	Not applicable	Not reported	Yule, 1997 ⁵⁰⁴
		1 patient dead of disease at 7 mo (N=1)	Not applicable	Not reported	Mahoney, 1996 ⁵⁰¹
		2 GBM patients DOD at 6 mo and 10 mo (N=2)	Not applicable	Not reported	Gilheeney, 2010 ⁴⁹²

Indication	Outcome	Intervention Single (%; ± 95% CI)	Comparator Chemo (%; ± 95% CI)	P Value	Study
	3 Year	12±6% (N=17)	0% (N=27)	Chemo vs. ABMR unstratified comparison of survival p=.0018 HR 1.9 (1.1-3.1) Chemo versus ABMR comparison stratified by histology: p=.010 Chemo/nonbulky versus ABMR/non-bulky unstratified exact comparison: p=0.017 [hazard ratio=9.1 (95% confidence interval 1.7–47.2) Minimal residual disease status (<3 cm tumor diameter) at time of myeloablative chemotherapy p=.003	Finlay, 2008 ⁴⁸⁵
		Not applicable	~25%(N=40)	Not reported	Macdonald, 2005 ⁵²¹
Glioblastoma multiforme		~30% (N=10)	Not applicable	OS for glioblastoma multiforme compared to other histotypes (AA and ODG) were significantly worse p=.004	Massimino, 2005 ⁵⁰²
		Not applicable	~57 GBM and AA Non-Infants (N=16) ~25 GBM and AA Infants (N=6)	Not reported	Bertolone, 2003 ⁴⁹¹
		~35% (N=11)	Not applicable	Not reported	Grovas, 1999 ⁴⁹⁸
		3 pts DOD at median 15 mo (6 – 19 mo) (N=3)	Not applicable	Not reported	Jakacki, 1999 ⁵⁰⁰
		1 pt alive and progression free at final FU (N=1)	Not applicable	Not reported	Busca, 1997 ⁴⁹⁵

Indication	Outcome	Intervention Single (%; ± 95% Cl)	Comparator Chemo (%; ± 95% Cl)	P Value	Study
Glioblastoma	5 Year	12±6% (N=17)	0% (N=27)	Chemo vs. ABMR unstratified comparison of survival p=.0018 HR 1.9 (1.1-3.1) Chemo versus ABMR comparison stratified by histology: p=.010 Chemo/nonbulky versus ABMR/non-bulky unstratified exact comparison: p=0.017 [hazard ratio=9.1 (95% confidence interval 1.7–47.2) Minimal residual disease status (<3 cm tumor diameter) at time of myeloablative chemotherapy p=.003	Finlay, 2008 ⁴⁸⁵
		Not applicable	1 patients dead at 104 mo (N=2)	Not reported	Shih, 2008 ¹³²
		Not applicable	22±7 (N=40)	Not reported	Macdonald, 2005 ⁵²¹
		0% (N=10)	Not applicable	OS for glioblastoma multiforme compared to other histotypes (AA and ODG) were significantly worse p=.004	Massimino, 2005 ⁵⁰²
			Not applicable	36±13 GBM and AA Non-Infants (N=16) 25±15 GBM and AA Infants (N=6)	Not reported
		~25 (N=11)	Not applicable	Not reported	Grovas, 1999 ⁴⁹⁸
		Not applicable	100% (N=12)	Not reported	Robertson, 1998 ⁴⁸⁹
Anaplastic ependymoma	1 Year	1 anaplastic ependymoma patient with tandem autologous treatment DOD at 15 mo (N=1)	Not applicable	Not reported	Yule, 1997 ⁵⁰⁴
		Not applicable	82% (59-100%) (N=12)	Not reported	Robertson, 1998 ⁴⁸⁹
	3 Year	Not applicable	Median 33 months (16-35mo) (N=4)	Not reported	Ayan, 1995 ⁵⁰⁷

Table 85. Overall survival for single auto HSCT and comparison (conventional chemotherapy +/- radiation) groups: Glial tumors (continued)

Indication	Outcome	Intervention Single (%; ± 95% CI)	Comparator Chemo (%; ± 95% Cl)	P Value	Study
Anaplastic	5 Voor	Not applicable	35.2±11.0% (N=23)	Not reported	Jaing, 2004 ⁵¹⁶
ependymoma	5 Tear	Not applicable	64% (25-84%) (N=12)	Not reported	Robertson, 1998 ⁴⁸⁹
		Not applicable	3 patients dead at 1.4, 2.4, and 3.6 mo (N=3)	Not reported	Shih, 2008 ¹³²
	1 Year	Not applicable	Metastatic ~89% (N=9) Non-Metastatic ~95% (N=80)	Age< 1 year, p=.18 Female sex, p=.18 Infratentorial, p=.12 WHO gr. III, p=.15 Partial resection (judged by neurosurgeon) p=.07 Partial resection (radiologic review) p=.28 Dose intensity <.8, p=.05 HR=1.6 (1.0-2.7)	Grundy, 2007 ⁵¹²
Non-		~80% (N=29)	Not applicable	GTR vs. <gtr not="" significant<="" td=""><td>Zacharoulis, 2007⁴⁹⁰</td></gtr>	Zacharoulis, 2007 ⁴⁹⁰
anaplastic,		Not applicable	DOD at 2 and 6 mo (N=2)	Not reported	De Sio, 2006 ⁵⁰⁹
mixed, or unspecified ependymoma		Not applicable	~96% (N=73)	PF tumor RR 7.9 (1.8 to 35) p=.0004 Postoperative radiologic documented residuum: RR 3.6 (1.7-7.7) p=.0009	Grill, 2001 ⁵¹¹
		Not applicable	95% (85-100%) (N=20)	Not reported	Robertson, 1998 ⁴⁸⁹
		75 (54-96 95% CI) (N=16)	Not applicable	Not reported	Grill, 1996 ⁴⁹⁷
		2 patients dead at 7 and 9 months (67%) and one patient alive with progression at 25+ months (N=3)	Not applicable	Not reported	Mahoney, 1996 ⁵⁰¹

Indication	Outcome	Intervention Single (%; ± 95% CI)	Comparator Chemo (%; ± 95% CI)	P Value	Study
			79% (63.9-95.4) (N=23)	Complete vs. partial resection not significant	Conter, 2009 ⁵⁰⁸
	3 Year	Not applicable	Metastatic ~58% (N=9) Non-Metastatic ~80% (N=80)	Age< 1 year, p=.18 Female sex, p=.18 Infratentorial, p=.12 WHO gr. III, p=.15 Partial resection (judged by neurosurgeon) p=.07 Partial resection (radiologic review) p=.28 Dose intensity <.8, p=.05 HR=1.6 (1.0-2.7)	Grundy, 2007 ⁵¹²
Non		~62% (N=29)	Not applicable	GTR vs. <gtr not="" significant<="" td=""><td>Zacharoulis, 2007⁴⁹⁰</td></gtr>	Zacharoulis, 2007 ⁴⁹⁰
anaplastic, mixed, or unspecified ependymoma		Not applicable	~68% (N=73)	PF tumor RR 7.9 (1.8 to 35) p=.0004 Postoperative radiologic documented residuum: RR 3.6 (1.7-7.7) p=.0009	Grill, 2001 ⁵¹¹
		Not applicable	65 (44-86%) (N=20)	Not reported	Robertson, 1998 ⁴⁸⁹
		31 (3-58 95% CI) (N=16)	Not applicable	Not reported	Grill, 1996 ⁴⁹⁷
		Not applicable	74% (57.3-92.3) (N=23)	Complete vs. partial resection NS	Conter, 2009 ⁵⁰⁸
	5 Year	Not applicable	Metastatic ~28% (N=80) Nonmetastatic ~ 63 (N=9)	Age< 1 year, p=.18 Female sex, p=.18 Infratentorial, p=.12 WHO gr. III, p=.15 Partial resection (neurosurgeon) p=.07 Partial resection (radiologic review) p=.28 Dose intensity <.8, p=.05 HR=1.6 (1.0-2.7)	Grundy, 2007 ⁵¹²
		38±10 (N=29)	Not applicable	GTR vs. <gtr ns<="" td=""><td>Zacharoulis, 2007⁴⁹⁰</td></gtr>	Zacharoulis, 2007 ⁴⁹⁰

Indication	Outcome	Intervention Single (%; ± 95% CI)	Comparator Chemo (%; ± 95% Cl)	P Value	Study
		2 patients alive NED at last FU 20 mo, 67 mo (N=2)	Not applicable	Not reported	Busca, 1997 ⁴⁹⁵
		10 (0-29 95% CI) (N=16)	Not applicable	Not reported	Grill, 1996 ⁴⁹⁷
		Not applicable	52±(38 to 65%) (N=73)	PF tumor RR 7.9 (1.8 to 35) p=.0004 Postoperative radiologic documented residuum: RR 3.6 (1.7-7.7) p=.0009	Grill, 2001 ⁵¹¹
Non- anaplastic, mixed, or unspecified	5 Year	Not applicable	Grade II 73.7±10.2% (N=20) Complete resection (N=18): 82.1±9.5% Incomplete resection (N=19): 36.8±11.8% Biopsy (N=6): 33.3±19.3% Age <3 years (N=9): 41.7±17.3% Age >3 years (N=34): 57.4±9.1%	Anaplasia p<.001 Surgical Resection p<.001 Age p=.036	Jaing, 2004 ⁵¹⁶
		1 patient alive with stable disease at 62 months (N=1)	Not applicable	Not reported	Ozkaynak, 2004 ³⁶⁷
		Not applicable	57.2±5 (N=83)	Age (<=3yr at diagnosis vs. >3 yr) p=.005; HR .04 (.28) Deg. resection (GTR vs. <gtr) hr<br="" p=".01;">2.4(1.2-4.9) Histology (grade II vs. III) p=.05; HR 1.9 (.99-3.4)</gtr)>	Horn, 1999 ⁵¹⁴
		Not applicable	6 pts DOD at 4.5 mo (N=21)	Not reported	Kuhl, 1998 ⁵²⁰
		Not applicable	53% (31-76%) (N=20)	Not reported	Robertson, 1998 ⁴⁸⁹
1		Not applicable	50.3 (23.1-72.4) (N=15)	Not reported	Grundy, 2010 ⁵¹³

Indication	Outcome	Intervention Single (%; ± 95% CI)	Comparator Chemo (%; ± 95% Cl)	P Value	Study
		Not applicable	~82 (N=29)	Tumor Type (Choroid plexus carcinoma vs. choroid plexus paplioma and atypical choroid plexus paplioma) HR 26.4 p=.003	Wrede, 2009 ⁵²²
	1 Year	2 partially resected pts DOD at 21 and 25 mo (N=2)	13 patients DOD at median time 9 mo (range 4-41 mo) (65%) 7 patients Alive and well at median follow up 25 mo (range 3- 85 mo) (35%) 1 of 8 gross total resection patients died (12.5%) 11 of 12 partial resection patients died (92%) (N=20)	Not reported	Berger, 1998 ⁴⁸⁸
Choroid plexus carcinoma (CPC)		1 patient DOD at 5 months (N=1)	Not applicable	Not reported	Gururangan, 1998 ⁴⁹⁹
		1 pt dead at 11 mo (N=1)	Not applicable	Not reported	Yule, 1997 ⁵⁰⁴
		Not applicable	50.3 (23.1-72.4) (N=15)	Not reported	Grundy, 2010 ⁵¹³
	3 Year	Not applicable	~70 (N=29)	Tumor Type (Choroid plexus carcinoma vs. choroid plexus paplioma and atypical choroid plexus paplioma) HR 26.4 p=.003	Wrede, 2009 ⁵²²
		Not applicable	21.5 (5.2-45.0) 3(N=15)	Not reported	Grundy, 2010 ⁵¹³
	5 Year	Not applicable	36 (9-100) (N=29)	Tumor Type (Choroid plexus carcinoma vs. choroid plexus paplioma and atypical choroid plexus paplioma) HR 26.4 p=.003	Wrede, 2009 ⁵²²
		Not applicable	21.5 (5.2-45.6) (N=15)	Not reported	Grundy, 2010 ⁵¹³

Indication	Outcome	Intervention Single (%; ± 95% CI)	Comparator Chemo (%; ± 95% Cl)	P Value	Study
		1 Oligodendroglio ma dead at 8 mo (N=1)	Not applicable	Not reported	Thorarinsdottir, 2007 ⁵⁰³
		Not applicable	Median BSG OS 9mo (3-11) (33%) (N=8)	Not reported	De Sio, 2006 ⁵⁰⁹
		Not applicable	2 patients w/brainstem glioma DOD at 4 and 8 mo (N=2)	Not reported	Korones, 2006 ⁵¹⁸
Other glioma	1 Year	Other glioma ~91 (Anaplastic astrocytoma (N=9) and anaplastic oligodendroglio ma (N=2)) (N=11)	Not applicable	OS for glioblastoma multiforme compared to other histotypes (AA and ODG) were significantly worse P=.004	Massimino, 2005 ⁵⁰²
		Not applicable	Other Glioma ~62 (N=6)	Not reported	Macdonald, 2005 ⁵²¹
		2 recurrent BSG patient DOD at 4 and 9 mo (N=2)	Not applicable	Not reported	Ozkaynak, 2004 ³⁶⁷
		Pontine ~25 (N=24)	Not applicable	Not reported	Bouffet, 1997 ⁴⁹³
		Not applicable	Brainstem Glioma 9±5 (N=22)	Not reported	Kobrinsky, 1999 ⁵¹⁷

Indication	Outcome	Intervention Single (%; ± 95% CI)	Comparator Chemo (%; ± 95% Cl)	P Value	Study
Other glioma	1 Year	1 Pons patient alive at last follow up. 5 patients DOD at median 8 mo (5-14 mo) (N=6)	Not applicable	Not reported	Jakacki, 1999 ⁵⁰⁰
		Median survival of pontine glioma patients was 4 mo (N=10)	Not applicable	Not reported	Dunkel, 1998 ⁴⁹⁶
		Median survival of HGG patients was 3 mo (12d- 11 mo) (N=13)	Not applicable	Not reported	Bouffet, 1997 ⁴⁹³
		1 oligodendroglio ma dead at 10 mo (N=1)	Not applicable	Not reported	Busca, 1997 ⁴⁹⁵
		Not applicable	1 BSG dead at 2 mo (N=1)	Not reported	Mahoney, 1996 ⁵⁰¹
		Not applicable	HGG 57.9 (33.2-76.3) (N=19)	Not reported	Grundy, 2010 ⁵¹³
	3 Year	Other glioma ~73 (Anaplastic astrocytoma (N=9) and anaplastic oligodendroglio ma (N=2)) (N=11)	Not applicable	OS for glioblastoma multiforme compared to other histotypes (AA and ODG) were significantly worse p=.004	Massimino, 2005 ⁵⁰²
		Not applicable	3 year OS: Other glioma ~62 (N=6)	Not reported	Macdonald, 2005 ⁵²¹

Indication	Outcome	Intervention Single (%; ± 95% CI)	Comparator Chemo (%; ± 95% Cl)	P Value	Study
Other glioma		Pontine ~0. (N=24)	Not applicable	Not reported	Bouffet, 1997 ⁴⁹³
	3 Year	Not applicable	Brainstem glioma 0 (N=22)	Not reported	Kobrinsky, 1999 ⁵¹⁷
		Not applicable	HGG 40.5 (18.7-61.5) (N=19)	Not reported	Grundy, 2010 ⁵¹³
	5 Year	1 ganglioma patient dead at 59 mo (N=1)	Not applicable	Not reported	Thorarinsdottir, 2007 ⁵⁰³
		Other glioma ~73 (Anaplastic astrocytoma (N=9) and anaplastic oligodendroglio ma (N=2)) (N=11)	Not applicable	OS for glioblastoma multiforme compared to other histotypes (AA and ODG) were significantly worse p=.004	Massimino, 2005 ⁵⁰²
		Not applicable	Other glioma ~38 (N=6)	Not reported	Macdonald, 2005 ⁵²¹
		Not applicable	Malignant glioma 36 ± 10 (N=22)	Not reported	Kuhl, 1998 ⁵²⁰
		Not applicable	HGG 34.7 (14.6-56.0) (N=19)	Not reported	Grundy, 2010 ⁵¹³

Indication	Outcome	Intervention Single (%; ± 95% CI)	Comparator Chemo (%; ± 95% Cl)	P Value	Study
OS Ra Astrocytoma (summary comparison) with ≥ patien	OS Range for 5 years for studies with ≥10 patients	Newly Diagnosed: ~73%* (Massimo, 2005 ⁵⁰²) [*This study included 9 Anaplastic Astrocytoma patients and 2 lower-grade oligodendroglio ma patients.] Massimo measured from time of diagnosis	Newly Diagnosed: 25% (Macdonald ⁵²¹ N=30) Macdonald measured from time of study entry to death	Not applicable	Bertolone ⁴⁹¹ was not included in this estimate because the study did not differentiate between AA and GBM patients
	μαιιστιτο	Recurrent/Pro gressive: 40% (Finlay ⁴⁸⁵ N=17) Measured from time of myeloablative chemotherapy	Recurrent/Progressive: 0% (Finlay ⁴⁸⁵ N=27) Measured from time of recurrence	Not applicable	Bertolone ⁴⁹¹ was not included in this estimate because the study did not differentiate between AA and GBM patients

Indication	Outcome	Intervention Single (%; ± 95% CI)	Comparator Chemo (%; ± 95% Cl)	P Value	Study
Glioblastoma multiforme (summary comparison)	5 year OS for all studies with N ≥10	Newly Diagnosed: 0-22% (Grovas ⁴⁹⁸ N=11, Massimo ⁵⁰² N=10) Grovas measured from time of stem cell rescue Massimo considered OS from date of chemotherapy	Newly Diagnosed: 22% (Macdonald ⁵²¹ N=40) Macdonald measured from time of study entry to death	Not applicable	Bertolone ⁴⁹¹ was not included in this estimate because the study did not differentiate between AA and GBM patients
	patients	Recurrent/Pro gressive: 12% (Finlay ⁴⁸⁵ N=17) Measured from time of myeloablative chemotherapy	Recurrent/Progressive: 0% (Finlay ⁴⁸⁵ N=27) Measured from time of recurrence	Not applicable	Bertolone ⁴⁹¹ was not included in this estimate because the study did not differentiate between AA and GBM patients

Indication	Outcome	Intervention Single (%; ± 95% CI)	Comparator Chemo (%; ± 95% Cl)	P Value	Study
Ependymoma (summary comparison)	5 year OS for studies with N ≥10 patients	Newly Diagnosed, unspecified anaplastic 38% (Zacharoulis ⁴⁹⁰ N=29) Zacharoulis estimated OS from date of diagnosis	Newly Diagnosed Nonanaplastic, mixed, or unspecified Ependymoma: 52-74% (Conter ⁵⁰⁸ N=23, Grill, 2001 ⁵¹¹ N=14, Horn ⁵¹⁴ N=83, Jaing ⁵¹⁶ N=20, Robertson ⁴⁸⁹ N=20) Conter and Jaing estimated OS from date of surgery, Grill measured from date of chemotherapy, Robertson measured from date of randomization, and Horn measured from date of diagnosis. Overall, these differing estimates of overall survival approximate date of surgery within 13 weeks. Newly Diagnosed Anaplastic Ependymoma: 35.2-64% (Jaing ⁵¹⁶ N=23 and Robertson ⁴⁸⁹ N=12) Jaing used date of surgery for OS calculation and Robertson used date of randomization	Not applicable	Grundy et al. was not included in this estimate because the study stratified by metastasis finding a 5 year OS of 28% for metastatic ependymoma and 63% for nonmetastatic disease and measured the OS from date of surgery.

· /					
Indication	Outcome	Intervention Single (%; ± 95% CI)	Comparator Chemo (%; ± 95% Cl)	P Value	Study
Ependymoma (summary comparison)	5 year OS for studies with N ≥10 patients	No patients alive past 25 months. (Berger ⁴⁸⁸ N=2, Gururangan ⁴⁹⁹ N=1, Yule ⁵⁰⁴ N=1)	21.5-36% (Grundy N=15 and Wrede ⁵²² N=29) Wrede measured OS from date of diagnosis and Grundy used date of surgery	Not applicable	Not applicable
Choroid plexus carcinoma (summary comparison)	5 Year OS All studies	No patients alive past 25 months. (Berger ⁴⁸⁸ N=2, Gururangan ⁴⁹⁹ N=1, Yule ⁵⁰⁴ N=1)	21.5-36% (Grundy N=15 and Wrede ⁵²² N=29) Wrede measured OS from date of diagnosis and Grundy used date of surgery	Not applicable	Not applicable

Table 85. Overall survival for single auto HSCT and comparison (conventional chemotherapy +/- radiation) groups: Glial tumors (continued)

Adverse Effects

Nine HSCT studies reported adverse events in a patient population of 138 patients composed of 13 anaplastic astrocytoma, three anaplastic glioma, 49 ependymoma, one ganglioma, 30 glioblastoma multiforme, one oligodendroglioma, and 41 pontine tumors (Table 86).^{485, 490, 493, 497, 498, 500, 501, 503, 506} The conventional therapy studies reported adverse events for 113

ependymoma patients, 30 anaplastic astrocytoma patients, 40 glioblastoma multiforme patients, 18 high-grade glioma patients, seven pontine tumor patients and 15 choroid plexus tumor patients.^{508, 512, 513, 521} Overall, the level of adverse event reporting for both HSCT and conventional therapy may be underreported. Many studies included tumor types not relevant to this report in their design, and the authors in most instances did not give data on a tumor group or per patient basis when discussing adverse events.

Outcome	HSCT (%)	Conventional Therapy (%)	Study
	5 toxic deaths in HSCT group (19%)	Not applicable	Finlay, 2008 ⁴⁸⁵
	3 toxic deaths (10%)	Not applicable	Zacharoulis, 2007 ⁴⁹⁰
	Not applicable	1 patient died preoperatively (1%)	Grundy, 2007 ⁵¹²
	Not applicable	3 (4%)	Macdonald, 2005 ⁵²¹
Treatment related mortality	1 hVOD (3%) 1 toxic exfoliative dermatitis with acute renal failure (3%) S1 aspergillus fumigatus pneumonia (3%)	Not applicable	Bouffet, 1997 ⁴⁹³
	2 (18%)	Not applicable	Grovas, 1999 ⁴⁹⁸
	5 toxic mortality (33%)	Not applicable	Mason, 1998 ⁵⁰⁶
	1 (6%)	Not applicable	Grill, 1996 ⁴⁹⁷
	4 (21%)	Not applicable	Mahoney, 1996 ⁵⁰¹
Secondary malignancies	1 lymphoblastic non-Hodgkin's lymphoma at 3.5 yr (9%)	Not applicable	Grovas, 1999 ⁴⁹⁸

Table 86. Adverse effects for single auto HSCT and comparison (conventional chemotherapy +/- radiation) group: Glial tumors

Outcome	HSCT (%)	Conventional Therapy (%)	Study
Infectious	# Gram positive bacterium per patient: Oligodendroglimoma 2 Ganglioma 3 Anaplastic glioma 0, 1, 2 Ependymoma 4	Not applicable	Thorarinsdottir, 2007 ⁵⁰³
	3 cases of sepsis leading to toxic morality (10%)	Not applicable	Zacharoulis, 2007 ⁴⁹⁰
	Not applicable	6 Grade 3 or 4 infectious complication (8.6%)	Macdonald, 2005 ⁵²¹
≥ grade III		(group not given) (1.4%)	
	1 Aspergillus fumigatus (6%) 1 cytomegalovirus (6%)	Not applicable	Bouffet, 1997 ⁴⁹³
	gram-positive sepsis (9%)	Not applicable	Grovas, 1999 ⁴⁹⁸
	7 infection (37%) 1 fungal infection (5%)	Not applicable	Mahoney, 1996 ⁵⁰¹
	2 patients had interstitial pneumonia which resolved with treatment (17%)	Not applicable	Jakacki, 1999 ⁵⁰⁰
Serious hemorrhagic event	Not applicable	2 patients died of serious hemorrhagic events (group not given)	Macdonald, 2005 ⁵²¹
Veno- occlusive	4 mild-severe hVOD (11%) 1 fatal hVOD (3%)	Not applicable	Bouffet, 1997 ⁴⁹³
disease	1 Fatal hVOD at 2.9 mo (9%)	Not applicable	Grovas, 1999 ⁴⁹⁸
Long-term complications	Not applicable	5 children required special needs education	Grundy, 2010 ⁵¹³
	Not applicable	2 Mild retardation (13%) 2 Severe retardation (13%) Two patients were placed in a special school, and two were ≥ 2 years behind at school 5 Diplopia (32%) Severe decrease of visual acuity 1 (6%)	Conter, 2009 ⁵⁰⁸
	neurologic responsiveness/ blindness (100%) 1 GG pt had ADD (100%) 1 AG patient had Gr 2 L hemiparesis (33%) 1 AG pt had Ataxia (33%) 1 EPD pt had hypotonia/multiple neuropathies G 2-4 hearing loss/poor speech (100%)	Not applicable	Thorarinsdottir, 2007 ⁵⁰³
	leading to death at 3.4 mo (9%)	Not applicable	Grovas, 1999 ⁴⁹⁸

Table 86. Adverse effects for single auto HSCT and comparison (conventional chemotherapy +/- radiation) group: Glial tumors (continued)

Ongoing Research

Six trials were identified with currently unpublished results (Table 87). One trial was completed, two were ongoing, and three were recruiting participants. Anaplastic astrocytoma was investigated in four studies, brainstem glioma in one study, choroid plexus carcinoma in two studies, ependymoma in three studies, and glioblastoma multiforme in four studies. The estimated total enrollment of these trials is 363 participants, but with the exception of two studies, nonpediatric patients will also be enrolled. All studies include overall survival or event-free survival as outcomes relevant to this report.

Trial Name (Estimated Enrollment)	Status	Indication Relevant Tumor Types	Patient Population
Chemotherapy Plus Peripheral Stem Cell Transplantation in Treating Infants With Malignant Brain or Spinal Cord Tumors (n=83)	Completed	Newly Diagnosed: EPD, AA, CPC	up to 2 years
Stem Cell Transplant for High Risk Central Nervous System (CNS) Tumors (n=50)	Ongoing	Newly Diagnosed: GBM, AA	18 mo - 25 years
Chemotherapy Followed by Bone Marrow or Peripheral Stem Cell Transplantation in Treating Patients With Glioblastoma Multiforme or Brain Stem Tumors (n=60)	Ongoing, no recruitment	Nonprogressive: GBM	6-60 years
Busulfan, Melphalan, Topotecan Hydrochloride, and a Stem Cell Transplant in Treating Patients With Newly Diagnosed or Relapsed Solid Tumor (n=20)	Recruiting	Progressive/ Recurrent CNS: EPD, AA, BSG	6-40 years
Phase III Pilot Study of Induction Chemotherapy Followed by Consolidation Myeloablative Chemotherapy Comprising Thiotepa and Carboplatin With or Without Etoposide and Autologous Hematopoietic Stem Cell Rescue in Pediatric Patients With Previously Untreated Malignant Brain Tumors(n=120)	Recruiting	Newly diagnosed: CNS Tumors: GBM, HGG, CPC, EPD, AA	Less than 10 years
Temozolomide, Carmustine, O6-Benzylguanine, Radiation Therapy, and an Autologous Stem Cell Transplant in Treating Patients With Newly Diagnosed Glioblastoma Multiforme or Gliosarcoma (n=30)	Recruiting	Newly diagnosed: GBM	18+ years

Table 87. Ongoing trials: Glial tumors

AA = anaplastic astrocytoma; BSG = brainstem glioma; CNS = central nervous system; CPC = choroid plexus carcinoma; EPD = ependymoma; GBM = glioblastoma multiforme; HGG = high-grade glioma; OAST = oligoastrocytoma; ODG = oligodendroglioma; REC = recurrent

Conclusions

Low strength evidence on overall survival suggests a benefit with single HSCT compared to conventional therapy for the treatment of:

- High-risk recurrent or progressive anaplastic astrocytoma
- High-risk recurrent glioblastoma multiforme.

Low strength evidence on overall survival suggests a harm due to higher treatment-related mortality with single HSCT compared to conventional chemotherapy for the treatment of nonanaplastic mixed or unspecified ependymoma.

The body of evidence on overall survival with single HSCT compared to conventional therapy was insufficient to draw conclusions for treatment of:

- High-risk newly diagnosed anaplastic astrocytoma
- High-risk newly diagnosed glioblastoma multiforme
- Newly diagnosed anaplastic, nonanaplastic, mixed, or unspecified ependymoma

- Recurrent ependymoma
- Choroid plexus carcinoma
- Other gliomas.

Systematic Reviews: Nonmalignant Disease

Inherited Metabolic Diseases Systematic Review

Background and Setting

Inherited metabolic diseases (IMD), also known as inborn errors of metabolism, are rare genetic diseases of biochemistry. IMDs are caused by defects of enzymes which result in the accumulation of substrates in tissues and organs. As substrates accumulate, progressive damage to the skeletal structure, connective tissues, organs, and in more severe disorders, the central nervous system occurs. Symptoms and the severity range widely among the IMDs. Many of the diseases are characterized by a rapid deterioration and have a life expectancy of a few years, while some of the IMDs have a slower course and patients may live into adulthood. While each condition is rare, the collection of these diseases has caused significant morbidity and mortality. Estimates of cumulative incidence for IMDs range from 1 in 1500 to 1 in 5,000 live births.^{270, 523, 524}

In this report, IMDs will be discussed in three sections: 1) diseases with rapid progression of symptoms and life expectancies of 10 years or less, 2) diseases with slower progression of symptoms and life expectancies of more than 10 years, and 3) diseases with two different forms, one form which has a rapid progression of symptoms and one form which has a slow progression of symptoms. For diseases that have a rapid progression of symptoms, the expected outcome following HSCT is prolonged life expectancy. For diseases with a slow progression of symptoms, the expected outcomes following HSCT are improvements in neurocognitive and neurodevelopmental functioning.

The diseases with rapid progression of symptoms that were systematically reviewed include: Wolman disease, Gaucher disease Type II, Niemann-Pick Type A, mucolipidosis II (I-cell disease), cystinosis, and infantile free sialic acid disease. The diseases with slow progression of symptoms that were systematically reviewed are mucopolysaccharidosis II (Hunter's disease), mucopolysaccharidosis III (Sanfilippo disease), mucopolysaccharidosis IV (Morquio syndrome), Fabry's disease, Gaucher disease Type III, aspartylglucosaminuria, β-mannosidosis, mucolipidosis III, mucolipidosis IV, Niemann-Pick Type C, glycogen storage disease Type 2 (Pompe disease), Salla disease, and adrenomyeloneuropathy. Diseases with forms that progress rapidly and forms that progress slowly and that were systematically reviewed are Farber's disease, GM₁ gangliosidosis, Tay-Sachs disease, Sandhoff's disease, ceroid lipofuscinosis, and galactosialidosis.

Evidence Summary

Diseases With Rapid Progression

The overall grade of strength of evidence for overall survival with the use of HSCT for the treatment of inherited metabolic diseases with rapid progression is shown in Table 88.

Diseases With Slow Progression

The overall grade of strength of evidence for stabilization of neurocognitive and neurodevelopmental symptoms with the use of HSCT for the treatment of inherited metabolic diseases with slow progression is shown in Table 89.

Diseases With Forms That Progress Rapidly and Slowly

The overall grade of strength of evidence for overall survival and stabilization of neurocognitive and neurodevelopmental symptoms with the use of HSCT for the treatment of inherited metabolic diseases with rapid progression and slow progression forms is shown in Table 90.

Table 88. Overall grade of strength of evidence for overall survival with the use of HSCT for the treatment of inherited metabolic diseases with rapid progression

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
What is the comparative effectiveness and harms of HSCT in the treatment of Wolman's disease compared to symptom management and natural progression of disease? Key outcomes are overall survival.	2 case reports and 2 case series	High	The evidence is consistent.	The outcomes reported are direct.	The evidence is precise suggesting an overall survival advantage for HSCT over conventional therapy. While the evidence is qualitative it is unlikely that the prognosis would change without HSCT treatment.	The strength of association is strong.	 High strength evidence on overall survival suggests a benefit with single HSCT compared to conventional management of Wolman's disease. 4 survived treatment, with followups of 0.3-11 yrs; 3 long- term survivors (4-11 yrs) highly functional and attending school. 2 TRM deaths 1 death from disease progression
What is the comparative effectiveness and harms of HSCT in the treatment of Gaucher disease Type II compared to symptom management and natural progression of disease? Key outcomes are overall survival.	0 studies found	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Insufficient evidence
What is the comparative effectiveness and harms of HSCT in the treatment of Niemann-Pick Type A compared to symptom management and natural progression of disease? Key outcomes are overall survival.	1 case report and 1 case series	High	The evidence is consistent.	The outcomes reported are direct.	The evidence is imprecise.	Not applicable due to lack of obvious effect size.	Low strength evidence on overall survival suggests no benefit with single HSCT compared to symptom management for Niemann- Pick Type A. 2 pts dead at 2 yrs followup from disease progression 1 pt alive at 2.7 yrs followup, with neurocognitive and neurodevelopmental decline.

Table 88. Overall grade of strength of evidence for overall survival with the use of HSCT for the treatment of inherited metabolic diseases with rapid progression (continued)

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
What is the comparative effectiveness and harms of HSCT in the treatment of mucolipidosis II (I-cell disease) compared to symptom management and natural progression of disease? Key outcomes are overall survival.	3 case reports	High	The evidence is inconsistent.	The outcomes reported are direct.	The evidence is imprecise.	Not applicable due to lack of obvious effect size.	The body of evidence on overall survival with single HSCT compared to symptom management for mucolipidosis II (I-cell disease) is insufficient to draw conclusions. 1 pt died of progressive disease 5.6 yrs post-transplant. 1 pt alive 5 yrs post-transplant, mildly to moderately impaired mentally and physically 1 pt alive 2 yrs post, with unknown mental and physical outcomes
What is the comparative effectiveness and harms of HSCT in the treatment of cystinosis compared to symptom management and natural progression of disease? Key outcomes are overall survival.	0 studies found	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Insufficient evidence
What is the comparative effectiveness and harms of HSCT in the treatment of infantile free sialic acid disease compared to symptom management and natural progression of disease? Key outcomes are overall survival.	0 studies found	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Insufficient evidence

TRM = treatment-related mortality

Table 89. Overall grade of strength of evidence for stabilization of neurocognitive and neurodevelopmental symptoms with the use	of
HSCT for the treatment of inherited metabolic diseases with slow progression	

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
What is the comparative effectiveness and harms of HSCT in the treatment of MPS II (Hunter's disease) compared to symptom management, ERT, and the natural history of disease? Key outcomes are neurocognitive and neurodevelopmental symptoms.	8 case reports and 6 case series	High	The evidence is consistent for the severe form. Evidence is inconsistent for the attenuated form.	The outcomes reported are direct. The comparisons are indirect as the evidence base utilizes two or more bodies of evidence to make comparisons.	For neurodevelopmental symptoms, the evidence is precise for both the severe and attenuated form, suggesting outcomes with HSCT are equal to ERT. For neurocognitive symptoms, the evidence is precise for the severe form, suggesting HSCT does not provide a benefit. For neurocognitive symptoms, the evidence is imprecise for the attenuated form, suggesting an advantage of HSCT over ERT.	For neurodevelopmental symptoms, the strength of association is not applicable as no effect size is obvious compared to ERT. For neurocognitive symptoms in the severe form, this is not applicable due to lack of obvious effect size. For neurocognitive symptoms in the attenuated form, the strength of association is weak.	Low strength evidence on neurodevelopmental outcomes suggests equivalent benefit with single HSCT compared to ERT for severe and attenuated forms of MPS II (Hunter's disease). Low strength evidence on neurocognitive outcomes suggests no benefit with single HSCT compared to symptom management/natural history for the severe MPS II. Low strength evidence on neurocognitive outcomes suggests benefit with single HSCT compared to ERT for attenuated MPS II. 7 TRM deaths out of 32 pts undergoing HSCT. 7 of 8 with severe form showed neurocognitive decline. Among 6 with attenuated form, 4 stable neurocognitively, 2 declining. ERT* trials on pts with attenuated form only. No neurocognitive outcomes reported. Improvements in neurodevelopmental symptoms were reported.

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
What is the comparative effectiveness and harms of HSCT in the treatment of MPS III (Sanfilippo disease) compared to symptom management and natural history of the disease? Key outcomes are neurocognitive and neurodevelopmental symptoms.	1 case reports and 4 case series	High	Evidence is inconsistent.	The outcomes reported are direct.	The evidence is imprecise.	Not applicable due to lack of obvious effect size.	Low strength evidence on neurocognitive and neurodevelopmental outcomes suggests no benefit with single HSCT compared to symptom management for MPS III (Sanfilippo disease). 1 pt died 5 mos post-HSCT of pneumonia 1 pt alive at unspecified followup, 7 pts alive at 2.4- 14.0 yrs No followup details in 1 pt, 1 pt stable, 6 pts declining neurocognitively and neurodevelopmentally, though 2 of 6 are declining slower than untreated siblings.
What is the comparative effectiveness and harms of HSCT in the treatment of MPS IV (Morquio syndrome) compared to symptom management and natural history of the disease? Key outcomes are neurocognitive and neurodevelopmental symptoms.	2 case reports	High	Not applicable	The outcomes reported are direct.	The evidence is imprecise.	Not applicable due to lack of obvious effect size.	The body of evidence on neurocognitive and neurodevelopmental outcomes with single HSCT compared to symptom management for MPS IV (Morquio syndrome) is insufficient to draw conclusions. No followup data provided for 1 pt who was transplanted at 15 yrs of age. Only cardiac followup on 2 nd pt, and no cardiac improvement reported.

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
What is the comparative effectiveness and harms of HSCT in the treatment of Fabry's disease compared to symptom management and the natural history of the disease? Key outcomes are neurocognitive and neurodevelopmental symptoms.	0 studies found	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Insufficient evidence

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
What is the comparative effectiveness and harms of HSCT in the treatment of Gaucher Type III compared to symptom management, ERT, substrate reduction therapy, and the natural history of the disease? Key outcomes are neurocognitive and neurodevelopmental symptoms.	2 case reports and 2 case series	High	Evidence for neurocognitive outcomes with HSCT is consistent.	The outcomes reported are direct. The comparisons are indirect as the evidence base utilizes two or more bodies of evidence to make comparisons.	The evidence on neurocognitive score stabilization with HSCT is precise.	Not applicable due to lack of obvious effect size.	Low strength evidence on neurocognitive and neurodevelopmental outcomes suggests no benefit with single HSCT compared to ERT for Gaucher Type III disease. 1 TRM death out of 8 undergoing HSCT. 5 out of 8 pts treated with HSCT showed stable neurocognitive scores. All pts with HSCT had improved growth, but no improvement in skeletal symptoms. 2 pts treated with HSCT followed by ERT*, alive at 19-21 yrs, with borderline mental retardation. Among 23 pts treated with ERT alone, 1 died of liver biopsy, the remaining are alive at 0.4-5 yrs followup. Neurocognitive scores are stable in 7 of 9 pts. Growth improved, but no change in skeletal symptoms. In an RCT with 30 pts, comparing ERT alone and ERT with substrate reduction therapy, there was no difference between the 2 grps in neurocognitive scores

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
What is the comparative effectiveness and harms of HSCT in the treatment of aspartylglucosaminuri a compared to symptom management and natural history of the disease? Key outcomes are neurocognitive and neurodevelopmental symptoms.	1 case report and 3 case series	High	Evidence is consistent.	The outcomes reported are direct.	The evidence is imprecise.	Not applicable due to lack of obvious effect size.	The body of evidence on neurocognitive and neurodevelopmental outcomes with single HSCT compared to symptom management of aspartylglucosaminuria is insufficient to draw conclusions. All 10 pts alive at followups from 0.3-7.6 yrs. Improved concentration reported in 2 pts, development stabilized at 5 yrs of age in 2 pts whose real ages were 15 and 11. Studies may not have long enough followups to see real effect of HSCT since rapid decline in this disease occurs during adolescence.
What is the comparative effectiveness and harms of HSCT in the treatment of ß - mannosidosis compared to symptom management and natural history of the disease? Key outcomes are neurocognitive and neurodevelopmental symptoms.	0 studies found	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Insufficient evidence

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
What is the comparative effectiveness and harms of HSCT in the treatment of mucolipidosis III compared to symptom management and natural history of the disease? Key outcomes are neurocognitive and neurodevelopmental symptoms.	0 studies found	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Insufficient evidence
What is the comparative effectiveness and harms of HSCT in the treatment of mucolipidosis IV compared to symptom management and natural history of the disease? Key outcomes are neurocognitive and neurodevelopmental symptoms.	0 studies found	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Insufficient evidence

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
What is the comparative effectiveness and harms of HSCT in the treatment of Niemann- Pick Type C compared to symptom management, substrate reduction therapy, and the natural history of the disease? Key outcomes are neurocognitive and neurodevelopmental symptoms.	2 case reports	High	Not applicable	The comparisons are indirect as the evidence base utilizes two or more bodies of evidence to make comparisons.	The evidence is imprecise.	Not applicable due to lack of obvious effect size.	The body of evidence on neurocognitive and neurodevelopmental outcomes with single HSCT compared to symptom management or natural history of Niemann-Pick Type C disease is insufficient to draw conclusions . 1 pt alive at 0.8 yrs followup, with slowly decreasing developmental age measurements. Pt became bedridden during conditioning phase and never improved. 1 pt alive at 1.7 yrs followup, developing normally, except for delayed speech. Studies of substrate reduction therapy versus symptom management present combined adult and pediatric data. Substrate reduction therapy may stabilize ambulation in these pts.

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
What is the comparative effectiveness and harms of HSCT in the treatment of glycogen storage disease Type 2 (Pompe disease) compared to symptom management and natural history of the disease? Key outcomes are neurocognitive and neurodevelopmental symptoms.	0 studies found	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Insufficient evidence
What is the comparative effectiveness and harms of HSCT in the treatment of Salla disease compared to symptom management and natural history of the disease? Key outcomes are neurocognitive and neurodevelopmental symptoms.	0 studies found	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Insufficient evidence

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
What is the comparative effectiveness and harms of HSCT in the treatment of adrenomyeloneuropat hy compared to symptom management and the natural history of the disease? Key outcomes are neurocognitive and neurodevelopmental symptoms.	0 studies found	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Insufficient evidence A single report of HSCT on an adrenomyeloneuropathy was found on an adult patient, but no pediatric cases were found.

ERT = enzyme replacement therapy; TRM = treatment-related mortality

Table 90. Overall grade of strength of evidence for overall survival and stabilization of neurocognitive and neurodevelopmental symptoms with the use of HSCT for the treatment of inherited metabolic diseases with rapid progression and slow progression form

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
What is the comparative effectiveness and harms of HSCT in the treatment of Farber's disease compared to symptom management and the natural history of the disease? Key outcomes are overall survival for the rapidly progressive form and neurocognitive and neurodevelopmental outcomes for the slowly progressive form.	Rapid progression: Type 1: 1 case report and 1 case series Slow progression: Type 2/3: 2 case series	Rapid progression: High Slow progression: High	Rapid progression: The evidence is inconsistent Slow progression: The evidence is consistent.	The outcomes reported are direct.	Rapid progression: The evidence is imprecise. Slow progression: Precise	Rapid progression: Not applicable for Type I Farber's disease. Slow progression: The strength of association is strong for Type 2/3 Farber's disease.	The body of evidence on overall survival with single HSCT compared to symptom management or natural history of the Type 1 form of Farber's disease is insufficient to draw conclusions. High strength evidence on number of subcutaneous nodules and number of joints with limited range of motion suggests a benefit with single HSCT compared to symptom management and the natural history of the Type 2/3 form of Farber's disease. 1 pt with Type 1 alive at 2.3 yrs followup with neurocognitive and neurodevelopmental decline. 1 pt with Type 1 dead at 6 mos post-HSCT from disease progression. All 5 pts with Type 2/3 alive at 0.7-1.3 yrs followup, with reduction in number of subcutaneous nodules and number of joints with limited range of motion.

Table 90. Overall grade of strength of evidence for overall survival and stabilization of neurocognitive and neurodevelopmental symptoms with the use of HSCT for the treatment of inherited metabolic diseases with rapid progression and slow progression form (continued)

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
What is the comparative effectiveness and harms of HSCT in the treatment of GM ₁ gangliosidosis compared to symptom management and natural history of the disease? Key outcomes are overall survival for the rapidly progressive form and neurocognitive and neurodevelopmental outcomes for the slowly progressive form.	Rapid progression: infantile form: 0 studies found Slow progression: juvenile form: 1 case report	Rapid progression: Not applicable Slow progression: High	Rapid progression: Not applicable Slow progression: Not applicable	The outcomes reported are direct.	Rapid progression: Not applicable Slow progression: Not applicable	Rapid progression: Not applicable Slow progression: Not applicable	Insufficient evidence for the infantile form of this disease. Insufficient evidence for the juvenile form of this disease. 1 pt alive at 7 yrs followup. Pt is wheelchair bound and has lost all language skills.
Table 90. Overall grade of strength of evidence for overall survival and stabilization of neurocognitive and neurodevelopmental symptoms with the use of HSCT for the treatment of inherited metabolic diseases with rapid progression and slow progression form (continued)

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
What is the comparative effectiveness and harms of HSCT in the treatment of Tay- Sachs disease compared to symptom management, substrate reduction therapy, and the natural history of the disease? Key outcomes are overall survival for the rapidly progressive form and neurocognitive and neurodevelopmental outcomes for the slowly progressive form.	Rapid progression: infantile form: 0 studies found Slow progression: juvenile form: 1 case report Unspecified progression: 1 case report and 1 case series	Rapid progression: Not applicable Slow progression: High Unspecified progression: High	Rapid progression: Not applicable Slow progression: Not applicable Unspecified progression: Not applicable	The comparisons are indirect as the evidence base utilizes two or more bodies of evidence to make comparisons.	Rapid progression: Not applicable Slow progression: Not applicable Unspecified progression: Not applicable	Rapid progression: Not applicable Slow progression: Not applicable Unspecified progression: Not applicable	Insufficient evidence for the infantile form of this disease. Insufficient evidence for the juvenile form of this disease. Insufficient evidence for the unspecified progression form of this disease. 1 pt with the juvenile form is alive at 2 yrs followup. Neurocognitive and neurodevelopmental decline is similar to untreated sibling. 2 pts with the juvenile form received substrate reduction therapy and were alive at 2 yrs followup. Both have declined neurocognitively and neurodevelopmentally. 1 pt with unspecified progression died 4.6 yrs post-HSCT of disease progression and the 2nd pt with unspecified progression was alive at 1.7 yrs post- transplant, but had regressed to a vegetative state.

Table 90. Overall grade of strength of evidence for overall survival and stabilization of neurocognitive and neurodevelopmental symptoms with the use of HSCT for the treatment of inherited metabolic diseases with rapid progression and slow progression form (continued)

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
What is the comparative effectiveness and harms of HSCT in the treatment of ceroid lipofuscinosis compared to symptom management and the natural history of the disease? Key outcomes are overall survival for the rapidly progressive form and neurocognitive and neurodevelopmental outcomes for the slowly progressive form.	Rapid progression: infantile form: 1 case series Slow progression: juvenile form: 0 studies found	Rapid progression: High Slow progression: Not applicable	Rapid progression: Consistent Slow progression: Not applicable	The outcomes reported are direct.	Rapid progression: The evidence is precise. Slow progression: Not applicable	Rapid progression (infantile): Not applicable due to lack of obvious effect size. Slow progression: Not applicable	Low strength evidence on neurocognitive outcomes suggests no benefit with single HSCT compared to symptom management and the natural history of the disease for the infantile form of ceroid lipofuscinosis. Insufficient evidence for the juvenile form of this disease. All 3 pts in case series are alive at 2-4 yrs followup. All 3 pts have neurocognitive decline, and are hypotonic and spastic.
What is the comparative effectiveness and harms of HSCT in the treatment of galactosialidosis compared to symptom management and the natural history of the disease? Key outcomes are overall survival for the rapidly progressive form and neurocognitive and neurodevelopmental outcomes for the slowly progressive form.	Unspecified progression: 1 case report	High	Not applicable	The outcomes reported are direct.	The evidence is imprecise.	Not applicable	The body of evidence on overall survival, neurocognitive and neurodevelopmental outcomes with HSCT compared to symptom management for galactosialidosis is insufficient to draw conclusions. This single case was part of a case series with several different diseases. Results were cumulative across all diseases and no data was available for the single galactosialidosis case ⁵²⁵

Table 90. Overall grade of strength of evidence for overall survival and stabilization of neurocognitive and neurodevelopmental symptoms with the use of HSCT for the treatment of inherited metabolic diseases with rapid progression and slow progression form (continued)

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
What is the comparative effectiveness and harms of HSCT in the treatment of Sandhoff's disease compared to symptom management, substrate reduction therapy, and the natural history of the disease? Key outcomes are overall survival for the rapidly progressive form and neurocognitive and neurodevelopmental outcomes for the slowly progressive form.	Unspecified progression: 1 case report	High	Not applicable	The comparisons are indirect as the evidence base utilizes two or more bodies of evidence to make comparisons.	The evidence is imprecise.	Not applicable	The body of evidence on overall survival, neurocognitive and neurodevelopmental outcomes with HSCT compared to symptom management, substrate reduction therapy, and the natural history of the disease for Sandhoff's disease is insufficient to draw conclusions. The single case report was part of a case series with several diseases. The form of the disease was not specified and there were no neurocognitive or neurodevelopmental outcomes reported. 3 pts with the juvenile form received substrate reduction therapy and were alive at 2 yrs followup. They were stable neurocognitively, but 2 developed gait disturbance and 1 is wheelchair bound.

Results

Table 91 shows the criteria that were used to select studies for this section.

Study Design	Population	Intervention	Comparators	Outcomes	Followup	Setting
Controlled trials, case series, case reports from 1992- present	Pediatric patients (0-21-yr)	HSCT	symptom management, ERT, substrate reduction therapy	enzyme activity, neuro-cognitive and neuro- developmental measurements	All durations of followup	In-patient, out-patient

 Table 91. Study selection criteria: Inherited metabolic diseases

ERT = enzyme replacement therapy; HSCT = hematopoietic stem cell transplant

Diseases With Rapid Progression

Wolman Disease

Wolman disease is a rare autosomal recessive disorder characterized by a deficiency of lysosomal acid lipase which causes an accumulation of cholesterol esters and triglycerides in the spleen, liver, adrenal glands, bone marrow, small intestines, and lymph nodes.²⁶¹ Fewer than 80 cases have been identified. Symptoms appear immediately, within the first week of life, and include failure to thrive, jaundice, anemia, relentless vomiting, abdominal distention, steatorrhea, and hepatosplenomegaly. Because of the failure to absorb nutrients, severe malnutrition occurs and life expectancy is less than 6 months.⁵²⁶ Several patients with Wolman disease have undergone HSCT (Table 92).⁵²⁷⁻⁵³⁰

Refer to Appendix E Table E1 for details of neurocognitive and neurodevelopmental outcomes. In summary, two patients died of treatment-related mortality, one at 2.5 months post-transplant and one at 8 months post-transplant and one died from the natural progression of the disease.⁵²⁷ Three (of 4) patients who survived HSCT are long-term survivors, with followup from 4 to 11 years. They are highly functional in language skills, and social and behavioral skills. One attends regular school and two attend special schools.^{529, 531}

The case report of the patient with Wolman disease who underwent HSCT reported growth in height, weight and head circumference.⁵²⁹ Of the three surviving Wolman disease patients in the case series, one showed improvement in motor skills and another is reported to have average gross motor skills and below average fine motor skills⁵³¹

Evidence for this rapidly progressing disease which has a life expectancy of 6 months, consists of two case reports and two case series. A total of seven patients with Wolman disease have undergone HSCT. Two died from the procedure and 1 died from disease progression. Four have survived and have been followed for 0.3 to 11 years, with normal or near normal functioning. For three patients who have survived long-term followup from 4 to 11 years, HSCT altered the course of Wolman disease.

Study	Design	Median Age in Years (Range) at Treatment	Sex (M%)	Treatment, Year	Followup Period (yrs)	Enzyme Activity	Neuro-cognitive Outcomes	Neuro- developmental Outcomes	Adverse Effects
Gramatges, US, 2009 ⁵²⁷	case report	0.2	0	HSCT, NR	0.2	\checkmark	NR	NR	\checkmark
Tolar, US, 2009 ⁵³¹	case series (n=4)	4.5 (0.2-2.1)	50	HSCT, NR	(0.2-11.0)	\checkmark	\checkmark	\checkmark	\checkmark
Stein, Israel, 2007 ⁵²⁹	case report	0.25	0	HSCT, NR	4.0	\checkmark	\checkmark	\checkmark	\checkmark
Styczynski, 2011 ⁵³⁰	Case series (n=1)	16	0	HSCT, NR	0.3	NR	NR	NR	\checkmark

 Table 92. Study characteristics and population for Wolman disease

Gaucher Disease Type II

Gaucher disease is caused by a deficiency in the enzyme glucocerebrosidase, which leads to an accumulation of glucosylceramide in the spleen, liver, lungs, bone marrow, and sometimes the brain.²⁶¹ There are three types of Gaucher disease. Gaucher Type I is discussed in the Narrative Review section of this report. Gaucher Type III is discussed in this Systematic Review section under diseases with slow progression.

Type II is the acute neuronopathic form, exhibiting hepatosplenomegaly as early as three months of age. There is severe central nervous system involvement and death occurs within two years of life. There is no effective treatment for Type II because of the rapid progression of symptoms and neurological involvement. No HSCT and Gaucher Type II studies were found in the literature.

Niemann-Pick Disease Type A

Niemann-Pick disease is characterized by the accumulation of lipids in the spleen, liver, lungs, bone marrow, and the brain. There are three types of this disease. Type A occurs most frequently in the Ashkenazi Jewish population (1 in 40,000), while the frequency of Type A and B in the general population is estimated to be 1 in 250,000.⁵³² Type B is discussed in the Narrative Review section of this report. Type C is discussed under the heading "Other Lipidoses" within this Systematic Review.

Type A is the most severe form, occurring in infants and characterized by jaundice, an enlarged liver, and brain damage, with life expectancy of 3 years.²⁶¹ Reports of HSCT on 3 Type A patients have been found in the literature (Table 93).

Study	Design	Median Age in Years (Range) at Treatment	Sex (M%)	Treatment, Year	Followup Period (yrs)	Enzyme Activity	Neuro-cognitive Outcomes	Neuro-developmental Outcomes	Adverse Effects
Morel, Canada, 2007 ⁵³³	case report	2.5	0	HSCT, NR	2.7	\checkmark	\checkmark	\checkmark	\checkmark
Bayever, US, 1995 ⁵³⁴	case series (n=2)	7 mos (4-10 mos)	100	HSCT, NR	2.0	\checkmark	\checkmark	\checkmark	\checkmark

Table 93. Study characteristics and population for Niemann-Pick Type A

Refer to Appendix E Table E1 for details of neurocognitive and neurodevelopmental outcomes. In summary, a case report of a patient with Niemann-Pick Type A who underwent HSCT at 3 months of age, showed initial normal neurocognitive and neurodevelopmental progress, followed by brain atrophy at 0.6 years post-transplant, and the onset of seizure disorders and developmental delays by 1.7 years post-transplant.533 At the time of the report, the patient was alive at 2.7 years' followup. Two patients receiving HSCT continued to decline neurocognitively and neurodevelopmentally, and died 2 years post-transplant, from natural progression of disease.534 Autopsy of one patient showed very little enzyme present in target tissues of brain and liver.534

Evidence for Niemann-Pick Type A, which has a life expectancy of 3 years, consists of 1 case report and 1 case series.533, 534 HSCT did not prevent neurocognitive and neurodevelopmental decline in these patients. Based on these reports, HSCT does not show a benefit for Niemann-Pick Type A.

Mucolipidosis II (I-cell Disease)

Mucolipidosis II is an autosomal recessive disorder caused by a defective enzyme, N-acetylglucosamine-1-phosphotransferase, which is instrumental in the transport of enzymes. This defect causes a deficiency of lysosomal enzymes in fibroblasts, and an excess of lysosomal enzymes in tissues and extracellular fluids.⁵³⁵ This is a rare, panethnic disorder with an estimated frequency of 1 in 640,000 live births.⁵²⁴

The skeletal system is most severely affected. Death from progressive psychomotor retardation, pneumonia, or congestive heart failure usually occurs in early childhood. Symptom management of this disease includes antibiotics for respiratory infections and nutritional supplements.

There are reports of four cases of mucolipidosis II undergoing HSCT (Table 94).⁵³⁶⁻⁵³⁸ One mucolipidosis II patient was included in the retrospective study of 81 patients in the Japan Marrow Donor Program. The patient failed to engraft and no further information on that case could be separated from the aggregate data in that study.⁵²⁵

Study	Design	Median Age, Yrs (Range) at Treatment	Sex (M%)	Treatment, Year	Followup Period (yrs)	Enzyme Activity	Neuro-cognitive Outcomes	Neuro-developmental Outcomes	Adverse Effects
Li, China, 2004 ⁵³⁶	case series (n=1)*	1.0	0	HSCT, 1999-2003 (for series)	2.0 (for series)	NR	NR	NR	\checkmark
Grewal, US, 2003 ⁵³⁷	case report	1.6	0	HSCT, NR	5.0	\checkmark	\checkmark	\checkmark	\checkmark
Imaizumi, Japan, 1994 ⁵³⁸	case series (n=1)*	0.7	0	HSCT, NR	5.6	\checkmark	\checkmark	\checkmark	\checkmark

Table 94. Study characteristics and population for mucolipidosis II

Refer to Appendix E Table E1 for details of neurocognitive and neurodevelopmental outcomes. In summary, one patient in a case series of combined diseases, did not have neurocognitive or neurodevelopmental followup, only adverse events reported.⁵³⁶ The patient experienced infectious complications, grade 2 skin aGVHD, and skin cGVHD. The patient was alive at last followup, which had a median of 2 years for the case series.⁵³⁶ One patient with delayed language skills continued to develop neurocognitively after HSCT, although abilities remained below real age. The patient's gross motor skills remained at level of a 1.5 year-old and fine motor skills were slowly developing through 5-years of followup.⁵³⁷ At the time of the report, the patient was alive at 5 years' followup. One patient with severe psychomotor retardation prior to HSCT gained developmental milestones of a 4- to 8-month old. The patient had no change in joint contractures and skeletal symptoms and died of disease progression at 5.6 years post-transplant.⁵³⁸

There was mention in one of the discussion sections⁵³⁷ of a personal communication with another physician who reportedly used HSCT to treat a patient with mucolipidosis II and that at 1 year post-transplant, the patient showed improvement in development and growth retardation. To our knowledge, this case has not been published.

Evidence for this disease which has a life expectancy of less than 1 decade, consists of three case reports. One patient died at 5.6 years post-transplant of disease progression, one is alive at 2 years' followup but with unknown neurological status, and the other patient was reported as showing progress neurocognitively, although below real age levels, and attends a special school. Based on these three patients with differing outcomes, there is uncertainty as to the benefit of HSCT for I-cell disease.

Cystinosis

Cystinosis is a rare autosomal recessive disease caused by a defect in cystinosin, which is needed to transport cystine out of lysosomes, which then results in the accumulation of cystine crystals in most major organs of the body.⁵³⁹ The incidence is estimated at 1 in 100,000-200,000, although the incidence in French Canadians may be higher.⁵⁴⁰ There are three types of cystinosis: classic nephropathic cystinosis, a rare adolescent form, and a mild adult-onset form.

Symptoms in the classic form present in the first year of life. Progressive renal damage and end stage renal failure is the usual cause of death, commonly within the first decade of life.⁵³⁹ The adolescent form of the disease is milder with a slower progression to renal failure. The adult form is benign, with no renal involvement.⁵⁴⁰ Renal transplant, oral cysteamine therapy, cysteamine eyedrops, and dialysis have prolonged survival into adulthood for patients with the nephropathic form.⁵³⁹ No studies of HSCT to treat cystinosis were found in the literature.

Infantile Sialic Acid Storage Disease

Infantile free sialic acid storage disease (ISSD) is a rare autosomal disorder caused by the accumulation of free sialic acid in lysosomes, due to a defect in the lysosomal membrane transport system.⁵⁴¹ More than 27 ISSD cases have been reported. Dysmyelination of the brain occurs in ISSD. Symptoms present at birth and life expectancy is about a year, with cause of death commonly from respiratory infections.⁵⁴² Disease management is symptom specific. No studies of HSCT to treat ISSD were found in the literature.

Diseases With Slow Progression

Hunter Syndrome (Mucopolysaccharidosis Type II)

Hunter Syndrome is a rare X-linked recessive disorder caused by a deficiency of the enzyme iduronate sulfatase, needed to degrade heparin sulfate and dermatan sulfate. The disease is panethnic, with an estimated incidence in Europe between 1 in 110,000–300,000; a higher incidence of 1 in 34,000 has been noted in the Jewish population living in Israel.⁵⁴³

There are two clinical forms of the disease, severe and attenuated. Onset of symptoms in the severe form occur at age 2 to 4 years. Survival can be expected into the second decade of life. Cause of death is usually heart disease, from valvular, myocardial, and ischemic factors.²⁶³ In the attenuated form, symptoms begin later in life, with minimal to no CNS involvement. Survival can extend into the fifth to sixth decade of life.²⁶³

Treatment is symptom specific: developmental, occupational, and physical therapy; shunting for hydrocephalus; tonsillectomy and adenoidectomy; positive pressure ventilation; carpal tunnel release; cardiac valve replacement; inguinal hernia repair; and hip replacement.⁵⁴⁴ HSCT has been attempted in MPS II patients, with both the severe (n=8) and attenuated forms (n=10), in attempts to slow or stop the progression of the disease (Table 95). An enzyme replacement therapy, Elaprase®, was approved by the FDA in 2006 for treatment of MPS II, following clinical trials which proved efficacy in patients with the attenuated form of the disease, aged 5-31 years.

Refer to Appendix E Table E2 for details of neurocognitive and neurodevelopmental outcomes. In summary, among 32 patients undergoing HSCT, seven died of the treatment. In eight MPS II patients with the severe form, five showed decreases in neurocognitive scores⁵⁴⁵⁻⁵⁴⁷ and one showed stable scores.⁵⁴⁸ In 10 MPS II patients with the attenuated form, there are neurocognitive test scores for 6 patients. Four showed stable scores and two showed slight decreases in their neurocognitive scores.^{538, 545, 549, 550} Among the three case series and two case reports that did not specify if patients had the severe or attenuated form, there was neurocognitive information on three patients⁵⁴⁹: two patients showed neurocognitive decline and one patient was stable and attends a special school.

Of 32 MPS II patients undergoing HSCT, there was followup neurodevelopmental information for 19 patients. Improvements in joint stiffness were reported in 14 of the 19 patients, ^{538, 545, 548, 551-553} and one patient showed improvement in both fine and gross motor skills.⁵⁴⁸

The two clinical trials of enzyme-replacement therapy for MPS II patients reported pre- and post-treatment measurements for 6-minute walk tests.^{548, 554, 555} The 1-year followup in the Phase II/III trial (N=96) showed improvements in distance walked by the ERT weekly group (p=0.01) and the enzyme-replacement therapy every other week group (p=0.07) compared to the placebo group. The open label extension (n=12) reported that 8 patients improved and 4 experienced no change in walk test results after 1 year of followup.

Study	Design	Median Age in Years (Range) at Treatment	Sex (M%)	Treatment, Year	Followup Period (yrs)	Enzyme Activity	Neuro-cognitive Outcomes	Neuro- developmental Outcomes	Adverse Effects
Guffon, France, 2009 ⁵⁴⁵	case series (N=8)	4.6 (3.0-16.3)	100	HSCT, 1990-2000	5.0-14.0	\checkmark	\checkmark	\checkmark	\checkmark
Page, US, 2008 ⁵⁵⁶	case series (n=2)	<u><</u> 0.25	100	HSCT, 1998-2007	NR	NR	NR	NR	\checkmark
Tokimasa, Japan, 2008 ⁵⁵⁷	case series (n=1)*	5.8	100	HSCT, 2005	0.8	NR	NR	NR	\checkmark
Seto, Japan, 2001 ⁵⁵⁸	case series (n=3)	6.0 (2.0-9.0)	100	3 HSCT, NR, 7 not treated	7.0	NR	\checkmark	NR	NR
Takahashi, Japan, 2001 ⁵⁴⁷	comparative study (n=1)	4.7	100	1 HSCT, 2 not treated, NR	1.1	\checkmark	\checkmark	NR	NR
Mullen, US, 2000 ⁵⁵⁹	case report	0.8	100	HSCT, NR	2.2	\checkmark	\checkmark	\checkmark	\checkmark
Coppa, Italy, 1999 ⁵⁵¹	case report	3.0	100	HSCT, 1995	4.0	\checkmark	\checkmark		\checkmark
Vellodi, England, 1999 ⁵⁴⁹	case series (N=9)	1.7 (0.8-5.1)	100	HSCT, 1982-1991	7-14	\checkmark	\checkmark	\checkmark	\checkmark
Li, US, 1996 ⁵⁴⁸	case report	5.0	100	HSCT, NR	5.0	\checkmark	\checkmark		NR
McKinnis, US, 1996 ⁵⁴⁶	case report	2.4	100	HSCT, 1988	5.6	\checkmark	\checkmark	\checkmark	\checkmark
Coppa, Italy, 1995, 550	case report	2.8	100	HSCT, 1992	2	\checkmark	\checkmark	\checkmark	NR
Hooger-brugge, Netherlands, 1995 ⁵⁵³	case series (n=1)*	5.5	100	HSCT, NR	1.4	NR	NR	\checkmark	NR
Bergstrom, US, 1994 ⁵⁵²	case report	14.0	100	HSCT, NR	3	\checkmark	\checkmark	\checkmark	\checkmark
Imaizumi, Japan, 1994 ⁵³⁸	case series, (n=1)*	9.8	100	HSCT, NR	9.8	\checkmark	\checkmark	\checkmark	\checkmark
Muenzer, US, 2007 ⁵⁵⁴	open label ex-tension (N=9)	6.0-20.0	100	ERT, NR	1.0	\checkmark	NR	~	\checkmark
Muenzer, US, 2006 ⁵⁵⁵	RCT (N=64)	5.4-30.9	100	ERT, NR	1.0	\checkmark	NR		\checkmark

 Table 95. Study characteristics and population for mucopolysaccharidosis II (Hunter disease)

Evidence for the attenuated form of this disease with a life expectancy into adulthood, consists of three case reports and three case series. HSCT showed stabilization of cognitive skills in four of six patients. Though the numbers are small, HSCT may benefit MPS II patients with the attenuated form.

Evidence for the severe form of this disease with life expectancy into the second decade of life, consists of three case reports and one case series. Neurocognitive decline continued in seven of eight patients. Though the numbers are small, HSCT does not appear to benefit MPS II patients with the severe form.

Sanfilippo Syndrome (Mucopolysaccharidosis Type III)

Sanfilippo Syndrome is an autosomal recessive disorder, with an incidence of 1 in 70,000 births.⁵⁶⁰ There are four types of Sanfilippo Syndrome, differentiated by the specific enzyme deficiency needed to break down heparan sulfate (Type A: heparan sulfate sulfatase, Type B: N-acetyl-o-glucosaminidase, Type C: Acetyl CoA: o-glucosaminide N-acetyltransferase, and Type D: N-acetyl-o-glucosamine-6-sulfate sulfatase).

Type A is the most severe form. Unlike most mucopolysaccharidoses, Sanfilippo disease has milder somatic symptoms, but severe progressive CNS involvement.²⁶³ Initial clinical symptoms occur slowly from 1-6 years of age. Mental deterioration is progressive and severe by ages 6 to 10 years.⁵⁶⁰ Life expectancy is from 12-20 years, with cause of death primarily caused by cardiopulmonary arrest due to airway obstruction and/or pulmonary infection.²⁶³ Symptom management of this disease includes anticonvulsants and sedative medications to improve sleep quality. HSCT has been attempted in several MPS III patients (Table 96).^{553, 561-564}

Study	Design	Median Age, Yrs (Range) at Treatment	Sex (M%)	Treatment, Year	Followup Period (yrs)	Enzyme Activity	Neuro-cognitive Outcomes	Neuro-developmental Outcomes	Adverse Effects
Ringden, Sweden, 2006 ⁵⁶¹	case series (n=2)	NR	NR	HSCT, NR	0.4-14.0 (whole series)	NR	NR	NR	\checkmark
Lange, Brazil, 2006 ⁵⁶²	case series (n=1)*	6.0	0	HSCT, 1988-2000 (whole series)	3.3-14.2 (whole series)	NR	\checkmark	NR	\checkmark
Sivakumar, England, 1999 ⁵⁶³	comparative study (n=1)	0.6	100	1 HSCT, 1 not treated, NR	7.4	\checkmark	\checkmark	\checkmark	\checkmark
Hooger-brugge, Netherlands, 1995 ⁵⁵³	case series (n=3)	2.1 (1.7-4.7)	NR	HSCT, NR	2.4-7.2	NR	\checkmark	NR	NR
Vellodi, England, 1992 ⁵⁶⁴	case series (N=2)	1.5 (twins)	0	HSCT, NR	9.0	\checkmark	\checkmark	\checkmark	\checkmark

Table 30. Sludy characteristics and population for mucopolysaccharacteristics in (Sammippo disea	Table 96. Stud	v characteristics and	population for muco	oolysaccharidosis III	(Sanfilippo diseas
--	----------------	-----------------------	---------------------	-----------------------	--------------------

Refer to Appendix E Table E2 for details of neurocognitive and neurodevelopmental outcomes. In summary, one patient died 5 months post-transplant of pneumonia.⁵⁶¹ Of nine MPS III patients undergoing HSCT, there is neurocognitive followup information on six patients. There was a continuing deterioration in six patients^{553, 563, 564} and no significant improvement reported in one patient.⁵⁶²

There is neurodevelopmental information for three of the nine MPS III patients undergoing HSCT.^{563, 564} One patient experienced a slow and continuous decline in skeletal and muscular symptoms and was wheelchair-bound by 7.4 years after the transplant. This patient experienced the same physical deterioration as his untreated sibling.⁵⁶³ Twins experienced less neurodevelopmental decline compared to untreated brothers who were wheelchair-bound by the time they reached the age of the twins.⁵⁶⁴

Evidence for this disease with a life expectancy into the second decade consists of two case reports and two case series.^{553, 561, 562, 564} HSCT did not alter the neurocognitive decline but may have had some effect on the neurodevelopmental decline in two patients. Although the numbers are small, HSCT does not appear to benefit MPS III.

Morquio Syndrome (Mucopolysaccharidosis Type IV)

Morquio Syndrome is an autosomal recessive disorder with an estimated incidence of 1 in 200,000 births.⁵⁶⁵ There are two types, differentiated by which enzyme needed to degrade keratin sulfate is deficient (Type A: N-acetylgalactosamine 6-sulfatase, and Type B: β -galactosidase). Type A is the more severe form. Onset of symptoms occurs around 2 years of age. In most cases, normal intelligence is preserved.²⁶³ Life expectancy can extend into the third or fourth decade of life with the more severe form, while those with the milder form have been reported to live decades longer.²⁶⁴ Common causes of death include myelopathy, restrictive chest wall movement, and valvular heart disease.⁵⁶⁵ Spinal fusion to stabilize the upper cervical spine and prevent irreversible spinal cord injury can be a life-saving treatment for MPS IV patients. HSCT has been attempted on two MPS IV patients (Table 97).^{558, 566}

Study	Design	Median Age, Yrs (Range) at Treatment	Sex (M%)	Treatment, Year	Followup Period (yrs)	Enzyme Activity	Neuro-cognitive Outcomes	Neuro-developmental Outcomes	Adverse Effects
Seto, Japan, 2001 ⁵⁵⁸	case series (n=1)*	15.0	100	HSCT, NR	7.0	NR	NR	NR	NR
Gatzoulis, England, 1995 ⁵⁶⁶	case series (n=1)*	5.25	100	HSCT, NR	2.5 (mean for series)	NR	NR	NR	NR

Table 97. Study characteristics and population for mucopolysaccharidosis IV (Morquio syndrome)

Refer to Appendix E Table E2 for details of neurocognitive and neurodevelopmental outcomes. In summary, one patient was 15 years old at the time of transplant and a pretransplant MRI showed no pathological findings in the brain or spinal cord. The patient had mild bone deformities at the time of transplant, and there was no followup for this patient.⁵⁵⁸ From echocardiograph, aortic stenosis and left ventricular dilatation were detected in one patient prior to HSCT. There was no change in cardiac symptoms after HSCT.⁵⁶⁶

Evidence for this disease with a life expectancy that varies from adolescence into adulthood, is based on two cases of HSCT found in the literature. The reports did not provide any post transplant neurocognitive or neurodevelopmental followup data.

Fabry Disease

Fabry disease is an X-linked recessive disorder characterized by decreased activity of α -galactosidase A. The prevalence is estimated at 1/40,000-60,000 males.⁵²⁶ The onset of symptoms and the severity of the disease vary widely. Males may exhibit symptoms in childhood or adolescence, or remain asymptomatic into adulthood. Female carriers may be asymptomatic or have symptoms as severe as affected males.⁵²⁶ Pain episodes, called Fabry pain crises, consist of burning, tingling, and numbness in the hands and feet, and can last several hours to days.²⁶¹ Decline in kidney function in early adulthood is the main cause of premature death in Fabry disease. Cardiovascular disease is also a cause of premature death, with hypertension, mitral valve prolapse, or congestive heart failure occurring.²⁶¹

Renal transplantation and long-term hemodialysis have prolonged life in Fabry's disease patients, and enzyme-replacement therapy using recombinant alpha-galatosidase has been shown to be safe and effective.²⁶¹

Gaucher Disease Type III

Gaucher disease is caused by a deficiency in the enzyme glucocerebrosidase, which leads to an accumulation of glucosylceramide in the spleen, liver, lungs, bone marrow, and sometimes the brain.²⁶¹ There are three types of Gaucher disease. Gaucher Type I is discussed in the Narrative Review section. Gaucher Type II is discussed in the Systematic Review under diseases with rapid progression.

Gaucher Type III is the subacute neuronopathic form, usually beginning later in childhood or adolescence, with loss of muscle coordination and cognitive deterioration progressing more slowly than in Type II.²⁶¹ Gaucher Type III patients may live into adulthood. Enzyme replacement therapy can be used to alleviate severe visceral symptoms, but is not effective in altering the neurologic progression of the disease.²⁶¹ Combinations of enzyme replacement therapy using recombinant imiglucerase or velaglucerase, substrate reduction therapy using miglustat, and HSCT have been attempted in Type III Gaucher patients (Table 98).

Study	Design	Median Age in Years (range) at Treatment	Sex (M%)	Treatment, Year	Followup Period (yrs)	Enzyme Activity	Neuro-cognitive Outcomes	Neuro- developmental Outcomes	Adverse Effects
Goker-Alpan, US, 2008 ⁵⁶⁷	case series, N=32	1.3*	53	HSCT followed by ERT (n=2), NR; ERT only (n=30), NR	3-33	NR	V	NR	NR
Chen, Taiwan, 2007 ⁵⁶⁸	case report	5.8	0	HSCT, 2004	1.5	\checkmark	\checkmark	\checkmark	\checkmark
Ringden, Sweden, 1995 ³⁰³	case series, N=6	2.5	67	HSCT	5-11	\checkmark	\checkmark	\checkmark	\checkmark
Tsai, US, 1992 ⁵⁶⁹	case report	2.0	0	HSCT	2		\checkmark	\checkmark	\checkmark
Schiffman, Netherlands 2008 ⁵⁷⁰	Randomized control-led trial (N=30)	substrate reduction therapy (n=21), mean: 10.4 no treatment (n=9) mean: 9.9	substrate reduction therapy (n=21): 48 no treatmen t (n=9): 22	Substrate reduction therapy in combination with ERT, NR	2.0	NR	\checkmark	\checkmark	NR
El-Beshlawy, Egypt, 2006 ⁵⁷¹	case series (n=11)	mean: 6.14 range (1-16), this data is on the whole study population of 22 pts, which includes 11 with Gaucher Type I	NR	ERT, NR	0.4-2.2	V	NR	V	V
Chan, Malaysia, 2002 ⁵⁷²	case report	7.6	0	ERT, 1996-1998	4.5	NR	\checkmark	\checkmark	NR
Banjar, Saudi Arabia, 1998 ⁵⁷³	case series (n=3)	2.8 (2.0-3.0)	33	ERT, NR	2.5-3.5	NR	NR		NR
Schiffmann, Netherlands, 1997 ⁵⁷⁴	case series (N=5)	7.5 (3.5-8.5)	80	ERT, NR	up to 5 yrs		\checkmark	NR	NR
Erikson, Sweden, 1995 ⁵⁷⁵	case series (n=3)	4.8 (3.8-13.7)	33	ERT, NR	2.3 yrs				NR

Table 98. Study characteristics and population for Gaucher Type III

* Age at diagnosis.

Refer to Appendix E Table E2 for details of neurocognitive and neurodevelopmental outcomes. In summary, among eight patients undergoing HSCT (two case reports and one case series of 6 patients), five showed stable neurocognitive scores.^{561, 569} All eight patients showed improved growth, although skeletal symptoms persisted.^{561, 568, 569} A case series that included two patients that had HSCT followed by enzyme-replacement therapy, report only followup data.⁵⁶⁷ Both patients have borderline mental retardation at last followup, but the mental status prior to HSCT and enzyme-replacement therapy is not specified.

Of 23 Gaucher Type III patients treated with enzyme-replacement therapy, neurocognitive followup is available on nine patients. Seven of the nine patients showed stable neurocognitive function, ^{574, 575} one deteriorated clinically, ⁵⁷⁴ and one who was showing improvement following enzyme-replacement therapy, deteriorated when therapy was discontinued. ⁵⁷² Enzyme-replacement therapy improves growth, but cannot change skeletal deformities. In the enzyme-replacement therapy case series of 11 patients for which grading severity of marrow involvement was provided, one worsened, five remained constant, and five experienced complete improvement. ⁵⁷¹ In a 2-year randomized controlled trial of substrate reduction therapy (miglustat) with enzyme-replacement therapy (imiglucerase; n=21) compared to enzyme-replacement therapy alone (n=9), there was no significant difference between study groups using several neurocognitive measurements.

Evidence for HSCT for the treatment of Gaucher Type III which has a life expectancy extending into adulthood, consists of two case reports and two case series. In one case series, HSCT was followed by enzyme-replacement therapy. Among the patients who were treated with HSCT only, five of eight had stable neurocognitive scores at last followup. Among patients treated with enzyme-replacement therapy only, seven of nine had stable neurocognitive scores at last followup. Patients undergoing HSCT and patients treated with enzyme-replacement therapy have shown improved growth, although skeletal symptoms persist. HSCT appears to have a similar benefit compared to enzyme-replacement therapy.

Aspartylglucosaminuria

Aspartylglucosaminuria is a rare autosomal recessive disease characterized by a deficiency in the enzyme aspartylglucosaminidase, leading to an accumulation of glycoproteins in the liver, spleen, and thyroid. There is a higher prevalence of this disease in Finland, where the carrier frequency is estimated to be 1 in 36^{576} and the estimated incidence of the disease is 1 in 35,000. The estimated incidence outside of Finland is 1 in 2,000,000 births.

In the first year of life, recurrent infections, diarrhea, and hernia may occur. During adolescence, the intellectual disabilities worsen. The central nervous system is affected. Survival to mid-adulthood is expected, with most deaths attributed to pneumonia or other pulmonary complications.⁵⁷⁶ Anticonvulsant medications have been used to control seizures. HSCT has been attempted as a potential treatment of this disease (Table 99).

Study	Design	Median Age in Years (Range) at Treatment	Sex (M%)	Treatment, Year	Followup Period (yrs)	Enzyme Activity	Neuro-cognitive Outcomes	Neuro-developmental Outcomes	Adverse Effects
Malm, Sweden, 2004 ⁵⁷⁷	case series (N=2)	8.1 (5.8-10.4)	50	HSCT, 1996	5.0	\checkmark	\checkmark	\checkmark	\checkmark
Arvio, Finland, 2001 ⁵⁷⁸	comparative study (n=5)	2.75 (1.6-5.5)	40	HSCT, 1991-1997	1.0-7.6	NR	\checkmark	\checkmark	\checkmark
Autti, Finland, 1999 ⁵⁷⁹	comparative study (n=2)	2.3 (2.0-2.6)	100	HSCT, NR	4.0-7.0	\checkmark	\checkmark	NR	NR
Laitinen, Finland, 1997 ⁵⁸⁰	case report	1.5	100	HSCT, NR	0.33	\checkmark	NR	NR	NR

 Table 99. Study characteristics and population for aspartylglucosaminuria

Refer to Appendix E Table E2 for details of neurocognitive and neurodevelopmental outcomes. In summary, there were no reports of treatment-related mortality in the 10 patients undergoing HSCT. Of 10 patients with aspartylglucosaminuria undergoing HSCT, there is neurocognitive followup on nine. Two patients have improved concentration and cooperation.⁵⁷⁹ Two patients have stabilized developmentally at 5 years of age (real ages 15 and 11 years), and can speak in sentences and understand words in two languages.⁵⁷⁷ Five patients had, on average, lower developmental ages compared to 12 untreated patients, but direct comparisons may not be appropriate because the severity of disease differs widely in this disease. Two of the five transplanted patients were more severely retarded than any of the nontransplanted patients, potentially skewing the average age differential higher in the transplanted group.⁵⁷⁸

Evidence for aspartylglucosaminuria which has a life expectancy into mid-adulthood, consists of one case report and three case series, with a total of 10 transplants. Neurocognitive and neurodevelopmental measurements did not show clear improvements following HSCT. Small numbers in studies, and differences in severity of disease make interpretations of results difficult.

B-Mannosidosis

β-mannosidosis is a rare autosomal recessive disorder caused by a deficiency in the enzyme β-mannosidase, resulting in the accumulation of oligosaccarides in lysosomes. Twenty cases have been identified worldwide, but the incidence may be higher because people with milder symptoms may never be diagnosed.

The onset of symptoms varies from infancy to adolescence, and the severity of symptoms varies from relatively mild to moderately severe.⁵⁸¹ Mental retardation is present in all individuals with this disease. There is no cure for β -mannosidosis and treatment is symptom-specific.

No reports of HSCT for ß-mannosidosis patients have been found.

Mucolipidosis III (Pseudo-Hurler Polydystrophy)

Mucolipidosis III is a rare autosomal recessive disorder caused by a deficiency of the enzyme, N-acetylglucosamine-1-phosphotransferase. A defect of this enzyme affects the function of all lysosomal enzymes, which in turn causes the accumulation of a variety of substrates.⁵³⁵

Symptoms present between the ages of 4 to 5 years and include joint stiffness and short stature. Survival to adulthood is expected. There is no cure and treatment is symptom-specific, and may include: low-impact physical therapy for stiff joints, myringotomy tube placement for recurrent otitis media, tendon release for carpal tunnel syndrome, bilateral hip replacement for older adolescents with milder disease, and monthly bisphosphonate pamidronate IV for bone pain associated with osteoporosis.

No reports of HSCT for mucolipidosis III have been found.

Mucolipidosis IV

Mucolipidosis IV is a rare autosomal recessive disorder caused by a defect in the protein mucolipin-1, which is needed in the transport of lipids and proteins. This defect results in the build-up of lipids and proteins in lysosomes, affecting the development and maintenance of the brain and retinas.⁵⁸² An estimated 1 in 40,000 have mucolipidosis IV, with 70 percent having Ashkenazi Jewish ancestry.

There is a severe and more common form called typical mucolipidosis IV (about 95 percent) and a milder form called atypical mucolipidosis IV. In the severe form, mental and motor developmental delays occur within the first year of life. Most are unable to walk independently. Those with the milder form have less severe psychomotor and ophthalmic symptoms, and may be ambulatory. Life expectancy extends to adulthood, though a shorter life span is expected.⁵⁸²

Treatment is symptom-specific and may include: physical therapy for spasticity and ataxia, antiepileptic drugs, topical lubricating eyedrops, artificial tears, gels, or ointments for ocular irritation, and surgery for strabismus.

There are no reports of HSCT attempted in patients with mucolipidosis IV.

Niemann-Pick Disease C

Niemann-Pick disease is characterized by the accumulation of lipids in the spleen, liver, lungs, bone marrow, and the brain. There are three types of this disease. Type A is discussed in the "Sphingolipidoses" section of this Systematic Review and Type B is discussed in the Narrative Review section. The incidence of Type C is estimated to be 1 in 150,000 and is most common in Nova Scotia among those of French-Acadian descent.⁵²³

Prolonged neonatal jaundice may occur, with no other symptoms until 1-2 years later or potentially until teen or adult years, when the disease develops a slow, progressive neurodegenerative course.²⁶¹ Death may occur in the late second or third decade of life, commonly from aspiration pneumonia. Management of this disease is symptom-specific for seizures, dystonia, and cataplexy, and may include chest physical therapy with aggressive bronchodilation and antibiotics for recurrent infections and seizure management. A randomized controlled study using substrate reduction therapy versus standard care has been conducted, and there are two case reports of HSCT to treat this disease (Table 100).

Study	Design	Median Age in Years (Range) at Treatment	Sex (M%)	Treatment, Year	Followup Period (yrs)	Enzyme Activity	Neuro- cognitive Outcomes	Neuro- develop- mental Outcomes	Adverse Effects
Bonney, England, 2009 ⁵⁸³	case report	1.3	100	HSCT, NR	1.7	NR	\checkmark	\checkmark	\checkmark
Hsu, Taiwan, 1999 ⁵⁸⁴	case report	2.5	0	HSCT, NR	0.8	NR	\checkmark	\checkmark	\checkmark
Patterson, US, 2010 ⁵⁸⁵	open label extension (n=12)	Mean: 7.2 (4-11)	42	substrate reduction therapy, 2002- 2004	2.0	NR	NR	NR	\checkmark
Pineda, Spain, 2009 ⁵⁸⁶	retrospective cohort (n=66)*	Mean: 12.8 (0.6- 43.0)	47	substrate reduction therapy, NR	5.0	NR	\checkmark	\checkmark	NR
Pacior- kowski, US, 2008 ⁵⁸⁷	case report	1.6	0	substrate reduction therapy, NR	1.0	NR	\checkmark	\checkmark	\checkmark
Patterson, US, 2007 ⁵⁸⁸	RCT (n=12)*	Mean: 7.2 (4-11)	42	substrate reduction therapy, 2002- 2004	1.0	NR	\checkmark	\checkmark	\checkmark

 Table 100. Study characteristics and population for Niemann-Pick Type C

*Cannot separate adult and pediatric data in these studies.

Refer to Appendix E Table E2 for details of neurocognitive and neurodevelopmental outcomes. In summary, results from one case report of a patient with Niemann-Pick Type C undergoing HSCT showed that the transplant did not stop a progressive decline in developmental age, and an MRI confirmed brain atrophy. The patient became bedridden during the conditioning phase of the treatment. She never recovered developmentally following the transplant.⁵⁸⁴ The second case of HSCT showed a resolution of lung disease in the patient, and normal neurocognitive and neurodevelopmental progress, except for delayed speech.⁵⁸³ An abstract referenced in the most recent report of HSCT⁵⁸³ describes the resolution of lung disease in a Niemann-Pick Type C transplanted patient at 2 months post-transplant, but the patient died 3 months post-transplant of an adenovirus pulmonary infection.

Results from the randomized, controlled trial comparing substrate reduction therapy to routine symptom management and the retrospective cohort of substrate reduction therapy for Niemann-Pick Type C combined data for pediatric and adult patients.^{586, 588} The randomized, controlled trial did not find a significant difference in the mini-mental status examination (p=0.165) but found significantly improved ambulatory indexes in the treated group⁵⁸⁸ and the cohort study reported majority stable or improved scores in ambulation.⁵⁸⁶ The open-label extension study, which focused on pediatric patients, reported that eight of ten patients were stable in ambulation.⁵⁸⁵

Evidence for HSCT and Niemann-Pick Type C which has a life expectancy into the second to third decade, consists of two case reports. HSCT for one patient was not successful in stopping the neurocognitive and neurodevelopmental decline. One HSCT patient is developing normally at 1.7 years post-transplant. Based on two case reports, it is unclear if HSCT provides a benefit in the treatment of Niemann-Pick Type C.

Glycogen Storage Disease Type 2 (Pompe Disease)

Pompe disease is an autosomal recessive disorder caused by a deficiency in acid maltase, which results in the accumulation of lysosomal glycogen in tissues and cells. Cardiac, skeletal, and smooth muscle cells are the most seriously affected.⁵⁸⁹ The incidence is estimated at 1 in 40,000 live births. Age of onset and severity of symptoms varies among patients.

In infantile-onset Pompe disease, symptoms begin within the first few months of life and life expectancy is less than one year, with cause of death usually from cardiorespiratory failure or respiratory infection. The juvenile and adult-onset forms of the disease have either no or less severe cardiac involvement. Life expectancy ranges from early childhood to late adulthood, depending on the rate of disease progression. Respiratory failure is the most common cause of death.⁵⁸⁹ Several clinical trials of enzyme-replacement therapy in patients with infantile-onset Pompe disease have shown promising cardiac responses and variable skeletal responses to the treatment.^{590, 591}

There have been no reports of HSCT in the treatment of Pompe disease.

Salla Disease

Salla disease is a type of sialic acid storage disease, which is a rare autosomal disorder caused by the accumulation of free sialic acid in lysosomes, due to a defect in the lysosomal membrane transport system.541 Salla disease is autosomal recessive. One hundred twenty Salla disease cases have been reported. Patients appear normal at birth, then develop psychomotor delay and ataxia during infancy, as dysmyelination of the brain occurs. Life expectancy is slightly reduced.541 Disease management is symptom-specific.

There are no reports of HSCT used to treat Salla disease.

Adrenomyeloneuropathy

Adrenomyeloneuropathy is a variant of the X-linked recessive disorder, adrenoleukodystrophy, which is discussed in the Narrative Review section of this report. These disorders are caused by the accumulation of very long chain fatty acids in the brain and adrenal cortex, due to a deficiency in the enzyme that breaks down fatty acids.⁵⁹² About 40 percent of males with adrenoleukodystrophy develop adrenomyeloneuropathy, which presents in their late twenties as a chronic disorder of the spinal cord and peripheral nerves.⁵⁹³ The severity of symptoms varies greatly, even within one family. Depending on the severity of symptoms, life expectancy can reach late adulthood, though ambulation with a cane or walker may be necessary. HSCT has been shown to prevent the progression of symptoms in adrenoleukodystrophy if performed prior to the development of neurological symptoms.

A single case of HSCT for a 39-year-old male with adrenomyeloneuropathy was found in the literature.⁵⁶¹ No pediatric cases treated with HSCT have been reported.

Diseases With Forms That Progress Rapidly and Slowly

Farber Disease

Farber disease is an autosomal recessive disorder characterized by a deficiency in ceramidase, resulting in the accumulation of ceramide in various tissues, the central nervous system, and most notably the joints. Fifty cases of this disease have been reported in the literature.⁵⁹⁴

Symptoms can begin in the first few weeks of life.²⁶¹ Nodules forming on the vocal cords cause hoarseness and breathing difficulties, which sometimes require the insertion of a breathing tube. Life expectancy in Type 1, the more severe form which has central nervous system involvement, is 2 years of age with progressive neurological deterioration as cause of death. Patients with the milder form, Type 2/3 with either no or mild central nervous system symptoms, can live to their teenage years with chronic respiratory failure as the most common cause of death.⁵⁹⁵

Physical therapy or surgery may provide relief of contractures, and surgery to remove nodules, granulomas, and possibly enlarged lymph nodes may be recommended. Hematopoietic stem-cell transplantation has been attempted in two patients with Type 1 Farber and in five patients with Type 2/3 Farber (Table 101).

Study	Design	Median Age in Years (Range) at Treatment	Sex (M%)	Treatment, Year	Followup Period (yrs)	Enzyme Activity	Neuro-cognitive Outcomes	Neuro- developmental Outcomes	Adverse Effects
Ehlert, Germany, 2006 ⁵⁹⁶	case series (n=3)	3.8 (2.0-3.9)	33	HSCT, NR	0.5-1.2	NR	NR	\checkmark	\checkmark
Vormoor, Germany, 2004 ⁵⁹⁷	case series (n=2)	3.9 (3.8-3.9)	50	HSCT, NR	0.9-1.2	NR	NR	\checkmark	\checkmark
Yeager, US, 2000 ⁵⁹⁸	case report	0.8	0	HSCT, NR	2.3	\checkmark	\checkmark	\checkmark	\checkmark
Hoogerbrugge, Netherlands, 1995 ⁵⁵³	case series (n=1)*	1.5	NR	HSCT, NR	0.5	NR	\checkmark	\checkmark	NR

Table 101. Study characteristics and population for Farber's disease

Refer to Appendix E, Table E3 for details of neurocognitive and neurodevelopmental outcomes. In summary, no treatment-related mortality was reported in the seven patients with Farber disease undergoing HSCT. There is neurocognitive followup on the two patients with Type 1 Farber disease with CNS involvement. In one patient at the time of transplant, her developmental age was equivalent to her real age. After 1.4 years followup, at age 2.1 years, her developmental age had deteriorated to 0.6 years.⁵⁹⁸ The second Type I patient had mental regression prior to the transplant, which worsened following the transplant. This patient died 6 months post-transplant of disease progression.⁵⁵³ No neurocognitive followup was provided for the five Farber disease patients who had Type 2 disease, which has little or no CNS involvement.

The five patients reported in the case series on Farber Type 2/3 had nodule and joint inflammation. HSCT was successful in reducing the number of subcutaneous nodules and reducing the number of joints with limited range of motion in five of five patients.^{596, 597}

Evidence for Type 1 Farber disease with CNS involvement and a life expectancy of 2 years, consists of one case report and one case series. HSCT did not stop the neurocognitive deterioration in these patients. Evidence for Type 2 Farber disease without CNS involvement and a life expectancy extending into the second decade, consists of two case series. In all five patients with Farber Type 2/3 undergoing HSCT, both the number of subcutaneous nodules and the number of joints with limited range of motion were reduced. Based on these five patients, HSCT appears to improve the quality of life of patients with Farber Type 2/3.

GM1 Gangliosidosis

GM₁ gangliosidosis is an autosomal recessive disorder caused by a deficiency in βgalactosidase. There are three subtypes, classified by age at presentation: infantile (type 1), juvenile (type 2), and adult (type 3). Estimated incidence is 1 in 100,000-200,000 live births.⁵⁹⁹ The infantile form, which can present as early as six months, is characterized by overall developmental retardation and generalized seizures. Survival is 2-4 years, with death most commonly due to aspiration pneumonia. Symptoms in the juvenile form begin around 1 year and are primarily neurological. Progression of this form of the disease is slow, and survival through the fourth decade of life is possible. The adult form is a slowly progressive disease characterized by spasticity, ataxia, dysarthria, and loss of cognitive function.⁶⁰⁰

Research in the areas of enzyme replacement therapy and gene therapy for this disease are ongoing, but have not advanced to human trials.⁵⁹⁹ A case report describes the use of HSCT to treat a patient with the juvenile form of the disease (Table 102).

Study	Design	Median Age in Years (Range) at Treatment	Sex (M%)	Treatment, Year	Followup Period (yrs)	Enzyme Activity	Neuro-cognitive Outcomes	Neuro-developmental Outcomes	Adverse Effects
Shield, England, 2005 ⁶⁰¹	case report	0.6	100	HSCT, NR	7	\checkmark	1	Z	NR

Table 102. Study characteristics and population for GM₁ gangliosidosis

Refer to Appendix E, Table E3 for details of neurocognitive and neurodevelopmental outcomes. In summary, a case report of a patient with GM₁ gangliosidosis juvenile form describes a slow deterioration in neurocognitive and neurodevelopmental measurements.⁶⁰¹

There have been no reports of HSCT for the infantile form of GM_1 gangliosidosis, which has a life expectancy of 2 to 4 years. Evidence for the juvenile form of GM_1 gangliosidosis, which has a life expectancy extending into the second through fourth decade, consists of 1 case report. Based on this case report, HSCT did not alter the course of the disease.

Tay-Sachs Disease

Tay-Sachs disease is an autosomal recessive disorder caused by a deficiency in the isoenzyme hexosaminidase A, resulting in the accumulation of GM_2 ganglioside in the brain. The Ashkenazi Jewish population is most at risk, with a carrier rate estimated at 1 in 30.⁶⁰⁰ There are infantile-, juvenile-, and adult-onset forms of the disease. In the infantile form, patients have no hexosaminidase A enzyme and in the juvenile and adult forms, patients have low levels of hexosaminidase A enzyme. The infantile form is the most severe, and other than a marked startle reaction to noise, infants appear normal until about 6 months of age when developmental delays begin. Life expectancy is 4 to 5 years, with aspiration or bronchopneumonia the most common causes of death.²⁶¹ The juvenile and adult forms are rare and symptoms are less severe.

Anticonvulsant medication to control seizures, proper hydration to keep airways open, and feeding tubes to provide nutritional supplements have been recommended. HSCT, substrate reduction therapy, and a combination of both, have been attempted on several Tay-Sachs disease patients (Table 103).

Study	Design	Median Age in Years (Range) at Treatment	Sex (M%)	Treatment, Year	Followup Period (yrs)	Enzyme Activity	Neuro-cognitive Outcomes	Neuro- developmental Outcomes	Adverse Effects
Page, US, 2008 ⁵⁵⁶	case series (n=1)*	0.06	NR	HSCT, 1998-2007 for whole series	4.6	NR	NR	NR	\checkmark
Hooger-brugge, Nether- lands,1995 ⁵⁵³	case series (n=1)*	1.1	NR	HSCT, NR	1.7	NR	\checkmark	\checkmark	NR
Jacobs, Nether- lands, 2005 ⁶⁰²	case report	3.8	0	HSCT, with substrate reduction therapy added at 2 yrs post- HSCT, NR	2.0	V	V	\checkmark	NR
Maegawa, Canada, 2009 ⁶⁰³	single arm (n=2)	13.1 (10.1-16.0)	0	substrate reduction therapy, NR	2.0	NR	\checkmark	V	\checkmark

Table 103. Study characteristics and population for Tay-Sachs disease

Refer to Appendix E, Table E3 for details of neurocognitive and neurodevelopmental outcomes. Two case series of HSCT to treat several different diseases included one patient with Tay-Sachs in each series (disease form not specified). One patient died at 4.6 years post-transplant of a possible infection.⁵⁵⁶ The other patient had psychomotor retardation at the time of transplant and further regressed to a vegetative state at 1.7 years' followup.⁵⁵³

The case report⁶⁰² was of a patient with the juvenile form of Tay-Sachs. In the case report, brain MRI, EEG, and neuropsychological tests showed neurological deterioration at 1.5 years post-transplant. At that time, substrate reduction therapy was initiated, but was not successful in stopping the deterioration. Neurodevelopmental followup in this case report showed motor skills deteriorating by 0.5 years post-transplant in this patient; her deterioration was comparable to her untreated sister's.

Among the two patients with the juvenile form who were treated with substrate reduction therapy,⁶⁰³ one who had mild cognitive impairment pretreatment experienced an acute psychotic event at 1.3 years post-treatment, and one who had severe cognitive impairment pretreatment had increased spasticity and seizures post-treatment. The 2 Tay-Sachs disease patients with the juvenile form of the disease who were treated with substrate reduction therapy, continued to have neurodevelopmental decline following the treatment.

Evidence for the juvenile form of Tay-Sachs disease which has a life expectancy of 15 years, consists of one case report. The patient continued to show neurocognitive and neurodevelopmental decline similar to what was experienced in the untreated sibling. Based on this case report, HSCT does not show a benefit in the treatment of the juvenile form of Tay-Sachs disease.

Ceroid Lipofuscinosis

Neuronal ceroid lipofuscinoses are autosomal recessive disorders which are the most common class of neurodegenerative diseases in children.⁶⁰⁰ A defect in the enzyme that degrades fatty acylated proteins causes the storage of autofluorescent lipopigments in lysosomes.⁶⁰⁴ Worldwide incidence of this disease is estimated at 1 in 20,000-100,000, but the incidence is higher in Finland.⁶⁰⁰

Depending on which gene is affected, symptoms may begin during early infancy, late infancy, or during juvenile years. Symptoms develop by the end of age 1 in the early infantile form with life expectancy from 6 to 13 years. In the late infantile form, symptoms begin from 2 to 4 years of age, with a life expectancy extending from 6 to 40 years. In the juvenile form, symptoms begin between 5 to 10 years of age with a life expectancy from teens to thirties.⁶⁰⁰

There is no cure for these disorders and treatment is symptom-specific: antiepileptic drugs and benzodiazepines for seizures, anxiety, and spasticity, gastric tubes for swallowing problems, and antidepressants and antipsychotic agents for patients with the juvenile form. HSCT has been performed in several patients with the early infantile form of the disease (Table 104).

Table 104. Study characteristics and population for certia inpolucitosis	Table 104. Stud	y characteristics and population for ceroid lipofucinosis
--	-----------------	---

Study	Design	Median Age in Years (Range) at Treatment	Sex (M%)	Treatment, Year	Followup Period (yrs)	Enzyme Activity	Neuro-cognitive Outcomes	Neuro- developmental Outcomes	Adverse Effects
Lonnqvist, Finland, 2001 ⁶⁰⁵	case series (n=3)	0.3 (0.3-0.6)	33.3	HSCT, 1996-1998	2-4	\checkmark	\checkmark	\checkmark	NR

Refer to Appendix E, Table E3 for details of neurocognitive and neurodevelopmental outcomes. Neurocognitive decline continued in three of three patients with ceroid lipofuscinosis with the infantile form undergoing HSCT, as measured by cerebral cortical atrophy and periventricular white matter hyperintensity. HSCT did not prevent the neurodevelopmental decline in the three patients with infantile ceroid lipofuscinosis. By followup of 2 to 4 years, all three were hypotonic and spastic.

Evidence for this disease which has a life expectancy of 6-13 years, consists of one case series of three patients. The procedure was unable to stop the neurocognitive and neurodevelopmental decline in all three patients. Based on this case series, HSCT does not show a benefit of HSCT for the treatment of infantile ceroid lipofuscinosis.

Galactosialidosis

Galactosialidosis is a rare autosomal recessive condition in which there is a deficiency of two lysosomal enzymes, neuraminidase and β -galactosidase. This enzyme deficiency causes the accumulation of oligosaccharides in many tissues such as the liver, bone marrow, and brain.⁵⁷⁶ There are three forms which differ by age of onset of symptoms and symptom severity. One-hundred cases have been reported, with 60 percent of the juvenile/adult forms in patients of Japanese descent.⁶⁰⁶

In the early infantile form, fluid accumulation begins before birth. Life expectancy does not extend beyond late infancy, with kidney failure or cardiomegaly as common causes of death. Symptoms in the late infantile form of the disease are similar to those in the early infantile form, though less severe and the onset is later in the first year of life. Life expectancy can extend into the second decade of life, depending on severity of symptoms. The juvenile/adult form of the disease is least severe, with symptoms first occurring usually in the teen years. There is no cure for galactosialidosis and treatment is symptom specific.

A retrospective study of 81 patients in the Japan Marrow Donor Program who underwent unrelated bone marrow transplantations for immunodeficiency and metabolic diseases reported a single case of galactosialidosis within its study population.⁵²⁵ The form of galactosialidosis was not specified in the report. Outcomes were cumulative overall and event-free survival, and cumulative acute and chronic graft-versus-host disease. Engraftment occurred in the galactosialidosis case, but no other information on that case could be separated from the aggregate data.

Sandhoff's Disease

Sandhoff's disease is caused by a deficiency in both hexosaminidase A and B, resulting in the accumulation of GM₂ ganglioside in lysosomes. Symptoms are similar to those in Tay-Sachs disease, presenting at about 6 months of age. Life expectancy is 3 years of age.⁶⁰⁰ Symptom management includes anticonvulsant medication to control seizures, and proper hydration and nutrition to keep airways open.

A case of a patient with Sandhoff's disease undergoing HSCT is reported in the literature, but the form of the disease is not specified (Table 105). There is also a single arm study reporting the use of substrate reduction therapy in 3 patients with Sandhoff's disease (juvenile form).

Table 105. Stud	y characteristics and	population for Sandhoff's disease
-----------------	-----------------------	-----------------------------------

Study	Design	Median Age in Years (Range) at Treatment	Sex (M%)	Treatment, Year	Followup Period (yrs)	Enzyme Activity	Neuro-cognitive Outcomes	Neuro-developmental Outcomes	Adverse Effects
Ringden, Sweden, 2006 ⁵⁶¹	case series (n=1)*	NR	NR	HSCT, NR	0.4-14 (for whole series)	NR	NR	NR	\checkmark
Maegawa, Canada, 2009 ⁶⁰³	single arm (n=3)	18 (8.7-20.1)	67	Substrate reduction therapy, NR	2.0	NR	\checkmark	\checkmark	\checkmark

Refer to Appendix E, Table E3 for details of neurocognitive and neurodevelopmental outcomes. In summary, there is no neurocognitive or neurodevelopmental information in the patient with Sandhoff's disease (form unspecified) who underwent HSCT. The three patients with Sandhoff's disease who were treated with substrate reduction therapy experienced stable neurocognitive scores, but neurodevelopmental decline occurred.⁶⁰³ One became wheelchair dependent by 1.8 years post-treatment, and two had gait disturbance.

Evidence for Sandhoff's disease consists of one case report. The report did not specify if the patient had the infantile form or the juvenile form of the disease. No neurocognitive or neurodevelopmental followup information on the single Sandhoff's disease patient was provided; no conclusions on effectiveness can be made.

Adverse Effects

Table 106 summarizes the adverse effects reported in patients undergoing HSCT for inherited metabolic disorders.

Ongoing Research

"Stem Cell Transplantation for Inborn Errors of Metabolism," a study sponsored by the Masonic Cancer Center of the University of Minnesota, is ongoing and no longer recruiting. The study is comparing patients treated by bone marrow, peripheral blood, or umbilical cord blood transplantation after March 2001 with historical controls. Outcomes to be measured include: survival, change in neuropsychometric function, rate of donor cell engraftment, rate of graft-versus-host disease, and toxicity of HSCT therapy. Patients with the following diseases were eligible to participate in the study: adrenoleukodystrophy, metachromatic leukodystrophy, globoid cell leukodystrophy, Gaucher disease, fucosidosis, Wolman's disease, Niemann-Pick disease, Batten disease, GM₁ gangliosidosis, Tay-Sachs disease, and Sandhoff disease. The study began in January 1995 and the estimated study completion date was June 2010.

Progression of Disease	Adverse Effect	Description	Disease	Study
		- unknown cause, probable infection at 4.6 yrs post	Tay-Sachs	Page, 2008 ⁵⁵⁶
	Treatment-related mortality	2 of 4 pts in study: - pt 2: at 2.5 mos post, hepatorenal failure, pulmonary failure, coagulopathy, sepsis - pt 3: at 8 mos post, sepsis and liver	Wolman disease	Tolar, 2009 ⁵³¹
		- grade 3 skin and liver in 2 of 4 pts - grade 3 skin in 1 of 4 pts	Wolman disease	Tolar, 2009 ⁵³¹
		-grade 3 skin and gut in 1 of 1 pt	Wolman disease	Styczynski, 2011 ⁵³⁰
		- grade 2 in 1 of 1 pt	Tay-Sachs	Page, 2008 ⁵⁵⁶
	aGVHD	- skin rash in 1 of 1 pt	Niemann-Pick Type A	Morel, 2007 ⁵³³
Rapid		- mild skin rash in 1 of 1 pt	Wolman disease	Stein, 2007 ⁵²⁹
		- grade 2, skin in 1 of 1 pt	Mucolipidosis II	Li, 2004 ⁵³⁶
		- grade 2, gastrointestinal	Mucolipidosis II	Grewal, 2003 ⁵³⁷
		- moderately severe diarrhea in 1 of 2 pts	Niemann-Pick Type A	Bayever,1995 534
		- skin, in 1 of 1 pt	Mucolipidosis II	Li, 2004 ⁵³⁶
	COVID	- gastrointestinal, in 1 of 2 pts	Niemann-Pick Type A	Bayever, 1995 ⁵³⁴
		- candida parapsilosis sepsis in 1/1 pt	Wolman disease	Gramatges, 2009 ⁵²⁷
	Infectious complications	- sepsis in 2 of 4 pts	Wolman disease	Tolar, 2009 ⁵³¹
		- cytomegalovirus and anigenemia in 1 of 1 pt	Wolman disease	Stein, 2007 ⁵²⁹
		- coagulase-negative staphylococcus septicemia in 1 of 1 pt	Mucolipidosis II	Li, 2004 ⁵³⁶
		- single pt had post-tx lymphoproliferative disease at 0.8 yrs post- HSCT	MPS II	Tokimasa 2008 ⁵⁵⁷
Slow	Treatment-related mortality	 4 of 9 pts died <100 days post-HSCT, 2 from sepsis and 2 from aGVHD 1 pt died 4 yrs post-HSCT from tx-related obliterative bronchiolitis 1 pt died of GVHD, at an unknown followup time 	MPS II	Vellodi 1999 ⁵⁴⁹
		- 1 of 2 died mos post-HSCT of pneumonia	MPS III	Ringden, 2006 ⁵⁶¹
		- 1 of 1 pt died of S. pneumonia sepsis at 2 yrs post	Gaucher Type III	Tsai, 1992 ⁵⁶⁹

Table 106. Adverse effects for treatment (HSCT) in IMD patients
Progression of Disease	Adverse Effect	Description	Disease	Study
		- grade 1 skin in 1 of 1 pt	Niemann-Pick Type C	Bonney, 2009 ⁵⁸³
		- grade 1 in 1 of 1 pt	MPS II	Tokimasa 2008 ⁵⁵⁷
		 Grade 3 skin and Grade 2 gastrointestinal aGVHD at 2 wks post-HSCT and a skin rash at 17 wks post-HSCT in 1 of 1 pt 	MPS II	Mullen 2000 ⁵⁵⁹
		- moderate aGVHD in 1 of 3 surviving pts	MPS II	Vellodi 1999 ⁵⁴⁹
		- grade 1 in 1 of 2 pts - grade 2 in 1 of 2 pts	Farber's disease, Type 2/3	Vormoor, 2004 ⁵⁹⁷
	agvind	- grade 1 in 1 of 3 pts - grade 2 in 2 of 3 pts	Farber's disease, Type 2/3	Ehlert, 2006 ⁵⁹⁶
		- Gr 1 mild skin rash in 1 of 1 pt	Gaucher Type III	Chen, 2007 ⁵⁶⁸
		 severe skin, gastrointestinal, and liver aGVHD in 1 of 2 pts grade 1 skin aGVHD in 1 of 2 pts 	aspartylglucosa-minuria	Malm, 2004 ⁵⁷⁷
		- grade 1 in 1 of 1 pt	Niemann-Pick Type C	Hsu, 1999 ⁵⁸⁴
		- severe in 2 of 2 pts	MPS III	Vellodi, 1992 ⁵⁶⁴
		- severe hemolytic anemia at 9 mos post in 1 of 1 pt	MPS II	Mullen 2000 ⁵⁵⁹
Slow	COVID	- severe in 2 of 2 pts	MPS III	Vellodi, 1992(⁵⁶⁴
3107		- septicemia (MRSA) in 1 of 1 pt	MPS II	Tokimasa 2008 ⁵⁵⁷
		 2 episodes of gram-positive bacteremia, one of limited gastrointestinal bleeding while thrombocytopenic, and one mucositis requiring parenteral nutrition for several wks in 1 of 1 pt 	MPS II	Mullen 2000 ⁵⁵⁹
		 rotavirus gastroenteritis leading to severe hypoalbuminanemia and cerebral edema in 1 of 3 surviving pts 	MPS II	Vellodi 1999 ⁵⁴⁹
	Infectious	 grade 2 mucositis in 1 of 2 pts grade 3 mucositis in 1 of 2 pts 	Farber's disease, Type 2/3	Vormoor, 2004 ⁵⁹⁷
	complications	 cytomegalovirus in 2 of 3 pts mucositis in 2 of 3 pts clostridium difficile enteritis in 1 of 3 pts 	Farber's disease, Type 2/3	Ehlert, 2006 ⁵⁹⁶
		staphylococcus epidermis sepsis in 1 of 1 pt	Gaucher Type III	Chen, 2007 ⁵⁶⁸
		 herpetic keratitis in 1 of 5 pts pneumonia in 1 of 5 pts 	aspartylglucosaminuria	Arvio, 2001 ⁵⁷⁸
		- sepsis in 2 of 2 pts	MPS III	Vellodi A, 1992 ⁵⁶⁴
	Seizures	 generalized tonic-clonic seizure occurred 3 days prior to transplant, attributed to conditioning regimen (busulfan) 	Niemann-Pick Type C	Hsu, 1999 ⁵⁸⁴

Table 106. Adverse effects for treatment (HSCT) in IMD patients (continued)

Conclusions

Rapidly Progressive Diseases

- High strength evidence on overall survival suggests a benefit with single HSCT compared to conventional management for Wolman's disease.
- Low strength evidence on overall survival suggests no benefit with single HSCT compared to symptom management or disease natural history for Niemann-Pick Type A.
- The body of evidence on overall survival with single HSCT compared to symptom management is insufficient to draw conclusions for mucolipidosis II (I-cell disease), Gaucher disease type II, cystinosis and infantile free sialic acid disease.

Slowly Progressive Diseases

- Low strength evidence on neurodevelopmental outcomes suggests a benefit with single HSCT compared to enzyme replacement therapy for the attenuated and severe forms of MPS II (Hunter's disease).
- Low strength evidence on neurocognitive outcomes suggests a benefit with single HSCT compared to enzyme replacement therapy for the attenuated form of MPS II (Hunter's disease).
- Low strength evidence on neurocognitive outcomes suggests no benefit with single HSCT compared to enzyme replacement therapy for the severe form of MPS II (Hunter's disease).
- Low strength evidence on neurocognitive outcomes suggests no benefit with single HSCT compared to enzyme replacement therapy for Gaucher Type III.
- Low strength evidence on neurocognitive or neurodevelopmental outcomes suggests no benefit with single HSCT compared to symptom management, substrate reduction therapy or disease natural history for MPS III (Sanfilippo).
- The body of evidence on neurocognitive or neurodevelopmental outcomes with single HSCT compared to symptom management and/or disease natural history is insufficient to draw conclusions for Niemann-Pick type C, MPS IV (Morquio syndrome), aspartylglucosaminuria, Fabry's disease, β-mannosidosis, mucolipidosis III or IV, glycogen storage disease type II (Pompe disease), Salla disease, and adrenomyeloneuropathy.

Disease With Both Rapidly and Slowly Progressive Forms

- High strength evidence on number of subcutaneous nodules and number of joints with limited range of motion suggests a benefit with single HSCT compared to symptom management or disease natural history for Farber's disease Type 2/3.
- Low strength evidence on neurocognitive outcomes suggests no benefit with single HSCT compared to symptom management or disease natural history for infantile ceroid lipofuscinosis.
- The body of evidence on overall survival and/or neurocognitive and neurodevelopmental outcomes with single HSCT compared to symptom management and or disease natural history is insufficient to draw conclusions for galactosialidosis (type unspecified) and Sandhoff disease (type unspecified), Farber's disease type I, infantile and juvenile forms

of $GM_{1,}$ infantile and juvenile forms of Tay-Sachs, infantile GM_{1} gangliosidosis, and juvenile ceroid lipofuscinosis.

Autoimmune Diseases Systematic Review

Type 1 Diabetes Mellitus

Background and Setting

Type 1 diabetes mellitus (DM1) is a T-cell mediated autoimmune disease characterized by selective, relentless and irreversible destruction of insulin-producing pancreatic beta-cells.⁶⁰⁷ DM1 is the most common autoimmune disorder in childhood, with an estimated incidence of 15,000 newly diagnosed cases in the U.S. annually based on 2002-2003 data.⁶⁰⁸ The disease typically is clinically diagnosed after approximately 60 to 80 percent of beta-cell mass has been destroyed.⁶⁰⁹ At this stage of disease, exogenous insulin treatment is required to maintain glucose homeostasis and survival. While DM1 comprises 5-10 percent of all diabetic causes, it is ultimately associated with a high frequency of vascular-related complications, including heart disease, stroke, blindness, and renal disease, with highly compromised quality of life and life expectancy.⁶¹⁰

According to the U.S. Centers for Disease Control and Prevention, diabetes was the seventh leading cause of death listed on U.S. death certificates in 2006. Intensive insulin therapy (IIT) represents the gold standard treatment for DM1, to maintain tight control of blood glucose levels, as reflected by levels of HbA1C. IIT is delivered by multiple daily injections or by continuous subcutaneous infusion. Both methods have been shown to decrease the risk of diabetic retinopathy, nephropathy, and neuropathy by 39 to 90 percent and reduce their rate of progression by 39 to 60 percent when compared to standard insulin therapy with 1 to 2 injections daily.⁶¹¹ However, IIT is complicated by lack of patient acceptance and compliance, cannot fully prevent diabetic complications, and is associated with increased risk of severe hypoglycemia compared to standard therapy.

While DM1 does not typically develop into a fulminant, life-threatening form, it is a relentlessly progressive disorder despite IIT. The natural history may be transiently altered, but not halted, by coadministration of IIT and immune modulating therapies that include cyclosporine, azathioprine, prednisone, etanercept, and antithymocyte globulin (ATG).⁶⁰⁷ These approaches may induce a slower decline or some initial improvement in C-peptide levels, which directly reflect beta-cell mass and endogenous insulin production. However, the majority of patients continue to require increasing amounts of exogenous insulin. Furthermore, the toxic effects of immune suppressants, concerns about potential risks associated with immune suppression, and the need for continuous treatment in an otherwise healthy young population limit the use of these agents in conjunction with IIT.

For these reasons, based on a theory of possible reconstitution of immune tolerance after "immunologic reset," nonmyeloablative autologous HSCT has been investigated as a way to effect an intense, but brief, immune suppression and preserve islet cell mass in children with newly diagnosed DM1. It is hypothesized that early intervention with HSCT will prevent the development of DM1-associated complications, improve quality of life, and ultimately increase life expectancy in this population. The effects of HSCT on insulin use and C-peptide levels will be compared to those parameters in children treated with IIT, in the context of adverse events associated with HSCT and IIT.

Evidence Summary

The overall grade of the strength of evidence for insulin independence and the use of HSCT for the treatment of autoimmune type I juvenile diabetes mellitus is shown in Table 107.

Evidence compiled for this review includes one prospective Phase I/II study of autologous HSCT (n=18 pediatric patients) that reported pre- and post-HSCT data on C-peptide levels and daily insulin use. Comparator data were obtained from the IIT control arms of two studies (total n=35) in newly diagnosed pediatric DM1 patients.

In the HSCT study, among 18 pediatric patients, the majority (89 percent) became free from insulin, either continuously (63 percent) or transiently (37 percent). Insulin independence was maintained for 7 to 52 months at total followup that ranged from 9 to 56 months. Among the 6 patients who resumed insulin, daily doses were lower than prior to HSCT. There was no treatment-related mortality in the HSCT study.

Table 107. Overall grade of strength of evidence for insulin independence and the use of HSCT for the treatment of autoimmune Type I diabetes mellitus

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/ Conclusion
For pediatric patients with newly diagnosed (within 4 weeks) autoimmune type 1 diabetes mellitus (DM1) what are the comparative effectiveness and harms of autologous HSCT and intensive insulin therapy (IIT). Outcomes of interest include long-term insulin independence, metabolic control, treatment-related mortality, and other long-term benefits and harms. Insulin independence is the key outcome of interest. Nonmyeloablative autologous HSCT is compared to IIT.	One Phase I/II prospective observational study (n=18) is available on the benefits and harms associated autologous HSCT using nonmyeloablative conditioning. For IIT, evidence was derived from the arms of two studies that compared IIT to conventional therapy in similar populations. One was an RCT and one an observational study.	The risk of bias is high.	The consistency of the evidence on long-term benefits and harms is unknown. The evidence is consistent in showing that an extended insulin-free interval can be achieved with autologous HSCT in children with newly diagnosed DM1.	Insulin independence in the short term can be considered a health outcome in itself. There is direct evidence that a prolonged interval of insulin independence can be achieved with autologous HSCT. There is indirect evidence for comparison of long-term benefits and harms between HSCT and IIT.	The precision of the evidence for long-term benefits and harms of HSCT is unknown. The evidence that an extended interval of insulin independence can be achieved with autologous HSCT is precise.	Not applicable due to lack of obvious effect size for adverse events including TRM. Strong strength of association for achieving an extended period of insulin independence following HSCT (16 of 18, 89%), averaging 31 months (range 14-52 months)	The overall body of evidence is insufficient to draw conclusions on long-term benefits or harms with single autologous HSCT in patients with newly diagnosed type I juvenile diabetes. Although the overall body of evidence is insufficient to come to conclusions about the relative balance of benefits (e.g., increased overall survival) or harms (treatment-related mortality, secondary malignancies), moderate strength evidence suggests that an extended interval of insulin independence can be achieved with single autologous HSCT in patients with newly diagnosed type I juvenile diabetes.

The electronic literature search identified 15 citations relevant to HSCT and DM1, from which seven were retrieved for full-text screening, including those found in examination of the bibliographies of retrieved articles. A total of three reports were included in this review.⁶¹²⁻⁶¹⁴

Table 108 shows the criteria that were used to select studies for this section.

Study Design	Population	Intervention	Comparator	Outcomes	Followup	Setting
Any study design	Pediatric patients (0-21 yrs) with newly diagnosed DM1 (within 6 weeks prior to study entry)	Nonmyeloablative autologous HSCT	Intensive insulin therapy	Serum C-peptide levels, HbA1C and daily insulin requirement pre- and post-HSCT	All durations of followup	In- or out- patient

Table 108. Study selection criteria: Type I DM

Table 109 shows the characteristics of one Phase I/II study of HSCT,⁶¹² and the IIT control arms of two randomized trials that compared IIT with IIT plus an immunosuppressant agent.⁶¹³, ⁶¹⁴ All three studies included pediatric patients with DM1 who had been clinically diagnosed within 6 weeks prior to study entry.

In the HSCT study, peripheral blood hematopoietic stem cells were mobilized with cyclophosphamide (2 g/m^2) and granulocyte colony-stimulating factor $(10 \mu \text{g/kg daily})$.⁶¹² Patients were conditioned with a nonmyeloablative regimen comprising cyclophosphamide (50 mg/kg daily for 4 days) and rabbit antithymocyte globulin (0.5 mg/kg daily for 1 day, then 1 mg/kg daily for 4 days) prior to stem cell infusion. The IIT studies utilized 3 to 4 injections of short- or intermediate-acting insulin, with blood glucose levels monitored and maintained as near to normal as possible.^{613, 614}

Study	Design	Age Range (yrs)	Mean Age (yrs)	Sex M (%)	Disease Stage	HSCT (N)	Comparator (N)	Treatment Period
Couri et al. 2009 ⁶¹²	Prospective phase I/II	13-21	16	67	Newly diagnosed	18	Not applicable	11/2003- 04/2008
Crino et al. 2005 ⁶¹³	Retrospective	NR	14	NR	Newly diagnosed	Not applicable	27	NR
Mastrandrea et al. 2009 ⁶¹⁴	Randomized, double-blind	8-18	12	38	Newly diagnosed	Not applicable	8	10/2002- 10/2007

Table 109. Type 1 juvenile diabetes mellitus study characteristics and population

Table 110 shows the outcomes that were reported across the studies included in this report.

Study	Δ C-peptide Level*	∆ Daily Insulin Requirement	Δ HbA1c*	Treatment- Related Mortality	Other Adverse Effects
Couri et al. 2009 ⁶¹²	\checkmark				
Crino et al. 2005 ⁶¹³				NR	
Mastrandrea et al. 2009 ⁶¹⁴				NR	

Table 110. Outcomes reported: Type I DM

* See Appendix F for data

Insulin Requirements

Daily pretransplant insulin use ranged from 0.13 to 0.59 IU/kg in the HSCT study.⁶¹² Insulin was suspended in 16 of 18 (89 percent) pediatric patients following HSCT.⁶¹² Among the 16 who became insulin-independent, 10 were reported continuously free for an average of 31 months (range: 14-52 months) at followup times that ranged from 9 to 56 months. Patients who ultimately resumed insulin remained free from its use for about 15 months (range 7 to 47 months), at followup times that ranged from 9 to 58 months. However, daily insulin doses after exogenous treatment was resumed were relatively small, ranging from 0.1 to 0.3 IU/kg, compared to premobilization doses that ranged from 0.13 to 0.44 IU/kg, maintaining good glucose control.

In one IIT study, daily insulin use averaged 0.91 ± 0.28 IU/kg at study entry, with no significant change at 12 or 24 months (0.61 ± 0.28 and 0.70 ± 0.24 IU/kg, respectively).⁶¹³ In the second IIT study, average daily insulin use at 6 months was reported to have increased by 23 percent from that at baseline (p<0.05) but the dose was not specified.⁶¹⁴ No patients became insulin independent in either study.

Adverse Events

No treatment-related mortality was reported in the HSCT study.⁶¹² One post-conditioning case of bilateral pneumonia was reported that responded quickly to intravenous broad-spectrum antibiotics. With long-term followup, six cases of oligospermia were reported, and one case of leukopenia. The majority of adverse effects in the HSCT study were mild and included nausea, vomiting, fever, and alopecia.

No severe adverse effects were reported with IIT in either study.^{613, 614}

Ongoing Research

According to the website ClinicalTrials.gov, five clinical studies are recruiting pediatric patients, as shown in Table 111. None of these originates in the U.S. Of the ongoing trials, only one offers a comparison between autologous mesenchymal stem cells and placebo (NCT01157403).

Study Title	Phase	Intervention	NCT ID
Autologous Transplantation of Mesenchymal Stem Cells for Treatment of Patients with Inset of Type 1 Diabetes	11/111	Autologous	01157403
Autologous Hematopoietic Stem Cell Transplantation for Early Onset Type 1 Diabetes	Ш	Autologous	00807651
Hematopoietic Stem Cell Transplantation in Type 1 Diabetes Mellitus	1/11	Autologous	01121029
Safety and Efficacy of Autologous Stem Cell Transplantation for Early Onset Type 1 Diabetes Mellitus	1/11	Autologous	00315133
Safety and Efficacy of Autologous Adipose-Derived Stem Cell Transplantation in Patients with Type 1 Diabetes	1/11	Autologous	00703599

Table 111. Ongoing clinical trials of HSCT in DM1

Conclusion

The overall body of evidence is insufficient to draw conclusions on long-term benefits or harms with single autologous HSCT in patients with newly diagnosed type I juvenile diabetes.

Moderate strength evidence suggests that an extended interval of insulin independence can be achieved with single autologous HSCT in patients with newly diagnosed type I juvenile diabetes.

Systemic Lupus Erythematosus

Background and Setting

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that is associated with inflammation and eventual organ damage.⁶⁰⁷ It may involve any organ system, with a wide range of disease severity. The exact cause of SLE is unknown. Diagnosis of SLE is the same regardless of age at onset, and is based on a combination of laboratory and clinical criteria. SLE is likely if four of the 11 revised American College of Rheumatology (ACR) criteria are present in a patient simultaneously or over time.⁶¹⁵

SLE is rare in childhood, with an estimated incidence of 10 to 20 per 100,000 children, with some variation depending on ethnicity. Juvenile-onset SLE (prior to age 18 years) accounts for 15 to 20 percent of cases,⁶¹⁶ which in general have a more severe presentation, faster development of organ damage, and a higher disease burden over a lifetime. For all age groups, 5-year survival rates have improved with advances in management of organ damage and complications, from 59 to 93 percent in the 1980s to 94 to 100 percent by the late 1990s.⁶¹⁷ Patients aged younger than 24 years have the highest rate of SLE-related all-cause mortality, about 8-fold greater than the average for all SLE cases.⁶¹⁸

The clinical course of SLE is marked by the alternation of periods of active disease and quiescence. However, children and adolescents with SLE enter adult life with considerable morbidity, secondary to sequelae of disease activity, side effects of medications, and comorbid conditions. The most common symptoms of SLE include fever, rash, fatigue, weight loss, arthritis, and renal disease.⁶¹⁹ Lupus nephritis is one of the main clinical presentations of pediatric SLE, and it determines the course of illness as the major threat to long-term survival. Other major manifestations include neuropsychiatric, cardiac, and lung.

SLE has no known cure. Depending on severity, it is often treated with high-dose corticosteroids and immune suppressants, which are responsible for much of the permanent organ damage observed in these patients. Other treatments include hydroxychloroquine, cyclophosphamide, cyclosporine A, mycophenolate mofetil, azathioprine, nonsteroidal anti-inflammatory drugs (NSAIDs), rituximab, and abatacept.⁶⁰⁷ Only three agents have received U.S. Food and Drug Administration marketing approval for SLE: corticosteroids, hydroxychloroquine, and aspirin.

Autologous HSCT has been used to treat a small number of pediatric SLE cases, all of which have been severe, life-threatening, and refractory to nearly all drug therapies, with a dismal prognosis. Accordingly, this systematic review will present only results from HSCT reports, with the comparison being usual care.

Evidence Summary

The overall grade of strength of evidence for drug-free clinical remission and the use of HSCT for the treatment of severe, refractory systemic lupus erythematosus is shown in Table 112.

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
For pediatric patients with severe, refractory systemic lupus erythematosus (SLE) what are the effectiveness and harms of autologous HSCT and drug therapies? Outcomes of interest include long-term drug-free clinical remission, TRM, and other long-term benefits and harms. All patients in these studies had severe, refractory disease, with dismal prognosis, so the comparator is usual care and natural history.	There are 7 reports on autologous HSCT (total n = 17); the largest, a phase I/II study, contains information on 9 pediatric patients.	The risk of bias is high.	The consistency of the evidence on long-term benefits and harms is unknown. The evidence is consistent in showing an extended drug- free interval and clinical remission can be achieved with autologous HSCT.	Drug-free clinical remission of severe, refractory SLE in the short- term is considered a health outcome. There is direct evidence that an extended drug- free clinical remission can be achieved with autologous HSCT. The evidence comparing usual care is indirect.	The precision of the evidence for long-term benefits and harms is unknown. The evidence that an extended drug-free clinical remission can be achieved with autologous HSCT is precise. The precision of the evidence comparing usual care is unknown.	Not applicable due to lack of obvious effect size for adverse events including TRM. Strong strength of association for achieving an extended period of drug-free clinical remission following HSCT (12 of 17, 71%), ranging in duration from 4 to 66 months.	The overall body of evidence is insufficient to draw conclusions on long-term benefits or harms with single autologous HSCT for the treatment of severe, refractory SLE in children. Although the overall body of evidence is insufficient to come to conclusions about the relative balance of benefits (e.g., increased overall survival) or harms (treatment-related mortality, secondary malignancies), moderate strength evidence suggests that an extended drug-free clinical remission can be achieved with single autologous HSCT for the treatment of severe, refractory SLE in children.

Table 112. Overall grade of strength of evidence for drug-free clinical remission and the use of HSCT for the treatment of severe, refractory systemic lupus erythematosus

Overall, 12 of 17 (71 percent) SLE patients treated with autologous HSCT entered a state of complete drug-free remission, for periods that ranged from about 4 months⁶²⁰ to 66 months.⁶²¹ The former reflects the followup time at preparation of the paper. In the largest series (n=9), patients experienced complete drug-free remission for a median 24 months, and a range of 12 to 66 months.⁶²¹

Three studies reported SLE Disease Activity Index (DAI) score changes pre- and post-HSCT.⁶²¹⁻⁶²⁴ Patients who underwent autologous HSCT and experienced a complete drug-free remission had substantial reduction in their SLEDAI scores. In one study, two of four patients succumbed to treatment-related mortality, one at 63 days from multiorgan failure, the other on day 15 due to multiple causes.⁶²³

Results

A total of seven reports were included in this review. Table 113 shows the criteria that were used to select studies for this section.

Study Design	Population	Intervention	Comparator	Outcomes	Followup	Setting
Any study design	Pediatric patients (0-21 yrs) with severe, refractory systemic lupus erythematosus (SLE)	Autologous HSCT	None applicable	Survival, drug-free remission post- HSCT, HSCT- related adverse events	All durations of followup	In- patient

Table 113. Study selection criteria: SLE

Table 114 shows the characteristics of studies of autologous HSCT in 17 patients (16 female) aged 13-21 years with SLE. All had severe, life-threatening SLE that was refractory to most first- and second-line drugs, variously including corticosteroids, pulsed cyclophosphamide, 6-mercaptopurine, azathioprine, plasmapheresis, and hydroxychloroquine. Although rituximab and abatacept have been studied in adults with SLE, we did not identify any studies of those agents in the pediatric setting. Outcomes reported are included in Table 115. Five studies used only peripheral blood stem cells.^{620-622, 625, 626} One used bone marrow

Five studies used only peripheral blood stem cells.^{620-622, 625, 626} One used bone marrow cells;⁶²⁴ and, one used both sources.⁶²³ Conditioning regimens typically included cyclophosphamide plus ATG; two studies included total-body irradiation,^{624, 626} and one used modified BEAM regimens with ATG.⁶²³

Study	Design	Age Range (yrs)	Mean Age (yrs)	Sex F (%)	Disease Stage	HSCT (N)	Comparator (N)	Treatment Period
Statkute, 2005 ⁶²¹	Case series	15-21	19	100	Severe, refractory, including WHO class III/IV renal, cardiac, CNS, and pulmonary involvement	9	N/A	04/1997- 08/2004
Chen, 2005 ⁶²²	Case reports	13, 18	NR	100	Severe, refractory, including WHO class III/IV nephritis	2	NA	1996, 2001
Lisukov, 2004 ⁶²³	Case series	15-21	19	100	Severe, refractory, with SLEDAI score ranging from 6-30, with WHO class III/IV nephritis, CNS, cardiac, pulmonary and life-threatening cytopenias	4	NA	1998-2003
Brunner, 2002 ⁶²⁵	Case report	18	NR	100	Severe, refractory, with WHO class IV nephritis, cutaneous vasculitis, pneumonitis, with mechanical ventilation	1	NA	2000
Musso, 2001 ⁶²⁰	Case reports	17, 20	NR	100	Severe, life-threatening, refractory	2	NA	NR
Wulffraat, 2001 ⁶²⁴	Case reports	14, 14	NR	50	Severe, life-threatening, refractory, with WHO class IV nephritis, hemorrhagic pneumonitis, pancytopenia, vasculitis, polyarthritis	2	NA	NR
Trysberg, 2000 ⁶²⁶	Case report	18	NR	100	Severe, progressive life-threatening, refractory CNS lupus	1	NA	1998

Table 114. Systemic lupus erythematosus study characteristics and population

Study	Complete Drug- Free Remission (%)	SLEDAI Score (pre-post)	TRM	Other Adverse Effects
Statkute, 2005 ⁶²¹	\checkmark	NR	\checkmark	\checkmark
Chen, 2005 ⁶²²	\checkmark		\checkmark	\checkmark
Lisukov 2004 ⁶²³	\checkmark	\checkmark	\checkmark	NR
Brunner, 2002 ⁶²⁵	\checkmark	NR	NR	\checkmark
Musso, 2001 ⁶²⁰		NR	\checkmark	
Wulffraat, 2001 ⁶²⁴	\checkmark	\checkmark	\checkmark	\checkmark
Trysberg, 2000 ⁶²⁶	NR	NR	\checkmark	

Table 115. Outcomes reported: SLE

Complete Drug-Free Remission

Table 116 shows the proportions of patients with severe, refractory SLE who entered a state of complete drug-free remission following intense immune suppression and autologous HSCT. Overall, 12 of 17 (71 percent) entered a state of complete drug-free remission, for periods that ranged from about 4 months⁶²⁰ to 66 months.⁶²¹ The former reflects the followup time at preparation of the paper. In the largest series, patients experienced complete drug-free remission for a median 24 months, and a range of 12 to 66 months.⁶²¹

Complete Drug-Free Remission (%)	Duration of Complete Drug-Free Remission (Months)	Study
78 (n=9)	Median 24 (rng 12-66)	Statkute, 2005 ⁶²¹
2 of 2	9, 44	Chen, 2005 ⁶²²
25 (n=4)	>60	Lisukov, 2004 ⁶²³
1 of 1	21	Brunner, 2002 ⁶²⁵
2 of 2	>30, >3.8	Musso, 2001 ⁶²⁰
2 of 2	12, 18	Wulffraat, 2001 ⁶²⁴
NR	NR	Trysberg, 2000 ⁶²⁶

Table 116. Complete drug-free remission in patients with SLE undergoing autologous HSCT

Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) Score

Three studies reported SLEDAI score changes pre- and post-HSCT,⁶²²⁻⁶²⁴ as shown in Table 117. In studies that reported this outcome, patients who underwent autologous HSCT and experienced a complete drug-free remission had substantial reduction in their SLEDAI scores.

Table 117. Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) Score

Pre-HSCT SLEDAI Score (Mean ± SD)	Post-HSCT SLEDAI Score	Study
NR	NR	Statkute, 2005 ⁶²¹
6, 12	0, 0	Chen, 2005 ⁶²²
19 ± 10	<3	Lisukov, 2004 ⁶²³
NR	NR	Brunner, 2002 ⁶²⁵
NR	NR	Musso, 2001 ⁶²⁰
20, 27	0, 8	Wulffraat, 2001 ⁶²⁴
NR	NR	Trysberg, 2000 ⁶²⁶

Mortality and Other Serious Adverse Events Associated With Autologous HSCT

As shown in Table 115, six studies reported information on treatment-related mortality among autologous HSCT recipients.^{620-624, 626} In one study, 2 of 4 patients succumbed to treatment-related mortality, one at 63 days from multiorgan failure, the other on day 15 due to multiple causes.⁶²³ Other than those mentioned, all other adverse effects of the autologous HSCT conditioning regimens were reported by the authors to be mild to moderate and without clinical sequelae.

Ongoing Research

According to the Web site ClinicalTrials.gov, two clinical studies are recruiting pediatric patients, as shown in Table 118.

Study Title	Phase	Intervention	NCT ID
Cyclophosphamide and rATG/Rituximab in Patients With Systemic Lupus Erythematosus	П	Autologous HSCT	NCT00278538
Mesenchymal Stem Cells Transplantation for Refractory Systemic Lupus Erythematosus (SLE)	1/11	Allogeneic HSCT	NCT00698191

Table 118. Ongoing clinical trials of HSCT in SLE

Conclusion

The overall body of evidence is insufficient to draw conclusions on long-term benefits or harms with single autologous HSCT for the treatment of severe, refractory SLE in children.

Moderate strength evidence suggests that an extended drug-free clinical remission can be achieved with single autologous HSCT for the treatment of severe, refractory SLE in children.

Juvenile Idiopathic Arthritis (JIA)

Background and Setting

Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic condition in children, with a prevalence of between 16 and 150 per 100,000.⁶⁰⁷ It is defined as persistent arthritis in one or more joints in a child or adolescent less than 16 years old, after excluding other causes. According to the current International League of Association of Rheumatologists (ILAR) the term JIA refers to seven different disease categories: systemic, persistent oligoarticular, extended oligoarticular, polyarticular rheumatoid factor (RF) negative, polyarticular RF positive, enthesitis-related arthritis, and psoriatic.⁶²⁷

While the cause of JIA is not defined, evidence suggests altered immune system function, particularly T-cell regulation, has a major role in the pathogenesis of joint damage and disease progression.^{628, 629} JIA subtypes vary by the number of joints involved, and by age of onset. The most common form is the early onset (before age 6 years) oligo- or mono-articular JIA, with 1 to 4 asymmetrical joints affected, a high frequency of positive antinuclear antibodies (ANA), and high risk (30 percent) of chronic uveitis. These forms have generally good prognosis, and may be managed with intra-articular steroids and physiotherapy.⁶²⁷

At the other end of the spectrum, systemic-onset JIA is distinct from other JIA subtypes, with a systemic inflammatory component. While about 50 percent of cases will have a waxing and waning course, with favorable long-term prognosis, the other 50 percent will have an unremitting course with polyarthritis; prolongation of active systemic illness past 6 months is a particularly bad prognostic sign.⁶⁰⁷ Despite current treatment that includes methotrexate, corticosteroids,

biological response modifiers (blocking agents of TNF-alpha, IL-1, IL-6) or blockers of costimulatory immune cell-surface molecules (e.g., CD28 or CD20),and other immune suppressants, most children with systemic polyarticular JIA do not achieve long-term clinical remission.^{607, 627} More than one-third will have ongoing active disease into adulthood, with sequelae secondary to chronic inflammation. Those who do not respond to early use of antirheumatic agents will experience considerable morbidity from joint damage, osteoporosis, growth retardation, psychosocial morbidity, reduced quality of life and educational and employment disadvantage.⁶²⁷

Autologous HSCT has been used to treat a small number of pediatric JIA cases, all of which have been severe, progressive and refractory to standard drug therapies. Accordingly, this systematic review will present only results from HSCT reports, compared to usual care and the disease course.

Evidence Summary

The overall grade of strength of evidence for drug-free clinical remission and the use of HSCT for the treatment of severe, refractory juvenile idiopathic arthritis is shown in Table 119.

Overall the evidence signals that autologous HSCT following chemotherapy-induced immune suppression may be associated with prolonged resolution of JIA into a drug-free, much-improved state. Among all cases reported, 21 of 43 (56 percent) achieved extended drug-free remission for 3 to 60 months. In the largest series, drug-free remission was reported in 53 percent, with a median duration of 29 months. There were four cases of treatment-related mortality, with no other reports of long-term benefits and harms.

Table 119. Ove	erall grade of strength o	f evidence for drug-free clinio	al remission and the use	of HSCT for the treatment of seve	re,
refractory juve	enile idiopathic arthritis				

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
For pediatric patients with severe, refractory juvenile idiopathic arthritis (JIA) what is the comparative effectiveness and harms of autologous HSCT and drug therapies? All patients in these studies had severe, refractory disease, with very poor prognosis, so the comparator is usual care and natural history. Outcomes of interest include extended, drug- free clinical remission, TRM, and other long- term benefits and harms.	There are 4 single-arm and case reports (total n = 43). The largest, a registry report, contains information on 34 pediatric patients.	The risk of bias is high.	The consistency of the evidence on long-term benefits and harms is unknown. The evidence is consistent in showing an extended drug-free interval and clinical remission can be achieved with autologous HSCT.	Drug-free clinical remission of severe, refractory JIA in the short- term is considered a health outcome. There is direct evidence that an extended drug- free clinical remission can be achieved with autologous HSCT. The evidence comparing usual care is indirect.	The precision of the evidence for long-term benefits and harms is unknown. The evidence that an extended drug-free clinical remission can be achieved with autologous HSCT is precise. The precision of the evidence comparing usual care is unknown.	Not applicable due to lack of obvious effect size for adverse events including TRM. Strong strength of association for achieving an extended period of drug-free clinical remission following HSCT (24 of 43, 56%),averaging 30 months duration (range 6 to 60 months).	The overall body of evidence is insufficient to draw conclusions on long-term benefits or harms with single autologous HSCT for the treatment of severe, refractory JIA in children. Although the overall body of evidence is insufficient to come to conclusions about the relative balance of benefits (e.g., increased overall survival) or harms (treatment-related mortality, secondary malignancies), moderate strength evidence suggests that an extended drug-free clinical remission can be achieved with single autologous HSCT for the treatment of severe, refractory JIA in children.

A total of four reports were included in this review.⁶³⁰⁻⁶³³ Table 120 shows the criteria that were used to select studies for this section.

Study Design	Population	Intervention	Comparator	Outcomes	Followup	Setting
Any study design	Pediatric patients (0-21 yrs) with severe, refractory progressive juvenile idiopathic arthritis (JIA)	Autologous HSCT	None applicable	Survival, drug-free remission post- HSCT, HSCT- related adverse events	All durations of followup	In- patient

Table 120. Study selection criteria: JIA

Table 121 presents the study characteristics and populations of 4 reports on the use of autologous HSCT treatment in patients with JIA. All patients had severe, refractory illness, mostly systemic (79 percent) but also polyarticular (21 percent). The largest experience is from the registry of the EBMT, which reports on 34 of 41 total patients who had received autologous HSCT at nine European centers.⁶³⁰ Four cases were treated in Japan^{631, 632} and five were from Italy.⁶³³ Patients ranged in age from 3 to 21 years, with 49 percent females and 51 percent males.

Among 43 cases, 26 (60 percent) used bone-marrow stem cells, 12 (28 percent) used peripheral-blood stem cells, and the stem-cell source was not identified for five.⁶³³ Various conditioning regimens were reported, typically involving cyclophosphamide and ATG.

Study	Design	Age Range (yrs)	Mean Age (yrs)	Sex F (%)	Disease Stage	HSCT (N)	Comparator (N)	Treatment Period
De Kleer, 2004 ⁶³⁰	Registry report	4-18	9	44	Severe, refractory systemic (n=29) or polyarticular (n=5)	34	NA	Since 1997
Kishimoto, 2003 ⁶³¹	Case reports	3-21	12	67	Severe, refractory systemic disease	3	NA	NR
Nakagawa, 2001 ⁶³²	Case report	15	NA	Male	Severe, refractory systemic disease	1	NA	1999
Rabusin, 2000 ⁶³³	Case series	9-20	15	80	Severe, refractory systemic (n=1) and systemic polyarticular (n=4)	5	NA	NR

Table 121. Juvenile idiopathic arthritis study characteristics and population

Table 122 shows outcomes that were reported in the four studies in this systematic review. Complete drug-free remission is the key outcome, which is generally defined as disappearance of signs and symptoms of JIA and cessation of antirheumatic agents.

Table 122. Outcomes reported: JIA

Study	Complete Drug-Free Remission (%)	TRM and Other Adverse Events
De Kleer, 2004 ⁶³⁰		
Kishimoto, 2003 ⁶³¹		
Nakagawa, 2001 ⁶³²		
Rabusin, 2000 ⁶³³		

Complete Drug-free Remission

Overall, 56 percent of patients in these reports achieved a complete drug-free remission following autologous HSCT (Table 123). In the largest study, a complete drug-free response was achieved in 53 percent of cases, for an average duration of about 2.5 years, although some patients maintained this response for 60 months.⁶³⁰ In the Rabusin series, four of five (80 percent) patients achieved a complete drug-free response at 3 months' followup, with a relapse in one at 6 months, and ultimately relapse in the other three at 8, 12, and 18 months.⁶³³ One patient in the Kishimoto study had disease flares at 11 and 23 months followup, but became medication-free and asymptomatic at 39 months followup.⁶³¹

Complete Drug-Free Remission (%)	Duration of Complete Drug-Free Remission (Months)	Study
53 (n=34)	29 ± 12 (rng 21-60)	De Kleer, 2004 ⁶³⁰
67 (n=3)	10, 35	Kishimoto, 2003 ⁶³¹
1 of 1	15	Nakagawa, 2001 ⁶³²
80 (n=5)	11 ± 5 (rng 6-18)	Rabusin, 2000 ⁶³³

Table 123. Complete drug-free remission in patients with JIA undergoing autologous HSCT

Overall Survival

One study reported Kaplan-Meier overall survival of about 79 percent at 5 years' followup.⁶³⁰

Treatment-related Mortality and Other Adverse Events

Overall, treatment-related mortality was reported in 4 of 43 (9 percent) compiled cases in this review. In the EBMT experience, treatment-related mortality was reported in 3 of 34 cases (9 percent), attributed to macrophage-activation syndrome.⁶³⁰ In another study, one patient who had an uncontrollable disease flare after autologous HSCT underwent a subsequent cord-blood allogeneic HSCT, but developed a CMV infection and died 48 days after allogeneic HSCT.⁶³¹ No treatment-related mortality was reported in the other two studies.^{632, 633}

Ongoing Research

According to ClinicalTrials.gov, there are no clinical trials of HSCT actively recruiting patients with JIA.

Conclusion

The overall body of evidence is insufficient to draw conclusions on long-term benefits or harms with single autologous HSCT for the treatment of severe, refractory JIA in children.

Moderate strength evidence suggests that an extended drug-free clinical remission can be achieved with single autologous HSCT for the treatment of severe, refractory JIA in children.

Systemic Sclerosis

Background and Setting

Systemic sclerosis is a generalized, highly heterogeneous autoimmune disorder characterized by diffuse, disabling skin thickening combined with fibrotic changes in many organs, in particular the heart and lung, ultimately resulting in end-stage failure.⁶³⁴

Systemic sclerosis is a rare disease. It is diagnosed in approximately 67 male patients and 265 female patients per 100,000 people each year in the U.S. Systemic sclerosis usually appears in women aged 30 to 40 years, and it occurs in slightly older men. In approximately 85 percent of cases, systemic sclerosis develops in individuals aged 20 to 60 years. Cases also are observed in children and in the elderly population. Immunologic mechanisms and heredity (certain HLA subtypes) play a role in etiology. Systemic sclerosis-like syndromes can result from exposure to vinyl chloride, bleomycin, pentazocine, epoxy and aromatic hydrocarbons, contaminated rapeseed oil, or L-tryptophan.

Systemic sclerosis pathophysiology involves vascular damage and activation of fibroblasts; collagen and other extracellular proteins in various tissues are overproduced. The disease varies in severity and progression, ranging from generalized skin thickening with rapidly progressive and often fatal visceral involvement, primarily end-stage organ failure.⁶³⁵⁻⁶³⁷ The course depends on the type of systemic sclerosis but is often unpredictable. Typically, progression is slow. Overall, 5- and 10-year survival is about 20 to 80 percent and 15 to 65 percent, respectively, according to the major organ affected at diagnosis.⁶³⁸⁻⁶⁴⁰ Patients with diffuse skin disease eventually develop visceral complications, which are the usual causes of death. Prognosis is poor if cardiac, pulmonary, or renal manifestations are present early. Heart failure may be intractable. Acute renal insufficiency, if untreated, progresses rapidly and causes death within months.

Results from Phase II open studies suggest intravenous pulse cyclophosphamide therapy may improve skin score and pulmonary function.⁶⁴¹⁻⁶⁴³ However, no treatment has been shown definitively to halt disease progression. Autologous HSCT has been used to treat a small number of pediatric systemic sclerosis cases, all of which have been severe, progressive and refractory. Accordingly, this systematic review will present only results from HSCT reports, compared to usual care and the disease course.

Evidence Summary

The overall grade of strength of evidence for drug-free clinical remission and the use of HSCT for the treatment of severe, refractory systemic sclerosis is shown in Table 124.

Systemic sclerosis is very rare in children, with one registry report comprising the sole source of published evidence on the use of autologous HSCT in this setting. There are no proven therapies for advanced, progressive systemic sclerosis with visceral involvement, which has a dismal prognosis. In this context, that four of five patients (80 percent) entered a state of complete clinical remission, with the other one in partial remission, signals that autologous HSCT following chemotherapy-induced immune suppression may be associated with these results.

Table 124. Overall grade of strength of evidence for drug-free clinical remission and the use of HSCT for the treatment of severe, refractory systemic sclerosis

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
For pediatric patients with severe, refractory systemic sclerosis (SSc) what is the comparative effectiveness and harms of autologous HSCT and drug therapies? All patients in these studies had severe, refractory disease, with very poor prognosis, so the comparator is usual care and natural history. Outcomes of interest include extended, drug- free clinical remission, TRM, and other long- term benefits and harms.	There is one report from the EBMT/EULAR registry, with a total of 5 pediatric patients.	The risk of bias is high.	The consistency of the evidence on long-term benefits and harms is unknown. The evidence is consistent in showing a drug-free clinical remission can be achieved with autologous HSCT.	Drug-free clinical remission of severe, progressive SSc in the short-term is considered a health outcome. There is direct evidence that a drug-free clinical remission can be achieved with autologous HSCT. The evidence comparing usual care is indirect.	The precision of the evidence on long-term benefits and harms is unknown. The evidence that a drug- free clinical remission can be achieved with autologous HSCT is precise. The precision of the evidence comparing usual care is unknown.	Not applicable due to lack of obvious effect size for adverse events including TRM. Strong strength of association for achieving an extended period of drug-free clinical remission following HSCT (4 of 5, 80%). The duration of remission was not reported.	The overall body of evidence is insufficient to draw conclusions on long-term benefits or harms with single autologous HSCT for the treatment of severe, refractory SSc in children. Although the overall body of evidence is insufficient to come to conclusions about the relative balance of benefits (e.g., increased overall survival) or harms (treatment-related mortality, secondary malignancies), moderate strength evidence suggests that a drug- free clinical remission can be achieved with single autologous HSCT for the treatment of severe, refractory SSc in children.

One report was included in this review. Table 125 shows the criteria that were used to select studies for this section.

Study Design	Population	Intervention	Comparator	Outcomes	Followup	Setting
Any study design	Pediatric patients (0- 21 yrs) with severe, progressive systemic sclerosis (SSc)	Autologous HSCT	None applicable	Survival, drug-free remission post- HSCT, HSCT- related adverse events	All durations of followup	In- patient

 Table 125. Study selection criteria: Systemic sclerosis

Table 126 shows the study and patient characteristics of one report on the use of autologous HSCT in pediatric systemic sclerosis patients.⁶⁴⁴ This registry report provides details on 5 children age 9 to 17 years, all of whom had lung disease at inclusion and systemic sclerosis (4 diffuse, 1 limited). Disease had been diagnosed within 62 months (range: 26-85 months) before HSCT. They all received the same mobilization regimen comprising cyclophosphamide and G-CSF plus cell selection before transplantation with either CD34+ selection alone (n=3) or CD34+/4+/8+ (n=2). Different conditioning regimens were used, comprising cyclophosphamide plus antiCD52 (CAMPATH 1) (n=3), cyclophosphamide plus TBI plus ATG (n=1), or cyclophosphamide alone (n=1).

Table 126. Systemic sclerosis stud	ly characteristics and populatio
------------------------------------	----------------------------------

Study	Design	Age Range (yrs)	Mean Age (yrs)	Sex F (%)	Disease Stage	HSCT (N)	Comparator (N)	Treatment Period
Farge, 2004 ⁶⁴⁴	Registry report	9-17	12	80	Refractory, severe, with early visceral involvement	5	NA	1996-2002

Only scant details on pediatric patients are available in the registry report. All five children were reported alive after a median duration of about 38 months (range: 14-68 months). Four (80 percent) entered complete remission, with one partial remission. Disease ultimately progressed in one patient, and one relapsed about 9 months after experiencing a complete remission. One 19-year-old patient, not included in the group of five reported above, succumbed to diffuse alveolar hemorrhage 11 days post-transplant.

Ongoing Research

According to ClinicalTrials.gov, one Phase I/II study in China is actively recruiting individuals with systemic sclerosis to undergo HSCT with allogeneic mesenchymal stem cells (NCT00962923). A pilot study of total body irradiation in combination with cyclophosphamide, antithymocyte globulin, and autologous CD34-selected peripheral blood stem cell transplantation in children with refractory autoimmune disorders is active but not recruiting (NCT00010335).

Conclusion

The overall body of evidence is insufficient to draw conclusions on long-term benefits or harms with single autologous HSCT for the treatment of severe, refractory systemic sclerosis in children.

Moderate strength evidence suggests that an extended drug-free clinical remission can be achieved with single autologous HSCT for the treatment of severe, refractory systemic sclerosis in children.

Multiple Sclerosis

Background and Setting

Multiple sclerosis (MS) is a CNS demyelinating disease with an autoimmune etiology.⁶⁴⁵ It is characterized by the presence of inflammatory, demyelinating lesions scattered throughout the CNS at different sites and at different times. Clinical features secondary to the CNS lesions include loss of sensation, muscle weakness, visual loss, incoordination, cognitive impairment, fatigue, pain, and bladder and bowel disturbance.⁶⁴⁵

Pediatric MS is diagnosed after two clinical episodes of CNS demyelination that are separated by at least 30 days.⁶⁴⁶ In adults, three of the following four features are required: nine or more white matter lesions or one gadolinium-enhancing lesion; three or more periventricular lesions; one juxtacortical lesion; one infratentorial lesion. These criteria may be applied to identify pediatric cases, but have not been clinically validated in this population.⁶⁴⁷

The worldwide prevalence of pediatric MS is unknown. Data from individual countries or MS centers reported prevalence rates of MS in childhood ranging from 3.1 to 4.4 percent of all MS cases.⁶⁴⁸⁻⁶⁵⁰ A Canadian study estimated the incidence of initial pediatric demyelinating events (including MS, neuromyelitis optica, acute disseminated encephalomyelitis, complete transverse myelitis, and recurrent optic neuritis) as 0.9 per 100,000 individuals.⁶⁵¹

The natural history of MS is extremely variable, with a waxing and waning pattern that may gradually worsen over time.⁶⁴⁵ Four broad categories are recognized: relapsing remitting MS (RRMS), which accounts for about 85 percent of cases; secondary progressive MS (SPMS), which represents a progression of RRMS with accumulating irreversible neurological deficit and disability; primary progressive MS (PPMS), which is characterized by progressive disease from onset, and accounts for 10 to 15 percent of MS cases; and, progressive relapsing MS (PRMS), defined as progressive disease from onset with superimposed relapses.

Malignant MS is a poorly defined subset of MS that comprises a heterogeneous group of demyelinating disorders that is applied only to cases that succumb within 5 years of onset, accounting for less than 5 percent of all MS subjects.⁶⁵²

The therapeutic approach to MS has evolved over the past two decades. Four first-line disease modifying therapies have received U.S. Food and Drug Administration approval for use in adults with RRMS: glatiramer acetate, intramuscular and subcutaneous interferon- β 1a, and subcutaneous interferon- β 1b.⁶⁴⁷ Evidence supporting their use in children is very limited.

Most treatment decisions in children with MS are based in part on results achieved in adults. Corticosteroids are used to treat acute, symptomatic relapses, but are associated with serious adverse effects in children.⁶⁴⁵ Second-line agents in children have included cyclophosphamide, mitoxantrone, mycophenolate mofetil, daclizumab, rituximab or natalizumab, primarily described in retrospective case series and reports with limited follow-up.⁶⁴⁷

There is no consensus on how to treat malignant MS. Approaches have included plasmapheresis, aggressive immunosuppression with mitoxantrone, cladribine, and cyclophosphamide, with no documented effect in this setting. Given the extremely poor prognosis of malignant MS, and the lack of effective treatment, autologous HSCT has been used to treat a small number of pediatric malignant MS cases. Accordingly, this systematic review will present only results from HSCT reports compared to usual care and the disease course.

Evidence Summary

The overall grade of strength of evidence for drug-free clinical remission and the use of HSCT for the treatment of severe, refractory malignant multiple sclerosis is shown in Table 127.

Malignant MS is very rare in children, with three reports comprising the sole identified source of published evidence on the use of autologous HSCT in this setting. There are no proven therapies for malignant MS, which has a dismal prognosis. In this context, that five of five patients (100 percent) entered a state of clinical remission, with no relapses at followup, signals that autologous HSCT following chemotherapy-induced immune suppression may be associated with these results.

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
For pediatric patients with severe, refractory malignant multiple sclerosis (MS) what is the comparative effectiveness and harms of autologous HSCT and drug therapies? All patients in these studies had severe, refractory disease, with very poor prognosis, so the comparator is usual care and natural history. Outcomes of interest include extended, drug-free clinical remission, TRM, and other long-term benefits and harms.	There are three case series or case reports with a total of 5 pediatric patients.	The risk of bias is high.	The consistency of the evidence on long-term benefits and harms is unknown. The evidence is consistent in showing an extended drug- free interval and clinical remission can be achieved with autologous HSCT.	Drug-free clinical remission of severe, refractory MS in the short- term is considered a health outcome. There is direct evidence that an extended drug-free clinical remission can be achieved with autologous HSCT. The evidence comparing usual care is indirect.	The precision of the evidence for long-term benefits and harms is unknown. The evidence that an extended drug- free clinical remission can be achieved with autologous HSCT is precise. The precision of the evidence comparing usual care is unknown.	Not applicable due to lack of obvious effect size for adverse events including TRM. Strong strength of association for achieving an extended period of drug-free clinical remission following HSCT (5 of 5, 100%), ranging from 14 to 66 months.	The overall body of evidence is insufficient to draw conclusions on long-term benefits or harms with single autologous HSCT for the treatment of severe, refractory MS in children. Although the overall body of evidence is insufficient to come to conclusions about the relative balance of benefits (e.g., increased overall survival) or harms (treatment-related mortality, secondary malignancies), moderate strength evidence suggests that an extended drug-free clinical remission can be achieved with single autologous HSCT for the treatment of severe, refractory MS in children.

Table 127. Overall grade of strength of evidence for drug-free clinical remission and the use of HSCT for the treatment of severe, refractory malignant multiple sclerosis

A total of three reports were included in this review. Table 128 shows the criteria that were used to select studies for this section.

Study Design	Population	Intervention	Comparator	Outcomes	Followup	Setting			
Any study design	Pediatric patients (0-21 yrs) with malignant MS	Autologous HSCT	None applicable	Survival, drug-free remission post-HSCT, HSCT-related adverse events	All durations of followup	In- patient			

Table 128. Study selection criteria: MS

Table 129 shows the study and patient characteristics of three reports (total N=5) on the use of autologous HSCT in pediatric patients.⁶⁵³⁻⁶⁵⁵ They ranged in age from 9 to 18 years, with two females and three males.

In the first report, peripheral blood stem cells were mobilized using cyclophosphamide and G-CSF.⁶⁵³ One patient underwent conditioning using a BEAM regimen (BCNU, etoposide, cytosine-arabinoside, melphalan), the other (a young male) was conditioned using cyclophosphamide. Total body irradiation was not used in either case. ATG and methylprednisolone were administered 1 and 2 days after stem-cell infusion. In the second report, peripheral blood stem cells were mobilized using cyclophosphamide and G-CSF, and the patient was conditioned with busulfan and ATG.⁶⁵⁴ In the third report, peripheral blood stem cells were mobilized using cyclophosphamide and BEAM regimen plus cyclophosphamide plus ATG.⁶⁵⁵

Study	Design	Age Range (yrs)	Mean Age (yrs)	Sex F (%)	Disease Stage	HSCT (N)	Comparator (N)	Treatment Period
Fagius, 2009 ⁶⁵³	Case series	9, 16	NA	1 female, 1 male	Refractory malignant MS of short duration	2	NA	Since 2004
Kimiskidis, 2008 ⁶⁵⁴	Case report	18	NA	male	Refractory malignant MS of short duration	1	NA	2001
Mancardi, 2005 ⁶⁵⁵	Case reports	16, 18	NA	1 female, 1 male	Refractory malignant MS of short duration	2	NA	NR

Table 129. Multiple sclerosis study characteristics and population

In the Fagius study, both patients experienced stabilization of their disease course.⁶⁵³ One was alive at 35 months followup, with expanded disability status scale (EDSS) score reduced from 4.0 at HSCT to 0 at last followup. The second patient in the Fagius study was alive at 28 months, with EDSS score reduced from 8.0 at HSCT to 1.0 at followup. Adverse effects of autologous HSCT were not reported individually, but were as expected with the conditioning regimen, comprising fever, mucositis, and alopecia.

Kimiskidis and colleagues reported their patient showed rapid neurological improvement that was sustained and gradually increased following HSCT.⁶⁵⁴ His EDSS score dropped from 5.0 at HSCT to 1.5 at 66 months' followup. The patient experienced no relapses since HSCT, with no immunomodulatory therapies, and at publication had graduated from college.

Mancardi and colleagues reported results for two pediatric cases.⁶⁵⁵ The first patient was alive at 29 months' followup, with EDSS score reduced from 7.5 to 4.0, the ability to walk 500 meters unaided, independent in activities of daily living, and no relapses. HSCT-related adverse effects were not reported. The second patient was alive at 14 months' followup, with dramatically improved neurological condition and EDSS score reduced from 9.0 to 4.5; information was not provided about the patient's mobility or capability to perform activities of daily living. This patient experienced fever for two weeks post-HSCT, but no pathogen was identified.

In total, five pediatric patients with malignant MS have been reported alive following intense immune suppression and autologous HSCT. All had durable remission of severe, disabling disease and life-threatening disease for 14 to 66 months followup, improved EDSS scores, and improvement in neurological function. Where reported, mobility improved, along with the ability to perform activities of daily living. No patient relapsed in the followup periods reported.

Ongoing Research

According to ClinicalTrials.gov, there are no active clinical studies involving HSCT recruiting patients with any type of multiple sclerosis.

Conclusion

The overall body of evidence is insufficient to draw conclusions on long-term benefits or harms with single autologous HSCT for the treatment of severe, refractory MS in children.

Moderate strength evidence suggests that an extended drug-free clinical remission can be achieved with single autologous HSCT for the treatment of severe, refractory MS in children.

Crohn's Disease

Background and Setting

Crohn's disease is an idiopathic, chronic inflammatory disease of the gastrointestinal tract that primarily affects the small intestine and colon.

There is wide discrepancy in the prevalence and incidence estimates of Crohn's disease in North America.⁶⁵⁶ Prevalence has been estimated between about 44 to nearly 200 per 100,000 persons, perhaps representing the effect of environmental or genetic factors in its development. Similarly, incidence estimates vary considerably, from about 3.1 to about 5 cases per 100,000 person-years; the incidence in children is estimated at about 5 per 100,000. With about 300 million people in the United States, approximately 9,000 to 44,000 cases are diagnosed with Crohn's disease annually.

The natural history of Crohn's disease is characterized by recurring flares with periods of inactive disease and remission.⁶⁵⁷ The waxing and waning nature dictates that patients require medication for a large period of their life, primarily to maintain remission but also to control flares. About 50 percent of cases will remain in a state of remission or mild intermittent disease, but about 5 percent will have severe, drug-refractory disease.⁶⁵⁶ Surgery is required in up to 80 percent of cases at some point.⁶⁵⁷

While Crohn's disease-related mortality is relatively low, the range and severity of symptoms varies from mild to disabling. The most common symptoms of Crohn's disease are abdominal pain, often in the lower right area, and diarrhea. Rectal bleeding, weight loss, arthritis, skin problems, and fever may also occur. Bleeding may be serious and persistent, leading to anemia. Children with Crohn's disease may suffer delayed development and stunted growth. The most common complication is blockage of the intestine. Nutritional complications are common in Crohn's disease, with deficiencies of proteins, calories, and vitamins. These deficiencies may be caused by inadequate dietary intake, intestinal loss of protein, or poor absorption, also referred to as malabsorption. Other complications associated with Crohn's disease include arthritis, skin problems, inflammation in the eyes or mouth, kidney stones, gallstones, or other diseases of the liver and biliary system. Some of these problems resolve during treatment for disease in the digestive system, but some must be treated separately.

Current therapy for Crohn's disease consists of corticosteroids, immunomodulators and biological therapy blocking TNF-alpha (e.g., infliximab).⁶⁵⁷ Corticosteroids efficiently suppress inflammation, but have not been shown definitively to alter the natural course of Crohn's disease. Immunomodulators and biologicals such as azathioprine, 6-mercaptopurine, methotrexate, etanercept, and infliximab can induce and maintain remission, but their overall effect on the long-term course of Crohn's disease and the ultimate need for surgery are not definitively established.⁶⁵⁷ Their postoperative role also is not defined. In general, the optimal timing of therapies relative to disease course is not clear.

Autologous HSCT has been used to treat a small number of pediatric Crohn's disease cases, all of which have been severe, progressive, disabling, and refractory to nearly all drug therapies. Accordingly, this systematic review will present only results from HSCT reports, with the comparison considered usual care and the disease course.

Evidence Summary

The overall grade of strength of evidence for drug-free clinical remission and the use of HSCT for the treatment of severe, refractory Crohn's Disease is shown in Table 130.

The evidence signals that autologous HSCT following chemotherapy-induced immune suppression may be associated with prolonged resolution of severe, refractory, disabling Crohn's disease into a drug-free, much-improved state, 3 to 6 months post-HSCT.

Table 130.	30. Overall grade of strength of evidence for drug-free clinical remission an	d the use of HSCT for the treatment of severe,
refractory	ory Crohn's disease	

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/Conclusion
For pediatric patients with severe, refractory, disabling Crohn's disease (CD), what is the comparative effectiveness and harms of autologous HSCT and drug therapies? All patients in these studies had severe, refractory, disabling disease, with very poor prognosis, so the comparator is usual care and natural history. Outcomes of interest include extended, drug- free clinical remission, TRM, and other long- term benefits and harms.	There is one case series that reports a total of 4 pediatric patients and one long- term follow- up study that reports 3 new pediatric patients.	The risk of bias is high.	The consistency of the evidence on TRM and long- term benefits and harms is unknown. The evidence is consistent in showing an extended drug- free interval and clinical remission can be achieved with autologous HSCT.	Drug-free clinical remission of severe, refractory, disabling CD in the short-term is considered a health outcome. There is direct evidence that an extended drug-free clinical remission can be achieved with autologous HSCT. The evidence comparing usual care is indirect.	The precision of the evidence for long-term benefits and harms is unknown. The evidence that an extended drug-free clinical remission can be achieved with autologous HSCT is precise. The precision of the evidence comparing usual care is unknown.	Not applicable due to lack of obvious effect size for adverse events including TRM. Strong strength of association for achieving an extended period of drug-free clinical remission following HSCT (7 of 7, 100%), ranging from 7 to 60 months.	The overall body of evidence is insufficient to draw conclusions on long-term benefits and harms with single autologous HSCT in children with severe, refractory, disabling CD. Although the overall body of evidence is insufficient to come to conclusions about the relative balance of benefits (e.g., increased overall survival) or harms (treatment-related mortality, secondary malignancies), moderate strength evidence suggests that an extended clinical remission, free from immune suppressant therapy following taper and discontinuation of corticosteroids 3-6 months post- HSCT, can be achieved with single autologous HSCT in children with severe, refractory, disabling CD.

Two reports were included in this review. Table 131 shows the criteria that were used to select studies for this section.

Study Design	Population	Intervention	Comparator	Outcomes	Followup	Setting
Any study design	Pediatric patients (0- 21 yrs) with severe, refractory Crohn's Disease	Autologous HSCT	None applicable	Survival, drug-free remission post- HSCT, HSCT-related adverse events	All durations of followup	In- patient

Table 131. Crohn's disease study selection criteria

One pilot study⁶⁵⁸ and one long-term follow-up study⁶⁵⁹ (Table 132) reported results on the use of autologous HSCT utilizing a conditioning regimen of high-dose cyclophosphamide plus equine or rabbit ATG and T-cell depleted CD-34+ enriched peripheral blood stem cells mobilized with cyclophosphamide and G-CSF. Mesna, methylprednisolone, and G-CSF were started in conjunction with the conditioning regimen.

Patients were 5 males, ages 15-21 years, and 2 females, ages 18 and 21 years. Pretransplant CDAI scores averaged 288 ± 37 (range: 101-337), with mean Karnofsky performance score (KPS) of 48 ± 10 (range: 40-60). All were highly symptomatic, completely disabled, with a clinical history and histologic evidence of Crohn's disease, and had failed treatment with corticosteroids, mesalamine, metronidazole, azathioprine, 6-mercaptopurine, and infliximab. Failure was defined as a Crohn's Disease Activity Index (CDAI) of 250-400 despite those therapies. All immunosuppressive and disease-modifying agents were discontinued at stem-cell mobilization, except systemic corticosteroids, which were tapered over 2 to 6 months. The key outcome was clinical remission, defined as CDAI \leq 150, and freedom from immune suppressant therapy following taper and discontinuation of corticosteroids post-HSCT. Adverse effects of autologous HSCT were also reported.

Study	Design	Age Range (yrs)	Mean Age (yrs)	Sex F (%)	Disease Stage	HSCT (N)	Comparator (N)	Treatment Period
Oyama, 2005 ⁶⁵⁸	Phase I	15-21	17 ± 3	25	Severe, disabling refractory to all standard treatments	4	NA	NR
Burt, 2010 ⁶⁵⁹	Phase I/II	16-21	18	33	Severe, disabling, refractory to all standard treatments	3	NA	NR

 Table 132. Crohn's disease study characteristics and population

In the Oyama pilot study, all patients were alive at mean followup of 24 ± 15 months (range: 7-36 months).⁶⁵⁸ They had a rapid and dramatic post-HSCT improvement, discontinued all immunosuppressive therapies, regained normal appetite and oral intake, with cessation of diarrhea and abdominal pain. The mean CDAI score improved by 77 percent, declining from 288 \pm 37 (range: 250-337), to 66 \pm 13 (range 51-78). The mean Karnofsky Performance Status

improved by 92 percent, from 48 ± 10 (range: 40-60) to 92 ± 10 (range: 80-100). Adverse HSCT-related events were not individually documented, but the procedure was reported as well tolerated. One patient (not identified) developed Mallory-Weiss syndrome that responded to intravenous fluids. One patient (unidentified) relapsed at 15 months after achieving remission at 6 months. Among the total patient population (pediatric cases not reported separately), after a median follow-up of 18 months (range 7-37 months) 11 of 12 remained in drug-free clinical remission.

In the second report,⁶⁵⁹ all 3 patients not previously reported in the Oyama paper⁶⁵⁸ were alive at 60 months follow-up, in an immune suppressant drug-free state but still with active Crohn's disease. All had undergone colectomy with or without ileostomy at 18 to 44 months following HSCT.

Ongoing Research

According to ClinicalTrials.gov, two Phase I clinical trials in the U.S. are recruiting pediatric patients with severe Crohn's disease (CDAI>250) for autologous HSCT (NCT00692939, NCT00278577).

Conclusion

The overall body of evidence is insufficient to draw conclusions on long-term benefits and harms with single autologous HSCT in children with severe, refractory, disabling CD.

Moderate strength evidence suggests that an extended clinical remission, free from immune suppressant therapy following taper and discontinuation of corticosteroids 3-6 months post-HSCT, can be achieved with single autologous HSCT in children with severe, refractory, disabling CD.

Miscellaneous Nonhematologic Autoimmune Diseases

Background and Setting

Myasthenia Gravis

Myasthenia gravis is an autoimmune disease characterized by failure of neuromuscular transmission secondary to destruction of acetylcholine receptors at the neuromuscular junction synapse by anti-acetylcholine antibodies.⁶⁶⁰ The estimated incidence of Myasthenia gravis is about 1 per 30,000.⁶⁶¹ It typically presents in adulthood, but has been diagnosed in children as young as one year of age. Myasthenia gravis affects women more than men (67 percent of cases), with a peak onset in the 20s. Spontaneous remissions occur in about 25 percent of patients, but rarely last more than two years and do not typically recur.

Myasthenia gravis is controlled in most cases by the use of acetylcholinesterase inhibitors, but more severe, progressive disease is treated with immunomodulating approaches, including IVIG, corticosteroids, azathioprine, thymectomy, and plasmapheresis.⁶⁶¹ High-dose cyclophosphamide has been used to treat severe MG, with good initial response in 90 percent of cases, although 80 percent have recurrence and require continual immunosuppression by 5 years following treatment.⁶⁶² High-dose chemotherapy with allogeneic HSCT has been reported in one case of severe, refractory disease.

Calcinosis Cutis

Calcinosis cutis is a term used to describe a group of disorders in which calcium deposits form in the skin, first described by Virchow in 1855. It occurs in four major types according to etiology: dystrophic, metastatic, iatrogenic, and idiopathic. It may be associated with autoimmune diseases such as dermatomyositis, systemic lupus, systemic sclerosis, and others.⁶⁶³ The incidence and prevalence of calcinosis cutis in the U.S. is unknown.

Damage caused by calcium deposits may be localized or systemic. Lesions may become painful, limit mobility of an adjacent joint, or compress adjacent neural structures. Ulceration and secondary infection may occur. Vascular calcification may cause ischemia and necrosis of the affected organ. Medical therapy is limited and of unproven benefit. Intralesional corticosteroids, probenecid, colchicine, magnesium or aluminum antacids, sodium etidronate and diphophosphonates, myoinositol hexaphosphonate, warfarin, diltiazem, sodium thiosulfate may be effective. Pediatric use of most of these agents is unapproved.

High-dose immunoablation with allogeneic HSCT has been reported in one pediatric patient with diffuse, severe refractory calcinosis cutis.

Overlap Syndrome

An overlap syndrome is an autoimmune disease of connective tissue in which the patient presents with symptoms of two or more diseases. As many as 25 percent of all patients with connective tissue disease show signs of an overlap syndrome. Examples of overlap syndromes include mixed connective tissue disease and scleromyositis, but the exact diagnosis depends from which diseases the patient shows symptoms. In overlap syndromes, features of systemic lupus, systemic sclerosis, polymyositis, dermatomyositis, rheumatoid arthritis and Sjögren's syndrome are found often.⁶⁶⁵

The prevalence of mixed connective tissue disease is not known precisely, falling somewhere between that of systemic sclerosis and polymyositis and systemic lupus. It is found more often in females than males (8:1 ratio), and occurs in children. Morbidity is greater in children than adults, with higher prevalence of myocarditis, glomerulonephritis, thrombocytopenia, seizures, and aseptic meningitis.⁶⁶⁵

Mixed connective tissue disease is viewed as incurable, with variable prognosis. The presentation ranges from mild self-limited disease, to major organ involvement that requires aggressive treatment. No controlled clinical trials have been performed to evaluate therapy in mixed connective tissue disease. Treatment strategies generally involve conventional therapies that are used for other autoimmune diseases such as systemic lupus, systemic sclerosis, and polymyositis. Given the heterogeneous clinical course of mixed connective tissue disease, therapy is individualized according to specific organ involvement and the severity of underlying disease activity. Agents include corticosteroids, antimalarials, methotrexate, cytotoxics (most often cyclophosphamide), and vasodilators, with varying degrees of success.

Nonmyeloablative allogeneic HSCT has been reported in one severe, refractory pediatric case.

Evidence Summary

The overall grade of strength of evidence for drug-free clinical remission and the use of HSCT for the treatment of severe, refractory myasthenia gravis, overlap syndrome, or diffuse calcinosis cutis is shown in Table 133.

One case report each showed prolonged resolution of myasthenia gravis or overlap syndrome into a drug-free, much-improved state following chemotherapy-induced immunosuppression

with allogeneic HSCT. Similarly, immunosuppression and autologous HSCT was followed by complete resolution of disabling diffuse calcinosis cutis in one patient.

Table 133. Overall grade of strength of evidence for drug-free clinical remission and the use of HSCT for the treatment of severe,
refractory myasthenia gravis, overlap syndrome, or diffuse calcinosis cutis

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/ Conclusion
For pediatric patients with severe, refractory myasthenia gravis (MG), overlap syndrome (OS), and cutaneous cutis (CC), what are the comparative effectiveness and harms of HSCT and drug therapies? Patients in these reports had severe, refractory, disease, with very poor prognosis, so the comparator is usual care and natural history. Outcomes of interest include long-term drug- free clinical remission, TRM, and other long- term benefits and harms.	There are three case reports on a total of 3 pediatric patients.	The risk of bias is high.	The consistency of evidence cannot be determined for the use of allogeneic HSCT to treat MG or OS, and autologous HSCT to treat CC. The consistency of the evidence for TRM and other long-term benefits and harms of HSCT cannot be determined.	Drug-free clinical remission of severe, refractory autoimmune disease in the short-term is considered a health outcome. There is direct evidence that an extended drug-free clinical remission can be achieved with allogeneic HSCT in MG or OS. There is direct evidence that an extended drug-free clinical remission for at least 2 years can be achieved with autologous HSCT in CC. The evidence comparing usual care is indirect.	The precision of the evidence for HSCT in MG, OS, and CC cannot be determined. The precision of the evidence for TRM and other long-term benefits and harms cannot be determined.	Not applicable due to lack of obvious effect size.	The overall body of evidence is insufficient to draw conclusions on benefits and harms with allogeneic HSCT to treat severe, refractory MG or OS, and autologous HSCT for the treatment of severe, refractory CC is insufficient to draw conclusions. The overall body of evidence is insufficient to demonstrate that an extended drug-free remission can be achieved with allogeneic HSCT to treat severe, refractory MG or OS, and autologous HSCT for the treatment of severe, refractory CC.

A total of three reports for these miscellaneous diseases were included in this review. Table 134 shows the criteria that were used to select studies for this section.

Study Design	Population	Intervention	Comparator	Outcomes	Followup	Setting
Any study design	Pediatric patients (0-21 yrs) with severe, refractory myasthenia gravis, overlap syndrome, and cutaneous cutis	Autologous or allogeneic HSCT	None applicable	Survival, drug-free remission post- HSCT, HSCT- related adverse events	All durations of followup	In- patient

Table 134. Study selection criteria: MG, OS, CC

As shown in Table 135, three case reports are available, one each on the use of allogeneic HSCT to treat myasthenia gravis⁶⁶⁷ or overlap syndrome,⁶⁶⁸ and one on autologous HSCT to treat calcinosis cutis.⁶⁶⁹

The myasthenia gravis case report outlined the outcome of reduced-intensity, matchedsibling, peripheral blood allogeneic HSCT using busulfan, fludarabine, and alemtuzumab.⁶⁶⁷ The patient was severely affected 17-year-old male who had failed prior treatment with pyridostigmine, IVIG, corticosteroids, thymectomy, azathioprine, mycophenolate mofetil, plasmapheresis, rituximab, and high-dose cyclophosphamide.

The patient with overlap syndrome was a 15-year-old female with pulmonary vasculitis, severe Cushing's syndrome, stunted growth, profound adrenal steroid dependency, and iatrogenic liver toxicity secondary to failed treatment with methotrexate and cyclophosphamide.⁶⁶⁸ She underwent reduced-intensity allogeneic HSCT using fludarabine, cyclophosphamide, and total body irradiation, followed by infusion of HLA-matched bone marrow stem cells.

The third case report involved a 16-year-old female who had diffuse, severely disabling calcinosis cutis with arthritis, myalgia, anemia, recurrent pulmonary hemorrhage, CNS abnormalities, and painful skin ulcers.⁶⁶⁹ Her condition did not adequately respond to corticosteroids, cyclophosphamide, azathioprine, methotrexate, hydroxychloroquine, and thalidomide. She developed pulmonary hypertension and ischemic digital necrosis, at which time she was referred for high-dose immunosuppression and autologous HSCT. Peripheral blood stem cells were mobilized using cyclophosphamide and G-CSF, and reinfused following a conditioning regimen comprising BCNU, etoposide, cytarabine, and melphalan.

Study	Design	Age Range (yrs)	Mean Age (yrs)	Sex F (%)	Disease Stage	HSCT (N)	Comparator (N)	Treatment Period
Strober, 2009 ⁶⁶⁷	Case report	17	NA	М	Intractable myasthenia gravis, previously treated with pyridostigmine, IVIG, corticosteroids, thymectomy, azathioprine, mycophenolate mofetil, rituximab, and cyclophosphamide	Matched sibling allogeneic	NA	NR
Elhasid, 2004 ⁶⁶⁹	Case report	16	NA	F	Severe, disabling refractory diffuse calcinosis, previously treated with corticosteroids, cyclophosphamide, azathioprine, methotrexate, hydroxychloroquine, and thalidomide	Autologous	NA	NR
Jones, 2004 ⁶⁶⁸	Case report	15	NA	F	Severe, refractory overlap syndrome and pulmonary small vasculitis, previously treated with corticosteroids, methotrexate, cyclophosphamide, IVIG, NSAIDs, aspirin	Related donor allogeneic	NA	2002

Table 135. Miscellaneous nonhematologic autoimmune disease study characteristics and population

The patient with myasthenia gravis achieved T- and B-cell immune reconstitution within 7 months post-HSCT, and during the next 12 months was weaned off pyridostigmine, developed normal muscle strength and lost 60 pounds of weight.⁶⁶⁷ He experienced mucositis that required total parenteral nutrition and patient-controlled analgesia for 11 days, 1 episode of gram-positive bacteremia that resolved with vancomycin, and CMV reactivation that resolved with ganciclovir. His oropharyngeal muscles and speech normalized, although he still had ophthalmoplegia. At 40 months post-HSCT, despite the presence of elevated acetylcholine receptor antibody levels, he was free of all myasthenia gravis treatments, was able to play basketball, and was reported as completely independent.

The patient with overlap syndrome achieved greater than 90 percent donor chimerism at 12 months post-HSCT.⁶⁶⁸ She was weaned off methylprednisolone, IVIG, and asthma medications over the next year, her cushingoid features resolved, she grew approximately 7 inches over 3 years' followup and became a full-time student in a regular classroom. She had no evidence of clinical graft-versus-host disease or systemic infection over 36 months' followup, but continued to have occasional periods of fatigue and mild Gottron-like rash, which was reported to decrease in frequency at followup.

The patient with calcinosis cutis engrafted promptly, with no significant HSCT-related complications reported.⁶⁶⁹ She regained mobility and ability to perform unaided activities of daily living, such as sitting, standing, and walking. At 6 weeks post-HSCT, the subcutaneous calcinosis nodules began to liquefy and calcium salts extruded through her skin. Deep calcinosis plaques disappeared, all skin ulcers healed completely, and her pulmonary blood pressure normalized. At 24 months' followup, the patient was free from clinical and laboratory evidence of disease activity.

Ongoing Research

According to ClinicalTrials.gov, one Phase I study is recruiting patients with severe, refractory myasthenia gravis for autologous HSCT (NCT00424489). A Phase I study is recruiting patients with severe, refractory systemic vasculitis and overlap syndrome for autologous HSCT (NCT00278512). No studies are recruiting for HSCT in patients with calcinosis cutis.

Conclusion

The overall body of evidence is insufficient to draw conclusions on benefits and harms with allogeneic HSCT to treat severe, refractory MG or OS, and autologous HSCT for the treatment of severe, refractory CC is insufficient to draw conclusions.

The overall body of evidence is insufficient to demonstrate that an extended drug-free remission can be achieved with allogeneic HSCT to treat severe, refractory MG or OS, and autologous HSCT for the treatment of severe, refractory CC.

Hematologic Autoimmune Diseases

Background and Setting

Evans Syndrome

Evans syndrome is an uncommon autoimmune disease characterized by simultaneous or sequential development of autoimmune thrombocytopenia and autoimmune hemolytic anemia, with some patients also being neutropenic.⁶⁷⁰⁻⁶⁷² While the etiology is unknown, evidence suggests this disease is secondary to a more generalized immune dysregulation, with several clinical and laboratory features in common with systemic lupus and autoimmune lymphoproliferative syndrome.^{671, 673}

The exact frequency of Evans syndrome is unknown. Familial occurrence is rare. It has a chronic, relapsing course, with substantial morbidity and mortality. In a 1997 survey of North American pediatric hematologists, the median reported age at diagnosis was about 8 years (range: 0.2–27 years).⁶⁷⁴ This late presentation age may indicate the disease was undiagnosed until the second presentation of cytopenia, which was usually months to years after the first presentation. Evans syndrome in adults has been anecdotally reported. No randomized trials have been conducted in patients with Evans syndrome, and the evidence for treatment is based on case reports, case series, and retrospective studies.⁶⁷⁵ Corticosteroids, IVIG, danazol, cyclosporine, azathioprine, cyclophosphamide, vincristine, rituximab, alemtuzumab, and splenectomy have been used, but response to therapy varies even within the same individual.

Autoimmune Hemolytic Anemia

Autoimmune hemolytic anemia occurs when an individual develops anti-self antibodies that destroy red blood cells. The incidence of autoimmune hemolytic anemia has been reported in the range of 1 per 50,000 to 75,000, rising with age, mostly as secondary rather than idiopathic disease.⁶⁷⁶ In children, the onset of autoimmune hemolytic anemia is more likely to be sudden and severe compared to that in adults. It has a relatively good prognosis in most cases, with good response to corticosteroids, and often not requiring splenectomy. It can develop into a refractory state that does not respond well to steroids, IVIG, azathioprine, cyclophosphamide, plasmapheresis, or splenectomy.

Autoimmune Thrombocytopenia

Chronic autoimmune thrombocytopenia is a disorder of diminished platelet count, secondary to the development of anti-self antibodies directed against platelet surface glycoproteins, resulting in splenic platelet destruction.⁶⁷⁷ Acute idiopathic thrombocytopenia purpura has an annual incidence in the U.S. of about 1.6 per 10,000, but it is estimated that chronic idiopathic thrombocytopenia purpura develops in 7 to 28 percent of children who have acute disease. Chronic, refractory autoimmune thrombocytopenia has been reported to have a mortality rate of 4 to 16 percent, largely attributed to bleeding or infection ⁶⁷⁸. It may respond to corticosteroids and IVIG, but can become refractory and nonresponsive to immunosuppressants that include cyclophosphamide, azathioprine, vinblastine, mycophenolate mofetil, and rituximab.

Given the poor response among a proportion of patients with severe Evans syndrome, autoimmune hemolytic anemia, and autoimmune thrombocytopenia to immunosuppressant therapies, with attendant serious adverse effects, HSCT has been investigated in a small number of children with severe, refractory Evans syndrome, autoimmune hemolytic anemia, and autoimmune thrombocytopenia.
Evidence Summary

The overall grade of strength of evidence for drug-free clinical remission and the use of HSCT for the treatment of severe, refractory Evans syndrome, autoimmune hemolytic anemia, or autoimmune thrombocytopenia is shown in Table 136.

One case report each showed resolution of Evans syndrome or autoimmune hemolytic anemia into a drug-free, much-improved state following chemotherapy-induced immune suppression with allogeneic HSCT. Similarly, one case report showed resolution of severe, refractory autoimmune hemolytic anemia following autologous HSCT. The single case report of autologous HSCT for autoimmune thrombocytopenia showed no response to the procedure.

Key Question	Study Design	Risk of Bias	Consistency	Directness	Precision	Strength of Association	Overall Grade/ Conclusion
For pediatric patients with severe, refractory Evans syndrome (ES), autoimmune hemolytic anemia (AIHA), or autoimmune thrombocytopenia (AITP), what are the comparative effectiveness and harms of HSCT and drug therapies? Outcomes of interest include long-term drug- free clinical remission, TRM, and other long- term benefits and harms.	There are six case reports and two case series, for a total of 18 pediatric patients, who underwent HSCT for severe, refractory ES (n=8), AIHA (n=9), and AITP (n=1).	The risk of bias is high for all diseases evaluated.	The consistency of evidence cannot be determined for the use of allogeneic HSCT to treat severe, refractory ES or AIHA, or autologous HSCT to treat severe, refractory AIHA or AITP.	Drug-free clinical remission of severe, refractory autoimmune disease in the short-term is considered a health outcome. There is direct evidence that an extended drug- free clinical remission can be achieved with allogeneic HSCT for severe, refractory ES or AIHA and autologous HSCT for severe, refractory AIHA.	The precision of the evidence for allogeneic or autologous HSCT in severe, refractory ES, AIHA, or AITP cannot be determined. The precision of evidence on TRM and other long-term benefits and harms of HSCT cannot be determined.	Not applicable due to lack of obvious effect size.	The overall body of evidence is insufficient to draw conclusions about the comparative benefits or harms of single autologous or allogeneic HSCT compared to conventional therapy or disease natural history pediatric patients with severe, refractory ES, AIHA, or AITP. The overall body of evidence is insufficient to conclude that an extended drug-free clinical remission can be achieved with allogeneic HSCT for severe, refractory ES or AIHA and autologous HSCT for severe, refractory AIHA.

Table 136. Overall grade of strength of evidence for drug-free clinical remission and the use of HSCT for the treatment of severe, refractory Evans syndrome, autoimmune hemolytic anemia, or autoimmune thrombocytopenia

Results

A total of seven publications comprising eight studies (six case reports and two case series) on autoimmune hematologic conditions were included in this review. Table 137 shows the criteria that were used to select studies for this section.

Table 137. Study selection criteria: Refractory Evans syndrome, autoimmune hemolytic anemia, or autoimmune thrombocytopenia

Study Design	Population	Intervention	Comparator	Outcomes	Followup	Setting
Any study design	Pediatric patients (0-21 yrs) with severe, refractory Evans syndrome, autoimmune hemolytic anemia, or autoimmune thrombocytopenia	Allogeneic or autologous HSCT	None applicable	Survival, drug- free remission post-HSCT, HSCT-related adverse events	All durations of followup	In- patient

Evans Syndrome

Four studies (three case reports and one case series) described results of allogeneic HSCT in eight patients with severe, refractory Evans syndrome (Table 138).

The case series described 5 cases of Evans syndrome reported to the European Group for Blood and Marrow Transplantation (EBMT) registry between 1984 and 2007⁶⁷⁹. After receiving unspecified standard therapy, patients (100% male, age range 2-21) were referred for allogeneic HSCT (3 bone marrow, 1 peripheral blood, and 1 cord blood) with various combination conditioning regimens including cyclophosphamide, fludarabine, busulfan, thiotepa, ATG, TBI and received immunosuppressive cyclosporine A with either methotrexate or mycophenolate mofetil therapy for GVHD. Three patients were alive at 36, 85 and 113 months following allogeneic HSCT; one was dead from disease at 59 months and one was dead from interstitial pneumonitis at 6 months following allogeneic HSCT.⁶⁷⁹ All five patients were reported to have aGVHD (grade 1 n=1, grade 2 n=1, grade 3 n=1, NR n=2) and cGVHD (extensive: n=1, limited: n=1, NR: n=3), but no other HSCT-related adverse events were reported.

In the Connor et al. report, the female subject presented at age 6 months with Evans syndrome.⁶⁸⁰ Over the next several years, she was treated with corticosteroids, IVIG, cyclosporine A, mycophenolate mofetil, rituximab alone and with other drugs, and underwent a splenectomy, without experiencing durable remission. Her condition worsened, she developed pulmonary hypertension with dilated right ventricle and tricuspid regurgitation. She was referred for an unrelated, single-antigen mismatched allogeneic HSCT, using a conditioning regimen of alemtuzumab, fludarabine, and melphalan, with cyclosporine A and mycophenolate mofetil as graft-versus-host disease prophylaxis. The patient developed full donor chimerism, was weaned off all immunosuppressants, developed normalized pulmonary pressures, and exhibited normal right ventricular size and function at 10 months following allogeneic HSCT.⁶⁸⁰ No HSCT-related adverse events were reported.

A second case report describes the results achieved with an unrelated cord blood HSCT in a 7-year old boy with severe, refractory Evans syndrome who failed a previous double autologous HSCT.⁶⁸¹ His disease was poorly responsive to previous therapy, including corticosteroids, IVIG, cyclosporine A, mycophenolate mofetil, vincristine, vinblastine, cyclophosphamide, rituximab, and danazol. He became pancytopenic, with disfiguring hypercorticism and polyneuropathy, and underwent double high-dose chemotherapy with autologous HSCT, with

temporary improvement. After suffering a massive intracranial bleed, he received a 7/10 HLAmatched female cord blood HSCT, with a conditioning regimen comprising busulfan, ATG, thiotepa and etoposide. The patient developed graft-versus-host disease with grade II skin, liver, and mucosa involvement that resolved after a short course of prednisone and cyclosporine A.⁶⁸¹ At 1.5 years' followup, he was reported with 100 percent donor chimerism, normal blood counts, in good clinical condition, free of graft-versus-host disease and the need for immunosuppressant drugs.

The third case involved a nearly 5-year-old boy who presented with Evans syndrome at age 5 months.⁶⁸² His disease responded poorly to courses of therapy with corticosteroids, IVIG, 6-mercaptopurine, danazol, cyclosporine, azathioprine, vincristine, and anti-D, with increasingly worse mucosal bleeding and intracranial hemorrhage. He was referred for a matched-sibling cord blood allogeneic HSCT, with a myeloablative conditioning regimen consisting of total body irradiation, followed by cyclophosphamide, and cyclosporine-A graft-versus-host disease prophylaxis. The patient engrafted with adequate absolute neutrophil count by day 16 post-HSCT.⁶⁸² However, he developed graft-versus-host disease with severe pulmonary insufficiency that resolved promptly following high-dose corticosteroid treatment. He ultimately experienced fulminant hepatic failure of unknown origin 286 days after transplant, and died on day 289.

Study	Design	Age Range (yrs)	Mean Age (yrs)	Sex F (%)	Disease Stage	HSCT (N)	Comparator (N)	Treatment Period
Connor, 2008 ⁶⁸⁰	Case report	7	NA	100	Severe, refractory ES	1	NA	NR
Urban, 2006 ⁶⁸¹	Case report	6	NA	0	Severe, refractory ES	1	NA	2003
Raetz, 1997 ⁶⁸²	Case report	5	NA	0	Severe, refractory ES	1	NA	NR
Daikeler, 2009 ⁶⁷⁹	Case series	2-21	11	0	Refractory ES	5	NA	unselected (1984-2007)
Paillard, 2000 ⁶⁸³	Case report	8	NA	0	Severe, refractory AIHA	1	NA	1998
De Stefano, 1999 ⁶⁸⁴	Case report	12	NA	0	Severe, refractory AIHA	1	NA	NR
Daikeler, 2009 ⁶⁷⁹	Case series	2-14	7	29%	Refractory AIHA	7	NA	unselected (1984-2007)
Huhn, 2003 ⁶⁸⁵	Case report	17	NA	0	Severe, refractory AITP	1	NA	NR

Table 138. Evans syndrome, autoimmune hemolytic anemia, and autoimmune thrombocytopenia study characteristics and population

Autoimmune Hemolytic Anemia

One case series and two case reports describe results on the use of HSCT to treat severe, refractory autoimmune hemolytic anemia (Table 138). The first report involves a boy, 8 years of age, who had severe AIHA that was refractory to prednisone, IVIG, cyclophosphamide, plasmapheresis, and splenectomy.⁶⁸³ As a consequence of life-threatening anemia, he underwent initial high-dose immunosuppressive chemotherapy with cyclophosphamide plus ATG followed by infusion of peripheral blood stem cells that had been mobilized using G-CSF. Because his

disease did not respond to the initial HSCT procedure, he was treated again with a high-dose BEAM regimen and infusion of autologous stem cells. The patient was considered to be in hematological remission at 35 days following autologous HSCT, with no infectious complications.⁶⁸³ Although he relapsed at 7 months; this resolved with a course of corticosteroids and he was reported in complete hematological remission at 20 months' followup.

The second autoimmune hemolytic anemia case was that of a 12-year-old male whose disease had failed to respond to prednisone, azathioprine, cyclosporine A, cyclophosphamide, and splenectomy.⁶⁸⁴ As his condition worsened, he underwent high-dose immunosuppression using thoraco-abdominal irradiation, cyclophosphamide, and CAMPATH-1G followed by infusion of autologous peripheral blood stem cells mobilized using cyclophosphamide. He relapsed 7 weeks after HSCT, and underwent allogeneic HSCT with HLA-compatible unrelated donor bone-marrow stem cells following conditioning using busulfan, thiotepa, and fludarabine. Graft-versus-host disease prophylaxis comprised cyclosporine A, methotrexate, and ALG. The patient experienced an uncomplicated post-HSCT course, donor cell engraftment, restoration of normal immune system function, beneficial effects on body growth and skeletal deformities, with normal hemoglobin levels at 18 months after allogeneic HSCT without the need for immunosuppressant therapy.⁶⁸⁴

The case series reported on 7 cases of AIHA reported to the European Group for Blood and Marrow Transplantation (EBMT) registry between 1984 and 2007.⁶⁷⁹ After receiving unspecified standard therapy, patients (100% male, age range 2-21) were referred for allogeneic HSCT with various combination conditioning regimens including cyclophosphamide, fludarabine, busulfan, thiotepa, ATG, TBI and received immunosuppressive cyclosporine A with either methotrexate or mycophenolate mofetil therapy for GVHD. Of the 7 patients treated, 4 were alive at 3.9, 86, 112, 124 months, respectively. Three patients died during the study, one from hepatic VOD at 0.7 months of followup, one from infectious complications at followup of 1.4 months, and one died from disease progression at 5.2 months followup.⁶⁷⁹

Autoimmune Thrombocytopenia

One pediatric case of autoimmune thrombocytopenia was reported in a nonrandomized Phase I/II study that included patients who had severe autoimmune thrombocytopenia that had not responded to prednisone, IVIG, azathioprine, danazol, plasmapheresis, interferon, or splenectomy.⁶⁸⁵ This 17-year-old male underwent high-dose immunosuppression using cyclophosphamide followed by infusion of peripheral blood stem cells that were mobilized by G-CSF treatment (Table 138). The patient did not respond to autologous HSCT.⁶⁸⁵

Ongoing Research

According to ClinicalTrials.gov, no clinical trials of HSCT are recruiting patients with severe, refractory Evans syndrome, autoimmune hemolytic anemia, or autoimmune thrombocytopenia.

Conclusion

The overall body of evidence is insufficient to draw conclusions about the comparative benefits or harms of single autologous or allogeneic HSCT compared to conventional therapy or disease natural history pediatric patients with severe, refractory ES, AIHA, or AITP.

The overall body of evidence is insufficient to conclude that an extended drug-free clinical remission can be achieved with allogeneic HSCT for severe, refractory ES or AIHA and autologous HSCT for severe, refractory AIHA.

Summary and Discussion

This systematic review of HSCT in the pediatric population addresses indications for which there is uncertainty or evolving evidence, often comprising uncontrolled single arm studies and case reports, although for some solid tumors there were substantial numbers of patients reported. Randomized controlled trials were rare for any of the indications included in this systematic review. HSCT is usually reserved for patients or for subgroups of patients who have diseases with very poor prognosis, and often refractory to best available treatment.

The strength of the body of evidence for each indication was assessed according to the principles described in the AHRQ Methods Guide, Grading the Strength of a Body of Evidence When Comparing Medical Interventions, produced by AHRQ. The four required domains—risk of bias, consistency, directness, and precision—were considered for all indications. For most diseases there were no head-to-head comparative studies; in those situations, directness was based on the outcome (e.g., overall survival or other clinically important health outcomes) rather than on the comparison. An optional domain, strength of association (magnitude of effect), was used in this process where a large effect was particularly evident, a prime example again being Wolman's disease where even very small case examples of survival or cure suggest effectiveness of HSCT. Therefore, while risk of bias is presumed to be very high in a body of evidence comprising small numbers of case reports and series, reducing the strength of evidence, the large magnitude of effect—even if only based on case reports and case series—increases our confidence that the intervention can be effective, thereby permitting assignment of strength greater than "insufficient." This does not, however, imply the intervention will succeed in all cases, but that the effects observed can be attributed to it despite absence of controlled data.

For inherited metabolic diseases, controlled trials with sufficient followup are needed to evaluate the long-term balance of benefit and harms associated with HSCT. Some of these diseases have a homogenous and dismal natural history. For example, the implications of transplantation for a rapidly progressing lysosomal storage disorder like Wolman's disease are clear; this is a choice between certain death and potential survival, albeit with associated risk of adverse effects associated with transplant. By contrast, type I autoimmune juvenile diabetes can be managed long-term satisfactorily, at relatively low risk, in a large proportion of children with intensive insulin therapy (IIT) and lifestyle modifications. The risk-benefit ratio for HSCT compared to IIT must take into account contextual factors including potential long-term benefit (cure) and harms, particularly those secondary to cytotoxic chemotherapy. The decision to apply a high-risk procedure such as HSCT to this population is not clear-cut. For most conditions addressed in this systematic review, evidence is insufficient to draw conclusions as to the relative risk-benefit ratio of HSCT versus other management approaches.

For the diseases systematically reviewed here, the strength of evidence for specific outcomes (see below) was high in 2 instances, moderate or low in 19, and was insufficient for the majority (n = 39) of indications and outcomes addressed. The SOA domain provided justification for increasing overall GRADE evidence strength ratings for several diseases, despite absence of a robust body of literature. SOA was not deemed applicable for settings where evidence was inconsistent.

Malignant Solid Tumors (Key Questions 1 and 2)

Evidence suggesting benefit of HSCT compared with conventional therapy:

• Low strength evidence on overall survival suggests a benefit with single HSCT compared to conventional therapy for *high-risk recurrent or progressive anaplastic astrocytoma*.

Evidence suggesting harm of HSCT compared with conventional therapy:

• Low strength evidence on overall survival suggests harm due to higher treatment-related mortality with single HSCT compared to conventional chemotherapy for *nonanaplastic mixed or unspecified ependymoma*.

Evidence suggesting no benefit of HSCT compared with conventional therapy:

- Moderate strength evidence on overall survival suggests no benefit with single HSCT compared to conventional therapy for *metastatic rhabdomyosarcoma*.
- Low strength evidence on overall survival suggests no benefit with single HSCT compared to conventional therapy for extraocular retinoblastoma with CNS involvement, high-risk Ewing's sarcoma family of tumors, and high-risk relapsed Wilm's tumor. Insufficient evidence:

Insufficient evidence:

- The body of evidence on overall survival with tandem HSCT compared to single HSCT is insufficient to draw conclusions for *high-risk Ewing's sarcoma family of tumors*, *neuroblastoma*, *central nervous system embryonal tumors*, and *pediatric germ cell tumors*.
- The body of evidence on overall survival with single HSCT compared to conventional therapy is insufficient to draw conclusions for *central nervous system embryonal tumors*, *high-risk rhabdomyosarcoma of mixed stages*, *congenital alveolar rhabdomyosarcoma*, *cranial parameningeal rhabdomyosarcoma with metastasis*, allogeneic transplantation for metastatic rhabdomyosarcoma, extraocular retinoblastoma with no CNS involvement, trilateral retinoblastoma, and six types of glial tumor (newly diagnosed anaplastic astrocytoma, newly diagnosed glioblastoma multiforme, anaplastic ependymoma, choroid plexus carcinoma, recurrent/progressive glioblastoma multiforme, and nonanaplastic, mixed or unspecified ependymoma).

Nonmalignant Diseases: Inherited Metabolic Diseases (Key Questions 3 and 4)

The inherited metabolic diseases were split into three categories for this review. Rapidly progressive disease was defined as progression to death within 10 years; the outcome of interest is overall survival. Slowly progressive disease was defined as progression to death of 10 years or greater; the outcomes of interest are neurocognitive and neurodevelopmental outcomes. For diseases that have both rapidly and slowly progressive forms of disease, outcomes of interest are overall survival and neurocognitive and neurodevelopmental outcomes respectively.

Rapidly Progressive Diseases

Evidence suggesting benefit of HSCT compared with conventional therapy:

• High strength evidence on overall survival suggests a benefit with single HSCT compared to conventional management for *Wolman's disease*.

Evidence suggesting no benefit of HSCT compared with conventional therapy:

- Low strength evidence on overall survival suggests no benefit with single HSCT compared to symptom management or disease natural history for *Niemann-Pick Type A*. Insufficient evidence:
- The body of evidence on overall survival with single HSCT compared to symptom management is insufficient to draw conclusions for *mucolipidosis II* (I-cell disease), *Gaucher disease Type II, cystinosis* and *infantile free sialic acid disease*.

Slowly Progressive Diseases

Evidence suggesting benefit of HSCT compared with conventional therapy:

- Low strength evidence on neurodevelopmental outcomes suggests a benefit with single HSCT compared to enzyme replacement therapy for *attenuated and severe forms of MPS II* (Hunter's disease).
- Low strength evidence on neurocognitive outcomes suggests a benefit with single HSCT compared to enzyme replacement therapy for *attenuated form of MPS II* (Hunter's disease).

Evidence suggesting no benefit of HSCT compared with conventional therapy:

- Low strength evidence on neurocognitive outcomes suggests no benefit with single HSCT compared to enzyme replacement therapy for *Gaucher Type III*.
- Low strength evidence on neurocognitive outcomes suggests no benefit with single HSCT compared to enzyme replacement therapy for the *severe form of MPS II* (Hunter's disease).
- Low strength evidence on neurocognitive or neurodevelopmental outcomes suggests no benefit with single HSCT compared to symptom management, substrate reduction therapy or disease natural history for *MPS III* (Sanfilippo).

Insufficient evidence:

 The body of evidence on neurocognitive or neurodevelopmental outcomes with single HSCT compared to symptom management and/or disease natural history is insufficient to draw conclusions for *Niemann-Pick type C*, *MPS IV* (Morquio syndrome), *aspartylglucosaminuria*, *Fabry's disease*, β-mannosidosis, mucolipidosis III, mucolipidosis IV, glycogen storage disease type II (Pompe disease), *Salla disease*, and *adrenomyeloneuropathy*.

Diseases With Both Rapidly and Slowly Progressive Forms

Evidence suggesting benefit of HSCT compared with conventional therapy:

• High strength evidence on number of subcutaneous nodules and number of joints with limited range of motion suggests a benefit with single HSCT compared to symptom management or disease natural history for *Farber's disease Type 2/3*.

Evidence suggesting no benefit of HSCT compared iwth conventional therapy:

• Low strength evidence on neurocognitive outcomes suggests no benefit with single HSCT compared to symptom management or disease natural history for *infantile ceroid lipofuscinosis*.

Insufficient evidence:

• The body of evidence on overall survival and/or neurocognitive and neurodevelopmental outcomes with single HSCT compared to symptom management and or disease natural

history is insufficient to draw conclusions for *galactosialidosis* (type unspecified), Sandhoff disease (type unspecified), Farber's disease Type I, infantile GM₁ gangliosidosis, juvenile GM₁ gangliosidosis, infantile Tay-Sachs, juvenile Tay-Sachs, and juvenile ceroid lipofuscinosis.

Autoimmune Diseases (Key Questions 5 and 6)

The main consideration in this systematic review was the comparative balance of long-term benefits and harms of HSCT. With the exception of newly diagnosed type I juvenile diabetes, children in the studies reviewed herein had severe, typically disabling disease, refractory to a wide variety of standard therapies. Thus, the disease natural history in those settings assumed the role of comparator.

Insufficient evidence:

- The overall body of evidence is insufficient to draw conclusions about the comparative benefits (e.g., increased overall survival) or harms (treatment-related mortality, secondary malignancies) of single autologous or allogeneic HSCT versus conventional therapy or disease natural history in patients with *newly diagnosed type 1 diabetes mellitus*, or those with severe, refractory, poor prognosis autoimmune diseases, including: *systemic lupus erythematosus, juvenile idiopathic arthritis, systemic sclerosis, malignant multiple sclerosis, Crohn's disease, myasthenia gravis, overlap syndrome, diffuse cutaneous cutis, Evans syndrome, autoimmune hemolytic anemia, and autoimmune cytopenia.*
- Although the overall body of evidence is insufficient to come to conclusions about the relative balance of benefits (e.g., increased overall survival) or harms (treatment-related mortality, secondary malignancies), moderate strength evidence suggests that extended periods of drug-free clinical remission can be achieved in some cases with single autologous HSCT for patients with *newly diagnosed type I juvenile diabetes*, and severe, refractory *juvenile idiopathic arthritis, systemic lupus erythematosus, systemic sclerosis*, and *Crohn's disease*.

This systematic review addresses a broad range of diseases, for the majority of which HSCT is considered only in patients who have diseases with very poor prognosis, refractory to best available treatment. It is only in such settings that the rigors and risks associated with HSCT would likely be considered. These risks include treatment related mortality, iatrogenic infections secondary to neutropenia, potential for secondary malignancy and over the long term cognitive and developmental delays. Families and their physicians face not only the challenges of severe disease, but when these diseases are uncommon or rare, challenges to the accumulation of knowledge about effective therapy are substantial. The present systematic review offered the opportunity to rigorously assess the evidence for HSCT in pediatric disease; simultaneously, it revealed gaps in the evidence, suggesting opportunities to address these.

Cancer research has numerous well-defined conventions for reporting outcomes, but these were not used consistently in the literature. For example, overall survival may be reported as time from diagnosis for newly diagnosed disease or time from recurrence for relapsed disease. When reporting overall survival, papers were often unclear which time point was used in their calculation; some even reported overall survival from time of transplant. Moreover, some papers did not report overall survival at all, but reported only measures related to disease progression. Similarly there was lack of consistency in reporting adverse events. For example, even such an important harm as treatment related mortality was not always reported. Without an explicit statement of the occurrence of treatment-related mortality, it is impossible to ascertain if there

was no mortality or a failure to report the mortality that occurred. Inconsistencies also occurred in the reporting of toxicities, although there are well-defined conventions for grading the severity of toxicity.

There were few randomized controlled trials for any of the indications included in the systematic review. While this might be expected with uncommon and rare diseases, some solid tumors reviewed herein had substantial numbers of patients. For example, some 600 patients underwent tandem HSCT for neuroblastoma. In high-risk Ewing's sarcoma and high-risk rhabdomyosarcoma, more than 250 patients underwent HSCT for each disease. The widespread reporting of aggregated data is another obstacle to evaluating the outcomes of HSCT. For example, it is common to report studies of HSCT that include patients with a variety of diseases without reporting disease specific outcomes. Within a single study, patients with disparate prognosis may be aggregated without reporting stratified results.

The inherited metabolic diseases illustrate how rare the disease, and thus the evidence, can be. Among those included in the systematic review, evidence typically consisted of no more than six cases. Yet some diseases have a homogeneous and dismal natural history. In particular, among diseases we classified as rapidly progressing, or refractory to standard therapies, spontaneous remission is highly unlikely or impossible. Therefore, we attributed the reported results to HSCT. For example, the implications of transplantation for a rapidly progressing lysosomal storage disorder like Wolman's syndrome are clear; this is a choice between certain death and potential survival, albeit with associated risk of adverse effects associated with transplant.

Most autoimmune diseases in children are rare, and particularly in the cases included in this report, represent a daunting therapeutic challenge. With the exception of newly diagnosed type I juvenile diabetes, patients with autoimmune diseases reviewed here had severe, disabling illness that had not responded to or had relapsed following a large number of standard therapies. HSCT was essentially a last resort for these children and adolescents. In a large proportion of subjects in those settings, HSCT was followed by a period of sustained remission of severe symptoms and therefore respite from immune suppressive therapy. While the durability of clinical remission, and the balance of long-term risks and benefits remains unknown, the obvious strength of association permits the conclusion that HSCT was likely causative.

By contrast, type I autoimmune juvenile diabetes can be satisfactorily managed over the long term, at relatively low risk, in a large proportion of children with intensive insulin therapy (IIT) and lifestyle modifications. The risk-benefit ratio for HSCT compared to IIT must balance the potential for long-term benefit (cure) and harms, particularly those associated with cytotoxic chemotherapy agents used in preparation for HSCT. While evidence suggests a sustained period of insulin independence and adequate metabolic control may be achieved with HSCT, the decision to apply this high-risk procedure to this population is not clear-cut. To date, no trials of HSCT in newly diagnosed type 1 diabetes have been conducted or registered in the U.S.

Future Research

The available literature to assess the comparative effectiveness of HSCT to conventional therapy in pediatric patients largely comprised small case series and case reports. The challenges of conducting research in rare diseases or rare disease settings need to be acknowledged. Many of these diseases are very rare, so the pace of patient accrual may be slow; this may be accompanied by changes in practices, both for induction chemotherapy and stem cell transplantation itself and other aspects of management and treatment. Also, patients are likely to

be clinically diverse in terms of disease site, tumor histology or stage, prior and co-interventions, and other factors. Specific recommendations for future research follow.

- 1. For diseases with adequate patient populations, promote multicenter randomized trials to increase the scientific rigor in which HSCT can be evaluated.
- 2. Use established registries to standardize the collection of demographic data, treatments, and to facilitate the evaluation of comparative harms and benefits of treatments.
- 3. Recognizing that observational studies, including case series, and case reports will continue to be attractive to investigators, recommendations to improve the usefulness and generalizability of such studies are:
 - Conduct prospective studies with contemporaneous treatments.
 - Patients in both single arm and comparative studies would be comparable in terms of key variables, such as disease, anatomic site, disease stage, and prior treatment.
 - Consistent reporting of survival outcomes, with a clear definition of the survival time i.e., time from diagnosis, time from transplant or time from recurrence.
 - Consistent harms reporting is essential in facilitating the comparative evaluation two treatments. Complete reporting of treatment related mortality, secondary malignancy, serious infections, and veno-occlusive disease would be standard.
 - Make studies comparative when possible.
 - Multivariable regression analyses can be helpful in controlling for potential confounders, when sufficient sample sizes can be obtained, and would adhere to good modeling practices.⁶⁸⁶⁻⁶⁹²
 - Guidance for study quality in observational studies has been addressed by Deeks et al.⁶⁹³
- 4. For solid tumors, future studies would focus on single diseases, and collect detailed information on prognostic factors that may allow for more refined stratification of high-risk categories which may highlight those likely to benefit from HSCT and allowing for less uncertainty in the interpretation of results. Followup would be sufficient to assess the impact of HSCT on the development of secondary malignancies and long term impact on neurocognitive development and fertility.
- 5. For pediatric patients with slowly progressive forms of inherited metabolic diseases, controlled trials with sufficient followup are needed to evaluate the long-term balance of benefit and harms. Trials would use standardized measure of neurocognitive and neurodevelopmental outcomes.
- 6. For pediatric patients with autoimmune diseases, controlled trials with sufficient followup are needed to evaluate the long-term balance of benefit and harms.

References

- 1. Devetten M, Armitage JO. Hematopoietic cell transplantation: progress and obstacles. Ann Oncol 2007 Sep;18(9):1450-6. PMID: 17355954
- Shimoni A, Nagler A. Non-myeloablative stem-cell transplantation in the treatment of malignant and non-malignant disorders. Isr Med Assoc J 2002 Apr;4(4):272-9. PMID: 12001702
- Urbano-Ispizua A, Schmitz N, de Witte T, et al. Allogeneic and autologous transplantation for haematological diseases, solid tumours and immune disorders: definitions and current practice in Europe. Bone Marrow Transplant 2002 Apr;29(8):639-46. PMID: 12180107
- 4. Pelus LM. Peripheral blood stem cell mobilization: new regimens, new cells, where do we stand. Curr Opin Hematol 2008 Jul;15(4):285-92. PMID: 18536564
- 5. Barrett AJ, Savani BN. Stem cell transplantation with reduced-intensity conditioning regimens: a review of ten years experience with new transplant concepts and new therapeutic agents. Leukemia 2006 Oct;20(10):1661-72. PMID: 16871277
- Sandmaier BM, Mackinnon S, Childs RW. Reduced intensity conditioning for allogeneic hematopoietic cell transplantation: current perspectives. Biol Blood Marrow Transplant 2007 Jan;13(1 Suppl 1):87-97. PMID: 17222778
- Barfield RC, Kasow KA, Hale GA. Advances in pediatric hematopoietic stem cell transplantation. Cancer Biol Ther 2008 Oct;7(10):1533-9. PMID: 18927494
- Eiser C. Practitioner review: long-term consequences of childhood cancer. J Child Psychol Psychiatry 1998 Jul;39(5):621-33. PMID: 9690926
- Locatelli F, Giorgiani G, Di-Cesare-Merlone A, et al. The changing role of stem cell transplantation in childhood. Bone Marrow Transplant 2008 Jun;41 Suppl 2:S3-7. PMID: 18545240

- Reulen RC, Winter DL, Frobisher C, et al. Long-term cause-specific mortality among survivors of childhood cancer. JAMA 2010 Jul 14;304(2):172-9. PMID: 20628130
- Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med 2009 Aug 18;151(4):W65-94. PMID: 19622512
- 12. Instutute of Medicine Committee on Accelerating Rare Diseases Research and Orphan Product Development: Board on Health Sciences Policy. Rare Diseases and Orphan Products: Accelerating Research and Development. Washington, DC: National Academies Press; 2011 [cited 2011 January]. http://books.nap.edu/openbook.php?record_i d=12953.
- Owens DK, Lohr KN, Atkins D, et al. AHRQ series paper 5: grading the strength of a body of evidence when comparing medical interventions--agency for healthcare research and quality and the effective healthcare program. J Clin Epidemiol 2010 May;63(5):513-23. PMID: 19595577
- Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008 Apr 26;336(7650):924-6. PMID: 18436948
- National Cancer Institute Physician Data Query. Childhood acute lymphoblastic leukemia treatment 2010 [updated 06/29/2010]; www.cancer.gov/cancertopics/pdq/treatment /childALL/healthprofessional/allpages.
- Redaelli A, Laskin BL, Stephens JM, et al. A systematic literature review of the clinical and epidemiological burden of acute lymphoblastic leukaemia (ALL). Eur J Cancer Care (Engl) 2005 Mar;14(1):53-62. PMID: 15698386
- Gaynon PS. Childhood acute lymphoblastic leukaemia and relapse. Br J Haematol 2005 Dec;131(5):579-87. PMID: 16351633

- Jeha S, Pui CH. Risk-adapted treatment of pediatric acute lymphoblastic leukemia. Hematol Oncol Clin North Am 2009 Oct;23(5):973-90, v. PMID: 19825448
- Krance R. Transplantation for children with acute lymphoblastic leukemia. Bone Marrow Transplant 2008 Aug;42 Suppl 1:S25-S7. PMID: 18724293
- 20. Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med 2006 Jan 12;354(2):166-78. PMID: 16407512
- 21. Pulsipher MA, Bader P, Klingebiel T, et al. Allogeneic transplantation for pediatric acute lymphoblastic leukemia: the emerging role of peritransplantation minimal residual disease/chimerism monitoring and novel chemotherapeutic, molecular, and immune approaches aimed at preventing relapse. Biol Blood Marrow Transplant 2009 Jan;15(1 Suppl):62-71. PMID: 19147081
- 22. Schrauder A, von Stackelberg A, Schrappe M, et al. Allogeneic hematopoietic SCT in children with ALL: current concepts of ongoing prospective SCT trials. Bone Marrow Transplant 2008 Jun;41 Suppl 2:S71-4. PMID: 18545248
- Stanulla M, Schrappe M. Treatment of childhood acute lymphoblastic leukemia. Semin Hematol 2009 Jan;46(1):52-63. PMID: 19100368
- 24. Pui CH, Campana D, Evans WE. Childhood acute lymphoblastic leukaemia--current status and future perspectives. Lancet Oncol 2001 Oct;2(10):597-607. PMID: 11902549
- Pieters R, Schrappe M, De Lorenzo P, et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet 2007 Jul 21;370(9583):240-50. PMID: 17658395
- 26. Hahn T, Wall D, Camitta B, et al. The role of cytotoxic therapy with hematopoietic stem cell transplantation in the therapy of acute lymphoblastic leukemia in children: an evidence-based review. Biol Blood Marrow Transplant 2005 Nov;11(11):823-61. PMID: 16275588

- 27. Eapen M, Raetz E, Zhang MJ, et al. Outcomes after HLA-matched sibling transplantation or chemotherapy in children with B-precursor acute lymphoblastic leukemia in a second remission: a collaborative study of the Children's Oncology Group and the Center for International Blood and Marrow Transplant Research. Blood 2006 Jun 15;107(12):4961-7. PMID: 16493003
- Baker KS, Armenian S, Bhatia S. Long-term consequences of hematopoietic stem cell transplantation: current state of the science. Biol Blood Marrow Transplant 2010 Jan;16(1 Suppl):S90-6. PMID: 19782145
- 29. National Cancer Institute Physician Data Query. Late effects of treatment of childhood cancer 2010 [updated 08/06/2010; cited 2010 October]; www.cancer.gov/cancertopics/pdq/treatment /lateeffects/HealthProfessional.
- Shenoy S, Smith FO. Hematopoietic stem cell transplantation for childhood malignancies of myeloid origin. Bone Marrow Transplant 2008 Jan;41(2):141-8. PMID: 18176616
- 31. Landier W, Bhatia S, Eshelman DA, et al. Development of risk-based guidelines for pediatric cancer survivors: the Children's Oncology Group Long-Term Follow-Up Guidelines from the Children's Oncology Group Late Effects Committee and Nursing Discipline. J Clin Oncol 2004 Dec 15;22(24):4979-90. PMID: 15576413
- Pasquini MC, Wang Z. Current use and outcome of hematopoietic stem cell transplantation: CIBMTR Summary Slides, 2010. Center for International Blood & Marrow Transplant and Research (CIBMTR); 2010.
- Miano M, Cancedda R, Hartmann O, et al. Survey on haematopoietic stem cell transplantation for children in Europe. Bone Marrow Transplant 2005 Mar;35 Suppl 1:S3-8. PMID: 15812526
- Mehta PA, Davies SM. Allogeneic transplantation for childhood ALL. Bone Marrow Transplant 2008 Jan;41(2):133-9. PMID: 17994118

- 35. Bleakley M, Lau L, Shaw PJ, et al. Bone marrow transplantation for paediatric AML in first remission: a systematic review and meta-analysis. Bone Marrow Transplant 2002 May;29(10):843-52. PMID: 12058234
- 36. Alonzo TA, Wells RJ, Woods WG, et al. Postremission therapy for children with acute myeloid leukemia: the children's cancer group experience in the transplant era. Leukemia 2005 Jun;19(6):965-70. PMID: 15830007
- 37. Woods WG. Curing childhood acute myeloid leukemia (AML) at the half-way point: promises to keep and miles to go before we sleep. Pediatr Blood Cancer 2006 May 1;46(5):565-9. PMID: 16261562
- Bierings M, Nachman JB, Zwaan CM. Stem cell transplantation in pediatric leukemia and myelodysplasia: state of the art and current challenges. Curr Stem Cell Res Ther 2007 Jan;2(1):53-63. PMID: 18240454
- Amadori S, Testi AM, Arico M, et al. Prospective comparative study of bone marrow transplantation and postremission chemotherapy for childhood acute myelogenous leukemia. The Associazione Italiana Ematologia ed Oncologia Pediatrica Cooperative Group. J Clin Oncol 1993 Jun;11(6):1046-54. PMID: 8501490
- Michel G, Leverger G, Leblanc T, et al. Allogeneic bone marrow transplantation vs aggressive post-remission chemotherapy for children with acute myeloid leukemia in first complete remission. A prospective study from the French Society of Pediatric Hematology and Immunology (SHIP). Bone Marrow Transplant 1996 Feb;17(2):191-6. PMID: 8640165

 Shaw PJ, Bergin ME, Burgess MA, et al. Childhood acute myeloid leukemia: outcome in a single center using chemotherapy and consolidation with busulfan/cyclophosphamide for bone marrow transplantation. J Clin Oncol 1994 Oct;12(10):2138-45. PMID: 7931485

- 42. Stevens RF, Hann IM, Wheatley K, et al. Marked improvements in outcome with chemotherapy alone in paediatric acute myeloid leukemia: results of the United Kingdom Medical Research Council's 10th AML trial. MRC Childhood Leukaemia Working Party. Br J Haematol 1998 Apr;101(1):130-40. PMID: 9576193
- 43. Wells RJ, Woods WG, Buckley JD, et al. Treatment of newly diagnosed children and adolescents with acute myeloid leukemia: a Childrens Cancer Group study. J Clin Oncol 1994 Nov;12(11):2367-77. PMID: 7964952
- 44. Woods WG, Kobrinsky N, Buckley JD, et al. Timed-sequential induction therapy improves postremission outcome in acute myeloid leukemia: a report from the Children's Cancer Group. Blood 1996 Jun 15;87(12):4979-89. PMID: 8652810
- 45. Ravindranath Y, Yeager AM, Chang MN, et al. Autologous bone marrow transplantation versus intensive consolidation chemotherapy for acute myeloid leukemia in childhood. Pediatric Oncology Group. N Engl J Med 1996 May 30;334(22):1428-34. PMID: 8618581
- 46. Lange BJ, Dinndorf P, Smith FO, et al. Pilot study of idarubicin-based intensive-timing induction therapy for children with previously untreated acute myeloid leukemia: Children's Cancer Group Study 2941. J Clin Oncol 2004 Jan 1;22(1):150-6. PMID: 14701777
- 47. Smith FO, Alonzo TA, Gerbing RB, et al. Long-term results of children with acute myeloid leukemia: a report of three consecutive Phase III trials by the Children's Cancer Group: CCG 251, CCG 213 and CCG 2891. Leukemia 2005 Dec;19(12):2054-62. PMID: 16136168
- 48. Woods WG, Kobrinsky N, Buckley J, et al. Intensively timed induction therapy followed by autologous or allogeneic bone marrow transplantation for children with acute myeloid leukemia or myelodysplastic syndrome: a Childrens Cancer Group pilot study. J Clin Oncol 1993 Aug;11(8):1448-57. PMID: 8336184

- 49. Arico M, Valsecchi MG, Camitta B, et al. Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med 2000 Apr 6;342(14):998-1006. PMID: 10749961
- Jacobsohn DA, Hewlett B, Morgan E, et al. Favorable outcome for infant acute lymphoblastic leukemia after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2005 Dec;11(12):999-1005. PMID: 16338622
- 51. Kosaka Y, Koh K, Kinukawa N, et al. Infant acute lymphoblastic leukemia with MLL gene rearrangements: outcome following intensive chemotherapy and hematopoietic stem cell transplantation. Blood 2004 Dec 1;104(12):3527-34. PMID: 15297313
- 52. Sanders JE, Im HJ, Hoffmeister PA, et al. Allogeneic hematopoietic cell transplantation for infants with acute lymphoblastic leukemia. Blood 2005 May 1;105(9):3749-56. PMID: 15637143
- 53. Hilden JM, Dinndorf PA, Meerbaum SO, et al. Analysis of prognostic factors of acute lymphoblastic leukemia in infants: report on CCG 1953 from the Children's Oncology Group. Blood 2006 Jul 15;108(2):441-51. PMID: 16556894
- 54. Ribera JM, Ortega JJ, Oriol A, et al. Comparison of intensive chemotherapy, allogeneic, or autologous stem-cell transplantation as postremission treatment for children with very high risk acute lymphoblastic leukemia: PETHEMA ALL-93 Trial. J Clin Oncol 2007 Jan 1;25(1):16-24. PMID: 17194902
- 55. Satwani P, Sather H, Ozkaynak F, et al. Allogeneic bone marrow transplantation in first remission for children with ultra-highrisk features of acute lymphoblastic leukemia: A children's oncology group study report. Biol Blood Marrow Transplant 2007 Feb;13(2):218-27. PMID: 17241927
- 56. Schrauder A, Reiter A, Gadner H, et al. Superiority of allogeneic hematopoietic stem-cell transplantation compared with chemotherapy alone in high-risk childhood T-cell acute lymphoblastic leukemia: results from ALL-BFM 90 and 95. J Clin Oncol 2006 Dec 20;24(36):5742-9. PMID: 17179108

- 57. Boulad F, Steinherz P, Reyes B, et al. Allogeneic bone marrow transplantation versus chemotherapy for the treatment of childhood acute lymphoblastic leukemia in second remission: a single-institution study. J Clin Oncol 1999 Jan;17(1):197-207. PMID: 10458234
- 58. Eapen M, Zhang MJ, Devidas M, et al. Outcomes after HLA-matched sibling transplantation or chemotherapy in children with acute lymphoblastic leukemia in a second remission after an isolated central nervous system relapse: a collaborative study of the Children's Oncology Group and the Center for International Blood and Marrow Transplant Research. Leukemia 2008 Feb;22(2):281-6. PMID: 18033318
- 59. Einsiedel HG, von Stackelberg A, Hartmann R, et al. Long-term outcome in children with relapsed ALL by risk-stratified salvage therapy: results of trial acute lymphoblastic leukemia-relapse study of the Berlin-Frankfurt-Munster Group 87. J Clin Oncol 2005 Nov 1;23(31):7942-50. PMID: 16258094
- 60. Gaynon PS, Harris RE, Altman AJ, et al. Bone marrow transplantation versus prolonged intensive chemotherapy for children with acute lymphoblastic leukemia and an initial bone marrow relapse within 12 months of the completion of primary therapy: Children's Oncology Group study CCG-1941. J Clin Oncol 2006 Jul 1;24(19):3150-6. PMID: 16717292
- 61. Cwynarski K, Roberts IA, Iacobelli S, et al. Stem cell transplantation for chronic myeloid leukemia in children. Blood 2003 Aug 15;102(4):1224-31. PMID: 12714525
- 62. Woods WG, Barnard DR, Alonzo TA, et al. Prospective study of 90 children requiring treatment for juvenile myelomonocytic leukemia or myelodysplastic syndrome: a report from the Children's Cancer Group. J Clin Oncol 2002 Jan 15;20(2):434-40. PMID: 11786571
- 63. Locatelli F, Nollke P, Zecca M, et al. Hematopoietic stem cell transplantation (HSCT) in children with juvenile myelomonocytic leukemia (JMML): results of the EWOG-MDS/EBMT trial. Blood 2005 Jan 1;105(1):410-9. PMID: 15353481

- 64. National Cancer Institute Physician Data Query. Childhood Acute Myeloid Leukemia/Other Myeloid Malignancies Treatment. 2010 [updated 08/09/2010]; www.cancer.gov/cancertopics/pdq/treatment /childAML/healthprofessional/allpages.
- Arceci RJ, Aplenc R. Acute myelogenous leukemia in children. In: Greer JP, Foerster J, Rodgers GM, editors. Wintrobe's Clinical Hematology. Philadelphia: Lippincott Williams & Wilkins; 2009. p. 1918-37.
- Meshinchi S, Arceci RJ. Prognostic factors and risk-based therapy in pediatric acute myeloid leukemia. Oncologist 2007 Mar;12(3):341-55. PMID: 17405900
- Kaspers GJ, Zwaan CM. Pediatric acute myeloid leukemia: towards high-quality cure of all patients. Haematologica 2007 Nov;92(11):1519-32. PMID: 18024401
- 68. Oliansky DM, Rizzo JD, Aplan PD, et al. The role of cytotoxic therapy with hematopoietic stem cell transplantation in the therapy of acute myeloid leukemia in children: an evidence-based review. Biol Blood Marrow Transplant 2007 Jan;13(1):1-25. PMID: 17222748
- 69. Klingebiel T, Reinhardt D, Bader P. Place of HSCT in treatment of childhood AML. Bone Marrow Transplant 2008 Oct;42 Suppl 2:S7-9. PMID: 18978749
- Kolb HJ, Schattenberg A, Goldman JM, et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 1995 Sep 1;86(5):2041-50. PMID: 7655033
- O'Dwyer ME, Mauro MJ, Kurilik G, et al. The impact of clonal evolution on response to imatinib mesylate (STI571) in accelerated phase CML. Blood 2002 Sep 1;100(5):1628-33. PMID: 12176881
- Millot F, Esperou H, Bordigoni P, et al. Allogeneic bone marrow transplantation for chronic myeloid leukemia in childhood: a report from the Societe Francaise de Greffe de Moelle et de Therapie Cellulaire (SFGM-TC). Bone Marrow Transplant 2003 Nov;32(10):993-9. PMID: 14595387

- 73. Weisdorf DJ, Anasetti C, Antin JH, et al. Allogeneic bone marrow transplantation for chronic myelogenous leukemia: comparative analysis of unrelated versus matched sibling donor transplantation. Blood 2002 Mar 15;99(6):1971-7. PMID: 11877268
- 74. Fernandez HF, Kharfan-Dabaja MA. Tyrosine kinase inhibitors and allogeneic hematopoietic cell transplantation for chronic myeloid leukemia: targeting both therapeutic modalities. Cancer Control 2009 Apr;16(2):153-7. PMID: 19337201
- 75. Suttorp M. Innovative approaches of targeted therapy for CML of childhood in combination with paediatric haematopoietic SCT. Bone Marrow Transplant 2008 Oct;42 Suppl 2:S40-6. PMID: 18978743
- 76. Hasle H, Kerndrup G, Jacobsen BB. Childhood myelodysplastic syndrome in Denmark: incidence and predisposing conditions. Leukemia 1995 Sep;9(9):1569-72. PMID: 7658725
- Aul C, Gattermann N, Schneider W. Agerelated incidence and other epidemiological aspects of myelodysplastic syndromes. Br J Haematol 1992 Oct;82(2):358-67. PMID: 1419819
- Arico M, Biondi A, Pui CH. Juvenile myelomonocytic leukemia. Blood 1997 Jul 15;90(2):479-88. PMID: 9226148
- 79. Smith FO, King R, Nelson G, et al. Unrelated donor bone marrow transplantation for children with juvenile myelomonocytic leukaemia. Br J Haematol 2002 Mar;116(3):716-24. PMID: 11849238
- Bradley MB, Cairo MS. Stem cell transplantation for pediatric lymphoma: past, present and future. Bone Marrow Transplant 2008 Jan;41(2):149-58. PMID: 18084337
- National Cancer Institute Physician Data Query. Childhood Hodgkin lymphoma treatment. 2010 [updated 08/14/2009; cited 2010 October]; www.cancer.gov/cancertopics/pdq/treatment /childhodgkins/healthprofessional.

- 82. Baker KS, Gordon BG, Gross TG, et al. Autologous hematopoietic stem-cell transplantation for relapsed or refractory Hodgkin's disease in children and adolescents. J Clin Oncol 1999 Mar;17(3):825-31. PMID: 10071273
- 83. Lieskovsky YE, Donaldson SS, Torres MA, et al. High-dose therapy and autologous hematopoietic stem-cell transplantation for recurrent or refractory pediatric Hodgkin's disease: results and prognostic indices. J Clin Oncol 2004 Nov 15;22(22):4532-40. PMID: 15542804
- Stoneham S, Ashley S, Pinkerton CR, et al. Outcome after autologous hemopoietic stem cell transplantation in relapsed or refractory childhood Hodgkin disease. J Pediatr Hematol Oncol 2004 Nov;26(11):740-5. PMID: 15543009
- 85. Verdeguer A, Pardo N, Madero L, et al. Autologous stem cell transplantation for advanced Hodgkin's disease in children. Spanish group for BMT in children (GETMON), Spain. Bone Marrow Transplant 2000 Jan;25(1):31-4. PMID: 10654011
- 86. Williams CD, Goldstone AH, Pearce R, et al. Autologous bone marrow transplantation for pediatric Hodgkin's disease: a casematched comparison with adult patients by the European Bone Marrow Transplant Group Lymphoma Registry. J Clin Oncol 1993 Nov;11(11):2243-9. PMID: 8229140
- 87. National Comprehensive Cancer Network. Hodgkin Lymphoma. 2010 [cited 2010 October];
 V.1.2010:www.nccn.org/professionals/physician_gls/PDF/hodgkins.pdf.
- Linch DC, Winfield D, Goldstone AH, et al. Dose intensification with autologous bonemarrow transplantation in relapsed and resistant Hodgkin's disease: results of a BNLI randomised trial. Lancet 1993 Apr 24;341(8852):1051-4. PMID: 8096958
- 89. Schmitz N, Pfistner B, Sextro M, et al. Aggressive conventional chemotherapy compared with high-dose chemotherapy with autologous haemopoietic stem-cell transplantation for relapsed chemosensitive Hodgkin's disease: a randomised trial. Lancet 2002 Jun 15;359(9323):2065-71. PMID: 12086759

- 90. National Cancer Institute Physician Data Query. Childhood Non-Hodgkin Lymphoma Treatment. 2010 [updated 08/14/2009; cited 2010 October]; www.cancer.gov/cancertopics/pdq/treatment /child-nonhodgkins/healthprofessional/allpages.
- 91. Gross TG, Termuhlen AM. Pediatric non-Hodgkin's lymphoma. Curr Oncol Rep 2007 Nov;9(6):459-65. PMID: 17991353
- 92. Levine JE, Harris RE, Loberiza FR, Jr., et al. A comparison of allogeneic and autologous bone marrow transplantation for lymphoblastic lymphoma. Blood 2003 Apr 1;101(7):2476-82. PMID: 12456505
- 93. Bureo E, Ortega JJ, Munoz A, et al. Bone marrow transplantation in 46 pediatric patients with non-Hodgkin's lymphoma. Spanish Working Party for Bone Marrow Transplantation in Children. Bone Marrow Transplant 1995 Mar;15(3):353-9. PMID: 7599558
- 94. Kobrinsky NL, Sposto R, Shah NR, et al. Outcomes of treatment of children and adolescents with recurrent non-Hodgkin's lymphoma and Hodgkin's disease with dexamethasone, etoposide, cisplatin, cytarabine, and l-asparaginase, maintenance chemotherapy, and transplantation: Children's Cancer Group Study CCG-5912. J Clin Oncol 2001 May 1;19(9):2390-6. PMID: 11331317
- 95. Loiseau HA, Hartmann O, Valteau D, et al. High-dose chemotherapy containing busulfan followed by bone marrow transplantation in 24 children with refractory or relapsed non-Hodgkin's lymphoma. Bone Marrow Transplant 1991 Dec;8(6):465-72. PMID: 1790426
- 96. Philip T, Hartmann O, Biron P, et al. Highdose therapy and autologous bone marrow transplantation in partial remission after first-line induction therapy for diffuse non-Hodgkin's lymphoma. J Clin Oncol 1988 Jul;6(7):1118-24. PMID: 3292712
- 97. Woessmann W, Peters C, Lenhard M, et al. Allogeneic haematopoietic stem cell transplantation in relapsed or refractory anaplastic large cell lymphoma of children and adolescents--a Berlin-Frankfurt-Munster group report. Br J Haematol 2006 Apr;133(2):176-82. PMID: 16611309

- 98. Won SC, Han JW, Kwon SY, et al. Autologous peripheral blood stem cell transplantation in children with non-Hodgkin's lymphoma: A report from the Korean society of pediatric hematologyoncology. Ann Hematol 2006 Nov;85(11):787-94. PMID: 16932891
- 99. Fanin R, Ruiz de Elvira MC, Sperotto A, et al. Autologous stem cell transplantation for T and null cell CD30-positive anaplastic large cell lymphoma: analysis of 64 adult and paediatric cases reported to the European Group for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant 1999 Mar;23(5):437-42. PMID: 10100556
- 100. Ladenstein R, Pearce R, Hartmann O, et al. High-dose chemotherapy with autologous bone marrow rescue in children with poorrisk Burkitt's lymphoma: a report from the European Lymphoma Bone Marrow Transplantation Registry. Blood 1997 Oct 15;90(8):2921-30. PMID: 9376572
- 101. Hahn T, Wolff SN, Czuczman M, et al. The role of cytotoxic therapy with hematopoietic stem cell transplantation in the therapy of diffuse large cell B-cell non-Hodgkin's lymphoma: an evidence-based review. Biol Blood Marrow Transplant 2001;7(6):308-31. PMID: 11464975
- 102. National Comprehensive Cancer Network. Non-Hodgkin's Lymphoma. 2010 [cited 2010 October]; V.1.2010:[www.nccn.org/professionals/phys ician_gls/PDF/nhl.pdf.
- Park JR, Eggert A, Caron H. Neuroblastoma: biology, prognosis, and treatment. Pediatr Clin North Am 2008 Feb;55(1):97-120, x. PMID: 18242317
- 104. National Cancer Institute Physician Data Query. Neuroblastoma Treatment. 2010 [updated 02/11/2010; cited 2010 May]; www.cancer.gov/cancertopics/pdq/treatment /neuroblastoma/healthprofessional/allpages.
- 105. Berthold F, Boos J, Burdach S, et al. Myeloablative megatherapy with autologous stem-cell rescue versus oral maintenance chemotherapy as consolidation treatment in patients with high-risk neuroblastoma: a randomised controlled trial. Lancet Oncol 2005 Sep;6(9):649-58. PMID: 16129365

- Fish JD, Grupp SA. Stem cell transplantation for neuroblastoma. Bone Marrow Transplant 2008 Jan;41(2):159-65. PMID: 18037943
- 107. Matthay KK, Villablanca JG, Seeger RC, et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children's Cancer Group. N Engl J Med 1999 Oct 14;341(16):1165-73. PMID: 10519894
- 108. Pritchard J, Cotterill SJ, Germond SM, et al. High dose melphalan in the treatment of advanced neuroblastoma: results of a randomised trial (ENSG-1) by the European Neuroblastoma Study Group. Pediatr Blood Cancer 2005 Apr;44(4):348-57. PMID: 15546135
- 109. Laverdiere C, Liu Q, Yasui Y, et al. Longterm outcomes in survivors of neuroblastoma: a report from the Childhood Cancer Survivor Study. J Natl Cancer Inst 2009 Aug 19;101(16):1131-40. PMID: 19648511
- Yalcin B, Kremer LC, Caron HN, et al. High-dose chemotherapy and autologous haematopoietic stem cell rescue for children with high-risk neuroblastoma. Cochrane Database Syst Rev 2010;5:CD006301. PMID: 20464740
- 111. Matthay KK, Reynolds CP, Seeger RC, et al. Long-term results for children with highrisk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a children's oncology group study. J Clin Oncol 2009 Mar 1;27(7):1007-13. PMID: 19171716
- 112. Garaventa A, Parodi S, De Bernardi B, et al. Outcome of children with neuroblastoma after progression or relapse. A retrospective study of the Italian neuroblastoma registry. Eur J Cancer 2009 Nov;45(16):2835-42. PMID: 19616426
- 113. Ladenstein R, Potschger U, Hartman O, et al. 28 years of high-dose therapy and SCT for neuroblastoma in Europe: lessons from more than 4000 procedures. Bone Marrow Transplant 2008 Jun;41 Suppl 2:S118-27. PMID: 18545256

- 114. De Giorgi U, Rosti G, Slavin S, et al. Salvage high-dose chemotherapy for children with extragonadal germ-cell tumours. Br J Cancer 2005 Aug 22;93(4):412-7. PMID: 16106248
- 115. National Cancer Institute Physician Data Query. Childhood Extracranial Germ Cell Tumors Treatment. 2010 [updated 04/29/2010]; www.cancer.gov/cancertopics/pdq/treatment /extracranial-germcell/healthprofessional/allpages.
- 116. Bernstein L, Smith MA, Liu L, et al. Germ Cell, Trophoblastic and Other Gonadal Neoplasms. In: Ries LAG, Smith MA, Gurney JG, Linet M, Tamra T, Young JL, et al., editors. Cancer Incidence and Survival among Children and Adolescents: United States SEER Program 1975-1995. NIH Pub. No. 99-4649 ed. Bethesda, MD: National Cancer Institute, SEER Program; 1999.
- 117. National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines in Oncology. Ovarian Cancer. 2010 [updated V.2.2010]; www.nccn.org/professionals/physician_gls/ PDF/ovarian.pdf.
- 118. National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines in Oncology. Testicular Cancer. 2010 [updated V.2.2010]; www.nccn.org/professionals/physician_gls/ PDF/testicular.pdf.
- 119. Lazarus HM, Stiff PJ, Carreras J, et al. Utility of single versus tandem autotransplants for advanced testes/germ cell cancer: a center for international blood and marrow transplant research (CIBMTR) analysis. Biol Blood Marrow Transplant 2007 Jul;13(7):778-89. PMID: 17580256
- 120. Agarwal R, Dvorak CC, Stockerl-Goldstein KE, et al. High-dose chemotherapy followed by stem cell rescue for high-risk germ cell tumors: the Stanford experience. Bone Marrow Transplant 2009 Apr;43(7):547-52. PMID: 18997833

- 121. National Cancer Institute Clinical Trials (PDQ). Busulfan, Melphalan, Topotecan Hydrochloride, and a Stem Cell Transplant in Treating Patients With Newly Diagnosed or Relapsed Solid Tumor 2010 [cited 2010 May]; Clinical trial protocol]. www.cancer.gov/search/ViewClinicalTrials. aspx?cdrid=589296&version=HealthProfess ional&protocolsearchid=7788376.
- 122. National Cancer Institute Physician Data Query. Childhood Central Nervous System Embryonal Tumors Treatment 2010 [updated 05/20/2010; cited 2010 June]; www.cancer.gov/cancertopics/pdq/treatment /childCNSembryonal/healthprofessional/allp ages.
- MacDonald TJ. Aggressive infantile embryonal tumors. J Child Neurol 2008 Oct;23(10):1195-204. PMID: 18952586
- 124. Mueller S, Chang S. Pediatric brain tumors: current treatment strategies and future therapeutic approaches. Neurotherapeutics 2009 Jul;6(3):570-86. PMID: 19560746
- 125. Lafay-Cousin L, Strother D. Current treatment approaches for infants with malignant central nervous system tumors. Oncologist 2009 Apr;14(4):433-44. PMID: 19342475
- 126. National Cancer Institute Physician Data Query. Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor Treatment. 2010; www.cancer.gov/cancertopics/pdq/treatment /child-CNS-ATRT/healthprofessional/allpages.
- 127. Butturini AM, Jacob M, Aguajo J, et al. High-dose chemotherapy and autologous hematopoietic progenitor cell rescue in children with recurrent medulloblastoma and supratentorial primitive neuroectodermal tumors: the impact of prior radiotherapy on outcome. Cancer 2009 Jul 1;115(13):2956-63. PMID: 19402050
- 128. Cheuk DK, Lee TL, Chiang AK, et al. Autologous hematopoietic stem cell transplantation for high-risk brain tumors in children. J Neurooncol 2008 Feb;86(3):337-47. PMID: 17906911

- 129. Grodman H, Wolfe L, Kretschmar C. Outcome of patients with recurrent medulloblastoma or central nervous system germinoma treated with low dose continuous intravenous etoposide along with dose-intensive chemotherapy followed by autologous hematopoietic stem cell rescue. Pediatr Blood Cancer 2009 Jul;53(1):33-6. PMID: 19326417
- Kadota RP, Mahoney DH, Doyle J, et al. Dose intensive melphalan and cyclophosphamide with autologous hematopoietic stem cells for recurrent medulloblastoma or germinoma. Pediatr Blood Cancer 2008 Nov;51(5):675-8. PMID: 18623206
- 131. Ridola V, Grill J, Doz F, et al. High-dose chemotherapy with autologous stem cell rescue followed by posterior fossa irradiation for local medulloblastoma recurrence or progression after conventional chemotherapy. Cancer 2007 Jul 1;110(1):156-63. PMID: 17541945
- 132. Shih CS, Hale GA, Gronewold L, et al. High-dose chemotherapy with autologous stem cell rescue for children with recurrent malignant brain tumors. Cancer 2008 Mar 15;112(6):1345-53. PMID: 18224664
- 133. Sung KW, Yoo KH, Cho EJ, et al. Highdose chemotherapy and autologous stem cell rescue in children with newly diagnosed high-risk or relapsed medulloblastoma or supratentorial primitive neuroectodermal tumor. Pediatr Blood Cancer 2007 Apr;48(4):408-15. PMID: 17066462
- 134. Smiers FJ, Krishnamurti L, Lucarelli G. Hematopoietic stem cell transplantation for hemoglobinopathies: current practice and emerging trends. Pediatr Clin North Am 2010 Feb;57(1):181-205. PMID: 20307718
- 135. Modell B, Khan M, Darlison M, et al. Improved survival of thalassaemia major in the UK and relation to T2* cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2008;10:42. PMID: 18817553
- Platt OS, Brambilla DJ, Rosse WF, et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med 1994 Jun 9;330(23):1639-44. PMID: 7993409

- 137. Nietert PJ, Abboud MR, Silverstein MD, et al. Bone marrow transplantation versus periodic prophylactic blood transfusion in sickle cell patients at high risk of ischemic stroke: a decision analysis. Blood 2000 May 15;95(10):3057-64. PMID: 10807769
- 138. Walters MC, Storb R, Patience M, et al. Impact of bone marrow transplantation for symptomatic sickle cell disease: an interim report. Multicenter investigation of bone marrow transplantation for sickle cell disease. Blood 2000 Mar 15;95(6):1918-24. PMID: 10706855
- 139. Bhatia M, Walters MC. Hematopoietic cell transplantation for thalassemia and sickle cell disease: past, present and future. Bone Marrow Transplant 2008 Jan;41(2):109-17. PMID: 18059330
- Inati A. Recent advances in improving the management of sickle cell disease. Blood Rev 2009 Dec;23 Suppl 1:S9-13. PMID: 20116638
- 141. Strouse JJ, Lanzkron S, Beach MC, et al. Hydroxyurea for sickle cell disease: a systematic review for efficacy and toxicity in children. Pediatrics 2008 Dec;122(6):1332-42. PMID: 19047254
- 142. Walters MC, Patience M, Leisenring W, et al. Bone marrow transplantation for sickle cell disease. N Engl J Med 1996 Aug 8;335(6):369-76. PMID: 8663884
- 143. Brichard B, Vermylen C, Ninane J, et al. Persistence of fetal hemoglobin production after successful transplantation of cord blood stem cells in a patient with sickle cell anemia. J Pediatr 1996 Feb;128(2):241-3. PMID: 8636820
- 144. Locatelli F, Rocha V, Reed W, et al. Related umbilical cord blood transplantation in patients with thalassemia and sickle cell disease. Blood 2003 Mar 15;101(6):2137-43. PMID: 12424197
- 145. Centers for Disease Control and Prevention. RuSH Questions and Answers. 2010 [updated September 30, 2010]; www.cdc.gov/ncbddd/sicklecell/RuSH_FA Qs.html.

- 146. Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 1996 Feb;17(1):1-12. PMID: 8721797
- 147. Vermylen C, Cornu G, Ferster A, et al. Haematopoietic stem cell transplantation for sickle cell anaemia: the first 50 patients transplanted in Belgium. Bone Marrow Transplant 1998 Jul;22(1):1-6. PMID: 9678788
- 148. Bernaudin F, Socie G, Kuentz M, et al. Long-term results of related myeloablative stem-cell transplantation to cure sickle cell disease. Blood 2007 Oct 1;110(7):2749-56. PMID: 17606762
- 149. Lucarelli G, Andreani M, Angelucci E. The cure of thalassemia by bone marrow transplantation. Blood Rev 2002 Jun;16(2):81-5. PMID: 12127951
- 150. La Nasa G, Argiolu F, Giardini C, et al. Unrelated bone marrow transplantation for beta-thalassemia patients: The experience of the Italian Bone Marrow Transplant Group. Ann N Y Acad Sci 2005;1054:186-95. PMID: 16339665
- 151. Hongeng S, Pakakasama S, Chuansumrit A, et al. Outcomes of transplantation with related- and unrelated-donor stem cells in children with severe thalassemia. Biol Blood Marrow Transplant 2006 Jun;12(6):683-7. PMID: 16737942
- 152. Gaziev D, Galimberti M, Lucarelli G, et al. Bone marrow transplantation from alternative donors for thalassemia: HLAphenotypically identical relative and HLAnonidentical sibling or parent transplants. Bone Marrow Transplant 2000 Apr;25(8):815-21. PMID: 10808201
- 153. Li CK, Chik KW, Wong GW, et al. Growth and endocrine function following bone marrow transplantation for thalassemia major. Pediatr Hematol Oncol 2004 Jul-Aug;21(5):411-9. PMID: 15205084
- 154. Ferster A, Vermylen C, Cornu G, et al. Hydroxyurea for treatment of severe sickle cell anemia: a pediatric clinical trial. Blood 1996 Sep 15;88(6):1960-4. PMID: 8822914

- 155. Olivieri NF, Vichinsky EP. Hydroxyurea in children with sickle cell disease: impact on splenic function and compliance with therapy. J Pediatr Hematol Oncol 1998 Jan-Feb;20(1):26-31. PMID: 9482409
- 156. Santos A, Pinheiro V, Anjos C, et al. Scintigraphic follow-up of the effects of therapy with hydroxyurea on splenic function in patients with sickle cell disease. Eur J Nucl Med Mol Imaging 2002 Apr;29(4):536-41. PMID: 11914893
- 157. Svarch E, Machin S, Nieves RM, et al. Hydroxyurea treatment in children with sickle cell anemia in Central America and the Caribbean countries. Pediatr Blood Cancer 2006 Jul;47(1):111-2. PMID: 16550531
- 158. Hankins JS, Ware RE, Rogers ZR, et al. Long-term hydroxyurea therapy for infants with sickle cell anemia: the HUSOFT extension study. Blood 2005 Oct 1;106(7):2269-75. PMID: 16172253
- 159. Adams RJ, McKie VC, Hsu L, et al. Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N Engl J Med 1998 Jul 2;339(1):5-11. PMID: 9647873
- Borgna-Pignatti C, Galanello R. Thalassemias and related disorders: quantitative disorders of hemoglobin synthesis. In: Wintrobe MM, Greer JP, editors. Wintrobe's clinical hematology. 12th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2009. p. 1083-131.
- Weatherall DJ. The thalassemias. In: Stamatoyannapoulos G, Niehuis AW, Majerus PW, Varmus H, editors. The Molecular Basis of Blood Disease. 2nd ed. Philadelphia: WB Saunders Company; 1994. p. 157.
- 162. Borgna-Pignatti C, Cappellini MD, De Stefano P, et al. Survival and complications in thalassemia. Ann N Y Acad Sci 2005;1054:40-7. PMID: 16339650
- 163. Borgna-Pignatti C, Cappellini MD, De Stefano P, et al. Cardiac morbidity and mortality in deferoxamine- or deferipronetreated patients with thalassemia major. Blood 2006 May 1;107(9):3733-7. PMID: 16373663

- 164. Ehlers KH, Giardina PJ, Lesser ML, et al. Prolonged survival in patients with betathalassemia major treated with deferoxamine. J Pediatr 1991 Apr;118(4 Pt 1):540-5. PMID: 2007928
- 165. Yavarian M, Karimi M, Bakker E, et al. Response to hydroxyurea treatment in Iranian transfusion-dependent betathalassemia patients. Haematologica 2004 Oct;89(10):1172-8. PMID: 15477200
- 166. Delea TE, Edelsberg J, Sofrygin O, et al. Consequences and costs of noncompliance with iron chelation therapy in patients with transfusion-dependent thalassemia: a literature review. Transfusion 2007 Oct;47(10):1919-29. PMID: 17880620
- 167. Modell B, Khan M, Darlison M. Survival in beta-thalassaemia major in the UK: data from the UK Thalassaemia Register. Lancet 2000 Jun 10;355(9220):2051-2. PMID: 10885361
- 168. Myers KC, Davies SM. Hematopoietic stem cell transplantation for bone marrow failure syndromes in children. Biol Blood Marrow Transplant 2009 Mar;15(3):279-92. PMID: 19203719
- 169. Alter BP, Greene MH, Velazquez I, et al. Cancer in Fanconi anemia. Blood 2003 Mar 1;101(5):2072. PMID: 12584146
- 170. Gluckman E, Wagner JE. HSCT for hereditary bone marrow failure syndromes, Chapter 42. In: Apperley J, Carreras E, Gluckman E, Gratwohl A., Masszi T, editors. The 2008 revised edition of the EBMT-ESH Handbook on Haemopoietic Stem Cell Transplantation 2008.
- 171. Dokal I, Vulliamy T. Inherited aplastic anaemias/bone marrow failure syndromes. Blood Rev 2008 May;22(3):141-53. PMID: 18164793
- 172. Bagby GC, Lipton JM, Sloand EM, et al. Marrow failure. Hematology Am Soc Hematol Educ Program 2004:318-36. PMID: 15561690
- 173. Ferry C, Ouachee M, Leblanc T, et al. Hematopoietic stem cell transplantation in severe congenital neutropenia: experience of the French SCN register. Bone Marrow Transplant 2005 Jan;35(1):45-50. PMID: 15489867

- Dufour C, Svahn J. Fanconi anaemia: new strategies. Bone Marrow Transplant 2008 Jun;41 Suppl 2:S90-5. PMID: 18545254
- 175. Burroughs L, Woolfrey A, Shimamura A. Shwachman-Diamond syndrome: a review of the clinical presentation, molecular pathogenesis, diagnosis, and treatment. Hematol Oncol Clin North Am 2009 Apr;23(2):233-48. PMID: 19327581
- 176. de la Fuente J, Dokal I. Dyskeratosis congenita: advances in the understanding of the telomerase defect and the role of stem cell transplantation. Pediatr Transplant 2007 Sep;11(6):584-94. PMID: 17663679
- MacMillan ML, Davies SM, Wagner JE, et al. Engraftment of unrelated donor stem cells in children with familial amegakaryocytic thrombocytopenia. Bone Marrow Transplant 1998 Apr;21(7):735-7. PMID: 9578317
- 178. Kudo K, Kato K, Matsuyama T, et al. Successful engraftment of unrelated donor stem cells in two children with congenital amegakaryocytic thrombocytopenia. J Pediatr Hematol Oncol 2002 Jan;24(1):79-80. PMID: 11902750
- 179. Steele M, Hitzler J, Doyle JJ, et al. Reduced intensity hematopoietic stem-cell transplantation across human leukocyte antigen barriers in a patient with congenital amegakaryocytic thrombocytopenia and monosomy 7. Pediatr Blood Cancer 2005 Aug;45(2):212-6. PMID: 15782403
- 180. Al-Ahmari A, Ayas M, Al-Jefri A, et al. Allogeneic stem cell transplantation for patients with congenital amegakaryocytic thrombocytopenia (CAT). Bone Marrow Transplant 2004 Apr;33(8):829-31. PMID: 14968137
- 181. Yesilipek, Hazar V, Kupesiz A, et al. Peripheral stem cell transplantation in a child with amegakaryocytic thrombocytopenia. Bone Marrow Transplant 2000 Sep;26(5):571-2. PMID: 11019849
- 182. Lackner A, Basu O, Bierings M, et al. Haematopoietic stem cell transplantation for amegakaryocytic thrombocytopenia. Br J Haematol 2000 Jun;109(4):773-5. PMID: 10929028

- 183. Lipton JM, Ellis SR. Diamond-Blackfan anemia: diagnosis, treatment, and molecular pathogenesis. Hematol Oncol Clin North Am 2009 Apr;23(2):261-82. PMID: 19327583
- 184. Elhasid R, Rowe JM. Hematopoetic stem cell transplantation in neutrophil disorders: severe congenital neutropenia, leukocyte adhesion deficiency and chronic granulomatous disease. Clin Rev Allergy Immunol 2010 Feb;38(1):61-7. PMID: 19452286
- 185. Pongtanakul B, Das PK, Charpentier K, et al. Outcome of children with aplastic anemia treated with immunosuppressive therapy. Pediatr Blood Cancer 2008 Jan;50(1):52-7. PMID: 17941069
- 186. Scheinberg P, Wu CO, Nunez O, et al. Long-term outcome of pediatric patients with severe aplastic anemia treated with antithymocyte globulin and cyclosporine. J Pediatr 2008 Dec;153(6):814-9. PMID: 18672253
- 187. Kojima S, Ohara A, Tsuchida M, et al. Risk factors for evolution of acquired aplastic anemia into myelodysplastic syndrome and acute myeloid leukemia after immunosuppressive therapy in children. Blood 2002 Aug 1;100(3):786-90. PMID: 12130487
- 188. Frickhofen N, Heimpel H, Kaltwasser JP, et al. Antithymocyte globulin with or without cyclosporin A: 11-year follow-up of a randomized trial comparing treatments of aplastic anemia. Blood 2003 Feb 15;101(4):1236-42. PMID: 12393680
- 189. Kosaka Y, Yagasaki H, Sano K, et al. Prospective multicenter trial comparing repeated immunosuppressive therapy with stem-cell transplantation from an alternative donor as second-line treatment for children with severe and very severe aplastic anemia. Blood 2008 Feb 1;111(3):1054-9. PMID: 17989314
- 190. Locasciulli A, Oneto R, Bacigalupo A, et al. Outcome of patients with acquired aplastic anemia given first line bone marrow transplantation or immunosuppressive treatment in the last decade: a report from the European Group for Blood and Marrow Transplantation (EBMT). Haematologica 2007 Jan;92(1):11-8. PMID: 17229630

- 191. Bacigalupo A, Brand R, Oneto R, et al. Treatment of acquired severe aplastic anemia: bone marrow transplantation compared with immunosuppressive therapy--The European Group for Blood and Marrow Transplantation experience. Semin Hematol 2000 Jan;37(1):69-80. PMID: 10676912
- 192. Locatelli F, Bruno B, Zecca M, et al. Cyclosporin A and short-term methotrexate versus cyclosporin A as graft versus host disease prophylaxis in patients with severe aplastic anemia given allogeneic bone marrow transplantation from an HLAidentical sibling: results of a GITMO/EBMT randomized trial. Blood 2000 Sep 1;96(5):1690-7. PMID: 10961865
- 193. Farzin A, Davies SM, Smith FO, et al. Matched sibling donor haematopoietic stem cell transplantation in Fanconi anaemia: an update of the Cincinnati Children's experience. Br J Haematol 2007 Feb;136(4):633-40. PMID: 17367413
- 194. Schrezenmeier H, Passweg JR, Marsh JC, et al. Worse outcome and more chronic GVHD with peripheral blood progenitor cells than bone marrow in HLA-matched sibling donor transplants for young patients with severe acquired aplastic anemia. Blood 2007 Aug 15;110(4):1397-400. PMID: 17475907
- 195. Deeg HJ, Socie G, Schoch G, et al. Malignancies after marrow transplantation for aplastic anemia and fanconi anemia: a joint Seattle and Paris analysis of results in 700 patients. Blood 1996 Jan 1;87(1):386-92. PMID: 8547667
- 196. Deeg HJ, Leisenring W, Storb R, et al. Long-term outcome after marrow transplantation for severe aplastic anemia. Blood 1998 May 15;91(10):3637-45. PMID: 9572999
- 197. Bacigalupo A, Locatelli F, Lanino E, et al. Fludarabine, cyclophosphamide and antithymocyte globulin for alternative donor transplants in acquired severe aplastic anemia: a report from the EBMT-SAA Working Party. Bone Marrow Transplant 2005 Dec;36(11):947-50. PMID: 16205733

- 198. Deeg HJ, O'Donnell M, Tolar J, et al. Optimization of conditioning for marrow transplantation from unrelated donors for patients with aplastic anemia after failure of immunosuppressive therapy. Blood 2006 Sep 1;108(5):1485-91. PMID: 16684959
- 199. Viollier R, Socie G, Tichelli A, et al. Recent improvement in outcome of unrelated donor transplantation for aplastic anemia. Bone Marrow Transplant 2008 Jan;41(1):45-50. PMID: 17982502
- 200. Guardiola P, Pasquini R, Dokal I, et al. Outcome of 69 allogeneic stem cell transplantations for Fanconi anemia using HLA-matched unrelated donors: a study on behalf of the European Group for Blood and Marrow Transplantation. Blood 2000 Jan 15;95(2):422-9. PMID: 10627445
- 201. de Medeiros CR, Bitencourt MA, Zanis-Neto J, et al. Allogeneic hematopoietic stem cell transplantation from an alternative stem cell source in Fanconi anemia patients: analysis of 47 patients from a single institution. Braz J Med Biol Res 2006 Oct;39(10):1297-304. PMID: 17053839
- 202. Zanis-Neto J, Flowers ME, Medeiros CR, et al. Low-dose cyclophosphamide conditioning for haematopoietic cell transplantation from HLA-matched related donors in patients with Fanconi anaemia. Br J Haematol 2005 Jul;130(1):99-106. PMID: 15982351
- 203. Wagner JE, Eapen M, MacMillan ML, et al. Unrelated donor bone marrow transplantation for the treatment of Fanconi anemia. Blood 2007 Mar 1;109(5):2256-62. PMID: 17038525
- 204. Locatelli F, Zecca M, Pession A, et al. The outcome of children with Fanconi anemia given hematopoietic stem cell transplantation and the influence of fludarabine in the conditioning regimen: a report from the Italian pediatric group. Haematologica 2007 Oct;92(10):1381-8. PMID: 18024375

- 205. Yabe H, Inoue H, Matsumoto M, et al. Allogeneic haematopoietic cell transplantation from alternative donors with a conditioning regimen of low-dose irradiation, fludarabine and cyclophosphamide in Fanconi anaemia. Br J Haematol 2006 Jul;134(2):208-12. PMID: 16846479
- 206. Chaudhury S, Auerbach AD, Kernan NA, et al. Fludarabine-based cytoreductive regimen and T-cell-depleted grafts from alternative donors for the treatment of high-risk patients with Fanconi anaemia. Br J Haematol 2008 Mar;140(6):644-55. PMID: 18302713
- 207. Gluckman E, Rocha V, Ionescu I, et al. Results of unrelated cord blood transplant in fanconi anemia patients: risk factor analysis for engraftment and survival. Biol Blood Marrow Transplant 2007 Sep;13(9):1073-82. PMID: 17697970
- 208. Vibhakar R, Radhi M, Rumelhart S, et al. Successful unrelated umbilical cord blood transplantation in children with Shwachman-Diamond syndrome. Bone Marrow Transplant 2005 Nov;36(10):855-61. PMID: 16113664
- 209. Donadieu J, Michel G, Merlin E, et al. Hematopoietic stem cell transplantation for Shwachman-Diamond syndrome: experience of the French neutropenia registry. Bone Marrow Transplant 2005 Nov;36(9):787-92. PMID: 16151425
- Bhatla D, Davies SM, Shenoy S, et al. Reduced-intensity conditioning is effective and safe for transplantation of patients with Shwachman-Diamond syndrome. Bone Marrow Transplant 2008 Aug;42(3):159-65. PMID: 18500373
- 211. Cesaro S, Oneto R, Messina C, et al. Haematopoietic stem cell transplantation for Shwachman-Diamond disease: a study from the European Group for blood and marrow transplantation. Br J Haematol 2005 Oct;131(2):231-6. PMID: 16197455
- 212. Beran M, Spitzer G, Verma DS. Testosterone and synthetic and androgens improve the in vitro survival of human marrow progenitor cells in serum-free suspension cultures. J Lab Clin Med 1982 Feb;99(2):247-53. PMID: 7061919

- 213. Ayas M, Al-Jefri A, Al-Mahr M, et al. Stem cell transplantation for patients with Fanconi anemia with low-dose cyclophosphamide and antithymocyte globulins without the use of radiation therapy. Bone Marrow Transplant 2005 Mar;35(5):463-6. PMID: 15654354
- 214. Dror Y, Freedman MH, Leaker M, et al. Low-intensity hematopoietic stem-cell transplantation across human leucocyte antigen barriers in dyskeratosis congenita. Bone Marrow Transplant 2003 May;31(10):847-50. PMID: 12748659
- 215. Brazzola P, Duval M, Fournet JC, et al. Fatal diffuse capillaritis after hematopoietic stem-cell transplantation for dyskeratosis congenita despite low-intensity conditioning regimen. Bone Marrow Transplant 2005 Dec;36(12):1103-5; author reply 5. PMID: 16205731
- 216. Gungor T, Corbacioglu S, Storb R, et al. Nonmyeloablative allogeneic hematopoietic stem cell transplantation for treatment of Dyskeratosis congenita. Bone Marrow Transplant 2003 Mar;31(5):407-10. PMID: 12634734
- 217. Cossu F, Vulliamy TJ, Marrone A, et al. A novel DKC1 mutation, severe combined immunodeficiency (T+B-NK- SCID) and bone marrow transplantation in an infant with Hoyeraal-Hreidarsson syndrome. Br J Haematol 2002 Dec;119(3):765-8. PMID: 12437656
- Nobili B, Rossi G, De Stefano P, et al. Successful umbilical cord blood transplantation in a child with dyskeratosis congenita after a fludarabine-based reducedintensity conditioning regimen. Br J Haematol 2002 Nov;119(2):573-4. PMID: 12406104
- 219. Vlachos A, Ball S, Dahl N, et al. Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference. Br J Haematol 2008 Sep;142(6):859-76. PMID: 18671700
- 220. Lipton JM, Atsidaftos E, Zyskind I, et al. Improving clinical care and elucidating the pathophysiology of Diamond Blackfan anemia: an update from the Diamond Blackfan Anemia Registry. Pediatr Blood Cancer 2006 May 1;46(5):558-64. PMID: 16317735

- 221. Roy V, Perez WS, Eapen M, et al. Bone marrow transplantation for diamondblackfan anemia. Biol Blood Marrow Transplant 2005 Aug;11(8):600-8. PMID: 16041310
- 222. Zeidler C, Boxer L, Dale DC, et al. Management of Kostmann syndrome in the G-CSF era. Br J Haematol 2000 Jun;109(3):490-5. PMID: 10886193
- 223. Rosenberg PS, Alter BP, Bolyard AA, et al. The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long-term G-CSF therapy. Blood 2006 Jun 15;107(12):4628-35. PMID: 16497969
- 224. Yakisan E, Schirg E, Zeidler C, et al. High incidence of significant bone loss in patients with severe congenital neutropenia (Kostmann's syndrome). J Pediatr 1997 Oct;131(4):592-7. PMID: 9386665
- 225. Zeidler C, Welte K, Barak Y, et al. Stem cell transplantation in patients with severe congenital neutropenia without evidence of leukemic transformation. Blood 2000 Feb 15;95(4):1195-8. PMID: 10666190
- 226. Fanconi G. Familiare infantile perniziosaartige Anämie (perniziöses Blutbild und Konstitution). Z Kinderheilkunde 1927;117:257-80.
- Fanconi G. Familial constitutional panmyelocytopathy, Fanconi's anemia (F.A.). I. Clinical aspects. Semin Hematol 1967 Jul;4(3):233-40. PMID: 6074578
- 228. Rogatko A, Auerbach AD. Segregation analysis with uncertain ascertainment: application to Fanconi anemia. Am J Hum Genet 1988 Jun;42(6):889-97. PMID: 3369448
- 229. Schroeder TM, Tilgen D, Kruger J, et al. Formal genetics of Fanconi's anemia. Hum Genet 1976 Jun 29;32(3):257-88. PMID: 939547
- 230. Kutler DI, Singh B, Satagopan J, et al. A 20year perspective on the International Fanconi Anemia Registry (IFAR). Blood 2003 Feb 15;101(4):1249-56. PMID: 12393516

- 231. Fanconi Anemia: Guidelines for diagnosis and management. Eugene, OR: Fanconi Anemia Research Fund, Inc.; 2008 [cited 2010 November].
 www.fanconi.org/images/uploads/other/Gui delines_for_Diagnosis_and_Management.pd f.
- 232. Boocock GR, Morrison JA, Popovic M, et al. Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat Genet 2003 Jan;33(1):97-101. PMID: 12496757
- Alter BP, Giri N, Savage SA, et al. Malignancies and survival patterns in the National Cancer Institute inherited bone marrow failure syndromes cohort study. Br J Haematol 2010 Jul;150(2):179-88. PMID: 20507306
- 234. Ginzberg H, Shin J, Ellis L, et al. Shwachman syndrome: phenotypic manifestations of sibling sets and isolated cases in a large patient cohort are similar. J Pediatr 1999 Jul;135(1):81-8. PMID: 10393609
- 235. Mack DR, Forstner GG, Wilschanski M, et al. Shwachman syndrome: exocrine pancreatic dysfunction and variable phenotypic expression. Gastroenterology 1996 Dec;111(6):1593-602. PMID: 8942739
- Smith OP, Hann IM, Chessells JM, et al. Haematological abnormalities in Shwachman-Diamond syndrome. Br J Haematol 1996 Aug;94(2):279-84. PMID: 8759887
- 237. Mitchell JR, Wood E, Collins K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature 1999 Dec 2;402(6761):551-5. PMID: 10591218
- 238. Vulliamy T, Dokal I. Dyskeratosis congenita. Semin Hematol 2006 Jul;43(3):157-66. PMID: 16822458
- Drachtman RA, Alter BP. Dyskeratosis congenita. Dermatol Clin 1995 Jan;13(1):33-9. PMID: 7712648
- Alter BP, Giri N, Savage SA, et al. Cancer in dyskeratosis congenita. Blood 2009 Jun 25;113(26):6549-57. PMID: 19282459
- 241. Dokal I. Fanconi's anaemia and related bone marrow failure syndromes. Br Med Bull 2006;77-78:37-53. PMID: 16968690

- 242. Walne AJ, Dokal I. Advances in the understanding of dyskeratosis congenita. Br J Haematol 2009 Apr;145(2):164-72. PMID: 19208095
- 243. Savage SA, Alter BP. Dyskeratosis congenita. Hematol Oncol Clin North Am 2009 Apr;23(2):215-31. PMID: 19327580
- Ballmaier M, Germeshausen M, Schulze H, et al. c-mpl mutations are the cause of congenital amegakaryocytic thrombocytopenia. Blood 2001 Jan 1;97(1):139-46. PMID: 11133753
- 245. Ballmaier M, Germeshausen M. Advances in the understanding of congenital amegakaryocytic thrombocytopenia. Br J Haematol 2009 Jun;146(1):3-16. PMID: 19388932
- 246. King S, Germeshausen M, Strauss G, et al. Congenital amegakaryocytic thrombocytopenia: a retrospective clinical analysis of 20 patients. Br J Haematol 2005 Dec;131(5):636-44. PMID: 16351641
- 247. Kostman R. Infantile genetic agranulocytosis. A review with presentation of ten new cases. Acta Paediatr Scand 1975 Mar;64(2):362-8. PMID: 1130195
- 248. Welte K, Zeidler C, Dale DC. Severe congenital neutropenia. Semin Hematol 2006 Jul;43(3):189-95. PMID: 16822461
- 249. Dong F, Brynes RK, Tidow N, et al. Mutations in the gene for the granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia. N Engl J Med 1995 Aug 24;333(8):487-93. PMID: 7542747
- 250. Gennery AR, Cant AJ. Advances in hematopoietic stem cell transplantation for primary immunodeficiency. Immunol Allergy Clin North Am 2008 May;28(2):439-56, x-xi. PMID: 18424341
- 251. Filipovich A. Hematopoietic cell transplantation for correction of primary immunodeficiencies. Bone Marrow Transplant 2008 Aug;42 Suppl 1:S49-S52. PMID: 18724301

- 252. Orange JS, Hossny EM, Weiler CR, et al. Use of intravenous immunoglobulin in human disease: a review of evidence by members of the Primary Immunodeficiency Committee of the American Academy of Allergy, Asthma and Immunology. J Allergy Clin Immunol 2006 Apr;117(4 Suppl):S525-53. PMID: 16580469
- 253. Antoine C, Muller S, Cant A, et al. Longterm survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the European experience 1968-99. Lancet 2003 Feb 15;361(9357):553-60. PMID: 12598139
- 254. Filipovich AH, Stone JV, Tomany SC, et al. Impact of donor type on outcome of bone marrow transplantation for Wiskott-Aldrich syndrome: collaborative study of the International Bone Marrow Transplant Registry and the National Marrow Donor Program. Blood 2001 Mar 15;97(6):1598-603. PMID: 11238097
- 255. Grunebaum E, Mazzolari E, Porta F, et al. Bone marrow transplantation for severe combined immune deficiency. JAMA 2006 Feb 1;295(5):508-18. PMID: 16449616
- 256. Buckley RH, Schiff SE, Schiff RI, et al. Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N Engl J Med 1999 Feb 18;340(7):508-16. PMID: 10021471
- 257. Porta F, Forino C, De Martiis D, et al. Stem cell transplantation for primary immunodeficiencies. Bone Marrow Transplant 2008 Jun;41 Suppl 2:S83-6. PMID: 18545252
- 258. Bhattacharya A, Slatter MA, Chapman CE, et al. Single centre experience of umbilical cord stem cell transplantation for primary immunodeficiency. Bone Marrow Transplant 2005 Aug;36(4):295-9. PMID: 15968287
- 259. Myers LA, Patel DD, Puck JM, et al. Hematopoietic stem cell transplantation for severe combined immunodeficiency in the neonatal period leads to superior thymic output and improved survival. Blood 2002 Feb 1;99(3):872-8. PMID: 11806989
- Kohn DB. Update on gene therapy for immunodeficiencies. Clin Immunol 2010 May;135(2):247-54. PMID: 20071242

- McGovern MM, Desnick RJ. Lipidoses (Chapter 86.4). In: Kliegman R, Nelson WE, editors. Nelson textbook of pediatrics. 18th ed. Philadelphia: Saunders; 2007. p. lii, 3147 p.
- 262. National Institute of Neurological Disorders and Stroke. Mucolipidoses Fact Sheet (Publication No. 03-5115). Bethesda, MD: Office of Communications and Public Liaison; 2007.
- Spranger J. Metabolic diseases (Chapter 88). In: Kliegman R, Nelson WE, editors. Nelson Textbook of Pediatrics. 18th ed. Philadelphia: Saunders; 2007. p. lii, 3147 p.
- Wraith JE. Mucopolysaccharidoses and oligosaccharidoses (Chapter 39). In: Fernandes J, editor. Inborn metabolic diseases : diagnosis and treatment. 4th, rev. ed. Heidelberg: Springer; 2006. p. xxii, 561 p.
- 265. Brady RO, Schiffmann R. Enzymereplacement therapy for metabolic storage disorders. Lancet Neurol 2004 Dec;3(12):752-6. PMID: 15556808
- 266. Wraith JE. The first 5 years of clinical experience with laronidase enzyme replacement therapy for mucopolysaccharidosis I. Expert Opin Pharmacother 2005 Mar;6(3):489-506. PMID: 15794739
- 267. Tolar J, Orchard PJ. alpha-L-iduronidase therapy for mucopolysaccharidosis type I. Biologics 2008 Dec;2(4):743-51. PMID: 19707455
- Prasad VK, Kurtzberg J. Transplant outcomes in mucopolysaccharidoses. Semin Hematol 2010 Jan;47(1):59-69. PMID: 20109613
- 269. Boelens JJ. Trends in haematopoietic cell transplantation for inborn errors of metabolism. J Inherit Metab Dis 2006 Apr-Jun;29(2-3):413-20. PMID: 16763911
- Peters C. Metabolic diseases (Chapter 15).
 In: Mehta P, editor. Pediatric stem cell transplantation. Boston: Jones and Bartlett; 2004. p. xxiii, 486 p.
- 271. Aldenhoven M, Boelens JJ, de Koning TJ. The clinical outcome of Hurler syndrome after stem cell transplantation. Biol Blood Marrow Transplant 2008 May;14(5):485-98. PMID: 18410891

- 272. Harmatz P, Giugliani R, Schwartz IV, et al. Long-term follow-up of endurance and safety outcomes during enzyme replacement therapy for mucopolysaccharidosis VI: Final results of three clinical studies of recombinant human N-acetylgalactosamine 4-sulfatase. Mol Genet Metab 2008 Aug;94(4):469-75. PMID: 18502162
- 273. Kakkis ED, Muenzer J, Tiller GE, et al. Enzyme-replacement therapy in mucopolysaccharidosis I. N Engl J Med 2001 Jan 18;344(3):182-8. PMID: 11172140
- 274. Wraith JE, Clarke LA, Beck M, et al. Enzyme replacement therapy for mucopolysaccharidosis I: a randomized, double-blinded, placebo-controlled, multinational study of recombinant human alpha-L-iduronidase (laronidase). J Pediatr 2004 May;144(5):581-8. PMID: 15126990
- 275. Sifuentes M, Doroshow R, Hoft R, et al. A follow-up study of MPS I patients treated with laronidase enzyme replacement therapy for 6 years. Mol Genet Metab 2007 Feb;90(2):171-80. PMID: 17011223
- 276. Boelens JJ, Wynn RF, O'Meara A, et al. Outcomes of hematopoietic stem cell transplantation for Hurler's syndrome in Europe: a risk factor analysis for graft failure. Bone Marrow Transplant 2007 Aug;40(3):225-33. PMID: 17529997
- 277. Krivit W, Lockman LA, Watkins PA, et al. The future for treatment by bone marrow transplantation for adrenoleukodystrophy, metachromatic leukodystrophy, globoid cell leukodystrophy and Hurler syndrome. J Inherit Metab Dis 1995;18(4):398-412. PMID: 7494399
- 278. Field RE, Buchanan JA, Copplemans MG, et al. Bone-marrow transplantation in Hurler's syndrome. Effect on skeletal development. J Bone Joint Surg Br 1994 Nov;76(6):975-81. PMID: 7983131
- Weisstein JS, Delgado E, Steinbach LS, et al. Musculoskeletal manifestations of Hurler syndrome: long-term follow-up after bone marrow transplantation. J Pediatr Orthop 2004 Jan-Feb;24(1):97-101. PMID: 14676543

- 280. Souillet G, Guffon N, Maire I, et al. Outcome of 27 patients with Hurler's syndrome transplanted from either related or unrelated haematopoietic stem cell sources. Bone Marrow Transplant 2003 Jun;31(12):1105-17. PMID: 12796790
- 281. Braunlin EA, Stauffer NR, Peters CH, et al. Usefulness of bone marrow transplantation in the Hurler syndrome. Am J Cardiol 2003 Oct 1;92(7):882-6. PMID: 14516901
- 282. Peters C, Shapiro EG, Anderson J, et al. Hurler syndrome: II. Outcome of HLAgenotypically identical sibling and HLAhaploidentical related donor bone marrow transplantation in fifty-four children. The Storage Disease Collaborative Study Group. Blood 1998 Apr 1;91(7):2601-8. PMID: 9516162
- 283. Harmatz P, Giugliani R, Schwartz I, et al. Enzyme replacement therapy for mucopolysaccharidosis VI: a phase 3, randomized, double-blind, placebocontrolled, multinational study of recombinant human N-acetylgalactosamine 4-sulfatase (recombinant human arylsulfatase B or rhASB) and follow-on, open-label extension study. J Pediatr 2006 Apr;148(4):533-9. PMID: 16647419
- 284. Scarpa M, Barone R, Fiumara A, et al. Mucopolysaccharidosis VI: the Italian experience. Eur J Pediatr 2009 Oct;168(10):1203-6. PMID: 19130082
- 285. Krivit W, Pierpont ME, Ayaz K, et al. Bonemarrow transplantation in the Maroteaux-Lamy syndrome (mucopolysaccharidosis type VI). Biochemical and clinical status 24 months after transplantation. N Engl J Med 1984 Dec 20;311(25):1606-11. PMID: 6150438
- 286. Herskhovitz E, Young E, Rainer J, et al. Bone marrow transplantation for Maroteaux-Lamy syndrome (MPS VI): long-term follow-up. J Inherit Metab Dis 1999 Feb;22(1):50-62. PMID: 10070618
- 287. Yamada Y, Kato K, Sukegawa K, et al. Treatment of MPS VII (Sly disease) by allogeneic BMT in a female with homozygous A619V mutation. Bone Marrow Transplant 1998 Mar;21(6):629-34. PMID: 9543069

- 288. Vellodi A, Young EP, Cooper A, et al. Bone marrow transplantation for mucopolysaccharidosis type I: experience of two British centres. Arch Dis Child 1997 Feb;76(2):92-9. PMID: 9068295
- 289. Giugliani R, Harmatz P, Wraith JE. Management guidelines for mucopolysaccharidosis VI. Pediatrics 2007 Aug;120(2):405-18. PMID: 17671068
- 290. Muenzer J, Wraith JE, Clarke LA. Mucopolysaccharidosis I: management and treatment guidelines. Pediatrics 2009 Jan;123(1):19-29. PMID: 19117856
- 291. Peters C, Steward CG. Hematopoietic cell transplantation for inherited metabolic diseases: an overview of outcomes and practice guidelines. Bone Marrow Transplant 2003 Feb;31(4):229-39. PMID: 12621457
- Johnston MV. Sphingolipidoses (Chapter 599.1). In: Kliegman R, Nelson WE, editors. Nelson textbook of pediatrics. 18th ed. Philadelphia: Saunders; 2007. p. lii, 3147 p.
- 293. Chen M, Wang J. Gaucher disease: review of the literature. Arch Pathol Lab Med 2008 May;132(5):851-3. PMID: 18466035
- 294. Beutler E, Grabowski GA. Gaucher disease. In: Scriver CR, editor. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw-Hill; 2001. p. 3635-68.
- 295. Biegstraaten M, van Schaik IN, Aerts JM, et al. 'Non-neuronopathic' Gaucher disease reconsidered. Prevalence of neurological manifestations in a Dutch cohort of type I Gaucher disease patients and a systematic review of the literature. J Inherit Metab Dis 2008 Jun;31(3):337-49. PMID: 18404411
- 296. Jmoudiak M, Futerman AH. Gaucher disease: pathological mechanisms and modern management. Br J Haematol 2005 Apr;129(2):178-88. PMID: 15813845
- 297. Charrow J, Andersson HC, Kaplan P, et al. Enzyme replacement therapy and monitoring for children with type 1 Gaucher disease: consensus recommendations. J Pediatr 2004 Jan;144(1):112-20. PMID: 14722528
- 298. Pastores GM, Weinreb NJ, Aerts H, et al. Therapeutic goals in the treatment of Gaucher disease. Semin Hematol 2004 Oct;41(4 Suppl 5):4-14. PMID: 15468045

- 299. Weinreb NJ, Charrow J, Andersson HC, et al. Effectiveness of enzyme replacement therapy in 1028 patients with type 1 Gaucher disease after 2 to 5 years of treatment: a report from the Gaucher Registry. Am J Med 2002 Aug 1;113(2):112-9. PMID: 12133749
- Starzyk K, Richards S, Yee J, et al. The long-term international safety experience of imiglucerase therapy for Gaucher disease. Mol Genet Metab 2007 Feb;90(2):157-63. PMID: 17079176
- 301. Andersson HC, Charrow J, Kaplan P, et al. Individualization of long-term enzyme replacement therapy for Gaucher disease. Genet Med 2005 Feb;7(2):105-10. PMID: 15714077
- 302. Chan KW, Wong LT, Applegarth D, et al. Bone marrow transplantation in Gaucher's disease: effect of mixed chimeric state. Bone Marrow Transplant 1994 Aug;14(2):327-30. PMID: 7994251
- Ringden O, Groth CG, Erikson A, et al. Ten years' experience of bone marrow transplantation for Gaucher disease. Transplantation 1995 Mar 27;59(6):864-70.
 PMID: 7701581
- 304. Yen CC, Chiou TJ, Lin CY, et al. Allogeneic bone marrow transplantation for Gaucher disease--a case report. Zhonghua Yi Xue Za Zhi (Taipei) 1997 Jun;59(6):372-6. PMID: 9294918
- 305. Hobbs JR, Jones KH, Shaw PJ, et al. Beneficial effect of pre-transplant splenectomy on displacement bone marrow transplantation for Gaucher's syndrome. Lancet 1987 May 16;1(8542):1111-5. PMID: 2883444
- 306. Schuchman EH. The pathogenesis and treatment of acid sphingomyelinasedeficient Niemann-Pick disease. J Inherit Metab Dis 2007 Oct;30(5):654-63. PMID: 17632693
- 307. Pastores GM. Krabbe disease: an overview. Int J Clin Pharmacol Ther 2009;47 Suppl 1:S75-81. PMID: 20040316
- 308. Biffi A, Lucchini G, Rovelli A, et al. Metachromatic leukodystrophy: an overview of current and prospective treatments. Bone Marrow Transplant 2008 Oct;42 Suppl 2:S2-6. PMID: 18978739

- 309. Vellodi A, Hobbs JR, O'Donnell NM, et al. Treatment of Niemann-Pick disease type B by allogeneic bone marrow transplantation. Br Med J (Clin Res Ed) 1987 Nov 28;295(6610):1375-6. PMID: 3121020
- 310. Shah AJ, Kapoor N, Crooks GM, et al. Successful hematopoietic stem cell transplantation for Niemann-Pick disease type B. Pediatrics 2005 Oct;116(4):1022-5. PMID: 16199719
- Schneiderman J, Thormann K, Charrow J, et al. Correction of enzyme levels with allogeneic hematopoeitic progenitor cell transplantation in Niemann-Pick type B. Pediatr Blood Cancer 2007 Dec;49(7):987-9. PMID: 17635007
- 312. Victor S, Coulter JB, Besley GT, et al. Niemann-Pick disease: sixteen-year followup of allogeneic bone marrow transplantation in a type B variant. J Inherit Metab Dis 2003;26(8):775-85. PMID: 14739682
- Krivit W, Shapiro EG, Peters C, et al. Hematopoietic stem-cell transplantation in globoid-cell leukodystrophy. N Engl J Med 1998 Apr 16;338(16):1119-26. PMID: 9545360
- Escolar ML, Poe MD, Provenzale JM, et al. Transplantation of umbilical-cord blood in babies with infantile Krabbe's disease. N Engl J Med 2005 May 19;352(20):2069-81. PMID: 15901860
- 315. Kurtzberg J, Richards K, Wenger D, et al. Correction of Krabbe disease with neonatal hematopoietic stem cell transplantation [abstract]. Biol Blood Marrow Transplant 2002;8:97-8.
- 316. Krivit W, Shapiro E, Kennedy W, et al. Treatment of late infantile metachromatic leukodystrophy by bone marrow transplantation. N Engl J Med 1990 Jan 4;322(1):28-32. PMID: 1967188
- 317. Malm G, Ringden O, Winiarski J, et al. Clinical outcome in four children with metachromatic leukodystrophy treated by bone marrow transplantation. Bone Marrow Transplant 1996 Jun;17(6):1003-8. PMID: 8807106

- 318. Pierson TM, Bonnemann CG, Finkel RS, et al. Umbilical cord blood transplantation for juvenile metachromatic leukodystrophy. Ann Neurol 2008 Nov;64(5):583-7. PMID: 19067349
- 319. Stillman AE, Krivit W, Shapiro E, et al. Serial MR after bone marrow transplantation in two patients with metachromatic leukodystrophy. AJNR Am J Neuroradiol 1994 Nov;15(10):1929-32. PMID: 7863944
- 320. Gorg M, Wilck W, Granitzny B, et al. Stabilization of juvenile metachromatic leukodystrophy after bone marrow transplantation: a 13-year follow-up. J Child Neurol 2007 Sep;22(9):1139-42. PMID: 17890417
- 321. Wasserstein MP, Desnick RJ, Schuchman EH, et al. The natural history of type B Niemann-Pick disease: results from a 10year longitudinal study. Pediatrics 2004 Dec;114(6):e672-7. PMID: 15545621
- 322. Wenger DA, Suzuki K, Suzuki Y, et al. Galactosylceramide lipidosis: globoid cell leukodystrophy (Krabbe disease). In: Scriver CR, Sly WS, Childs B, Beaudet AL, editors. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw-Hill; 2001. p. 3669-94.
- 323. Thomas GH. Disorders of glycoprotein degradation: alpha-mannosidosis, betamannosidosis, fucosidosis, and sialidosis. In: Scriver CR, Sly WS, Childs B, Beaudet AL, editors. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw-Hill; 2001. p. 3507-33.
- 324. Willems PJ, Gatti R, Darby JK, et al. Fucosidosis revisited: a review of 77 patients. Am J Med Genet 1991 Jan;38(1):111-31. PMID: 2012122
- 325. Heese BA. Current strategies in the management of lysosomal storage diseases. Semin Pediatr Neurol 2008 Sep;15(3):119-26. PMID: 18708002
- 326. Miano M, Lanino E, Gatti R, et al. Four year follow-up of a case of fucosidosis treated with unrelated donor bone marrow transplantation. Bone Marrow Transplant 2001 Apr;27(7):747-51. PMID: 11360116

- 327. Vellodi A, Cragg H, Winchester B, et al. Allogeneic bone marrow transplantation for fucosidosis. Bone Marrow Transplant 1995 Jan;15(1):153-8. PMID: 7742750
- 328. Wall DA, Grange DK, Goulding P, et al. Bone marrow transplantation for the treatment of alpha-mannosidosis. J Pediatr 1998 Aug;133(2):282-5. PMID: 9709723
- 329. Grewal SS, Shapiro EG, Krivit W, et al. Effective treatment of alpha-mannosidosis by allogeneic hematopoietic stem cell transplantation. J Pediatr 2004 May;144(5):569-73. PMID: 15126988
- 330. Broomfield AA, Chakrapani A, Wraith JE. The effects of early and late bone marrow transplantation in siblings with alphamannosidosis. Is early haematopoietic cell transplantation the preferred treatment option? J Inherit Metab Dis 2010 Feb 18. PMID: 20165920
- 331. Gotoda Y, Wakamatsu N, Kawai H, et al. Missense and nonsense mutations in the lysosomal alpha-mannosidase gene (MANB) in severe and mild forms of alphamannosidosis. Am J Hum Genet 1998 Oct;63(4):1015-24. PMID: 9758606
- 332. Schutgens RB, Heymans HS, Wanders RJ, et al. Peroxisomal disorders: a newly recognised group of genetic diseases. Eur J Pediatr 1986 Feb;144(5):430-40. PMID: 3514227
- 333. van Geel BM, Assies J, Wanders RJ, et al. X linked adrenoleukodystrophy: clinical presentation, diagnosis, and therapy. J Neurol Neurosurg Psychiatry 1997 Jul;63(1):4-14. PMID: 9221959
- 334. Moser HW, Naidu S, Kumar AJ, et al. The adrenoleukodystrophies. Crit Rev Neurobiol 1987;3(1):29-88. PMID: 3552451
- Moser HW. Adrenoleukodystrophy. Curr Opin Neurol 1995 Jun;8(3):221-6. PMID: 7551122
- 336. Moser HW. Komrower Lecture. Adrenoleukodystrophy: natural history, treatment and outcome. J Inherit Metab Dis 1995;18(4):435-47. PMID: 7494402

- 337. Krivit W, Peters C, Shapiro EG. Bone marrow transplantation as effective treatment of central nervous system disease in globoid cell leukodystrophy, metachromatic leukodystrophy, adrenoleukodystrophy, mannosidosis, fucosidosis, aspartylglucosaminuria, Hurler, Maroteaux-Lamy, and Sly syndromes, and Gaucher disease type III. Curr Opin Neurol 1999 Apr;12(2):167-76. PMID: 10226749
- 338. Ohi T, Takechi S, Itokazu N, et al. Two novel mutations in the adrenoleukodystrophy gene in two unrelated Japanese families and the long-term effect of bone marrow transplantation. J Neurol Sci 2000 Aug 15;177(2):131-8. PMID: 10980309
- Peters C, Charnas LR, Tan Y, et al. Cerebral X-linked adrenoleukodystrophy: the international hematopoietic cell transplantation experience from 1982 to 1999. Blood 2004 Aug 1;104(3):881-8. PMID: 15073029
- 340. Aubourg P, Blanche S, Jambaque I, et al. Reversal of early neurologic and neuroradiologic manifestations of X-linked adrenoleukodystrophy by bone marrow transplantation. N Engl J Med 1990 Jun 28;322(26):1860-6. PMID: 2348839
- 341. Shapiro E, Krivit W, Lockman L, et al. Long-term effect of bone-marrow transplantation for childhood-onset cerebral X-linked adrenoleukodystrophy. Lancet 2000 Aug 26;356(9231):713-8. PMID: 11085690
- 342. Loes DJ, Stillman AE, Hite S, et al. Childhood cerebral form of adrenoleukodystrophy: short-term effect of bone marrow transplantation on brain MR observations. AJNR Am J Neuroradiol 1994 Oct;15(9):1767-71. PMID: 7847226
- 343. Tolar J, Teitelbaum SL, Orchard PJ. Osteopetrosis. N Engl J Med 2004 Dec 30;351(27):2839-49. PMID: 15625335
- 344. Stark Z, Savarirayan R. Osteopetrosis. Orphanet J Rare Dis 2009;4:5. PMID: 19232111
- 345. Wilson CJ, Vellodi A. Autosomal recessive osteopetrosis: diagnosis, management, and outcome. Arch Dis Child 2000 Nov;83(5):449-52. PMID: 11040159

- 346. Askmyr MK, Fasth A, Richter J. Towards a better understanding and new therapeutics of osteopetrosis. Br J Haematol 2008 Mar;140(6):597-609. PMID: 18241253
- 347. Or R, Aker M, Shapira MY, et al. Allogeneic stem cell transplantation for the treatment of diseases associated with a deficiency in bone marrow products. Springer Semin Immunopathol 2004 Nov;26(1-2):133-42. PMID: 15549305
- 348. Steward CG. Hematopoietic stem cell transplantation for osteopetrosis. Pediatr Clin North Am 2010 Feb;57(1):171-80. PMID: 20307717
- 349. Driessen GJ, Gerritsen EJ, Fischer A, et al. Long-term outcome of haematopoietic stem cell transplantation in autosomal recessive osteopetrosis: an EBMT report. Bone Marrow Transplant 2003 Oct;32(7):657-63. PMID: 13130312
- 350. Eapen M, Davies SM, Ramsay NK, et al. Hematopoietic stem cell transplantation for infantile osteopetrosis. Bone Marrow Transplant 1998 Nov;22(10):941-6. PMID: 9849690
- 351. Gerritsen EJ, Vossen JM, Fasth A, et al. Bone marrow transplantation for autosomal recessive osteopetrosis. A report from the Working Party on Inborn Errors of the European Bone Marrow Transplantation Group. J Pediatr 1994 Dec;125(6 Pt 1):896-902. PMID: 7996361
- 352. National Cancer Institute Physician Data Query. Ewing Sarcoma Family of Tumors Treatment. 2010 [updated 07/02/2010]; www.cancer.gov/cancertopics/pdq/treatment /ewings/healthprofessional/allpages.
- 353. Burdach S, van Kaick B, Laws HJ, et al. Allogeneic and autologous stem-cell transplantation in advanced Ewing tumors. An update after long-term follow-up from two centers of the European Intergroup study EICESS. Stem-Cell Transplant Programs at Dusseldorf University Medical Center, Germany and St. Anna Kinderspital, Vienna, Austria. Ann Oncol 2000 Nov;11(11):1451-62.

- 354. Burdach S, Meyer-Bahlburg A, Laws HJ, et al. High-dose therapy for patients with primary multifocal and early relapsed Ewing's tumors: results of two consecutive regimens assessing the role of total-body irradiation. J Clin Oncol 2003 Aug 15;21(16):3072-8.
- 355. Burke MJ, Walterhouse DO, Jacobsohn DA, et al. Tandem high-dose chemotherapy with autologous peripheral hematopoietic progenitor cell rescue as consolidation therapy for patients with high-risk Ewing family tumors. Pediatr Blood Cancer 2007 Aug;49(2):196-8.
- 356. Drabko K, Zawitkowska-Klaczynska J, Wojcik B, et al. Megachemotherapy followed by autologous stem cell transplantation in children with Ewing's sarcoma. Pediatr Transplant 2005 Oct;9(5):618-21.
- 357. Hara J, Osugi Y, Ohta H, et al. Doubleconditioning regimens consisting of thiotepa, melphalan and busulfan with stem cell rescue for the treatment of pediatric solid tumors. Bone Marrow Transplant 1998 Jul;22(1):7-12.
- 358. Harimaya K, Oda Y, Matsuda S, et al. Primitive neuroectodermal tumor and extraskeletal Ewing sarcoma arising primarily around the spinal column: report of four cases and a review of the literature. Spine (Phila Pa 1976) 2003 Oct 1;28(19):E408-12.
- 359. Hawkins D, Barnett T, Bensinger W, et al. Busulfan, melphalan, and thiotepa with or without total marrow irradiation with hematopoietic stem cell rescue for poor-risk Ewing-Sarcoma-Family tumors. Med Pediatr Oncol 2000 May;34(5):328-37.
- 360. Kasper B, Ho AD, Egerer G. Dose-intensive chemotherapy with stem cell support as a treatment strategy for bone and soft-tissue sarcomas. Curr Stem Cell Res Ther 2006 Jan;1(1):29-35.
- 361. Kushner BH, Meyers PA. How effective is dose-intensive/myeloablative therapy against Ewing's sarcoma/primitive neuroectodermal tumor metastatic to bone or bone marrow? The Memorial Sloan-Kettering experience and a literature review. J Clin Oncol 2001 Feb 1;19(3):870-80.

- 362. Laws HJ, van Kaick B, Pape H, et al. Relapse after high-dose therapy in relapsed Ewing's tumor patients: effects of maintenance chemotherapy in two selected patients? Onkologie 2003 Dec;26(6):573-7.
- 363. Lucidarme N, Valteau-Couanet D, Oberlin O, et al. Phase II study of high-dose thiotepa and hematopoietic stem cell transplantation in children with solid tumors. Bone Marrow Transplant 1998 Sep;22(6):535-40.
- 364. Meyers PA, Krailo MD, Ladanyi M, et al. High-dose melphalan, etoposide, total-body irradiation, and autologous stem-cell reconstitution as consolidation therapy for high-risk Ewing's sarcoma does not improve prognosis. J Clin Oncol 2001 Jun 1;19(11):2812-20.
- 365. Navid F, Santana VM, Billups CA, et al. Concomitant administration of vincristine, doxorubicin, cyclophosphamide, ifosfamide, and etoposide for high-risk sarcomas: the St. Jude Children's Research Hospital experience. Cancer 2006 Apr 15;106(8):1846-56.
- 366. Oberlin O, Rey A, Lyden E, et al. Prognostic factors in metastatic rhabdomyosarcomas: results of a pooled analysis from United States and European cooperative groups. J Clin Oncol 2008 May 10;26(14):2384-9.
- 367. Ozkaynak MF, Sandoval C, Levendoglu-Tugal O, et al. A pilot trial of tandem autologous peripheral blood progenitor cell transplantation following high-dose thiotepa and carboplatin in children with poor-risk central nervous system tumors. Pediatr Hematol Oncol 2004 Oct-Nov;21(7):635-45.
- 368. Pession A, Prete A, Locatelli F, et al. Phase I study of high-dose thiotepa with busulfan, etoposide, and autologous stem cell support in children with disseminated solid tumors. Med Pediatr Oncol 1999 Nov;33(5):450-4.
- 369. Prete A, Rosito P, Alvisi P, et al. G-CSFprimed peripheral blood progenitor cells (PBPC) support in high-risk Ewing sarcoma of childhood. Bone Marrow Transplant 1998 Dec;22 Suppl 5:S21-3.
- 370. Tanaka K, Matsunobu T, Sakamoto A, et al. High-dose chemotherapy and autologous peripheral blood stem-cell transfusion after conventional chemotherapy for patients with high-risk Ewing's tumors. J Orthop Sci 2002;7(4):477-82.

- 371. Yaniv I, Cohen IJ, Stein J, et al. Tumor cells are present in stem cell harvests of Ewings sarcoma patients and their persistence following transplantation is associated with relapse. Pediatr Blood Cancer 2004 May;42(5):404-9.
- 372. Diaz MA, Lassaletta A, Perez A, et al. Highdose busulfan and melphalan as conditioning regimen for autologous peripheral blood progenitor cell transplantation in high-risk ewing sarcoma patients: a long-term follow-up single-center study. Pediatric hematology and oncology 2010 May;27(4):272-82. PMID: 20426518
- 373. Kwon SY, Won SC, Han JW, et al. Feasibility of sequential high-dose chemotherapy in advanced pediatric solid tumors. Pediatric hematology and oncology 2010 Feb;27(1):1-12. PMID: 20121550
- 374. Ilari I, De Ioris MA, Milano GM, et al. Toxicity of high-dose chemotherapy with etoposide, thiotepa and CY in treating poorprognosis Ewing's sarcoma family tumors: the experience of the Bambino Gesu Children's Hospital. Bone Marrow Transplant 2010 Aug;45(8):1274-80. PMID: 20098456
- 375. Ladenstein R, Potschger U, Le Deley MC, et al. Primary disseminated multifocal Ewing sarcoma: results of the Euro-EWING 99 trial. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2010 Jul 10;28(20):3284-91. PMID: 20547982
- 376. Burdach S, Thiel U, Schoniger M, et al. Total body MRI-governed involved compartment irradiation combined with high-dose chemotherapy and stem cell rescue improves long-term survival in Ewing tumor patients with multiple primary bone metastases. Bone Marrow Transplant 2010 Mar;45(3):483-9. PMID: 19684633
- 377. Costa LJ, Rodriguez V, Porrata LF, et al. Autologous HSC transplant in t-MDS/AML using cells harvested prior to the development of the secondary malignancy. 2008.
- 378. Fazekas T, Wiesbauer P, Kronberger M, et al. Nodular pulmonary lesions in children after autologous stem cell transplantation: a source of misinterpretation. Br J Haematol 2008 Feb;140(4):429-32.

- 379. Kogawa M, Asazuma T, Iso K, et al. Primary cervical spinal epidural Extraosseous Ewing's sarcoma. Acta Neurochir (Wien) 2004 Sep;146(9):1051-3; discussion 3.
- 380. Koscielniak E, Gross-Wieltsch U, Treuner J, et al. Graft-versus-Ewing sarcoma effect and long-term remission induced by haploidentical stem-cell transplantation in a patient with relapse of metastatic disease. 2005.
- 381. Lucas KG, Schwartz C, Kaplan J. Allogeneic stem cell transplantation in a patient with relapsed Ewing sarcoma. Pediatr Blood Cancer 2008 Jul;51(1):142-4.
- 382. Numata A, Shimoda K, Gondo H, et al. Therapy-related chronic myelogenous leukaemia following autologous stem cell transplantation for Ewing's sarcoma. Br J Haematol 2002 Jun;117(3):613-6.
- 383. Bhatia S, Krailo MD, Chen Z, et al. Therapy-related myelodysplasia and acute myeloid leukemia after Ewing sarcoma and primitive neuroectodermal tumor of bone: A report from the Children's Oncology Group. Blood 2007 Jan 1;109(1):46-51.
- 384. Kushner BH, Meyers PA, Gerald WL, et al. Very-high-dose short-term chemotherapy for poor-risk peripheral primitive neuroectodermal tumors, including Ewing's sarcoma, in children and young adults. J Clin Oncol 1995 Nov;13(11):2796-804.
- 385. Milano GM, Cozza R, Ilari I, et al. High histologic and overall response to dose intensification of ifosfamide, carboplatin, and etoposide with cyclophosphamide, doxorubicin, and vincristine in patients with high-risk Ewing sarcoma family tumors: the Bambino Gesu Children's Hospital experience. Cancer 2006 Apr 15;106(8):1838-45.
- 386. Sari N, Togral G, Cetindag MF, et al. Treatment results of the Ewing sarcoma of bone and prognostic factors. Pediatr Blood Cancer 2010 Jan;54(1):19-24.
- 387. Van Winkle P, Angiolillo A, Krailo M, et al. Ifosfamide, carboplatin, and etoposide (ICE) reinduction chemotherapy in a large cohort of children and adolescents with recurrent/refractory sarcoma: the Children's Cancer Group (CCG) experience. Pediatr Blood Cancer 2005 Apr;44(4):338-47.

- 388. Bernstein ML, Devidas M, Lafreniere D, et al. Intensive therapy with growth factor support for patients with Ewing tumor metastatic at diagnosis: Pediatric Oncology Group/Children's Cancer Group Phase II Study 9457--a report from the Children's Oncology Group. J Clin Oncol 2006 Jan 1;24(1):152-9.
- 389. Kasper B, Lehnert T, Bernd L, et al. Highdose chemotherapy with autologous peripheral blood stem cell transplantation for bone and soft-tissue sarcomas. Bone Marrow Transplant 2004 Jul;34(1):37-41.
- 390. National Cancer Institute Physician Data Query. Wilms Tumor and Other Childhood Kidney Tumors Treatment. 2010 [updated 11/15/2010]; www.cancer.gov/cancertopics/pdq/treatment /wilms/healthprofessional/allpages.
- Breslow N, Olshan A, Beckwith J. Epidemiology of Wilms tumor. Medical Pediatric Oncology 1993;21(3):172-81.
- 392. Kremens B, Gruhn B, Klingebiel T, et al. High-dose chemotherapy with autologous stem cell rescue in children with nephroblastoma. Bone Marrow Transplant 2002 Dec;30(12):893-8.
- 393. Saarinen-Pihkala UM, Wikstrom S, Vettenranta K. Maximal preservation of renal function in patients with bilateral Wilms' tumor: therapeutic strategy of late kidney-sparing surgery and replacement of radiotherapy by high-dose melphalan and stem cell rescue. Bone Marrow Transplant 1998 Jul;22(1):53-9.
- 394. Spreafico F, Bisogno G, Collini P, et al. Treatment of high-risk relapsed Wilms tumor with dose-intensive chemotherapy, marrow-ablative chemotherapy, and autologous hematopoietic stem cell support: experience by the Italian Association of Pediatric Hematology and Oncology. Pediatr Blood Cancer 2008 Jul;51(1):23-8.
- 395. Campbell AD, Cohn SL, Reynolds M, et al. Treatment of relapsed Wilms' tumor with high-dose therapy and autologous hematopoietic stem-cell rescue: the experience at Children's Memorial Hospital. J Clin Oncol 2004 Jul 15;22(14):2885-90.

- 396. Termuhlen AM, Grovas A, Klopfenstein K, et al. Autologous hematopoietic stem cell transplant with melphalan and thiotepa is safe and feasible in pediatric patients with low normalized glomerular filtration rate. Pediatr Transplant 2006 Nov;10(7):830-4.
- 397. Kullendorff CM, Bekassy AN. Salvage treatment of relapsing Wilms' tumour by autologous bone marrow transplantation. Eur J Pediatr Surg 1997 Jun;7(3):177-9.
- 398. Pein F, Michon J, Valteau-Couanet D, et al. High-dose melphalan, etoposide, and carboplatin followed by autologous stemcell rescue in pediatric high-risk recurrent Wilms' tumor: a French Society of Pediatric Oncology study. J Clin Oncol 1998 Oct;16(10):3295-301.
- 399. Valera ET, Cristofani L, Scrideli CA, et al. Megatherapy in the treatment of high-risk relapsed Wilms tumor. Pediatr Blood Cancer 2004 Aug;43(2):186-8.
- 400. Hempel L, Kremens B, Weirich A, et al. High dose consolidation with autologous stem cell rescue (ASCR) for nephroblastoma initially treated according to the SIOP 9/GPOH trial and study. Klin Padiatr 1996 Jul-Aug;208(4):186-9.
- 401. Park ES, Kang HJ, Shin HY, et al. Improved survival in patients with recurrent Wilms tumor: the experience of the Seoul National University Children's Hospital. J Korean Med Sci 2006 Jun;21(3):436-40.
- 402. Abu-Ghosh AM, Krailo MD, Goldman SC, et al. Ifosfamide, carboplatin and etoposide in children with poor-risk relapsed Wilms' tumor: a Children's Cancer Group report. Ann Oncol 2002 Mar;13(3):460-9.
- 403. Malogolowkin M, Cotton CA, Green DM, et al. Treatment of Wilms tumor relapsing after initial treatment with vincristine, actinomycin D, and doxorubicin. A report from the National Wilms Tumor Study Group. Pediatr Blood Cancer 2008 Feb;50(2):236-41.
- 404. Hempel L, Patzer L, Misselwitz J, et al. Complete recovery of renal function in a Wilms' tumor patient after acute renal failure caused by autologous bone marrow transplantation (ABMT). Pediatr Hematol Oncol 1998 May-Jun;15(3):255-60.

- 405. Maurer K, Heitger A, Schwaighofer H, et al. Double high-dose chemotherapy with autologous peripheral stem cell rescue in relapsed Wilms' tumor. Bone Marrow Transplant 1997 Dec;20(12):1111-3.
- 406. Goldman SC, Bracho F, Davenport V, et al. Feasibility study of IL-11 and granulocyte colony-stimulating factor after myelosuppressive chemotherapy to mobilize peripheral blood stem cells from heavily pretreated patients. J Pediatr Hematol Oncol 2001 Jun-Jul;23(5):300-5.
- 407. Dagher R, Kreissman S, Robertson KA, et al. High dose chemotherapy with autologous peripheral blood progenitor cell transplantation in an anephric child with multiply recurrent Wilms tumor. J Pediatr Hematol Oncol 1998 Jul-Aug;20(4):357-60.
- 408. Brown E, Hebra A, Jenrette J, et al. Successful treatment of late, recurrent wilms tumor with high-dose chemotherapy and autologous stem cell rescue in third complete response. Journal of pediatric hematology/oncology : official journal of the American Society of Pediatric Hematology/Oncology 2010 Aug;32(6):e241-3. PMID: 20628317
- 409. Lucas KG, Shapiro T, Freiberg A, et al. Matched unrelated umbilical cord blood transplantation for a patient with chemotherapy resistant Wilms tumor. Pediatric blood & cancer 2010 Oct;55(4):763-5. PMID: 20589657
- 410. Tucci SJ, Cologna AJ, Suaid HJ, et al. Results of novel strategies for treatment of Wilms' tumor. Int Braz J Urol 2007 Mar-Apr;33(2):195-201; discussion -3.
- 411. Dagher R, Helman L. Rhabdomyosarcoma: an overview. Oncologist 1999;4(1):34-44. PMID: 10337369
- 412. Gurney JG, Young JL, Roffers SD, et al. Soft Tissue Sarcomas. In: Ries LAG, Smith MA, Gurney JG, Linet M, Tamra T, Young JL, et al., editors. Cancer Incidence and Survival among Children and Adolescents: United States SEER Program 1975-1995. NIH Pub. No. 99-4649 ed. Bethesda, MD: National Cancer Institute, SEER Program; 1999.

- 413. Pappo AS, Anderson JR, Crist WM, et al. Survival after relapse in children and adolescents with rhabdomyosarcoma: A report from the Intergroup Rhabdomyosarcoma Study Group. J Clin Oncol 1999 Nov;17(11):3487-93.
- 414. Carli M, Colombatti R, Oberlin O, et al. High-dose melphalan with autologous stemcell rescue in metastatic rhabdomyosarcoma. J Clin Oncol 1999 Sep;17(9):2796-803.
- 415. McDowell HP, Foot AB, Ellershaw C, et al. Outcomes in paediatric metastatic rhabdomyosarcoma: results of The International Society of Paediatric Oncology (SIOP) study MMT-98. Eur J Cancer 2010 Jun;46(9):1588-95.
- 416. Breneman JC, Lyden E, Pappo AS, et al. Prognostic factors and clinical outcomes in children and adolescents with metastatic rhabdomyosarcoma--a report from the Intergroup Rhabdomyosarcoma Study IV. J Clin Oncol 2003 Jan 1;21(1):78-84.
- 417. Carli M, Colombatti R, Oberlin O, et al. European intergroup studies (MMT4-89 and MMT4-91) on childhood metastatic rhabdomyosarcoma: final results and analysis of prognostic factors. J Clin Oncol 2004 Dec 1;22(23):4787-94.
- 418. Williams BA, Williams KM, Doyle J, et al. Metastatic rhabdomyosarcoma: a retrospective review of patients treated at the hospital for sick children between 1989 and 1999. J Pediatr Hematol Oncol 2004 Apr;26(4):243-7.
- 419. Bisogno G, Ferrari A, Prete A, et al. Sequential high-dose chemotherapy for children with metastatic rhabdomyosarcoma. Eur J Cancer 2009 Nov;45(17):3035-41.
- 420. Koscielniak E, Klingebiel TH, Peters C, et al. Do patients with metastatic and recurrent rhabdomyosarcoma benefit from high-dose therapy with hematopoietic rescue? Report of the German/Austrian Pediatric Bone Marrow Transplantation Group. Bone Marrow Transplant 1997 Feb;19(3):227-31.
- 421. Matsubara H, Makimoto A, Higa T, et al. Possible benefits of high-dose chemotherapy as intensive consolidation in patients with high-risk rhabdomyosarcoma who achieve complete remission with conventional chemotherapy. Pediatr Hematol Oncol 2003 Apr-May;20(3):201-10.

- 422. Sato A, Imaizumi M, Saisho T, et al. Improved survival of children with advanced tumors by myeloablative chemotherapy and autologous peripheral blood stem cell transplantation in complete remission. Tohoku J Exp Med 1998 Dec;186(4):255-65.
- 423. Shaw PJ, Pinkerton CR, Yaniv I. Melphalan combined with a carboplatin dose based on glomerular filtration rate followed by autologous stem cell rescue for children with solid tumours. Bone Marrow Transplant 1996 Dec;18(6):1043-7.
- 424. Walterhouse DO, Hoover ML, Marymont MA, et al. High-dose chemotherapy followed by peripheral blood stem cell rescue for metastatic rhabdomyosarcoma: the experience at Chicago Children's Memorial Hospital. Med Pediatr Oncol 1999 Feb;32(2):88-92.
- 425. Pappo AS, Lyden E, Breneman J, et al. Upfront window trial of topotecan in previously untreated children and adolescents with metastatic rhabdomyosarcoma: an intergroup rhabdomyosarcoma study. J Clin Oncol 2001 Jan 1;19(1):213-9.
- 426. Raney B, Anderson J, Breneman J, et al. Results in patients with cranial parameningeal sarcoma and metastases (Stage 4) treated on Intergroup Rhabdomyosarcoma Study Group (IRSG) Protocols II-IV, 1978-1997: report from the Children's Oncology Group. Pediatr Blood Cancer 2008 Jul;51(1):17-22.
- 427. Sandler E, Lyden E, Ruymann F, et al. Efficacy of ifosfamide and doxorubicin given as a phase II 'window' in children with newly diagnosed metastatic rhabdomyosarcoma: a report from the Intergroup Rhabdomyosarcoma Study Group. Med Pediatr Oncol 2001 Nov;37(5):442-8.
- 428. Donker AE, Hoogerbrugge PM, Mavinkurve-Groothuis AM, et al. Metastatic rhabdomyosarcoma cured after chemotherapy and allogeneic SCT. In: INC, editor.2009.
- 429. Grundy R, Anderson J, Gaze M, et al. Congenital alveolar rhabdomyosarcoma: clinical and molecular distinction from alveolar rhabdomyosarcoma in older children. Cancer 2001 Feb 1;91(3):606-12.
- 430. Kuroiwa M, Sakamoto J, Shimada A, et al. Manifestation of alveolar rhabdomyosarcoma as primary cutaneous lesions in a neonate with Beckwith-Wiedemann syndrome. J Pediatr Surg 2009 Mar;44(3):e31-5.
- 431. Kwan WH, Choi PH, Li CK, et al. Breast metastasis in adolescents with alveolar rhabdomyosarcoma of the extremities: report of two cases. Pediatr Hematol Oncol 1996 May-Jun;13(3):277-85.
- 432. Misawa A, Hosoi H, Tsuchiya K, et al. Regression of refractory rhabdomyosarcoma after allogeneic stem-cell transplantation. Pediatr Hematol Oncol 2003 Mar;20(2):151-5.
- 433. Moritake H, Ikuno Y, Tasaka H, et al. Donor leukocyte infusion after allogeneic bone marrow transplantation was not effective for relapsed rhabdomyosarcoma. Bone Marrow Transplant 1998 Apr;21(7):725-6.
- 434. Oue T, Kubota A, Okuyama H, et al. Megatherapy with hematopoietic stem cell rescue as a preoperative treatment in unresectable pediatric malignancies. J Pediatr Surg 2003 Jan;38(1):130-3; discussion -3.
- 435. Scully RE, Mark EJ, McNeely WF, et al. Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 33-2000. A seven-year-old girl with the superior vena cava syndrome after treatment for a peripheral rhabdomyosarcoma. N Engl J Med 2000 Oct 26;343(17):1249-57.
- 436. Doelken R, Weigel S, Schueler F, et al. Poor outcome of two children with relapsed state stage IV alveolar rhabdomyosarcoma after allogeneic stem cell transplantation. Pediatr Hematol Oncol 2005 Dec;22(8):699-703.
- 437. Finger PT, Czechonska G, Demirci H, et al. Chemotherapy for retinoblastoma: a current topic. Drugs 1999 Dec;58(6):983-96.
- 438. Dunkel IJ, Aledo A, Kernan NA, et al. Successful treatment of metastatic retinoblastoma. Cancer 2000 Nov 15;89(10):2117-21.
- 439. Taguchi A, Suei Y, Ogawa I, et al. Metastatic retinoblastoma of the maxilla and mandible. Dentomaxillofac Radiol 2005 Mar;34(2):126-31.

- 440. Moshfeghi DM, Wilson MW, Haik BG, et al. Retinoblastoma metastatic to the ovary in a patient with Waardenburg syndrome. Am J Ophthalmol 2002 May;133(5):716-8.
- 441. Hertzberg H, Kremens B, Velten I, et al. Recurrent disseminated retinoblastoma in a 7-year-old girl treated successfully by highdose chemotherapy and CD34-selected autologous peripheral blood stem cell transplantation. Bone Marrow Transplant 2001 Mar;27(6):653-5.
- 442. Dai S, Dimaras H, Heon E, et al. Trilateral retinoblastoma with pituitary-hypothalamic dysfunction. Ophthalmic Genet 2008 Sep;29(3):120-5.
- 443. Dimaras H, Heon E, Budning A, et al. Retinoblastoma CSF metastasis cured by multimodality chemotherapy without radiation. Ophthalmic Genet 2009 Sep;30(3):121-6. PMID: 19941416
- 444. Dunkel IJ, Jubran RF, Gururangan S, et al. Trilateral retinoblastoma: potentially curable with intensive chemotherapy. Pediatr Blood Cancer 2010 Mar;54(3):384-7.
- 445. Kremens B, Wieland R, Reinhard H, et al. High-dose chemotherapy with autologous stem cell rescue in children with retinoblastoma. Bone Marrow Transplant 2003 Feb;31(4):281-4.
- 446. Matsubara H, Makimoto A, Higa T, et al. A multidisciplinary treatment strategy that includes high-dose chemotherapy for metastatic retinoblastoma without CNS involvement. Bone Marrow Transplant 2005 Apr;35(8):763-6.
- 447. Namouni F, Doz F, Tanguy ML, et al. Highdose chemotherapy with carboplatin, etoposide and cyclophosphamide followed by a haematopoietic stem cell rescue in patients with high-risk retinoblastoma: a SFOP and SFGM study. Eur J Cancer 1997 Dec;33(14):2368-75.
- 448. Rodriguez-Galindo C, Wilson MW, Haik BG, et al. Treatment of metastatic retinoblastoma. Ophthalmology 2003 Jun;110(6):1237-40.
- 449. Dunkel IJ, Chan HS, Jubran R, et al. Highdose chemotherapy with autologous hematopoietic stem cell rescue for stage 4B retinoblastoma. Pediatr Blood Cancer 2010 Jul 15;55(1):149-52. PMID: 20486181

- 450. Dunkel IJ, Khakoo Y, Kernan NA, et al. Intensive multimodality therapy for patients with stage 4a metastatic retinoblastoma. Pediatr Blood Cancer 2010 Jul 15;55(1):55-9. PMID: 20486171
- 451. Antoneli CB, Steinhorst F, de Cassia Braga Ribeiro K, et al. Extraocular retinoblastoma: a 13-year experience. Cancer 2003 Sep 15;98(6):1292-8.
- 452. Chang CY, Chiou TJ, Hwang B, et al. Retinoblastoma in Taiwan: survival rate and prognostic factors. Jpn J Ophthalmol 2006 May-Jun;50(3):242-9.
- 453. Chantada GL, Fandino A, Mato G, et al. Phase II window of idarubicin in children with extraocular retinoblastoma. J Clin Oncol 1999 Jun;17(6):1847-50.
- 454. Gunduz K, Muftuoglu O, Gunalp I, et al. Metastatic retinoblastoma clinical features, treatment, and prognosis. Ophthalmology 2006 Sep;113(9):1558-66.
- 455. Schvartzman E, Chantada G, Fandino A, et al. Results of a stage-based protocol for the treatment of retinoblastoma. J Clin Oncol 1996 May;14(5):1532-6.
- 456. Cozza R, De Ioris MA, Ilari I, et al. Metastatic retinoblastoma: single institution experience over two decades. Br J Ophthalmol 2009 Sep;93(9):1163-6.
- 457. Jubran RF, Erdreich-Epstein A, Butturini A, et al. Approaches to treatment for extraocular retinoblastoma: Children's Hospital Los Angeles experience. J Pediatr Hematol Oncol 2004 Jan;26(1):31-4.
- 458. Ladenstein R, Philip T, Lasset C, et al. Multivariate analysis of risk factors in stage 4 neuroblastoma patients over the age of one year treated with megatherapy and stem-cell transplantation: a report from the European Bone Marrow Transplantation Solid Tumor Registry. J Clin Oncol 1998 Mar;16(3):953-65.
- 459. George RE, Li S, Medeiros-Nancarrow C, et al. High-risk neuroblastoma treated with tandem autologous peripheral-blood stem cell-supported transplantation: long-term survival update. J Clin Oncol 2006 Jun 20;24(18):2891-6.

- 460. Grupp SA, Stern JW, Bunin N, et al. Rapidsequence tandem transplant for children with high-risk neuroblastoma. Med Pediatr Oncol 2000 Dec;35(6):696-700.
- 461. Grupp SA, Stern JW, Bunin N, et al. Tandem high-dose therapy in rapid sequence for children with high-risk neuroblastoma. J Clin Oncol 2000 Jul;18(13):2567-75.
- 462. Hobbie WL, Moshang T, Carlson CA, et al. Late effects in survivors of tandem peripheral blood stem cell transplant for high-risk neuroblastoma. Pediatr Blood Cancer 2008 Nov;51(5):679-83.
- 463. Marcus KJ, Shamberger R, Litman H, et al. Primary tumor control in patients with stage 3/4 unfavorable neuroblastoma treated with tandem double autologous stem cell transplants. J Pediatr Hematol Oncol 2003 Dec;25(12):934-40.
- 464. Powell JL, Bunin NJ, Callahan C, et al. An unexpectedly high incidence of Epstein-Barr virus lymphoproliferative disease after CD34+ selected autologous peripheral blood stem cell transplant in neuroblastoma. Bone Marrow Transplant 2004 Mar;33(6):651-7.
- 465. von Allmen D, Grupp S, Diller L, et al. Aggressive surgical therapy and radiotherapy for patients with high-risk neuroblastoma treated with rapid sequence tandem transplant. J Pediatr Surg 2005 Jun;40(6):936-41; discussion 41.
- 466. Sung KW, Lee SH, Yoo KH, et al. Tandem high-dose chemotherapy and autologous stem cell rescue in patients over 1 year of age with stage 4 neuroblastoma. Bone Marrow Transplant 2007 Jul;40(1):37-45.:
- 467. Sung KW, Yoo KH, Chung EH, et al. Successive double high-dose chemotherapy with peripheral blood stem cell rescue collected during a single leukapheresis round in patients with high-risk pediatric solid tumors: a pilot study in a single center. Bone Marrow Transplant 2003 Mar;31(6):447-52.
- 468. Kim EK, Kang HJ, Park JA, et al. Retrospective analysis of peripheral blood stem cell transplantation for the treatment of high-risk neuroblastoma. J Korean Med Sci 2007 Sep;22 Suppl:S66-72.

- 469. Sung KW, Ahn HS, Cho B, et al. Efficacy of tandem high-dose chemotherapy and autologous stem cell rescue in patients over 1 year of age with stage 4 neuroblastoma: the Korean Society of Pediatric Hematology-Oncology experience over 6 years (2000-2005). J Korean Med Sci 2010 May;25(5):691-7. PMID: 20436703
- 470. Einhorn LH, Williams SD, Chamness A, et al. High-dose chemotherapy and stem-cell rescue for metastatic germ-cell tumors. N Engl J Med 2007 Jul 26;357(4):340-8.
- 471. Center for International Blood and Marrow Transplant Research (CIBMTR). Data on tandem and single autologous HSCT in GCT. Milwaukee, WI; 2010.
- 472. Gidwani P, Levy A, Goodrich J, et al. Successful outcome with tandem myeloablative chemotherapy and autologous peripheral blood stem cell transplants in a patient with atypical teratoid/rhabdoid tumor of the central nervous system. J Neurooncol 2008 Jun;88(2):211-5.
- 473. Fangusaro J, Finlay J, Sposto R, et al. Intensive chemotherapy followed by consolidative myeloablative chemotherapy with autologous hematopoietic cell rescue (AuHCR) in young children with newly diagnosed supratentorial primitive neuroectodermal tumors (sPNETs): report of the Head Start I and II experience. Pediatr Blood Cancer 2008 Feb;50(2):312-8.
- 474. Dhall G, Grodman H, Ji L, et al. Outcome of children less than three years old at diagnosis with non-metastatic medulloblastoma treated with chemotherapy on the 'Head Start' I and II protocols. Pediatr Blood Cancer 2008 Jun;50(6):1169-75.
- 475. Chi SN, Gardner SL, Levy AS, et al. Feasibility and response to induction chemotherapy intensified with high-dose methotrexate for young children with newly diagnosed high-risk disseminated medulloblastoma. J Clin Oncol 2004 Dec 15;22(24):4881-7.

- 476. Gardner SL, Asgharzadeh S, Green A, et al. Intensive induction chemotherapy followed by high dose chemotherapy with autologous hematopoietic progenitor cell rescue in young children newly diagnosed with central nervous system atypical teratoid rhabdoid tumors. Pediatr Blood Cancer 2008 Aug;51(2):235-40.
- 477. Perez-Martinez A, Lassaletta A, Gonzalez-Vicent M, et al. High-dose chemotherapy with autologous stem cell rescue for children with high risk and recurrent medulloblastoma and supratentorial primitive neuroectodermal tumors. J Neurooncol 2005 2005 Jan;71(1):33-8.
- 478. Taylor RE, Bailey CC, Robinson KJ, et al. Outcome for patients with metastatic (M2-3) medulloblastoma treated with SIOP/UKCCSG PNET-3 chemotherapy. Eur J Cancer 2005 Mar;41(5):727-34.
- 479. Bandopadhayay P, Hassall TE, Rosenfeld JV, et al. ANZCCSG BabyBrain99; intensified systemic chemotherapy, second look surgery and involved field radiation in young children with central nervous system malignancy. Pediatr Blood Cancer 2011 Jul 1;56(7):1055-61. PMID: 21298769
- 480. Aihara Y, Tsuruta T, Kawamata T, et al. Double high-dose chemotherapy followed by autologous peripheral blood stem cell transplantation for primary disseminated medulloblastoma: a report of 3 cases. J Pediatr Hematol Oncol 2010 Mar;32(2):e70-4. PMID: 20168248
- 481. Geyer JR, Sposto R, Jennings M, et al. Multiagent chemotherapy and deferred radiotherapy in infants with malignant brain tumors: a report from the Children's Cancer Group. J Clin Oncol 2005 Oct 20;23(30):7621-31.
- 482. Packer RJ, Gajjar A, Vezina G, et al. Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J Clin Oncol 2006 Sep 1;24(25):4202-8.

- 483. Fangusaro JR, Jubran RF, Allen J, et al. Brainstem primitive neuroectodermal tumors (bstPNET): results of treatment with intensive induction chemotherapy followed by consolidative chemotherapy with autologous hematopoietic cell rescue. Pediatr Blood Cancer 2008 Mar;50(3):715-7.
- 484. Cohen KJ, Broniscer A, Glod J. Pediatric glial tumors. Curr Treat Options Oncol 2001 Dec;2(6):529-36. PMID: 12057098
- 485. Finlay JL, Dhall G, Boyett JM, et al. Myeloablative chemotherapy with autologous bone marrow rescue in children and adolescents with recurrent malignant astrocytoma: outcome compared with conventional chemotherapy: a report from the Children's Oncology Group. Pediatr Blood Cancer 2008 Dec;51(6):806-11.
- 486. Bay JO, Linassier C, Biron P, et al. Does high-dose carmustine increase overall survival in supratentorial high-grade malignant glioma? An EBMT retrospective study. Int J Cancer 2007 Apr 15;120(8):1782-6. PMID: 17230505
- 487. DeVita VT, Hellman S, Rosenberg SA. Cancer, principles & practice of oncology. 7th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2005.
- 488. Berger C, Thiesse P, Lellouch-Tubiana A, et al. Choroid plexus carcinomas in childhood: clinical features and prognostic factors. Neurosurgery 1998 Mar;42(3):470-5.
- 489. Robertson PL, Zeltzer PM, Boyett JM, et al. Survival and prognostic factors following radiation therapy and chemotherapy for ependymomas in children: a report of the Children's Cancer Group. J Neurosurg 1998 Apr;88(4):695-703.
- 490. Zacharoulis S, Levy A, Chi SN, et al. Outcome for young children newly diagnosed with ependymoma, treated with intensive induction chemotherapy followed by myeloablative chemotherapy and autologous stem cell rescue. Pediatr Blood Cancer 2007 Jul;49(1):34-40.
- 491. Bertolone SJ, Yates AJ, Boyett JM, et al. Combined modality therapy for poorly differentiated gliomas of the posterior fossa in children: a Children's Cancer Group report. J Neurooncol 2003 May;63(1):49-54.

- 492. Gilheeney SW, Khakoo Y, Souweidane M, et al. Thiotepa/topotecan/carboplatin with autologous stem cell rescue in recurrent/refractory/poor prognosis pediatric malignancies of the central nervous system. Pediatr Blood Cancer 2010 Apr;54(4):591-5. PMID: 19998470
- 493. Bouffet E, Khelfaoui F, Philip I, et al. Highdose carmustine for high-grade gliomas in childhood. Cancer Chemother Pharmacol 1997;39(4):376-9.
- 494. Bouffet E, Raquin M, Doz F, et al. Radiotherapy followed by high dose busulfan and thiotepa: a prospective assessment of high dose chemotherapy in children with diffuse pontine gliomas. Cancer 2000 Feb 1;88(3):685-92.
- 495. Busca A, Miniero R, Besenzon L, et al. Etoposide-containing regimens with autologous bone marrow transplantation in children with malignant brain tumors. Childs Nerv Syst 1997 Nov-Dec;13(11-12):572-7.
- 496. Dunkel IJ, Garvin JHJ, Goldman S, et al. High dose chemotherapy with autologous bone marrow rescue for children with diffuse pontine brain stem tumors. Children's Cancer Group. J Neurooncol 1998 Mar;37(1):67-73.
- 497. Grill J, Kalifa C, Doz F, et al. A high-dose busulfan-thiotepa combination followed by autologous bone marrow transplantation in childhood recurrent ependymoma. A phase-II study. Pediatr Neurosurg 1996 Jul;25(1):7-12.
- 498. Grovas AC, Boyett JM, Lindsley K, et al. Regimen-related toxicity of myeloablative chemotherapy with BCNU, thiotepa, and etoposide followed by autologous stem cell rescue for children with newly diagnosed glioblastoma multiforme: report from the Children's Cancer Group. Med Pediatr Oncol 1999 Aug;33(2):83-7.
- 499. Gururangan S, Marina NM, Luo X, et al. Treatment of children with peripheral primitive neuroectodermal tumor or extraosseous Ewing's tumor with Ewing'sdirected therapy. J Pediatr Hematol Oncol 1998 Jan-Feb;20(1):55-61. PMID: 9482414

- 500. Jakacki RI, Siffert J, Jamison C, et al. Doseintensive, time-compressed procarbazine, CCNU, vincristine (PCV) with peripheral blood stem cell support and concurrent radiation in patients with newly diagnosed high-grade gliomas. J Neurooncol 1999 Aug;44(1):77-83.
- 501. Mahoney DHJ, Strother D, Camitta B, et al. High-dose melphalan and cyclophosphamide with autologous bone marrow rescue for recurrent/progressive malignant brain tumors in children: a pilot pediatric oncology group study. J Clin Oncol 1996 Feb;14(2):382-8.
- 502. Massimino M, Gandola L, Luksch R, et al. Sequential chemotherapy, high-dose thiotepa, circulating progenitor cell rescue, and radiotherapy for childhood high-grade glioma. Neuro Oncol 2005 Jan;7(1):41-8.
- 503. Thorarinsdottir HK, Rood B, Kamani N, et al. Outcome for children <4 years of age with malignant central nervous system tumors treated with high-dose chemotherapy and autologous stem cell rescue. Pediatr Blood Cancer 2007 Mar;48(3):278-84.
- 504. Yule SM, Foreman NK, Mitchell C, et al. High-dose cyclophosphamide for poorprognosis and recurrent pediatric brain tumors: a dose-escalation study. J Clin Oncol 1997 Oct;15(10):3258-65.
- 505. Merchant TE, Zhu Y, Thompson SJ, et al. Preliminary results from a Phase II trial of conformal radiation therapy for pediatric patients with localised low-grade astrocytoma and ependymoma. Int J Radiat Oncol Biol Phys 2002 Feb 1;52(2):325-32.
- 506. Mason WP, Goldman S, Yates AJ, et al. Survival following intensive chemotherapy with bone marrow reconstitution for children with recurrent intracranial ependymoma--a report of the Children's Cancer Group. J Neurooncol 1998 Apr;37(2):135-43.
- 507. Ayan I, Darendeliler E, Kebudi R, et al. Evaluation of response to postradiation eight in one chemotherapy in childhood brain tumors. J Neurooncol 1995 Oct;26(1):65-72.

- 508. Conter C, Carrie C, Bernier V, et al. Intracranial ependymomas in children: society of pediatric oncology experience with postoperative hyperfractionated local radiotherapy. Int J Radiat Oncol Biol Phys 2009 Aug 1;74(5):1536-42.
- 509. De Sio L, Milano GM, Castellano A, et al. Temozolomide in resistant or relapsed pediatric solid tumors. Pediatr Blood Cancer 2006 Jul;47(1):30-6.
- 510. Doireau V, Grill J, Zerah M, et al. Chemotherapy for unresectable and recurrent intramedullary glial tumours in children. Brain Tumours Subcommittee of the French Society of Paediatric Oncology (SFOP). Br J Cancer 1999 Nov;81(5):835-40.
- 511. Grill J, Le Deley MC, Gambarelli D, et al. Postoperative chemotherapy without irradiation for ependymoma in children under 5 years of age: a multicenter trial of the French Society of Pediatric Oncology. J Clin Oncol 2001 Mar 1;19(5):1288-96.
- 512. Grundy RG, Wilne SA, Weston CL, et al. Primary postoperative chemotherapy without radiotherapy for intracranial ependymoma in children: the UKCCSG/SIOP prospective study. Lancet Oncol 2007 Aug;8(8):696-705.
- 513. Grundy RG, Wilne SH, Robinson KJ, et al. Primary postoperative chemotherapy without radiotherapy for treatment of brain tumours other than ependymoma in children under 3 years: results of the first UKCCSG/SIOP CNS 9204 trial. Eur J Cancer 2010 Jan;46(1):120-33.
- 514. Horn B, Heideman R, Geyer R, et al. A multi-institutional retrospective study of intracranial ependymoma in children: identification of risk factors. J Pediatr Hematol Oncol 1999 May-Jun;21(3):203-11.
- 515. Hurwitz CA, Strauss LC, Kepner J, et al. Paclitaxel for the treatment of progressive or recurrent childhood brain tumors: a pediatric oncology phase II study. J Pediatr Hematol Oncol 2001 Jun-Jul;23(5):277-81.
- 516. Jaing TH, Wang HS, Tsay PK, et al. Multivariate analysis of clinical prognostic factors in children with intracranial ependymomas. J Neurooncol 2004 Jul;68(3):255-61.

- 517. Kobrinsky NL, Packer RJ, Boyett JM, et al. Etoposide with or without mannitol for the treatment of recurrent or primarily unresponsive brain tumors: a Children's Cancer Group Study, CCG-9881. J Neurooncol 1999;45(1):47-54.
- 518. Korones DN, Smith A, Foreman N, et al. Temozolomide and oral VP-16 for children and young adults with recurrent or treatment-induced malignant gliomas. Pediatr Blood Cancer 2006 Jul;47(1):37-41.
- 519. White L, Kellie S, Gray E, et al. Postoperative chemotherapy in children less than 4 years of age with malignant brain tumors: promising initial response to a VETOPEC-based regimen. A Study of the Australian and New Zealand Children's Cancer Study Group (ANZCCSG). J Pediatr Hematol Oncol 1998 Mar-Apr;20(2):125-30. PMID: 9544162
- 520. Kuhl J, Muller HL, Berthold F, et al. Preradiation chemotherapy of children and young adults with malignant brain tumors: results of the German pilot trial HIT'88/'89. Klin Padiatr 1998 Jul-Aug;210(4):227-33.
- 521. MacDonald TJ, Arenson EB, Ater J, et al. Phase II study of high-dose chemotherapy before radiation in children with newly diagnosed high-grade astrocytoma: final analysis of Children's Cancer Group Study 9933. Cancer 2005 Dec 15;104(12):2862-71.
- 522. Wrede B, Hasselblatt M, Peters O, et al. Atypical choroid plexus papilloma: clinical experience in the CPT-SIOP-2000 study. J Neurooncol 2009 Dec;95(3):383-92.
- 523. Meikle PJ, Hopwood JJ, Clague AE, et al. Prevalence of lysosomal storage disorders. JAMA 1999 Jan 20;281(3):249-54. PMID: 9918480
- 524. Poorthuis BJ, Wevers RA, Kleijer WJ, et al. The frequency of lysosomal storage diseases in The Netherlands. Hum Genet 1999 Jul-Aug;105(1-2):151-6. PMID: 10480370
- 525. Sakata N, Kawa K, Kato K, et al. Unrelated donor marrow transplantation for congenital immunodeficiency and metabolic disease: an update of the experience of the Japan Marrow Donor Program. Int J Hematol 2004 Aug;80(2):174-82. PMID: 15481448

- 526. McGovern MM, Desnick RJ. Lysosomal Storage Diseases. In: Cecil RL, Goldman L, Ausiello DA, editors. Cecil medicine. 23rd ed. Philadelphia: Saunders Elsevier; 2008. p. xxxiii, 3078 p.
- 527. Gramatges MM, Dvorak CC, Regula DP, et al. Pathological evidence of Wolman's disease following hematopoietic stem cell transplantation despite correction of lysosomal acid lipase activity. Bone Marrow Transplant 2009 Oct;44(7):449-50. PMID: 19308038
- 528. Tolar J, Grewal SS, Bjoraker KJ, et al. Combination of enzyme replacement and hematopoietic stem cell transplantation as therapy for Hurler syndrome. Bone Marrow Transplant 2008 Mar;41(6):531-5. PMID: 18037941
- 529. Stein J, Garty BZ, Dror Y, et al. Successful treatment of Wolman disease by unrelated umbilical cord blood transplantation. Eur J Pediatr 2007 Jul;166(7):663-6.
- 530. Styczynski J, Tallamy B, Waxman I, et al. A pilot study of reduced toxicity conditioning with BU, fludarabine and alemtuzumab before the allogeneic hematopoietic SCT in children and adolescents. Bone Marrow Transplant 2011 Jun;46(6):790-9. PMID: 20818441
- 531. Tolar J, Petryk A, Khan K, et al. Long-term metabolic, endocrine, and neuropsychological outcome of hematopoietic cell transplantation for Wolman disease. Bone Marrow Transplant 2009 Jan;43(1):21-7.
- 532. Medicine UNLo. Niemann-Pick disease -Genetics Home Reference. National Library of Medicine; 2008 [cited 2011 January, 10, 2011]; http://ghr.nlm.nih.gov/condition/niemannpick-disease.
- 533. Morel CF, Gassas A, Doyle J, et al. Unsuccessful treatment attempt: cord blood stem cell transplantation in a patient with Niemann-Pick disease type A. J Inherit Metab Dis 2007 Nov;30(6):987.
- 534. Bayever E, August CS, Kamani N, et al. Allogeneic bone marrow transplantation for Niemann-Pick disease (type IA). Bone Marrow Transplant 1992;10 Suppl 1:85-6. PMID: 1521097

- 535. McGovern MM, Desnick RJ. Mucolipidoses (Chapter 86.5). In: Kliegman R, Nelson WE, editors. Nelson textbook of pediatrics. 18th ed. Philadelphia: Saunders; 2007. p. lii, 3147 p.
- 536. Li CK, Shing MM, Chik KW, et al. Unrelated umbilical cord blood transplantation in children: experience of the Hong Kong Red Cross Blood Transfusion Service. Hong Kong Med J 2004 Apr;10(2):89-95. PMID: 15075428
- 537. Grewal S, Shapiro E, Braunlin E, et al. Continued neurocognitive development and prevention of cardiopulmonary complications after successful BMT for Icell disease: a long-term follow-up report. Bone Marrow Transplant 2003 Nov;32(9):957-60.
- 538. Imaizumi M, Gushi K, Kurobane I, et al. Long-term effects of bone marrow transplantation for inborn errors of metabolism: a study of four patients with lysosomal storage diseases. Acta Paediatr Jpn 1994 Feb;36(1):30-6.
- 539. Bonnardeaux A, Bichet DG. Inherited Disorders of the Renal Tubule. In: Brenner BM, Rector FC, editors. Brenner & Rector's the kidney. 8th ed. Philadelphia: Saunders Elsevier; 2008. p. 2 v. (xxii, 2241, lxix p.).
- 540. Dell KM, Avner ED. Renal Tubular Acidosis (Chapter 529). In: Kliegman R, Nelson WE, editors. Nelson textbook of pediatrics. 18th ed. Philadelphia: Saunders; 2007. p. lii, 3147 p.
- 541. Aula P, Gahl WA. Disorders of Free Sialic Acid Storage. In: Scriver CR, editor. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw-Hill; 2001. p. 3635-68.
- 542. Lemyre E, Russo P, Melancon SB, et al. Clinical spectrum of infantile free sialic acid storage disease. Am J Med Genet 1999 Feb 19;82(5):385-91. PMID: 10069709
- 543. Ben-Simon-Schiff E, Zlotogora J, Abeliovich D, et al. Hunter syndrome among Jews in Israel. Biomed Pharmacother 1994;48(8-9):381-4. PMID: 7858175
- 544. Martin RA. Mucopolysaccharidosis Type II. 2007 [updated 11/6/07]; www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?bo ok=gene&part=hunter.

- 545. Guffon N, Bertrand Y, Forest I, et al. Bone marrow transplantation in children with Hunter syndrome: outcome after 7 to 17 years. J Pediatr 2009 May;154(5):733-7.
- 546. McKinnis EJ, Sulzbacher S, Rutledge JC, et al. Bone marrow transplantation in Hunter syndrome. J Pediatr 1996 Jul;129(1):145-8.
- 547. Takahashi Y, Sukegawa K, Aoki M, et al. Evaluation of accumulated mucopolysaccharides in the brain of patients with mucopolysaccharidoses by (1)Hmagnetic resonance spectroscopy before and after bone marrow transplantation. Pediatr Res 2001 Mar;49(3):349-55.
- 548. Li P, Thompson JN, Hug G, et al. Biochemical and molecular analysis in a patient with the severe form of Hunter syndrome after bone marrow transplantation. Am J Med Genet 1996 Sep 6;64(4):531-5.
- 549. Vellodi A, Young E, Cooper A, et al. Longterm follow-up following bone marrow transplantation for Hunter disease. J Inherit Metab Dis 1999 Jun;22(5):638-48.
- 550. Coppa GV, Gabrielli O, Zampini L, et al. Bone marrow transplantation in Hunter syndrome (mucopolysaccharidosis type II): two-year follow-up of the first Italian patient and review of the literature. Pediatr Med Chir 1995 May-Jun;17(3):227-35. PMID: 7567644
- 551. Coppa GV, Gabrielli O, Cordiali R, et al. Bone marrow transplantation in a Hunter patient with P266H mutation. Int J Mol Med 1999 Oct;4(4):433-6.
- 552. Bergstrom SK, Quinn JJ, Greenstein R, et al. Long-term follow-up of a patient transplanted for Hunter's disease type IIB: a case report and literature review. Bone Marrow Transplant 1994 Oct;14(4):653-8. PMID: 7858546
- 553. Hoogerbrugge PM, Brouwer OF, Bordigoni P, et al. Allogeneic bone marrow transplantation for lysosomal storage diseases. The European Group for Bone Marrow Transplantation. Lancet 1995 Jun 3;345(8962):1398-402. PMID: 7760610

- 554. Muenzer J, Gucsavas-Calikoglu M, McCandless SE, et al. A phase I/II clinical trial of enzyme replacement therapy in mucopolysaccharidosis II (Hunter syndrome). Mol Genet Metab 2007 Mar;90(3):329-37.
- 555. Muenzer J, Wraith JE, Beck M, et al. A phase II/III clinical study of enzyme replacement therapy with idursulfase in mucopolysaccharidosis II (Hunter syndrome). Genet Med 2006 Aug;8(8):465-73.
- 556. Page KM, Mendizabal AM, Prasad VK, et al. Posttransplant autoimmune hemolytic anemia and other autoimmune cytopenias are increased in very young infants undergoing unrelated donor umbilical cord blood transplantation. Biol Blood Marrow Transplant 2008 Oct;14(10):1108-17.
- 557. Tokimasa S, Ohta H, Takizawa S, et al. Umbilical cord-blood transplantations from unrelated donors in patients with inherited metabolic diseases: Single-institute experience. Pediatr Transplant 2008 Sep;12(6):672-6.
- 558. Seto T, Kono K, Morimoto K, et al. Brain magnetic resonance imaging in 23 patients with mucopolysaccharidoses and the effect of bone marrow transplantation. Ann Neurol 2001 Jul;50(1):79-92.
- 559. Mullen CA, Thompson JN, Richard LA, et al. Unrelated umbilical cord blood transplantation in infancy for mucopolysaccharidosis type IIB (Hunter syndrome) complicated by autoimmune hemolytic anemia. Bone Marrow Transplant 2000 May;25(10):1093-7.
- 560. Defendi GL, Varma S. Mucopolysaccharidosis Type III. 2009 [updated May 19, 2009; cited 2010 November]; http://emedicine.medscape.com/article/9485 40-overview.
- 561. Ringden O, Remberger M, Svahn BM, et al. Allogeneic hematopoietic stem cell transplantation for inherited disorders: experience in a single center. Transplantation 2006 Mar 15;81(5):718-25.

- 562. Lange MC, Teive HA, Troiano AR, et al. Bone marrow transplantation in patients with storage diseases: a developing country experience. Arq Neuropsiquiatr 2006 Mar;64(1):1-4.
- 563. Sivakumur P, Wraith JE. Bone marrow transplantation in mucopolysaccharidosis type IIIA: a comparison of an early treated patient with his untreated sibling. J Inherit Metab Dis 1999 Oct;22(7):849-50.
- 564. Vellodi A, Young E, New M, et al. Bone marrow transplantation for Sanfilippo disease type B. J Inherit Metab Dis 1992;15(6):911-8. PMID: 1293388
- 565. Northover H, Cowie RA, Wraith JE. Mucopolysaccharidosis type IVA (Morquio syndrome): a clinical review. J Inherit Metab Dis 1996;19(3):357-65. PMID: 8803780
- 566. Gatzoulis MA, Vellodi A, Redington AN. Cardiac involvement in mucopolysaccharidoses: effects of allogeneic bone marrow transplantation. Arch Dis Child 1995 Sep;73(3):259-60. PMID: 7492172
- 567. Goker-Alpan O, Wiggs EA, Eblan MJ, et al. Cognitive outcome in treated patients with chronic neuronopathic Gaucher disease. J Pediatr 2008 Jul;153(1):89-94.
- 568. Chen RL, Hou JW, Chang PY, et al. Matched unrelated bone marrow transplantation without splenectomy for a child with Gaucher disease caused by homozygosity of the L444P mutation, who also suffered from schizencephaly. J Pediatr Hematol Oncol 2007 Jan;29(1):57-9.
- 569. Tsai P, Lipton JM, Sahdev I, et al. Allogenic bone marrow transplantation in severe Gaucher disease. Pediatr Res 1992 May;31(5):503-7.
- 570. Schiffmann R, Fitzgibbon EJ, Harris C, et al. Randomized, controlled trial of miglustat in Gaucher's disease type 3. Ann Neurol 2008 Nov;64(5):514-22.
- 571. El-Beshlawy A, Ragab L, Youssry I, et al. Enzyme replacement therapy and bony changes in Egyptian paediatric Gaucher disease patients. J Inherit Metab Dis 2006 Feb;29(1):92-8.

- 572. Chan LL, Lin HP. Enzyme replacement therapy for Gaucher Disease: the only experience in Malaysia. Med J Malaysia 2002 Sep;57(3):348-52.
- 573. Banjar H. Pulmonary involvement of Gaucher's disease in children: a common presentation in Saudi Arabia. Ann Trop Paediatr 1998 Mar;18(1):55-9.
- 574. Schiffmann R, Heyes MP, Aerts JM, et al. Prospective study of neurological responses to treatment with macrophage-targeted glucocerebrosidase in patients with type 3 Gaucher's disease. Ann Neurol 1997 Oct;42(4):613-21.
- 575. Erikson A, Astrom M, Mansson JE. Enzyme infusion therapy of the Norrbottnian (type 3) Gaucher disease. Neuropediatrics 1995 Aug;26(4):203-7.
- 576. McGovern MM, Desnick RJ. Disorders of Glycoprotein Degradation and Structure (Chapter 87.6). In: Kliegman R, Nelson WE, editors. Nelson textbook of pediatrics. 18th ed. Philadelphia: Saunders; 2007. p. lii, 3147 p.
- 577. Malm G, Mansson JE, Winiarski J, et al. Five-year follow-up of two siblings with aspartylglucosaminuria undergoing allogeneic stem-cell transplantation from unrelated donors. Transplantation 2004 Aug 15;78(3):415-9.
- 578. Arvio M, Sauna-Aho O, Peippo M. Bone marrow transplantation for aspartylglucosaminuria: follow-up study of transplanted and non-transplanted patients. J Pediatr 2001 Feb;138(2):288-90.
- 579. Autti T, Rapola J, Santavuori P, et al. Bone marrow transplantation in aspartylglucosaminuria--histopathological and MRI study. Neuropediatrics 1999 Dec;30(6):283-8.
- 580. Laitinen A, Hietala M, Haworth JC, et al. Two novel mutations in a Canadian family with aspartylglucosaminuria and early outcome post bone marrow transplantation. Clin Genet 1997 Mar;51(3):174-8.
- 581. Bedilu R, Nummy KA, Cooper A, et al. Variable clinical presentation of lysosomal beta-mannosidosis in patients with null mutations. Mol Genet Metab 2002 Dec;77(4):282-90. PMID: 12468273

- 582. Altarescu G, Sun M, Moore DF, et al. The neurogenetics of mucolipidosis type IV. Neurology 2002 Aug 13;59(3):306-13. PMID: 12182165
- 583. Bonney DK, O'Meara A, Shabani A, et al. Successful allogeneic bone marrow transplant for Niemann-Pick disease type C2 is likely to be associated with a severe 'graft versus substrate' effect. J Inherit Metab Dis 2010 Apr 15. PMID: 20393800
- 584. Hsu YS, Hwu WL, Huang SF, et al. Niemann-Pick disease type C (a cellular cholesterol lipidosis) treated by bone marrow transplantation. Bone Marrow Transplant 1999 Jul;24(1):103-7.
- 585. Patterson MC, Vecchio D, Jacklin E, et al. Long-term miglustat therapy in children with Niemann-Pick disease type C. J Child Neurol 2010 Mar;25(3):300-5.
- 586. Pineda M, Wraith JE, Mengel E, et al. Miglustat in patients with Niemann-Pick disease Type C (NP-C): a multicenter observational retrospective cohort study. Mol Genet Metab 2009 Nov;98(3):243-9.
- 587. Paciorkowski AR, Westwell M, Ounpuu S, et al. Motion analysis of a child with Niemann-Pick disease type C treated with miglustat. Mov Disord 2008 Jan;23(1):124-8.
- 588. Patterson MC, Vecchio D, Prady H, et al. Miglustat for treatment of Niemann-Pick C disease: a randomised controlled study. Lancet Neurol 2007 Sep;6(9):765-72.
- 589. Kishnani PS, Chen YT. Defects in Metabolism of Carbohydrates (Chapter 87).
 In: Kliegman R, Nelson WE, editors. Nelson textbook of pediatrics. 18th ed. Philadelphia: Saunders; 2007. p. lii, 3147 p.
- 590. Amalfitano A, Bengur AR, Morse RP, et al. Recombinant human acid alpha-glucosidase enzyme therapy for infantile glycogen storage disease type II: results of a phase I/II clinical trial. Genet Med 2001 Mar-Apr;3(2):132-8. PMID: 11286229
- 591. Klinge L, Straub V, Neudorf U, et al. Safety and efficacy of recombinant acid alphaglucosidase (rhGAA) in patients with classical infantile Pompe disease: results of a phase II clinical trial. Neuromuscul Disord 2005 Jan;15(1):24-31. PMID: 15639117

- 592. Murray B, Mitsumoto H. Disorders of Upper and Lower Motor Neurons. In: Bradley WG, editor. Neurology in clinical practice. 5th ed. Philadelphia, PA: Butterworth-Heinemann/Elsevier; 2008. p. 2 v. (xvi, 2488, lxxx p.).
- 593. Johnston MV. Adrenoleukodystrophy (Chapter 599.3). In: Kliegman R, Nelson WE, editors. Nelson textbook of pediatrics. 18th ed. Philadelphia: Saunders; 2007. p. lii, 3147 p.
- 594. Bissonnette B. Syndromes : rapid recognition and perioperative management. 1st ed. New York: McGraw-Hill; 2005.
- 595. Moser HW, Linke T, Fensom AH, et al. Acid ceramidase deficiency: Farber lipogranulomatosis. In: Scriver CR, Sly WS, Childs B, Beaudet AL, editors. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw-Hill; 2001. p. 3573-85.
- 596. Ehlert K, Roth J, Frosch M, et al. Farber's disease without central nervous system involvement: bone-marrow transplantation provides a promising new approach. 2006.
- 597. Vormoor J, Ehlert K, Groll AH, et al. Successful hematopoietic stem cell transplantation in Farber disease. J Pediatr 2004 Jan;144(1):132-4.
- 598. Yeager AM, Uhas KA, Coles CD, et al. Bone marrow transplantation for infantile ceramidase deficiency (Farber disease). Bone Marrow Transplant 2000 Aug;26(3):357-63.
- 599. Brunetti-Pierri N, Scaglia F. GM1 gangliosidosis: review of clinical, molecular, and therapeutic aspects. Mol Genet Metab 2008 Aug;94(4):391-6. PMID: 18524657
- 600. Johnston MV. Neurodegenerative Disorders of Childhood (Chapter 599). In: Kliegman R, Nelson WE, editors. Nelson textbook of pediatrics. 18th ed. Philadelphia: Saunders; 2007. p. lii, 3147 p.
- 601. Shield JP, Stone J, Steward CG. Bone marrow transplantation correcting betagalactosidase activity does not influence neurological outcome in juvenile GM1gangliosidosis. J Inherit Metab Dis 2005;28(5):797-8.

- 602. Jacobs JF, Willemsen MA, Groot-Loonen JJ, et al. Allogeneic BMT followed by substrate reduction therapy in a child with subacute Tay-Sachs disease. 2005.
- 603. Maegawa GH, Banwell BL, Blaser S, et al. Substrate reduction therapy in juvenile GM2 gangliosidosis. Mol Genet Metab 2009 2009 Sep-Oct;98(1-2):215-24.
- 604. Sieving PA, Caruso RC. Retinitis Pigmentosa and Related Disorders. In: Yanoff M, Duker JS, editors. Ophthalmology. 3rd ed. St. Louis, MO: Mosby; 2008.
- 605. Lonnqvist T, Vanhanen SL, Vettenranta K, et al. Hematopoietic stem cell transplantation in infantile neuronal ceroid lipofuscinosis. Neurology 2001 Oct 23;57(8):1411-6.
- 606. Sakuraba H, Suzuki Y, Akagi M, et al. beta-Galactosidase-neuraminidase deficiency (galactosialidosis): clinical, pathological, and enzymatic studies in a postmortem case. Ann Neurol 1983 May;13(5):497-503. PMID: 6408977
- 607. Milanetti F, Abinun M, Voltarelli JC, et al. Autologous hematopoietic stem cell transplantation for childhood autoimmune disease. Pediatr Clin North Am 2010 Feb;57(1):239-71. PMID: 20307720
- 608. Gale EA. The rise of childhood type 1 diabetes in the 20th century. Diabetes 2002 Dec;51(12):3353-61. PMID: 12453886
- 609. Notkins AL, Lernmark A. Autoimmune type 1 diabetes: resolved and unresolved issues. J Clin Invest 2001 Nov;108(9):1247-52. PMID: 11696564
- 610. Nathan DM. Long-term complications of diabetes mellitus. N Engl J Med 1993 Jun 10;328(23):1676-85. PMID: 8487827
- 611. Genuth S. Insights from the diabetes control and complications trial/epidemiology of diabetes interventions and complications study on the use of intensive glycemic treatment to reduce the risk of complications of type 1 diabetes. Endocr Pract 2006 Jan-Feb;12 Suppl 1:34-41. PMID: 16627378

- 612. Couri CE, Oliveira MC, Stracieri AB, et al. C-peptide levels and insulin independence following autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA 2009 Apr 15;301(15):1573-9.
- 613. Crino A, Schiaffini R, Ciampalini P, et al. A two year observational study of nicotinamide and intensive insulin therapy in patients with recent onset type 1 diabetes mellitus. J Pediatr Endocrinol Metab 2005 Aug;18(8):749-54.
- 614. Mastrandrea L, Yu J, Behrens T, et al. Etanercept treatment in children with newonset type 1 diabetes: pilot randomized, placebo-controlled, double-blind study. Diabetes Care 2009 Jul;32(7):1244-9.
- 615. Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1997 Sep;40(9):1725. PMID: 9324032
- 616. Klein-Gitelman M, Reiff A, Silverman ED. Systemic lupus erythematosus in childhood. Rheum Dis Clin North Am 2002 Aug;28(3):561-77, vi-vii. PMID: 12380370
- 617. Ravelli A, Ruperto N, Martini A. Outcome in juvenile onset systemic lupus erythematosus. Curr Opin Rheumatol 2005 Sep;17(5):568-73. PMID: 16093835
- 618. Bernatsky S, Clarke A, Gladman DD, et al. Mortality related to cerebrovascular disease in systemic lupus erythematosus. Lupus 2006;15(12):835-9. PMID: 17211987
- 619. Tucker LB. Making the diagnosis of systemic lupus erythematosus in children and adolescents. Lupus 2007;16(8):546-9. PMID: 17711886
- 620. Musso M, Porretto F, Crescimanno A, et al. Intense immunosuppressive therapy followed by autologous peripheral blood selected progenitor cell reinfusion for severe autoimmune disease. Am J Hematol 2001 Feb;66(2):75-9.
- 621. Statkute L, Traynor A, Oyama Y, et al. Antiphospholipid syndrome in patients with systemic lupus erythematosus treated by autologous hematopoietic stem cell transplantation. Blood 2005 Oct 15;106(8):2700-9.

- 622. Chen J, Wang Y, Kunkel G, et al. Use of CD34+ autologous stem cell transplantation in the treatment of children with refractory systemic lupus erythematosus. Clin Rheumatol 2005 Sep;24(5):464-8.
- 623. Lisukov IA, Sizikova SA, Kulagin AD, et al. High-dose immunosuppression with autologous stem cell transplantation in severe refractory systemic lupus erythematosus. Lupus 2004;13(2):89-94.
- 624. Wulffraat NM, Sanders EA, Kamphuis SS, et al. Prolonged remission without treatment after autologous stem cell transplantation for refractory childhood systemic lupus erythematosus. Arthritis Rheum 2001 Mar;44(3):728-31.
- 625. Brunner M, Greinix HT, Redlich K, et al. Autologous blood stem cell transplantation in refractory systemic lupus erythematosus with severe pulmonary impairment: a case report. Arthritis Rheum 2002 Jun;46(6):1580-4. PMID:
- 626. Trysberg E, Lindgren I, Tarkowski A. Autologous stem cell transplantation in a case of treatment resistant central nervous system lupus. Ann Rheum Dis 2000 Mar;59(3):236-8.
- 627. Ravelli A, Martini A. Juvenile idiopathic arthritis. Lancet 2007 Mar 3;369(9563):767-78. PMID: 17336654
- 628. de Kleer I, Vastert B, Klein M, et al. Autologous stem cell transplantation for autoimmunity induces immunologic selftolerance by reprogramming autoreactive T cells and restoring the CD4+CD25+ immune regulatory network. Blood 2006 Feb 15;107(4):1696-702. PMID: 16263787
- 629. Roord ST, de Jager W, Boon L, et al. Autologous bone marrow transplantation in autoimmune arthritis restores immune homeostasis through CD4+CD25+Foxp3+ regulatory T cells. Blood 2008 May 15;111(10):5233-41. PMID: 18256318
- 630. De Kleer IM, Brinkman DM, Ferster A, et al. Autologous stem cell transplantation for refractory juvenile idiopathic arthritis: analysis of clinical effects, mortality, and transplant related morbidity. Ann Rheum Dis 2004 Oct;63(10):1318-26.

- 631. Kishimoto T, Hamazaki T, Yasui M, et al. Autologous hematopoietic stem cell transplantation for 3 patients with severe juvenile rheumatoid arthritis. Int J Hematol 2003 Dec;78(5):453-6.
- 632. Nakagawa R, Kawano Y, Yoshimura E, et al. Intense immunosuppression followed by purified blood CD34+ cell autografting in a patient with refractory juvenile rheumatoid arthritis. Bone Marrow Transplant 2001 Feb;27(3):333-6.
- 633. Rabusin M, Andolina M, Maximova N, et al. Immunoablation followed by autologous hematopoietic stem cell infusion for the treatment of severe autoimmune disease. Haematologica 2000 Nov;85(11 Suppl):81-5.
- 634. Annaloro C, Onida F, Lambertenghi Deliliers G. Autologous hematopoietic stem cell transplantation in autoimmune diseases. Expert Rev Hematol 2009 Dec;2(6):699-715. PMID: 21082959
- 635. Altman RD, Medsger TA, Jr., Bloch DA, et al. Predictors of survival in systemic sclerosis (scleroderma). Arthritis Rheum 1991 Apr;34(4):403-13. PMID: 1901491
- 636. Bryan C, Knight C, Black CM, et al. Prediction of five-year survival following presentation with scleroderma: development of a simple model using three disease factors at first visit. Arthritis Rheum 1999 Dec;42(12):2660-5. PMID: 10616015
- 637. Bulpitt KJ, Clements PJ, Lachenbruch PA, et al. Early undifferentiated connective tissue disease: III. Outcome and prognostic indicators in early scleroderma (systemic sclerosis). Ann Intern Med 1993 Apr 15;118(8):602-9. PMID: 8452326
- 638. Ferri C, Valentini G, Cozzi F, et al. Systemic sclerosis: demographic, clinical, and serologic features and survival in 1,012 Italian patients. Medicine (Baltimore) 2002 Mar;81(2):139-53. PMID: 11889413
- 639. Scussel-Lonzetti L, Joyal F, Raynauld JP, et al. Predicting mortality in systemic sclerosis: analysis of a cohort of 309 French Canadian patients with emphasis on features at diagnosis as predictive factors for survival. Medicine (Baltimore) 2002 Mar;81(2):154-67. PMID: 11889414

- 640. Steen VD, Medsger TA, Jr. Severe organ involvement in systemic sclerosis with diffuse scleroderma. Arthritis Rheum 2000 Nov;43(11):2437-44. PMID: 11083266
- 641. Davas EM, Peppas C, Maragou M, et al. Intravenous cyclophosphamide pulse therapy for the treatment of lung disease associated with scleroderma. Clin Rheumatol 1999;18(6):455-61. PMID: 10638770
- 642. Griffiths B, Miles S, Moss H, et al. Systemic sclerosis and interstitial lung disease: a pilot study using pulse intravenous methylprednisolone and cyclophosphamide to assess the effect on high resolution computed tomography scan and lung function. J Rheumatol 2002 Nov;29(11):2371-8. PMID: 12415594
- 643. Varai G, Earle L, Jimenez SA, et al. A pilot study of intermittent intravenous cyclophosphamide for the treatment of systemic sclerosis associated lung disease. J Rheumatol 1998 Jul;25(7):1325-9. PMID: 9676764
- 644. Farge D, Passweg J, van Laar JM, et al. Autologous stem cell transplantation in the treatment of systemic sclerosis: report from the EBMT/EULAR Registry. Ann Rheum Dis 2004 Aug;63(8):974-81.
- 645. Leary SM, Thompson AJ. Primary progressive multiple sclerosis : current and future treatment options. CNS Drugs 2005;19(5):369-76. PMID: 15907149
- 646. Krupp LB, Banwell B, Tenembaum S. Consensus definitions proposed for pediatric multiple sclerosis and related disorders. Neurology 2007 Apr 17;68(16 Suppl 2):S7-12. PMID: 17438241
- 647. Yeh EA, Chitnis T, Krupp L, et al. Pediatric multiple sclerosis. Nat Rev Neurol 2009 Nov;5(11):621-31. PMID: 19826402
- 648. Boiko A, Vorobeychik G, Paty D, et al. Early onset multiple sclerosis: a longitudinal study. Neurology 2002 Oct 8;59(7):1006-10. PMID: 12370453
- 649. Chitnis T, Glanz B, Jaffin S, et al. Demographics of pediatric-onset multiple sclerosis in an MS center population from the Northeastern United States. Mult Scler 2009 May;15(5):627-31. PMID: 19299440

- 650. Ghezzi A, Deplano V, Faroni J, et al. Multiple sclerosis in childhood: clinical features of 149 cases. Mult Scler 1997 Feb;3(1):43-6. PMID: 9160345
- 651. Banwell B, Kennedy J, Sadovnick D, et al. Incidence of acquired demyelination of the CNS in Canadian children. Neurology 2009 Jan 20;72(3):232-9. PMID: 19153370
- 652. Poser CM, Brinar VV. The nature of multiple sclerosis. Clin Neurol Neurosurg 2004 Jun;106(3):159-71. PMID: 15177764
- 653. Fagius J, Lundgren J, Oberg G. Early highly aggressive MS successfully treated by hematopoietic stem cell transplantation. Mult Scler 2009 Feb;15(2):229-37.
- 654. Kimiskidis V, Sakellari I, Tsimourtou V, et al. Autologous stem-cell transplantation in malignant multiple sclerosis: a case with a favorable long-term outcome. Mult Scler 2008 Mar;14(2):278-83.
- 655. Mancardi GL, Murialdo A, Rossi P, et al. Autologous stem cell transplantation as rescue therapy in malignant forms of multiple sclerosis. Mult Scler 2005 Jun;11(3):367-71.
- 656. Loftus EV, Jr., Schoenfeld P, Sandborn WJ. The epidemiology and natural history of Crohn's disease in population-based patient cohorts from North America: a systematic review. Aliment Pharmacol Ther 2002 Jan;16(1):51-60. PMID: 11856078
- 657. Vermeire S, van Assche G, Rutgeerts P. Review article: Altering the natural history of Crohn's disease--evidence for and against current therapies. Aliment Pharmacol Ther 2007 Jan 1;25(1):3-12. PMID: 17229216
- 658. Oyama Y, Craig RM, Traynor AE, et al. Autologous hematopoietic stem cell transplantation in patients with refractory Crohn's disease. Gastroenterology 2005 Mar;128(3):552-63.
- 659. Burt RK, Craig RM, Milanetti F, et al. Autologous nonmyeloablative hematopoietic stem cell transplantation in patients with severe anti-TNF refractory Crohn disease: long-term follow-up. Blood 2010 Dec 23;116(26):6123-32. PMID: 20837778
- 660. Christadoss P, Poussin M, Deng C. Animal models of myasthenia gravis. Clin Immunol 2000 Feb;94(2):75-87. PMID: 10637092

- 661. Scadding GK, Havard CW. Pathogenesis and treatment of myasthenia gravis. Br Med J (Clin Res Ed) 1981 Oct 17;283(6298):1008-12. PMID: 6794741
- 662. Drachman DB, Adams RN, Hu R, et al. Rebooting the immune system with highdose cyclophosphamide for treatment of refractory myasthenia gravis. Ann N Y Acad Sci 2008;1132:305-14. PMID: 18567882
- 663. Miteva L, Pramatarov K, Vassileva S. Calcinosis cutis in childhood systemic lupus erythematosus. J Eur Acad Dermatol Venereol 2003 Sep;17(5):611-2. PMID: 12941115
- 664. Yun SJ, Lee JB, Kim SJ, et al. Calcinosis cutis universalis with joint contractures complicating juvenile dermatomyositis. Dermatology 2006;212(4):401-3. PMID: 16707900
- 665. Maddison PJ. Overlap syndromes and mixed connective tissue disease. Curr Opin Rheumatol 1991 Dec;3(6):995-1000. PMID: 1772755
- Kim P, Grossman JM. Treatment of mixed connective tissue disease. Rheum Dis Clin North Am 2005 Aug;31(3):549-65, viii. PMID: 16084325
- 667. Strober J, Cowan MJ, Horn BN. Allogeneic hematopoietic cell transplantation for refractory myasthenia gravis. Arch Neurol 2009 May;66(5):659-61.
- 668. Jones OY, Good RA, Cahill RA. Nonmyeloablative allogeneic bone marrow transplantation for treatment of childhood overlap syndrome and small vessel vasculitis. Bone Marrow Transplant 2004 May;33(10):1061-3.
- 669. Elhasid R, Rowe JM, Berkowitz D, et al. Disappearance of diffuse calcinosis following autologous stem cell transplantation in a child with autoimmune disease. Bone Marrow Transplant 2004 2004 Jun;33(12):1257-9.
- 670. Evans ER. Diagnosis of the hemolytic anemias. Calif Med 1951 Oct;75(4):271-5. PMID: 14879272
- 671. Savasan S, Warrier I, Ravindranath Y. The spectrum of Evans' syndrome. Arch Dis Child 1997 Sep;77(3):245-8. PMID: 9370906

- 672. Wang WC. Evans syndrome in childhood: pathophysiology, clinical course, and treatment. Am J Pediatr Hematol Oncol 1988 Winter;10(4):330-8. PMID: 3071168
- 673. Teachey DT, Manno CS, Axsom KM, et al. Unmasking Evans syndrome: T-cell phenotype and apoptotic response reveal autoimmune lymphoproliferative syndrome (ALPS). Blood 2005 Mar 15;105(6):2443-8. PMID: 15542578
- 674. Mathew P, Chen G, Wang W. Evans syndrome: results of a national survey. J Pediatr Hematol Oncol 1997 Sep-Oct;19(5):433-7. PMID: 9329465
- 675. Norton A, Roberts I. Management of Evans syndrome. Br J Haematol 2006 Jan;132(2):125-37. PMID: 16398647
- 676. Sokol RJ, Hewitt S, Stamps BK. Autoimmune haemolysis: an 18-year study of 865 cases referred to a regional transfusion centre. Br Med J (Clin Res Ed) 1981 Jun 20;282(6281):2023-7. PMID: 6788179
- 677. McMillan R. The pathogenesis of chronic immune (idiopathic) thrombocytopenic purpura. Semin Hematol 2000 Jan;37(1 Suppl 1):5-9. PMID: 10676917
- 678. George JN, el-Harake MA, Raskob GE. Chronic idiopathic thrombocytopenic purpura. N Engl J Med 1994 Nov 3;331(18):1207-11. PMID: 7935660
- 679. Daikeler T, Hugle T, Farge D, et al. Allogeneic hematopoietic SCT for patients with autoimmune diseases. Bone Marrow Transplant 2009 Jul;44(1):27-33.
- 680. Connor P, Veys P, Amrolia P, et al. Pulmonary hypertension in children with Evans syndrome. Pediatr Hematol Oncol 2008 Mar;25(2):93-8.
- 681. Urban C, Lackner H, Sovinz P, et al. Successful unrelated cord blood transplantation in a 7-year-old boy with Evans syndrome refractory to immunosuppression and double autologous stem cell transplantation. Eur J Haematol 2006 Jun;76(6):526-30.
- 682. Raetz E, Beatty PG, Adams RH. Treatment of severe Evans syndrome with an allogeneic cord blood transplant. Bone Marrow Transplant 1997 Sep;20(5):427-9.

- 683. Paillard C, Kanold J, Halle P, et al. Twostep immunoablative treatment with autologous peripheral blood CD34(+) cell transplantation in an 8-year-old boy with autoimmune haemolytic anaemia. Br J Haematol 2000 Sep;110(4):900-2.
- 684. De Stefano P, Zecca M, Giorgiani G, et al. Resolution of immune haemolytic anaemia with allogeneic bone marrow transplantation after an unsuccessful autograft. Br J Haematol 1999 Sep;106(4):1063-4.
- 685. Huhn RD, Fogarty PF, Nakamura R, et al. High-dose cyclophosphamide with autologous lymphocyte-depleted peripheral blood stem cell (PBSC) support for treatment of refractory chronic autoimmune thrombocytopenia. Blood 2003 Jan 1;101(1):71-7.
- 686. Altman DG. Systematic reviews of evaluations of prognostic variables. BMJ 2001 Jul 28;323(7306):224-8. PMID: 11473921
- 687. Altman DG, Lyman GH. Methodological challenges in the evaluation of prognostic factors in breast cancer. Breast Cancer Res Treat 1998;52(1-3):289-303. PMID: 10066088
- 688. Altman DG, Riley RD. Primer: an evidencebased approach to prognostic markers. Nat Clin Pract Oncol 2005 Sep;2(9):466-72. PMID: 16265015
- 689. Brocklehurst P, French R. The association between maternal HIV infection and perinatal outcome: a systematic review of the literature and meta-analysis. Br J Obstet Gynaecol 1998 Aug;105(8):836-48. PMID: 9746375
- 690. Gould Rothberg BE, Bracken MB. Ecadherin immunohistochemical expression as a prognostic factor in infiltrating ductal carcinoma of the breast: a systematic review and meta-analysis. Breast Cancer Res Treat 2006 Nov;100(2):139-48. PMID: 16791476
- 691. McShane LM, Altman DG, Sauerbrei W, et al. Reporting recommendations for tumor marker prognostic studies (REMARK). J Natl Cancer Inst 2005 Aug 17;97(16):1180-4. PMID: 16106022

- 692. Simon R, Altman DG. Statistical aspects of prognostic factor studies in oncology. Br J Cancer 1994 Jun;69(6):979-85. PMID: 8198989
- 693. Deeks JJ, Dinnes J, D'Amico R, et al. Evaluating non-randomised intervention studies. Health Technol Assess 2003;7(27):iii-x, 1-173. PMID: 14499048

Acronyms and Abbreviations

aGVHD	acute graft vs. host disease
AHRQ	Agency for Healthcare Research and Quality
AIHA	autoimmune hemolytic anemia
ALCL	anaplastic large cell lymphoma
ALL	acute lymphoblastic leukemia
Allo	allogeneic
AML	acute myelogenous leukemia
ASBMT	American Society for Blood and Marrow Transplantation
AT/ RT	atypical teratoid/rhabdoid tumor
ATG	antithymocyte globulin
Auto	autologous
BAALC	brain and acute leukemia, cytoplasmic
BL	Burkitt-like
BMF	bone-marrow failure
BMT	bone-marrow transplant
CAMT	congenital amegakaryocytic thrombocytopenia
CC	calcinosis cutis
C-CSF	granulocyte colony-stimulating factor
CD	Crohn's disease
CDAI	Crohn's disease activity index
CDC	Centers for Disease Control and Prevention
cGVHD	chronic graft vs. host disease
CI	confidence interval
CIBMTR	Center for International Bone Marrow Transplant Research
CML	chronic myelogenous leukemia
CNS	central nervous system
COCALD	childhood onset of cerebral adrenoleukodystrophy
COG	Children's Oncology Group
CR	complete remission
Су	cyclophosphamide
DAI	disease activity index
DBA	Diamond Blackfan anemia
DFS	disease-free survival
DFS	disease-free survival
DLBCL	diffuse large B-cell lymphoma
DM	diabetes mellitus
DQ	developmental quotient
DOD	dead of disease
DOT	dead of treatment
EBMT	European Group for Blood and Marrow Transplantation
EDSS	expanded disability status scale
EFS	event-free survival
EPC	Evidence-based Practice Center

ERT	enzyme-replacement therapy
ES	Evans syndrome
ESFT	Ewing sarcoma family of tumors
F	female
FA	Fanconi anemia
FFS	failure-free survival
Flu	fludarabine
GCT	germ-cell tumor
GFR	glomerular filtration rate
GI	gastrointestinal
GVHD	graft versus host disease
GVM	graft versus malignancy
Hb	hemoglobin
HbF	fetal hemoglobin
HDC	high-dose chemotherapy
HL	Hodgkin's lymphoma
HLA	human leukocyte antigen
HR	hazard ratio
HSCT	hematopoietic stem-cell transplant
HU	hydroxyurea
ICGG	International Collaborative Gaucher Group
IIT	intensive insulin therapy
IPI	international prognostic index
IQ	intelligence quotient
IVIG	intravenous immune globulin
JIA	juvenile idiopathic arthritis
JCML	juvenile chronic myelogenous leukemia
JMML	juvenile myelomonocytic leukemia
JRA	juvenile rheumatoid arthritis
KQ	Key Question(s)
L&H	lymphocytic and histiocytic
LBL	lymphoblastic lymphoma
LCL	large-cell lymphoma
LDH	lactate dehydrogenase
LFS	leukemia-free survival
LL	lymphoblastic lymphoma
Μ	male
MA	meta analysis
MALT	mucosa-associated lymphoid tissue
MDS	myelodysplastic syndrome
MG	myasthenia gravis
MLD	metachromatic leukodystrophy
Mo(s).	month(s)
MPS	mucopolysaccharidosis
MRD	matched related donor
MRD	minimal residual disease

MRI	magnetic resonance imaging
MSC	mesenchymal stem cells
MS	multiple sclerosis
MSD	matched sibling donor
MUD	matched unrelated donor
N, n	number
NA	not applicable
NB	neuroblastoma
NCCN	National Comprehensive Cancer Network
NHL	non-Hodgkin's lymphoma
NHLBI	National Heart, Lung, and Blood Institute
NK	natural killer
NOS	not otherwise specified
NR	not reported
OS	osteosarcoma
OS	overall survival
OS	overlap syndrome
PBSC	peripheral blood stem cells
PBSCT	peripheral blood stem-cell transplant
PDQ®	Physician Data Query
PFS	progression-free survival
Ph+/-	Philadelphia chromosome positive/negative
PICOTS	patients, interventions, comparator, outcomes, timing, setting
PNET	primitive neuroectodermal tumor
PPMS	primary progressive multiple sclerosis
PR	partial remission
PRMS	progressive relapsing multiple sclerosis
Pt(s)	patient(s)
PTĆL	peripheral T-cell lymphoma
QOL	quality of life
RA	refractory anemia
RAEB	refractory anemia with excess blasts
RCT	randomized, controlled trial
RMS	rhabdomyosarcoma
RR	relative risk
RRMS	relapsing, remitting multiple sclerosis
RuSH	Registry and Surveillance System in Hemoglobinopathies
sAML	secondary acute myelogenous leukemia
SCD	sickle-cell disease
SCID	severe combined immunodeficiency
SCIG	subcutaneous immune globulin
SCN	severe congenital neutropenia
SCT	stem-cell transplant
SDS	Schwachman Diamond syndrome
SE	standard error
SLE	systemic lupus erythematosus
	· 1 ·

SLEDAI	Systemic Lupus Erythematosus Disease Activity Index
SPMS	secondary progressive multiple sclerosis
SS	systemic sclerosis
SSc	systemic sclerosis
TBI	total body irradiation
TEC	Technology Evaluation Center
TEP	Technical Expert Panel
TFS	thalassemia-free survival
TKI	tyrosine kinase inhibitor
TNF	tumor necrosis factor
TRM	treatment-related mortality
Tx	treatment/therapy
UCB	umbilical cord blood
URD	unrelated donor
VEGF	vascular endothelial growth factor
VLCFA	very long chain fatty acids
VOD	veno-occlusive disease
WBC	white blood cell
WT	Wilms tumor
Yr(s)	year(s)

Appendix A. Search Strategies

Last search date: August 17, 2011

Search Strategy: PubMed/MEDLINE®

All Child: 0-18 years=3709

#107 Search #104 AND #106

#106 Search "Humans"[Mesh]

#104 Search #102 AND #103

<u>#103</u> Search #55 OR #88 OR #90 OR #101

#102 Search #45 OR #47

- #101 Search "Fabry Disease" OR "Fabry's disease" OR "Farber Lipogranulomatosis" OR "Fabry Disease" OR "Fabry's disease" OR "Farber Lipogranulomatosis" OR Gangliosidos* OR "Sandhoff Disease" OR "sandhoff's disease" OR "Gaucher Disease" OR "gaucher's disease" OR "Niemann-Pick Disease*" OR "Tay-Sachs Disease" OR Aspartylglucosaminuria OR "beta-Mannosidosis" OR Mucolipidos* OR "Wolman Disease" OR "Ceroid Lipofuscinos*" OR "Ceroid-Lipofuscinos*" OR galactosialidosis OR Cystinosis OR "Sialic Acid Storage Disease" OR "salla disease" OR "peroxisomal storage disorder*" OR adrenomyeloneuropath* OR "immune cytopenia*"
- #90 Search "Ewing's Sarcoma" OR "Wilms Tumor" OR Rhabdomyosarcoma* OR Retinoblastoma* OR Medulloblastoma* OR PNET OR "Primitive Neuroectodermal Tumor*" OR Astrocytoma* OR Mucopolysaccharidos* OR Sphingolipidos* OR "Lysosomal Storage Disease*" OR "Glycogen Storage Disease*" OR "Niemann-Pick Disease*" OR Adrenoleukodystrophy OR "Juvenile Rheumatoid Arthritis" OR "Systemic Lupus Erythematosus" OR SLE OR Scleroderma OR "Crohn Disease" OR "Crohn's disease" OR "Autoimmune Disease*"
- #88 Search ((((((("Mucopolysaccharidoses"[Mesh] OR "Sphingolipidoses"[Mesh]) OR "Lysosomal Storage Diseases"[Mesh]) OR "Glycogen Storage Disease"[Mesh]) OR "Niemann-Pick Diseases"[Mesh]) OR "Adrenoleukodystrophy"[Mesh]) OR "Arthritis, Juvenile Rheumatoid"[Mesh]) OR "Lupus Erythematosus, Systemic"[Mesh]) OR "Scleroderma, Systemic"[Mesh]) OR "Crohn Disease"[Mesh]) OR "Autoimmune Diseases"[Mesh]
- <u>#55</u> Search ((((("Sarcoma, Ewing's"[Mesh] OR "Wilms Tumor"[Mesh]) OR "Rhabdomyosarcoma"[Mesh]) OR "Retinoblastoma"[Mesh]) OR "Medulloblastoma"[Mesh]) OR "Neuroectodermal Tumors, Primitive"[Mesh]) OR "Astrocytoma"[Mesh]
- #47 Search "stem cell*" OR "bone marrow"
- #45 Search "Bone Marrow Transplantation"[Mesh] OR ("Hematopoietic Stem Cell Transplantation"[Mesh] OR "Peripheral Blood Stem Cell Transplantation"[Mesh] OR "Cord Blood Stem Cell Transplantation"[Mesh] OR "Stem Cell Transplantation"[Mesh])

Additional searches were performed using

"stem cell*" OR "bone marrow"

Search "Bone Marrow Transplantation"[Mesh] OR ("Hematopoietic Stem Cell Transplantation"[Mesh] OR "Peripheral Blood Stem Cell Transplantation"[Mesh] OR "Cord Blood Stem Cell Transplantation"[Mesh] OR "Stem Cell Transplantation"[Mesh]) OR "stem cell*" OR "bone marrow"

AND

"Precursor Cell Lymphoblastic Leukemia-Lymphoma"[Mesh] OR "Leukemia, Myeloid, Acute"[Mesh] OR "acute lymphoblastic leukemia" OR acute myeloid leukemia"

"Lymphoma, Non-Hodgkin" [Mesh] OR "non-Hodgkin* lymphoma*"

"Hodgkin Disease"[Mesh] OR "hodgkin lymphoma"

"Leukemia, Myelomonocytic, Juvenile"[Mesh] OR "juvenile myelomonocytic leukemia"

"Leukemia, Myelogenous, Chronic, BCR-ABL Positive"[Mesh] OR "chronic myelogenous leukemia"

"Myelodysplastic-Myeloproliferative Diseases"[Mesh] OR "myelodysplastic disease*"

"Neuroblastoma" [Mesh] OR neuroblastoma*

"Leukodystrophy, Globoid Cell"[Mesh] OR "globoid leukodystrophy"

"Leukodystrophy, Metachromatic"[Mesh] OR "metachromatic leukodystrophy"

"Fucosidosis"[Mesh] OR fucosidosis

"alpha-Mannosidosis" [Mesh] OR "alpha-mannosidosis" OR "alpha-mannosidoses"

"Peroxisomal Disorders" [Mesh] OR "peroxisomal storage disorder*" OR adrenoleukodystroph*

"Osteopetrosis" [Mesh] OR osteopetrosis

"bone marrow failure" OR "Fanconi Anemia"[Mesh] OR "Fanconi* anemia" OR "Dyskeratosis Congenita"[Mesh] OR "dyskeratosis congenita" OR "Shwachman-Diamond" OR "Anemia, Diamond-Blackfan"[Mesh] OR "Diamond-Blackfan" OR "Diamond Blackfan"

"Ependymoma" [Mesh] OR ependymoma*

"Glioma"[Mesh] OR glioma*

"Choroid Plexus Neoplasms"[Mesh] OR ("choroid plexus" AND (tumor OR tumour OR tumors OR tumours OR neoplasm*))

medulloepithelioma* OR (supratentorial AND (PNET OR "primitive neuroectodermal")) OR pineoblastoma* OR "cerebral neuroblastoma*" OR ganglioneuroblastoma* OR

ependymoblastoma* OR "atypical teratoid/rhabdoid tumor*" OR "Pinealoma"[Mesh] OR ("Rhabdoid Tumor"[Mesh] AND atypical AND teratoid*) OR "Astrocytoma"[Mesh] OR "Oligodendroglioma"[Mesh] OR astrocytoma* OR oligodendroglioma* OR "glioblastoma multiforme"

"Diabetes Mellitus, Type 1"[Mesh] OR ("type 1" AND (diabetes OR diabetic OR DM)) OR "juvenile diabetes"

"Neoplasms, Germ Cell and Embryonal"[Mesh] AND germ) OR "germ cell tumor*"

Searches were also performed in EMBASE and the Cochrane Central Register of Controlled Trials for the above disease entities.

Additional searches were performed for the disease entities above and NOT the stem cell transplantation set to obtain literature on the therapeutic measures to be used as comparisons.

Diabetes

- #15 Search (#10 AND #13) NOT #5 Limits: Humans, Clinical Trial, Editorial, Practice Guideline, Randomized Controlled Trial, Case Reports, Comparative Study, Controlled Clinical Trial, Guideline, English, All Infant: birth-23 months, All Child: 0-18 years, Publication Date from 1995/10/01 to 2010/07/12
- #14 Search (#10 AND #13) NOT #5
- <u>#13</u> Search "Immunosuppression"[Mesh] OR immunomodulation OR immunosuppressant OR immunosuppressive OR "immune modulation" OR "immune suppression"
- #10 Search "Diabetes Mellitus, Type 1"[Mesh] OR ("type 1" AND (diabetes OR diabetic OR DM)) OR "juvenile diabetes"
- #5 Search "Bone Marrow Transplantation"[Mesh] OR ("Stem Cell Transplantation"[Mesh] OR "Peripheral Blood Stem Cell Transplantation"[Mesh] OR "Cord Blood Stem Cell Transplantation"[Mesh] OR "Hematopoietic Stem Cell Transplantation"[Mesh]) OR "bone marrow transplant*" OR "stem cell support" OR "stem cell transplant*"

Other Autoimmune Diseases

- #23 Search (#20 AND #13) NOT #5 AND (severe OR refractory OR "poor prognosis") Limits: Humans, Clinical Trial, Editorial, Practice Guideline, Randomized Controlled Trial, Case Reports, Comparative Study, Controlled Clinical Trial, Guideline, English, All Infant: birth-23 months, All Child: 0-18 years, Publication Date from 1995/10/01 to 2010/07/12
- #22 Search (#20 AND #13) NOT #5 Limits: Humans, Clinical Trial, Editorial, Practice Guideline, Randomized Controlled Trial, Case Reports, Comparative Study, Controlled Clinical Trial, Guideline, English, All Infant: birth-23 months, All Child: 0-18 years, Publication Date from 1995/10/01 to 2010/07/12
- #21 Search (#20 AND #13) NOT #5
- <u>#20</u> Search (("Arthritis, Juvenile Rheumatoid"[Mesh] OR "Lupus Erythematosus, Systemic"[Mesh]) OR "Scleroderma, Systemic"[Mesh]) OR "Crohn Disease"[Mesh]
- <u>#13</u> Search "Immunosuppression"[Mesh] OR immunomodulation OR immunosuppressant OR immunosuppressive OR "immune modulation" OR "immune suppression"

#5 Search "Bone Marrow Transplantation"[Mesh] OR ("Stem Cell Transplantation"[Mesh] OR "Peripheral Blood Stem Cell Transplantation"[Mesh] OR "Cord Blood Stem Cell Transplantation"[Mesh] OR "Hematopoietic Stem Cell Transplantation"[Mesh]) OR "bone marrow transplant*" OR "stem cell support" OR "stem cell transplant*"

Ewing's Sarcoma

- #42 Search #40 NOT #5 Limits: Humans, Clinical Trial, Editorial, Practice Guideline, Randomized Controlled Trial, Case Reports, Comparative Study, Controlled Clinical Trial, Guideline, English, All Infant: birth-23 months, All Child: 0-18 years, Publication Date from 1995/10/01 to 2010/07/12
- #41 Search #40 NOT #5
- #40 Search (#27 AND #39) AND #32
- #39 Search (("Recurrence"[Mesh] OR "Neoplasm Recurrence, Local"[Mesh])) OR "secondary "[Subheading] OR recurrent OR recurrence OR (stage AND IV) OR secondary OR metastatic OR metastas*
- <u>#32</u> Search "therapeutic use "[Subheading] OR "therapy "[Subheading] OR therapy OR treatment OR therapeutic*
- <u>#27</u> Search "Sarcoma, Ewing's"[Mesh] OR (Ewing* AND sarcoma)
- #5 Search "Bone Marrow Transplantation"[Mesh] OR ("Stem Cell Transplantation"[Mesh] OR "Peripheral Blood Stem Cell Transplantation"[Mesh] OR "Cord Blood Stem Cell Transplantation"[Mesh] OR "Hematopoietic Stem Cell Transplantation"[Mesh]) OR "bone marrow transplant*" OR "stem cell support" OR "stem cell transplant*"

Wilms Tumor

- #52 Search #50 NOT #5 Limits: Humans, Clinical Trial, Editorial, Practice Guideline, Randomized Controlled Trial, Case Reports, Comparative Study, Controlled Clinical Trial, Guideline, English, All Infant: birth-23 months, All Child: 0-18 years, Publication Date from 1995/10/01 to 2010/07/12
- <u>#51</u> Search #50 NOT #5
- <u>#50</u> Search (#48 AND #49) AND #32
- #49 Search (("Recurrence"[Mesh] OR "Neoplasm Recurrence, Local"[Mesh])) OR "secondary "[Subheading] OR recurrent OR recurrence OR (stage AND IV) OR secondary OR metastatic OR metastas* OR "unfavorable histology" OR relapse OR relapsed
- <u>#48</u> Search "Wilms Tumor"[Mesh] OR (wilm* AND (tumor OR tumors OR tumour*))
- <u>#32</u> Search "therapeutic use "[Subheading] OR "therapy "[Subheading] OR therapy OR treatment OR therapeutic*
- #5 Search "Bone Marrow Transplantation"[Mesh] OR ("Stem Cell Transplantation"[Mesh] OR "Peripheral Blood Stem Cell Transplantation"[Mesh] OR "Cord Blood Stem Cell Transplantation"[Mesh] OR "Hematopoietic Stem Cell Transplantation"[Mesh]) OR "bone marrow transplant*" OR "stem cell support" OR "stem cell transplant*"

Rhabdomyosarcoma

#60 Search #58 NOT #5 Limits: Humans, Clinical Trial, Editorial, Practice Guideline, Randomized Controlled Trial, Case Reports, Comparative Study, Controlled Clinical Trial, Guideline, English, All Infant: birth-23 months, All Child: 0-18 years, Publication Date from 1995/10/01 to 2010/07/12 <u>#59</u> Search #58 NOT #5

- <u>#58</u> Search (#56 AND #57) AND #32
- #57 Search (("Recurrence"[Mesh] OR "Neoplasm Recurrence, Local"[Mesh])) OR "secondary "[Subheading] OR relapse OR relapsed OR refractory OR "high-risk" OR extraocular OR recurrent OR recurrence
- #56 Search "Rhabdomyosarcoma" [Mesh] OR rhabdomyosarcoma*
- <u>#32</u> Search "therapeutic use "[Subheading] OR "therapy "[Subheading] OR therapy OR treatment OR therapeutic*
- #5 Search "Bone Marrow Transplantation"[Mesh] OR ("Stem Cell Transplantation"[Mesh] OR "Peripheral Blood Stem Cell Transplantation"[Mesh] OR "Cord Blood Stem Cell Transplantation"[Mesh] OR "Hematopoietic Stem Cell Transplantation"[Mesh]) OR "bone marrow transplant*" OR "stem cell support" OR "stem cell transplant*"

Retinoblastoma

- #67 Search #65 NOT #5 Limits: Humans, Clinical Trial, Editorial, Practice Guideline, Randomized Controlled Trial, Case Reports, Comparative Study, Controlled Clinical Trial, Guideline, English, All Infant: birth-23 months, All Child: 0-18 years, Publication Date from 1995/10/01 to 2010/07/12
- #66 Search #65 NOT #5
- <u>#65</u> Search (#64 AND #57) AND #32
- <u>#64</u> Search "Retinoblastoma"[Mesh] OR retinoblastoma*
- #57 Search (("Recurrence"[Mesh] OR "Neoplasm Recurrence, Local"[Mesh])) OR "secondary "[Subheading] OR relapse OR relapsed OR refractory OR "high-risk" OR extraocular OR recurrent OR recurrence
- <u>#32</u> Search "therapeutic use "[Subheading] OR "therapy "[Subheading] OR therapy OR treatment OR therapeutic*
- #5 Search "Bone Marrow Transplantation"[Mesh] OR ("Stem Cell Transplantation"[Mesh] OR "Peripheral Blood Stem Cell Transplantation"[Mesh] OR "Cord Blood Stem Cell Transplantation"[Mesh] OR "Hematopoietic Stem Cell Transplantation"[Mesh]) OR "bone marrow transplant*" OR "stem cell support" OR "stem cell transplant*"

Germ Cell Tumors

- #74 Search #72 NOT #5 Limits: Humans, Clinical Trial, Editorial, Practice Guideline, Randomized Controlled Trial, Case Reports, Comparative Study, Controlled Clinical Trial, Guideline, English, All Infant: birth-23 months, All Child: 0-18 years, Publication Date from 1995/10/01 to 2010/07/12
- <u>#73</u> Search #72 NOT #5
- #72 Search (#70 AND #49) AND #32
- <u>#70</u> Search ("Neoplasms, Germ Cell and Embryonal"[Mesh] AND germ) OR "germ cell tumor*"
- #49 Search (("Recurrence"[Mesh] OR "Neoplasm Recurrence, Local"[Mesh])) OR "secondary "[Subheading] OR recurrent OR recurrence OR (stage AND IV) OR secondary OR metastatic OR metastas* OR "unfavorable histology" OR relapse OR relapsed
- <u>#32</u> Search "therapeutic use "[Subheading] OR "therapy "[Subheading] OR therapy OR treatment OR therapeutic*
- #5 Search "Bone Marrow Transplantation" [Mesh] OR ("Stem Cell Transplantation" [Mesh] OR

"Peripheral Blood Stem Cell Transplantation"[Mesh] OR "Cord Blood Stem Cell Transplantation"[Mesh] OR "Hematopoietic Stem Cell Transplantation"[Mesh]) OR "bone marrow transplant*" OR "stem cell support" OR "stem cell transplant*"

CNS Embryonal Tumors

- #121 Search #120 NOT #117 Limits: Humans, Clinical Trial, Editorial, Practice Guideline, Randomized Controlled Trial, Case Reports, Comparative Study, Controlled Clinical Trial, Guideline, English, All Infant: birth-23 months, All Child: 0-18 years, Publication Date from 1995/10/01 to 2010/07/12
- #120 Search (#110 AND #49) AND #32 Limits: Humans, Clinical Trial, Editorial, Practice Guideline, Randomized Controlled Trial, Case Reports, Comparative Study, Controlled Clinical Trial, Guideline, English, All Infant: birth-23 months, All Child: 0-18 years, Publication Date from 1995/10/01 to 2010/07/12
- #117 Search "Bone Marrow Transplantation"[Mesh] OR ("Stem Cell Transplantation"[Mesh] OR "Peripheral Blood Stem Cell Transplantation"[Mesh] OR "Cord Blood Stem Cell Transplantation"[Mesh] OR "Hematopoietic Stem Cell Transplantation"[Mesh]) OR "bone marrow transplant*" OR "stem cell support" OR "stem cell transplant*"
- #110 Search medulloblastoma* OR medulloepithelioma* OR (supratentorial AND (PNET OR "primitive neuroectodermal")) OR pineoblastoma* OR "cerebral neuroblastoma*" OR ganglioneuroblastoma* OR ependymoblastoma* OR "atypical teratoid/rhabdoid tumor*"
- #49 Search (("Recurrence"[Mesh] OR "Neoplasm Recurrence, Local"[Mesh])) OR "secondary "[Subheading] OR recurrent OR recurrence OR (stage AND IV) OR secondary OR metastatic OR metastas* OR "unfavorable histology" OR relapse OR relapsed
- <u>#32</u> Search "therapeutic use "[Subheading] OR "therapy "[Subheading] OR therapy OR treatment OR therapeutic*

CNS Glial Tumors

- #131 Search #129 NOT #117 Limits: Humans, Clinical Trial, Editorial, Practice Guideline, Randomized Controlled Trial, Case Reports, Comparative Study, Controlled Clinical Trial, Guideline, English, All Infant: birth-23 months, All Child: 0-18 years, Publication Date from 1995/10/01 to 2010/07/12
- <u>#129</u> Search (#126 AND #128) AND #32
- <u>#128</u> Search ("Recurrence"[Mesh] OR "Neoplasm Recurrence, Local"[Mesh]) OR relapse OR relapsed OR recurrent OR recurrence OR "high-risk"
- #126 Search "Astrocytoma"[Mesh] OR "Oligodendroglioma"[Mesh] OR astrocytoma* OR oligodendroglioma* OR "glioblastoma multiforme"
- <u>#32</u> Search "therapeutic use "[Subheading] OR "therapy "[Subheading] OR therapy OR treatment OR therapeutic*
- #117 Search "Bone Marrow Transplantation"[Mesh] OR ("Stem Cell Transplantation"[Mesh] OR "Peripheral Blood Stem Cell Transplantation"[Mesh] OR "Cord Blood Stem Cell Transplantation"[Mesh] OR "Hematopoietic Stem Cell Transplantation"[Mesh]) OR "bone marrow transplant*" OR "stem cell support" OR "stem cell transplant*"

Retrieval Code (field 12)

- DNG do not retrieve full copy
- GET retrieve full copy
- UNC uncertain; needs check by second reviewer

Two Arms of Study Code (field 12)

- NAR narrative review portion
- SYS systematic review portion

Selection Decision Code

- (after reviewing retrieved article, enter into field 12) INC include
- EXC exclude (with codes for exclusion reasons)

Full Review Codes (field 42)

I. Key Question Codes

- not relevant guestion (note if ANM, NDE, NRD, NRI, NRO) NRQ
- comparative benefits HSCT vs Ctx in solid tumors Q1
- Q2 comparative harms HSCT vs Ctx in solid tumors
- 03 comparative benefits HSCT vs other Tx in IMD
- Q4 comparative harms HSCT vs other Tx in IMD
- comparative benefits HSCT vs other Tx in autoimmune Q5 diseases
- Q6 comparative harms HSCT vs other Tx in autoimmune diseases
- Q#? unclear if relevant to any key question

II. Study Design Codes

- ADB administrative database
- ANM animal study
- cost/cost-effectiveness analysis CEA
- CCS case-control study
- COH cohort study
- COM commentary
- CR case report (n<5)
- CS case series
- D? design unclear/possibly relevant
- DAC diagnostic accuracy study
- DUP duplicated patient population
- EDT editorial
- FLA foreign language article
- GUI guideline
- in vitro INV
- LTR letter
- meta-analysis MA
- NAB no abstract NPC not relevant comparator
- NPD no primary data
- NRD not relevant disease
- NR not relevant disease b/c part of narrative review
- NRE not relevant design
- not relevant intervention NRI
- NRO not relevant outcome (or no follow-up)
- NRP not relevant population
- NRS not relevant study
- ΡI phase I trial
- PII phase II trial
- PRG prognostic study
- PRO prospective single-arm study

- QEX quasi-experimental study (nonrandomized comparative)
- RAD radiology study
- RCT randomized controlled trial
- REG registry
- retrospective study RET
- REV review article
- SR systematic review
- STG disease staging study
- XSL cross-sectional study

III. Sample Size Code (single-arm only)

- FEW n < 10
- 10 < n < 25 N10
- 25 < n < 50 N25
- 50 < n < 100 N50
- N100 n > 100
- N? n unclear

IV. Basic Disease Codes

- AID Autoimmune disease
- ALD adrenoleukodystrophy
- ALL acute lymphoblastic leukemia
- alpha-mannosidosis AMA
- AML acute myelogenous leukemia
- AMN adrenomyeloneuropathy
- ASP aspartylglucosaminuria
- astrocvtoma AST
- BMA beta-mannosidosis
- BMF bone marrow failure
- CLF ceroid lipofuscinosis
- CLL chronic lymphocytic leukemia
- CML chronic myelogenous leukemia
- CNS tumors, NOS CNS
- CRN Crohn's
- CYS cvstinosis
- Diabetes mellitus type 1 DME
- DNS disease not specified
- ESF Ewing/Ewing sarcoma family of tumors
- ENV Evan's syndrome
- FAB Fabry disease
- FAR Farber disease
- FUC Fucosidosis
- GAL galactosialidosis
- GAUI Gaucher I
- Gaucher II GAUII
- GAUIII Gaucher III

HL

IBD

ICP

IMD

JML

JRA

MDS

MED

B-1

- GCT germ cell tumor GLD
- globoid leukodystrophy
- GM1 GM₁ gangliosidosis
- GSDII glycogen storage disease II HGB hemoglobinopathy Hodgkin lymphoma

immune cvtopenia

myelodysplasia

medulloblastoma

inflammatory bowel disease

inherited metabolic disease

juvenile rheumatoid arthritis

juvenile myelomonocytic leukemia

- MLII mucolipidosis II
- MLIII mucolipidosis III
- MLIV mucolipidosis IV
- MLD metachromatic leukodystrophy
- MPSI Hurler syndrome
- MPSII Hunter syndrome
- MPSIII Sanfilippo syndrome
- MPSIV Morquio syndrome
- Maroteaux-Lamy syndrome MPSVI
- MPSVII Sly syndrome
- neuroblastoma NBL
- NHL non-Hodgkin lymphoma
- NPA Niemann-Pick A
- NPB Niemann-Pick B
- Niemann-Pick C NPC
- OSC osteosarcoma
- OST osteopetrosis PID
- primary immune deficiency primitive neuroectodermal tumor PNET
- RBA retinoblastoma
- RMS rhabdomyosarcoma
- SAL Salla disease
- Sandhoff disease SAN
- SAS sialic acid storage disease
- SCL scleroderma/SS
- SLE systemic lupus erythematosus
- STG stage of disease
- soft tissue sarcoma STS
- TAY Tay-Sachs disease
- WIL Wilms tumor
- WOL Wolman disease

IV. Disease code modifiers

- HR high risk
- LR low risk
- MET metastatic
- NEW newly diagnosed PRD progressive disease
- REC recurrent disease
- refractory REF
- REL relapsed
- REM remission
- SEV severe
- STG stage of disease

V. Disease Code Characteristics

- GRW growth
- hearing defects HRD
- HSM hepatosplenomegaly intelligence quotient
- IQ JNT ioint
- MR mental retardation
- NCD neurocognitive development
- NMD neuromuscular development
- orthopedic/skeletal ORT
- SOH state of health
- SPE speech
- SZS seizures

V. Intervention Codes

- autologous HSCT AUT
- ALO allogeneic HSCT BSC
- best supportive care

- CHM chemotherapy
- CRT chemoradiotherapy
- enzyme replacement therapy ERT
- HSCT hematopoietic stem cell transplantation
- IMM immune suppression
- insulin therapy INS
- PAL palliative
- primary treatment (previously untreated) PRI
- SEQ sequential high-dose chemotherapy with single autologous HSCT
- SUR surgery only
- treatment unclear Τ?
- TAN tandem autologous HSCT
- TBI total body irradiation
- UMB umbilical cord blood HSCT

VI. Outcome Codes

- CNR continuous remission
- CRM complete remission
- CVS cardiovascular AE
- DFR drug free remission
- DFS disease-free survival
- DSS (cancer) disease-specific survival
- EFS event free survival
- ENG engraftment
- ESO esophagus AEs
- FU? follow-up uncertain
- GVH graft versus host disease
- INF infection
- hematologic toxicities HEM
- HEP hepatic AEs
- HRT heart AEs
- LC local control
- I NG lung AEs
- LRC locoregional control
- MFS (distant) metastasis-free survival
- MIR minor response
- MUC mucositis

PRD

QOL

RFS

REN

RET

RSP

SEL

SKN

STD

TAE

TRM

TTR

VPR

B-2

- NV nausea/vomiting
- OAE other AE
- OS overall survival
- OTE other time-to-event outcome

progressive disease

recurrence free survival

- OTO otologic/auditory AEs
- 0? outcome unclear
- PFS progression-free survival PR partial remission

quality of life

renal toxicities

tumor response

stable disease

time-to-recurrence

serum enzyme levels

treatment-related mortality

very good partial response

toxicity/adverse events (not specified)

retinopathy

skin AEs

Excluded Studies: Original Review

[No Author]. Effect of intensive diabetes treatment on the development and progression of long-term complications in adolescents with insulin-dependent diabetes mellitus: Diabetes Control and Complications Trial. Diabetes Control and Complications Trial Research Group. J Pediatr 1994 125(2):177-88.

Rec#: 75370 Reprint: exc nrp

[No Author]. Adverse events and their association with treatment regimens in the diabetes control and complications trial. Diabetes Care 1995 18(11):1415-27. Rec#: 62830 Reprint: exc nrp

[No Author]. Early worsening of diabetic retinopathy in the Diabetes Control and Complications Trial. Arch Ophthalmol 1998 116(7):874-86. Rec#: 62640 Reprint: exc nrp

[No Author]. Effect of intensive therapy on residual beta-cell function in patients with type 1 diabetes in the diabetes control and complications trial. A randomized, controlled trial. The Diabetes Control and Complications Trial Research Group. Ann Intern Med 1998 128(7):517-23. Rec#: 62660 Reprint: exc nrp

[No Author]. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. N Engl J Med 2000 342(6):381-9. Rec#: 62520 Reprint: exc nrp

Abbott, I. R., S. J. Gaskill, T. C. Hayes, and B. J. Menick. 28-Month-Old girl with delayed ambulation and speech. Pediatr Neurosurg 2000 33(3):162-6. Rec#: 76430 Reprint: exc nro

Abd El-Aal, H. Role of radio-iodinated meta-iodo benzyl guanidine in assessment of children with neuroblastoma at NEMROCK. J Egypt Natl Canc Inst 2006 18(4):375-81. Rec#: 2370 Reprint: exc nrp

Abdel-Haq, N., S. Savasan, M. Davis, B. I. Asmar, T. Painter, and H. Salimnia. Asaia lannaensis bloodstream infection in a child with cancer and bone marrow transplantation. 2009. Rec#: 110 Reprint: exc nro

Aberg, L., E. Kirveskari, and P. Santavuori. Lamotrigine therapy in juvenile neuronal ceroid lipofuscinosis. Epilepsia 1999 40(6):796-9.

Rec#: 58000

Reprint: exc nri

Aberg, L. E., M. Backman, E. Kirveskari, and P. Santavuori. Epilepsy and antiepileptic drug therapy in juvenile neuronal ceroid lipofuscinosis. Epilepsia 2000 41(10):1296-302. Rec#: 57870 Reprint: exc nri

Adams, C., C. S. August, H. Maguire, and J. T. Sladky. Neuromuscular complications of bone marrow transplantation. Pediatr Neurol 1995 12(1):58-61. Rec#: 22300 Reprint: EXC NRS

Adkins, E. S., R. Sawin, R. B. Gerbing, W. B. London, K. K. Matthay, and G. M. Haase. Efficacy of complete resection for high-risk neuroblastoma: a Children's Cancer Group study. J Pediatr Surg 2004 39(6):931-6. Rec#: 8730 Reprint: exc nri

Al Salloum, A. A. Cyclophosphamide therapy for lupus nephritis: poor renal survival in Arab children. Pediatr Nephrol 2003 18(4):357-61. Rec#: 41890 Reprint: exc nri

Albert, M. H., F. Schuster, C. Peters, S. Schulze, B. F. Pontz, A. C. Muntau, W. Roschinger, D. K. Stachel, A. Enders, R. J. Haas, and I. Schmid. T-cell-depleted peripheral blood stem cell transplantation for alpha-mannosidosis. Bone Marrow Transplant 2003 32(4):443-6. Rec#: 10090 Reprint: exc nr

Alex, J., M. J. Bahl, and A. J. Schlueter. Peripheral blood stem cell recovery following early termination of apheresis due to hypotension in a 4.8-kg infant. J Clin Apher 2009 24(3):120-1. Rec#: 470 Reprint: exc nri

Al-Fifi, S. H. Intensive insulin treatment versus conventional regimen for adolescents with type 1 diabetes, benefits and risks. Saudi Med J 2003 24(5):485-7. Rec#: 62320 Reprint: exc nrs

Allen, J. C., B. Donahue, R. DaRosso, and A. Nirenberg. Hyperfractionated craniospinal radiotherapy and adjuvant chemotherapy for children with newly diagnosed medulloblastoma and other primitive neuroectodermal tumors. Int J Radiat Oncol Biol Phys 1996 36(5):1155-61. Rec#: 20010 Reprint: exc nri

Allison, J. W., C. A. James, G. L. Arnold, K. C. Stine, D. L. Becton, and J. M. Bell. Reconversion of bone marrow in Gaucher disease treated with enzyme therapy documented by MR. Pediatr Radiol 1998 28(4):237-40. Rec#: 18040 Reprint: exc dac

al-Sewairy, W., A. al-Mazyed, al-Dalaan, S. al-Balaa, and S. Bahabri. Methotrexate therapy in systemic-onset juvenile rheumatoid arthritis in Saudi Arabia: a retrospective analysis. Clin Rheumatol 1998 17(1):52-7. Rec#: 42350 Reprint: exc nro

Amalfitano, A., A. R. Bengur, R. P. Morse, J. M. Majure, L. E. Case, D. L. Veerling, J. Mackey, P. Kishnani, W. Smith, A. McVie-Wylie, J. A. Sullivan, G. E. Hoganson, J. A. 3rd Phillips, G. B. Schaefer, J. Charrow, R. E. Ware, E. H. Bossen, and Y. T. Chen. Recombinant human acid alpha-glucosidase enzyme therapy for infantile glycogen storage disease type II: results of a phase I/II clinical trial. Genet Med 2001 3(2):132-8. Rec#: 57830 Reprint: exc nrc

Angeles-Han, S., T. Flynn, and T. Lehman. Abatacept for refractory juvenile idiopathic arthritis-associated uveitis- a case report. J Rheumatol 2008 35(9):1897-8. Rec#: 41020 Reprint: exc ltr

Ansong, A. K., J. S. Li, E. Nozik-Grayck, R. Ing, R. M. Kravitz, S. F. Idriss, R. J. Kanter, H. Rice, Y. T. Chen, and P. S. Kishnani. Electrocardiographic response to enzyme replacement therapy for Pompe disease. Genet Med 2006 8(5):297-301. Rec#: 57220 Reprint: exc nrc

Applebaum, H., and L. E. Feinfeld. Ultrasonic resection of neuroblastomas. Long-term local tumor control. Arch Surg 1995 130(8):905-8. Rec#: 21650 Reprint: EXC NRS

Ara, T., W. A. Khan, and S. M. Ali. Histopathological variations among cases of Wilms' tumor in Bangladesh and its relationship with prognosis. Bangladesh Med Res Counc Bull 1997 23(2):56-9. Rec#: 46190 Reprint: exc nrc

Argani, P., M. Lae, E. T. Ballard, M. Amin, C. Manivel, B. Hutchinson, V. E. Reuter, and M. Ladanyi. Translocation carcinomas of the kidney after chemotherapy in childhood. J Clin Oncol 2006 24(10):1529-34. Rec#: 5790 Reprint: EXC NRD

Atchaneeyasakul, L. O., C. Wongsiwaroj, M. Uiprasertkul, K. Sanpakit, K. Thephamongkhol, and A. Trinavarat. Prognostic factors and treatment outcomes of retinoblastoma in pediatric patients: a single-institution study. Jpn J Ophthalmol 2009 53(1):35-9. Rec#: 630 Reprint: exc nrd Atra, A., J. S. Whelan, V. Calvagna, A. G. Shankar, S. Ashley, V. Shepherd, R. L. Souhami, and C. R. Pinkerton. High-dose busulphan/melphalan with autologous stem cell rescue in Ewing's sarcoma. Bone Marrow Transplant 1997 20(10):843-6. Rec#: 18830 Reprint: exc nrp

Autti, T., T. Lonnqvist, and R. Joensuu. Bilateral pulvinar signal intensity decrease on T2-weighted images in patients with aspartylglucosaminuria. Acta Radiol 2008 49(6):687-92. Rec#: 1820 Reprint: exc nro

Autti, T., P. Santavuori, R. Raininko, M. Renlund, J. Rapola, and U. Saarinen-Pihkala. Bone-marrow transplantation in aspartylglucosaminuria. Lancet 1997 349(9062):1366-7. Rec#: 19360 Reprint: exc dup

Avigad, S., G. Feinberg-Gorenshtein, D. Luria, M. Jeison, J. Stein, A. Grunshpan, Y. Sverdlov, S. Ash, and I. Yaniv. Minimal residual disease in peripheral blood stem cell harvests from high-risk neuroblastoma patients. J Pediatr Hematol Oncol 2009 31(1):22-6. Rec#: 770 Reprint: exc nri

Avramova, B., M. Jordanova, G. Michailov, D. Konstantinov, I. Christosova, and D. Bobev. Myeloablative chemotherapy with autologous peripheral blood stem cell transplantation in patients with poor-prognosis solid tumors - Bulgarian experience. J BUON 2006 11(4):433-8. Rec#: 4290 Reprint: EXC NRI

Bader-Meunier, B., N. Aladjidi, F. Bellmann, F. Monpoux, B. Nelken, A. Robert, C. Armari-Alla, C. Picard, F. Ledeist, M. Munzer, K. Yacouben, Y. Bertrand, A. Pariente, A. Chausse, Y. Perel, and G. Leverger. Rituximab therapy for childhood Evans syndrome. Haematologica 2007 92(12):1691-4. Rec#: 77590 Reprint: exc nrc

Baehner, F., C. Kampmann, C. Whybra, E. Miebach, C. M. Wiethoff, and M. Beck. Enzyme replacement therapy in heterozygous females with Fabry disease: results of a phase IIIB study. J Inherit Metab Dis 2003 26(7):617-27. Rec#: 57560 Reprint: exc nrc

Bagatell, R., M. Beck-Popovic, W. B. London, Y. Zhang, A. D. Pearson, K. K. Matthay, T. Monclair, P. F. Ambros, and S. L. Cohn. Significance of MYCN amplification in international neuroblastoma staging system stage 1 and 2 neuroblastoma: a report from the International Neuroblastoma Risk Group database. J Clin Oncol 2009 27(3):365-70. Rec#: 940 Reprint: exc nri Balmaceda, C., M. R. Fetell, and C. Hesdorffer. Thiotepa and etoposide treatment of recurrent malignant gliomas: phase I study. Cancer Chemother Pharmacol 1997 40(1):72-4. Rec#: 19900 Reprint: exc nri

Ban, H., A. Andoh, A. Tanaka, T. Tsujikawa, M. Sasaki, Y. Saito, and Y. Fujiyama. Analysis of thiopurine S-methyltransferase genotypes in Japanese patients with inflammatory bowel disease. Intern Med 2008 47(19):1645-8. Rec#: 1200 Reprint: exc nrd

Barile-Fabris, L., R. Ariza-Andraca, L. Olguin-Ortega, L. J. Jara, A. Fraga-Mouret, J. M. Miranda-Limon, J. Fuentes de la Mata, P. Clark, F. Vargas, and J. Alocer-Varela. Controlled clinical trial of IV cyclophosphamide versus IV methylprednisolone in severe neurological manifestations in systemic lupus erythematosus. Ann Rheum Dis 2005 64(4):620-5. Rec#: 41660 Reprint: exc nrp

bas, A., and S. Awan. Rhabdomyosarcoma of the middle ear and mastoid: a case report and review of the literature. Ear Nose Throat J 2005 84(12):"780, 782, 784". Rec#: 47190 Reprint: exc nrs nrp

Bashey, A., I. Owen, G. F. Lucas, N. W. Amphlett, M. M. Jones, A. Lawal, M. F. McMullin, P. Mahendra, L. A. Tyfield, and J. M. Hows. Late onset immune pancytopenia following bone marrow transplantation. Br J Haematol 1991 78(2):268-74. Rec#: 26160 Reprint: EXC YEAR

Basu, D., S. Ferns, M. A. Prasad, and P. Nalini. Failure to thrive in a 3 month old boy. Postgrad Med J 2002 78(923):"567, 569". Rec#: 11600 Reprint: exc nrs

Bay, J. O., C. Linassier, P. Biron, X. Durando, P. Verrelle, F. Kwiatkowski, G. Rosti, and T. Demirer. Does high-dose carmustine increase overall survival in supratentorial high-grade malignant glioma? An EBMT retrospective study. Int J Cancer 2007 120(8):1782-6. Rec#: 72120 Reprint: exc nrp

Beard, M. E., J. A. Willis, R. S. Scott, and J. W. Nesbit. Is type 1 diabetes transmissible by bone marrow allograft? 2002. Rec#: 12440 Reprint: exc nrs

Belldina, E. B., M. Y. Huang, J. A. Schneider, R. C. Brundage, and T. S. Tracy. Steady-state pharmacokinetics and pharmacodynamics of cysteamine bitartrate in paediatric nephropathic cystinosis patients. Br J Clin Pharmacol 2003 56(5):520-5. Rec#: 57570 Reprint: exc nrc Bembi, B., E. Agosti, P. Boehm, G. Nassimbeni, M. Zanatta, and L. Vidoni. Aminohydroxypropylidene-biphosphonate in the treatment of bone lesions in a case of Gaucher's disease type 3. Acta Paediatr 1994 83(1):122-4. Rec#: 23300 Reprint: EXC NRP

Benesch, M., R. Kerbl, H. Lackner, A. Berghold, W. Schwinger, K. Triebl-Roth, and C. Urban. Low-dose versus high-dose immunoglobulin for primary treatment of acute immune thrombocytopenic purpura in children: results of a prospective, randomized single-center trial. J Pediatr Hematol Oncol 2003 25(10):797-800. Rec#: 78140 Reprint: exc nrd

Benesch, M., N. Siegler, K. Hoff, L. Lassay, G. Kropshofer, H. Muller, C. Sommer, S. Rutkowski, G. Fleischhack, and C. Urban. Safety and toxicity of intrathecal liposomal cytarabine (Depocyte) in children and adolescents with recurrent or refractory brain tumors: a multi-institutional retrospective study. Anticancer Drugs 2009 20(9):794-9. Rec#: 49370 Reprint: exc nrd

Benkerrou, M., F. Le Deist, J. P. de Villartay, S. Caillat-Zucman, F. Rieux-Laucat, N. Jabado, M. Cavazzana-Calvo, and A. Fischer. Correction of Fas (CD95) deficiency by haploidentical bone marrow transplantation. Eur J Immunol 1997 27(8):2043-7. Rec#: 19060 Reprint: exc nre

Beresford, M. W., and E. M. Baildam. New advances in the management of juvenile idiopathic arthritis--2: the era of biologicals. Arch Dis Child Educ Pract Ed 2009 94(5):151-6. Rec#: 77090 Reprint: exc nra

Berkovitch, M., G. Dolinski, T. Tauber, M. Aladjem, and C. Kaplinsky. Neutropenia as a complication of intravenous immunoglobulin (IVIG) therapy in children with immune thrombocytopenic purpura: common and non-alarming. Int J Immunopharmacol 1999 21(6):411-5. Rec#: 16620 Reprint: exc nrd

Berthold, F., B. Hero, B. Kremens, R. Handgretinger, G. Henze, F. H. Schilling, M. Schrappe, T. Simon, and C. Spix. Long-term results and risk profiles of patients in five consecutive trials (1979-1997) with stage 4 neuroblastoma over 1 year of age. Cancer Lett 2003 197(1-2):11-7. Rec#: 10140 Reprint: exc nri

Bertuzzi, A., L. Castagna, A. Nozza, V. Quagliuolo, L. Siracusano, M. Balzarotti, S. Compasso, M. Alloisio, H. Soto Parra, and A. Santoro. High-dose chemotherapy in poor-prognosis adult small round-cell tumors: clinical and molecular results from a prospective study. J Clin Oncol 2002 20(8):2181-8. Rec#: 12380

Reprint: exc nrp

Besalduch, J., J. Bargay, J. Buades, A. Galmes, M. Morey, and A. Sampol. Autoimmune hemolityc anemia after treatment of severe systemic lupus erythematosus with high-dose chemotherapy and autotransplantation of selected peripheral hematopoietic progenitors. Haematologica 2003 88(2):ECR01. Rec#: 10900 Reprint: exc nro

Beyer J, Kramar A, Mandanas R, et al. High-dose chemotherapy as salvage treatment in germ cell tumors: a multivariate analysis of prognostic variables. J Clin Oncol 1996 14:2638-2645. Rec#: 78790 Reprint: EXC NPD

Beyer J, Rick O, Siegert W, Bokemeyer C. Salvage chemotherapy in relapsed germ cell tumors. World J Urol 2001 19:90-93. Rec#: 78840 Reprint: EXC NRP

Bhattacharya, N. Placental umbilical cord whole blood transfusion to combat anemia in the background of advanced rheumatoid arthritis and emaciation and its potential role as immunoadjuvant therapy. Clin Exp Obstet Gynecol 2006 33(1):28-33. Rec#: 5500 Reprint: exc nro

Bhattacharya, N., K. Mukherijee, M. K. Chettri, T. Banerjee, U. Mani, and S. Bhattacharya. A study report of 174 units of placental umbilical cord whole blood transfusion in 62 patients as a rich source of fetal hemoglobin supply in different indications of blood transfusion. Clin Exp Obstet Gynecol 2001 28(1):47-52. Rec#: 13800 Reprint: EXC NRS

Bien, E., T. Stachowicz-Stencel, D. Sierota, K. Polczynska, A. Szolkiewicz, J. Stefanowicz, E. Adamkiewicz-Drozynska, P. Czauderna, W. Kosiak, M. Dubaniewicz-Wybieralska, E. Izycka-Swieszewska, and A. Balcerska. Sarcomas in children with neurofibromatosis type 1-poor prognosis despite aggressive combined therapy in four patients treated in a single oncological institution. Childs Nerv Syst 2007 23(10):1147-53. Rec#: 3550 Reprint: exc nrs

Bierings, M. The role of T-cell depletion of autografts for autoimmune diseases. Rheumatology (Oxford) 1999 38(8):755-6. Rec#: 16310

Reprint: exc nro

Binks, M., J. R. Passweg, D. Furst, P. McSweeney, K. Sullivan, C. Besenthal, J. Finke, H. H. Peter, J. van Laar, F. C. Breedveld, W. E. Fibbe, D. Farge, E. Gluckman, F. Locatelli, A. Martini, F. van den Hoogen, L. van de Putte, A. V. Schattenberg, R. Arnold, P. A. Bacon, P. Emery, I. Espigado, B. Hertenstein, F. Hiepe, A. Kashyap, I. Kotter, A. Marmont, A. Martinez, M. J. Pascual, A. Gratwohl, H. G. Prentice, C. Black, and A. Tyndall. Phase I/II trial of autologous stem cell transplantation in systemic sclerosis:

procedure related mortality and impact on skin disease. Ann Rheum Dis 2001 60(6):577-84. Rec#: 13740 Reprint: "exc nrs, 1 patient reported in rec#16270"

Binstadt, B. A., A. M. Caldas, S. E. Turvey, K. D. Stone, H. J. Weinstein, J. Jackson, R. C. Fuhlbrigge, and R. P. Sundel. Rituximab therapy for multisystem autoimmune diseases in pediatric patients. J Pediatr 2003 143(5):598-604. Rec#: 78130 Reprint: exc nrd

Bleesing, J. J., S. E. Straus, and T. A. Fleisher. Autoimmune lymphoproliferative syndrome. A human disorder of abnormal lymphocyte survival. Pediatr Clin North Am 2000 47(6):1291-310. Rec#: 14330 Reprint: exc nra

Bleggi-Torres, L. F., E. L. Gasparetto, L. N. Faoro, R. Hanel, C. V. Grande, A. de Carvalho Neto, and L. de Noronha. Pleomorphic xanthoastrocytoma: report of a case diagnosed by intraoperative cytopathological examination. Diagn Cytopathol 2001 24(2):120-2. Rec#: 55830 Reprint: exc nro

Boelens, J. J., G. Lazo, J. F. Gaiser, and N. M. Wulffraat. Epstein-Barr virus-associated haemophagocytic lympho-histiocytosis after stem cell transplantation. 2006. Rec#: 4970 Reprint: exc nrs

Bohgaki, T., T. Atsumi, and T. Koike. Autoimmune disease after autologous hematopoietic stem cell transplantation. Autoimmun Rev 2008 7(3):198-203. Rec#: 2660 Reprint: exc nra

Boiardi, A., M. Bartolomei, A. Silvani, M. Eoli, A. Salmaggi, E. Lamperti, I. Milanesi, A. Botturi, P. Rocca, L. Bodei, G. Broggi, and G. Paganelli. Intratumoral delivery of mitoxantrone in association with 90-Y radioimmunotherapy (RIT) in recurrent glioblastoma. J Neurooncol 2005 72(2):125-31. Rec#: 7210 Reprint: exc nri nrp

Boland, E. A., M. Grey, A. Oesterle, L. Fredrickson, and W. V. Tamborlane. Continuous subcutaneous insulin infusion. A new way to lower risk of severe hypoglycemia, improve metabolic control, and enhance coping in adolescents with type 1 diabetes. Diabetes Care 1999 22(11):1779-84. Rec#: 62540 Reprint: exc nro

Bomgaars, L., J. Kerr, S. Berg, J. Kuttesch, R. Klenke, and S. M. Blaney. A phase I study of irinotecan administered on a weekly schedule in pediatric patients. Pediatr Blood Cancer 2006 46(1):50-5. Rec#: 7560 Reprint: exc nro

Bordigoni, P., R. Turello, L. Clement, P. Lascombes, B. Leheup, M. A. Galloy, and F. Plenat. Osteochondroma after pediatric hematopoietic stem cell transplantation: report of eight cases. Bone Marrow Transplant 2002 29(7):611-4. Rec#: 12310 Reprint: EXC NRI

Borrelli, O., C. Bascietto, F. Viola, M. Bueno de Mesquita, M. Barbato, V. Mancini, S. Bosco, and S. Cucchiara. Infliximab heals intestinal inflammatory lesions and restores growth in children with Crohn's disease. Dig Liver Dis 2004 36(5):342-7. Rec#: 41770 Reprint: exc nri

Borsi, J. D., C. Csaki, T. Ferencz, and W. Oster. Administration of Ethyol (amifostine) to a child with medulloblastoma to ameliorate hematological toxicity of high dose carboplatin. Anticancer Drugs 1996 7(1):121-6. Rec#: 21220 Reprint: EXC NRI

Bouhnik, Y., M. Lemann, J. Y. Mary, G. Scemama, R. Tai, C. Matuchansky, R. Modigliani, and J. C. Rambaud. Long-term follow-up of patients with Crohn's disease treated with azathioprine or 6-mercaptopurine. Lancet 1996 347(8996):215-9. Rec#: 21110 Reprint: exc nrp

Boulad, F., N. A. Kernan, M. P. LaQuaglia, G. Heller, K. L. Lindsley, N. S. Rosenfield, S. J. Abramson, W. L. Gerald, T. N. Small, A. P. Gillio, S. C. Gulati, R. J. O'Reilly, and F. Ghavimi. High-dose induction chemoradiotherapy followed by autologous bone marrow transplantation as consolidation therapy in rhabdomyosarcoma, extraosseous Ewing's sarcoma, and undifferentiated sarcoma. J Clin Oncol 1998 16(5):1697-706. Rec#: 18240 Reprint: exc nro

Bousvaros, A., B. S. Kirschner, S. L. Werlin, L. Parker-Hartigan, F. Daum, K. B. Freeman, J. P. Balint, A. S. Day, A. M. Griffiths, D. Zurakowski, G. D. Ferry, and A. M. Leichtner. Oral tacrolimus treatment of severe colitis in children. J Pediatr 2000 137(6):794-9. Rec#: 42180 Reprint: exc nrd

Bousvaros, A., A. M. Leichtner, L. Book, A. Shigeoka, J. Bilodeau, E. Semeao, E. Ruchelli, and A. E. Mulberg. Treatment of pediatric autoimmune enteropathy with tacrolimus (FK506). Gastroenterology 1996 111(1):237-43. Rec#: 20590 Reprint: exc nri

Bove, K. E., C. Daugherty, and G. A. Grabowski. Pathological findings in Gaucher disease type 2 patients following enzyme therapy. Hum Pathol 1995 26(9):1040-5. Rec#: 21590 Reprint: EXC NRC Bowers, D. C., V. M. Aquino, P. J. Leavey, R. O. Bash, J. M. Journeycake, G. Tomlinson, A. F. Mulne, H. J. Haynes, and N. J. Winick. Phase I study of oral cyclophosphamide and oral topotecan for children with recurrent or refractory solid tumors. Pediatr Blood Cancer 2004 42(1):93-8. Rec#: 9330 Reprint: EXC NRI

Bowman, L. C., M. L. Hancock, V. M. Santana, F. A. Hayes, L. Kun, D. M. Parham, W. L. Furman, B. N. Rao, A. A. Green, and W. M. Crist. Impact of intensified therapy on clinical outcome in infants and children with neuroblastoma: the St Jude Children's Research Hospital experience, 1962 to 1988. J Clin Oncol 1991 9(9):1599-608. Rec#: 25970 Reprint: EXC YEAR

Bradfield, S. M., J. G. Douglas, D. S. Hawkins, J. E. Sanders, and J. R. Park. Fractionated low-dose radiotherapy after myeloablative stem cell transplantation for local control in patients with high-risk neuroblastoma. Cancer 2004 100(6):1268-75. Rec#: 9160 Reprint: exc nri

Brandes, A. A., M. Ermani, S. Turazzi, E. Scelzi, F. Berti, P. Amista, A. Rotilio, C. Licata, and M. V. Fiorentino. Procarbazine and high-dose tamoxifen as a second-line regimen in recurrent high-grade gliomas: a phase II study. J Clin Oncol 1999 17(2):645-50.

Rec#: 56070 Reprint: exc nrp

Brandes, A. A., S. Turazzi, U. Basso, L. M. Pasetto, B. Guglielmi, L. Volpin, P. Iuzzolino, P. Amista, G. Pinna, R. Scienza, and M. Ermani. A multidrug combination designed for reversing resistance to BCNU in glioblastoma multiforme. Neurology 2002 58(12):1759-64. Rec#: 55650 Reprint: exc nrp

Breier, D. V., P. Rendo, J. Gonzalez, G. Shilton, M. Stivel, and S. Goldztein. Massive plasmocytosis due to methimazole-induced bone marrow toxicity. Am J Hematol 2001 67(4):259-61. Rec#: 13510 Reprint: exc nrd

Breitfeld, P. P., E. Lyden, R. B. Raney, L. A. Teot, M. Wharam, T. Lobe, W. M. Crist, H. M. Maurer, S. S. Donaldson, and F. B. Ruymann. Ifosfamide and etoposide are superior to vincristine and melphalan for pediatric metastatic rhabdomyosarcoma when administered with irradiation and combination chemotherapy: a report from the Intergroup Rhabdomyosarcoma Study Group. J Pediatr Hematol Oncol 2001 23(4):225-33. Rec#: 12620 Reprint: exc in breneman 2003

Briceno, E., S. Reyes, and J. Sotelo. Therapy of glioblastoma multiforme improved by the antimutagenic chloroquine. Neurosurg Focus 2003 14(2):e3. Rec#: 55210 Reprint: exc nri

Brinkman, D. M., I. M. de Kleer, R. ten Cate, M. A. van Rossum, W. P. Bekkering, A. Fasth, M. J. van Tol, W. Kuis, N. M. Wulffraat, and J. M. Vossen. Autologous stem cell transplantation in children with severe progressive systemic or polyarticular juvenile idiopathic arthritis: long-term follow-up of a prospective clinical trial. Arthritis Rheum 2007 56(7):2410-21. Rec#: 3650 Reprint: exc same pt as In 8350

Brinkman, D. M., C. M. Jol-van der Zijde, M. M. ten Dam, P. A. te Boekhorst, R. ten Cate, N. M. Wulffraat, R. Q. Hintzen, J. M. Vossen, and M. J. van Tol. Resetting the adaptive immune system after autologous stem cell transplantation: lessons from responses to vaccines. J Clin Immunol 2007 27(6):647-58. Rec#: 3410 Reprint: exc nri

Brinkman, D. M., R. ten Cate, J. M. Vossen, T. J. Smeets, M. C. Kraan, and P. P. Tak. Decrease in synovial cellularity and cytokine expression after autologous stem cell transplantation in patients with juvenile idiopathic arthritis. Arthritis Rheum 2002 46(4):1121-3. Rec#: 12400 Reprint: exc nrd

Brisse, H., V. Servois, B. Bouche, F. Avni, P. Petit, F. Thibault, J.
M. Zucker, C. Devalck, and S. Neuenschwander. Hepatic regenerating nodules: a mimic of recurrent cancer in children.
Pediatr Radiol 2000 30(6):386-93.
Rec#: 15220
Reprint: EXC NRI NRO

Brodeur, G. M. Commentary on Kaneko et al.: Intensified chemotherapy increases the survival rates in patients with stage 4 neuroblastoma with MYCN amplification. J Pediatr Hematol Oncol 2002 24(8):608-9. Rec#: 11390 Reprint: EXC COM

Broun ER, Nichols CR, Gize G, et al. Tandem high dose chemotherapy with autologous bone marrow transplantation for initial relapse of testicular germ cell cancer. Cancer 1997 79:1605-1610. Rec#: 78800 Reprint: EXC NRP

Browne, H., A. Armstrong, A. Decherney, R. Babb, G. Illei, J. Segars, and S. Pavletic. Assessment of ovarian function with anti-Mullerian hormone in systemic lupus erythematosus patients undergoing hematopoietic stem cell transplant. Fertil Steril 2009 91(4 Suppl):1529-32. Rec#: 1100 Reprint: exc nro

Browne, M., G. Somers, H. Savoia, and R. Kukuruzovic. Wolman's disease in an infant. Br J Haematol 2003 122(4):522. Rec#: 10100 Reprint: exc nrs Bryan, C. J., M. N. Prichard, S. Daily, G. Jefferson, C. Hartline, K. A. Cassady, L. Hilliard, and M. Shimamura. Acyclovir-resistant chronic verrucous vaccine strain varicella in a patient with neuroblastoma. Pediatr Infect Dis J 2008 27(10):946-8. Rec#: 1380 Reprint: exc nri

Buckingham, B. A., and C. I. Sandborg. A randomized trial of methotrexate in newly diagnosed patients with type 1 diabetes mellitus. Clin Immunol 2000 96(2):86-90. Rec#: 40580 Reprint: exc cr

Bulsara, K. R., P. W. Baron, J. E. Tuttle-Newhall, P. A. Clavien, and J. Morgenlander. Guillain-Barre syndrome in organ and bone marrow transplant patients. Transplantation 2001 71(8):1169-72. Rec#: 13690 Reprint: exc nrd

Buratti, S., I. S. Szer, C. H. Spencer, S. Bartosh, and A. Reiff. Mycophenolate mofetil treatment of severe renal disease in pediatric onset systemic lupus erythematosus. J Rheumatol 2001 28(9):2103-8. Rec#: 42120 Reprint: exc nro

Burchill, S. A., S. E. Kinsey, S. Picton, P. Roberts, C. R. Pinkerton, P. Selby, and I. J. Lewis. Minimal residual disease at the time of peripheral blood stem cell harvest in patients with advanced neuroblastoma. Med Pediatr Oncol 2001 36(1):213-9. Rec#: 13390 Reprint: exc nri

Burdach, S., H. Jurgens, C. Peters, W. Nurnberger, C. Mauz-Korholz, D. Korholz, M. Paulussen, H. Pape, D. Dilloo, E. Koscielniak, and a. l. .. et. Myeloablative radiochemotherapy and hematopoietic stem-cell rescue in poor-prognosis Ewing's sarcoma. J Clin Oncol 1993 11(8):1482-8. Rec#: 23950 Reprint: EXC YEAR

Burt, R. K., A. Traynor, Y. Oyama, and R. Craig. High-dose immune suppression and autologous hematopoietic stem cell transplantation in refractory Crohn disease. Blood 2003 101(5):2064-6. Rec#: 11560 Reprint: exc same pts as in rec#7570

Burzynski, S. R., T. J. Janicki, R. A. Weaver, and B. Burzynski. Targeted therapy with antineoplastons A10 and AS2-1 of highgrade, recurrent, and progressive brainstem glioma. Integr Cancer Ther 2006 5(1):40-7. Rec#: 54950 Reprint: exc nrt

Burzynski, S. R., R. A. Weaver, R. I. Lewy, T. J. Janicki, G. F. Jurida, B. G. Szymkowski, M. I. Khan, and M. Bestak. Phase II study of antineoplaston A10 and AS2-1 in children with recurrent

and progressive multicentric glioma : a preliminary report. Drugs R D 2004 5(6):315-26. Rec#: 55250 Reprint: exc nri

Busuttil, D. P., and J. A. Liu Yin. The bone marrow in hereditary cystinosis. Br J Haematol 2000 111(2):385. Rec#: 14380 Reprint: exc nrs

Butani, L., D. C. West, and D. S. Taylor. End-stage renal disease after high-dose carboplatinum in preparation of autologous stem cell transplantation. Pediatr Transplant 2003 7(5):408-12. Rec#: 9370 Reprint: exc nro

Calogero, J., D. C. Crafts, C. B. Wilson, E. B. Boldrey, A. Rosenberg, and K. J. Enot. Long-term survival of patients treated with BCNU for brain tumors. J Neurosurg 1975 43(2):191-6. Rec#: 73370 Reprint: EXC nrs

Candy, S., J. Wright, M. Gerber, G. Adams, M. Gerig, and R. Goodman. A controlled double blind study of azathioprine in the management of Crohn's disease. Gut 1995 37(5):674-8. Rec#: 21420 Reprint: EXC NRS

Canete, A., M. Gerrard, H. Rubie, V. Castel, A. Di Cataldo, C. Munzer, R. Ladenstein, B. Brichard, J. D. Bermudez, J. Couturier, B. de Bernardi, A. J. Pearson, and J. Michon. Poor survival for infants with MYCN-amplified metastatic neuroblastoma despite intensified treatment: the International Society of Paediatric Oncology European Neuroblastoma Experience. J Clin Oncol 2009 27(7):1014-9. Rec#: 650 Reprint: exc nri

Carpenter, P. A., L. White, G. B. McCowage, V. Nayanar, I. Toogood, P. J. Shaw, L. Lockwood, and K. Tiedemann. A doseintensive, cyclophosphamide-based regimen for the treatment of recurrent/progressive or advanced solid tumors of childhood: a report from the Australia and New Zealand Children's Cancer Study Group. Cancer 1997 80(3):489-96. Rec#: 46200 Reprint: exc nro

Casey, D. A., L. H. Wexler, M. S. Merchant, A. J. Chou, P. R. Merola, A. P. Price, and P. A. Meyers. Irinotecan and temozolomide for Ewing sarcoma: the Memorial Sloan-Kettering experience. Pediatr Blood Cancer 2009 53(6):1029-34. Rec#: 42810 Reprint: exc nrp

Castagnola, E., M. Conte, S. Parodi, F. Papio, I. Caviglia, and R. Haupt. Incidence of bacteremias and invasive mycoses in children with high risk neuroblastoma. Pediatr Blood Cancer 2007 49(5):672-7. Rec#: 4860 Reprint: exc nri Castagnola, E., S. Dallorso, M. Rabagliati, O. Sacco, Z. Kotitsa, and G. Dini. Survival after cytomegalovirus pneumonia in two children receiving autologous peripheral blood progenitor cell transplantation (PBPCT). Bone Marrow Transplant 1998 21(5):529-31. Rec#: 18430 Reprint: exc nri

Castel, V., A. Canete, S. Navarro, P. Garcia-Miguel, C. Melero, T. Acha, A. Navajas, and M. D. Badal. Outcome of high-risk neuroblastoma using a dose intensity approach: improvement in initial but not in long-term results. Med Pediatr Oncol 2001 37(6):537-42. Rec#: 12800 Reprint: exc nri

Castel, V., P. Garcia-Miguel, C. Melero, A. Navajas, S. Navarro, J. Molina, M. D. Badal, and J. I. Ruiz-Jimenez. The treatment of advanced neuroblastoma. Results of the Spanish Neuroblastoma Study Group (SNSG) studies. Eur J Cancer 1995 31A(4):642-5. Rec#: 22400 Reprint: EXC NRI

Castel, V., J. A. Tovar, E. Costa, J. Cuadros, A. Ruiz, V. Rollan, J. I. Ruiz-Jimenez, R. Perez-Hernandez, and A. Canete. The role of surgery in stage IV neuroblastoma. J Pediatr Surg 2002 37(11):1574-8. Rec#: 11530 Reprint: exc nri

Cathcart, S., and D. Morrell. Vitiligo as a post-bone marrow transplantation complication. J Pediatr Hematol Oncol 2007 29(7):485-7. Rec#: 3620 Reprint: exc nr

Cecen, E., K. M. Uysal, A. Ozguven, D. Gunes, G. Irken, and N. Olgun. Veno-occlusive disease in a child with rhabdomyosarcoma after conventional chemotherapy: report of a case and review of the literature. Pediatr Hematol Oncol 2007 24(8):615-21. Rec#: 2750 Reprint: exc nro

Ceschel, S., V. Casotto, M. G. Valsecchi, P. Tamaro, M. Jankovic, G. Hanau, F. Fossati, M. Pillon, R. Rondelli, A. Sandri, D. Silvestri, R. Haupt, and M. Cuttini. Survival after relapse in children with solid tumors: a follow-up study from the Italian offtherapy registry. Pediatr Blood Cancer 2006 47(5):560-6. Rec#: 6260 Reprint: EXC NRI

Chamberlain, R. S., R. Quinones, P. Dinndorf, N. Movassaghi, M. Goodstein, and K. Newman. Complete surgical resection combined with aggressive adjuvant chemotherapy and bone marrow transplantation prolongs survival in children with advanced neuroblastoma. Ann Surg Oncol 1995 2(2):93-100. Rec#: 22070 Reprint: EXC NRI Chan, D. T., W. S. Poon, Y. L. Chan, and H. K. Ng. Temozolomide in the treatment of recurrent malignant glioma in Chinese patients. Hong Kong Med J 2005 11(6):452-6. Rec#: 54990 Reprint: exc nrp

Chan, G. S., M. F. Lam, W. Y. Au, S. Chim, K. C. Tse, S. H. Lo, S. H. Fung, K. N. Lai, and K. W. Chan. Clinicopathologic analysis of renal biopsies after haematopoietic stem cell transplantation. Nephrology (Carlton) 2008 13(4):322-30. Rec#: 2560 Reprint: exc nro

Chan, K. W., D. Petropoulos, M. Choroszy, C. Herzog, N. Jaffe, J. Ater, and M. Korbling. High-dose sequential chemotherapy and autologous stem cell reinfusion in advanced pediatric solid tumors. Bone Marrow Transplant 1997 20(12):1039-43. Rec#: 18680 Reprint: exc nro

Chan, S. C., K. L. Chan, and W. C. Peh. Clinics in diagnostic imaging (31). Adrenal neuroblastoma. Singapore Med J 1997 38(11):504-8. Rec#: 18380 Reprint: exc nri

Chantada, G. L., I. J. Dunkel, C. B. Antoneli, M. T. de Davila, V. Arias, K. Beaverson, A. C. Fandino, M. Chojniak, and D. H. Abramson. Risk factors for extraocular relapse following enucleation after failure of chemoreduction in retinoblastoma. Pediatr Blood Cancer 2007 49(3):256-60. Rec#: 48630 Reprint: exc nrd

Chen, I. L., S. N. Yang, C. C. Hsiao, K. S. Wu, and J. M. Sheen. Treatment with high-dose methylprednisolone for hepatic venoocclusive disease in a child with rhabdomyosarcoma. Pediatr Neonatol 2008 49(4):141-4. Rec#: 910 Reprint: exc nrs

Cheuk, D. K., T. L. Lee, A. K. Chiang, S. Y. Ha, and G. C. Chan. Autologous hematopoietic stem cell transplantation for high-risk brain tumors in children. J Neurooncol 2008 86(3):337-47. Rec#: 72990 Reprint: exc few nrp

Cheung, N. K., H. F. Guo, G. Heller, and I. Y. Cheung. Induction of Ab3 and Ab3' antibody was associated with long-term survival after anti-G(D2) antibody therapy of stage 4 neuroblastoma. Clin Cancer Res 2000 6(7):2653-60. Rec#: 15120 Reprint: exc nri

Cheung, N. K., B. H. Kushner, I. Y. Cheung, K. Kramer, A. Canete, W. Gerald, M. A. Bonilla, R. Finn, S. J. Yeh, and S. M. Larson. Anti-G(D2) antibody treatment of minimal residual stage 4 neuroblastoma diagnosed at more than 1 year of age. J Clin Oncol 1998 16(9):3053-60. Rec#: 17720 Reprint: exc nri

Cheung, N. K., B. H. Kushner, M. LaQuaglia, K. Kramer, S. Gollamudi, G. Heller, W. Gerald, S. Yeh, R. Finn, S. M. Larson, D. Wuest, M. Byrnes, E. Dantis, J. Mora, I. Y. Cheung, N. Rosenfield, S. Abramson, and R. J. O'Reilly. N7: a novel multi-modality therapy of high risk neuroblastoma (NB) in children diagnosed over 1 year of age. Med Pediatr Oncol 2001 36(1):227-30. Rec#: 13380

Reprint: exc nri

Chintagumpala, M., T. Hassall, S. Palmer, D. Ashley, D. Wallace, K. Kasow, T. E. Merchant, M. J. Krasin, R. Dauser, F. Boop, R. Krance, S. Woo, R. Cheuk, C. Lau, R. Gilbertson, and A. Gajjar. A pilot study of risk-adapted radiotherapy and chemotherapy in patients with supratentorial PNET. Neuro Oncol 2009 11(1):33-40. Rec#: 71130 Reprint: EXC NRI

Chiu, S. J., L. S. Ou, T. L. Tsai, I. J. Hung, and J. L. Huang. Sequential evaluation of clinical and laboratory changes amongst children suffering from lupus nephritis during intermittent intravenous cyclophosphamide therapy. Clin Rheumatol 2006 25(4):515-9. Rec#: 41600 Reprint: exc nrp

Cho, H. J., H. K. Jung, K. W. Sung, H. H. Ku, S. H. Lee, and D. W. Kim. Autologous peripheral blood stem cell collections in children weighing less than 10 Kg with solid tumors: experience of a single center. J Clin Apher 2005 20(2):65-71. Rec#: 7290 Reprint: exc nrs

Choi, H. S., S. H. Koh, E. S. Park, H. Y. Shin, and H. S. Ahn. CNS recurrence following CD34+ peripheral blood stem cell transplantation in stage 4 neuroblastoma. Pediatr Blood Cancer 2005 45(1):68-71. Rec#: 71590 Reprint: exc nro

Chosidow, O., M. Bagot, J. P. Vernant, J. C. Roujeau, C. Cordonnier, M. Kuentz, J. Wechsler, C. Andre, R. Touraine, and J. Revuz. Sclerodermatous chronic graft-versus-host disease. Analysis of seven cases. J Am Acad Dermatol 1992 26(1):49-55. Rec#: 25370 Reprint: EXC YEAR

Choudhary, D. R., R. Naithani, M. Mahapatra, R. Kumar, P. Mishra, and R. Saxena. Efficacy of cyclosporine as a single agent therapy in chronic idiopathic thrombocytopenic purpura. Haematologica 2008 93(10):e61-2; discussion e63. Rec#: 77510 Reprint: exc nro

Citak, E. C., V. Kesik, A. A. Atay, E. Sari, E. Kismet, and V. Koseoglu. Transfusion-related acute lung injury in a child with neuroblastoma during a late engraftment period of autologous stem cell transplantation. Pediatr Transplant 2008 12(2):235-7.

Rec#: 2320 Reprint: exc nri

Clarke, K., R. L. Basser, C. Underhill, P. Mitchell, J. Bartlett, L. Cher, M. Findlay, D. Dalley, M. Pell, M. Byrne, H. Geldard, J. S. Hill, D. Maher, R. M. Fox, M. D. Green, and A. H. Kaye. KRN8602 (MX2-hydrochloride): an active new agent for the treatment of recurrent high-grade glioma. J Clin Oncol 1999 17(8):2579-84. Rec#: 55980 Reprint: exc nrp

Cohen, A. Hematopoietic stem cell transplantation and diabetes mellitus: the paradox between treatment and cause of a disease. Pediatr Transplant 2009 13(1):3-6. Rec#: 1360 Reprint: exc edt

Cohen, K. J. Autologous stem cell rescue in children with brain tumors: the questions mount. Pediatr Blood Cancer 2008 50(2):191. Rec#: 3060 Reprint: exc nri

Cohn, S. L., T. J. Moss, M. Hoover, H. M. Katzenstein, P. R. Haut, E. R. Morgan, A. A. Green, and M. Kletzel. Treatment of poor-risk neuroblastoma patients with high-dose chemotherapy and autologous peripheral stem cell rescue. Bone Marrow Transplant 1997 20(7):543-51. Rec#: 18950 Reprint: exc nri

Coleman, J. E., and A. R. Watson. Gastrostomy buttons for nutritional support in children with cystinosis. Pediatr Nephrol 2000 14(8-9):833-6. Rec#: 57900 Reprint: exc nrc

Colombel, J. F., N. Ferrari, H. Debuysere, P. Marteau, J. P. Gendre, B. Bonaz, J. C. Soule, R. Modigliani, Y. Touze, P. Catala, C. Libersa, and F. Broly. Genotypic analysis of thiopurine S-methyltransferase in patients with Crohn's disease and severe myelosuppression during azathioprine therapy. Gastroenterology 2000 118(6):1025-30. Rec#: 15280 Reprint: exc nro

Combs, S. E., M. Bischof, T. Welzel, H. Hof, S. Oertel, J. Debus, and D. Schulz-Ertner. Radiochemotherapy with temozolomide as re-irradiation using high precision fractionated stereotactic radiotherapy (FSRT) in patients with recurrent gliomas. J Neurooncol 2008 89(2):205-10. Rec#: 54560 Reprint: exc nrp

Combs, S. E., C. Thilmann, L. Edler, J. Debus, and D. Schulz-Ertner. Efficacy of fractionated stereotactic reirradiation in recurrent gliomas: long-term results in 172 patients treated in a single institution. J Clin Oncol 2005 23(34):8863-9. Rec#: 55020 Reprint: exc nri

Connell, W. R., M. A. Kamm, J. K. Ritchie, and J. E. Lennard-Jones. Bone marrow toxicity caused by azathioprine in inflammatory bowel disease: 27 years of experience. Gut 1993 34(8):1081-5. Rec#: 23940 Reprint: EXC YEAR

Corbett, R., R. Pinkerton, J. Pritchard, S. Meller, I. Lewis, J. Kingston, and T. McElwain. Pilot study of high-dose vincristine, etoposide, carboplatin and melphalan with autologous bone marrow rescue in advanced neuroblastoma. Eur J Cancer 1992 28A(8-9):1324-8. Rec#: 25470 Reprint: EXC YEAR

Correia, C. E., K. Bhattacharya, P. J. Lee, J. J. Shuster, D. W. Theriaque, M. N. Shankar, G. P. Smit, and D. A. Weinstein. Use of modified cornstarch therapy to extend fasting in glycogen storage disease types Ia and Ib. Am J Clin Nutr 2008 88(5):1272-6. Rec#: 56760 Reprint: exc nrs

Cortes-Hernandez, J., J. Ordi-Ros, M. Labrador, A. Segarra, J. L. Tovar, E. Balada, and M. Vilardell-Tarres. Predictors of poor renal outcome in patients with lupus nephritis treated with combined pulses of cyclophosphamide and methylprednisolone. Lupus 2003 12(4):287-96. Rec#: 41880 Reprint: exc nrp

Corti, P., S. Bonanomi, C. Vallinoto, A. Balduzzi, C. Uderzo, G. Cazzaniga, G. Gaipa, M. Dassi, P. Perseghin, and A. Rovelli. Rituximab for immune hemolytic anemia following T- and B-Celldepleted hematopoietic stem cell transplantation. Acta Haematol 2003 109(1):43-5. Rec#: 11200 Reprint: exc nr

Corti, P., C. Peters, A. Balduzzi, B. Bertagnolio, A. Biondi, C. Bugarin, M. Dassi, F. Furlan, G. Gaipa, D. Longoni, O. Maglia, R. Parini, P. Perseghin, C. Uderzo, G. Uziel, G. Masera, and A. Rovelli. Reconstitution of lymphocyte subpopulations in children with inherited metabolic storage diseases after haematopoietic cell transplantation. Br J Haematol 2005 130(2):249-55. Rec#: 6970

Reprint: exc nr

Cortis, E., and A. Insalaco. Macrophage activation syndrome in juvenile idiopathic arthritis. Acta Paediatr Suppl 2006 95(452):38-41. Rec#: 5370

Reprint: exc nro

Cortona, L., T. D'Orazio, F. Locatelli, R. Guagnini, F. Bonetti, L. Vitali, and R. Lorini. Pancreatic beta cell function in children and adolescents after bone marrow transplantation. Bone Marrow Transplant 1991 8 Suppl 1:66-7. Rec#: 26710
Reprint: EXC YEAR

Cosetti, M., L. H. Wexler, E. Calleja, T. Trippett, M. LaQuaglia, A. G. Huvos, W. Gerald, J. H. Healey, P. A. Meyers, and R. Gorlick. Irinotecan for pediatric solid tumors: the Memorial Sloan-Kettering experience. J Pediatr Hematol Oncol 2002 24(2):101-5. Rec#: 12270 Reprint: exc nro

Couri, C. E., and J. C. Voltarelli. Potential role of stem cell therapy in type 1 diabetes mellitus. Arq Bras Endocrinol Metabol 2008 52(2):407-15. Rec#: 2050 Reprint: exc nra

Craft, A., S. Cotterill, A. Malcolm, D. Spooner, R. Grimer, R. Souhami, J. Imeson, and I. Lewis. Ifosfamide-containing chemotherapy in Ewing's sarcoma: The Second United Kingdom Children's Cancer Study Group and the Medical Research Council Ewing's Tumor Study. J Clin Oncol 1998 16(11):3628-33. Rec#: 44170 Reprint: exc nrp

Craft, A. W., S. J. Cotterill, J. A. Bullimore, and D. Pearson. Longterm results from the first UKCCSG Ewing's Tumour Study (ET-1). United Kingdom Children's Cancer Study Group (UKCCSG) and the Medical Research Council Bone Sarcoma Working Party. Eur J Cancer 1997 33(7):1061-9. Rec#: 44340 Reprint: exc nrp

Crino, A., R. Schiaffini, S. Manfrini, C. Mesturino, N. Visalli, G. Beretta Anguissola, C. Suraci, D. Pitocco, S. Spera, S. Corbi, M. C. Matteoli, I. P. Patera, M. L. Manca Bitti, C. Bizzarri, and P. Pozzilli. A randomized trial of nicotinamide and vitamin E in children with recent onset type 1 diabetes (IMDIAB IX). Eur J Endocrinol 2004 150(5):719-24. Rec#: 62270 Reprint: exc nrc

Csaki, C., T. Ferencz, G. Sipos, L. Kopper, D. Schuler, and J. D. Borsi. Diffuse plasmacytosis in a child with brainstem glioma following multiagent chemotherapy and intensive growth factor support. Med Pediatr Oncol 1996 26(5):367-71. Rec#: 20830 Reprint: exc nri

Cummins, C., M. Connock, A. Fry-Smith, and A. Burls. A systematic review of effectiveness and economic evaluation of new drug treatments for juvenile idiopathic arthritis: etanercept. Health Technol Assess 2002 6(17):1-43. Rec#: 77210 Reprint: exc sr

Curbow, B., M. R. Somerfield, F. Baker, J. R. Wingard, and M. W. Legro. Personal changes, dispositional optimism, and psychological adjustment to bone marrow transplantation. J Behav Med 1993 16(5):423-43. Rec#: 23810 Reprint: EXC YEAR Currie, D. M., G. K. Ludvigsdottir, C. A. Diaz, and N. Kamani. Topical treatment of sclerodermoid chronic graft vs. host disease. Am J Phys Med Rehabil 2002 81(2):143-9. Rec#: 12680 Reprint: exc nrd

Cutting, R., Y. Ezaydi, D. Edbrooke, K. El-Ghariani, R. Stamps, and J. A. Snowden. Graft failure and severe autoimmune haemolysis following fludarabine-based reduced-intensity matched unrelated donor bone marrow transplantation for severe aplastic anaemia: salvage by second transplant with conventional dose conditioning. 2006. Rec#: 5350 Reprint: exc nrs

Cybulla, M., K. N. Walter, A. Schwarting, R. Divito, S. Feriozzi, and G. Sunder-Plassmann. Kidney transplantation in patients with Fabry disease. Transpl Int 2009 22(4):475-81. Rec#: 56710 Reprint: exc nrc

Czyzewski, E. A., S. Goldman, A. J. Mundt, J. Nachman, C. Rubin, and D. E. Hallahan. Radiation therapy for consolidation of metastatic or recurrent sarcomas in children treated with intensive chemotherapy and stem cell rescue. A feasibility study. Int J Radiat Oncol Biol Phys 1999 44(3):569-77. Rec#: 16790 Reprint: EXC MIX

Dahlborg, S. A., A. Petrillo, J. R. Crossen, S. Roman-Goldstein, N. D. Doolittle, K. H. Fuller, and E. A. Neuwelt. The potential for complete and durable response in nonglial primary brain tumors in children and young adults with enhanced chemotherapy delivery. Cancer J Sci Am 1998 4(2):110-24. Rec#: 71380 Reprint: EXC NRI

Dallorso, S., G. Dini, M. Faraci, and F. Spreafico. SCT for Wilms' tumour. Bone Marrow Transplant 2008 41 Suppl 2:S128-30. Rec#: 1640 Reprint: EXC REV

Dallorso, S., G. Dini, R. Ladenstein, A. Cama, C. Milanaccio, S. Barra, B. Cappelli, and M. L. Garre. Evolving role of myeloablative chemotherapy in the treatment of childhood brain tumours. Bone Marrow Transplant 2005 35 Suppl 1:S31-4. Rec#: 7450 Reprint: EXC NRP

Dantonello, T. M., C. Int-Veen, P. Winkler, I. Leuschner, A. Schuck, B. F. Schmidt, H. Lochbuehler, S. Kirsch, E. Hallmen, I. Veit-Friedrich, S. S. Bielack, F. Niggli, B. Kazanowska, R. Ladenstein, T. Wiebe, T. Klingebiel, J. Treuner, and E. Koscielniak. Initial patient characteristics can predict pattern and risk of relapse in localized rhabdomyosarcoma. J Clin Oncol 2008 26(3):406-13. Rec#: 2640 Reprint: exc nrd Day, D. L., R. T. Johnson, G. T. Odrezin, W. G. Woods, and B. A. Alford. Renal atrophy or infarction in children with neuroblastoma. Radiology 1991 180(2):493-5. Rec#: 26010 Reprint: EXC YEAR

De Bernardi, B., M. Carli, F. Casale, P. Corciulo, L. Cordero di Montezemolo, C. De Laurentis, S. Bagnulo, M. Brisigotti, N. Marchese, A. Garaventa, and a. l. .. et. Standard-dose and highdose peptichemio and cisplatin in children with disseminated poorrisk neuroblastoma: two studies by the Italian Cooperative Group for Neuroblastoma. J Clin Oncol 1992 10(12):1870-8. Rec#: 24650 Reprint: EXC YEAR

de Boer, N. K., A. A. van Bodegraven, P. de Graaf, R. W. van der Hulst, L. Zoetekouw, and A. B. van Kuilenburg. Paradoxical elevated thiopurine S-methyltransferase activity after pancytopenia during azathioprine therapy: potential influence of red blood cell age. Ther Drug Monit 2008 30(3):390-3. Rec#: 1940 Reprint: exc nro

De Filippo, G., J. C. Carel, C. Boitard, and P. F. Bougneres. Longterm results of early cyclosporin therapy in juvenile IDDM. Diabetes 1996 45(1):101-4. Rec#: 40790 Reprint: exc nrc

de Kraker, J., N. Graf, H. van Tinteren, F. Pein, B. Sandstedt, J. Godzinski, and M. F. Tournade. Reduction of postoperative chemotherapy in children with stage I intermediate-risk and anaplastic Wilms' tumour (SIOP 93-01 trial): a randomised controlled trial. Lancet 2004 364(9441):1229-35. Rec#: 45310 Reprint: exc nrp

de Kraker, J., K. A. Hoefnagel, A. C. Verschuur, B. van Eck, H. M. van Santen, and H. N. Caron. Iodine-131metaiodobenzylguanidine as initial induction therapy in stage 4 neuroblastoma patients over 1 year of age. Eur J Cancer 2008 44(4):551-6. Rec#: 2430 Reprint: exc nri

de Ridder, L., M. A. Benninga, J. A. Taminiau, and D. W. Hommes. Infliximab as first-line therapy in severe pediatric Crohn disease. J Pediatr Gastroenterol Nutr 2006 43(3):388-90. Rec#: 41450 Reprint: exc cr

De Sio, L., G. M. Milano, A. Castellano, A. Jenkner, P. Fidani, C. Dominici, and A. Donfrancesco. Temozolomide in resistant or relapsed pediatric solid tumors. Pediatr Blood Cancer 2006 47(1):30-6. Rec#: 73060 Reprint: exc duplicate

Degar, B. A., R. D. Harrington, J. M. Rappeport, and A. E. Woolfrey. 13-cis-retinoic acid-induced eosinophilia following

autologous bone marrow transplantation for neuroblastoma. Med Pediatr Oncol 1999 32(4):308-10. Rec#: 16970 Reprint: exc nri

Denis, R., J. L. Wayemberg, M. Vermeulen, F. Gorus, I. Liebaers, and E. Vamos. Hyperphosphatasemia in GM1 gangliosidosis. 1992. Rec#: 25380 Reprint: exc year

Desai, T. K., J. Maliakkal, J. L. Kinzie, M. N. Ehrinpreis, G. D. Luk, and J. Cejka. Taurine deficiency after intensive chemotherapy and/or radiation. Am J Clin Nutr 1992 55(3):708-11. Rec#: 25300 Reprint: EXC YEAR

Di Caro, A., B. Bostrom, T. J. Moss, J. Neglia, N. K. Ramsay, J. Smith, and L. C. Sasky. Autologous peripheral blood cell transplantation in the treatment of advanced neuroblastoma. Am J Pediatr Hematol Oncol 1994 16(3):200-6. Rec#: 22830 Reprint: EXC Year

Diaz, M. A., M. G. Vicent, and L. Madero. High-dose busulfan/melphalan as conditioning for autologous PBPC transplantation in pediatric patients with solid tumors. Bone Marrow Transplant 1999 24(11):1157-9. Rec#: 15770 Reprint: exc nro

Dini, G., E. Lanino, A. Garaventa, P. Paolucci, A. Amici, F. Locatelli, P. Colleselli, L. Boni, S. Dallorso, O. Abla, and a. l. .. et. Unpurged autologous bone marrow transplantation for neuroblastoma: the AIEOP-BMT group experience. Bone Marrow Transplant 1991 7 Suppl 3:109-11. Rec#: 26640 Reprint: EXC YEAR

Dini, G., E. Lanino, A. Garaventa, D. Rogers, S. Dallorso, C. Viscoli, E. Castagnola, G. Manno, M. Brisigotti, C. Rosanda, and a. l. .. et. Myeloablative therapy and unpurged autologous bone marrow transplantation for poor-prognosis neuroblastoma: report of 34 cases. J Clin Oncol 1991 9(6):962-9. Rec#: 26180 Reprint: EXC YEAR

Dionisi-Vici, C., L. De Felice, M. el Hachem, S. Bottero, C. Rizzo, A. Paoloni, B. Goffredo, G. Sabetta, and M. Caniglia. Intravenous immune globulin in lysinuric protein intolerance. J Inherit Metab Dis 1998 21(2):95-102. Rec#: 18260 Reprint: exc nro

Ditschkowski, M., H. Einsele, R. Schwerdtfeger, D. Bunjes, R. Trenschel, D. W. Beelen, and A. H. Elmaagacli. Improvement of inflammatory bowel disease after allogeneic stem-cell transplantation. Transplantation 2003 75(10):1745-7. Rec#: 10480 Reprint: exc nrd nro Dixit, M. P., E. Bracamonte, and N. Dixit. Intravenous cyclophosphamide--resistant systemic lupus erythematosus in Arizona. Pediatr Nephrol 2004 19(7):738-43. Rec#: 8880 Reprint: exc nro

Djaldetti, R., A. Achiron, I. Ziv, M. Djaldetti, E. Melamed, and P. Fishman. IL-3-LA production by mononuclear cells of patients with multiple sclerosis: effect of treatment with intravenous immunoglobulins. Immunol Invest 1995 24(5):765-73. Rec#: 21640 Reprint: EXC NRI

Dohil, R., M. Fidler, B. Barshop, R. Newbury, Z. Sellers, R. Deutsch, and J. Schneider. Esomeprazole therapy for gastric acid hypersecretion in children with cystinosis. Pediatr Nephrol 2005 20(12):1786-93. Rec#: 57360 Reprint: exc nrc

Dome, J. S., T. Liu, M. Krasin, L. Lott, P. Shearer, N. C. Daw, C. A. Billups, and J. A. Wilimas. Improved survival for patients with recurrent Wilms tumor: the experience at St. Jude Children's Research Hospital. J Pediatr Hematol Oncol 2002 24(3):192-8. Rec#: 12280 Reprint: exc nrp

Don, D. M., A. N. Newman, and Y. S. Fu. Spindle cell variant of embryonal rhabdomyosarcoma. Otolaryngol Head Neck Surg 1997 116(4):529-32. Rec#: 48280 Reprint: exc nrs

Donaldson, S. S., M. Torrey, M. P. Link, A. Glicksman, L. Gilula, F. Laurie, J. Manning, J. Neff, W. Reinus, E. Thompson, and J. J. Shuster. A multidisciplinary study investigating radiotherapy in Ewing's sarcoma: end results of POG #8346. Pediatric Oncology Group. Int J Radiat Oncol Biol Phys 1998 42(1):125-35. Rec#: 44180 Reprint: exc nrp

Doolittle, N. D., C. P. Anderson, W. A. Bleyer, J. G. Cairncross, T. Cloughesy, S. L. Eck, P. Guastadisegni, W. A. Hall, L. L. Muldoon, S. J. Patel, D. Peereboom, T. Siegal, and E. A. Neuwelt. Importance of dose intensity in neuro-oncology clinical trials: summary report of the Sixth Annual Meeting of the Blood-Brain Barrier Disruption Consortium. Neuro Oncol 2001 3(1):46-54. Rec#: 13870 Reprint: exc nrs

Drabko, K., D. Winnicka, A. Gaworczyk, I. Ben-Skowronek, D. Skomra, and J. R. Kowalczyk. Donor origin of Graves disease in a BMT recipient: evidence from FISH studies of thyroid tissue. 2006. Rec#: 5980 Reprint: exc nrs

DuBois, S. G., J. Messina, J. M. Maris, J. Huberty, D. V. Glidden, J. Veatch, M. Charron, R. Hawkins, and K. K. Matthay.

Hematologic toxicity of high-dose iodine-131metaiodobenzylguanidine therapy for advanced neuroblastoma. J Clin Oncol 2004 22(12):2452-60. Rec#: 8700 Reprint: EXC NRI

Duffner, P. K., V. S. Jr Caviness, R. W. Erbe, M. C. Patterson, K. R. Schultz, D. A. Wenger, and C. Whitley. The long-term outcomes of presymptomatic infants transplanted for Krabbe disease: report of the workshop held on July 11 and 12, 2008, Holiday Valley, New York. Genet Med 2009 11(6):450-4. Rec#: 320 Reprint: exc nr

Duffner, P. K., M. E. Horowitz, J. P. Krischer, P. C. Burger, M. E. Cohen, R. A. Sanford, H. S. Friedman, and L. E. Kun. The treatment of malignant brain tumors in infants and very young children: an update of the Pediatric Oncology Group experience. Neuro Oncol 1999 1(2):152-61. Rec#: 73120 Reprint: exc nrt

Dunn, J. C., K. W. West, F. J. Rescorla, L. R. Tres Scherer, S. A. Engum, T. M. Rouse, J. W. Smith, and J. L. Grosfeld. The utility of lung biopsy in recipients of stem cell transplantation. J Pediatr Surg 2001 36(8):1302-3. Rec#: 13300 Reprint: EXC MIX

Dupuis-Girod, S., O. Hartmann, E. Benhamou, F. Doz, F. Mechinaud, E. Bouffet, C. Coze, and C. Kalifa. Will high dose chemotherapy followed by autologous bone marrow transplantation supplant cranio-spinal irradiation in young children treated for medulloblastoma? J Neurooncol 1996 27(1):87-98. Rec#: 21250 Reprint: EXC NRP

Dupuis-Girod, S., O. Hartmann, E. Benhamou, F. Doz, F. Mechinaud, E. Bouffet, C. Coze, and C. Kalifa. [High-dose chemotherapy in relapse of medulloblastoma in young children]. Bull Cancer 1997 84(3):264-72. Rec#: 70880 Reprint: EXC NRP

Durando, X., J. J. Lemaire, J. Tortochaux, I. Van-Praagh, F. Kwiatkowski, C. Vincent, C. Bailly, P. Verrelle, B. Irthum, J. Chazal, and J. O. Bay. High-dose BCNU followed by autologous hematopoietic stem cell transplantation in supratentorial highgrade malignant gliomas: a retrospective analysis of 114 patients. Bone Marrow Transplant 2003 31(7):559-64. Rec#: 10650 Reprint: exc pts in jacques-oliver

Dureau, P., M. Broyer, and J. L. Dufier. Evolution of ocular manifestations in nephropathic cystinosis: a long-term study of a population treated with cysteamine. J Pediatr Ophthalmol Strabismus 2003 40(3):142-6. Rec#: 57640 Reprint: exc nrc Eden, B. V., R. F. Debo, J. M. Larner, M. D. Kelly, P. A. Levine, F. M. Stewart, R. W. Cantrell, and W. C. Constable. Esthesioneuroblastoma. Long-term outcome and patterns of failure--the University of Virginia experience. Cancer 1994 73(10):2556-62. Rec#: 22970 Reprint: EXC Year

Eden, O. B., and J. S. Lilleyman. Guidelines for management of idiopathic thrombocytopenic purpura. The British Paediatric Haematology Group. Arch Dis Child 1992 67(8):1056-8. Rec#: 24960 Reprint: EXC YEAR

Eguchi, H., Y. Takaue, Y. Kawano, A. Watanabe, T. Watanabe, A. Kikuta, S. Koizumi, T. Matsumura, A. Sawada, Y. Horikoshi, Y. Sekine, T. Koyama, T. Shimokawa, K. Shimizu, K. Kawasaki, H. Mugishima, J. Takayama, M. Ohira, and M. Ogawa. Peripheral blood stem cell autografts for the treatment of children over 1 year old with stage IV neuroblastoma: a long-term follow-up. Bone Marrow Transplant 1998 21(10):1011-4. Rec#: 18050 Reprint: exc nri

Eliashiv, S., T. Brenner, O. Abramsky, R. Shahin, E. Agai, E. Naparstek, and I. Steiner. Acute inflammatory demyelinating polyneuropathy following bone marrow transplantation. Bone Marrow Transplant 1991 8(4):315-7. Rec#: 25870 Reprint: EXC YEAR

Elleder, M., J. Kraus, and R. Kodet. Infantile sialic acid storage disease (ISSD). Report on first case in Czech Republic with biopsy and autopsy findings. Sb Lek 1993 94(2):145-53. Rec#: 24590 Reprint: EXC YEAR

Elli, M., F. G. Pinarli, A. Dagdemir, and S. Acar. Veno-occlusive disease of the liver in a child after chemotherapy for brain tumor. Pediatr Blood Cancer 2006 46(4):521-3. Rec#: 6430 Reprint: EXC NRI

Elomaa, I., C. Blomqvist, G. Saeter, M. Nilbert, O. R. Monge, T. Wiebe, and T. A. Alvegard. Chemotherapy in Ewing's sarcoma. The Scandinavian Sarcoma Group experience. Acta Orthop Scand Suppl 1999 285:69-73. Rec#: 44080 Reprint: exc nrp

Elomaa, I., C. P. Blomqvist, G. Saeter, M. Akerman, E. Stenwig, T. Wiebe, O. Bjork, and T. A. Alvegard. Five-year results in Ewing's sarcoma. The Scandinavian Sarcoma Group experience with the SSG IX protocol. Eur J Cancer 2000 36(7):875-80. Rec#: 43980 Reprint: exc nrp

Elstein, D., A. Steinberg, A. Abrahamov, and A. Zimran. Ethical guidelines for enzyme therapy in neuronopathic Gaucher disease. Am J Hum Genet 1997 61(4):A354.

Rec#: 57770 Reprint: exc nrs

Emminger, W., W. Emminger-Schmidmeier, C. Peters, R. Hawliczek, P. Hocker, and H. Gadner. Is treatment intensification by adding etoposide and carboplatin to fractionated total body irradiation and melphalan acceptable in children with solid tumors with respect to toxicity? Bone Marrow Transplant 1991 8(2):119-23.

Rec#: 26030 Reprint: EXC YEAR

Emminger, W., and H. Gadner. Fractionated total body irradiation, high-dose melphalan, etoposide, and carboplatin (FTBI-MEC) for autologous stem cell transplantation in children with advanced neuroblastoma and primitive neuroectodermal tumor. 1992. Rec#: 25250 Reprint: exc year

Endo, H., T. Kumabe, H. Jokura, R. Shirane, H. Ariga, Y. Takai, and T. Yoshimoto. Leptomeningeal dissemination of cerebellar malignant astrocytomas. J Neurooncol 2003 63(2):191-9. Rec#: 55490 Reprint: exc nrs

Eng, C. M., M. Banikazemi, R. E. Gordon, M. Goldman, R. Phelps, L. Kim, A. Gass, J. Winston, S. Dikman, J. T. Fallon, S. Brodie, C. B. Stacy, D. Mehta, R. Parsons, K. Norton, M. O'Callaghan, and R. J. Desnick. A phase 1/2 clinical trial of enzyme replacement in fabry disease: pharmacokinetic, substrate clearance, and safety studies. Am J Hum Genet 2001 68(3):711-22. Rec#: 57840 Reprint: exc nrc

Eng, C. M., N. Guffon, W. R. Wilcox, D. P. Germain, P. Lee, S. Waldek, L. Caplan, G. E. Linthorst, and R. J. Desnick. Safety and efficacy of recombinant human alpha-galactosidase A-replacement therapy in Fabry's disease. N Engl J Med 2001 345(1):9-16. Rec#: 57800 Reprint: exc nrc

Erduran, E., H. Mocan, Y. Gedik, R. Kamaci, A. Okten, and O. Deger. Hydrocephalus, corneal opacities, deafness, left ventricle hypertrophy, clinodactyly in an adolescent patient. A new syndrome associated with glucocerebrosidase deficiency. Genet Couns 1995 6(3):211-5. Rec#: 22210 Reprint: EXC NRI

Escobar, M. A., J. L. Grosfeld, R. L. Powell, K. W. West, L. R. 3rd Scherer, R. J. Fallon, and F. J. Rescorla. Long-term outcomes in patients with stage IV neuroblastoma. J Pediatr Surg 2006 41(2):377-81. Rec#: 6010 Reprint: exc nri

Evans, A. E., C. S. August, N. Kamani, N. Bunin, J. Goldwein, A. J. 3rd Ross, and G. J. D'Angio. Bone marrow transplantation for

high risk neuroblastoma at the Children's Hospital of Philadelphia: an update. Med Pediatr Oncol 1994 23(4):323-7. Rec#: 23380 Reprint: EXC YEAR

Fagioli, F., E. Biasin, L. Mastrodicasa, A. Sandri, I. Ferrero, M. Berger, E. Vassallo, and E. Madon. High-dose thiotepa and etoposide in children with poor-prognosis brain tumors. Cancer 2004 100(10):2215-21. Rec#: 8890 Reprint: EXC NRI NRP

Falcini, F., S. Capannini, G. Martini, F. La Torre, A. Vitale, F. Mangiantini, F. Nacci, M. M. Cerinic, R. Cimaz, and F. Zulian. Mycophenolate mofetil for the treatment of juvenile onset SLE: a multicenter study. Lupus 2009 18(2):139-43. Rec#: 40960 Reprint: exc nro

Fangusaro, J., M. Massimino, S. Rutkowski, and S. Gururangan. Non-cerebellar primitive neuroectodermal tumors (PNET): summary of the Milan consensus and state of the art workshop on marrow ablative chemotherapy with hematopoietic cell rescue for malignant brain tumors of childhood and adolescents. Pediatr Blood Cancer 2010 54(4):638-40. Rec#: 70050 Reprint: EXC REV

Fangusaro, J. R., R. F. Jubran, J. Allen, S. Gardner, I. J. Dunkel,
M. Rosenblum, M. P. Atlas, I. Gonzalez-Gomez, D. Miller, and J.
L. Finlay. Brainstem primitive neuroectodermal tumors
(bstPNET): results of treatment with intensive induction
chemotherapy followed by consolidative chemotherapy with
autologous hematopoietic cell rescue. Pediatr Blood Cancer 2008
50(3):715-7.
Rec#: 5000

Reprint: exc nrs

Farge, D., C. Henegar, M. Carmagnat, M. Daneshpouy, Z.
Marjanovic, C. Rabian, D. Ilie, C. Douay, N. Mounier, E. Clave,
D. Bengoufa, J. Cabane, J. P. Marolleau, E. Gluckman, D.
Charron, and A. Toubert. Analysis of immune reconstitution after autologous bone marrow transplantation in systemic sclerosis.
Arthritis Rheum 2005 52(5):1555-63.
Rec#: 7350
Reprint: exc nrd

Farge, D., J. P. Marolleau, S. Zohar, Z. Marjanovic, J. Cabane, N. Mounier, E. Hachulla, P. Philippe, J. Sibilia, C. Rabian, S. Chevret, and E. Gluckman. Autologous bone marrow transplantation in the treatment of refractory systemic sclerosis: early results from a French multicentre phase I-II study. Br J Haematol 2002 119(3):726-39. Rec#: 11400 Reprint: exc nrs

Fassas, A., J. Passweg, A. Angnostopoulos, and Kazis. Hematopoietic stem cell transplantation for multiple sclerosis. J Neurol 2002 249:1088-1097. Rec#: Reprint: exc nrp Feito, J. G., and C. A. Pereda. Rituximab therapy produced rapid and sustained clinical improvement in a patient with systemic onset juvenile idiopathic arthritis refractory to TNF alpha antagonists. J Clin Rheumatol 2009 15(7):363-5. Rec#: 40840 Reprint: exc cr

Felix, C. A. A safer regimen for high-risk neuroblastoma. Pediatr Blood Cancer 2009 53(1):3-6. Rec#: 240 Reprint: EXC COM

Ferrari, C., T. Bohling, M. S. Benassi, A. Ferraro, G. Gamberi, G. Bacci, A. Del prever, L. Sangiorgi, P. Ragazzini, M. R. Sollazzo, A. Balladelli, and P. Picci. Secondary tumors in bone sarcomas after treatment with chemotherapy. Cancer Detect Prev 1999 23(5):368-74. Rec#: 44050 Reprint: exc nrp

Ferreira, R. A., S. J. Vastert, M. Abinun, H. E. Foster, C. Modesto, T. Olive, W. Kuis, and N. M. Wulffraat. Hemophagocytosis during fludarabine-based SCT for systemic juvenile idiopathic arthritis. 2006. Rec#: 5480 Reprint: exc nro

Fesslova, V., P. Corti, G. Sersale, A. Rovelli, P. Russo, S. Mannarino, G. Butera, and R. Parini. The natural course and the impact of therapies of cardiac involvement in the mucopolysaccharidoses. Cardiol Young 2009 19(2):170-8. Rec#: 580 Reprint: exc nro

Finger, P. T., G. Czechonska, H. Demirci, and A. Rausen. Chemotherapy for retinoblastoma: a current topic. Drugs 1999 58(6):983-96. Rec#: 15740 Reprint: exc rev

Finlay, J. L., and J. H. Wisoff. The impact of extent of resection in the management of malignant gliomas of childhood. Childs Nerv Syst 1999 15(11-12):786-8. Rec#: 15820 Reprint: exc rev

Fish, J. D., and S. A. Grupp. Stem cell transplantation for neuroblastoma. Bone Marrow Transplant 2008 41(2):159-65. Rec#: 2890 Reprint: exc npd

Flandin, I., O. Hartmann, J. Michon, R. Pinkerton, C. Coze, J. L. Stephan, B. Fourquet, D. Valteau-Couanet, C. Bergeron, T. Philip, and C. Carrie. Impact of TBI on late effects in children treated by megatherapy for Stage IV neuroblastoma. A study of the French Society of Pediatric oncology. Int J Radiat Oncol Biol Phys 2006 64(5):1424-31. Rec#: 6180 Reprint: exc nri Flentje, M., A. Weirich, N. Graf, R. Potter, H. Zimmerman, and R. Ludwig. Abdominal irradiation in unilateral nephroblastoma and its impact on local control and survival. Int J Radiat Oncol Biol Phys 1998 40(1):163-9. Rec#: 46130 Reprint: EXC NRP

Foeldvari, I., S. Nielsen, J. Kummerle-Deschner, G. Espada, G. Horneff, B. Bica, A. N. Olivieri, A. Wierk, and R. K. Saurenmann. Tumor necrosis factor-alpha blocker in treatment of juvenile idiopathic arthritis-associated uveitis refractory to second-line agents: results of a multinational survey. J Rheumatol 2007 34(5):1146-50. Rec#: 41350

Reprint: exc nrs

Fogarty, P. F., R. Seggewiss, D. J. McCloskey, C. A. Boss, C. E. Dunbar, and M. E. Rick. Anti-interleukin-2 receptor antibody (daclizumab) treatment of corticosteroid-refractory autoimmune thrombocytopenic purpura. Haematologica 2006 91(2):277-8. Rec#: 77840 Reprint: exc ltr

Fogh, S. E., D. W. Andrews, J. Glass, W. Curran, C. Glass, C. Champ, J. J. Evans, T. Hyslop, E. Pequignot, B. Downes, E. Comber, M. Maltenfort, A. P. Dicker, and M. Werner-Wasik. Hypofractionated stereotactic radiation therapy: an effective therapy for recurrent high-grade gliomas. J Clin Oncol 2010 28(18):3048-53. Rec#: 54220

Reprint: exc nrp

Foncillas, M. A., M. A. Diaz, J. Sevilla, M. Gonzalez Vicent, S. Fernandez-Plaza, A. Perez, and L. Madero. Engraftment syndrome emerges as the main cause of transplant-related mortality in pediatric patients receiving autologous peripheral blood progenitor cell transplantation. J Pediatr Hematol Oncol 2004 26(8):492-6. Rec#: 8540 Reprint: exc nrd nrp

Foreman, N. K., D. Schissel, T. Le, J. Strain, J. Fleitz, R. Quinones, and R. Giller. A study of sequential high dose cyclophosphamide and high dose carboplatin with peripheral stemcell rescue in resistant or recurrent pediatric brain tumors. J Neurooncol 2005 71(2):181-7. Rec#: 7750 Reprint: exc nro

Foster, H., J. Davidson, E. Baildam, M. Abinun, and L. R. Wedderburn. Autologous haematopoeitic stem cell rescue (AHSCR) for severe rheumatic disease in children: guidance for BSPAR members--executive summary. Rheumatology (Oxford) 2006 45(12):1570-1. Rec#: 4750 Reprint: exc nrd

Fouladi, M., M. Chintagumpala, D. Ashley, S. Kellie, S. Gururangan, T. Hassall, L. Gronewold, C. F. Stewart, D. Wallace, A. Broniscer, G. A. Hale, K. A. Kasow, T. E. Merchant, B. Morris,

M. Krasin, L. E. Kun, J. M. Boyett, and A. Gajjar. Amifostine protects against cisplatin-induced ototoxicity in children with average-risk medulloblastoma. J Clin Oncol 2008 26(22):3749-55. Rec#: 1550 Reprint: EXC NRI

Fouladi, M., M. Chintagumpala, F. H. Laningham, D. Ashley, S. J. Kellie, J. W. Langston, C. W. McCluggage, S. Woo, M. Kocak, K. Krull, L. E. Kun, R. K. Mulhern, and A. Gajjar. White matter lesions detected by magnetic resonance imaging after radiotherapy and high-dose chemotherapy in children with medulloblastoma or primitive neuroectodermal tumor. J Clin Oncol 2004 22(22):4551-60. Rec#: 8050

Reprint: EXC NRO

Fox, E., D. Citrin, and F. M. Balis. The legacy of cancer therapy in children. J Natl Cancer Inst 2009 101(16):1105-7. Rec#: 40 Reprint: exc npd

Frappaz, D., E. Bouffet, P. Thiesse, C. Mottolese, V. Artiges, M. Grabois, V. Combaret, C. Desuzinges, M. Favrot, M. Brunat Mentigny, et. al. Isolated intraspinal relapse of neuroblastoma after autologous bone marrow transplantation. Pediatr Hematol Oncol 1994 11(4):439-43. Rec#: 22890 Reprint: EXC Year

Frappaz, D., D. Perol, J. Michon, C. Berger, C. Coze, J. L. Bernard, J. M. Zucker, and T. Philip. The LMCE5 unselected cohort of 25 children consecutively diagnosed with untreated stage 4 neuroblastoma over 1 year at diagnosis. Br J Cancer 2002 87(11):1197-203. Rec#: 11340 Reprint: exc nri

Frascella, E., K. Pritchard-Jones, S. Modak, A. F. Mancini, M. Carli, and C. R. Pinkerton. Response of previously untreated metastatic rhabdomyosarcoma to combination chemotherapy with carboplatin, epirubicin and vincristine. Eur J Cancer 1996 32A(5):821-5. Rec#: 48370 Reprint: exc nro

Fraser, C. J., B. J. Weigel, J. P. Perentesis, K. E. Dusenbery, T. E. DeFor, K. S. Baker, and M. R. Verneris. Autologous stem cell transplantation for high-risk Ewing's sarcoma and other pediatric solid tumors. Bone Marrow Transplant 2006 37(2):175-81. Rec#: 6510 Reprint: exc nro

Froissart, R., I. Moreira da Silva, N. Guffon, D. Bozon, and I. Maire. Mucopolysaccharidosis type II--genotype/phenotype aspects. Acta Paediatr Suppl 2002 91(439):82-7. Rec#: 11010 Reprint: exc dup

Frost, J. D., J. A. Hank, G. H. Reaman, S. Frierdich, R. C. Seeger, J. Gan, P. M. Anderson, L. J. Ettinger, M. S. Cairo, B. R. Blazar,

M. D. Krailo, K. K. Matthay, R. A. Reisfeld, and P. M. Sondel. A phase I/IB trial of murine monoclonal anti-GD2 antibody 14.G2a plus interleukin-2 in children with refractory neuroblastoma: a report of the Children's Cancer Group. Cancer 1997 80(2):317-33. Rec#: 19130 Reprint: exc nri

Fujita, M., M. Sato, M. Nakamura, K. Kudo, T. Nagasaka, M. Mizuno, E. Amano, Y. Okamoto, Y. Hotta, H. Hatano, N. Nakahara, T. Wakabayashi, and J. Yoshida. Multicentric atypical teratoid/rhabdoid tumors occurring in the eye and fourth ventricle of an infant: case report. J Neurosurg 2005 102(3 Suppl):299-302. Rec#: 71970

Reprint: EXC NRD

Fukuda, M., S. Kojima, K. Matsumoto, and T. Matsuyama. Autotransplantation of peripheral blood stem cells mobilized by chemotherapy and recombinant human granulocyte colonystimulating factor in childhood neuroblastoma and non-Hodgkin's lymphoma. Br J Haematol 1992 80(3):327-31. Rec#: 25320 Reprint: EXC YEAR

Fukuda, M., Y. Miyajima, Y. Miyashita, and K. Horibe. Disease outcome may be predicted by molecular detection of minimal residual disease in bone marrow in advanced neuroblastoma: a pilot study. J Pediatr Hematol Oncol 2001 23(1):10-3. Rec#: 14150 Reprint: exc nri

Gadner, H. Is there evidence-based benefit of autologous stem cell transplantation in children with solid tumors? Onkologie 2002 25(3):278-81. Rec#: 11900 Reprint: EXC COM

Gaipa, G., M. Dassi, P. Perseghin, N. Venturi, P. Corti, S. Bonanomi, A. Balduzzi, D. Longoni, C. Uderzo, A. Biondi, G. Masera, R. Parini, B. Bertagnolio, G. Uziel, C. Peters, and A. Rovelli. Allogeneic bone marrow stem cell transplantation following CD34+ immunomagnetic enrichment in patients with inherited metabolic storage diseases. Bone Marrow Transplant 2003 31(10):857-60. Rec#: 10540

Reprint: exc nr

Gajjar, A., M. Chintagumpala, D. Ashley, S. Kellie, L. E. Kun, T. E. Merchant, S. Woo, G. Wheeler, V. Ahern, M. J. Krasin, M. Fouladi, A. Broniscer, R. Krance, G. A. Hale, C. F. Stewart, R. Dauser, R. A. Sanford, C. Fuller, C. Lau, J. M. Boyett, D. Wallace, and R. J. Gilbertson. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol 2006 7(10):813-20. Rec#: 70350 Reprint: EXC NRI

Galvin-Parton, P. A. Screening for GALC to make neonatal diagnosis and initial neonatal stem cell treatment with umbilical cord blood. Pediatr Transplant 2003 7(2):83-5. Rec#: 10740 Reprint: exc nr

Garaventa, A., O. Hartmann, J. L. Bernard, J. M. Zucker, N. Pardo, V. Castel, S. Dallorso, Z. Adelbost, R. Ladenstein, F. Chauvin, and a. l. .. et. Autologous bone marrow transplantation for pediatric Wilms' tumor: the experience of the European Bone Marrow Transplantation Solid Tumor Registry. Med Pediatr Oncol 1994 22(1):11-4. Rec#: 23280 Reprint: EXC Year

Garaventa, A., R. Ladenstein, F. Chauvin, E. Lanino, I. Philip, P. Corciulo, M. Brisigotti, M. Favrot, G. Dini, and T. Philip. Highdose chemotherapy with autologous bone marrow rescue in advanced stage IV neuroblastoma. Eur J Cancer 1993 29A(4):487-91. Rec#: 24410

Reprint: EXC YEAR

Garaventa, A., R. Rondelli, E. Lanino, S. Dallorso, G. Dini, F. Bonetti, A. Arrighini, N. Santoro, F. Rossetti, R. Miniero, M. Andolina, A. Amici, P. Indolfi, M. Lo Curto, C. Favre, P. Paolucci, A. Pession, and B. De Bernardi. Myeloablative therapy and bone marrow rescue in advanced neuroblastoma. Report from the Italian Bone Marrow Transplant Registry. Italian Association of Pediatric Hematology-Oncology, BMT Group. Bone Marrow Transplant 1996 18(1):125-30. Rec#: 20510 Reprint: EXC NRI

Gardner, S. L., J. Carreras, C. Boudreau, B. M. Camitta, R. H. Adams, A. R. Chen, S. M. Davies, J. R. Edwards, A. C. Grovas, G. A. Hale, H. M. Lazarus, M. Arora, P. J. Stiff, and M. Eapen. Myeloablative therapy with autologous stem cell rescue for patients with Ewing sarcoma. Bone Marrow Transplant 2008 41(10):867-72. Rec#: 2480 Reprint: exc nrp

Gaze, M. N., Y. C. Chang, G. D. Flux, R. J. Mairs, F. H. Saran, and S. T. Meller. Feasibility of dosimetry-based high-dose 131Imeta-iodobenzylguanidine with topotecan as a radiosensitizer in children with metastatic neuroblastoma. Cancer Biother Radiopharm 2005 20(2):195-9. Rec#: 7380 Reprint: exc nro

George, J. N., S. H. Woolf, G. E. Raskob, J. S. Wasser, L. M. Aledort, P. J. Ballem, V. S. Blanchette, J. B. Bussel, D. B. Cines, J. G. Kelton, A. E. Lichtin, R. McMillan, J. A. Okerbloom, D. H. Regan, and I. Warrier. Idiopathic thrombocytopenic purpura: a practice guideline developed by explicit methods for the American Society of Hematology. Blood 1996 88(1):3-40. Rec#: 20580 Reprint: exc gui nra George, R. E., W. B. London, S. L. Cohn, J. M. Maris, C. Kretschmar, L. Diller, G. M. Brodeur, R. P. Castleberry, and A. T. Look. Hyperdiploidy plus nonamplified MYCN confers a favorable prognosis in children 12 to 18 months old with disseminated neuroblastoma: a Pediatric Oncology Group study. J Clin Oncol 2005 23(27):6466-73. Rec#: 6830 Reprint: exc nri

Germain, D. P., S. Waldek, M. Banikazemi, D. A. Bushinsky, J. Charrow, R. J. Desnick, P. Lee, T. Loew, A. C. Vedder, R. Abichandani, W. R. Wilcox, and N. Guffon. Sustained, long-term renal stabilization after 54 months of agalsidase beta therapy in patients with Fabry disease. J Am Soc Nephrol 2007 18(5):1547-57. Rec#: 57020

Reprint: exc nrc

Gesundheit, B., G. Cividalli, A. Freeman, S. Yatziv, G. Koren, and S. Baruchel. Cyclosporin A in the treatment of refractory immune thrombocytopenia purpura in children. Eur J Haematol 2001 66(5):347-51. Rec#: 78420 Reprint: exc nrc

Geyer, J. R., F. M. Balis, M. D. Krailo, R. Heideman, E. Broxson, J. K. Sato, D. Poplack, and W. A. Bleyer. A phase II study of thioTEPA in children with recurrent solid tumor malignancies: a Children's Cancer Group study. Invest New Drugs 1996 13(4):337-42.

Rec#: 44530 Reprint: exc few

Ghavamzadeh, A., K. Alimoghaddam, M. Jahani, S. A. Mousavi, M. Iravani, B. Bahar, A. Khodabandeh, F. Khatami, F. Gaffari, and A. Jalali. Stem cell transplantation; Iranian experience. Arch Iran Med 2009 12(1):69-72. Rec#: 790

Reprint: EXC NRO

Giannini, E. H., N. T. Ilowite, D. J. Lovell, C. A. Wallace, C. E. Rabinovich, A. Reiff, G. Higgins, B. Gottlieb, N. G. Singer, Y. Chon, S. L. Lin, and S. W. Baumgartner. Long-term safety and effectiveness of etanercept in children with selected categories of juvenile idiopathic arthritis. Arthritis Rheum 2009 60(9):2794-804. Rec#: 77100 Reprint: exc nrp

Giraldo, P., M. Pocovi, J. Perez-Calvo, D. Rubio-Felix, and M. Giralt. Report of the Spanish Gaucher's disease registry: clinical and genetic characteristics. Haematologica 2000 85(8):792-9. Rec#: 14960 Reprint: exc nrs

Gluckman, E. Bone marrow transplantation in children with hereditary disorders. Curr Opin Pediatr 1996 8(1):42-4. Rec#: 21060 Reprint: EXC REV Goiriz, R., P. F. Penas, Y. Delgado-Jimenez, J. Fernandez-Herrera, M. Aragues-Montanes, J. Fraga, and A. Garcia-Diez. Cutaneous lichenoid graft-versus-host disease mimicking lupus erythematosus. Lupus 2008 17(6):591-5. Rec#: 1910 Reprint: exc nrs

Goldberg, S. S., K. DeSantes, J. P. Huberty, D. Price, B. H. Hasegawa, C. P. Reynolds, R. C. Seeger, R. Hattner, and K. K. Matthay. Engraftment after myeloablative doses of 1311metaiodobenzylguanidine followed by autologous bone marrow transplantation for treatment of refractory neuroblastoma. Med Pediatr Oncol 1998 30(6):339-46. Rec#: 18210 Reprint: exc nri

Goldblatt, J., J. Szer, J. M. Fletcher, J. McGill, J. A. Rowell, and M. Wilson. Enzyme replacement therapy for Gaucher disease in Australia. Intern Med J 2005 35(3):156-61. Rec#: 57460 Reprint: exc nrp

Goldsby, R., M. Pulsipher, R. Adams, C. Coffin, K. Albritton, and L. Wagner. 2002. Rec#: 11360 Reprint: exc nrs

Gonzalez-Vicent, M., M. A. Diaz, F. Garcia-Sanchez, J. Molina, and L. Madero. Early onset of evans syndrome following autologous peripheral blood progenitor cell transplantation in a child. Haematologica 2002 87(5):ECR17. Rec#: 12180 Reprint: exc nri

Gordon, S. J., A. D. Pearson, M. M. Reid, and A. W. Craft. Toxicity of single-day high-dose vincristine, melphalan, etoposide and carboplatin consolidation with autologous bone marrow rescue in advanced neuroblastoma. Eur J Cancer 1992 28A(8-9):1319-23. Rec#: 25480 Reprint: EXC YEAR

Gorelik, M., R. Debski, and H. Frangoul. Autoimmune hemolytic anemia with giant cell hepatitis: case report and review of the literature. J Pediatr Hematol Oncol 2004 26(12):837-9. Rec#: 78000 Reprint: exc nri cr

Goto, H., A. Kousaka, S. Takano, and M. Usui. Recurrence of retinoblastoma 12 years after brachytherapy. Am J Ophthalmol 2002 134(5):773-5. Rec#: 48900 Reprint: exc nro

Goto, S., H. Goto, R. Tanoshima, H. Kato, H. Takahashi, O. Sekiguchi, and S. Kai. Serum sickness with an elevated level of human anti-chimeric antibody following treatment with rituximab in a child with chronic immune thrombocytopenic purpura. Int J Hematol 2009 89(3):305-9. Rec#: 77430 Reprint: exc nro Gottardo, N. G., D. L. Baker, and F. R. Willis. Successful induction and maintenance of long-term remission in a child with chronic relapsing autoimmune hemolytic anemia using rituximab. Pediatr Hematol Oncol 2003 20(7):557-61. Rec#: 78160 Reprint: exc nrc

Gottlieb, P. A., S. Quinlan, H. Krause-Steinrauf, C. J. Greenbaum, D. M. Wilson, H. Rodriguez, D. A. Schatz, A. M. Moran, J. M. Lachin, and J. S. Skyler. Failure to preserve beta-cell function with mycophenolate mofetil and daclizumab combined therapy in patients with new- onset type 1 diabetes. Diabetes Care 2010 33(4):826-32. Rec#: 40000 Reprint: exc nrp

Gottlober, P., U. Leiter, W. Friedrich, D. Bunjes, A. Schulz, M. Kerscher, and R. U. Peter. Chronic cutaneous sclerodermoid graftversus-host disease: evaluation by 20-MHz sonography. J Eur Acad Dermatol Venereol 2003 17(4):402-7. Rec#: 10290 Reprint: exc nrs

Grabenbauer, G. G., J. D. Beck, J. Erhardt, M. H. Seegenschmiedt, H. Seyer, P. Thierauf, and R. Sauer. Postoperative radiotherapy of medulloblastoma. Impact of radiation quality on treatment outcome. Am J Clin Oncol 1996 19(1):73-7. Rec#: 21090 Reprint: EXC NRI

Graham, M. L., J. E. 2nd Herndon, J. R. Casey, S. Chaffee, G. H. Ciocci, J. P. Krischer, J. Kurtzberg, M. J. Laughlin, D. C. Longee, J. F. Olson, N. Paleologus, C. N. Pennington, and H. S. Friedman. High-dose chemotherapy with autologous stem-cell rescue in patients with recurrent and high-risk pediatric brain tumors. J Clin Oncol 1997 15(5):1814-23. Rec#: 73220

Reprint: exc nro

Green, D. M., N. E. Breslow, J. B. Beckwith, J. Z. Finklestein, P. E. Grundy, P. R. Thomas, T. Kim, S. J. Shochat, G. M. Haase, M. L. Ritchey, P. P. Kelalis, and G. J. D'Angio. Comparison between single-dose and divided-dose administration of dactinomycin and doxorubicin for patients with Wilms' tumor: a report from the National Wilms' Tumor Study Group. J Clin Oncol 1998 16(1):237-45. Rec#: 46120 Reprint: EXC NRP

Green, D. M., C. A. Cotton, M. Malogolowkin, N. E. Breslow, E. Perlman, J. Miser, M. L. Ritchey, P. R. Thomas, P. E. Grundy, G. J. D'Angio, J. B. Beckwith, R. C. Shamberger, G. M. Haase, M. Donaldson, R. Weetman, M. J. Coppes, P. Shearer, P. Coccia, M. Kletzel, R. Macklis, G. Tomlinson, V. Huff, R. Newbury, and D. Weeks. Treatment of Wilms tumor relapsing after initial treatment with vincristine and actinomycin D: a report from the National Wilms Tumor Study Group. Pediatr Blood Cancer 2007 48(5):493-9.

Rec#: 45120

Reprint: exc nrp

Grier, H. E., M. D. Krailo, N. J. Tarbell, M. P. Link, C. J. Fryer, D. J. Pritchard, M. C. Gebhardt, P. S. Dickman, E. J. Perlman, P. A. Meyers, S. S. Donaldson, S. Moore, A. R. Rausen, T. J. Vietti, and J. S. Miser. Addition of ifosfamide and etoposide to standard chemotherapy for Ewing's sarcoma and primitive neuroectodermal tumor of bone. N Engl J Med 2003 348(8):694-701. Rec#: 43720 Reprint: exc nrp

Grill, J., C. Dufour, and C. Kalifa. 2006. Rec#: 4990 Reprint: exc nrs

Grill, J., C. Sainte-Rose, A. Jouvet, J. C. Gentet, O. Lejars, D. Frappaz, F. Doz, X. Rialland, F. Pichon, A. I. Bertozzi, P. Chastagner, D. Couanet, J. L. Habrand, M. A. Raquin, M. C. Le Deley, and C. Kalifa. Treatment of medulloblastoma with postoperative chemotherapy alone: an SFOP prospective trial in young children. Lancet Oncol 2005 6(8):573-80. Rec#: 52660 Reprint: EXC NRP

Grodman, H., L. Wolfe, and C. Kretschmar. Outcome of patients with recurrent medulloblastoma or central nervous system germinoma treated with low dose continuous intravenous etoposide along with dose-intensive chemotherapy followed by autologous hematopoietic stem cell rescue. Pediatr Blood Cancer 2009 53(1):33-6. Rec#: 350 Reprint: EXC NRI NRP

Gruhn, B., A. Meerbach, R. Egerer, H. J. Mentzel, R. Hafer, F. Ringelmann, M. Sauer, J. Hermann, and F. Zintl. Successful treatment of Epstein-Barr virus-induced transverse myelitis with ganciclovir and cytomegalovirus hyperimmune globulin following unrelated bone marrow transplantation. Bone Marrow Transplant 1999 24(12):1355-8. Rec#: 15790 Reprint: exc nrs

Grygotis, L. A., and F. S. Chew. Choroid plexus carcinoma of the lateral ventricle. AJR Am J Roentgenol 1997 169(5):1400. Rec#: 76630 Reprint: EXC NRI

Grzeskowiak-Melanowska, J., S. Skoczen, and J. Armata. What is the best method of prevention of therapeutic failures in CNS in high risk retinoblastoma? Med Pediatr Oncol 1997 28(1):79. Rec#: 49190 Reprint: exc nrd

Guglielmi, M., B. De Bernardi, A. Rizzo, S. Federici, C. Boglino, F. Siracusa, A. Leggio, F. Cozzi, G. Cecchetto, L. Musi, T. Bardini, A. M. Fagnani, G. C. Bartoli, A. Pampaloni, D. Rogers, M. Conte, C. Milanaccio, and P. Bruzzi. Resection of primary tumor at diagnosis in stage IV-S neuroblastoma: does it affect the clinical course? J Clin Oncol 1996 14(5):1537-44. Rec#: 20820 Reprint: EXC NRI

Guinan, E. C., L. A. Kalish, W. S. Berry, S. McDaniel, L. E. Lehmann, and L. R. Diller. A novel pattern of transaminase elevation associated with autologous transplant for neuroblastoma. Pediatr Transplant 2006 10(6):669-76. Rec#: 5160 Reprint: exc nri

Gullingsrud, E. O., W. Krivit, and C. G. Summers. Ocular abnormalities in the mucopolysaccharidoses after bone marrow transplantation. Longer follow-up. Ophthalmology 1998 105(6):1099-105. Rec#: 18080 Reprint: exc nrp

Gur-Lavi, M. Long-term remission with allogenic bone marrow transplantation in systemic lupus erythematosus. Arthritis Rheum 1999 42(8):1777. Rec#: 16510 Reprint: exc nrp

Gurney, J. G. Neuroblastoma, childhood cancer survivorship, and reducing the consequences of cure. Bone Marrow Transplant 2007 40(8):721-2. Rec#: 3100 Reprint: exc edt

Gururangan, S., C. McLaughlin, J. Quinn, J. Rich, D. Reardon, E. C. Halperin, J. 2nd Herndon, H. Fuchs, T. George, J. Provenzale, M. Watral, R. E. McLendon, A. Friedman, H. S. Friedman, J. Kurtzberg, J. Vredenbergh, and P. L. Martin. High-dose chemotherapy with autologous stem-cell rescue in children and adults with newly diagnosed pineoblastomas. J Clin Oncol 2003 21(11):2187-91. Rec#: 71520 Reprint: EXC NRD

Gutweiler, J. R., D. C. Yu, H. B. Kim, H. P. Kozakewich, K. J. Marcus, R. C. Shamberger, and C. B. Weldon. Hepatoblastoma presenting with focal nodular hyperplasia after treatment of neuroblastoma. J Pediatr Surg 2008 43(12):2297-300. Rec#: 950 Reprint: exc nro

Gwak, H. S., S. M. Youn, A. H. Kwon, S. H. Lee, J. H. Kim, and C. H. Rhee. ACNU-cisplatin continuous infusion chemotherapy as salvage therapy for recurrent glioblastomas: phase II study. J Neurooncol 2005 75(2):173-80. Rec#: 6750 Reprint: exc nri nrp

Haas-Kogan, D. A., P. S. Swift, M. Selch, G. M. Haase, R. C. Seeger, R. B. Gerbing, D. O. Stram, and K. K. Matthay. Impact of radiotherapy for high-risk neuroblastoma: a Children's Cancer Group study. Int J Radiat Oncol Biol Phys 2003 56(1):28-39. Rec#: 10630 Reprint: exc nri Hagglund, H., O. Ringden, M. Remberger, B. Lonnqvist, E. Sparrelid, L. Tammik, and G. Kumlien. Faster neutrophil and platelet engraftment, but no differences in acute GVHD or survival, using peripheral blood stem cells from related and unrelated donors, compared to bone marrow. Bone Marrow Transplant 1998 22(2):131-6. Rec#: 17820 Reprint: exc nrp

Hajioff, D., S. Goodwin, R. Quiney, J. Zuckerman, K. D. MacDermot, and A. Mehta. Hearing improvement in patients with Fabry disease treated with agalsidase alfa. Acta Paediatr Suppl 2003 92(443):28-30; discussion 27. Rec#: 57550 Reprint: exc nrc

Hajnzic, T. F., M. Marotti, and R. Vrsalovic. Long-term survival after recurrent retinoblastoma and second malignancy with massive lung metastasis. Eur J Pediatr 2004 163(11):685-6. Rec#: 48760 Reprint: exc nrs

Halevi, R., M. Davidovitz, S. Mann, M. Ben-Bassat, H. Stark, and B. Eisenstein. Gaucher's disease and mesangiocapillary glomerulonephritis in childhood--a coincidence? Pediatr Nephrol 1993 7(4):438-40. Rec#: 23920 Reprint: EXC NRI

Hamilton, J., and H. Capell. The treatment of juvenile arthritis. Expert Opin Pharmacother 2001 2(7):1085-92. Rec#: 13070 Reprint: exc nra

Han, J. W., S. Y. Kwon, S. C. Won, Y. J. Shin, J. H. Ko, and C. J. Lyu. Comprehensive clinical follow-up of late effects in childhood cancer survivors shows the need for early and well-timed intervention. Ann Oncol 2009 20(7):1170-7. Rec#: 440 Reprint: exc nro

Handgretinger, R., P. Lang, K. Ihm, M. Schumm, A. Geiselhart, E. Koscielniak, B. Hero, T. Klingebiel, and D. Niethammer. Isolation and transplantation of highly purified autologous peripheral CD34(+) progenitor cells: purging efficacy, hematopoietic reconstitution and long-term outcome in children with high-risk neuroblastoma. Bone Marrow Transplant 2002 29(9):731-6. Rec#: 12090 Reprint: exc nri

Handgretinger, R., W. Leung, K. Ihm, P. Lang, T. Klingebiel, and D. Niethammer. Tumour cell contamination of autologous stem cells grafts in high-risk neuroblastoma: the good news? Br J Cancer 2003 88(12):1874-7. Rec#: 10410 Reprint: exc nri

Hanke, C. A., J. Roessler, S. Stegmaier, E. Koscielniak, C. M. Niemeyer, and U. Kontny. Alveolar rhabdomyosarcoma

mimicking lymphoma with bone marrow involvement. Eur J Pediatr 2007 166(5):505-6. Rec#: 47140 Reprint: exc nrs

Harbour, J. W. What is the best treatment for retinoblastoma? Am J Ophthalmol 2004 138(3):471-3. Rec#: 48740 Reprint: exc rev

Hartmann, O., D. Valteau-Couanet, E. Benhamou, G. Vassal, H. Rubie, F. Beaujean, and J. Lemerle. Stage IV neuroblastoma in patients over 1 year of age at diagnosis: consolidation of poor responders with combined busulfan, cyclophosphamide and melphalan followed by in vitro mafosfamide-purged autologous bone marrow transplantation. Eur J Cancer 1997 33(12):2126-9. Rec#: 18480 Pomrint: avo pri

Reprint: exc nri

Hartmann, O., D. Valteau-Couanet, G. Vassal, V. Lapierre, L. Brugieres, R. Delgado, D. Couanet, J. Lumbroso, and E. Benhamou. Prognostic factors in metastatic neuroblastoma in patients over 1 year of age treated with high-dose chemotherapy and stem cell transplantation: a multivariate analysis in 218 patients treated in a single institution. Bone Marrow Transplant 1999 23(8):789-95. Rec#: 16890

Reprint: exc nri

Hartsell, W. F., A. Gajjar, R. L. Heideman, J. A. Langston, R. A. Sanford, A. Walter, D. Jones, G. Chen, and L. E. Kun. Patterns of failure in children with medulloblastoma: effects of preirradiation chemotherapy. Int J Radiat Oncol Biol Phys 1997 39(1):15-24. Rec#: 19040 Reprint: EXC NRI

Hashii, Y., T. Kusafuka, H. Ohta, A. Yoneda, Y. Osugi, Y. Kobayashi, M. Fukuzawa, and J. Hara. A case series of children with high-risk metastatic neuroblastoma treated with a novel treatment strategy consisting of postponed primary surgery until the end of systemic chemotherapy including high-dose chemotherapy. Pediatr Hematol Oncol 2008 25(5):439-50. Rec#: 1800 Reprint: exc nri

Reprint. exe ini

Hathirat, P., S. Numhom, A. Chuansumrit, T. Chantarojanasiri, S. Sirinavin, and P. Isarangkura. Hepatopathy-thrombocytopenia vs infection-induced hemophagocytic syndrome in Wilms' tumor: a case report. J Med Assoc Thai 1993 76 Suppl 2:240-3. Rec#: 23850 Reprint: EXC YEAR

Hawkins, D. S., S. Bradfield, J. A. Whitlock, M. Krailo, J. Franklin, S. M. Blaney, P. C. Adamson, and G. Reaman. Topotecan by 21-day continuous infusion in children with relapsed or refractory solid tumors: a Children's Oncology Group study. Pediatr Blood Cancer 2006 47(6):790-4. Rec#: 43310 Reprint: exc nro Hawkins, D. S., J. Felgenhauer, J. Park, S. Kreissman, B. Thomson, J. Douglas, S. D. Rowley, T. Gooley, J. E. Sanders, and T. W. Pendergrass. Peripheral blood stem cell support reduces the toxicity of intensive chemotherapy for children and adolescents with metastatic sarcomas. Cancer 2002 95(6):1354-65. Rec#: 11660 Reprint: EXC NRI

Hayani, A., D. H. Jr Mahoney, C. P. Steuber, and A. Saleem. Recombinant interferon alfa-2b therapy in children with immune thrombocytopenic purpura. 1993. Rec#: 24020 Reprint: exc year

Hayani, A., D. H. Jr Mahoney, and L. D. Taylor. Therapy-related myelodysplastic syndrome in children with medulloblastoma following MOPP chemotherapy. J Neurooncol 1992 14(1):57-62. Rec#: 24880 Reprint: EXC YEAR

Hayashi, M., O. Matsuda, Y. Ishida, and K. Kida. Change of immunological parameters in the clinical course of a myasthenia gravis patient with chronic graft-versus-host disease. Acta Paediatr Jpn 1996 38(2):151-5. Rec#: 20900 Reprint: exc nrs

Hayes-Jordan, A., E. Benaim, S. Richardson, J. Joglar, D. K. Srivastava, L. Bowman, and S. J. Shochat. Open lung biopsy in pediatric bone marrow transplant patients. J Pediatr Surg 2002 37(3):446-52. Rec#: 12520 Reprint: exc nrd nro

Haysom, L., D. S. Ziegler, R. J. Cohn, A. R. Rosenberg, S. L. Carroll, and G. Kainer. Retinoic acid may increase the risk of bone marrow transplant nephropathy. Pediatr Nephrol 2005 20(4):534-8. Rec#: 7660 Reprint: exc nri

Heath, J. A., E. H. Jr Broxson, M. G. Dole, D. A. Filippa, D. George, D. Lyden, and I. J. Dunkel. Epstein-Barr virus-associated lymphoma in a child undergoing an autologous stem cell rescue. J Pediatr Hematol Oncol 2002 24(2):160-3. Rec#: 12220 Reprint: exc nrd

Heath, J. A., K. Moore, M. Spriggs, and K. D. Waters. When two worlds collide. J Clin Oncol 2007 25(25):4015-7; discussion 4018-9. Rec#: 3310

Reprint: EXC EDT

Heegaard, E. D., S. Rosthoj, B. L. Petersen, S. Nielsen, F. Karup Pedersen, and A. Hornsleth. Role of parvovirus B19 infection in childhood idiopathic thrombocytopenic purpura. Acta Paediatr 1999 88(6):614-7. Rec#: 16580 Reprint: exc nro Heesters, M., W. Molenaar, and G. K. Go. Radiotherapy in supratentorial gliomas. A study of 821 cases. Strahlenther Onkol 2003 179(9):606-14. Rec#: 55440 Reprint: exc nrp

Heitger, A., H. Kern, D. Mayerl, K. Maurer, D. Nachbaur, M. Fruhwirth, F. M. Fink, and D. Niederwieser. Effective T cell regeneration following high-dose chemotherapy rescued with CD34+ cell enriched peripheral blood progenitor cells in children. Bone Marrow Transplant 1999 23(4):347-53. Rec#: 16990 Reprint: EXC NRO

Henrickson, M., and A. Reiff. Prolonged efficacy of etanercept in refractory enthesitis-related arthritis. J Rheumatol 2004 31(10):2055-61. Rec#: 41730 Reprint: exc nrd

Hero, B., B. Kremens, T. Klingebiel, C. Bender-Gotze, S. Burdach,
M. Schrappe, and F. Berthold. Does megatherapy contribute to survival in metastatic neuroblastoma? A retrospective analysis.
German Cooperative Neuroblastoma Study Group. Klin Padiatr 1997 209(4):196-200.
Rec#: 19170
Reprint: exc nri

Herold, K. C., S. Gitelman, C. Greenbaum, J. Puck, W. Hagopian, P. Gottlieb, P. Sayre, P. Bianchine, E. Wong, V. Seyfert-Margolis, K. Bourcier, and J. A. Bluestone. Treatment of patients with new onset Type 1 diabetes with a single course of anti-CD3 mAb Teplizumab preserves insulin production for up to 5 years. Clin Immunol 2009 132(2):166-73. Rec#: 40020 Reprint: exc nri

Herold, K. C., S. E. Gitelman, U. Masharani, W. Hagopian, B. Bisikirska, D. Donaldson, K. Rother, B. Diamond, D. M. Harlan, and J. A. Bluestone. A single course of anti-CD3 monoclonal antibody hOKT3gamma1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes 2005 54(6):1763-9. Rec#: 40310 Reprint: exc nrc

Keprint. exe nic

Herold, K. C., W. Hagopian, J. A. Auger, E. Poumian-Ruiz, L. Taylor, D. Donaldson, S. E. Gitelman, D. M. Harlan, D. Xu, R. A. Zivin, and J. A. Bluestone. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med 2002 346(22):1692-8. Rec#: 40470 Reprint: exc nrc

Herr, A. L., A. Hatami, V. Kokta, J. H. Dalle, M. A. Champagne, and M. Duval. Successful anti-CD20 antibody treatment of pemphigus foliaceus after unrelated cord blood transplantation. 2005.Rec#: 7820Reprint: exc nrd

Higman, M. A., J. D. Port, N. J. Jr Beauchamp, and A. R. Chen. Reversible leukoencephalopathy associated with re-infusion of DMSO preserved stem cells. Bone Marrow Transplant 2000 26(7):797-800. Rec#: 14680 Reprint: EXC NRO

Higuchi, L. M., S. Joffe, E. J. Neufeld, S. Weisdorf, J. Rosh, S. Murch, A. Devenyi, J. F. Thompson, J. D. Lewis, and A. Bousvaros. Inflammatory bowel disease associated with immune thrombocytopenic purpura in children. J Pediatr Gastroenterol Nutr 2001 33(5):582-7. Rec#: 12820 Reprint: exc nro

Hilden, J., S. Meerbaum, P. Burger, and J. Finlay. Central Nervous System Atypical Tetroid/Rhabdoid Tumor: results of therapy in children enrolled in a registry. J Clin Oncol 2004 22:2877-2884. Rec#: Reprint: exc nri

Hilden, J. M., J. Watterson, D. C. Longee, C. L. Moertel, M. E. Dunn, J. Kurtzberg, and B. W. Scheithauer. Central nervous system atypical teratoid tumor/rhabdoid tumor: response to intensive therapy and review of the literature. J Neurooncol 1998 40(3):265-75. Rec#: 17140 Reprint: EXC NR

Hilgendorf, I., D. Wolff, S. Wilhelm, B. Steiner, V. Kiefel, H. Hickstein, C. Junghanss, M. Freund, and J. Casper. T-cell-depleted stem cell boost for the treatment of autoimmune haemolytic anaemia after T-cell-depleted allogeneic bone marrow transplantation complicated by adenovirus infection. 2006. Rec#: 5830 Reprint: exc nrs

Hill, G., S. Castellino, and D. Williams. Cardiac myxoma after treatment for childhood neuroblastoma. Pediatr Cardiol 2009 30(3):340-2. Rec#: 1470 Reprint: exc nri

Hinterberger, W., M. Hinterberger-Fischer, and A. Marmont. Clinically demonstrable anti-autoimmunity mediated by allogeneic immune cells favorably affects outcome after stem cell transplantation in human autoimmune diseases. Bone Marrow Transplant 2002 30(11):753-9. Rec#: 11350 Reprint: exc nrs

Hirayama, M., E. Azuma, M. Araki, Y. Komada, and A. Nakagawa. Evidence of graft-versus-tumor effect in refractory metastatic neuroblastoma. 2006. Rec#: 5260 Reprint: exc nro

Hoffmann, B., M. Schwarz, A. Mehta, and S. Keshav. Gastrointestinal symptoms in 342 patients with Fabry disease: prevalence and response to enzyme replacement therapy. Clin Gastroenterol Hepatol 2007 5(12):1447-53. Rec#: 56910 Reprint: exc nrc

Hoffmeister, P. A., D. K. Madtes, B. E. Storer, and J. E. Sanders. Pulmonary function in long-term survivors of pediatric hematopoietic cell transplantation. Pediatr Blood Cancer 2006 47(5):594-606. Rec#: 6890 Reprint: exc nro

Hoffmeister, P. A., B. E. Storer, and J. E. Sanders. Diabetes mellitus in long-term survivors of pediatric hematopoietic cell transplantation. J Pediatr Hematol Oncol 2004 26(2):81-90. Rec#: 9300 Reprint: exc nrd nri

Holcomb, G. W. 3rd, and H. L. Greene. Fatal hemorrhage caused by disease progression after partial splenectomy for type III Gaucher's disease. J Pediatr Surg 1993 28(12):1572-4. Rec#: 23580 Reprint: EXC NRI

Holland, F. J., J. K. McConnon, R. Volpe, and E. F. Saunders. Concordant Graves' disease after bone marrow transplantation: implications for pathogenesis. J Clin Endocrinol Metab 1991 72(4):837-40. Rec#: 26250 Reprint: EXC YEAR

Holmberg, L. A., M. Boeckh, H. Hooper, W. Leisenring, S.
Rowley, S. Heimfeld, O. Press, D. G. Maloney, P. McSweeney, L.
Corey, R. T. Maziarz, F. R. Appelbaum, and W. Bensinger.
Increased incidence of cytomegalovirus disease after autologous
CD34-selected peripheral blood stem cell transplantation. Blood
1999 94(12):4029-35.
Rec#: 15860
Reprint: EXC MIX

Holtta, P., S. Alaluusua, U. M. Saarinen-Pihkala, J. Wolf, M. Nystrom, and L. Hovi. Long-term adverse effects on dentition in children with poor-risk neuroblastoma treated with high-dose chemotherapy and autologous stem cell transplantation with or without total body irradiation. Bone Marrow Transplant 2002 29(2):121-7. Rec#: 12600 Reprint: exc nri

Hon, C., G. C. Chan, S. Y. Ha, S. K. Ma, K. F. Wong, and W. Y. Au. Bone marrow transplantation for therapy-related acute myeloid leukemia in congenital retinoblastoma associated with 13q deletion syndrome. Ann Hematol 2004 83(7):481-3. Rec#: 8770 Reprint: exc nro

Horibe, K., M. Fukuda, Y. Miyajima, K. Matsumoto, M. Kondo, J. Inaba, and Y. Miyashita. Outcome prediction by molecular detection of minimal residual disease in bone marrow for advanced neuroblastoma. Med Pediatr Oncol 2001 36(1):203-4. Rec#: 13400 Reprint: exc nri Horn, B., U. Reiss, K. Matthay, A. McMillan, and M. Cowan. Veno-occlusive disease of the liver in children with solid tumors undergoing autologous hematopoietic progenitor cell transplantation: a high incidence in patients with neuroblastoma. Bone Marrow Transplant 2002 29(5):409-15. Rec#: 12420 Reprint: exc nri

Horneff, G., F. De Bock, I. Foeldvari, H. J. Girschick, H. Michels, D. Moebius, and H. Schmeling. Safety and efficacy of combination of etanercept and methotrexate compared to treatment with etanercept only in patients with juvenile idiopathic arthritis (JIA): preliminary data from the German JIA Registry. Ann Rheum Dis 2009 68(4):519-25. Rec#: 77190 Reprint: exc nri

Horowitz, M. E., T. J. Kinsella, L. H. Wexler, J. Belasco, T. Triche, M. Tsokos, S. M. Steinberg, L. McClure, D. L. Longo, R. G. Steis, and a. l. .. et. Total-body irradiation and autologous bone marrow transplant in the treatment of high-risk Ewing's sarcoma and rhabdomyosarcoma. J Clin Oncol 1993 11(10):1911-8. Rec#: 23760 Reprint: EXC YEAR

Houssiau, F. A., C. Vasconcelos, D. D'Cruz, G. D. Sebastiani, R. Garrido Ed Ede, M. G. Danieli, D. Abramovicz, D. Blockmans, A. Mathieu, H. Direskeneli, M. Galeazzi, A. Gul, Y. Levy, P. Petera, R. Popovic, R. Petrovic, R. A. Sinico, R. Cattaneo, J. Font, G. Depresseux, J. P. Cosyns, and R. Cervera. Immunosuppressive therapy in lupus nephritis: the Euro-Lupus Nephritis Trial, a randomized trial of low-dose versus high-dose intravenous cyclophosphamide. Arthritis Rheum 2002 46(8):2121-31. Rec#: 42000 Reprint: exc nrp

Hovi, L., U. M. Saarinen-Pihkala, K. Vettenranta, M. Lipsanen, and P. Tapanainen. Growth in children with poor-risk neuroblastoma after regimens with or without total body irradiation in preparation for autologous bone marrow transplantation. Bone Marrow Transplant 1999 24(10):1131-6. Rec#: 15940 Reprint: exc nri

Hoyles, R. K., R. W. Ellis, J. Wellsbury, B. Lees, P. Newlands, N.
S. Goh, C. Roberts, S. Desai, A. L. Herrick, N. J. McHugh, N. M.
Foley, S. B. Pearson, P. Emery, D. J. Veale, C. P. Denton, A. U.
Wells, C. M. Black, and R. M. du Bois. A multicenter, prospective, randomized, double-blind, placebo-controlled trial of corticosteroids and intravenous cyclophosphamide followed by oral azathioprine for the treatment of pulmonary fibrosis in scleroderma. Arthritis Rheum 2006 54(12):3962-70.
Rec#: 4610
Reprint: exc nrp

Hsu, T. R., T. T. Wong, F. C. Chang, D. M. Ho, R. B. Tang, P. F. Thien, and K. P. Chang. Responsiveness of progressive optic pathway tumors to cisplatin-based chemotherapy in children. Childs Nerv Syst 2008 24(12):1457-61.

Rec#: 1400 Reprint: exc nro

Huang, J. L., I. J. Hung, L. C. Chen, W. Y. Lee, C. Hsueh, and K. H. Hsieh. Successfully treated sulphasalazine-induced fulminant hepatic failure, thrombocytopenia and erythroid hypoplasia with intravenous immunoglobulin. Clin Rheumatol 1998 17(4):349-52. Rec#: 17580

Reprint: exc nro

Hung, J. J., and J. L. Huang. Etanercept therapy in children with juvenile rheumatoid arthritis. J Microbiol Immunol Infect 2005 38(6):444-6. Rec#: 41590 Reprint: exc nro

Hung, P. L., Y. C. Chang, L. T. Huang, C. C. Lui, J. W. Lin, and S. C. Huang. A 2-year-old girl with failure to thrive, progressive hepatosplenomegaly and progressive encephalopathy. Acta Paediatr Taiwan 2003 44(1):1-3. Rec#: 10390 Reprint: exc nrs

Hunold, A., N. Weddeling, M. Paulussen, A. Ranft, C. Liebscher, and H. Jurgens. Topotecan and cyclophosphamide in patients with refractory or relapsed Ewing tumors. Pediatr Blood Cancer 2006 47(6):795-800. Rec#: 43320 Reprint: exc nrp

Hyams, J. S., D. C. Wilson, A. Thomas, R. Heuschkel, S. Mitton, B. Mitchell, R. Daniels, M. A. Libonati, S. Zanker, and S. Kugathasan. Natalizumab therapy for moderate to severe Crohn disease in adolescents. J Pediatr Gastroenterol Nutr 2007 44(2):185-91. Rec#: 41380 Reprint: exc nrc

Ikeda, H., C. S. August, J. W. Goldwein, A. J. 3rd Ross, G. J. D'Angio, and A. E. Evans. Sites of relapse in patients with neuroblastoma following bone marrow transplantation in relation to preparatory 'debulking' treatments. J Pediatr Surg 1992 27(11):1438-41. Rec#: 24710 Reprint: EXC YEAR

Ilaslan, H., M. Sundaram, K. K. Unni, and M. B. Dekutoski. Primary Ewing's sarcoma of the vertebral column. Skeletal Radiol 2004 33(9):506-13. Rec#: 8660 Reprint: EXC MIX

Ilowite, N. T. Update on biologics in juvenile idiopathic arthritis. Curr Opin Rheumatol 2008 20(5):613-8. Rec#: 77150 Reprint: exc nra

Imaizumi, M., A. Watanabe, A. Kikuta, T. Takano, E. Ito, T. Shimizu, S. Tsuchiya, K. Iinuma, T. Konno, R. Ohi, and Y. Hayashi. Improved survival of children with advanced

neuroblastoma treated by intensified therapy including myeloablative chemotherapy with stem cell transplantation: a retrospective analysis from the Tohoku Neuroblastoma Study Group. Tohoku J Exp Med 2001 195(2):73-83. Rec#: 12640 Reprint: exc nri

Imashuku, S., S. Hibi, K. Kosaka, Y. Tabata, M. Naya, M. Hohjo, and S. Todo. Secondary lymphoid malignancy in two children with neuroblastoma. Med Pediatr Oncol 1996 27(1):54-6. Rec#: 20610 Reprint: exc nri

Inaba, H., G. Hale, W. Leung, P. Woodard, K. Burnette, R. Handgretinger, and R. Barfield. Diagnostic challenge in recurrent skin rash after autologous bone marrow transplantation. J Pediatr Hematol Oncol 2006 28(8):525-8. Rec#: 5150 Reprint: EXC NRO

Inamo, Y., T. Suzuki, and H. Mugishima. A case of growth failure caused by 13-CIS-retinoic acid administration after bone marrow transplantation for neuroblasoma. Endocr J 1999 46 Suppl:S113-5. Rec#: 12040 Reprint: exc nri

Indelicato, D. J., S. R. Keole, A. H. Shahlaee, W. Shi, C. G. Morris, C. P. Jr Gibbs, M. T. Scarborough, and R. B. Jr Marcus. Impact of local management on long-term outcomes in Ewing tumors of the pelvis and sacral bones: the University of Florida experience. Int J Radiat Oncol Biol Phys 2008 72(1):41-8. Rec#: 2510 Reprint: exc nrp

Inoue, M., T. Nakano, A. Yoneda, M. Nishikawa, M. Nakayama, K. Yumura-Yagi, N. Sakata, M. Yasui, T. Okamura, and K. Kawa. Graft-versus-tumor effect in a patient with advanced neuroblastoma who received HLA haplo-identical bone marrow transplantation. Bone Marrow Transplant 2003 32(1):103-6. Rec#: 10370 Reprint: exc nri

Ishii, E., A. Matsuzaki, Y. Ohnishi, T. Kai, and K. Ueda. Successful treatment with ranimustine and carboplatin for recurrent intraocular retinoblastoma with vitreous seeding. Am J Clin Oncol 1996 19(6):562-5. Rec#: 20060 Reprint: exc nrd

Isoyama, K., K. Ohnuma, K. Ikuta, Y. Toyoda, F. Nakajima, K. Yamada, and H. Nishihira. Unrelated cord blood transplantation for second hemopoietic stem cell transplantation. Pediatr Int 2003 45(3):268-74. Rec#: 10330 Reprint: exc nro

Ito, K., T. Ochiai, H. Suzuki, M. Chin, H. Shichino, and H. Mugishima. The effect of haematopoietic stem cell transplant on papules with 'pebbly' appearance in Hunter's syndrome. Br J Dermatol 2004 151(1):207-11.

Rec#: 8550 Reprint: exc nro

Iwafuchi, M., J. Utsumi, Y. Tsuchida, M. Kaneko, S. Matsuyama, N. Ohnuma, N. Taguchi, H. Mugishima, J. Yokoyama, S. Sasaki, A. Yoshioka, N. Nagahara, M. Fukuzawa, and S. Suita. Evaluation of patients with advanced neuroblastoma surviving more than 5 years after initiation of an intensive Japanese protocol: a report from the Study Group of Japan for Treatment of Advanced Neuroblastoma. Med Pediatr Oncol 1996 27(6):515-20. Rec#: 20080 Reprint: EXC NRI

Iwata, F., E. M. Kuehl, G. F. Reed, L. M. McCain, W. A. Gahl, and M. I. Kaiser-Kupfer. A randomized clinical trial of topical cysteamine disulfide (cystamine) versus free thiol (cysteamine) in the treatment of corneal cystine crystals in cystinosis. Mol Genet Metab 1998 64(4):237-42. Rec#: 58070 Reprint: exc nrc

Jacobson, P., J. J. Park, T. E. DeFor, M. Thrall, S. Abel, W. Krivit, and C. Peters. Oral busulfan pharmacokinetics and engraftment in children with Hurler syndrome and other inherited metabolic storage diseases undergoing hematopoietic cell transplantation. Bone Marrow Transplant 2001 27(8):855-61. Rec#: 13310 Reprint: exc nrp

Jakacki, R. I., C. Jamison, S. A. Heifetz, K. Caldemeyer, M. Hanna, and L. Sender. Feasibility of sequential high-dose chemotherapy and peripheral blood stem cell support for pediatric central nervous system malignancies. Med Pediatr Oncol 1997 29(6):553-9. Rec#: 18940 Reprint: EXC NRI

Jakisch, B. I., V. M. Wagner, B. Heidtmann, R. Lepler, P. M. Holterhus, T. M. Kapellen, C. Vogel, J. Rosenbauer, and R. W. Holl. Comparison of continuous subcutaneous insulin infusion (CSII) and multiple daily injections (MDI) in paediatric Type 1 diabetes: a multicentre matched-pair cohort analysis over 3 years. Diabet Med 2008 25(1):80-5. Rec#: 61850

Reprint: exc nro

Jaspers, G. J., H. J. Verkade, J. C. Escher, L. de Ridder, J. A. Taminiau, and E. H. Rings. Azathioprine maintains first remission in newly diagnosed pediatric Crohn's disease. Inflamm Bowel Dis 2006 12(9):831-6. Rec#: 41460 Reprint: exc nrp

Jayne, D., J. Passweg, A. Marmont, D. Farge, X. Zhao, R. Arnold, F. Hiepe, I. Lisukov, M. Musso, J. Ou-Yang, J. Marsh, N. Wulffraat, J. Besalduch, S. J. Bingham, P. Emery, M. Brune, A. Fassas, L. Faulkner, A. Ferster, C. Fiehn, L. Fouillard, A. Geromin, H. Greinix, M. Rabusin, R. Saccardi, P. Schneider, F. Zintl, A. Gratwohl, and A. Tyndall. Autologous stem cell transplantation for systemic lupus erythematosus. Lupus 2004 13(3):168-76. Rec#: 8970 Reprint: exc nrp

Jenkin, R. D., I. Al-Fawaz, M. O. Al-Shabanah, A. Allam, M. Ayas, M. Memon, S. Rifai, and H. P. Schultz. Metastatic Ewing sarcoma/PNET of bone at diagnosis: prognostic factors--a report from Saudi Arabia. Med Pediatr Oncol 2001 37(4):383-9. Rec#: 43840 Reprint: exc nrp

Jennings, M. T., A. Cmelak, M. D. Johnson, P. L. Moots, R. Pais, and Y. Shyr. Differential responsiveness among high risk pediatric brain tumors in a pilot study of dose-intensive induction chemotherapy. Pediatr Blood Cancer 2004 43(1):46-54. Rec#: 74070 Reprint: exc nrs

Jennings, M. T., and S. Iyengar. Pharmacotherapy of malignant astrocytomas of children and adults: current strategies and future trends. CNS Drugs 2001 15(9):719-43. Rec#: 13080 Reprint: exc rec

Jeon, H. J., D. S. Kong, K. B. Park, J. I. Lee, K. Park, J. H. Kim, S. T. Kim, H. Lim do, W. S. Kim, and D. H. Nam. Clinical outcome of concomitant chemoradiotherapy followed by adjuvant temozolomide therapy for glioblastaomas: single-center experience. Clin Neurol Neurosurg 2009 111(8):679-82. Rec#: 54340 Reprint: exc nrp

Jiang, Y., H. Mishima, S. Sakai, Y. K. Liu, Y. Ohyabu, and T. Uemura. Gene expression analysis of major lineage-defining factors in human bone marrow cells: effect of aging, gender, and age-related disorders. J Orthop Res 2008 26(7):910-7. Rec#: 2360 Reprint: exc nro

Johnston, D. L., D. Keene, U. Bartels, A. S. Carret, B. Crooks, D. D. Eisenstat, C. Fryer, L. Lafay-Cousin, V. Larouche, A. Moghrabi, B. Wilson, S. Zelcer, M. Silva, J. Brossard, and E. Bouffet. Medulloblastoma in children under the age of three years: a retrospective Canadian review. J Neurooncol 2009 94(1):51-6. Rec#: 620 Reprint: EXC NRI

Johnston, D. L., D. L. Keene, L. Lafay-Cousin, P. Steinbok, L. Sung, A. S. Carret, B. Crooks, D. Strother, B. Wilson, I. Odame, D. D. Eisenstat, C. Mpofu, S. Zelcer, A. Huang, and E. Bouffet. Supratentorial primitive neuroectodermal tumors: a Canadian pediatric brain tumor consortium report. J Neurooncol 2008 86(1):101-8. Rec#: 52270 Reprint: EXC NRI

Jones, O. Y., and R. A. Cahill. Nonmyeloablative allogeneic bone marrow transplantation of a child with systemic autoimmune disease and lung vasculitis. Immunol Res 2008 41(1):26-33.

Rec#: 2230 Reprint: exc same pt as in rec 9110

Kadota, R. P., D. H. Mahoney, J. Doyle, R. Duerst, H. Friedman, E. Holmes, L. Kun, T. Zhou, and I. F. Pollack. Dose intensive melphalan and cyclophosphamide with autologous hematopoietic stem cells for recurrent medulloblastoma or germinoma. Pediatr Blood Cancer 2008 51(5):675-8. Rec#: 1700

Reprint: EXC NRI NRP

Kadota, R. P., C. F. Stewart, M. Horn, J. F. Jr Kuttesch, P. C. Burger, J. L. Kepner, L. E. Kun, H. S. Friedman, and R. L. Heideman. Topotecan for the treatment of recurrent or progressive central nervous system tumors - a pediatric oncology group phase II study. J Neurooncol 1999 43(1):43-7. Rec#: 53690 Reprint: exc nro

Kageji, T., S. Nagahiro, H. Horiguchi, T. Watanabe, H. Suzuya, Y. Okamoto, and Y. Kuroda. Successful high-dose chemotherapy for widespread neuroaxis dissemination of an optico-hypothalamic juvenile pilocytic astrocytoma in an infant: a case report. J Neurooncol 2003 62(3):281-7. Rec#: 10490 Reprint: exc nrd

Kahwash, S. B., B. Fung, S. Savelli, J. J. Bleesing, and S. J. Qualman. Autoimmune lymphoproliferative syndrome (ALPS): a case with congenital onset. Pediatr Dev Pathol 2007 10(4):315-9. Rec#: 3460

Reprint: exc nrs

Kai, T., E. Ishii, A. Matsuzaki, S. Inaba, S. Suita, and K. Ueda. High-dose chemotherapy and autologous blood stem cell transplantation in children with metastatic neuroblastoma. Acta Paediatr Jpn 1997 39(1):54-60. Rec#: 19720 Reprint: exc nri

Kajiwara, R., H. Goto, T. Yokosuka, M. Yanagimachi, F. Kuroki, and S. Yokota. Hepatic veno-occlusive disease followed by esophageal varix rupture after hematopoietic stem cell transplantation in a 4-year-old boy with stage 4 neuroblastoma. J Pediatr Hematol Oncol 2008 30(1):63-5. Rec#: 2690 Reprint: exc nri

Kalkan Ucar, S., B. Ozbaran, N. Demiral, Z. Yuncu, S. Erermis, and M. Coker. Clinical overview of children with mucopolysaccharidosis type III A and effect of Risperidone treatment on children and their mothers psychological status. Brain Dev 2010 32(2):156-61. Rec#: 56700 Reprint: exc nro

Kalwak, K., E. Gorczynska, D. Wojcik, J. Toporski, D. Turkiewicz, M. Slociak, E. Latos-Grazynska, J. Boguslawska-Jaworska, and A. Chybicka. Late-onset idiopathic thrombocytopenic purpura correlates with rapid B-cell recovery

after allogeneic T-cell-depleted peripheral blood progenitor cell transplantation in children. Transplant Proc 2002 34(8):3374-7. Rec#: 11190 Reprint: exc nrd

Kamali, S., A. Cefle, M. Sayarlioglu, A. Gul, M. Inanc, L. Ocal, O. Aral, and M. Konice. Experience with monthly, high-dose, intravenous immunoglobulin therapy in patients with different connective tissue diseases. Rheumatol Int 2005 25(3):211-4. Rec#: 41840 Reprint: exc nrd

Kamani, N., C. S. August, N. Bunin, A. Leahey, E. Bayever, J. Goldwein, J. Zusman, A. E. Evans, and G. D. Angio. A study of thiotepa, etoposide and fractionated total body irradiation as a preparative regimen prior to bone marrow transplantation for poor prognosis patients with neuroblastoma. Bone Marrow Transplant 1996 17(6):911-6. Rec#: 20660 Reprint: EXC NRI

Kamani, N., A. Kattamis, A. Carroll, D. Campbell, and N. Bunin. Immune reconstitution after autologous purged bone marrow transplantation in children. J Pediatr Hematol Oncol 2000 22(1):13-9. Rec#: 15610 Reprint: exc nri

Kaminski, J. M., C. C. Yang, F. Yagmai, B. Movsas, M. Lee, and J. T. Barrett. Intracranial fibrosarcoma arising 5 years after chemotherapy alone for glioblastoma multiforme in a child. Pediatr Neurosurg 2000 33(5):257-260. Rec#: 14260 Reprint: exc nri

Kaneko, M., H. Ohakawa, and M. Iwakawa. Is extensive surgery required for treatment of advanced neuroblastoma? J Pediatr Surg 1997 32(11):1616-9. Rec#: 18850 Reprint: exc nri

Kaneko, M., Y. Tsuchida, H. Mugishima, N. Ohnuma, K. Yamamoto, K. Kawa, M. Iwafuchi, T. Sawada, and S. Suita. Intensified chemotherapy increases the survival rates in patients with stage 4 neuroblastoma with MYCN amplification. J Pediatr Hematol Oncol 2002 24(8):613-21. Rec#: 11380 Reprint: exc nri

Kaneko, M., Y. Tsuchida, J. Uchino, T. Takeda, M. Iwafuchi, N. Ohnuma, H. Mugishima, J. Yokoyama, H. Nishihira, K. Nakada, S. Sasaki, T. Sawada, K. Kawa, N. Nagahara, S. Suita, and S. Sawaguchi. Treatment results of advanced neuroblastoma with the first Japanese study group protocol. Study Group of Japan for Treatment of Advanced Neuroblastoma. J Pediatr Hematol Oncol 1999 21(3):190-7. Rec#: 16710 Reprint: exc nri

Kanold, J., C. Paillard, A. Tchirkov, E. Merlin, A. Marabelle, P. Lutz, R. Rousseau, H. Baldomero, and F. Demeocq. Allogeneic or haploidentical HSCT for refractory or relapsed solid tumors in children: toward a neuroblastoma model. Bone Marrow Transplant 2008 42 Suppl 2:S25-30. Rec#: 1010 Reprint: EXC NPD

Kanold, J., K. Yakouben, A. Tchirkov, A. S. Carret, J. P. Vannier, E. LeGall, P. Bordigoni, and F. Demeocq. Long-term results of CD34(+) cell transplantation in children with neuroblastoma. Med Pediatr Oncol 2000 35(1):1-7. Rec#: 15200 Reprint: exc nri

Kao, L. Y., W. W. Su, and Y. W. Lin. Retinoblastoma in Taiwan: survival and clinical characteristics 1978-2000. Jpn J Ophthalmol 2002 46(5):577-80. Rec#: 11290 Reprint: exc nrt

Kao, P. C., S. C. Huang, E. T. Wu, C. C. Wang, and S. T. Jou. Cardiac perforation -- a rare complication of femoral venous catheterization. 2008. Rec#: 2300 Reprint:

Kapelushnik, J., M. Aker, T. Pugatsch, S. Samuel, and S. Slavin. Bone marrow transplantation from a cadaveric donor. Bone Marrow Transplant 1998 21(8):857-8. Rec#: 18150 Reprint: exc nro

Kapelushnik, J., A. Nagler, R. Or, E. Naparstek, G. Cividalli, M. Aker, J. Mehta, M. Mumcuoglu, and S. Slavin. Autologous bone marrow transplantation for stage IV neuroblastoma: the role of soybean agglutinin purging. Transplant Proc 1993 25(3):2375-6. Rec#: 24060 Reprint: EXC YEAR

Kara, I. O., G. Gonlusen, B. Sahin, M. Ergin, and S. Erdogan. A general aspect on soft-tissue sarcoma and c-kit expression in primitive neuroectodermal tumor and Ewing's sarcoma. Is there any role in disease process? Saudi Med J 2005 26(8):1190-6. Rec#: 6780 Reprint: exc nri

Kasow, K. A., L. Sims-Poston, P. Eldridge, and G. A. Hale. CD34(+) hematopoietic progenitor cell selection of bone marrow grafts for autologous transplantation in pediatric patients. Biol Blood Marrow Transplant 2007 13(5):608-14. Rec#: 4020 Reprint: EXC NRO

Kasper, B., T. Lehnert, L. Bernd, G. Mechtersheimer, H. Goldschmidt, A. D. Ho, and G. Egerer. High-dose chemotherapy with autologous peripheral blood stem cell transplantation for bone and soft-tissue sarcomas. Bone Marrow Transplant 2004 34(1):37-41.

Rec#: 8780

Reprint: EXC DUP

Kato, S., H. Nishihira, M. Sako, K. Kato, E. Azuma, Y. Kawano, K. Kawa, A. Kinoshita, K. Sugita, Y. Sugi, Y. Okimoto, and T. Inamitsu. Cord blood transplantation from sibling donors in Japan. Report of the national survey. Int J Hematol 1998 67(4):389-96. Rec#: 17900 Reprint: exc nr

Kattan, J., S. Culine, M. J. Terrier-Lacombe, C. Theodore, and J. P. Droz. Paratesticular rhabdomyosarcoma in adult patients: 16year experience at Institut Gustave-Roussy. Ann Oncol 1993 4(10):871-5. Rec#: 23650 Reprint: EXC YEAR

Katzenstein, H. M., S. L. Cohn, R. M. Shore, D. M. Bardo, P. R. Haut, M. Olszewski, J. Schmoldt, D. Liu, A. W. Rademaker, and M. Kletzel. Scintigraphic response by 123Imetaiodobenzylguanidine scan correlates with event-free survival in high-risk neuroblastoma. J Clin Oncol 2004 22(19):3909-15. Rec#: 8200 Reprint: exc nri

Kawa, K., N. Ohnuma, M. Kaneko, K. Yamamoto, T. Etoh, H. Mugishima, M. Ohhira, J. Yokoyama, F. Bessho, T. Honna, J. Yoshizawa, K. Nakada, M. Iwafuchi, T. Nozaki, J. Mimaya, T. Sawada, T. Nakamura, H. Miyata, K. Yamato, and Y. Tsuchida. Long-term survivors of advanced neuroblastoma with MYCN amplification: A report of 19 patients surviving disease-free for more than 66 months. J Clin Oncol 1999 17(10):3216-20. Rec#: 16240 Reprint: exc nri

Kawa-Ha, K., K. Yumura-Yagi, M. Inoue, D. Y. Park, T. Okamura, M. Yasui, H. Oota, N. Sakata, M. Yoneda, and K. Imura. Results of single and double autografts for high-risk neuroblastoma patients. Bone Marrow Transplant 1996 17(6):957-62. Rec#: 20650

Reprint: EXC NRI

Kawakami, Y., M. Ohtsuka, A. Kikuta, and T. Yamamoto. Multiple morphea-like lesions associated with chronic graftversus-host disease after cord blood transplantation. 2009. Rec#: 570 Reprint:

Kawakami, Y., N. Oyama, K. Nakamura, F. Kaneko, A. Kikuta, and H. Suzuki. Psoriasiform eruption associated with graft-versushost disease. 2007. Rec#: 3350 Reprint:

Kaye, E. M., M. D. Ullman, E. H. Kolodny, W. Krivit, and J. C. Rischert. Possible use of CSF glycosphingolipids for the diagnosis and therapeutic monitoring of lysosomal storage diseases. Neurology 1992 42(12):2290-4. Rec#: 24630 Reprint: EXC DAC Kebudi, R., O. Gorgun, and I. Ayan. Oral etoposide for recurrent/progressive sarcomas of childhood. Pediatr Blood Cancer 2004 42(4):320-4. Rec#: 43660 Reprint: exc few

Kelly, A., and A. V. Ramanan. A case of macrophage activation syndrome successfully treated with anakinra. Nat Clin Pract Rheumatol 2008 4(11):615-20. Rec#: 1210 Reprint: exc nro

Kelly, J., T. Damron, W. Grant, C. Anker, S. Holdridge, S. Shaw,
J. Horton, I. Cherrick, and J. Spadaro. Cross-sectional study of
bone mineral density in adult survivors of solid pediatric cancers. J
Pediatr Hematol Oncol 2005 27(5):248-53.
Rec#: 7310
Reprint: exc nro

Kelman, C. G., and D. G. Disler. Metaphyseal undertubulation in gaucher disease: resolution at MRI in a patient undergoing enzyme replacement therapy. J Comput Assist Tomogr 2000 24(1):173-5. Rec#: 15680 Reprint: exc nr

Khademi, B., V. Derakhshandeh, M. Vasei, and S. Torabi. Metastasis of retinoblastoma to the parotid gland: diagnosis by fine needle aspiration cytology. Otolaryngol Head Neck Surg 2003 128(2):296-7. Rec#: 48760 Reprint: exc nrs

Kharbanda, S., A. Panoskaltsis-Mortari, I. Y. Haddad, B. R. Blazar, P. J. Orchard, D. N. Cornfield, S. S. Grewal, C. Peters, W. E. Regelmann, C. E. Milla, and K. S. Baker. Inflammatory cytokines and the development of pulmonary complications after allogeneic hematopoietic cell transplantation in patients with inherited metabolic storage disorders. Biol Blood Marrow Transplant 2006 12(4):430-7. Rec#: 5910 Reprint: exc nrp

Kimonis, V. E., J. Troendle, S. R. Rose, M. L. Yang, T. C. Markello, and W. A. Gahl. Effects of early cysteamine therapy on thyroid function and growth in nephropathic cystinosis. J Clin Endocrinol Metab 1995 80(11):3257-61. Rec#: 58210 Reprint: EXC NRC

Kishnani, P. S., D. Corzo, N. D. Leslie, D. Gruskin, A. Van der Ploeg, J. P. Clancy, R. Parini, G. Morin, M. Beck, M. S. Bauer, M. Jokic, C. E. Tsai, B. W. Tsai, C. Morgan, T. O'Meara, S. Richards, E. C. Tsao, and H. Mandel. Early treatment with alglucosidase alpha prolongs long-term survival of infants with Pompe disease. Pediatr Res 2009 66(3):329-35. Rec#: 56600 Reprint: exc nrc Kishnani, P. S., D. Corzo, M. Nicolino, B. Byrne, H. Mandel, W. L. Hwu, N. Leslie, J. Levine, C. Spencer, M. McDonald, J. Li, J. Dumontier, M. Halberthal, Y. H. Chien, R. Hopkin, S. Vijayaraghavan, D. Gruskin, D. Bartholomew, A. van der Ploeg, J. P. Clancy, R. Parini, G. Morin, M. Beck, G. S. De la Gastine, M. Jokic, B. Thurberg, S. Richards, D. Bali, M. Davison, M. A. Worden, Y. T. Chen, and J. E. Wraith. Recombinant human acid. Neurology 2007 68(2):99-109.
Rec#: 57110
Reprint: exc nrc

Kishnani, P. S., P. C. Goldenberg, S. L. DeArmey, J. Heller, D. Benjamin, S. Young, D. Bali, S. A. Smith, J. S. Li, H. Mandel, D. Koeberl, A. Rosenberg, and Y. T. Chen. Cross-reactive immunologic material status affects treatment outcomes in Pompe disease infants. Mol Genet Metab 2010 99(1):26-33. Rec#: 56520 Reprint: exc nrc

Kishnani, P. S., W. L. Hwu, H. Mandel, M. Nicolino, F. Yong, and D. Corzo. A retrospective, multinational, multicenter study on the natural history of infantile-onset Pompe disease. J Pediatr 2006 148(5):671-676. Rec#: 57200 Reprint: exc nrc

Kishnani, P. S., M. Nicolino, T. Voit, R. C. Rogers, A. C. Tsai, J. Waterson, G. E. Herman, A. Amalfitano, B. L. Thurberg, S. Richards, M. Davison, D. Corzo, and Y. T. Chen. Chinese hamster ovary cell-derived recombinant human acid alpha-glucosidase in infantile-onset Pompe disease. J Pediatr 2006 149(1):89-97. Rec#: 57170 Reprint: exc nrc

Kishnani, P. S., R. D. Steiner, D. Bali, K. Berger, B. J. Byrne, L. E. Case, J. F. Crowley, S. Downs, R. R. Howell, R. M. Kravitz, J. Mackey, D. Marsden, A. M. Martins, D. S. Millington, M. Nicolino, G. O'Grady, M. C. Patterson, D. M. Rapoport, A. Slonim, C. T. Spencer, C. J. Tifft, and M. S. Watson. Pompe disease diagnosis and management guideline. Genet Med 2006 8(5):267-88.
Rec#: 57230
Reprint: exc nrc

Klaassen, R. J., M. M. Trebo, B. Z. Koplewitz, S. S. Weitzman, and S. Calderwood. High-risk neuroblastoma in Ontario: a report of experience from 1989 to 1995. J Pediatr Hematol Oncol 2003 25(1):8-13. Rec#: 11060 Reprint: exc nri

Kletzel, M., E. M. Abella, E. S. Sandler, L. L. Williams, A. K. Ogden, B. H. Pollock, and D. A. Wall. Thiotepa and cyclophosphamide with stem cell rescue for consolidation therapy for children with high-risk neuroblastoma: a phase I/II study of the Pediatric Blood and Marrow Transplant Consortium. J Pediatr Hematol Oncol 1998 20(1):49-54. Rec#: 18620 Reprint: exc nri Kletzel, M., D. L. Becton, and D. H. Berry. Single institution experience with high-dose cyclophosphamide, continuous infusion vincristine, escalating doses of VP-16-213, and total body irradiation with unpurged bone marrow rescue in children with neuroblastoma. Med Pediatr Oncol 1992 20(1):64-7. Rec#: 25430 Reprint: EXC YEAR

Kletzel, M., H. M. Katzenstein, P. R. Haut, A. L. Yu, E. Morgan, M. Reynolds, G. Geissler, M. H. Marymount, D. Liu, J. A. Kalapurakal, R. M. Shore, D. M. Bardo, J. Schmoldt, A. W. Rademaker, and S. L. Cohn. Treatment of high-risk neuroblastoma with triple-tandem high-dose therapy and stem-cell rescue: results of the Chicago Pilot II Study. J Clin Oncol 2002 20(9):2284-92. Rec#: 12300 Reprint: exc nri

Kletzel, M., R. Longino, A. W. Rademaker, K. E. Danner-Koptik, M. Olszewski, and E. R. Morgan. Peripheral blood stem cell transplantation in young children: experience with harvesting, mobilization and engraftment. Pediatr Transplant 1998 2(3):191-6. Rec#: 17070 Reprint: exc nri

Kline, R. M., L. Fennewald, M. Vore, S. J. Bertolone, and M. L. Hente. Oral contraceptives: a cause of hyperbilirubinemia in stem cell transplant patients. J Pediatr Hematol Oncol 1999 21(5):436-40. Rec#: 16150 Reprint: exc nro

Klinge, L., V. Straub, U. Neudorf, J. Schaper, T. Bosbach, K. Gorlinger, M. Wallot, S. Richards, and T. Voit. Safety and efficacy of recombinant acid alpha-glucosidase (rhGAA) in patients with classical infantile Pompe disease: results of a phase II clinical trial. Neuromuscul Disord 2005 15(1):24-31. Rec#: 57480 Reprint: exc nrc

Klinge, L., V. Straub, U. Neudorf, and T. Voit. Enzyme replacement therapy in classical infantile pompe disease: results of a ten-month follow-up study. Neuropediatrics 2005 36(1):6-11. Rec#: 57450 Reprint: exc nrc

Klingebiel, T., P. Bader, R. Bares, J. Beck, B. Hero, H. Jurgens, P. Lang, D. Niethammer, B. Rath, and R. Handgretinger. Treatment of neuroblastoma stage 4 with 131I-meta-iodo-benzylguanidine, high-dose chemotherapy and immunotherapy. A pilot study. Eur J Cancer 1998 34(9):1398-402. Rec#: 17390 Reprint: exc nri

Klingebiel, T., U. Pertl, C. F. Hess, H. Jurgens, E. Koscielniak, R. Potter, R. van Heek-Romanowski, R. Rossi, C. Schott, H. J. Spaar, U. Willnow, and J. Treuner. Treatment of children with relapsed soft tissue sarcoma: report of the German CESS/CWS REZ 91 trial. Med Pediatr Oncol 1998 30(5):269-75. Rec#: 48140 Reprint: exc nrs Kodet, R., W. A. Jr Newton, A. B. Hamoudi, L. Asmar, M. D. Wharam, and H. M. Maurer. Orbital rhabdomyosarcomas and related tumors in childhood: relationship of morphology to prognosis--an Intergroup Rhabdomyosarcoma study. Med Pediatr Oncol 1997 29(1):51-60. Rec#: 48250 Reprint: exc nri

Kohler, J. A., C. Ellershaw, and D. Machin. Response to N7 induction chemotherapy in children more than one year of age diagnosed with metastatic neuroblastoma treated in UKCCSG centers. Pediatr Blood Cancer 2007 49(3):234-9. Rec#: 4420 Reprint: exc nri

Koka, V. N., M. Julieron, J. Bourhis, F. Janot, A. M. Le Ridant, P. Marandas, B. Luboinski, and G. Schwaab. Aesthesioneuroblastoma. J Laryngol Otol 1998 112(7):628-33. Rec#: 17600 Reprint: exc nri

Kolb, E. A., B. H. Kushner, R. Gorlick, C. Laverdiere, J. H. Healey, M. P. LaQuaglia, A. G. Huvos, J. Qin, H. T. Vu, L. Wexler, S. Wolden, and P. A. Meyers. Long-term event-free survival after intensive chemotherapy for Ewing's family of tumors in children and young adults. J Clin Oncol 2003 21(18):3423-30. Rec#: 43680 Reprint: exc nrp

Kombogiorgas, D., S. Sgouros, A. R. Walsh, A. D. Hockley, M. Stevens, R. Grundy, A. Peet, M. English, and D. Spooner. Outcome of children with posterior fossa medulloblastoma: a single institution experience over the decade 1994-2003. Childs Nerv Syst 2007 23(4):399-405. Rec#: 52410 Reprint: EXC NRI

Komotar, R. J., P. C. Burger, B. S. Carson, H. Brem, A. Olivi, P. T. Goldthwaite, and T. Tihan. Pilocytic and pilomyxoid hypothalamic/chiasmatic astrocytomas. Neurosurgery 2004 54(1):72-9; discussion 79-80.
Rec#: 55410
Reprint: exc nrd

Konoplia, N. E., I. u. S. Strongin, M. V. Talabaev, and O. V. Aleinikova. [Effectiveness of intensive chemotherapy in the treatment of medulloblastoma/primitive neuroectodermal tumor in children]. Vopr Onkol 2008 54(2):157-63. Rec#: 70180 Reprint: EXC FLA

Kortmann, R. D., J. Kuhl, B. Timmermann, U. Mittler, C. Urban, V. Budach, E. Richter, N. Willich, M. Flentje, F. Berthold, I. Slavc, J. Wolff, C. Meisner, O. Wiestler, N. Sorensen, M. Warmuth-Metz, and M. Bamberg. Postoperative neoadjuvant chemotherapy before radiotherapy as compared to immediate radiotherapy followed by maintenance chemotherapy in the treatment of medulloblastoma in childhood: results of the German prospective randomized trial HIT '91. Int J Radiat Oncol Biol Phys 2000 46(2):269-79. Rec#: 15700 Reprint: EXC NRI NRC

Kosrirukvongs, P., N. Chirapapaisan, S. Visuthisakchai, S. Issaragrisil, and V. Gonggetyai. Sjogren-like syndrome after bone marrow transplantation. J Med Assoc Thai 2008 91(11):1739-47. Rec#: 760 Reprint: exc nro nrd

Kossiva, L., M. Theodoridou, G. Mostrou, E. Vrachnou, F. Le Deist, F. Rieux-Laucat, and M. G. Kanariou. Mycophenolate mofetil as an alternate immunosuppressor for autoimmune lymphoproliferative syndrome. J Pediatr Hematol Oncol 2006 28(12):824-6. Rec#: 4570 Reprint: exc nri

Kounami, S., N. Aoyagi, K. Nakayama, M. Yoshiyama, H. Boshi, M. Sakiyama, T. Takeuchi, and N. Yoshikawa. Fatal pulmonary thromboembolism after a second course of high-dose chemotherapy with autologous peripheral blood stem cell transplantation. Pediatr Transplant 2003 7(5):400-3. Rec#: 9380 Reprint: EXC NRO

Kounami, S., S. Douno, H. Matsubara, J. Takayama, and M. Ohira. Olfactory neuroblastoma as a second malignant neoplasm in a patient previously treated for childhood acute leukemia. Pediatr Hematol Oncol 2001 18(7):459-63. Rec#: 13050 Reprint: exc nri

Kozak, T., E. Havrdova, J. Pit'ha, E. Gregora, R. Pytlik, J. Maaloufova, H. Mareckova, P. Kobylka, and S. Vodvarkova. High-dose immunosuppressive therapy with PBPC support in the treatment of poor risk multiple sclerosis. Bone Marrow Transplant 2000 25(5):525-31. Rec#: 15530 Reprint: exc nrp

Kramer, J. H., M. R. Crittenden, F. E. Halberg, W. M. Wara, and M. J. Cowan. A prospective study of cognitive functioning following low-dose cranial radiation for bone marrow transplantation. Pediatrics 1992 90(3):447-50. Rec#: 24890 Reprint: EXC YEAR

Kramer, K., and N. K. Cheung. Autologous bone marrow transplantation in children with advanced neuroblastoma.,. 1995. Rec#: 21470 Reprint: exc year

Kramer, K., W. L. Gerald, B. H. Kushner, S. M. Larson, M. Hameed, and N. K. Cheung. Disialoganglioside G(D2) loss following monoclonal antibody therapy is rare in neuroblastoma. Clin Cancer Res 1998 4(9):2135-9. Rec#: 17640 Reprint: exc nri Kremens, B., T. Klingebiel, F. Herrmann, C. Bender-Gotze, S. Burdach, W. Ebell, W. Friedrich, E. Koscielniak, H. Schmid, W. Siegert, and a. l. .. et. High-dose consolidation with local radiation and bone marrow rescue in patients with advanced neuroblastoma. Med Pediatr Oncol 1994 23(6):470-5. Rec#: 23490 Reprint: EXC Year

Kretschmar, C. S., M. Kletzel, K. Murray, P. Thorner, V. Joshi, R. Marcus, E. I. Smith, W. B. London, and R. Castleberry. Response to paclitaxel, topotecan, and topotecan-cyclophosphamide in children with untreated disseminated neuroblastoma treated in an upfront phase II investigational window: a pediatric oncology group study. J Clin Oncol 2004 22(20):4119-26. Rec#: 8150 Reprint: exc nri

Kreuzpaintner, G., D. Horstkotte, A. Heyll, B. Losse, and G. Strohmeyer. Increased risk of bacterial endocarditis in inflammatory bowel disease. Am J Med 1992 92(4):391-5. Rec#: 25270 Reprint: EXC YEAR

Krishnakumar, S., K. Mallikarjuna, N. Desai, A. Muthialu, N. Venkatesan, A. Sundaram, V. Khetan, and M. P. Shanmugam. Multidrug resistant proteins: P-glycoprotein and lung resistance protein expression in retinoblastoma. Br J Ophthalmol 2004 88(12):1521-6. Rec#: 8000 Reprint: exc nro

Krivan, G., L. Timar, V. Goda, M. Reti, P. Remenyi, and T. Masszi. Bone marrow transplantation in non-malignant disorders. Bone Marrow Transplant 1998 22 Suppl 4:S80-3. Rec#: 17260 Reprint: exc nr

Krivit, W. Stem cell bone marrow transplantation in patients with metabolic storage diseases. Adv Pediatr 2002 49:359-78. Rec#: 11670 Reprint: exc rev

Krivit, W., D. Freese, K. W. Chan, and R. Kulkarni. Wolman's disease: a review of treatment with bone marrow transplantation and considerations for the future. Bone Marrow Transplant 1992 10 Suppl 1:97-101. Rec#: 25450 Reprint: EXC REV

Krivit, W., C. Peters, K. Dusenbery, Y. Ben-Yoseph, N. K. Ramsay, J. E. Wagner, and R. Anderson. Wolman disease successfully treated by bone marrow transplantation. Bone Marrow Transplant 2000 26(5):567-70. Rec#: 14770 Reprint: exc dup

Kuis, W., N. M. Wulffraat, and R. E. Petty. Autologous stem cell transplantation: an alternative for refractory juvenile chronic arthritis. Rheumatology (Oxford) 1999 38(8):737-8.

Rec#: 16330 Reprint: exc com

Kumar, S., S. M. Benseler, M. Kirby-Allen, and E. D. Silverman. B-cell depletion for autoimmune thrombocytopenia and autoimmune hemolytic anemia in pediatric systemic lupus erythematosus. Pediatrics 2009 123(1):e159-63. Rec#: 77490 Reprint: exc nrc

Kurland, G., and P. Michelson. Bronchiolitis obliterans in children. Pediatr Pulmonol 2005 39(3):193-208. Rec#: 7840 Reprint: exc nra

Kuroda, T., M. Saeki, T. Honna, H. Masaki, and Y. Tsunematsu. Clinical significance of intensive surgery with intraoperative radiation for advanced neuroblastoma: does it really make sense? J Pediatr Surg 2003 38(12):1735-8. Rec#: 9580 Reprint: exc nri

Kuroda, T., M. Saeki, M. Nakano, S. Mizutani, M. Endo, and H. Akiyama. Surgical treatment of neuroblastoma with micrometastasis. J Pediatr Surg 2000 35(11):1638-42. Rec#: 14550 Reprint: exc nri

Kushner, B. H., N. K. Cheung, K. Kramer, I. J. Dunkel, E. Calleja, and F. Boulad. Topotecan combined with myeloablative doses of thiotepa and carboplatin for neuroblastoma, brain tumors, and other poor-risk solid tumors in children and young adults. Bone Marrow Transplant 2001 28(6):551-6. Rec#: 13020 Reprint: exc nri

Kushner, B. H., S. C. Gulati, J. H. Kwon, R. J. O'Reilly, P. R. Exelby, and N. K. Cheung. High-dose melphalan with 6hydroxydopamine-purged autologous bone marrow transplantation for poor-risk neuroblastoma. Cancer 1991 68(2):242-7. Rec#: 26090 Reprint: EXC YEAR

Kushner, B. H., K. Kramer, M. P. LaQuaglia, and N. K. Cheung. Curability of recurrent disseminated disease after surgery alone for local-regional neuroblastoma using intensive chemotherapy and anti-G(D2) immunotherapy. J Pediatr Hematol Oncol 2003 25(7):515-9. Rec#: 10240 Reprint: exc nri

Kushner, B. H., K. Kramer, P. A. Meyers, N. Wollner, and N. K. Cheung. Pilot study of topotecan and high-dose cyclophosphamide for resistant pediatric solid tumors. Med Pediatr Oncol 2000 35(5):468-74. Rec#: 14590 Reprint: exc nro

Kushner, B. H., K. Kramer, S. Modak, L. X. Qin, K. Yataghena, S. C. Jhanwar, and N. K. Cheung. Reduced risk of secondary

leukemia with fewer cycles of dose-intensive induction chemotherapy in patients with neuroblastoma. Pediatr Blood Cancer 2009 53(1):17-22. Rec#: 710 Reprint: exc nri

Kushner, B. H., R. J. O'Reilly, L. R. Mandell, S. C. Gulati, M. LaQuaglia, and N. K. Cheung. Myeloablative combination chemotherapy without total body irradiation for neuroblastoma. J Clin Oncol 1991 9(2):274-9. Rec#: 26410 Reprint: EXC YEAR

Kutluk, T., A. Varan, N. Buyukpamukcu, L. Atahan, M. Caglar, C. Akyuz, and M. Buyukpamukcu. Improved survival of children with wilms tumor. J Pediatr Hematol Oncol 2006 28(7):423-6. Rec#: 45070 Reprint: exc nrp

Kuttesch, J. F. Jr, M. D. Krailo, T. Madden, M. Johansen, and A. Bleyer. Phase II evaluation of intravenous vinorelbine (Navelbine) in recurrent or refractory pediatric malignancies: a Children's Oncology Group study. Pediatr Blood Cancer 2009 53(4):590-3. Rec#: 46660 Reprint: exc nro

Kuttesch, J. F. Jr, L. H. Wexler, R. B. Marcus, D. Fairclough, L. Weaver-McClure, M. White, L. Mao, T. F. Delaney, C. B. Pratt, M. E. Horowitz, and L. E. Kun. Second malignancies after Ewing's sarcoma: radiation dose-dependency of secondary sarcomas. J Clin Oncol 1996 14(10):2818-25. Rec#: 44440 Reprint: exc nrp

Kyllerman, M., J. E. Mansson, O. Westphal, N. Conradi, and H. Nellstrom. Infantile galactosialidosis presenting with congenital adrenal hyperplasia and renal hypertension. Pediatr Neurol 1993 9(4):318-22. Rec#: 24030 Reprint: EXC NRS

Ladenstein, R., M. Favrot, C. Lasset, E. Bouffet, I. Philip, V. Combaret, F. Chauvin, M. Brunat-Mentigny, P. Biron, and T. Philip. Indication and limits of megatherapy and bone marrow transplantation in high-risk neuroblastoma: a single centre analysis of prognostic factors. Eur J Cancer 1993 29A(7):947-56. Rec#: 24380 Reprint: EXC YEAR

Ladenstein, R., C. Lasset, E. Bouffet, M. Brunat-Mentigny, P. Biron, I. Philip, F. Chauvin, and T. Philip. A single center experience with bone marrow transplantation for high risk neuroblastoma. Bone Marrow Transplant 1991 7 Suppl 2:93. Rec#: 26590 Reprint: EXC YEAR

Ladenstein, R., C. Lasset, O. Hartmann, D. Frappaz, A. Garaventa, T. Klingebiel, J. M. Zucker, C. Coze, S. Burdach, H. Gadner, and a. l. .. et. Impact of megatherapy on survival after relapse from stage 4 neuroblastoma in patients over 1 year of age at diagnosis: a

report from the European Group for Bone Marrow Transplantation. J Clin Oncol 1993 11(12):2330-41. Rec#: 23620 Reprint: EXC YEAR

Ladenstein, R., C. Lasset, O. Hartmann, T. Klingebiel, E. Bouffet, H. Gadner, P. Paolucci, S. Burdach, F. Chauvin, R. Pinkerton, and a. l. .. et. Comparison of auto versus allografting as consolidation of primary treatments in advanced neuroblastoma over one year of age at diagnosis: report from the European Group for Bone Marrow Transplantation. Bone Marrow Transplant 1994 14(1):37-46.

Rec#: 22880 Reprint: EXC Year

Ladenstein, R., C. Lasset, and T. Philip. Treatment duration before bone marrow transplantation in stage IV neuroblastoma. European Bone Marrow Transplant Group Solid Tumour Registry. 1992. Rec#: 24780 Reprint: exc year

Lafay-Cousin, L., and D. Strother. Current treatment approaches for infants with malignant central nervous system tumors. Oncologist 2009 14(4):433-44. Rec#: 72970 Reprint: exc rev

Lageron, A., J. C. Maziere, P. Gane, D. Goossens, and C. Roy. Niemann Pick c or storage by excessive blood cell destruction: a case presenting a diagnosis problem. Acta Histochem 1992 92(1):39-45. Rec#: 25410 Reprint: EXC YEAR

Lamireau, T., J. P. Cezard, A. Dabadie, O. Goulet, A. Lachaux, D. Turck, C. Maurage, A. Morali, E. Sokal, D. Belli, J. Stoller, S. Cadranel, J. L. Ginies, S. Viola, F. Huet, J. Languepin, C. Lenaerts, F. Bury, and J. Sarles. Efficacy and tolerance of infliximab in children and adolescents with Crohn's disease. Inflamm Bowel Dis 2004 10(6):745-50. Rec#: 41680 Reprint: exc nrc

Lapierre, V., C. Mahe, A. Auperin, F. Stambouli, N. Oubouzar, D. Tramalloni, E. Benhamou, P. Tiberghien, and O. Hartmann. Platelet transfusion containing ABO-incompatible plasma and hepatic veno-occlusive disease after hematopoietic transplantation in young children. Transplantation 2005 80(3):314-9. Rec#: 6900 Reprint: exc nri

Laprie, A., J. Michon, O. Hartmann, C. Munzer, M. D. Leclair, C. Coze, D. Valteau-Couanet, D. Plantaz, C. Carrie, J. L. Habrand, C. Bergeron, P. Chastagner, A. S. Defachelles, O. Delattre, V. Combaret, J. Benard, Y. Perel, V. Gandemer, and H. Rubie. High-dose chemotherapy followed by locoregional irradiation improves the outcome of patients with international neuroblastoma staging system Stage II and III neuroblastoma with MYCN amplification. Cancer 2004 101(5):1081-9. Rec#: 8430

Reprint: exc nri

Larsen, E. C., S. A. Connolly, and A. E. Rosenberg. Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 20-2003. A nine-year-old girl with hepatosplenomegaly and pain in the thigh. N Engl J Med 2003 348(26):2669-77. Rec#: 10340 Reprint: exc nr

Lashner, B. A. Autologous hematopoietic stem cell transplantation for Crohn's disease: high risk for a high reward. Inflamm Bowel Dis 2005 11(8):778-9. Rec#: 6960 Reprint: exc com

Lau, L., D. Tai, S. Weitzman, R. Grant, S. Baruchel, and D. Malkin. Factors influencing survival in children with recurrent neuroblastoma. J Pediatr Hematol Oncol 2004 26(4):227-32. Rec#: 9020 Reprint: exc nri

Launay, D., Z. Marjanovic, C. de Bazelaire, L. Florea, S. Zohar, H. Keshtmand, C. Deligny, A. de Raigniac, A. U. Wells, and D. Farge. Autologous hematopoietic stem cell transplant in systemic sclerosis: quantitative high resolution computed tomography of the chest scoring. J Rheumatol 2009 36(7):1460-3. Rec#: 80 Reprint: EXC NRO

Laurence, V., J. Y. Pierga, S. Barthier, A. Babinet, C. Alapetite, T. Palangie, G. de Pinieux, P. Anract, and P. Pouillart. Long-term follow up of high-dose chemotherapy with autologous stem cell rescue in adults with Ewing tumor. Am J Clin Oncol 2005 28(3):301-9. Rec#: 7220 Reprint: EXC NRP

Laverdiere, C., N. K. Cheung, B. H. Kushner, K. Kramer, S. Modak, M. P. LaQuaglia, S. Wolden, K. K. Ness, J. G. Gurney, and C. A. Sklar. Long-term complications in survivors of advanced stage neuroblastoma. Pediatr Blood Cancer 2005 45(3):324-32. Rec#: 7670 Reprint: exc nri

Lawlor, E. R., J. I. Murphy, P. H. Sorensen, and C. J. Fryer. Metastatic primitive neuroectodermal tumour of the ovary: successful treatment with mega-dose chemotherapy followed by peripheral blood progenitor cell rescue. Med Pediatr Oncol 1997 29(4):308-12. Rec#: 19000 Reprint: EXC NRO

Laws, H. J., S. Burdach, B. van Kaick, B. Engel, U. Dirksen, D. Korholz, H. Pape, T. Kahn, H. Merck, M. Schmitz, A. Heyll, B. Dockhorn-Dworniczak, H. Jurgens, and U. Gobel. Multimodality diagnostics and megatherapy in poor prognosis Ewing's tumor patients. A single-center report. Strahlenther Onkol 1999 175(10):488-94. Rec#: 16080 Reprint: exc nrp

Laws, H. J., G. Janssen, and A. Borkhardt. Reassessment of treatment modalities for paediatric patients with chronic immune thrombocytopenia. Hamostaseologie 2009 29(2):171-6. Rec#: 250 Reprint: exc nra

Lazzerini, M., S. Martelossi, F. Marchetti, A. Scabar, F. Bradaschia, L. Ronfani, and A. Ventura. Efficacy and safety of thalidomide in children and young adults with intractable inflammatory bowel disease: long-term results. Aliment Pharmacol Ther 2007 25(4):419-27. Rec#: 41370 Reprint: exc nrp

Leahey, A. M., D. L. Friedman, and N. J. Bunin. Bone marrow transplantation in pediatric patients with therapy-related myelodysplasia and leukemia. Bone Marrow Transplant 1999 23(1):21-5. Rec#: 17170 Reprint: exc nro

Lee, S. H., K. H. Yoo, K. W. Sung, J. Y. Kim, E. J. Cho, H. H. Koo, S. E. Chung, S. W. Kang, S. Y. Oh, D. I. Ham, and Y. D. Kim. Tandem high-dose chemotherapy and autologous stem cell rescue in children with bilateral advanced retinoblastoma. Bone Marrow Transplant 2008 42(6):385-91. Rec#: 1780 Reprint: exc nrs

Lee, V., P. S. Cheng, K. W. Chik, G. W. Wong, M. M. Shing, and C. K. Li. Autoimmune hypothyroidism after unrelated haematopoietic stem cell transplantation in children. J Pediatr Hematol Oncol 2006 28(5):293-5. Rec#: 5460 Reprint: exc nrd

Lee, W. Y., E. S. Oh, C. K. Min, D. W. Kim, J. W. Lee, M. I. Kang, W. S. Min, B. Y. Cha, K. W. Lee, H. Y. Son, S. K. Kang, and C. C. Kim. Changes in autoimmune thyroid disease following allogeneic bone marrow transplantation. Bone Marrow Transplant 2001 28(1):63-6. Rec#: 13250 Reprint: exc nrd

Lehman, T. J. Clinical trials for the treatment of systemic onset juvenile rheumatoid arthritis-juvenile idiopathic arthritis. Curr Rheumatol Rep 2000 2(4):313-5. Rec#: 14350 Reprint: exc nra

Lehman, T. J., S. J. Schechter, R. P. Sundel, S. K. Oliveira, A. Huttenlocher, and K. B. Onel. Thalidomide for severe systemic onset juvenile rheumatoid arthritis: A multicenter study. J Pediatr 2004 145(6):856-7. Rec#: 41710 Reprint: exc nrp Leng, X. M., Y. Zhao, D. B. Zhou, H. Situ, T. S. Li, T. Shen, Y. Q. Zhao, X. F. Zeng, F. C. Zhang, Y. Dong, and F. L. Tang. A pilot trial for severe, refractory systemic autoimmune disease with stem cell transplantation. Chin Med Sci J 2005 20(3):159-65. Rec#: 6540 Reprint: exc nrp

Lesesve, J. F., P. Schneider, I. Dolgopolov, C. Bastard, B. Lenormand, E. Cambon-Michot, M. P. Callat, B. Cavelier, P. H. Tron, and J. P. Vannier. Therapy-related acute myeloid leukemia with t(8;21) in a child with previous Ewing's sarcoma. Med Pediatr Oncol 1997 29(2):132-4. Rec#: 19110 Reprint: exc nrd

Lesnik, J. J., G. K. Singh, I. C. Balfour, and D. A. Wall. Steroidinduced hypertrophic cardiomyopathy following stem cell transplantation in a neonate: a case report. Bone Marrow Transplant 2001 27(10):1105-8. Rec#: 13520 Reprint: exc nr

Leung, C. K. Fifteen years' review of advanced childhood neuroblastoma from a single institution in Hong Kong. Chin Med J (Engl) 1998 111(5):466-9. Rec#: 16680 Reprint: exc nri

Levin, V. A., J. H. Uhm, K. A. Jaeckle, A. Choucair, P. J. Flynn, W. K. A. Yung, M. D. Prados, J. M. Bruner, S. M. Chang, A. P. Kyritsis, M. J. Gleason, and K. R. Hess. Phase III randomized study of postradiotherapy chemotherapy with alphadifluoromethylornithine-procarbazine, N-(2-chloroethyl)-N'cyclohexyl-N-nitrosurea, vincristine (DFMO-PCV) versus PCV for glioblastoma multiforme. Clin Cancer Res 2000 6(10):3878-84. Rec#: 55840 Reprint: exc nrp

Levine, J. C., P. S. Kishnani, Y. T. Chen, J. R. Herlong, and J. S. Li. Cardiac remodeling after enzyme replacement therapy with acid alpha-glucosidase for infants with Pompe disease. Pediatr Cardiol 2008 29(6):1033-42. Rec#: 56780 Reprint: exc nrc

Levtchenko, E. N., C. M. van Dael, A. C. de Graaf-Hess, M. J. Wilmer, L. P. van den Heuvel, L. A. Monnens, and H. J. Blom. Strict cysteamine dose regimen is required to prevent nocturnal cystine accumulation in cystinosis. Pediatr Nephrol 2006 21(1):110-3. Rec#: 57320 Reprint: exc nrc

Levy, A. S., P. A. Meyers, L. H. Wexler, R. Jakacki, A. Angiolillo, S. N. Ringuette, M. B. Cohen, and R. Gorlick. Phase 1 and pharmacokinetic study of concurrent carboplatin and irinotecan in subjects aged 1 to 21 years with refractory solid tumors. Cancer 2009 115(1):207-16. Rec#: 810 Reprint: exc cr nri Levy, Y., Y. Uziel, G. Zandman, P. Rotman, H. Amital, Y. Sherer, P. Langevitz, B. Goldman, and Y. Shoenfeld. Response of vasculitic peripheral neuropathy to intravenous immunoglobulin. Ann N Y Acad Sci 2005 1051:779-86. Rec#: 77910 Reprint: exc cr

Lewis, L. D., A. Benin, C. L. Szumlanski, D. M. Otterness, L. Lennard, R. M. Weinshilboum, and D. W. Nierenberg. Olsalazine and 6-mercaptopurine-related bone marrow suppression: a possible drug-drug interaction. Clin Pharmacol Ther 1997 62(4):464-75. Rec#: 18870 Reprint: exc nro

Liem, R. I., M. A. Higman, A. R. Chen, and R. J. Arceci. Misinterpretation of a Calvert-derived formula leading to carboplatin overdose in two children. J Pediatr Hematol Oncol 2003 25(10):818-21. Rec#: 9820 Reprint: exc nri

Locatelli, F., C. Perotti, L. Torretta, R. Maccario, D. Montagna, A. Ravelli, G. Giorgiani, F. De Benedetti, E. Giraldi, M. L. Magnani, P. De Stefano, and A. Martini. Mobilization and selection of peripheral blood hematopoietic progenitors in children with systemic sclerosis. Haematologica 1999 84(9):839-43. Rec#: 16430 Reprint: exc nro

Lones, M. A., I. Kirov, J. W. Said, I. P. Shintaku, and S. Neudorf. Post-transplant lymphoproliferative disorder after autologous peripheral stem cell transplantation in a pediatric patient. Bone Marrow Transplant 2000 26(9):1021-4. Rec#: 14510 Reprint: EXC NRI

Lopez-Cubero, S. O., K. M. Sullivan, and G. B. McDonald. Course of Crohn's disease after allogeneic marrow transplantation. Gastroenterology 1998 114(3):433-40. Rec#: 18570 Reprint: exc nrp

Lorch, A., C. Kollmannsberger, J. T. Hartmann, B. Metzner, I. G. Schmidt-Wolf, W. E. Berdel, F. Weissinger, J. Schleicher, G. Egerer, A. Haas, R. Schirren, J. Beyer, C. Bokemeyer, and O. Rick. Single versus sequential high-dose chemotherapy in patients with relapsed or refractory germ cell tumors: a prospective randomized multicenter trial of the German Testicular Cancer Study Group. J Clin Oncol 2007 25(19):2778-84. Rec#: 49710 Reprint: EXC NRP

Lorenzoni, P. J., R. H. Scola, A. L. Carsten, A. P. Trentin, H. A. Teive, R. Pasquini, and L. C. Werneck. Chronic inflammatory demyelinating polyradiculoneuropathy in chronic graft-versus-host disease following allogeneic hematopoietic stem cell transplantation: case report. Arq Neuropsiquiatr 2007 65(3A):700-4.

Rec#: 3180

Reprint: EXC NRD

Lotz, J., B. Bui, F. Gomez, C. Theodore, and Caty. Sequential high-dose chemotherapy protocol for relapsed poor prognosis germ cell tumors combining two mobilization and cytoreductive treatments followed by three high-dose chemotehrapy reimgens supported by autologous stem cell transplantation. Results o. Annals of Oncology 2005 16:411-418. Rec#: Reprint: exc nrp

Lovell, D. J., E. H. Giannini, A. Reiff, O. Y. Jones, R. Schneider, J. C. Olson, L. D. Stein, A. Gedalia, N. T. Ilowite, C. A. Wallace, M. Lange, B. K. Finck, and D. J. Burge. Long-term efficacy and safety of etanercept in children with polyarticular-course juvenile rheumatoid arthritis: interim results from an ongoing multicenter, open-label, extended-treatment trial. Arthritis Rheum 2003 48(1):218-26. Rec#: 41940 Reprint: exc nrp

Lovell, D. J., A. Reiff, N. T. Ilowite, C. A. Wallace, Y. Chon, S. L. Lin, S. W. Baumgartner, and E. H. Giannini. Safety and efficacy of up to eight years of continuous etanercept therapy in patients with juvenile rheumatoid arthritis. Arthritis Rheum 2008 58(5):1496-504. Rec#: 77170 Reprint: exc nrp

Lucchini, G., N. Masera, G. Foti, G. Assali, P. Perseghin, and E. Biagi. A life-threatening paediatric case of acute autoimmune haemolytic anaemia (AIHA) successfully cured by plasma-exchange and combined immunosuppressive treatment. Transfus Apher Sci 2009 40(2):115-8. Rec#: 77450 Reprint: exc nri cr

Ludvigsson, J., M. Faresjo, M. Hjorth, S. Axelsson, M. Cheramy, M. Pihl, O. Vaarala, G. Forsander, S. Ivarsson, C. Johansson, A. Lindh, N. O. Nilsson, J. Aman, E. Ortqvist, P. Zerhouni, and R. Casas. GAD treatment and insulin secretion in recent-onset type 1 diabetes. N Engl J Med 2008 359(18):1909-20. Rec#: 40070 Reprint: exc nrc

Ludvigsson, J., and R. Hanas. Continuous subcutaneous glucose monitoring improved metabolic control in pediatric patients with type 1 diabetes: a controlled crossover study. Pediatrics 2003 111(5 Pt 1):933-8. Rec#: 62330 Reprint: exc nro

Ludvigsson, J., U. Samuelsson, J. Ernerudh, C. Johansson, L. Stenhammar, and G. Berlin. Photopheresis at onset of type 1 diabetes: a randomised, double blind, placebo controlled trial. Arch Dis Child 2001 85(2):149-54. Rec#: 40510 Reprint: exc nrc Lueder, G. T., J. M. Brandt, and M. E. Smith. Pathological case of the month. Retinoblastoma with invasion of the optic nerve. Arch Pediatr Adolesc Med 1997 151(10):1057-8. Rec#: 49150 Reprint: exc nrd

Luksch, R., G. Grignani, F. Fagioli, A. Brach del Prever, M. Podda, S. Aliberti, M. Casanova, A. Prete, G. Hanau, A. Tamburini, P. Allione, A. Tienghi, S. Ferrari, P. Collini, A. Marchiano, L. Gandola, M. Aglietta, E. Madon, P. Picci, and F. Fossati-Bellani. Response to melphalan in up-front investigational window therapy for patients with metastatic Ewing's family tumours. Eur J Cancer 2007 43(5):885-90. Rec#: 4400 Reprint: exc nrp

Luksch, R., M. Massimino, G. Cefalo, F. Lombardi, A. Ferrari, M. Casanova, L. Gandola, M. Terenziani, F. Spreafico, and F. Fossati-Bellani. Effects of recombinant human granulocyte-macrophage colony-stimulating factor in an intensive treatment program for children with Ewing's sarcoma. Haematologica 2001 86(7):753-60. Rec#: 13480 Reprint: exc nri

Luksch, R., M. Podda, L. Gandola, D. Polastri, L. Piva, R. Castellani, P. Collini, M. Massimino, G. Cefalo, M. Terenziani, A. Ferrari, M. Casanova, F. Spreafico, C. Meazza, F. Bozzi, A. Marchiano, F. Ravagnani, and F. Fossati-Bellani. Stage 4 neuroblastoma: sequential hemi-body irradiation or high-dose chemotherapy plus autologous haemopoietic stem cell transplantation to consolidate primary treatment. Br J Cancer 2005 92(11):1984-8. Rec#: 7280 Reprint: exc nri

Luo, X. Q., Y. Mo, Z. Y. Ke, L. Xu, X. Y. Jiang, T. T. Zhang, and S. M. Chen. High-dose chemotherapy without stem cell transplantation for refractory childhood systemic lupus erythematosus. Chemotherapy 2008 54(5):331-5. Rec#: 1490 Reprint: exc nrc

Lyos, A. T., H. Goepfert, M. A. Luna, N. Jaffe, and A. Malpica. Soft tissue sarcoma of the head and neck in children and adolescents. Cancer 1996 77(1):193-200. Rec#: 48390 Reprint: exc nri

Lyu, R. K., Y. M. Ko, I. J. Hung, and C. S. Lu. Type C Niemann-Pick disease: report of a Chinese case. J Formos Med Assoc 1993 92(9):829-31. Rec#: 23910 Reprint: EXC NRS

Mabbott, D. J., M. Barnes, N. Laperriere, S. H. Landry, and E. Bouffet. Neurocognitive function in same-sex twins following focal radiation for medulloblastoma. Neuro Oncol 2007 9(4):460-4.

Rec#: 3400 Reprint: EXC NRO Mackall, C. L., D. Stein, T. A. Fleisher, M. R. Brown, F. T. Hakim, C. V. Bare, S. F. Leitman, E. J. Read, C. S. Carter, L. H. Wexler, and R. E. Gress. Prolonged CD4 depletion after sequential autologous peripheral blood progenitor cell infusions in children and young adults. Blood 2000 96(2):754-62. Rec#: 15180 Reprint: exc nro

Maegawa, G. H., P. L. van Giersbergen, S. Yang, B. Banwell, C. P. Morgan, J. Dingemanse, C. J. Tifft, and J. T. Clarke. Pharmacokinetics, safety and tolerability of miglustat in the treatment of pediatric patients with GM2 gangliosidosis. Mol Genet Metab 2009 97(4):284-91. Rec#: 56630 Reprint: exc nro

Magnaldi, S., R. Longo, M. Ukmar, M. Zanatta, M. Bottega, and G. L. Sottocasa. Bone marrow relaxation times in Gaucher disease before and after enzyme replacement therapy. Eur Radiol 1997 7(4):486-91. Rec#: 19890 Reprint: exc dac

Mahdi, G., D. M. Israel, and E. Hassall. Cyclosporine and 6mercaptopurine for active, refractory Crohn's colitis in children. Am J Gastroenterol 1996 91(7):1355-9. Rec#: 42560 Reprint: exc nrs

Mandelbrot, D. A., P. W. Santos, R. K. Burt, Y. Oyama, G. A. Block, S. N. Ahya, R. M. Rosa, and A. E. Traynor. Resolution of SLE-related soft-tissue calcification following haematopoietic stem cell transplantation. Nephrol Dial Transplant 2008 23(8):2679-84. Rec#: 2270 Reprint: exc nrp

Mansfield, J. C., M. Parkes, A. B. Hawthorne, A. Forbes, C. S. Probert, R. C. Perowne, A. Cooper, J. B. Zeldis, D. C. Manning, and C. J. Hawkey. A randomized, double-blind, placebo-controlled trial of lenalidomide in the treatment of moderately severe active Crohn's disease. Aliment Pharmacol Ther 2007 26(3):421-30. Rec#: 41250 Reprint: exc nrp

Marabelle, A., D. Campagne, P. Dechelotte, J. Chipponi, F. Demeocq, and J. Kanold. Focal nodular hyperplasia of the liver in patients previously treated for pediatric neoplastic diseases. J Pediatr Hematol Oncol 2008 30(7):546-9. Rec#: 1320 Reprint: exc nrd nrp

Marabelle, A., C. Paillard, A. Tchirkov, P. Halle, J. Chassagne, F. Demeocq, and J. Kanold. Graft-versus-tumour effect in refractory metastatic neuroblastoma. 2007. Rec#: 4010 Reprint: exc nrs Marina, N., and P. A. Meyers. High-dose therapy and stem-cell rescue for Ewing's family of tumors in second remission. J Clin Oncol 2005 23(19):4262-4. Rec#: 7510 Reprint: EXC EDT

Marina, N. M., A. S. Pappo, D. M. Parham, A. M. Cain, B. N. Rao, C. A. Poquette, C. B. Pratt, C. Greenwald, and W. H. Meyer. Chemotherapy dose-intensification for pediatric patients with Ewing's family of tumors and desmoplastic small round-cell tumors: a feasibility study at St. Jude Children's Research Hospital. J Clin Oncol 1999 17(1):180-90. Rec#: 44060 Reprint: exc nrp

Markowitz, J., K. Grancher, N. Kohn, M. Lesser, and F. Daum. A multicenter trial of 6-mercaptopurine and prednisone in children with newly diagnosed Crohn's disease. Gastroenterology 2000 119(4):895-902. Rec#: 42200 Reprint: exc nrc

Markowitz, J. F. Therapeutic efficacy and safety of 6mercaptopurine and azathioprine in patients with Crohn's disease. Rev Gastroenterol Disord 2003 3 Suppl 1:S23-9. Rec#: 10700 Reprint: exc nra

Marmont, A. M., F. Gualandi, D. Occhini, F. Morandi, E. Ferretti, A. Pezzolo, P. Strada, J. L. Ravetti, V. Pistoia, A. Falanga, and A. Bacigalupo. Catastrophic relapse of Evans syndrome five years after allogeneic BMT notwithstanding full donor chimerism. Terminal hemolytic-uremic syndrome. Autoimmunity 2006 39(6):505-11. Rec#: 4790 Reprint: exc nrp

Martin, P. L., S. L. Carter, N. A. Kernan, I. Sahdev, D. Wall, D. Pietryga, J. E. Wagner, and J. Kurtzberg. Results of the cord blood transplantation study (COBLT): outcomes of unrelated donor umbilical cord blood transplantation in pediatric patients with lysosomal and peroxisomal storage diseases. Biol Blood Marrow Transplant 2006 12(2):184-94. Rec#: 6110

Reprint: exc nrp

Martinez-Banos, D., J. C. Crispin, A. Lazo-Langner, and J. Sanchez-Guerrero. Moderate and severe neutropenia in patients with systemic lupus erythematosus. Rheumatology (Oxford) 2006 45(8):994-8. Rec#: 6000 Reprint: exc nro

Martini, A., R. Maccario, A. Ravelli, D. Montagna, F. De Benedetti, F. Bonetti, S. Viola, M. Zecca, C. Perotti, and F. Locatelli. Marked and sustained improvement two years after autologous stem cell transplantation in a girl with systemic sclerosis. Arthritis Rheum 1999 42(4):807-11. Rec#: 16930 Reprint: exc same as rec 16270 Marwaha, R. K., P. Aggarwal, and A. Trehan. Immune thrombocytopenic purpura. Indian Pediatr 1996 33(12):1019-26. Rec#: 19970 Reprint: exc nra

Marymont, M. H., J. Geohas, T. Tomita, L. Strauss, W. N. Brand, and B. B. Mittal. Hyperfractionated craniospinal radiation in medulloblastoma. Pediatr Neurosurg 1996 24(4):178-84. Rec#: 21180 Reprint: EXC NRI

Massimino, M., L. Gandola, F. Spreafico, R. Luksch, P. Collini, F. Giangaspero, F. Simonetti, M. Casanova, G. Cefalo, E. Pignoli, A. Ferrari, M. Terenziani, M. Podda, C. Meazza, D. Polastri, G. Poggi, F. Ravagnani, and F. Fossati-Bellani. Supratentorial primitive neuroectodermal tumors (S-PNET) in children: A prospective experience with adjuvant intensive chemotherapy and hyperfractionated accelerated radiotherapy. Int J Radiat Oncol Biol Phys 2006 64(4):1031-7. Rec#: 6330 Reprint: EXC NRI

Mathew, S., D. Head, C. Rodriguez-Galindo, and S. C. Raimondi. Trisomy of the long arm of chromosome 1 resulting in a dicentric derivative (6)t(1;6) chromosome in a child with myelodysplastic syndrome following treatment for a primitive neuroectodermal tumor. Leuk Lymphoma 2000 37(1-2):213-8. Rec#: 15510 Reprint: EXC NRI

Matsumoto, M., H. Yagi, H. Ishizashi, H. Wada, and Y. Fujimura. The Japanese experience with thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Semin Hematol 2004 41(1):68-74. Rec#: 9410 Reprint: exc nrd

Matthay, K. K. Impact of myeloablative therapy with bone marrow transplantation in advanced neuroblastoma. Bone Marrow Transplant 1996 18 Suppl 3:S21-4. Rec#: 20030 Reprint: EXC NRI

Matthay, K. K., J. B. Atkinson, D. O. Stram, M. Selch, C. P. Reynolds, and R. C. Seeger. Patterns of relapse after autologous purged bone marrow transplantation for neuroblastoma: a Childrens Cancer Group pilot study. J Clin Oncol 1993 11(11):2226-33. Rec#: 23710 Reprint: EXC YEAR

Matthay, K. K., K. DeSantes, B. Hasegawa, J. Huberty, R. S. Hattner, A. Ablin, C. P. Reynolds, R. C. Seeger, V. K. Weinberg, and D. Price. Phase I dose escalation of 131Imetaiodobenzylguanidine with autologous bone marrow support in refractory neuroblastoma. J Clin Oncol 1998 16(1):229-36. Rec#: 18780 Reprint: exc nri Matthay, K. K., V. Edeline, J. Lumbroso, M. L. Tanguy, B. Asselain, J. M. Zucker, D. Valteau-Couanet, O. Hartmann, and J. Michon. Correlation of early metastatic response by 123Imetaiodobenzylguanidine scintigraphy with overall response and event-free survival in stage IV neuroblastoma. J Clin Oncol 2003 21(13):2486-91. Rec#: 10310

Reprint: exc nri

Matthay, K. K., M. C. O'Leary, N. K. Ramsay, J. Villablanca, C. P. Reynolds, J. B. Atkinson, G. M. Haase, D. O. Stram, and R. C. Seeger. Role of myeloablative therapy in improved outcome for high risk neuroblastoma: review of recent Children's Cancer Group results. Eur J Cancer 1995 31A(4):572-5. Rec#: 22410 Reprint: EXC NRI NPD

Matthay, K. K., C. Perez, R. C. Seeger, G. M. Brodeur, H. Shimada, J. B. Atkinson, C. T. Black, R. Gerbing, G. M. Haase, D. O. Stram, P. Swift, and J. N. Lukens. Successful treatment of stage III neuroblastoma based on prospective biologic staging: a Children's Cancer Group study. J Clin Oncol 1998 16(4):1256-64. Rec#: 18370 Reprint: exc nri

Matthay, K. K., R. C. Seeger, C. P. Reynolds, D. O. Stram, M. O'Leary, R. E. Harris, M. Selch, J. B. Atkinson, G. Haase, G. D. Hammond, and a. l. .. et. Comparison of autologous and allogeneic bone marrow transplantation for neuroblastoma. Prog Clin Biol Res 1994 385:301-7. Rec#: 23440 Reprint: EXC Year

Matthay, K. K., R. C. Seeger, C. P. Reynolds, D. O. Stram, M. C. O'Leary, R. E. Harris, M. Selch, J. B. Atkinson, G. M. Haase, and N. K. Ramsay. Allogeneic versus autologous purged bone marrow transplantation for neuroblastoma: a report from the Childrens Cancer Group. J Clin Oncol 1994 12(11):2382-9. Rec#: 22540 Reprint: EXC Year

Matthay, K. K., J. C. Tan, J. G. Villablanca, G. A. Yanik, J. Veatch, B. Franc, E. Twomey, B. Horn, C. P. Reynolds, S. Groshen, R. C. Seeger, and J. M. Maris. Phase I dose escalation of iodine-131-metaiodobenzylguanidine with myeloablative chemotherapy and autologous stem-cell transplantation in refractory neuroblastoma: a new approaches to Neuroblastoma Therapy Consortium Study. J Clin Oncol 2006 24(3):500-6. Rec#: 6210 Reprint: exc nri

McBride, S. M., S. M. Daganzo, A. Banerjee, N. Gupta, K. R. Lamborn, M. D. Prados, M. S. Berger, W. M. Wara, and D. A. Haas-Kogan. Radiation is an important component of multimodality therapy for pediatric non-pineal supratentorial primitive neuroectodermal tumors. Int J Radiat Oncol Biol Phys 2008 72(5):1319-23. Rec#: 1970 Reprint: EXC NRI McCabe, M. A., H. Crowe, and R. Quinones. Neurodevelopmental side effects of bone marrow transplantation: two case illustrations of identical twins. J Pediatr Hematol Oncol 1997 19(2):145-50. Rec#: 19610 Reprint: exc nri

McCowage, G. B., M. R. Vowels, P. J. Shaw, L. Lockwood, and H. Mameghan. Autologous bone marrow transplantation for advanced neuroblastoma using teniposide, doxorubicin, melphalan, cisplatin, and total-body irradiation. J Clin Oncol 1995 13(11):2789-95. Rec#: 21440 Reprint: EXC NRI

McDowell, R., J. S. Li, D. K. Jr Benjamin, C. Morgan, A. Becker, P. S. Kishnani, and R. J. Kanter. Arrhythmias in patients receiving enzyme replacement therapy for infantile Pompe disease. Genet Med 2008 10(10):758-62. Rec#: 56770 Reprint: exc nrc

McMinn, J. R. Jr, S. Cohen, J. Moore, S. Lilly, J. Parkhurst, M. D. Tarantino, D. R. Terrell, and J. N. George. Complete recovery from refractory immune thrombocytopenic purpura in three patients treated with etanercept. Am J Hematol 2003 73(2):135-40. Rec#: 78200 Reprint: exc nrc

Meany, H. J., N. L. Seibel, J. Sun, J. Z. Finklestein, J. Sato, J. Kelleher, P. Sondel, and G. Reaman. Phase 2 trial of recombinant tumor necrosis factor-alpha in combination with dactinomycin in children with recurrent Wilms tumor. J Immunother 2008 31(7):679-83. Rec#: 44810 Reprint: EXC NRO

Meignin, V., E. Gluckman, D. Gambaraelli, A. Devergie, M. P. Ramee, A. Janin, and G. Socie. Meningioma in long-term survivors after allogeneic bone marrow transplantation. Bone Marrow Transplant 1998 22(7):723-4. Rec#: 72500 Reprint: EXC NRI

Melemed, A. S., G. Vance, P. K. Kotylo, and F. O. Smith. Potential role of hematopoietic stem cell transplantation in children with secondary acute lymphocytic leukemia. Bone Marrow Transplant 2002 29(2):173-5. Rec#: 12590 Reprint: exc nri

Mellouli, F., H. Ksouri, L. Torjmen, A. Abdelkefi, S. Ladeb, T. Ben Othman, A. Ben Hassen, and M. Bejaoui. Transmission of type 1 diabetes by bone marrow transplantation: a case report. Pediatr Transplant 2009 13(1):119-22. Rec#: 2610 Reprint: exc nrs

Metzger, M. L., C. F. Stewart, B. B. 3rd Freeman, C. A. Billups, F. A. Hoffer, J. Wu, M. J. Coppes, R. Grant, M. Chintagumpala, E. A. Mullen, C. Alvarado, N. C. Daw, and J. S. Dome. Topotecan is active against Wilms' tumor: results of a multi-institutional phase II study. J Clin Oncol 2007 25(21):3130-6. Rec#: 44940 Reprint: exc nrs

Meyer, A., K. Kossow, A. Gal, C. Muhlhausen, K. Ullrich, T. Braulke, and N. Muschol. Scoring evaluation of the natural course of mucopolysaccharidosis type IIIA (Sanfilippo syndrome type A). Pediatrics 2007 120(5):e1255-61. Rec#: 56890 Reprint: exc nrs

Miano, M., A. Garaventa, M. R. Pizzitola, M. S. Piccolo, S. Dallorso, G. P. Villavecchia, C. Bertolazzi, M. Cabria, and B. De Bernardi. Megatherapy combining I(131) metaiodobenzylguanidine and high-dose chemotherapy with haematopoietic progenitor cell rescue for neuroblastoma. Bone Marrow Transplant 2001 27(6):571-4. Rec#: 13820 Reprint: exc nri

Mikaeloff, Y., M. A. Raquin, A. Lellouch-Tubiana, M. J. Terrier-Lacombe, M. Zerah, C. Bulteau, J. L. Habrand, and C. Kalifa. Primitive cerebral neuroectodermal tumors excluding medulloblastomas: a retrospective study of 30 cases. Pediatr Neurosurg 1998 29(4):170-7. Rec#: 71900 Reprint: EXC NRI

Miser, J. S., R. E. Goldsby, Z. Chen, M. D. Krailo, N. J. Tarbell, M. P. Link, C. J. Fryer, D. J. Pritchard, M. C. Gebhardt, P. S. Dickman, E. J. Perlman, P. A. Meyers, S. S. Donaldson, S. G. Moore, A. R. Rausen, T. J. Vietti, and H. E. Grier. Treatment of metastatic Ewing sarcoma/primitive neuroectodermal tumor of bone: evaluation of increasing the dose intensity of chemotherapy-a report from the Children's Oncology Group. Pediatr Blood Cancer 2007 49(7):894-900. Rec#: 3680

Reprint: EXC DUP

Miser, J. S., M. D. Krailo, N. J. Tarbell, M. P. Link, C. J. Fryer, D. J. Pritchard, M. C. Gebhardt, P. S. Dickman, E. J. Perlman, P. A. Meyers, S. S. Donaldson, S. Moore, A. R. Rausen, T. J. Vietti, and H. E. Grier. Treatment of metastatic Ewing's sarcoma or primitive neuroectodermal tumor of bone: evaluation of combination ifosfamide and etoposide--a Children's Cancer Group and Pediatric Oncology Group study. J Clin Oncol 2004 22(14):2873-6. Rec#: 8580 Reprint: exc nrp

Mishima, Y., E. Nagasaki, Y. Terui, T. Irie, S. Takahashi, Y. Ito, M. Oguchi, K. Kawabata, S. Kamata, and K. Hatake. Combination chemotherapy (cyclophosphamide, doxorubicin, and vincristine with continuous-infusion cisplatin and etoposide) and radiotherapy with stem cell support can be beneficial for adolescents and adults with estheisoneuroblastoma. Cancer 2004 101(6):1437-44. Rec#: 8320 Reprint: exc nrd Mitchell, C., P. M. Jones, A. Kelsey, G. M. Vujanic, B. Marsden, R. Shannon, P. Gornall, C. Owens, R. Taylor, J. Imeson, H. Middleton, and J. Pritchard. The treatment of Wilms' tumour: results of the United Kingdom Children's cancer study group (UKCCSG) second Wilms' tumour study. Br J Cancer 2000 83(5):602-8. Rec#: 45830 Reprint: exc nrp

Mitchell, C., K. Pritchard-Jones, R. Shannon, C. Hutton, S. Stevens, D. Machin, J. Imeson, A. Kelsey, G. M. Vujanic, P. Gornall, J. Walker, R. Taylor, P. Sartori, J. Hale, G. Levitt, B. Messahel, H. Middleton, R. Grundy, and J. Pritchard. Immediate nephrectomy versus preoperative chemotherapy in the management of non-metastatic Wilms' tumour: results of a randomised trial (UKW3) by the UK Children's Cancer Study Group. Eur J Cancer 2006 42(15):2554-62. Rec#: 45050 Reprint: exc nrp

Mittal, R., S. Al Awadi, O. Sahar, and A. M. Behbehani. Ewing's sarcoma as second malignant neoplasm after retinoblastoma: a case report. Med Princ Pract 2008 17(1):84-5. Rec#: 2820 Reprint: exc nrp

Mittal, S., B. J. Milner, P. W. Johnston, and D. J. Culligan. A case of hepatosplenic gamma-delta T-cell lymphoma with a transient response to fludarabine and alemtuzumab. Eur J Haematol 2006 76(6):531-4. Rec#: 5880 Reprint: EXC NRD NRI

Miyatake, S., S. Kawabata, K. Yokoyama, T. Kuroiwa, H. Michiue, Y. Sakurai, H. Kumada, M. Suzuki, A. Maruhashi, M. Kirihata, and K. Onoc. Survival benefit of boron neutron capture therapy for recurrent malignant gliomas. Appl Radiat Isot 2009 67(7-8 Suppl):S22-4. Rec#: 54380 Reprint: exc nrp

Moftakhar, P., X. Fan, C. H. Hurvitz, K. L. Black, and M. Danielpour. Long-term survival in a child with a central nervous system medulloepithelioma. J Neurosurg Pediatr 2008 2(5):339-45. Rec#: 71120 Reprint: EXC NRI

Mondria, T., C. H. Lamers, P. A. te Boekhorst, J. W. Gratama, and R. Q. Hintzen. Bone-marrow transplantation fails to halt intrathecal lymphocyte activation in multiple sclerosis. J Neurol Neurosurg Psychiatry 2008 79(9):1013-5. Rec#: 2550 Reprint: exc nro

Moore, A. S., P. J. Shaw, A. R. Hallahan, T. L. Carter, T. Kilo, I. Nivison-Smith, T. A. O'Brien, H. Tapp, L. Teague, S. R. Wilson, and K. Tiedemann. Haemopoietic stem cell transplantation for children in Australia and New Zealand, 1998-2006: a report on behalf of the Australasian Bone Marrow Transplant Recipient

Registry and the Australian and New Zealand Children's Haematology Oncology Group. Med J Aust 2009 190(3):121-5. Rec#: 70140 Reprint: EXC NRO

Moreno, J. C., F. Valverde, F. Martinez, A. Velez, A. Torres, J. Fanego, and M. S. Ocana. Bullous scleroderma-like changes in chronic graft-versus-host disease. J Eur Acad Dermatol Venereol 2003 17(2):200-3. Rec#: 10620 Reprint: exc nrs

Moser, H. W. New concepts in the diagnosis and treatment of lysosomal and peroxisomal disorders. Curr Opin Neurol Neurosurg 1992 5(3):355-8. Rec#: 25050 Reprint: EXC REV

Motto, D. G., J. A. Williams, and L. A. Boxer. Rituximab for refractory childhood autoimmune hemolytic anemia. Isr Med Assoc J 2002 4(11):1006-8. Rec#: 78290 Reprint: exc nrc

Motzer R, Nichols C, Margolin K, Bacik J, Richardson P, Vogelzang N et al. Phase III randomized trial of conventionaldose chemotherapy with or without high-dose chemotherapy and autologous hematopoietic stem-cell rescue as first-line treatment for patients with poor-prognosis metastatic germ cell tumors. J Clin Oncol 2007 25:247-256. Rec#: 78860 Poprint: EXC NBP

Reprint: EXC NRP

Motzer, R. J., M. Mazumdar, G. J. Bosl, D. F. Bajorin, A. Amsterdam, and V. Vlamis. High-dose carboplatin, etoposide, and cyclophosphamide for patients with refractory germ cell tumors: treatment results and prognostic factors for survival and toxicity. J Clin Oncol 1996 14(4):1098-105. Rec#: 51600 Reprint: exc nrp

Motzer RJ, Mazumdar M, Bosl GJ, et al. High-dose carboplatin, etoposide, and cyclophosphamide for patients with refractory germ cell tumors: treatment results and prognostic factors for survival and toxicity. J Clin Oncol 1996 14:1098-1105. Rec#: 78810 Reprint: EXC NRP

Motzer RJ, Sheinfeld S. Poor-risk testicular cancer and highdose chemotherapy. J Clin Oncol 2003 21:4073-4074. Rec#: 78830 Reprint: EXC EDT

Moyo, V. M., D. Smith, I. Brodsky, P. Crilley, R. J. Jones, and R. A. Brodsky. High-dose cyclophosphamide for refractory autoimmune hemolytic anemia. Blood 2002 100(2):704-6. Rec#: 11960 Reprint: exc nrs Mugishima, H., K. Harada, T. Suzuki, M. Chin, T. Shimada, M. Takamura, H. Shichino, T. Fujisawa, M. Ichikawa, M. Iwata, and a. l. .. et. Comprehensive treatment of advanced neuroblastoma involving autologous bone marrow transplant. Acta Paediatr Jpn 1995 37(4):493-9. Rec#: 21660 Reprint: EXC NRI

Mulhern, R. K., S. L. Palmer, T. E. Merchant, D. Wallace, M. Kocak, P. Brouwers, K. Krull, M. Chintagumpala, R. Stargatt, D. M. Ashley, V. L. Tyc, L. Kun, J. Boyett, and A. Gajjar. Neurocognitive consequences of risk-adapted therapy for childhood medulloblastoma. J Clin Oncol 2005 23(24):5511-9. Rec#: 6840 Reprint: EXC NRO

Mulne, A. F., J. M. Ducore, R. D. Elterman, H. S. Friedman, J. P. Krischer, L. E. Kun, J. J. Shuster, and R. P. Kadota. Oral methotrexate for recurrent brain tumors in children: a Pediatric Oncology Group study. J Pediatr Hematol Oncol 2000 22(1):41-4. Rec#: 53580 Reprint: exc nro

Musso, M., F. Porretto, A. Crescimanno, F. Bondi, V. Polizzi, R. Scalone, and G. Mariani. Autologous peripheral blood stem and progenitor (CD34+) cell transplantation for systemic lupus erythematosus complicated by Evans syndrome. Lupus 1998 7(7):492-4. Rec#: 17530 Reprint: exc nro

Mutafoglu Uysal, K., N. Olgun, F. Sarialioglu, A. Kargi, and N. Cevik. A case with extraosseous Ewing's sarcoma: a late effect related to bone marrow transplantation for thalassemia or a component of a familial cancer syndrome? Pediatr Hematol Oncol 2000 17(5):415-9. Rec#: 15130 Reprint: EXC NRD

Muwakkit, S., R. Rachid, A. Bazarbachi, T. Araysi, and G. S. Dbaibo. Treatment-resistant infantile Evans syndrome. Pediatr Int 2001 43(5):502-4. Rec#: 78390 Reprint: exc cr

Nabhan, Z. M., N. C. Kreher, D. M. Greene, E. A. Eugster, W. Kronenberger, and L. A. DiMeglio. A randomized prospective study of insulin pump vs. insulin injection therapy in very young children with type 1 diabetes: 12-month glycemic, BMI, and neurocognitive outcomes. Pediatr Diabetes 2009 10(3):202-8. Rec#: 61730 Reprint: exc nro

Nagane, M., K. Kobayashi, A. Ohnishi, S. Shimizu, and Y. Shiokawa. Prognostic significance of O6-methylguanine-DNA methyltransferase protein expression in patients with recurrent glioblastoma treated with temozolomide. Jpn J Clin Oncol 2007 37(12):897-906. Rec#: 54640 Reprint: exc nrp Nakagawa, Y., T. Kageji, Y. Mizobuchi, H. Kumada, and Y. Nakagawa. Clinical results of BNCT for malignant brain tumors in children. Appl Radiat Isot 2009 67(7-8 Suppl):S27-30. Rec#: 54370 Reprint: exc nrt

Nakakura, H., A. Ashida, H. Matsumura, T. Murata, K. Nagatoya, N. Shibahara, T. Inoue, and H. Tamai. A case report of successful treatment with plasma exchange for hemophagocytic syndrome associated with severe systemic juvenile idiopathic arthritis in an infant girl. Ther Apher Dial 2009 13(1):71-6. Rec#: 280 Reprint: exc nrd

Nasution, R., and A. Sutjipto. Childhood retinoblastoma. Paediatr Indones 1991 31(3-4):117-22. Rec#: 26320 Reprint: EXC YEAR

Nathan, D. M., P. A. Cleary, J. Y. Backlund, S. M. Genuth, J. M. Lachin, T. J. Orchard, P. Raskin, and B. Zinman. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 2005 353(25):2643-53. Rec#: 62090 Reprint: exc nrp

Nathan, D. M., B. Zinman, P. A. Cleary, J. Y. Backlund, S. Genuth, R. Miller, and T. J. Orchard. Modern-day clinical course of type 1 diabetes mellitus after 30 years' duration: the diabetes control and complications trial/epidemiology of diabetes interventions and complications and Pittsburgh epidemiology of diabetes complications experience (1983-. Arch Intern Med 2009 169(14):1307-16. Rec#: 61680

Reprint: exc nrp

Nathan, P. C., W. Furlong, S. De Pauw, J. Horsman, C. Van Schaik, M. Rolland, S. Weitzman, D. Feeny, and R. D. Barr. Health status of young children during therapy for advanced neuroblastoma. Pediatr Blood Cancer 2004 43(6):659-67. Rec#: 8250 Reprint: exc nri

Navid, F., C. Billups, T. Liu, M. J. Krasin, and C. Rodriguez-Galindo. Second cancers in patients with the Ewing sarcoma family of tumours. Eur J Cancer 2008 44(7):983-91. Rec#: 43000 Reprint: exc nrp

Nelson, J. L., R. Torrez, F. M. Louie, O. S. Choe, R. Storb, and K.
M. Sullivan. Pre-existing autoimmune disease in patients with long-term survival after allogeneic bone marrow transplantation. J Rheumatol Suppl 1997 48:23-9.
Rec#: 19500
Reprint: exc nrd

Nenadov Beck, M., V. Meresse, O. Hartmann, and C. Gaultier. Long-term pulmonary sequelae after autologous bone marrow transplantation in children without total body irradiation. Bone Marrow Transplant 1995 16(6):771-5. Rec#: 21340 Reprint: EXC NRO

Nerome, Y., H. Imanaka, Y. Nonaka, and S. Takei. Switching the therapy from etanercept to infliximab in a child with rheumatoid factor positive polyarticular juvenile idiopathic arthritis. Mod Rheumatol 2007 17(6):526-8. Rec#: 41150 Reprint: exc cr

Neuwelt, C. M. The role of plasmapheresis in the treatment of severe central nervous system neuropsychiatric systemic lupus erythematosus. Ther Apher Dial 2003 7(2):173-82. Rec#: 10020 Reprint: exc nri

Neve, V., A. B. Foot, J. Michon, A. Fourquet, J. M. Zucker, and M. Boule. Longitudinal clinical and functional pulmonary followup after megatherapy, fractionated total body irradiation, and autologous bone marrow transplantation for metastatic neuroblastoma. Med Pediatr Oncol 1999 32(3):170-6. Rec#: 17160 Reprint: EXC NRI

Ng, S. M., W. A. Abdullah, H. P. Lin, and L. L. Chan. Presenting features and treatment outcome of 78 Malaysian children with neuroblastoma. Southeast Asian J Trop Med Public Health 1999 30(1):149-53. Rec#: 15620 Reprint: exc nri

Nguyen, Q. A., J. G. Villablanca, S. E. Siegel, and D. M. Crockett. Esthesioneuroblastoma in the pediatric age-group: the role of chemotherapy and autologous bone marrow transplantation. Int J Pediatr Otorhinolaryngol 1996 37(1):45-52. Rec#: 20280 Reprint: exc nri

Nicholson, H. S., C. S. Kretschmar, M. Krailo, M. Bernstein, R. Kadota, D. Fort, H. Friedman, M. B. Harris, N. Tedeschi-Blok, C. Mazewski, J. Sato, and G. H. Reaman. Phase 2 study of temozolomide in children and adolescents with recurrent central nervous system tumors: a report from the Children's Oncology Group. Cancer 2007 110(7):1542-50. Rec#: 52240 Reprint: exc nro

Nicolaides, T., T. Tihan, B. Horn, J. Biegel, M. Prados, and A. Banerjee. High-dose chemotherapy and autologous stem cell rescue for atypical teratoid/rhabdoid tumor of the central nervous system. J Neurooncol 2010 98(1):117-23. Rec#: 71920 Reprint: EXC; NRI; one HSCT patient reported in Gardner (2008)

Nicolino, M., B. Byrne, J. E. Wraith, N. Leslie, H. Mandel, D. R. Freyer, G. L. Arnold, E. K. Pivnick, C. J. Ottinger, P. H. Robinson, J. C. Loo, M. Smitka, P. Jardine, L. Tato, B. Chabrol, S. McCandless, S. Kimura, L. Mehta, D. Bali, A. Skrinar, C. Morgan, L. Rangachari, D. Corzo, and P. S. Kishnani. Clinical outcomes after long-term treatment with alglucosidase alfa in infants and children with advanced Pompe disease. Genet Med 2009 11(3):210-9. Rec#: 56680 Reprint: exc nrc

Niebanck, A. E., J. L. Kwiatkowski, and L. J. Raffini. Neutropenia following IVIG therapy in pediatric patients with immunemediated thrombocytopenia. J Pediatr Hematol Oncol 2005 27(3):145-7. Rec#: 7600 Reprint: exc nro

Niedzielska, E., D. Wojcik, E. Barg, W. Pietras, D. Sega-Pondel, A. Doroszko, M. Niedzielska, M. Skarzynska, and A. Chybicka. [Evaluation of selected endocrine complications in patients treated with auto- and allo-haematopoietic stem cell transplantation]. Med Wieku Rozwoj 2008 12(3):761-6. Rec#: 70240 Reprint: EXC FLA

Nitschke, R., J. Parkhurst, J. Sullivan, M. B. Harris, M. Bernstein, and C. Pratt. Topotecan in pediatric patients with recurrent and progressive solid tumors: a Pediatric Oncology Group phase II study. J Pediatr Hematol Oncol 1998 20(4):315-8. Rec#: 48130 Reprint: EXC NRI

Nitschke, R., E. I. Smith, G. Altshuler, D. Altmiller, J. Shuster, A. Green, R. Castleberry, F. A. Hayes, B. Golembe, and R. Ducos. Postoperative treatment of nonmetastatic visible residual neuroblastoma: a Pediatric Oncology Group study. J Clin Oncol 1991 9(7):1181-8. Rec#: 26110 Reprint: EXC YEAR

Nordfeldt, S., and J. Ludvigsson. Adverse events in intensively treated children and adolescents with type 1 diabetes. Acta Paediatr 1999 88(11):1184-93. Rec#: 62530 Reprint: exc nrs

Nordwall, M., L. Hyllienmark, and J. Ludvigsson. Early diabetic complications in a population of young patients with type 1 diabetes mellitus despite intensive treatment. J Pediatr Endocrinol Metab 2006 19(1):45-54. Rec#: 62060 Reprint: exc nrp

Notteghem, P., C. Soler, G. Dellatolas, V. Kieffer-Renaux, D. Valteau-Couanet, G. Raimondo, and O. Hartmann. Neuropsychological outcome in long-term survivors of a childhood extracranial solid tumor who have undergone autologous bone marrow transplantation. Bone Marrow Transplant 2003 31(7):599-606.

Rec#: 10640 Reprint: exc nro O, Bokemeyer C, Beyer J, Hartmann J, Schwella N, Kingreen D et al. Salvage treatment with paclitaxel, ifosfamide, and cisplatin plus high-dose carboplatin, etoposide, and thiotepa followed by autologous stem-cell rescue in patients with relapsed or refractory germ cell cancer. J Clin Oncol 2001 19:81-88. Rec#: 78850 Reprint: EXC NRP

Obata, H., T. Ueda, A. Kawai, T. Ishii, T. Ozaki, S. Abe, K. Tanaka, H. Tsuchiya, A. Matsumine, and H. Yabe. Clinical outcome of patients with Ewing sarcoma family of tumors of bone in Japan: the Japanese Musculoskeletal Oncology Group cooperative study. Cancer 2007 109(4):767-75. Rec#: 43180 Reprint: exc nrp

Oberlin, O., A. Rey, A. S. Desfachelles, T. Philip, D. Plantaz, C. Schmitt, E. Plouvier, O. Lejars, H. Rubie, P. Terrier, and J. Michon. Impact of high-dose busulfan plus melphalan as consolidation in metastatic Ewing tumors: a study by the Societe Francaise des Cancers de l'Enfant. J Clin Oncol 2006 24(24):3997-4002. Rec#: 5130 Reprint: exc nrp

O'Brien, T. A., T. Eastlund, C. Peters, J. P. Neglia, T. Defor, N. K. Ramsay, and K. Scott Baker. Autoimmune haemolytic anaemia complicating haematopoietic cell transplantation in paediatric patients: high incidence and significant mortality in unrelated donor transplants for non-malignant diseases. Br J Haematol 2004 127(1):67-75. Rec#: 8270 Reprint: exc nrd

Ochiai, T., K. Ito, T. Okada, M. Chin, H. Shichino, and H. Mugishima. Significance of extensive Mongolian spots in Hunter's syndrome. Br J Dermatol 2003 148(6):1173-8. Rec#: 10320 Reprint: EXC DAC

Ochiai, T., K. Ito, H. Shichino, M. Chin, and H. Mugishima. Ultrastructural findings of cutaneous nerves in patients with Hunter's syndrome following hematopoietic stem cell transplant. Med Mol Morphol 2005 38(2):118-22. Rec#: 7140 Reprint: exc nro

Ogawa, H., H. Kameda, K. Amano, and T. Takeuchi. Efficacy and safety of cyclosporine A in patients with refractory systemic lupus erythematosus in a daily clinical practice. Lupus 2010 19(2):162-9. Rec#: 40850 Reprint: exc nrp

Ogose, T., T. Watanabe, H. Suzuya, M. Kaneko, T. Onishi, H. Watanabe, R. Nakagawa, Y. Okamoto, N. Sano, Y. Kozan, and Y. Kuroda. Autoimmune hepatitis following allogeneic PBSCT from an HLA-matched sibling. Bone Marrow Transplant 2003 31(9):829-32. Rec#: 10590 Reprint: EXC NRS Ohnuma, K., K. Isoyama, and H. Nishihira. Cord blood transplantation from HLA-mismatched unrelated donors. Leuk Lymphoma 2002 43(5):1029-34. Rec#: 11840 Reprint: exc nrp

Ohnuma, N., H. Takahashi, M. Kaneko, J. Uchino, T. Takeda, M. Iwafuchi, M. Ohhira, H. Nishihira, H. Mugishima, J. Yokoyama, and a. 1. .. et. Treatment combined with bone marrow transplantation for advanced neuroblastoma: an analysis of patients who were pretreated intensively with the protocol of the Study Group of Japan. Med Pediatr Oncol 1995 24(3):181-7. Rec#: 22030 Reprint: EXC NRI

Okamoto, Y., Y. Takaue, S. Saito, T. Shimizu, T. Suzue, T. Abe, J. Sato, A. Hirao, T. Watanabe, Y. Kawano, and a. l. .. et. Toxicities associated with cryopreserved and thawed peripheral blood stem cell autografts in children with active cancer. Transfusion 1993 33(7):578-81. Rec#: 24040 Reprint: EXC YEAR

Olivares, J. L., F. J. Ramos, T. Olive, C. Fillat, and M. Bueno. Autoimmune thyroiditis after bone marrow transplantation in a boy with Wiskott-Aldrich syndrome. J Pediatr Hematol Oncol 2002 24(9):772-6. Rec#: 11260 Reprint: exc nrd

Olowu, W. A. Lupus nephropathy and cardiopulmonary and hepatic dysfunctions in a child. Pediatr Nephrol 2006 21(9):1318-22.

Rec#: 5340 Reprint: exc nrd

Olshan, J. S., S. M. Willi, D. Gruccio, and T. Jr Moshang. Growth hormone function and treatment following bone marrow transplant for neuroblastoma. Bone Marrow Transplant 1993 12(4):381-5. Rec#: 23780 Pagerint EXC VEAP

Reprint: EXC YEAR

Ortega, J. A., S. S. Donaldson, S. P. Ivy, A. Pappo, and H. M. Maurer. Venoocclusive disease of the liver after chemotherapy with vincristine, actinomycin D, and cyclophosphamide for the treatment of rhabdomyosarcoma. A report of the Intergroup Rhabdomyosarcoma Study Group. Childrens Cancer Group, the Pediatric Oncology Group, and the Pediatric Intergroup Statistical Center. Cancer 1997 79(12):2435-9. Rec#: 19250 Reprint: exc nro

Osunkwo, I., O. Bessmertny, L. Harrison, Y. K. Cheung, C. Van de Ven, G. del Toro, J. Garvin, D. George, M. B. Bradley, K. Wolownik, C. Wischhover, J. Levy, D. Skerrett, and M. S. Cairo. A pilot study of tacrolimus and mycophenolate mofetil graftversus-host disease prophylaxis in childhood and adolescent allogeneic stem cell transplant recipients. Biol Blood Marrow Transplant 2004 10(4):246-58. Rec#: 9040 Reprint: EXC NRD

Otten, M. H., F. H. Prince, M. Twilt, M. A. van Rossum, W. Armbrust, E. P. Hoppenreijs, S. Kamphuis, Y. Koopman-Keemink, N. M. Wulffraat, S. L. Gorter, R. Ten Cate, and L. W. van Suijlekom-Smit. Delayed clinical response in patients with juvenile idiopathic arthritis treated with etanercept. J Rheumatol 2010 37(3):665-7. Rec#: 77220 Reprint: exc nri

Oyama, Y., W. G. Barr, L. Statkute, T. Corbridge, E. A. Gonda, B. Jovanovic, A. Testori, and R. K. Burt. Autologous nonmyeloablative hematopoietic stem cell transplantation in patients with systemic sclerosis. Bone Marrow Transplant 2007 40(6):549-55. Rec#: 3450

Reprint: exc nrp

Oyharcabal-Bourden, V., C. Kalifa, and J. C. Genet. Standard-Risk Medulloblastoma Traeted by Adjuvant Chemotherapy Followed by Reduced-Dose Craniospinal Radiation Therapy: A French Society of Pediatric Oncology Study. J Clin Oncol 2005 23(19). Rec#: Reprint: exc nri nrc

Ozkan, A., H. Pazarli, T. Celkan, S. Karaman, H. Apak, G. Kaner, O. Uzel, and I. Yildiz. Retinoblastoma in Turkey: survival and clinical characteristics 1981-2004. Pediatr Int 2006 48(4):369-73. Rec#: 5170 Reprint: exc nro

Ozkaynak, M. F., P. M. Sondel, M. D. Krailo, J. Gan, B. Javorsky, R. A. Reisfeld, K. K. Matthay, G. H. Reaman, and R. C. Seeger. Phase I study of chimeric human/murine anti-ganglioside G(D2) monoclonal antibody (ch14.18) with granulocyte-macrophage colony-stimulating factor in children with neuroblastoma immediately after hematopoietic stem-cell transplantation: a Children's Cancer Group Study. J Clin Oncol 2000 18(24):4077-85.

Rec#: 14390 Reprint: exc nri

Ozsahin, H., F. Le Deist, M. Benkerrou, M. Cavazzana-Calvo, L. Gomez, C. Griscelli, S. Blanche, and A. Fischer. Bone marrow transplantation in 26 patients with Wiskott-Aldrich syndrome from a single center. J Pediatr 1996 129(2):238-44. Rec#: 20380 Reprint: exc nrs

Padeh, S., N. Sharon, G. Schiby, G. Rechavi, and J. H. Passwell. Hodgkin's lymphoma in systemic onset juvenile rheumatoid arthritis after treatment with low dose methotrexate. J Rheumatol 1997 24(10):2035-7. Rec#: 18970 Reprint: exc nro

Padula, G. D., B. McCormick, and D. H. Abramson. Brain necrosis after enucleation, external beam cobalt radiotherapy, and systemic

chemotherapy for retinoblastoma. Arch Ophthalmol 2002 120(1):98-9. Rec#: 48990 Reprint: exc nrs

Pakakasama, S., G. M. Eames, M. C. Morriss, M. H. Huls, C. M. Rooney, H. E. Heslop, and R. A. Krance. Treatment of Epstein-Barr virus lymphoproliferative disease after hematopoietic stemcell transplantation with hydroxyurea and cytotoxic T-cell lymphocytes. Transplantation 2004 78(5):755-7. Rec#: 8310 Reprint: exc nr

Palasis, S., J. C. Egelhoff, J. D. Morris, B. L. Koch, and W. S. Jr Ball. Central nervous system relapse of treated stage IV neuroblastoma. Pediatr Radiol 1998 28(12):990-4. Rec#: 17290 Reprint: exc nri

Palla, A., S. Hegemann, U. Widmer, and D. Straumann. Vestibular and auditory deficits in Fabry disease and their response to enzyme replacement therapy. J Neurol 2007 254(10):1433-42. Rec#: 56900 Reprint: exc nrc

Panchagnula, R., C. Britto, J. Vinod, S. Anuradha, and P. Damodar. Wolman's disease--a case report. Indian J Pathol Microbiol 2000 43(1):91-2. Rec#: 10960 Reprint: exc nrs

Panigrahi, S., M. Das, D. Stagler, S. Konstantini, M. Gmori, S. Slavin, and A. Nagler. Development of secondary anaplastic oligoastrocytoma after matched unrelated bone marrow transplantation in a child with acute myeloid leukemia. Acta Haematol 2003 109(4):196-8. Rec#: 10200 Reprint: EXC NRS

Papadakis, V., I. J. Dunkel, L. D. Cramer, E. Kramer, E. Papadopoulos, S. Goldman, R. J. Packer, M. Willoughby, D. Baker, J. Garvin, S. Strandjord, P. Coccia, A. M. Kaplan, M. Klemperer, and J. L. Finlay. High-dose carmustine, thiotepa and etoposide followed by autologous bone marrow rescue for the treatment of high risk central nervous system tumors. Bone Marrow Transplant 2000 26(2):153-60. Rec#: 70720 Reprint: EXC NRP

Pape, H., H. J. Laws, S. Burdach, B. van Kaik, M. Glag, S. Gripp, M. Wittkamp, H. Jurgens, U. Gobel, and G. Schmitt. Radiotherapy and high-dose chemotherapy in advanced Ewing's tumors. Strahlenther Onkol 1999 175(10):484-7. Rec#: 16090 Reprint: exc nrp

Papsin, B. C., A. Vellodi, C. M. Bailey, P. C. Ratcliffe, and S. E. Leighton. Otologic and laryngologic manifestations of mucopolysaccharidoses after bone marrow transplantation. Otolaryngol Head Neck Surg 1998 118(1):30-6.

Rec#: 18750 Reprint: exc nro

Paredes, A. Can mycophenolate mofetil substitute cyclophosphamide treatment of pediatric lupus nephritis? Pediatr Nephrol 2007 22(8):1077-82. Rec#: 41330 Reprint: exc nrs

Parini, R., M. Rigoldi, F. Santus, F. Furlan, P. De Lorenzo, G. Valsecchi, D. Concolino, P. Strisciuglio, S. Feriozzi, R. Di Vito, R. Ravaglia, R. Ricci, and A. Morrone. Enzyme replacement therapy with agalsidase alfa in a cohort of Italian patients with Anderson-Fabry disease: testing the effects with the Mainz Severity Score Index. Clin Genet 2008 74(3):260-6. Rec#: 56830 Reprint: exc nrd

Park, J. R., J. Slattery, T. Gooley, D. Hawkins, K. Lindsley, J. G. Villablanca, K. K. Matthay, and J. E. Sanders. Phase I topotecan preparative regimen for high-risk neuroblastoma, high-grade glioma, and refractory/recurrent pediatric solid tumors. Med Pediatr Oncol 2000 35(6):719-23. Rec#: 14430 Reprint: exc nro

Park, J. R., J. G. Villablanca, W. B. London, R. B. Gerbing, D. Haas-Kogan, E. S. Adkins, E. F. Attiyeh, J. M. Maris, R. C. Seeger, C. P. Reynolds, and K. K. Matthay. Outcome of high-risk stage 3 neuroblastoma with myeloablative therapy and 13-cis-retinoic acid: a report from the Children's Oncology Group. Pediatr Blood Cancer 2009 52(1):44-50. Rec#: 1080 Reprint: exc nri

Parker, R. I., N. W. Barton, E. J. Read, and R. O. Brady. Hematologic improvement in a patient with Gaucher disease on long-term enzyme replacement therapy: evidence for decreased splenic sequestration and improved red blood cell survival. Am J Hematol 1991 38(2):130-7. Rec#: 25740 Reprint: EXC YEAR

Parodi, E., E. Rivetti, G. Amendola, G. Bisogno, R. Calabrese, P. Farruggia, P. Giordano, S. M. Matarese, M. Nardi, B. Nobili, L. D. Notarangelo, G. Russo, C. Vimercati, M. Zecca, D. De Mattia, and U. Ramenghi. Long-term follow-up analysis after rituximab therapy in children with refractory symptomatic ITP: identification of factors predictive of a sustained response. Br J Haematol 2009 144(4):552-8. Rec#: 77500 Reprint: exc nrc

Parsons, S. K., M. W. Neault, L. E. Lehmann, L. L. Brennan, C. E. Eickhoff, C. S. Kretschmar, and L. R. Diller. Severe ototoxicity following carboplatin-containing conditioning regimen for autologous marrow transplantation for neuroblastoma. Bone Marrow Transplant 1998 22(7):669-74. Rec#: 17450 Reprint: exc nri Passweg, J. R., M. Rabusin, M. Musso, Y. Beguin, S. Cesaro, G. Ehninger, I. Espigado, A. Iriondo, L. Jost, V. Koza, S. Lenhoff, I. Lisukov, F. Locatelli, A. Marmont, P. Philippe, C. Pilatrino, P. Quartier, J. Stary, P. Veys, J. Vormoor, A. Wahlin, F. Zintl, C. Bocelli-Tyndall, A. Tyndall, and A. Gratwohl. Haematopoetic stem cell transplantation for refractory autoimmune cytopenia. Br J Haematol 2004 125(6):749-55. Rec#: 8750

Reprint: exc nrp

Paulussen, M., S. Ahrens, S. Burdach, A. Craft, B. Dockhorn-Dworniczak, J. Dunst, B. Frohlich, W. Winkelmann, A. Zoubek, and H. Jurgens. Primary metastatic (stage IV) Ewing tumor: survival analysis of 171 patients from the EICESS studies. European Intergroup Cooperative Ewing Sarcoma Studies. Ann Oncol 1998 9(3):275-81. Rec#: 18170

Reprint: exc nrp

Paulussen, M., A. W. Craft, I. Lewis, A. Hackshaw, C. Douglas, J. Dunst, A. Schuck, W. Winkelmann, G. Kohler, C. Poremba, A. Zoubek, R. Ladenstein, H. van den Berg, A. Hunold, A. Cassoni, D. Spooner, R. Grimer, J. Whelan, A. McTiernan, and H. Jurgens. Results of the EICESS-92 Study: two randomized trials of Ewing's sarcoma treatment--cyclophosphamide compared with ifosfamide in standard-risk patients and assessment of benefit of etoposide added to standard treatment in high-risk patients. J Clin Oncol 2008 26(27):4385-93.
Rec#: 42900

Reprint: exc nrp

Pearson, A. D., C. R. Pinkerton, I. J. Lewis, J. Imeson, C. Ellershaw, and D. Machin. High-dose rapid and standard induction chemotherapy for patients aged over 1 year with stage 4 neuroblastoma: a randomised trial. Lancet Oncol 2008 9(3):247-56. Rec#: 2310

Reprint: exc nri

Pechet, T. V., M. de le Morena, E. N. Mendeloff, S. C. Sweet, S. D. Shapiro, and C. B. Huddleston. Lung transplantation in children following treatment for malignancy. J Heart Lung Transplant 2003 22(2):154-60. Rec#: 10970 Reprint: EXC NRO

Perentesis, J., E. Katsanis, T. DeFor, J. Neglia, and N. Ramsay. Autologous stem cell transplantation for high-risk pediatric solid tumors. Bone Marrow Transplant 1999 24(6):609-15. Rec#: 16370 Reprint: exc nro

Perez-Martinez, A., W. Leung, E. Munoz, R. Iyengar, M. Ramirez, J. L. Vicario, A. Lassaletta, J. Sevilla, M. Gonzalez-Vicent, L. Madero, and M. A. Diaz-Perez. KIR-HLA receptor-ligand mismatch associated with a graft-versus-tumor effect in haploidentical stem cell transplantation for pediatric metastatic solid tumors. Pediatr Blood Cancer 2009 53(1):120-4. Rec#: 500

Reprint: EXC NRI

Perez-Martinez, A., V. Quintero, M. G. Vicent, J. Sevilla, M. A. Diaz, and L. Madero. High-dose chemotherapy with autologous stem cell rescue as first line of treatment in young children with medulloblastoma and supratentorial primitive neuroectodermal tumors. J Neurooncol 2004 67(1-2):101-6. Rec#: 9080 Reprint: EXC; duplicate patients with Perez-Martinez (2005)-#7650

Perrotta, S., M. L. Conte, A. La Manna, P. Indolfi, F. Rossi, F. Locatelli, and B. Nobili. Membranous glomerulopathy in children given allogeneic hematopoietic stem cell transplantation. Haematologica 2005 90 Suppl:ECR31. Rec#: 6520 Reprint: exc nrs

Pession, A., A. Prete, F. Locatelli, S. Pierinelli, A. L. Pession, R. Maccario, E. Magrini, B. De Bernardi, P. Paolucci, and G. Paolucci. Immunotherapy with low-dose recombinant interleukin 2 after high-dose chemotherapy and autologous stem cell transplantation in neuroblastoma. Br J Cancer 1998 78(4):528-33. Rec#: 17790 Reprint: exc nri

Peters, C., and W. Krivit. Hematopoietic cell transplantation for mucopolysaccharidosis IIB (Hunter syndrome). Bone Marrow Transplant 2000 25(10):1097-9. Rec#: 15290 Reprint: exc com

Peters, C., E. G. Shapiro, J. Anderson, P. J. Henslee-Downey, M. R. Klemperer, M. J. Cowan, E. F. Saunders, P. A. deAlarcon, C. Twist, J. B. Nachman, G. A. Hale, R. E. Harris, M. K. Rozans, J. Kurtzberg, G. H. Grayson, T. E. Williams, C. Lenarsky, J. E. Wagner, and W. Krivit. Hurler syndrome: II. Outcome of HLAgenotypically identical sibling and HLA-haploidentical related donor bone marrow transplantation in fifty-four children. The Storage Disease Collaborative Study Group. Blood 1998 91(7):2601-8. Rec#: 18400 Reprint: exc nr

Peters, C., E. G. Shapiro, and W. Krivit. Neuropsychological development in children with Hurler syndrome following hematopoietic stem cell transplantation. Pediatr Transplant 1998 2(4):250-3. Rec#: 17090 Reprint: exc nr

Petri, M., R. A. Brodsky, R. J. Jones, D. Gladstone, M. Fillius, and L. S. Magder. High-dose cyclophosphamide versus monthly intravenous cyclophosphamide for systemic lupus erythematosus: a prospective randomized trial. Arthritis Rheum 2010 62(5):1487-93. Rec#: 40830 Reprint: exc nrp

Peyrl, A., A. Azizi, T. Czech, M. Gruber-Olipitz, N. Jones, C. Haberler, D. Prayer, E. Autzinger, and I. Slavc. Tumor

stabilization under treatment with imatinib in progressive hypothalamic-chiasmatic glioma. Pediatr Blood Cancer 2009 52(4):476-80. Rec#: 54470 Reprint: exc nrd

Philip, T., R. Ladenstein, C. Lasset, O. Hartmann, J. M. Zucker, R.
Pinkerton, A. D. Pearson, T. Klingebiel, A. Garaventa, B.
Kremens, J. L. Bernard, G. Rosti, and F. Chauvin. 1070
myeloablative megatherapy procedures followed by stem cell
rescue for neuroblastoma: 17 years of European experience and
conclusions. European Group for Blood and Marrow Transplant
Registry Solid Tumour Working Party. Eur J Cancer 1997
33(12):2130-5.
Rec#: 18470
Reprint: exc nri

Philip, T., R. Ladenstein, J. M. Zucker, R. Pinkerton, E. Bouffet, D. Louis, W. Siegert, J. L. Bernard, D. Frappaz, C. Coze, and a. l. .. et. Double megatherapy and autologous bone marrow transplantation for advanced neuroblastoma: the LMCE2 study. Br J Cancer 1993 67(1):119-27. Rec#: 24440 Reprint: EXC YEAR

Philip, T., J. M. Zucker, J. L. Bernard, P. Lutz, P. Bordigoni, E. Plouvier, A. Robert, H. Roche, G. Souillet, E. Bouffet, and a. l. .. et. Improved survival at 2 and 5 years in the LMCE1 unselected group of 72 children with stage IV neuroblastoma older than 1 year of age at diagnosis: is cure possible in a small subgroup? J Clin Oncol 1991 9(6):1037-44. Rec#: 26200 Reprint: EXC YEAR

Philip, T., J. M. Zucker, J. L. Bernard, P. Lutz, P. Bordigoni, E. Plouvier, A. Robert, H. Roche, G. Souillet, E. Bouffet, and a. l. .. et. The LMCE1 unselected group of stage IV neuroblastoma revisited with a median follow up of 59 months after ABMT. Prog Clin Biol Res 1991 366:517-25. Rec#: 26450 Reprint: EXC YEAR

Pica, A., R. Miller, S. Villa, S. P. Kadish, Y. Anacak, H. Abusaris, G. Ozyigit, B. G. Baumert, R. Zaucha, G. Haller, and D. C. Weber. The results of surgery, with or without radiotherapy, for primary spinal myxopapillary ependymoma: a retrospective study from the rare cancer network. Int J Radiat Oncol Biol Phys 2009 74(4):1114-20. Rec#: 73550 Reprint: exc nrp

Pico, J. L., A. Ibrahim, L. Castagna, J. H. Bourhis, M. Chazard, D. Maraninchi, and J. P. Droz. Escalating high-dose carboplatin and autologous bone marrow transplantation in solid tumors. Oncology 1993 50 Suppl 2:47-52.
Rec#: 23700
Reprint: EXC YEAR

Pihusch, R., C. Salat, P. Gohring, M. Hentrich, H. Wegner, M. Pihusch, E. Hiller, H. J. Kolb, and H. Ostermann. Factor XIII

activity levels in patients with allogeneic haematopoietic stem cell transplantation and acute graft-versus-host disease of the gut. Br J Haematol 2002 117(2):469-76. Rec#: 12330 Reprint: exc nro

Pinkerton, C. R., A. Bataillard, S. Guillo, O. Oberlin, B. Fervers, and T. Philip. Treatment strategies for metastatic Ewing's sarcoma. Eur J Cancer 2001 37(11):1338-44. Rec#: 13530 Reprint: exc rev

Pinkerton, C. R., J. Groot-Loonen, A. Barrett, S. T. Meller, D. Tait, S. Ashley, and T. J. McElwain. Rapid VAC high dose melphalan regimen, a novel chemotherapy approach in childhood soft tissue sarcomas. Br J Cancer 1991 64(2):381-5. Rec#: 26040 Reprint: EXC YEAR

Pizer, B. L., C. L. Weston, K. J. Robinson, D. W. Ellison, J. Ironside, F. Saran, L. S. Lashford, D. Tait, H. Lucraft, D. A. Walker, C. C. Bailey, and R. E. Taylor. Analysis of patients with supratentorial primitive neuro-ectodermal tumours entered into the SIOP/UKCCSG PNET 3 study. Eur J Cancer 2006 42(8):1120-8. Rec#: 52500 Reprint: EXC NRI NPC

Plews, D. E., M. L. Turner, and W. H. Wallace. Plasma exchange as successful treatment of thrombotic thrombocytopenic purpura post autologous bone marrow transplant in a child. Bone Marrow Transplant 2000 25(6):679-80. Rec#: 15460 Reprint: exc nri

Pole, J. G., J. Casper, G. Elfenbein, A. Gee, S. Gross, W. Janssen, P. Koch, R. Marcus, T. Pick, J. Shuster, and a. l. .. et. High-dose chemoradiotherapy supported by marrow infusions for advanced neuroblastoma: a Pediatric Oncology Group study. J Clin Oncol 1991 9(1):152-8. Rec#: 26530 Reprint: EXC YEAR

Postovsky, S., S. Ash, I. N. Ramu, Y. Yaniv, R. Zaizov, B. Futerman, R. Elhasid, A. Ben Barak, A. Halil, and M. W. Ben Arush. Central nervous system involvement in children with sarcoma. Oncology 2003 65(2):118-24. Rec#: 10000 Reprint: EXC NRI

Poustchi-Amin, M., J. C. Leonidas, and S. S. Elkowitz. Simultaneous occurrence of osteosarcoma and osteochondroma following treatment of neuroblastoma with chemotherapy, radiotherapy, and bone marrow transplantation. Pediatr Radiol 1996 26(2):155-7. Rec#: 21270 Reprint: exc nri

Pozzilli, P., D. Pitocco, N. Visalli, M. G. Cavallo, R. Buzzetti, A. Crino, S. Spera, C. Suraci, G. Multari, M. Cervoni, M. L. Manca Bitti, M. C. Matteoli, G. Marietti, F. Ferrazzoli, M. R. Cassone

Faldetta, C. Giordano, M. Sbriglia, and Sarug. No effect of oral insulin on residual beta-cell function in recent-onset type I diabetes (the IMDIAB VII). IMDIAB Group. Diabetologia 2000 43(8):1000-4. Rec#: 62460 Reprint: exc nrs

Pozzilli, P., N. Visalli, M. G. Cavallo, A. Signore, M. G. Baroni, R. Buzzetti, E. Fioriti, C. Mesturino, R. Fiori, A. Romiti, C. Giovannini, L. Lucentini, M. C. Matteoli, A. Crino, C. Teodonio, F. Paci, R. Amoretti, L. Pisano, and C. Suraci. Vitamin E and nicotinamide have similar effects in maintaining residual beta cell function in recent onset insulin-dependent diabetes (the IMDIAB IV study). Eur J Endocrinol 1997 137(3):234-9. Rec#: 62710 Reprint: exc nrd

Pradeep, K. E., and N. K. Supriya. Niemann-Pick disease-type C: a case report. Indian J Pathol Microbiol 2001 44(3):339-40. Rec#: 12140 Reprint: exc nri

Pradhan, D. G., A. L. Sandridge, P. Mullaney, E. Abboud, Z. A. Karcioglu, A. Kandil, M. M. Mustafa, and A. J. Gray. Radiation therapy for retinoblastoma: a retrospective review of 120 patients. Int J Radiat Oncol Biol Phys 1997 39(1):3-13. Rec#: 19050 Reprint: exc nrd

Pradhan, K. R., C. S. Johnson, T. A. Vik, L. S. Sender, and S. G. Kreissman. A novel intensive induction therapy for high-risk neuroblastoma utilizing sequential peripheral blood stem cell collection and infusion as hematopoietic support. Pediatr Blood Cancer 2006 46(7):793-802. Rec#: 6620

Reprint: exc nri

Prados, M. D., R. E. Warnick, E. E. Mack, K. L. Chandler, J. Rabbitt, M. Page, and M. Malec. Intravenous carboplatin for recurrent gliomas. A dose-escalating phase II trial. Am J Clin Oncol 1996 19(6):609-12. Rec#: 56310 Reprint: exc nrp

Prahalad, S., K. E. Bove, D. Dickens, D. J. Lovell, and A. A. Grom. Etanercept in the treatment of macrophage activation syndrome. J Rheumatol 2001 28(9):2120-4. Rec#: 13150 Reprint: exc nro

Pratt, G., and S. E. Kinsey. Remission of severe, intractable autoimmune haemolytic anaemia following matched unrelated donor transplantation. Bone Marrow Transplant 2001 28(8):791-3. Rec#: 12720 Reprint: exc nrs

Preul, M. C., Z. Caramanos, J. G. Villemure, G. Shenouda, R. LeBlanc, A. Langleben, and D. L. Arnold. Using proton magnetic resonance spectroscopic imaging to predict in vivo the response of

recurrent malignant gliomas to tamoxifen chemotherapy. Neurosurgery 2000 46(2):306-18. Rec#: 15630 Reprint: exc nri

Price, V., C. Barnes, P. Canning, V. Blanchette, and M. Greenberg. Immune thrombocytopenia following successful treatment of cancer in children. Pediatr Blood Cancer 2006 46(3):372-6. Rec#: 7710 Reprint: exc nrd

Prince, F. H., L. M. Geerdink, G. J. Borsboom, M. Twilt, M. A. van Rossum, E. P. Hoppenreijs, R. T. Cate, Y. Koopman-Keemink, M. van Santen-Hoeufft, H. Raat, and L. W. van Suijlekom-Smit. Major improvements in health-related quality of life during the use of etanercept in patients with previously refractory juvenile idiopathic arthritis. Ann Rheum Dis 2010 69(1):138-42. Rec#: 77110 Reprint: exc nrp nro

Prince, F. H., M. Twilt, R. ten Cate, M. A. van Rossum, W. Armbrust, E. P. Hoppenreijs, M. van Santen-Hoeufft, Y. Koopman-Keemink, N. M. Wulffraat, and L. W. van Suijlekom-Smit. Long-term follow-up on effectiveness and safety of etanercept in juvenile idiopathic arthritis: the Dutch national register. Ann Rheum Dis 2009 68(5):635-41. Rec#: 77180 Reprint: exc nri

Provan, D., A. J. Moss, A. C. Newland, and J. B. Bussel. Efficacy of mycophenolate mofetil as single-agent therapy for refractory immune thrombocytopenic purpura. Am J Hematol 2006 81(1):19-25.

Rec#: 77860 Reprint: exc cr

Puchner, M. J., H. D. Herrmann, J. Berger, and L. Cristante. Surgery, tamoxifen, carboplatin, and radiotherapy in the treatment of newly diagnosed glioblastoma patients. J Neurooncol 2000 49(2):147-55. Rec#: 55820 Reprint: exc nrp

Punati, J., J. Markowitz, T. Lerer, J. Hyams, S. Kugathasan, A. Griffiths, A. Otley, J. Rosh, M. Pfefferkorn, D. Mack, J. Evans, A. Bousvaros, M. S. Moyer, R. Wyllie, M. Oliva-Hemker, A. Mezoff, N. Leleiko, D. Keljo, and W. Crandall. Effect of early immunomodulator use in moderate to severe pediatric Crohn disease. Inflamm Bowel Dis 2008 14(7):949-54. Rec#: 41110 Reprint: exc nrc

Punnett, A., B. Bliss, L. L. Dupuis, M. Abdolell, J. Doyle, and L. Sung. Ototoxicity following pediatric hematopoietic stem cell transplantation: a prospective cohort study. Pediatr Blood Cancer 2004 42(7):598-603. Rec#: 8920 Reprint: exc nri
Quartier, P., P. Taupin, F. Bourdeaut, I. Lemelle, P. Pillet, M. Bost, J. Sibilia, I. Kone-Paut, S. Gandon-Laloum, M. LeBideau, B. Bader-Meunier, R. Mouy, M. Debre, P. Landais, and A. M. Prieur. Efficacy of etanercept for the treatment of juvenile idiopathic arthritis according to the onset type. Arthritis Rheum 2003 48(4):1093-101. Rec#: 41900

Reprint: exc nro

Rabbone, I., A. Bobbio, V. Di Gianni, C. Sacchetti, and F. Cerutti. Intensive insulin therapy in preschool-aged diabetic children: from multiple daily injections to continuous subcutaneous insulin infusion through indwelling catheters. J Endocrinol Invest 2008 31(3):193-5. Rec#: 61830 Reprint: exc nro

Rabusin, M., M. Andolina, and N. Maximova. Haematopoietic SCT in autoimmune diseases in children: rationale and new perspectives. Bone Marrow Transplant 2008 41 Suppl 2:S96-9. Rec#: 1620 Reprint: EXC REV

Raj, A., S. Bertolone, and A. Cheerva. Successful treatment of refractory autoimmune hemolytic anemia with monthly rituximab following nonmyeloablative stem cell transplantation for sickle cell disease. J Pediatr Hematol Oncol 2004 26(5):312-4. Rec#: 8980 Reprint: exc nrs

Rajam, L., V. Prasad, and B. L. Yatheesha. Reactive hemophagocytic syndrome. Indian J Pediatr 2008 75(12):1261-3. Rec#: 1260 Reprint: exc nro

Rakotoambinina, B., J. Timsit, I. Deschamps, K. Laborde, J. Jos, C. Boitard, R. Assan, and J. J. Robert. Cyclosporin A does not delay insulin dependency in asymptomatic IDDM patients. Diabetes Care 1995 18(11):1487-90. Rec#: 40800 Reprint: exc nro

Ramaswami, U., S. Wendt, G. Pintos-Morell, R. Parini, C. Whybra, J. A. Leon Leal, F. Santus, and M. Beck. Enzyme replacement therapy with agalsidase alfa in children with Fabry disease. Acta Paediatr 2007 96(1):122-7. Rec#: 57060 Reprint: exc nrc

Ramsay, S. L., P. J. Meikle, and J. J. Hopwood. Determination of monosaccharides and disaccharides in mucopolysaccharidoses patients by electrospray ionisation mass spectrometry. Mol Genet Metab 2003 78(3):193-204. Rec#: 10760 Reprint: exc dac

Raney, R. B., L. Asmar, W. A. Jr Newton, C. Bagwell, J. C. Breneman, W. Crist, E. A. Gehan, B. Webber, M. Wharam, E. S. Wiener, J. R. Anderson, and H. M. Maurer. Ewing's sarcoma of soft tissues in childhood: a report from the Intergroup

Rhabdomyosarcoma Study, 1972 to 1991. J Clin Oncol 1997 15(2):574-82. Rec#: 19760 Reprint: exc nrp

Rao, S. P., S. T. Miller, and B. J. Cohen. B19 parvovirus infection in children with malignant solid tumors receiving chemotherapy. Med Pediatr Oncol 1994 22(4):255-7.Rec#: 23350Reprint: EXC YEAR

Rao, V. K., F. Dugan, J. K. Dale, J. Davis, J. Tretler, J. K. Hurley, T. Fleisher, J. Puck, and S. E. Straus. Use of mycophenolate mofetil for chronic, refractory immune cytopenias in children with autoimmune lymphoproliferative syndrome. Br J Haematol 2005 129(4):534-8. Rec#: 77940 Reprint: exc nrd

Ravelli, A., F. De Benedetti, S. Viola, and A. Martini. Macrophage activation syndrome in systemic juvenile rheumatoid arthritis successfully treated with cyclosporine. J Pediatr 1996 128(2):275-8.

Rec#: 21070 Reprint: exc nro

Ravelli, A., C. Moretti, F. Temporini, F. Rossi, S. Magni-Manzoni, A. Pistorio, and A. Martini. Combination therapy with methotrexate and cyclosporine A in juvenile idiopathic arthritis. Clin Exp Rheumatol 2002 20(4):569-72. Rec#: 42010 Reprint: exc nro

Razzaq, A. A., and A. R. Cohen. Neoadjuvant chemotherapy for hypervascular malignant brain tumors of childhood. Pediatr Neurosurg 1997 27(6):296-303. Rec#: 76560 Reprint: EXC NRS

Reardon, D. A., G. Dresemann, S. Taillibert, M. Campone, M. van den Bent, P. Clement, E. Blomquist, L. Gordower, H. Schultz, J. Raizer, P. Hau, J. Easaw, M. Gil, J. Tonn, A. Gijtenbeek, U. Schlegel, P. Bergstrom, S. Green, A. Weir, and Z. Nikolova. Multicentre phase II studies evaluating imatinib plus hydroxyurea in patients with progressive glioblastoma. Br J Cancer 2009 101(12):1995-2004. Rec#: 54290 Reprint: exc nro

Reiff, A., D. J. Rawlings, B. Shaham, E. Franke, L. Richardson, I.
S. Szer, and B. H. Bernstein. Preliminary evidence for cyclosporin A as an alternative in the treatment of recalcitrant juvenile rheumatoid arthritis and juvenile dermatomyositis. J Rheumatol 1997 24(12):2436-43.
Rec#: 18720
Reprint: exc nro

Reinhard, H., O. Semler, D. Burger, U. Bode, M. Flentje, U. Gobel, P. Gutjahr, I. Leuschner, E. Maass, F. Niggli, H. G. Scheel-Walter, M. Stockle, J. W. Thuroff, J. Troger, A. Weirich, D. von Schweinitz, A. Zoubek, and N. Graf. Results of the SIOP 93-01/GPOH trial and study for the treatment of patients with unilateral nonmetastatic Wilms Tumor. Klin Padiatr 2004 216(3):132-40. Rec#: 45360 Reprint: exc nrp

Renner, S., S. Krumpelmann, G. Bruchelt, H. Wiesinger, D. Niethammer, and T. Klingebiel. Effect of amifostine on neuroblastoma during high dose chemotherapy: in vivo and in vitro investigations. Anticancer Res 2000 20(6B):4531-8. Rec#: 14110 Reprint: exc nri

Reynolds, C. P. Detection and treatment of minimal residual disease in high-risk neuroblastoma. Pediatr Transplant 2004 8 Suppl 5:56-66. Rec#: 8950 Reprint: EXC NPD

Ricchetti, E. T., B. Erol, J. Stern, P. Russo, L. States, and J. P. Dormans. Lower back pain and mass in a 13-year-old girl. Clin Orthop Relat Res 2005 (430):248-57. Rec#: 43520 Reprint: exc cr

Rick, O., J. Beyer, D. Kingreen, J. S. Kuhl, J. Zingsem, D. Huhn, W. Siegert, and N. Schwella. Successful autologous bone marrow rescue in patients who failed peripheral blood stem cell mobilization. Ann Hematol 2000 79(12):681-6. Rec#: 70680 Reprint: EXC NRO

Ries, M., J. T. Clarke, C. Whybra, A. Mehta, K. S. Loveday, R. O. Brady, M. Beck, and R. Schiffmann. Enzyme replacement in Fabry disease: pharmacokinetics and pharmacodynamics of agalsidase alpha in children and adolescents. J Clin Pharmacol 2007 47(10):1222-30. Rec#: 56950 Reprint: exc nrc

Ries, M., J. T. Clarke, C. Whybra, M. Timmons, C. Robinson, B.
L. Schlaggar, G. Pastores, Y. H. Lien, C. Kampmann, R. O. Brady,
M. Beck, and R. Schiffmann. Enzyme-replacement therapy with agalsidase alfa in children with Fabry disease. Pediatrics 2006 118(3):924-32.
Rec#: 57130
Reprint: exc nrc

Ries, M., and R. Schiffmann. Fabry disease: angiokeratoma, biomarker, and the effect of enzyme replacement therapy on kidney function. Arch Dermatol 2005 141(7):904-5; author reply 905-6. Rec#: 57380 Reprint: exc nrc

Ringold, S., Y. Chon, and N. G. Singer. Associations between the American College of Rheumatology pediatric response measures and the continuous measures of disease activity used in adult rheumatoid arthritis: a secondary analysis of clinical trial data from children with polyarticular-course j. Arthritis Rheum 2009 60(12):3776-83. Rec#: 77080 Reprint: exc nrs

Robison, L. L., D. M. Green, M. Hudson, A. T. Meadows, A. C. Mertens, R. J. Packer, C. A. Sklar, L. C. Strong, Y. Yasui, and L. K. Zeltzer. Long-term outcomes of adult survivors of childhood cancer. Cancer 2005 104(11 Suppl):2557-64.
Rec#: 45150
Reprint: exc nro

Rodeberg, D., C. Arndt, J. Breneman, E. Lyden, S. Donaldson, C. Paidas, R. Andrassy, W. Meyer, and E. Wiener. Characteristics and outcomes of rhabdomyosarcoma patients with isolated lung metastases from IRS-IV. J Pediatr Surg 2005 40(1):256-62. Rec#: 47290 Reprint: exc in breneman 2003

Rodriguez, V., I. Kuehnle, H. E. Heslop, S. Khan, and R. A. Krance. Guillain-Barre syndrome after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2002 29(6):515-7. Rec#: 12350 Reprint: EXC NRI

Rodriguez-Galindo, C., N. M. Marina, B. D. Fletcher, D. M. Parham, S. M. Bodner, and W. H. Meyer. Is primitive neuroectodermal tumor of the kidney a distinct entity? Cancer 1997 79(11):2243-50. Rec#: 19330 Reprint: EXC NRI

Rodriguez-Galindo, C., C. A. Poquette, N. M. Marina, D. R. Head,
A. Cain, W. H. Meyer, V. M. Santana, and A. S. Pappo.
Hematologic abnormalities and acute myeloid leukemia in children and adolescents administered intensified chemotherapy for the Ewing sarcoma family of tumors. J Pediatr Hematol Oncol 2000 22(4):321-9.
Rec#: 14910
Reprint: EXC NRI

Roganovic, J. Rituximab treatment in refractory idiopathic thrombocytopenic purpura in children. Eur J Pediatr 2005 164(5):334. Rec#: 77980 Reprint: exc cr

Rogers, L. R., N. Janakiraman, C. Kasten-Sportes, and M. L. Rosenblum. Therapy-related myelodysplastic syndrome (t-MDS) in a patient with anaplastic astrocytoma: successful treatment with allogeneic bone marrow transplant. J Neurooncol 2001 53(1):55-9. Rec#: 12940

Reprint: exc rev nri

Rosenfeld, A., M. Kletzel, R. Duerst, D. Jacobsohn, P. Haut, J. Weinstein, A. Rademaker, C. Schaefer, L. Evans, M. Fouts, and S. Goldman. A phase II prospective study of sequential myeloablative chemotherapy with hematopoietic stem cell rescue for the

treatment of selected high risk and recurrent central nervous system tumors. J Neurooncol 2010 97(2):247-55. Rec#: 70080 Reprint: exc few

Rosenkranz, M. E., L. M. Agle, P. Efthimiou, and T. J. Lehman. Systemic and localized scleroderma in children: current and future treatment options. Paediatr Drugs 2006 8(2):85-97. Rec#: 5730 Reprint: exc nra

Rosenthal, J., E. Bolotin, M. Shakhnovits, A. Pawlowska, P. Falk, D. Qian, C. Oliver, J. Sato, J. Miser, and S. Forman. High-dose therapy with hematopoietic stem cell rescue in patients with poor prognosis Ewing family tumors. Bone Marrow Transplant 2008 42(5):311-8. Rec#: 1760 Reprint: exc nrp

Ross, L. F., and L. H. Philipson. Ethics of hematopoietic stem cell transplantation in type 1 diabetes mellitus. 2007. Rec#: 3490 Reprint: exc nrs

Rossi, M., G. Parenti, R. Della Casa, A. Romano, G. Mansi, T. Agovino, F. Rosapepe, C. Vosa, E. Del Giudice, and G. Andria. Long-term enzyme replacement therapy for pompe disease with recombinant human alpha-glucosidase derived from chinese hamster ovary cells. J Child Neurol 2007 22(5):565-73. Rec#: 56960 Reprint: exc nrc

Rovelli, A. M. The controversial and changing role of haematopoietic cell transplantation for lysosomal storage disorders: an update. Bone Marrow Transplant 2008 41 Suppl 2:S87-9. Rec#: 1630

Reprint: exc rev

Roversi, F. M., L. C. Galdieri, B. H. Grego, F. G. Souza, C. Micheletti, A. M. Martins, and V. D'Almeida. Blood oxidative stress markers in Gaucher disease patients. Clin Chim Acta 2006 364(1-2):316-20. Rec#: 57370 Reprint: exc nrp

Rubie, H., J. Michon, D. Plantaz, M. C. Peyroulet, C. Coze, D.
Frappaz, P. Chastagner, M. C. Baranzelli, F. Mechinaud, P.
Boutard, P. Lutz, Y. Perel, G. Leverger, L. de Lumley, F. Millot, J.
L. Stephan, G. Margueritte, and O. Hartmann. Unresectable
localized neuroblastoma: improved survival after primary
chemotherapy including carboplatin-etoposide. Neuroblastoma
Study Group of the Societe Francaise d'Oncologie Pediatrique
(SFOP). Br J Cancer 1998 77(12):2310-7.
Rec#: 18030
Reprint: exc nri

Ruperto, N., D. J. Lovell, P. Quartier, E. Paz, N. Rubio-Perez, C. A. Silva, C. Abud-Mendoza, R. Burgos-Vargas, V. Gerloni, J. A. Melo-Gomes, C. Saad-Magalhaes, J. Chavez-Corrales, C. Huemer,

A. Kivitz, F. J. Blanco, I. Foeldvari, and M. Hofer. Long-term safety and efficacy of abatacept in children with juvenile idiopathic arthritis. Arthritis Rheum 2010 62(6):1792-802. Rec#: 77050 Reprint: exc nri

Ruperto, N., D. J. Lovell, P. Quartier, E. Paz, N. Rubio-Perez, C. A. Silva, C. Abud-Mendoza, R. Burgos-Vargas, V. Gerloni, J. A. Melo-Gomes, C. Saad-Magalhaes, F. Sztajnbok, C. Goldenstein-Schainberg, M. Scheinberg, I. C. Penades, and Fischbach. Abatacept in children with juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled withdrawal trial. Lancet 2008 372(9636):383-91. Rec#: 77160 Reprint: exc nri

Ruperto, N., A. Ravelli, E. Castell, V. Gerloni, R. Haefner, C. Malattia, F. Kanakoudi-Tsakalidou, S. Nielsen, J. Bohnsack, D. Gibbas, R. Rennebohm, O. Voygioyka, Z. Balogh, L. Lepore, E. Macejkova, N. Wulffraat, S. Oliveira, R. Russo, A. Buoncompagni, M. O. Hilario, M. G. Alpigiani, M. Passo, D. J. Lovell, R. Merino, A. Martini, and E. H. Giannini. Cyclosporine A in juvenile idiopathic arthritis. Results of the PRCSG/PRINTO phase IV post marketing surveillance study. Clin Exp Rheumatol 2006 24(5):599-605. Rec#: 77200 Reprint: exc nri

Russo, R. A., and M. M. Katsicas. Clinical remission in patients with systemic juvenile idiopathic arthritis treated with anti-tumor necrosis factor agents. J Rheumatol 2009 36(5):1078-82. Rec#: 77140 Reprint: exc nro nri

Rutkowski, S., U. Bode, F. Deinlein, H. Ottensmeier, M. Warmuth-Metz, N. Soerensen, N. Graf, A. Emser, T. Pietsch, J. E. Wolff, R. D. Kortmann, and J. Kuehl. Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N Engl J Med 2005 352(10):978-86. Rec#: 52780 Reprint: EXC NRI

Ryu, K. H., H. S. Ahn, H. H. Koo, H. Kook, M. K. Kim, H. K. Kim, T. Ghim, H. N. Moon, J. J. Seo, K. W. Sung, H. Y. Shin, E. S. Yoo, C. J. Lyu, Y. H. Lee, H. Lee, B. Cho, H. S. Cho, H. S. Choi, J. O. Hah, and T. J. Hwang. Autologous stem cell transplantation for the treatment of neuroblastoma in Korea. J Korean Med Sci 2003 18(2):242-7. Rec#: 10660 Reprint: exc nri

Saarinen, U. M., L. Hovi, A. Makipernaa, and P. Riikonen. Highdose thiotepa with autologous bone marrow rescue in pediatric solid tumors. Bone Marrow Transplant 1991 8(5):369-76. Rec#: 25710 Reprint: EXC YEAR

Saarinen, U. M., H. Sariola, and L. Hovi. Recurrent disseminated retinoblastoma treated by high-dose chemotherapy, total body

irradiation, and autologous bone marrow rescue. Am J Pediatr Hematol Oncol 1991 13(3):315-9. Rec#: 26680 Reprint: EXC YEAR

Saarinen, U. M., S. Wikstrom, A. Makipernaa, M. Lanning, M. Perkkio, L. Hovi, J. Rapola, and H. Sariola. In vivo purging of bone marrow in children with poor-risk neuroblastoma for marrow collection and autologous bone marrow transplantation. J Clin Oncol 1996 14(10):2791-802. Rec#: 20250 Reprint: exc nri

Saavedra, J., C. Garrido, D. Folgueira, M. J. Torres, and J. T. Ramos. Ochrobactrum anthropi bacteremia associated with a catheter in an immunocompromised child and review of the pediatric literature. Pediatr Infect Dis J 1999 18(7):658-60. Rec#: 16520 Reprint: exc nri

Saccardi, R., T. Kozak, C. Bocelli-Tyndall, A. Fassas, A. Kazis, E. Havrdova, E. Carreras, A. Saiz, B. Lowenberg, P. A. te Boekhorst, F. Gualandio, H. Openshaw, G. Longo, F. Pagliai, L. Massacesi, E. Deconink, J. Ouyang, F. J. Nagore, J. Besalduch, I. A. Lisukov, A. Bonini, E. Merelli, S. Slavino, A. Gratwohl, J. Passweg, A. Tyndall, A. J. Steck, M. Andolina, M. Capobianco, J. L. Martin, A. Lugaresi, G. Meucci, R. A. Saez, R. E. Clark, M. N. Fernandez, L. Fouillard, B. Herstenstein, V. Koza, E. Cocco, H. Baurmann, and G. L. Mancardi. Autologous stem cell transplantation for progressive multiple sclerosis: update of the European Group for Blood and Marrow Transplantation autoimmune diseases working party database. Mult Scler 2006 12(6):814-23. Rec#: 4370

Reprint: exc nrp

Saeter, G. Ewing's sarcoma of bone: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol 2007 18 Suppl 2:ii79-80. Rec#: 43140 Reprint: exc gui

Sakata, N., K. Kawa, K. Kato, H. Yabe, M. Yabe, M. Nagasawa, H. Mugishima, H. Kigasawa, M. Tsuchida, Y. Akiyama, Y. Morisima, Y. Kodera, and S. Kato. Unrelated donor marrow transplantation for congenital immunodeficiency and metabolic disease: an update of the experience of the Japan Marrow Donor Program. Int J Hematol 2004 80(2):174-82. Rec#: 8160 Reprint: exc nrp

Salawu, L., and M. A. Durosinmi. Immune thrombocytopaenic purpura: 11-year experience in Ile-Ife, Nigeria. Afr J Med Med Sci 2001 30(1-2):99-103. Rec#: 9890 Reprint: exc nro

Sampath, S., G. Nitin, T. C. Yasha, B. A. Chandramouli, B. I. Devi, and J. M. Kovoor. Does choroid plexus tumour differ with age? Br J Neurosurg 2008 22(3):373-88. Rec#: 75690 Reprint: exc nro

Sandoval, C., C. H. Pui, L. C. Bowman, D. Heaton, C. A. Hurwitz, S. C. Raimondi, F. G. Behm, and D. R. Head. Secondary acute myeloid leukemia in children previously treated with alkylating agents, intercalating topoisomerase II inhibitors, and irradiation. J Clin Oncol 1993 11(6):1039-45. Rec#: 24090 Reprint: EXC YEAR

Sands, S. A., W. G. van Gorp, and J. L. Finlay. Pilot neuropsychological findings from a treatment regimen consisting of intensive chemotherapy and bone marrow rescue for young children with newly diagnosed malignant brain tumors. Childs Nerv Syst 1998 14(10):587-9. Rec#: 17410 Reprint: EXC NRO

Sangthawan, D., P. M. DesRosiers, M. E. Randall, K. Robertson, S. Goebel, and R. Fallon. Relapse in the skull after myeloablative therapy for high-risk neuroblastoma. Pediatr Hematol Oncol 2003 20(1):23-30. Rec#: 10680 Reprint: exc nri

Sansone, R., D. Di Martino, E. Lanino, G. Dini, L. Massimo, and G. P. Tonini. MYCN amplification does not affect survival of neuroblastoma patients treated with autologous bone marrow transplantation. Bone Marrow Transplant 1991 7 Suppl 3:133-5. Rec#: 26620 Reprint: EXC YEAR

Santana, V. M., M. J. Schell, R. Williams, L. C. Bowman, E. I. Thompson, M. K. Brenner, and J. Jr Mirro. Escalating sequential high-dose carboplatin and etoposide with autologous marrow support in children with relapsed solid tumors. Bone Marrow Transplant 1992 10(5):457-62. Rec#: 24690 Reprint: EXC YEAR

Sanz, N., L. de Mingo, F. Florez, and V. Rollan. Rhabdomyosarcoma of the biliary tree. Pediatr Surg Int 1997 12(2-3):200-1. Rec#: 19700 Reprint: exc nro

Sardi, I., V. Cetica, M. Massimino, A. M. Buccoliero, L. Giunti, L. Genitori, and M. Arico. Promoter methylation and expression analysis of MGMT in advanced pediatric brain tumors. Oncol Rep 2009 22(4):773-9. Rec#: 73470 Reprint: exc nrs

Satman, I., C. Ficicioglu, K. Karsidag, T. Yilmaz, N. Dincdag, F. Koca, F. Odabasi, A. Aydin, S. Devrim, and M. Haktan. Effects of methylprednisolone pulse therapy on insulin injections in patients with insulin-dependent diabetes mellitus. Turk J Pediatr 1996 38(4):419-29. Rec#: 40720 Reprint: EXC NRC Savolainen, H. A., H. Kautiainen, H. Isomaki, K. Aho, and P. Verronen. Azathioprine in patients with juvenile chronic arthritis: a longterm followup study. J Rheumatol 1997 24(12):2444-50. Rec#: 42400 Reprint: exc nrp

Sawamura, Y., J. Ikeda, N. Ishii, T. Kato, M. Tada, H. Abe, and H. Shirato. Combined irradiation and chemotherapy using ifosfamide, cisplatin, and etoposide for children with medulloblastoma/posterior fossa primitive neuroectodermal tumor-results of a pilot study. Neurol Med Chir (Tokyo) 1996 36(9):632-8. Rec#: 20270

Reprint: EXC NRI

Sawhney, S., P. Woo, and K. J. Murray. Macrophage activation syndrome: a potentially fatal complication of rheumatic disorders. Arch Dis Child 2001 85(5):421-6. Rec#: 12990 Reprint: exc nre nri

Schachna, L., P. F. Ryan, and A. P. Schwarer. Malignancyassociated remission of systemic lupus erythematosus maintained by autologous peripheral blood stem cell transplantation. Arthritis Rheum 1998 41(12):2271-2. Rec#: 17320 Reprint: exc nrs

Scheurlen, W., K. Ramasubbu, O. Wachowski, A. Hemauer, and S. Modrow. Chronic autoimmune thrombopenia/neutropenia in a boy with persistent parvovirus B19 infection. J Clin Virol 2001 20(3):173-8. Rec#: 14220 Reprint: exc nro

Schiavetti, A., G. Varrasso, P. Maurizi, C. Cappelli, A. Clerico, E. Properzi, and M. A. Castello. Ten-day schedule oral etoposide therapy in advanced childhood malignancies. J Pediatr Hematol Oncol 2000 22(2):119-24. Rec#: 74400 Reprint: exc nrs

Schiff, M., I. Maire, Y. Bertrand, P. Cochat, and N. Guffon. Longterm follow-up of metachronous marrow-kidney transplantation in severe type II sialidosis: what does success mean? Nephrol Dial Transplant 2005 20(11):2563-5. Rec#: 6870 Reprint: exc nrd

Schiffmann, R., R. A. Martin, T. Reimschisel, K. Johnson, V. Castaneda, Y. H. Lien, G. M. Pastores, C. Kampmann, M. Ries, and J. T. Clarke. Four-year prospective clinical trial of agalsidase alfa in children with Fabry disease. J Pediatr 2010 156(5):"832-7, 837.e1". Rec#: 56440 Reprint: exc nrc

Schmidt, M., T. Simon, B. Hero, W. Eschner, M. Dietlein, F. Sudbrock, R. Bongartz, F. Berthold, and H. Schicha. Is there a

benefit of 131 I-MIBG therapy in the treatment of children with stage 4 neuroblastoma? A retrospective evaluation of The German Neuroblastoma Trial NB97 and implications for The German Neuroblastoma Trial NB2004. Nuklearmedizin 2006 45(4):145-51; quiz N39-40. Rec#: 5050 Reprint: exc nri

Schmidt, M. L., S. Joshi, P. J. DeChristopher, M. Mihalov, and S. D. Sosler. Successful management of concurrent congenital dyserythropoietic anaemia and autoimmune haemolytic anaemia with splenectomy. Br J Haematol 1998 102(5):1182-6. Rec#: 17620 Reprint: exc nrd

Schmidt, M. L., A. Lal, R. C. Seeger, J. M. Maris, H. Shimada, M. O'Leary, R. B. Gerbing, and K. K. Matthay. Favorable prognosis for patients 12 to 18 months of age with stage 4 nonamplified MYCN neuroblastoma: a Children's Cancer Group Study. J Clin Oncol 2005 23(27):6474-80. Rec#: 6820 Reprint: exc nri

Schmidt, M. L., J. N. Lukens, R. C. Seeger, G. M. Brodeur, H. Shimada, R. B. Gerbing, D. O. Stram, C. Perez, G. M. Haase, and K. K. Matthay. Biologic factors determine prognosis in infants with stage IV neuroblastoma: A prospective Children's Cancer Group study. J Clin Oncol 2000 18(6):1260-8. Rec#: 15520 Reprint: exc nri

Schneider, J. A. Treatment of cystinosis: simple in principle, difficult in practice. J Pediatr 2004 145(4):436-8. Rec#: 57510 Reprint: exc com

Schroeder, H., J. Wacher, H. Larsson, S. Rosthoej, C. Rechnitzer, B. L. Petersen, and N. L. Carlsen. Unchanged incidence and increased survival in children with neuroblastoma in Denmark 1981-2000: a population-based study. Br J Cancer 2009 100(5):853-7. Rec#: 490 Reprint: exc nri

Schuening, F., W. L. Longo, M. E. Atkinson, M. Zaboikin, H. P. Kiem, J. Sanders, C. R. Scott, R. Storb, A. D. Miller, T. Reynolds, W. Bensinger, S. Rowley, T. Gooley, B. Darovsky, and F. Appelbaum. Retrovirus-mediated transfer of the cDNA for human glucocerebrosidase into peripheral blood repopulating cells of patients with Gaucher's disease. Hum Gene Ther 1997 8(17):2143-60. Rec#: 18820

Reprint: exc nr

Schultze-Mosgau, S., M. Thorwarth, F. Wehrhan, W. Holter, K. D. Stachel, G. Grabenbauer, K. Amann, and J. D. Beck. Ewing sarcoma of the mandible in a child: interdisciplinary treatment concepts and surgical reconstruction. J Craniofac Surg 2005 16(6):1140-6. Rec#: 6420

Reprint: EXC DUP

Schuster, A., E. Apfelstedt-Sylla, C. M. Pusch, E. Zrenner, and C. E. Thirkill. Autoimmune retinopathy with RPE hypersensitivity and 'negative ERG' in X-linked hyper-IgM syndrome. Ocul Immunol Inflamm 2005 13(2-3):235-43. Rec#: 6990 Reprint: exc nro

sDe Sio, L., G. M. Milano, A. Castellano, A. Jenkner, P. Fidani, C. Dominici, and A. Donfrancesco. Temozolomide in resistant or relapsed pediatric solid tumors. Pediatr Blood Cancer 2006 47(1):30-6. Rec#: 43430 Reprint: EXC NRI

Seeger, R. C., C. P. Reynolds, R. Gallego, D. O. Stram, R. B. Gerbing, and K. K. Matthay. Quantitative tumor cell content of bone marrow and blood as a predictor of outcome in stage IV neuroblastoma: a Children's Cancer Group Study. J Clin Oncol 2000 18(24):4067-76. Rec#: 14400 Reprint: exc nri

Seeger, R. C., J. G. Villablanca, K. K. Matthay, R. Harris, T. J. Moss, S. A. Feig, M. Selch, N. Ramsay, and C. P. Reynolds. Intensive chemoradiotherapy and autologous bone marrow transplantation for poor prognosis neuroblastoma. Prog Clin Biol Res 1991 366:527-33. Rec#: 26440 Reprint: EXC YEAR

Seeliger, S., M. Baumann, M. Mohr, H. Jurgens, M. Frosch, and J. Vormoor. Autologous peripheral blood stem cell transplantation and anti-B-cell directed immunotherapy for refractory autoimmune haemolytic anaemia. Eur J Pediatr 2001 160(8):492-6. Rec#: 13170 Reprint: exc nri

Sfikakis, P. P. The first decade of biologic TNF antagonists in clinical practice: lessons learned, unresolved issues and future directions. Curr Dir Autoimmun 2010 11:180-210. Rec#: 77060 Reprint: exc nra

Shankar, A. G., S. Ashley, A. W. Craft, and C. R. Pinkerton. Outcome after relapse in an unselected cohort of children and adolescents with Ewing sarcoma. Med Pediatr Oncol 2003 40(3):141-7. Rec#: 11130 Reprint: exc nrp

Shao, K. D., Y. H. Zhou, Y. P. Shen, B. D. Ye, R. L. Gao, and Y. Zhang. Treatment of 37 patients with refractory idiopathic thrombocytopenic purpura by shengxueling. Chin J Integr Med 2007 13(1):33-6. Rec#: 3690 Reprint: exc nri Shapiro, B., J. C. Sisson, B. L. Shulkin, M. D. Gross, and S.
Zempel. The current status of radioiodinated metaiodobenzylguanidine therapy of neuro-endocrine tumors. Q J Nucl Med 1995 39(4 Suppl 1):55-7.
Rec#: 21300
Reprint: EXC NRS

Shen, V., C. Woodbury, R. Killen, C. Van de Ven, L. Sender, and
M. S. Cairo. Collection and use of peripheral blood stem cells in young children with refractory solid tumors. Bone Marrow Transplant 1997 19(3):197-204.
Rec#: 19810
Reprint: EXC NRO

Shen, W. P., N. Felsing, D. Lang, G. Goodman, and M. S. Cairo. Development of infant botulism in a 3-year-old female with neuroblastoma following autologous bone marrow transplantation: potential use of human botulism immune globulin. Bone Marrow Transplant 1994 13(3):345-7. Rec#: 23120 Reprint: EXC YEAR

Shevchenko, Y. L., A. A. Novik, A. N. Kuznetsov, B. V. Afanasiev, I. A. Lisukov, V. A. Kozlov, O. A. Rykavicin, T. I. Ionova, V. Y. Melnichenko, D. A. Fedorenko, A. D. Kulagin, S. V. Shamanski, R. A. Ivanov, and G. Gorodokin. High-dose immunosuppressive therapy with autologous hematopoietic stem cell transplantation as a treatment option in multiple sclerosis. Exp Hematol 2008 36(8):922-8. Rec#: 2010 Reprint: exc nrp

Shields, C. L., P. De Potter, B. P. Himelstein, J. A. Shields, A. T. Meadows, and J. M. Maris. Chemoreduction in the initial management of intraocular retinoblastoma. Arch Ophthalmol 1996 114(11):1330-8. Rec#: 20140 Reprint: exc nrd

Shuster, J. J., A. B. Cantor, N. McWilliams, J. G. Pole, R. P. Castleberry, R. Marcus, T. Pick, E. I. Smith, and F. A. Hayes. The prognostic significance of autologous bone marrow transplant in advanced neuroblastoma. J Clin Oncol 1991 9(6):1045-9. Rec#: 26190 Reprint: EXC YEAR

Sibley, G. S., A. J. Mundt, S. Goldman, J. Nachman, C. Reft, R. R. Weichselbaum, D. E. Hallahan, and L. Johnson. Patterns of failure following total body irradiation and bone marrow transplantation with or without a radiotherapy boost for advanced neuroblastoma. Int J Radiat Oncol Biol Phys 1995 32(4):1127-35. Rec#: 71740 Reprint: EXC NRS

Silvani, A., P. Gaviani, A. Fiumani, V. Scaioli, E. Lamperti, M. Eoli, A. Botturi, and A. Salmaggi. Systemic sagopilone (ZK-EPO) treatment of patients with recurrent malignant gliomas. J Neurooncol 2009 95(1):61-4. Rec#: 54390 Reprint: exc nrp Simon, T., B. Hero, W. Dupuis, B. Selle, and F. Berthold. The incidence of hearing impairment after successful treatment of neuroblastoma. Klin Padiatr 2002 214(4):149-52. Rec#: 11820 Reprint: exc nri

Simon, T., B. Hero, A. Faldum, R. Handgretinger, M. Schrappe, D. Niethammer, and F. Berthold. Consolidation treatment with chimeric anti-GD2-antibody ch14.18 in children older than 1 year with metastatic neuroblastoma. J Clin Oncol 2004 22(17):3549-57. Rec#: 8420 Reprint: exc nri

Simpson, J. L., M. A. Alford, K. D. Carter, and R. V. Keech. Metastatic rhabdomyosarcoma presenting as an isolated lateral rectus restriction. J Pediatr Ophthalmol Strabismus 1999 36(2):90-1.

Rec#: 48090 Reprint: exc nro

Sims, S. A., G. J. Barker, and A. Gilman. Oral complications associated with the treatment of pediatric neuroblastoma: a case study. J Clin Pediatr Dent 2002 26(4):401-4. Rec#: 11780 Reprint: exc nri

Singhal, S., J. M. Birch, B. Kerr, L. Lashford, and D. G. Evans. Neurofibromatosis type 1 and sporadic optic gliomas. Arch Dis Child 2002 87(1):65-70. Rec#: 55640 Reprint: exc nri

Sleight, B. J., V. S. Prasad, C. DeLaat, P. Steele, E. Ballard, R. J. Arceci, and C. L. Sidman. Correction of autoimmune lymphoproliferative syndrome by bone marrow transplantation. Bone Marrow Transplant 1998 22(4):375-80. Rec#: 17770 Reprint: exc nrs

Sluga, M., R. Windhager, S. Lang, H. Heinzl, P. Krepler, F. Mittermayer, M. Dominkus, A. Zoubek, and R. Kotz. A long-term review of the treatment of patients with Ewing's sarcoma in one institution. Eur J Surg Oncol 2001 27(6):569-73. Rec#: 43850 Reprint: exc nrp

Smart, C. E., K. Ross, J. A. Edge, C. E. Collins, K. Colyvas, and B. R. King. Children and adolescents on intensive insulin therapy maintain postprandial glycaemic control without precise carbohydrate counting. Diabet Med 2009 26(3):279-85. Rec#: 61710 Reprint: exc nro

Smedler, A. C., and P. Bolme. Neuropsychological deficits in very young bone marrow transplant recipients. Acta Paediatr 1995 84(4):429-33. Rec#: 22010 Reprint: EXC NRS Smith, M. A., and J. G. Smith. Clinical experience with the use of rhG-CSF in secondary autoimmune neutropenia. Clin Lab Haematol 2002 24(2):93-7. Rec#: 12290 Reprint: exc nro

Snowden, J. A., G. R. Hill, P. Hunt, S. Carnoutsos, R. L. Spearing, E. Espiner, and D. N. Hart. Assessment of cardiotoxicity during haemopoietic stem cell transplantation with plasma brain natriuretic peptide. Bone Marrow Transplant 2000 26(3):309-13. Rec#: 14890 Reprint: exc nro

Snyder, M. J., W. D. Bradford, P. S. Kishnani, and L. P. Hale. Idiopathic hyperammonemia following an unrelated cord blood transplant for mucopolysaccharidosis I. Pediatr Dev Pathol 2003 6(1):78-83. Rec#: 11230 Reprint: exc nr

Spreafico, F., L. Gandola, A. Marchiano, F. Simonetti, G. Poggi, A. Adduci, C. A. Clerici, R. Luksch, V. Biassoni, C. Meazza, S. Catania, M. Terenziani, R. Musumeci, F. Fossati-Bellani, and M. Massimino. Brain magnetic resonance imaging after high-dose chemotherapy and radiotherapy for childhood brain tumors. Int J Radiat Oncol Biol Phys 2008 70(4):1011-9. Rec#: 3130 Reprint: exc few

Spreafico, F., K. Pritchard-Jones, C. Bergeron, J. de Kraker, S. Dallorso, and N. Graf. Value and difficulties of a common European strategy for recurrent Wilms' tumor. Expert Rev Anticancer Ther 2009 9(6):693-6. Rec#: 44650 Reprint: exc edt

Stalder, M. P., A. Rovo, J. Halter, D. Heim, T. Silzle, J. Passweg, J. Rischewski, M. Stern, C. Arber, A. Buser, S. Meyer-Monard, A. Tichelli, and A. Gratwohl. Aplastic anemia and concomitant autoimmune diseases. Ann Hematol 2009 88(7):659-65. Rec#: 730 Reprint: exc nrs

Stary, J., P. Sedlacek, S. Vodvarkova, Z. Gasova, and J. Bartunkova. Development of common variable immunodeficiency in a patient with Evans syndrome treated by autologous stem cell transplantation. Pediatr Allergy Immunol 2003 14(4):334-7. Rec#: 10050 Reprint: exc nro

Statkute, L., L. Verda, Y. Oyama, A. Traynor, M. Villa, T. Shook,
R. Clifton, B. Jovanovic, J. Satkus, Y. Loh, K. Quigley, K. Yaung,
E. Gonda, N. Krosnjar, D. Spahovic, and R. K. Burt. Mobilization, harvesting and selection of peripheral blood stem cells in patients with autoimmune diseases undergoing autologous hematopoietic stem cell transplantation. Bone Marrow Transplant 2007 39(6):317-29.
Rec#: 4340
Reprint: exc nro

Steinbach, W. J., and C. I. Sandborg. Development of systemic lupus erythematosus following autologous bone marrow transplant for acute lymphocytic leukemia. 2001. Rec#: 13600 Reprint:

Stephan, J. L., I. Kone-Paut, C. Galambrun, R. Mouy, B. Bader-Meunier, and A. M. Prieur. Reactive haemophagocytic syndrome in children with inflammatory disorders. A retrospective study of 24 patients. Rheumatology (Oxford) 2001 40(11):1285-92. Rec#: 12850 Reprint: exc nri

Stephan, J. L., J. Zeller, P. Hubert, C. Herbelin, J. M. Dayer, and A. M. Prieur. Macrophage activation syndrome and rheumatic disease in childhood: a report of four new cases. Clin Exp Rheumatol 1993 11(4):451-6. Rec#: 23980 Reprint: EXC YEAR

Sterba, J., Z. Pavelka, and P. Slampa. Concomitant radiotherapy and metronomic temozolomide in pediatric high-risk brain tumors. Neoplasma 2002 49(2):117-20. Rec#: 11990 Reprint: exc nri

Stewart, D. A., E. Gyonyor, A. H. Paterson, K. Arthur, W. Temple, N. S. Schachar, J. Klassen, C. Brown, and J. A. Russell. High-dose melphalan +/- total body irradiation and autologous hematopoietic stem cell rescue for adult patients with Ewing's sarcoma or peripheral neuroectodermal tumor. Bone Marrow Transplant 1996 18(2):315-8. Rec#: 20370 Reprint: EXC NRP

Stiefel, M., T. Reiss, M. S. Staege, J. Rengelshausen, J. Burhenne,
A. Wawer, and J. L. Foell. Successful treatment with voriconazole of Aspergillus brain abscess in a boy with medulloblastoma.
Pediatr Blood Cancer 2007 49(2):203-7.
Rec#: 6360
Reprint: EXC NRI

Stram, D. O., K. K. Matthay, M. O'Leary, C. P. Reynolds, G. M. Haase, J. B. Atkinson, G. M. Brodeur, and R. C. Seeger. Consolidation chemoradiotherapy and autologous bone marrow transplantation versus continued chemotherapy for metastatic neuroblastoma: a report of two concurrent Children's Cancer Group studies. J Clin Oncol 1996 14(9):2417-26. Rec#: 20310 Reprint: exc nri

Stram, D. O., K. K. Matthay, M. O'Leary, C. P. Reynolds, and R.
C. Seeger. Myeloablative chemoradiotherapy versus continued chemotherapy for high risk neuroblastoma. Prog Clin Biol Res 1994 385:287-91.
Rec#: 23460
Reprint: EXC YEAR

Strauss, S. J., A. McTiernan, D. Driver, M. Hall-Craggs, A. Sandison, A. M. Cassoni, A. Kilby, M. Michelagnoli, J. Pringle, J.

Cobb, T. Briggs, S. Cannon, J. Witt, and J. S. Whelan. Single center experience of a new intensive induction therapy for ewing's family of tumors: feasibility, toxicity, and stem cell mobilization properties. J Clin Oncol 2003 21(15):2974-81. Rec#: 10120 Reprint: EXC NRO MIX

Streffer, J., M. Schabet, M. Bamberg, E. H. Grote, R. Meyermann,
K. Voigt, J. Dichgans, and M. Weller. A role for preirradiation
PCV chemotherapy for oligodendroglial brain tumors. J Neurol
2000 247(4):297-302.
Rec#: 55940
Reprint: exc nrp

Strother, D., D. Ashley, S. J. Kellie, A. Patel, D. Jones-Wallace, S. Thompson, R. Heideman, E. Benaim, R. Krance, L. Bowman, and A. Gajjar. Feasibility of four consecutive high-dose chemotherapy cycles with stem-cell rescue for patients with newly diagnosed medulloblastoma or supratentorial primitive neuroectodermal tumor after craniospinal radiotherapy: results of a collaborative study. J Clin Oncol 2001 19(10):2696-704. Rec#: 70650 Reprint: EXC NRI

Stuber, M. L., K. Nader, P. Yasuda, R. S. Pynoos, and S. Cohen.
Stress responses after pediatric bone marrow transplantation: preliminary results of a prospective longitudinal study. J Am Acad Child Adolesc Psychiatry 1991 30(6):952-7.
Rec#: 25720
Reprint: EXC YEAR

Stylli, S. S., A. H. Kaye, L. MacGregor, M. Howes, and P. Rajendra. Photodynamic therapy of high grade glioma - long term survival. J Clin Neurosci 2005 12(4):389-98. Rec#: 55140 Reprint: exc nri

Su, T. I., D. Khanna, D. E. Furst, G. Danovitch, C. Burger, P. Maranian, and P. J. Clements. Rapamycin versus methotrexate in early diffuse systemic sclerosis: results from a randomized, singleblind pilot study. Arthritis Rheum 2009 60(12):3821-30. Rec#: 40860 Reprint: exc nrp

Suarez, J. C., J. C. Viano, S. Zunino, E. J. Herrera, J. Gomez, B. Tramunt, I. Marengo, E. Hiramatzu, M. Miras, M. Pena, and B. Sonzini Astudillo. Management of child optic pathway gliomas: new therapeutical option. Childs Nerv Syst 2006 22(7):679-84. Rec#: 54970 Reprint: exc nro

Sung, K. W., K. H. Yoo, E. H. Chung, E. J. Cho, H. L. Jung, H. H. Koo, S. K. Lee, D. H. Lim, D. Y. Kim, D. W. Kim, H. R. Kim, and S. W. Kim. Double high-dose chemotherapy with autologous stem cell transplantation in patients with high-risk neuroblastoma: a pilot study in a single center. J Korean Med Sci 2002 17(4):537-43. Rec#: 11800 Reprint: exc nri Svahn, J., F. Fioredda, M. Calvillo, A. C. Molinari, C. Micalizzi, L. Banov, M. Schmidt, D. Caprino, D. Marinelli, D. Gallisai, and C. Dufour. Rituximab-based immunosuppression for autoimmune haemolytic anaemia in infants. Br J Haematol 2009 145(1):96-100. Rec#: 77460 Reprint: exc nrc

Svoren, B. M., L. K. Volkening, D. A. Butler, E. C. Moreland, B. J. Anderson, and L. M. Laffel. Temporal trends in the treatment of pediatric type 1 diabetes and impact on acute outcomes. J Pediatr 2007 150(3):279-85. Rec#: 61930

Reprint: exc nro

Tabori, U., L. Sung, J. Hukin, N. Laperriere, B. Crooks, A. S. Carret, M. Silva, I. Odame, C. Mpofu, D. Strother, B. Wilson, Y. Samson, and E. Bouffet. Distinctive clinical course and pattern of relapse in adolescents with medulloblastoma. Int J Radiat Oncol Biol Phys 2006 64(2):402-7. Rec#: 52620 Reprint: EXC NRI NPC

Taga, T., N. Okamoto, T. Hisano, T. Tanaka, M. Shimada, H. Okabe, H. Shimada, and S. Ohta. An infant with neuroblastoma and MYCN amplification found through mass screening. J Pediatr Hematol Oncol 1998 20(5):486-8. Rec#: 17560 Reprint: exc nri

Takahashi, H., A. Manabe, C. Aoyama, T. Kamiya, I. Kato, A. Takusagawa, C. Ogawa, M. Ozawa, R. Hosoya, and K. Yokoyama. Iodine-131-metaiodobenzylguanidine therapy with reducedintensity allogeneic stem cell transplantation in recurrent neuroblastoma. Pediatr Blood Cancer 2008 50(3):676-8. Rec#: 4430 Reprint: exc nri

Takken, T., C. van den Beuken, N. M. Wulffraat, P. J. Helders, and J. van der Net. Exercise tolerance in children with juvenile idiopathic arthritis after autologous SCT. Bone Marrow Transplant 2008 42(5):351-6. Rec#: 1770 Reprint: exc nro

Tanaka, H., K. Tsugawa, K. Suzuki, E. S. Oki, K. Nonaka, S. Kimura, and E. Ito. Treatment of difficult cases of systemic-onset juvenile idiopathic arthritis with tacrolimus. Eur J Pediatr 2007 166(10):1053-5. Rec#: 41400 Reprint: exc nrc

Tanphaichitr, V. S., V. Suvatte, C. Mahasandana, P. Sachapong, G. Veerakul, S. Kankirawatana, and P. Wasant. Gaucher's disease;thirty-two years experience at Siriraj Hospital. Southeast Asian J Trop Med Public Health 1999 30 Suppl 2:143-7. Rec#: 13630 Reprint: exc nrs Tarkowski, A., B. Andersson-Gare, and M. Aurell. Use of antithymocyte globulin in the management of refractory systemic autoimmune diseases. Scand J Rheumatol 1993 22(6):261-6. Rec#: 24540 Reprint: EXC YEAR

Tasdemiroglu, E. Trilateral retinoblastoma. Acta Neurochir (Wien) 1999 141(8):893-4. Rec#: 49070 Reprint: exc nrs

Tchirkov, A., C. Paillard, P. Halle, F. Bernard, P. Bordigoni, P. Vago, F. Demeocq, and J. Kanold. Significance of molecular quantification of minimal residual disease in metastatic neuroblastoma. J Hematother Stem Cell Res 2003 12(4):435-42. Rec#: 9920 Reprint: exc nri

Teachey, D. T., R. Greiner, A. Seif, E. Attiyeh, J. Bleesing, J. Choi, C. Manno, E. Rappaport, D. Schwabe, C. Sheen, K. E. Sullivan, H. Zhuang, D. S. Wechsler, and S. A. Grupp. Treatment with sirolimus results in complete responses in patients with autoimmune lymphoproliferative syndrome. Br J Haematol 2009 145(1):101-6. Rec#: 77470 Reprint: exc nrd

Tekautz, T. M., C. E. Fuller, S. Blaney, and Fouladi. Atypical Teratoid/Rhabdoid Tumors (ATRT): Improved Surivial in Children 3 years of Age and Older With Radiation Therapy and High-dose alkylator-based chemotehrapy. J Clin Oncol 2005 23(7). Rec#: Reprint: exc nrc

ten Cate, R., D. M. Brinkman, M. A. van Rossum, A. C. Lankester, R. G. Bredius, M. R. Egeler, M. J. van Tol, and J. M. Vossen. Macrophage activation syndrome after autologous stem cell transplantation for systemic juvenile idiopathic arthritis. Eur J Pediatr 2002 161(12):686-6. Rec#: 11070 Reprint: exc nro

Terasaki, K., T. Kanekura, M. Setoyama, and T. Kanzaki. A pediatric case of sclerodermatous chronic graft-versus-host disease. Pediatr Dermatol 2003 20(4):327-31. Rec#: 10160 Reprint: exc nrs

Terasaki, M., E. Bouffet, H. Katsuki, S. Fukushima, and M. Shigemori. Pilot trial of the rate of response, safety, and tolerability of temozolomide and oral VP-16 in patients with recurrent or treatment-induced malignant central nervous system tumors. Surg Neurol 2008 69(1):46-50. Rec#: 54660 Reprint: exc nrs

Thurberg, B. L., J. T. Fallon, R. Mitchell, T. Aretz, R. E. Gordon, and M. W. O'Callaghan. Cardiac microvascular pathology in Fabry disease: evaluation of endomyocardial biopsies before and after enzyme replacement therapy. Circulation 2009 119(19):2561-7. Rec#: 56640

Reprint: exc nrc

Thurberg, B. L., H. Rennke, R. B. Colvin, S. Dikman, R. E. Gordon, A. B. Collins, R. J. Desnick, and M. O'Callaghan. Globotriaosylceramide accumulation in the Fabry kidney is cleared from multiple cell types after enzyme replacement therapy. Kidney Int 2002 62(6):1933-46. Rec#: 57670 Reprint: exc nrc

Timmermann, B., R. D. Kortmann, J. Kuhl, S. Rutkowski, C. Meisner, T. Pietsch, F. Deinlein, C. Urban, M. Warmuth-Metz, and M. Bamberg. Role of radiotherapy in supratentorial primitive neuroectodermal tumor in young children: results of the German HIT-SKK87 and HIT-SKK92 trials. J Clin Oncol 2006 24(10):1554-60. Rec#: 52510 Reprint: EXC NRI NRC

Ting, S. S., J. B. Ziegler, and M. R. Vowels. Acquired autoimmune thrombocytopenia post-bone marrow transplantation for severe combined immunodeficiency. Bone Marrow Transplant 1998 21(8):841-3. Rec#: 18160 Reprint: exc nrs

Ting, T. V., and P. J. Hashkes. Methotrexate/naproxen-associated severe hepatitis in a child with juvenile idiopathic arthritis. Clin Exp Rheumatol 2007 25(6):928-9. Rec#: 41130 Reprint: exc cr

Tohyama, J., M. Kato, T. Koeda, and K. Ohno. Type C Niemann-Pick disease. Detection and quantification of cholesterolaccumulating cells in bone marrow. 1993. Rec#: 24010 Reprint: exc nrs

Tolar, J., J. E. Coad, N. K. Ramsay, C. Peters, and S. M. Davies. Lymphoproliferative disorder presenting as pulmonary nodules after bone marrow transplantation. 2001. Rec#: 12710 Reprint: exc nrs

Tolland, J. P., C. Devereux, F. C. Jones, and E. A. Bingham. Sclerodermatous chronic graft-versus-host disease--a report of four pediatric cases. Pediatr Dermatol 2008 25(2):240-4. Rec#: 2080 Reprint: exc nrd

Toren, A., A. Nagler, G. Rozenfeld-Granot, M. Levanon, J. Davidson, B. Bielorai, C. Kaplinsky, D. Meitar, M. Mandel, A. Ackerstein, A. Ballin, D. Attias, M. Biniaminov, E. Rosenthal, F. Brok-Simoni, G. Rechavi, and Y. Kaufmann. Amplification of immunological functions by subcutaneous injection of intermediate-high dose interleukin-2 for 2 years after autologous stem cell transplantation in children with stage IV neuroblastoma. Transplantation 2000 70(7):1100-4. Rec#: 14670 Reprint: exc nri Touitou, I., B. Dumont, M. Pourtein, S. Perelman, A. Sirvent, and C. Soler. Transmission of familial Mediterranean fever mutations following bone marrow transplantation. 2007. Rec#: 3430 Reprint: exc nrs

Trahair, T. N., M. R. Vowels, K. Johnston, R. J. Cohn, S. J. Russell, K. A. Neville, S. Carroll, and G. M. Marshall. Long-term outcomes in children with high-risk neuroblastoma treated with autologous stem cell transplantation. Bone Marrow Transplant 2007 40(8):741-6. Rec#: 3320 Reprint: exc nri

Traynor, A. E., W. G. Barr, R. M. Rosa, J. Rodriguez, Y. Oyama, S. Baker, M. Brush, and R. K. Burt. Hematopoietic stem cell transplantation for severe and refractory lupus. Analysis after five years and fifteen patients. Arthritis Rheum 2002 46(11):2917-23. Rec#: 11440 Reprint: exc nrp

Trebo, M. M., P. S. Thorner, W. P. Bowman, and S. Weitzman. Long-term survival of a stage 4 neuroblastoma patient despite persistent bone marrow disease following autologous bone marrow transplantation. Med Pediatr Oncol 1999 33(6):585-7. Rec#: 15960 Reprint: exc nri

Trivedi, H. L., A. V. Vanikar, U. Thakker, A. Firoze, S. D. Dave, C. N. Patel, J. V. Patel, A. B. Bhargava, and V. Shankar. Human adipose tissue-derived mesenchymal stem cells combined with hematopoietic stem cell transplantation synthesize insulin. Transplant Proc 2008 40(4):1135-9. Rec#: 1870 Reprint: exc nri

Trobaugh-Lotrario, A. D., B. Greffe, R. Deterding, G. Deutsch, and R. Quinones. Pulmonary veno-occlusive disease after autologous bone marrow transplant in a child with stage IV neuroblastoma: case report and literature review. J Pediatr Hematol Oncol 2003 25(5):405-9. Rec#: 10520 Reprint: exc nri

Tse, S., E. F. Saunders, E. Silverman, J. Vajsar, L. Becker, and B. Meaney. Myasthenia gravis and polymyositis as manifestations of chronic graft-versus-host-disease. Bone Marrow Transplant 1999 23(4):397-9. Rec#: 16980 Reprint: exc nrs

Tsilou, E. T., D. Thompson, A. S. Lindblad, G. F. Reed, B. Rubin, W. Gahl, J. Thoene, M. Del Monte, J. A. Schneider, D. B. Granet, and M. I. Kaiser-Kupfer. A multicentre randomised double masked clinical trial of a new formulation of topical cysteamine for the treatment of corneal cystine crystals in cystinosis. Br J Ophthalmol 2003 87(1):28-31. Rec#: 57660 Reprint: exc nrc Tsuchida, Y., and M. Kaneko. Surgery in pediatric solid tumors with special reference to advanced neuroblastoma. Acta Paediatr Taiwan 2002 43(2):67-71. Rec#: 12080 Reprint: exc nri

Tsugu, H., S. Oshiro, F. Yanai, F. Komatsu, H. Abe, T. Fukushima, Y. Nomura, S. Matsumoto, K. Nabeshima, K. Takano, and H. Utsunomiya. Management of pilomyxoid astrocytomas: our experience. Anticancer Res 2009 29(3):919-26. Rec#: 54360 Reprint: exc nrd

Tsui, E., A. Barnie, S. Ross, R. Parkes, and B. Zinman. Intensive insulin therapy with insulin lispro: a randomized trial of continuous subcutaneous insulin infusion versus multiple daily insulin injection. Diabetes Care 2001 24(10):1722-7. Rec#: 62420 Reprint: exc nrp

Tsutsumi, C., Y. Miyazaki, T. Fukushima, S. Yoshida, J. Taguchi, C. Miyake, M. Miyazaki, S. Kohno, I. Jinnai, and M. Tomonaga. Membranous nephropathy after allogeneic stem cell transplantation: report of 2 cases. Int J Hematol 2004 79(2):193-7. Rec#: 9180 Reprint: exc nro

Turner, D., A. B. Grossman, J. Rosh, S. Kugathasan, A. R. Gilman,
R. Baldassano, and A. M. Griffiths. Methotrexate following
unsuccessful thiopurine therapy in pediatric Crohn's disease. Am J
Gastroenterol 2007 102(12):"2804-12; quiz 2803, 2813".
Rec#: 41170
Reprint: exc nrc

Tuzun, E., B. Baykan, C. Gurses, and A. Gokyigit. Longterm follow-up of electroencephalographic and clinical findings of a case with Gaucher's disease type 3a. Seizure 2000 9(7):469-72. Rec#: 14740 Reprint: exc nrp

Tyndall, A., A. Fassas, J. Passweg, C. Ruiz de Elvira, M. Attal, P. Brooks, C. Black, P. Durez, J. Finke, S. Forman, L. Fouillard, D. Furst, J. Holmes, D. Joske, J. Jouet, I. Kotter, F. Locatelli, H. Prentice, A. M. Marmont, P. McSweeney, M. Musso, H. H. Peter, J. A. Snowden, K. Sullivan, A. Gratwohl, and a. l. .. et. Autologous haematopoietic stem cell transplants for autoimmune disease-feasibility and transplant-related mortality. Autoimmune Disease and Lymphoma Working Parties of the European Group for Blood and Marrow Transplantation, the European League Against Rheumatism and the International Stem Cell Project for Autoimmune Disease. Bone Marrow Transplant 1999 24(7):729-34.

Rec#: 16210 Reprint: exc nrp

Tyndall, A. J., F. Joly, B. Carbonne, C. N. Deligny, and D. C. Farge. Pregnancy and childbirth after treatment with autologous hematopoietic stem cell transplantation for severe systemic

sclerosis requiring parenteral nutrition. Ethical issues. Clin Exp Rheumatol 2008 26(6):1122-4. Rec#: 540 Reprint: exc nro

Tynjala, P., P. Lindahl, V. Honkanen, P. Lahdenne, and K. Kotaniemi. Infliximab and etanercept in the treatment of chronic uveitis associated with refractory juvenile idiopathic arthritis. Ann Rheum Dis 2007 66(4):548-50. Rec#: 41440 Reprint: exc nro

Ucar, B., N. Akgun, S. D. Aydogdu, B. Kirel, and S. Idem. Treatment of refractory Evans' syndrome with cyclosporine and prednisone. Pediatr Int 1999 41(1):104-7. Rec#: 78590 Reprint: exc nri cr

Ullrich, N. J., K. Marcus, S. L. Pomeroy, C. D. Turner, M. Zimmerman, L. E. Lehmann, R. M. Scott, L. Goumnerova, E. Gillan, M. W. Kieran, and S. N. Chi. Transverse myelitis after therapy for primitive neuroectodermal tumors. Pediatr Neurol 2006 35(2):122-5. Rec#: 71210 Reprint: EXC NRO

Urban, C., M. Benesch, P. Sovinz, W. Schwinger, and H. Lackner. Fatal Evans' syndrome after matched unrelated donor transplantation for hyper-IgM syndrome. Eur J Haematol 2004 72(6):444-7. Rec#: 8910 Reprint: exc nrd

Ushio, Y., M. Kochi, I. Kitamura, and J. Kuratsu. Ventriculolumber perfusion of 3-[(4-amino-2-methyl-5pyrimidinyl)-methyl]-1-(2-chloroethyl-1-nitrosou rea hydrochloride for subarachnoid dissemination of gliomas. J Neurooncol 1998 38(2-3):207-12. Rec#: 56130 Reprint: exc nrp

Vachvanichsanong, P., P. Dissaneewate, and T. Winn. Intravenous cyclophosphamide for lupus nephritis in Thai children. Scand J Rheumatol 2004 33(5):339-42. Rec#: 41720 Reprint: exc nri

Vaena DA, Abonour R, Einhorn LH. Long-term survival after high-dose salvage chemotherapy for germ cell malignancies with adverse prognostic variables. J Clin Oncol 2003 21:4100-4104. Rec#: 78820 Reprint: EXC NRP

Vaisbich, M. H., and V. H. Koch. Report of a Brazilian multicenter study on nephropathic cystinosis. Nephron Clin Pract 2010 114(1):c12-8. Rec#: 56510 Reprint: exc nrc Valteau-Couanet, D., E. Benhamou, G. Vassal, F. Stambouli, V. Lapierre, D. Couanet, J. Lumbroso, and O. Hartmann. Consolidation with a busulfan-containing regimen followed by stem cell transplantation in infants with poor prognosis stage 4 neuroblastoma. Bone Marrow Transplant 2000 25(9):937-42. Rec#: 15330 Reprint: exc nri

Valteau-Couanet, D., H. Rubie, V. Meresse, F. Farace, M. Brandely, and O. Hartmann. Phase I-II study of interleukin-2 after high-dose chemotherapy and autologous bone marrow transplantation in poorly responding neuroblastoma. Bone Marrow Transplant 1995 16(4):515-20. Rec#: 21500 Reprint: EXC NRI

Valteau-Couanet, D., G. Vassal, C. Pondarre, M. Bonnay, E. Benhamou, D. Couanet, D. Plantaz, and O. Hartmann. Phase I study of high-dose continuous intravenous infusion of VP-16 in combination with high-dose melphalan followed by autologous bone marrow transplantation in children with stage IV neuroblastoma. Bone Marrow Transplant 1996 17(4):485-9. Rec#: 20880 Reprint: EXC NRI

van den Bent, M. J., A. A. Brandes, R. Rampling, M. C. Kouwenhoven, J. M. Kros, A. F. Carpentier, P. M. Clement, M. Frenay, M. Campone, J. F. Baurain, J. P. Armand, M. J. Taphoorn, A. Tosoni, H. Kletzl, B. Klughammer, D. Lacombe, and T. Gorlia. Randomized phase II trial of erlotinib versus temozolomide or carmustine in recurrent glioblastoma: EORTC brain tumor group study 26034. J Clin Oncol 2009 27(8):1268-74. Rec#: 54440 Reprint: exc nrp

van den Berg, H., U. Dirksen, A. Ranft, and H. Jurgens. Ewing tumors in infants. Pediatr Blood Cancer 2008 50(4):761-4. Rec#: 3510 Reprint: EXC MIX

Van den Hout, J. M., A. J. Reuser, J. B. de Klerk, W. F. Arts, J. A. Smeitink, and A. T. Van der Ploeg. Enzyme therapy for pompe disease with recombinant human alpha-glucosidase from rabbit milk. J Inherit Metab Dis 2001 24(2):266-74. Rec#: 57810 Reprint: exc nrc

van der Ploeg, A. T., P. R. Clemens, D. Corzo, D. M. Escolar, J. Florence, G. J. Groeneveld, S. Herson, P. S. Kishnani, P. Laforet, S. L. Lake, D. J. Lange, R. T. Leshner, J. E. Mayhew, C. Morgan, K. Nozaki, D. J. Park, A. Pestronk, B. Rosenbloom, A. Skrinar, C. I. van Capelle, N. A. van der Beek, M. Wasserstein, and S. A. Zivkovic. A randomized study of alglucosidase alfa in late-onset Pompe's disease. N Engl J Med 2010 362(15):1396-406. Rec#: 56430 Reprint: exc nrc

van Geel, B. M., J. Assies, E. B. Haverkort, J. H. Koelman, B. Jr Verbeeten, R. J. Wanders, and P. G. Barth. Progression of abnormalities in adrenomyeloneuropathy and neurologically asymptomatic X-linked adrenoleukodystrophy despite treatment with 'Lorenzo's oil'. J Neurol Neurosurg Psychiatry 1999 67(3):290-9. Rec#: 57980 Reprint: exc nrc

van Laar, J. M., D. Farge, and A. Tyndall. Stem cell transplantation: a treatment option for severe systemic sclerosis? Ann Rheum Dis 2008 67 Suppl 3:iii35-8. Rec#: 850 Reprint: exc nra

Van Riet, F. A., G. Wessels, and P. B. Hesseling. Experience with high dose dexamethasone in the treatment of chronic symptomatic immune thrombocytopaenia. East Afr Med J 1999 76(10):571-4. Rec#: 15450 Reprint: exc nro

Vande Berg, B. C., J. Malghem, F. E. Lecouvet, J. P. Devogelaer, B. Maldague, and F. A. Houssiau. Fat conversion of femoral marrow in glucocorticoid-treated patients: a cross-sectional and longitudinal study with magnetic resonance imaging. Arthritis Rheum 1999 42(7):1405-11. Rec#: 16630 Reprint: exc nro

Vanlemmens, P., E. Plouvier, D. Amsallem, E. Racadot, M. L. Deschaseaux, J. P. Schaal, P. Charbord, A. Noir, and P. Herve. Transplantation of umbilical cord blood in neuroblastoma. Nouv Rev Fr Hematol 1992 34(3):243-6. Rec#: 25550 Reprint: EXC YEAR

Varan, A., and A. M. Tuncer. The importance of the bone marrow examination in cystinosis. 1991. Rec#: 25850 Reprint: exc year

Vassal, G., D. Couanet, E. Stockdale, A. Geoffray, B. Geoerger, D. Orbach, F. Pichon, J. C. Gentet, S. Picton, C. Bergeron, L. Cisar, S. Assadourian, and B. Morland. Phase II trial of irinotecan in children with relapsed or refractory rhabdomyosarcoma: a joint study of the French Society of Pediatric Oncology and the United Kingdom Children's Cancer Study Group. J Clin Oncol 2007 25(4):356-61. Rec#: 47070 Reprint: exc nro

Vassal, G., B. Tranchand, D. Valteau-Couanet, C. Mahe, D. Couanet, C. Schoeppfer, J. Grill, C. Kalifa, C. Hill, C. Ardiet, and O. Hartmann. Pharmacodynamics of tandem high-dose melphalan with peripheral blood stem cell transplantation in children with neuroblastoma and medulloblastoma. Bone Marrow Transplant 2001 27(5):471-7. Rec#: 70660 Reprint: EXC NRO

Vaughan, W. P. NCCN: High-dose chemotherapy. Applications of high-dose chemotherapy with bone marrow/stem cell support in solid tumors. Cancer Control 2001 8(6 Suppl 2):50-2.

Rec#: 70620 Reprint: EXC NRS

Vaux, Z. Peripheral stem cell transplants in children. Paediatr Nurs 1996 8(2):20-2. Rec#: 20970 Reprint: EXC NRD NRI

Verdeguer, A., A. Munoz, A. Canete, N. Pardo, A. Martinez, J. Donat, P. Gomez, E. Bureo, J. M. Fernandez, J. Cubells, M. Maldonado, and A. Sastre. Long-term results of high-dose chemotherapy and autologous stem cell rescue for high-risk neuroblastoma patients: a report of the Spanish working party for BMT in children (Getmon). Pediatr Hematol Oncol 2004 21(6):495-504. Rec#: 7990 Reprint: exc nri

Vermeulen, J., S. Ballet, O. Oberlin, M. Peter, G. Pierron, E. Longavenne, V. Laurence, J. Kanold, P. Chastagner, O. Lejars, J. Y. Blay, P. Marec-Berard, J. Michon, O. Delattre, and G. Schleiermacher. Incidence and prognostic value of tumour cells detected by RT-PCR in peripheral blood stem cell collections from patients with Ewing tumour. Br J Cancer 2006 95(10):1326-33. Rec#: 4700 Reprint: exc nrp

Vettenranta, K., P. Ukkonen, and U. M. Saarinen. RSV infection complicating the therapy of pediatric malignancies: report of six cases. Med Pediatr Oncol 1996 26(4):261-3. Rec#: 20930 Reprint: exc nri

Vialettes, B., D. Maraninchi, M. P. San Marco, F. Birg, A. M. Stoppa, C. Mattei-Zevaco, C. Thivolet, L. Hermitte, P. Vague, and P. Mercier. Autoimmune polyendocrine failure--type 1 (insulindependent) diabetes mellitus and hypothyroidism--after allogeneic bone marrow transplantation in a patient with lymphoblastic leukaemia. Diabetologia 1993 36(6):541-6. Rec#: 24120 Reprint: EXC YEAR

Villas, C., and M. San Julian. Ewing's tumor of the spine: report on seven cases including one with a 10-year follow-up. Eur Spine J 1996 5(6):412-7. Rec#: 21150 Reprint: exc cr (small)

Vinchon, M., P. Leblond, R. Noudel, and P. Dhellemmes. Intracranial ependymomas in childhood: recurrence, reoperation, and outcome. Childs Nerv Syst 2005 21(3):221-6. Rec#: 74020 Reprint: exc nri

Vogelbaum, M. A., B. Berkey, D. Peereboom, D. Macdonald, C. Giannini, J. H. Suh, R. Jenkins, J. Herman, P. Brown, D. T. Blumenthal, C. Biggs, C. Schultz, and M. Mehta. Phase II trial of preirradiation and concurrent temozolomide in patients with newly diagnosed anaplastic oligodendrogliomas and mixed anaplastic

oligoastrocytomas: RTOG BR0131. Neuro Oncol 2009 11(2):167-75. Rec#: 54520 Reprint: exc nro

Voltarelli, J. C., C. E. Couri, A. B. Stracieri, M. C. Oliveira, D. A. Moraes, F. Pieroni, M. Coutinho, K. C. Malmegrim, M. C. Foss-Freitas, B. P. Simoes, M. C. Foss, E. Squiers, and R. K. Burt. Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA 2007 297(14):1568-76. Rec#: 4050

Reprint: exc all pts reported in couri rec 290

von Hoff, K., B. Hinkes, N. U. Gerber, F. Deinlein, U. Mittler, C. Urban, M. Benesch, M. Warmuth-Metz, N. Soerensen, I. Zwiener, H. Goette, P. G. Schlegel, T. Pietsch, R. D. Kortmann, J. Kuehl, and S. Rutkowski. Long-term outcome and clinical prognostic factors in children with medulloblastoma treated in the prospective randomised multicentre trial HIT'91. Eur J Cancer 2009 45(7):1209-17. Rec#: 51920 Reprint: EXC NRI

Vonk, M. C., Z. Marjanovic, F. H. van den Hoogen, S. Zohar, A. V. Schattenberg, W. E. Fibbe, J. Larghero, E. Gluckman, F. W. Preijers, A. P. van Dijk, J. J. Bax, P. Roblot, P. L. van Riel, J. M. van Laar, and D. Farge. Long-term follow-up results after autologous haematopoietic stem cell transplantation for severe systemic sclerosis. Ann Rheum Dis 2008 67(1):98-104. Rec#: 3820 Reprint: exc nrp

Vossen, J. M., D. M. Brinkman, B. Bakker, P. M. Hoogerbrugge, and R. ten Cate. Rationale for high-dose cyclophosphamide and medium-dose total body irradiation in the conditioning of children with progressive systemic and polyarticular juvenile chronic arthritis before autologous stem cell transplantation. Rheumatology (Oxford) 1999 38(8):762-3. Rec#: 16290 Reprint: exc npd

Vredenburgh, J. J., A. Desjardins, J. E. 2nd Herndon, J. Marcello, D. A. Reardon, J. A. Quinn, J. N. Rich, S. Sathornsumetee, S. Gururangan, J. Sampson, M. Wagner, L. Bailey, D. D. Bigner, A. H. Friedman, and H. S. Friedman. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 2007 25(30):4722-9. Rec#: 54680 Reprint: exc nrp

Wada, R. K., R. C. Seeger, G. M. Brodeur, P. A. Einhorn, S. A. Rayner, M. M. Tomayko, and C. P. Reynolds. Human neuroblastoma cell lines that express N-myc without gene amplification. Cancer 1993 72(11):3346-54. Rec#: 23630 Reprint: exc nrp

Wagner, J. E., N. A. Kernan, M. Steinbuch, H. E. Broxmeyer, and E. Gluckman. Allogeneic sibling umbilical-cord-blood

transplantation in children with malignant and non-malignant disease. Lancet 1995 346(8969):214-9. Rec#: 21670 Reprint: EXC NRS

Wagner, K. R. Enzyme replacement for infantile Pompe disease: the first step toward a cure. Neurology 2007 68(2):88-9. Rec#: 57050 Reprint: exc nrc

Wagner, L. M., K. R. Crews, L. C. Iacono, P. J. Houghton, C. E. Fuller, M. B. McCarville, R. E. Goldsby, K. Albritton, C. F. Stewart, and V. M. Santana. Phase I trial of temozolomide and protracted irinotecan in pediatric patients with refractory solid tumors. Clin Cancer Res 2004 10(3):840-8. Rec#: 9290 Reprint: EXC MIX

Wainwright, M. S., P. L. Martin, R. P. Morse, M. Lacaze, J. M. Provenzale, R. E. Coleman, M. A. Morgan, C. Hulette, J. Kurtzberg, C. Bushnell, L. Epstein, and D. V. Lewis. Human herpesvirus 6 limbic encephalitis after stem cell transplantation. Ann Neurol 2001 50(5):612-9. Rec#: 12880 Reprint: exc nrd

Waite, L., and E. Morrison. Severe gastrointestinal involvement in systemic lupus erythematosus treated with rituximab and cyclophosphamide (B-cell depletion therapy). Lupus 2007 16(10):841-2. Rec#: 41200 Reprint: exc cr

Wang, J., W. Hu, H. Xie, H. Zhang, H. Chen, C. Zeng, Z. Liu, and L. Li. Induction therapies for class IV lupus nephritis with noninflammatory necrotizing vasculopathy: mycophenolate mofetil or intravenous cyclophosphamide. Lupus 2007 16(9):707-12. Rec#: 41230 Reprint: exc nrp

Watanabe, K., H. Kanaya, Y. Fujiyama, and P. Kim. Combination chemotherapy using carboplatin (JM-8) and etoposide (JET therapy) for recurrent malignant gliomas: a phase II study. Acta Neurochir (Wien) 2002 144(12):1265-70; discussion 1270. Rec#: 55580 Reprint: exc nrp

Watts, R. G. Idiopathic thrombocytopenic purpura: a 10-year natural history study at the childrens hospital of alabama. Clin Pediatr (Phila) 2004 43(8):691-702. Rec#: 8110 Reprint: exc nro

Watts, R. G., and E. Mroczek-Musulman. Pulmonary interstitial disease mimicking idiopathic pneumonia syndrome as the initial site of relapse of neuroblastoma following autologous bonemarrow transplantation: a case report. Am J Hematol 1996 53(2):137-40. Rec#: 20240 Reprint: exc nri Wedderburn, L. R., M. Abinun, P. Palmer, and H. E. Foster. Autologous haematopoietic stem cell transplantation in juvenile idiopathic arthritis. Arch Dis Child 2003 88(3):201-5. Rec#: 10920 Reprint: exc nra

Wedrychowicz, A., J. Gozdzik, A. Krasowska-Kwiecien, E. Kacinka, O. Wiecha, K. Kubiczek, and M. Z. Ratajczak. Manifestation of toxocariasis in children with neuroblastoma treated with autologous hematopoietic transplants. Pediatr Hematol Oncol 2006 23(5):369-79. Rec#: 5540 Reprint: exc nri

Weigel, B. J., P. P. Breitfeld, D. Hawkins, W. M. Crist, and K. S. Baker. Role of high-dose chemotherapy with hematopoietic stem cell rescue in the treatment of metastatic or recurrent rhabdomyosarcoma. J Pediatr Hematol Oncol 2001 23(5):272-6. Rec#: 13340 Reprint: exc rev

Weintrob, N., H. Benzaquen, A. Galatzer, S. Shalitin, L. Lazar, G. Fayman, P. Lilos, Z. Dickerman, and M. Phillip. Comparison of continuous subcutaneous insulin infusion and multiple daily injection regimens in children with type 1 diabetes: a randomized open crossover trial. Pediatrics 2003 112(3 Pt 1):559-64. Rec#: 62310 Reprint: exc nro

Weiss, B., A. Lerner, R. Shapiro, E. Broide, A. Levine, A. Fradkin, and Y. Bujanover. Methotrexate treatment in pediatric Crohn disease patients intolerant or resistant to purine analogues. J Pediatr Gastroenterol Nutr 2009 48(5):526-30. Rec#: 40900 Reprint: exc nrc

Weitzman, C. C., S. Schlegel, N. Murphy, A. H. Antommaria, J. P. Brosco, and M. T. Stein. When clinicians and a parent disagree on the extent of medical care. J Dev Behav Pediatr 2009 30(3):242-3. Rec#: 90 Reprint: exc nrd

Wells, R. J., J. M. Reid, M. M. Ames, W. L. Mares, M. D. Krailo, N. L. Seibel, R. Mosher, G. H. Reaman, and S. R. Wiersma. Phase I trial of cisplatin and topotecan in children with recurrent solid tumors: Children's Cancer Group Study 0942. J Pediatr Hematol Oncol 2002 24(2):89-93. Rec#: 12260 Reprint: exc nro

Wen, P. Y., W. K. Yung, K. R. Lamborn, P. L. Dahia, Y. Wang, B.
Peng, L. E. Abrey, J. Raizer, T. F. Cloughesy, K. Fink, M. Gilbert,
S. Chang, L. Junck, D. Schiff, F. Lieberman, H. A. Fine, M.
Mehta, H. I. Robins, L. M. DeAngelis, M. D. Groves, V. K.
Puduvalli, V. Levin, C. Conrad, E. A. Maher, K. Aldape, M.
Hayes, L. Letvak, M. J. Egorin, R. Capdeville, R. Kaplan, A. J.
Murgo, C. Stiles, and M. D. Prados. Phase I/II study of imatinib
mesylate for recurrent malignant gliomas: North American Brain

Tumor Consortium Study 99-08. Clin Cancer Res 2006 12(16):4899-907. Rec#: 54860 Reprint: exc nro

Wenner, W. J., and J. L. Murphy. The effects of cysteamine on the upper gastrointestinal tract of children with cystinosis. Pediatr Nephrol 1997 11(5):600-3. Rec#: 58140 Reprint: exc nrc

Wexler, L. H., T. F. DeLaney, M. Tsokos, N. Avila, S. M. Steinberg, L. Weaver-McClure, J. Jacobson, P. Jarosinski, Y. M. Hijazi, F. M. Balis, and M. E. Horowitz. Ifosfamide and etoposide plus vincristine, doxorubicin, and cyclophosphamide for newly diagnosed Ewing's sarcoma family of tumors. Cancer 1996 78(4):901-11. Rec#: 44450 Reprint: exc nrp

White, L., S. Kellie, E. Gray, I. Toogood, K. Waters, L. Lockwood, S. Macfarlane, and H. Johnston. Postoperative chemotherapy in children less than 4 years of age with malignant brain tumors: promising initial response to a VETOPEC-based regimen. A Study of the Australian and New Zealand Children's Cancer Study Group (ANZCCSG). J Pediatr Hematol Oncol 1998 20(2):125-30. Rec#: 74620 Reprint: exc nrs

White, N. H., W. Sun, P. A. Cleary, R. P. Danis, M. D. Davis, D. P. Hainsworth, L. D. Hubbard, J. M. Lachin, and D. M. Nathan. Prolonged effect of intensive therapy on the risk of retinopathy complications in patients with type 1 diabetes mellitus: 10 years after the Diabetes Control and Complications Trial. Arch Ophthalmol 2008 126(12):1707-15. Rec#: 61750 Reprint: exc nrp

Wiegering, V., H. Morbach, A. Dick, and H Girschick. Crohn's disease during etanercept therapy in juvenile idiopathic arthritis: a case report and review of the literature. Rheumatol Int 2010 30:801-804.

Rec#: Reprint: exc nro

Wiegering, V., H. Morbach, A. Dick, and H. J. Girschick. Crohn's disease during etanercept therapy in juvenile idiopathic arthritis: a case report and review of the literature. Rheumatol Int 2010 30(6):801-4. Rec#: 77120 Reprint: exc nro

Willi, S. M. How low can we go...safely?: factors affecting intensive diabetes management. J Pediatr 2006 149(2):154-6. Rec#: 62020 Reprint: exc com

Willi, S. M., K. Cooke, J. Goldwein, C. S. August, J. S. Olshan, and T. Jr Moshang. Growth in children after bone marrow transplantation for advanced neuroblastoma compared with growth after transplantation for leukemia or aplastic anemia. J Pediatr 1992 120(5):726-32. Rec#: 25090 Reprint: EXC YEAR

Witt, V., G. Fritsch, C. Peters, S. Matthes-Martin, R. Ladenstein, and H. Gadner. Resolution of early cytomegalovirus (CMV) infection after leukocyte transfusion therapy from a CMV seropositive donor. Bone Marrow Transplant 1998 22(3):289-92. Rec#: 17780 Reprint: exc nri

Wolden, S. L., J. R. Anderson, W. M. Crist, J. C. Breneman, M. D.
Jr Wharam, E. S. Wiener, S. J. Qualman, and S. S. Donaldson.
Indications for radiotherapy and chemotherapy after complete resection in rhabdomyosarcoma: A report from the Intergroup
Rhabdomyosarcoma Studies I to III. J Clin Oncol 1999
17(11):3468-75.
Rec#: 48010
Reprint: exc nrd

Wolden, S. L., S. V. Gollamudi, B. H. Kushner, M. LaQuaglia, K. Kramer, N. Rosen, S. Abramson, and N. V. Cheung. Local control with multimodality therapy for stage 4 neuroblastoma. Int J Radiat Oncol Biol Phys 2000 46(4):969-74. Rec#: 15550 Reprint: exc nri

Wong, K. F., P. K. Hui, J. K. Chan, Y. W. Chan, and S. Y. Ha. The acute lupus hemophagocytic syndrome. Ann Intern Med 1991 114(5):387-90. Rec#: 26310 Reprint: EXC YEAR

Wong, M. S., G. C. Chan, S. Y. Ha, and Y. L. Lau. Clinical characteristics of chronic idiopathic thrombocytopenia in Chinese children. J Pediatr Hematol Oncol 2002 24(8):648-52. Rec#: 11370 Reprint: exc nro

Worcester, H. D., and M. A. Vasef. Therapy-related acute myeloid leukemia with 11q23 abnormality coexisting with refractory metastatic Ewing sarcoma: report of a case and review of the literature. Pediatr Dev Pathol 2010 13(1):50-4. Rec#: 42710 Reprint: exc cr

Worgall, S., D. Sondhi, N. R. Hackett, B. Kosofsky, M. V. Kekatpure, N. Neyzi, J. P. Dyke, D. Ballon, L. Heier, B. M. Greenwald, P. Christos, M. Mazumdar, M. M. Souweidane, M. G. Kaplitt, and R. G. Crystal. Treatment of late infantile neuronal ceroid lipofuscinosis by CNS administration of a serotype 2 adeno-associated virus expressing CLN2 cDNA. Hum Gene Ther 2008 19(5):463-74. Rec#: 56820 Reprint: exc nri

Wraith, J. E., M. R. Baumgartner, B. Bembi, A. Covanis, T. Levade, E. Mengel, M. Pineda, F. Sedel, M. Topcu, M. T. Vanier, H. Widner, F. A. Wijburg, and M. C. Patterson. Recommendations

on the diagnosis and management of Niemann-Pick disease type C. Mol Genet Metab 2009 98(1-2):152-65. Rec#: 56570 Reprint: exc gui

Wraith, J. E., A. Tylki-Szymanska, N. Guffon, Y. H. Lien, M. Tsimaratos, A. Vellodi, and D. P. Germain. Safety and efficacy of enzyme replacement therapy with agalsidase beta: an international, open-label study in pediatric patients with Fabry disease. J Pediatr 2008 152(4):"563-70, 570.e1". Rec#: 56850 Reprint: exc nrc

Wraith, J. E., D. Vecchio, E. Jacklin, L. Abel, H. Chadha-Boreham, C. Luzy, R. Giorgino, and M. C. Patterson. Miglustat in adult and juvenile patients with Niemann-Pick disease type C: long-term data from a clinical trial. Mol Genet Metab 2010 99(4):351-7. Rec#: 56450 Reprint: EXC DUP

Wrobel, G., G. Dobaczewski, D. Patkowski, A. Sokol, and E. Grotthus. Experiences with recombinant activated factor VII in the treatment of severe refractory thrombocytopenia. Pediatr Blood Cancer 2006 47(5 Suppl):729-30. Rec#: 5120 Reprint: exc nri

Wuhl, E., D. Haffner, N. Gretz, G. Offner, W. G. van't Hoff, M. Broyer, and O. Mehls. Treatment with recombinant human growth hormone in short children with nephropathic cystinosis: no evidence for increased deterioration rate of renal function. The European Study Group on Growth Hormone Treatment in Short Children with Nephropathic Cystinosis. Pediatr Res 1998 43(4 Pt 1):484-8. Rec#: 58130 Reprint: exc nrc

Reprint. exe nic

Wuhl, E., D. Haffner, G. Offner, M. Broyer, W. van't Hoff, and O. Mehls. Long-term treatment with growth hormone in short children with nephropathic cystinosis. J Pediatr 2001 138(6):880-7.Rec#: 57820Reprint: exc nrc

Wulffraat, M., I. de Kleer, D. Brinkman, R. ten Cate, J. J. van der Net, G. T. Rijkers, and W. Kuis. Autologous stem cell transplantation for refractory juvenile idiopathic artrhitis: current results and perspectives. Transplant Proc 2002 34(7):2925-6. Rec#: 11430 Reprint: exc data in rec 8350

Wulffraat, N., A. van Royen, M. Bierings, J. Vossen, and W. Kuis. Autologous haemopoietic stem-cell transplantation in four patients with refractory juvenile chronic arthritis. Lancet 1999 353(9152):550-3. Rec#: 17200 Reprint: exc same pt as in rec 8350

Wulffraat, N. M., D. Brinkman, A. Ferster, J. Opperman, R. ten Cate, L. Wedderburn, H. Foster, M. Abinun, A. M. Prieur, G.

Horneff, F. Zintl, I. de Kleer, and W. Kuis. Long-term follow-up of autologous stem cell transplantation for refractory juvenile idiopathic arthritis. Bone Marrow Transplant 2003 32 Suppl 1:S61-4. Rec#: 9990

Reprint: exc nra

Wulffraat, N. M., I. M. de Kleer, B. J. Prakken, and W. Kuis. Stem cell transplantation for autoimmune disorders. Refractory juvenile idiopathic arthritis. Best Pract Res Clin Haematol 2004 17(2):277-89.

Rec#: 8510 Reprint: exc same pts as in rec 8350

Wulffraat, N. M., P. J. Haas, M. Frosch, I. M. De Kleer, T. Vogl, D. M. Brinkman, P. Quartier, J. Roth, and W. Kuis. Myeloid related protein 8 and 14 secretion reflects phagocyte activation and correlates with disease activity in juvenile idiopathic arthritis treated with autologous stem cell transplantation. Ann Rheum Dis 2003 62(3):236-41. Rec#: 10940 Reprint: exc nro

Wulffraat, N. M., and W. Kuis. Autologous stem cell transplantation: a possible treatment for refractory juvenile chronic arthritis? Rheumatology (Oxford) 1999 38(8):764-6. Rec#: 16280 Reprint: exc same as rec 17200

Wulffraat, N. M., W. Kuis, and R. Petty. Addendum: proposed guidelines for autologous stem cell transplantation in juvenile chronic arthritis. Paediatric Rheumatology Workshop. Rheumatology (Oxford) 1999 38(8):777-8. Rec#: 16260 Reprint: exc npd

Wulffraat, N. M., L. A. Sanders, and W. Kuis. Autologous hemopoietic stem-cell transplantation for children with refractory autoimmune disease. Curr Rheumatol Rep 2000 2(4):316-23. Rec#: 14340 Reprint: exc pt reported in rec 8350

Yabe, H., H. Inoue, M. Matsumoto, S. Hamanoue, A. Hiroi, T. Koike, M. Sako, M. Fujiwara, Y. Ueda, E. Maruya, H. Saji, S. Kato, and M. Yabe. Unmanipulated HLA-haploidentical bone marrow transplantation for the treatment of fatal, nonmalignant diseases in children and adolescents. Int J Hematol 2004 80(1):78-82.

Rec#: 8530 Reprint: exc cr nrs

Yamada, K., H. Sugiura, and M. Takahashi. Single center experience of treatment of Ewing's family of tumors in Japan. J Orthop Sci 2006 11(1):34-41. Rec#: 6120 Reprint: exc nrp

Yamada, K., M. Takahashi, M. Ogura, Y. Kagami, H. Taji, Y. Kamiya, H. Sugiura, and Y. Morishima. High-dose chemotherapy and autologous peripheral blood stem cell transfusion for adult

and adolescent patients with small round cell sarcomas. Bone Marrow Transplant 2007 39(8):471-6. Rec#: 4220 Reprint: exc nrp

Yamamori, I., T. Kanie, N. Maeda, Y. Kodera, T. Matsuyama, and H. Hasegawa. Appearance of thyroid stimulating and blocking immunoglobulins after bone marrow transplantation: presentation of two contrasting cases. Endocr J 2004 51(4):439-43. Rec#: 8370 Reprint: EXC NRD NRO

Yanai, T., T. Okazaki, A. Yamataka, H. Fujita, M. Saito, G. Lane, Y. Yamashiro, and T. Miyano. A rare case of bilateral stage IV adrenal neuroblastoma with multiple skin metastases in a neonate: diagnosis, management, and outcome. J Pediatr Surg 2004 39(12):1782-3. Rec#: 7870 Reprint: exc nri

Yang, S. H., M. K. Kim, T. K. Lee, K. S. Lee, S. S. Jeun, C. K. Park, J. K. Kang, M. C. Kim, and Y. K. Hong. Temozolomide chemotherapy in patients with recurrent malignant gliomas. J Korean Med Sci 2006 21(4):739-44. Rec#: 54880 Reprint: exc nrp

Yang, W. K., L. S. Fu, J. L. Lan, G. H. Shen, G. Chou, C. F. Tseng, and C. S. Chi. Mycobacterium avium complex-associated hemophagocytic syndrome in systemic lupus erythematosus patient: report of one case. Lupus 2003 12(4):312-6. Rec#: 10600 Reprint: exc nro

Yanik, G. A., J. E. Levine, K. K. Matthay, J. C. Sisson, B. L. Shulkin, B. Shapiro, D. Hubers, S. Spalding, T. Braun, J. L. Ferrara, and R. J. Hutchinson. Pilot study of iodine-131metaiodobenzylguanidine in combination with myeloablative chemotherapy and autologous stem-cell support for the treatment of neuroblastoma. J Clin Oncol 2002 20(8):2142-9. Rec#: 12390 Reprint: exc nri

Keprint. exe ini

Yano, S., K. Hida, H. Kobayashi, and Y. Iwasaki. Successful multimodal therapies for a primary atypical teratoid/rhabdoid tumor in the cervical spine. Pediatr Neurosurg 2008 44(5):406-13. Rec#: 52020 Reprint: EXC NRI

Yarali, N., T. Fisgin, A. Kara, and F. Duru. Successful management of severe chronic autoimmune hemolytic anemia with low dose cyclosporine and prednisone in an infant. Turk J Pediatr 2003 45(4):335-7. Rec#: 78060 Reprint: exc nri

Yasuda, K., H. Taguchi, Y. Sawamura, J. Ikeda, H. Aoyama, K. Fujieda, N. Ishii, M. Kashiwamura, Y. Iwasaki, and H. Shirato. Low-dose craniospinal irradiation and ifosfamide, cisplatin and

etoposide for non-metastatic embryonal tumors in the central nervous system. Jpn J Clin Oncol 2008 38(7):486-92. Rec#: 52040 Reprint: EXC NRI

Yeung, A. H., M. J. Cowan, B. Horn, and K. W. Rosbe. Airway management in children with mucopolysaccharidoses. Arch Otolaryngol Head Neck Surg 2009 135(1):73-9. Rec#: 700 Reprint: exc nrp

Yock, T. I., M. Krailo, C. J. Fryer, S. S. Donaldson, J. S. Miser, Z. Chen, M. Bernstein, F. Laurie, M. C. Gebhardt, H. E. Grier, and N. J. Tarbell. Local control in pelvic Ewing sarcoma: analysis from INT-0091--a report from the Children's Oncology Group. J Clin Oncol 2006 24(24):3838-43. Rec#: 43240 Reprint: exc nrp

Yokota, S., M. Mori, T. Imagawa, T. Murata, M. Tomiita, Y. Itoh, S. Fujikawa, and S. Takei. Guidelines on the use of etanercept for juvenile idiopathic arthritis in Japan. Mod Rheumatol 2010 20(2):107-13. Rec#: 77070 Reprint: exc gui

Yokoyama, S., H. Hirakawa, J. Soeda, S. Ueno, T. Tajima, T. Mitomi, H. Yabe, M. Yabe, and S. Kato. The strategy to treat disseminated neuroblastoma utilizing bone marrow transplantation: what is the surgeon's role? Surg Today 1994 24(10):895-9. Rec#: 23510 Reprint: EXC YEAR

Yoo, K. H., W. Y. Sohn, K. W. Sung, H. L. Jung, H. H. Koo, S. Y. Oh, and S. W. Kang. Chemoreduction followed by local therapy and adjuvant chemotherapy for advanced intraocular retinoblastoma: a pilot study in a single center. J Korean Med Sci 2002 17(6):817-22. Rec#: 11220 Reprint: exc nrd

Yoshida, H., S. Kusuki, Y. Hashii, H. Ohta, T. Morio, and K. Ozono. Ex vivo-expanded donor CD4(+) lymphocyte infusion against relapsing neuroblastoma: A transient graft-versus-tumor effect. Pediatr Blood Cancer 2009 52(7):895-7. Rec#: 600 Reprint: exc nri

Young, E., C. Chatterton, A. Vellodi, and B. Winchester. Plasma chitotriosidase activity in Gaucher disease patients who have been treated either by bone marrow transplantation or by enzyme replacement therapy with alglucerase. J Inherit Metab Dis 1997 20(4):595-602. Rec#: 19070 Reprint: exc nro

Yung, W. K., A. P. Kyritsis, M. J. Gleason, and V. A. Levin. Treatment of recurrent malignant gliomas with high-dose 13-cisretinoic acid. Clin Cancer Res 1996 2(12):1931-5. Rec#: 56290 Reprint: exc nrp

Zacharoulis, S., L. Ji, I. F. Pollack, P. Duffner, R. Geyer, J. Grill, S. Schild, T. H. Jaing, M. Massimino, J. Finlay, and R. Sposto. Metastatic ependymoma: a multi-institutional retrospective analysis of prognostic factors. Pediatr Blood Cancer 2008 50(2):231-5. Rec#: 73780 Reprint: exc npd

Zage, P. E., M. Kletzel, K. Murray, R. Marcus, R. Castleberry, Y. Zhang, W. B. London, and C. Kretschmar. Outcomes of the POG 9340/9341/9342 trials for children with high-risk neuroblastoma: a report from the Children's Oncology Group. Pediatr Blood Cancer 2008 51(6):747-53. Rec#: 1520 Reprint: exc nri

Zeng, H. S., X. Y. Xiong, Y. D. Wei, H. W. Wang, and X. P. Luo. Macrophage activation syndrome in 13 children with systemiconset juvenile idiopathic arthritis. World J Pediatr 2008 4(2):97-101. Rec#: 1580 Reprint: exc nro

Zhan, H., J. Sinclair, S. Adams, C. M. Cale, S. Murch, L. Perroni, G. Davies, P. Amrolia, and W. Qasim. Immune reconstitution and recovery of FOXP3 (forkhead box P3)-expressing T cells after transplantation for IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked) syndrome. Pediatrics 2008 121(4):e998-1002. Rec#: 2290 Reprint: exc nrp

Zheng, J. J., X. Q. Chu, X. H. Shi, C. L. Zhou, and B. W. Seng. Efficacy and safety of azathioprine maintenance therapy in a group of Crohn's disease patients in China. J Dig Dis 2008 9(2):84-8. Rec#: 2120 Reprint: exc nrp

Zhou, Y. M., Z. Q. Huang, M. H. Hu, S. H. Zhou, T. Huang, Y. Xu, J. H. Lu, X. F. Gan, and W. W. Zhu. Clinical study on the effect of Shengxueling on idiopathic thrombocytopenic purpura. Chin J Integr Med 2005 11(1):60-4. Rec#: 7070 Reprint: exc nri

Ziegler, D. S., R. J. Cohn, G. McCowage, F. Alvaro, C. Oswald, R. Mrongovius, and L. White. Efficacy of vincristine and etoposide with escalating cyclophosphamide in poor-prognosis pediatric brain tumors. Neuro Oncol 2006 8(1):53-9. Rec#: 52560 Reprint: exc few

Zimmerman, M. A., L. C. Goumnerova, M. Proctor, R. M. Scott, K. Marcus, S. L. Pomeroy, C. D. Turner, S. N. Chi, C. Chordas, and M. W. Kieran. Continuous remission of newly diagnosed and **Excluded Studies: August 2011 Update** relapsed central nervous system atypical teratoid/rhabdoid tumor. J Neurooncol 2005 72(1):77-84. Rec#: 7460 Reprint: EXC NRI

Zoubek, A., B. Holzinger, G. Mann, C. Peters, W. Emminger, E. Perneczky-Hintringer, H. Gadner, G. Mostbeck, E. Horcher, and W. Dobrowsky. High-dose cyclophosphamide, adriamycin, and vincristine (HD-CAV) in children with recurrent solid tumor. Pediatr Hematol Oncol 1994 11(6):613-23. Rec#: 22580 Reprint: EXC YEAR

Zucker, J. M., T. Philip, J. L. Bernard, J. Michon, E. Bouffet, J. C. Gentet, M. Lopez, C. Coze, and I. Philip. Single or double consolidation treatment according to remission status after initial therapy in metastatic neuroblastoma: first results of LMCE 3 study in 40 patients. Bone Marrow Transplant 1991 7 Suppl 2:91. Rec#: 26610 Reprint: EXC YEAR

Zulian, F., M. Balzarin, F. Falcini, G. Martini, M. Alessio, R. Cimaz, L. Cimino, and M. E. Zannin. Abatacept for severe antitumor necrosis factor alpha refractory juvenile idiopathic arthritisrelated uveitis. Arthritis Care Res (Hoboken) 2010 62(6):821-5. Rec#: 40820

Reprint: exc nrc

Abboud, I., Porcher, R. ,Robin, M. ,de Latour, R. P. ,Glotz, D. ,Socie, G. ,Peraldi, M. N.. Chronic kidney dysfunction in patients alive without relapse 2 years after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2009. 15:1251-7 Reprint: exc nrp

Abdel-Haq, N., Savasan, S., Davis, M., Asmar, B.I., Painter, T., Salimnia, H. Asaia lannaensis bloodstream infection in a child with cancer and bone marrow transplantation. J. Med. Microbiol.. 2009. 58:974-976 Reprint: exc nro

Abinun, M. and P. Pieniazek. Successful haematopoietic stem cell transplantation for osteopetrosis due to TCRIG1 mutation. Arch Dis Child. 2010. 95:984 Reprint: exc nrs

Abinun, M., Flood, T. J., Cant, A. J., Veys, P., Gennery, A. R., Foster, H. E., Friswell, M., Baildam, E., Davidson, J., Southwood, T. R., Livermore, P., Wedderburn, L. R., Autologous T cell depleted haematopoietic stem cell transplantation in children with severe juvenile idiopathic arthritis in the UK (2000-2007). Mol Immunol. 2009. 47:46-51 Reprint: exc nrp

Aliabadi, H., R. Reynolds, C. J. Powers, G. Grant, H. Fuchs and J. Kurtzberg. Clinical outcome of cerebrospinal fluid shunting for communicating hydrocephalus in mucopolysaccharidoses I, II, and III: a retrospective analysis of 13 patients. Neurosurgery. 2010. 67:1476-81; discussion 1481-2 Reprint: exc nro

Amend, K. L., Turnbull, B. ,Foskett, N. ,Napalkov, P. ,Kurth, T. ,Seeger, J.. Incidence of progressive multifocal leukoencephalopathy in patients without HIV. Neurology. 2010. 75:1326-32 Reprint: exc nrd

Andion, M., B. Molina, M. Gonzalez-Vicent, L. Alonso, C. Hernandez, A. Lassaletta, B. Lopez-Ibor, M. Villa and M. A. Diaz. High-dose busulfan and cyclophosphamide as a conditioning regimen for autologous peripheral blood stem cell transplantation in childhood non-Hodgkin lymphoma patients: a long-term followup study. J Pediatr Hematol Oncol. 2011. 33:e89-91 Reprint: exc nhl nro

Araki, Y., Y. Matsuyama, Y. Kobayashi, S. Toyokawa, K. Inoue, S. Suzuki and A. Makimoto. Secondary neoplasms after retinoblastoma treatment: Retrospective cohort study of 754 patients in Japan. Japanese Journal of Clinical Oncology. 2011. 41:373-379 Reprint: exc nrt

Araya, K., Sakai, N. ,Mohri, I. ,Kagitani-Shimono, K. ,Okinaga, T. ,Hashii, Y. ,Ohta, H. ,Nakamichi, I. ,Aozasa, K. ,Taniike, M. ,Ozono, K.. Localized donor cells in brain of a Hunter disease patient after cord blood stem cell transplantation. Mol Genet Metab. 2009. 98:255-63 Reprint: exc nrs Asano, T., K. Kogawa, A. Morimoto, Y. Ishida, N. Suzuki, S. Ohga, K. Kudo, S. Ohta, H. Wakiguchi, K. Tabuchi, S. Kato and E. Ishii. Hemophagocytic lymphohistiocytosis after hematopoietic stem cell transplantation in children: Nationwide survey of Japan. Pediatric Blood and Cancer. 2011. 56:689 Reprint: exc nrs

Bansal, S., I. Ambulkar, S. Karmarkar, M. Shende and S. Advani. Prognostic factors responsible for outcome in Hodgkin lymphomaanalysis from a single centre in India. Pediatric Blood and Cancer. 2011. 56:885 Reprint: exc nrs

Bellaoui, N., Lahsoune, M.,Nourichafi, N.,Majd, A.,Mifdal, H.,Benchemsi, N.. Stem cell transplantation in Morocco: Report of 87 cases: Greffe de cellules souches hematopoietiques au Maroc : a propos de 87 cas. Transfus. Clin. Biol.. 2010. 17:63-65 Reprint: exc fla

Ben Turkia, H., Riahi, I., Azzouz, H., Ladab, S., Cherif, W., Ben Chehida, A., Abdelmoula, M. S., Caillaud, C., Chemli, J., Abdelhak, S., Tebib, N., Ben Dridi, M. F.. [Phenotype and mutational spectrum in Tunisian pediatric gaucher disease]. Tunis Med. 2010. 88:158-62 Reprint: exc fla

Bensimhon, P., Villablanca, J. G., Sender, L. S., Matthay, K. K., Park, J. R., Seeger, R., London, W. B., Yap, J. S., Kreissman, S. G.. Peripheral blood stem cell support for multiple cycles of dose intensive induction therapy is feasible with little risk of tumor contamination in advanced stage neuroblastoma: a report from the Childrens Oncology Group. Pediatr Blood Cancer. 2010. 54:596-602

Reprint: exc nrs

Bergeron, A., D. Bengoufa, S. Feuillet, V. Meignin, R. P. De Latour, M. Rybojad, D. Gossot, E. Azoulay, G. Socie and A. Tazi. The spectrum of lung involvement in collagen vascular-like diseases following allogeneic hematopoietic stem cell transplantation: Report of 6 cases and review of the literature. Medicine. 2011. 90:146-157 Reprint: exc nrp

Bisogno, G., Ferrari, A., Prete, A., Messina, C., Basso, E., Cecchetto, G., Indolfi, P., Scarzello, G., D'Angelo, P., De Sio, L., Di Cataldo, A., Carli, M.. Sequential high-dose chemotherapy for children with metastatic rhabdomyosarcoma. Eur J Cancer. 2009. 45:3035-41 Reprint: exc nrs

Blaes, A. H., Cavert, W.P., Morrison, V.A.. Malassezia: Is it a pulmonary pathogen in the stem cell transplant population?. Transplant Infect. Dis.. 2009. 11:313-317 Reprint: exc nrd

Bleich, D. Umbilical cord blood and type 1 diabetes: A road ahead or dead end?. Diabetes Care. 2009. 32:2138-9 Reprint: exc edt Bonney, D. K., O'Meara, A. ,Shabani, A. ,Imrie, J. ,Bigger, B. W. ,Jones, S. ,Wraith, J. E. ,Wynn, R. F.. Successful allogeneic bone marrow transplant for Niemann-Pick disease type C2 is likely to be associated with a severe 'graft versus substrate' effect. J Inherit Metab Dis. 2010. #volume#:#pages# Reprint: exc nrs

Boztug, K. Early-onset inflammatory bowel disease caused by loss-of-function mutations in the IL10 receptor genes. Hum. Gene Ther.. 2009. 20:1399 Reprint: exc nrd

Bunin, N., V. Guzikowski, E. R. Rand, S. Goldfarb, J. Baluarte, K. Meyers and K. M. Olthoff. Solid organ transplants following hematopoietic stem cell transplant in children. Pediatr Transplant. 2010. 14:1030-5 Reprint: exc nrs

Butturini, A. M., Jacob, M., Aguajo, J., Vander-Walde, N.A., Villablanca, J., Jubran, R., Erdreich-Epstein, A., Marachelian, A., Dhall, G., Finlay, J.L.. High-dose chemotherapy and autologous hematopoietic progenitor cell rescue in children with recurrent medulloblastoma and supratentorial primitive neuroectodermal tumors: The impact of prior radiotherapy on outcome. Cancer. 2009. 115:2956-2963 Reprint: exc nrd

Cai, J. Y., Tang, J. Y., Pan, C., Xu, M., Xue, H. L., Zhou, M., Dong, L., Ye, Q. D., Jiang, H., Shen, S. H., Chen, J.. Results of RS-99 protocol for childhood solid tumors. World J Pediatr. 2010. 6:43-9

Reprint: exc nrs

Cakir, F. B., T. Ozulker and G. Ozturk. ASHAP: An effective salvage therapy for refractory Hodgkin lymphoma. Pediatric Blood and Cancer. 2011. 56:890 Reprint: exc nrs

Capitini, C. M., Derdak, J.,Hughes, M.S.,Love, C.P.,Baird, K.,MacKall, C.L.,Fry, T.J.. Unusual sites of extraskeletal metastases of ewing sarcoma after allogeneic hematopoietic stem cell transplantation. J. Pediatr. Hematol. Oncol.. 2009. 31:142-144 Reprint: exc nrp

Capitini, C. M., Derdak, J.,Hughes, M.S.,Love, C.P.,Baird, K.,MacKall, C.L.,Fry, T.J.. Unusual sites of extraskeletal metastases of ewing sarcoma after allogeneic hematopoietic stem cell transplantation. J. Pediatr. Hematol. Oncol.. 2009. 31:142-144 Reprint: exc nrp

Cesaro, S., Marsh, J., Tridello, G., Rovo, A., Maury, S., Montante, B., Masszi, T., Van Lint, M. T., Afanasyev, B., Iriondo Atienza, A., Bierings, M., Carbone, C., Doubek, M., Lanino, E., Sarhan, M., Risitano, A., Steinerova, K., Wahlin, A., Pegoraro, A., Passweg, J.. Retrospective survey on the prevalence and outcome of prior autoimmune diseases in patients with aplastic anemia reported to the registry of the European group for blood and marrow transplantation. Acta Haematol. 2010. 124:19-22 Reprint: exc nrd Chantada, G. L., Fandino, A. C., Guitter, M. R., Raslawski, E. C., Dominguez, J. L., Manzitti, J., de Davila, M. T., Zubizarreta, P., Scopinaro, M.. Results of a prospective study for the treatment of unilateral retinoblastoma. Pediatr Blood Cancer. 2010. 55:60-6 Reprint: exc nrs

Chen, R., J. M. Palmer, L. Popplewell, J. Shen, E. Smith, M. Delioukina, N. Kogut, J. Rosenthal, S. Forman and A. Nademanee. Reduced intensity allogeneic hematopoietic cell transplantation can induce durable remission in heavily pretreated relapsed Hodgkin lymphoma. Annals of Hematology. 2011. 90:803-808 Reprint: exc nri

Chintagumpala, M., Hassall, T.,Palmer, S.,Ashley, D.,Wallace, D.,Kasow, K.,Merchant, T.E.,Krasin, M.J.,Dauser, R.,Boop, F.,Krance, R.,Woo, S.,Cheuk, R.,Lau, C.,Gilbertson, R.,Gajjar, A.. A pilot study of risk-adapted radiotherapy and chemotherapy in patients with supratentorial PNET. Neuro-Oncology. 2009. 11:33-40

Reprint: exc nrs

Cho, B. S., Min, C. K., Kim, H. J., Lee, S., Kim, Y. J., Lim, J. Y., Jeong, D. C., Cho, B., Kim, H. K., Eom, K. S., Cho, S. G., Kim, D. W., Lee, J. W., Min, W. S., Kim, C. C., Chung, N. G.. High levels of B cell activating factor during the peritransplantation period are associated with a reduced incidence of acute graft-versus-host disease following myeloablative allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2010. 16:629-38 Reprint: exc nrd

Citak, E. C., Oguz, A. ,Karadeniz, C. ,Okur, A. ,Akyurek, N.. Primitive neuroectodermal tumor of the kidney in a child. Pediatr Hematol Oncol. 2009. 26:481-6 Reprint: exc nri

Ciurea, S. O., V. Mulanovich, Y. Jiang, R. Bassett, G. Rondon, J. McMannis, M. de Lima, E. J. Shpall and R. E. Champlin. Lymphocyte Recovery Predicts Outcomes in Cord Blood and T Cell-Depleted Haploidentical Stem Cell Transplantation. Biology of Blood and Marrow Transplantation. 2011. 17:1169-1175 Reprint: exc nrd

Claviez, A., Hematopoietic stem-cell transplantation for treatment of children and adolescents with recurring Hodgkin lymphoma. Pediatric Blood and Cancer. 2011. 56:891 Reprint: exc nrs

Claviez, A., R. Kluge, D. Clauss, D. Hasenclever, D. Korholz and C. Mauz-Korholz. The impact of FDG-PET-based response assessment for outcome of children and adolescents with relapsed or progressive Hodgkin lymphoma undergoing autologous stemcell transplantation. Pediatric Blood and Cancer. 2011. 56:882 Reprint: exc nrs

Cohen, A., Hematopoietic stem cell transplantation and diabetes mellitus: The paradox between treatment and cause of a disease. Pediatr. Transplant.. 2009. 13:3-6 Reprint: exc nrs Cooper, J. D. Therapies for the neuronal ceroid lipofuscinoses. Int. J. Clin. Pharmacol. Ther.. 2010. 48:S31-S32

Cyranoski, D., Strange lesions after stem-cell therapy. Nature. 2010. 465:997 Reprint: exc nrs

Dahl, D., Hahn, A., Koenecke, C., Heuft, H. G., Dammann, E., Stadler, M., Buchholz, S., Krauter, J., Eder, M., Sykora, K. W., Klein, C., Ganser, A., Sauer, M.. Prolonged isolated red blood cell transfusion requirement after allogeneic blood stem cell transplantation: identification of patients at risk. Transfusion. 2010. 50:649-55 Reprint: exc nrd

Daugaard, G., I. Skoneczna, N. Aass, R. De Wit, M. De Santis, H. Dumez, S. Marreaud, L. Collette, J. R. Lluch, C. Bokemeyer and H. J. Schmoll. A randomized phase III study comparing standard dose BEP with sequential high-dose cisplatin, etoposide, and ifosfamide (VIP) plus stem-cell support in males with poorprognosis germ-cell cancer. An intergroup study of EORTC, GTCSG, and Grupo Germinal (EORTC 30974). Ann Oncol. 2011. 22:1054-61

Reprint: exc nrp

De Ioris, M. A., A. Castellano, I. Ilari, M. C. Garganese, G. Natali, A. Inserra, R. De Vito, L. Rava, M. D. De Pasquale, F. Locatelli, A. Donfrancesco and A. Jenkner. Short topotecan-based induction regimen in newly diagnosed high-risk neuroblastoma. Eur J Cancer. 2011. 47:572-8 Reprint: exc nrs

de Pagter, P. J., Virgili, A., Nacheva, E., van Baarle, D., Schuurman, R., Boelens, J. J.. Chromosomally integrated human herpesvirus 6: transmission via cord blood-derived unrelated hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2010. 16:130-2 Reprint: exc nrd

Dimaras, H., Rushlow, D., Halliday, W., Doyle, J. J., Babyn, P., Abella, E. M., Williams, J., Heon, E., Gallie, B. L., Chan, H. S., Using RB1 mutations to assess minimal residual disease in metastatic retinoblastoma. Transl Res. 2010. 156:91-7 Reprint: exc nrs

Dodero, A., R. Crocchiolo, F. Patriarca, R. Miceli, L. Castagna, F. Ciceri, S. Bramanti, N. Frungillo, R. Milani, F. Crippa, F. Fallanca, E. Englaro and P. Corradini. Pretransplantation [18-F]fluorodeoxyglucose positron emission tomography scan predicts outcome in patients with recurrent Hodgkin lymphoma or aggressive non-Hodgkin lymphoma undergoing reduced-intensity conditioning followed by allogeneic stem cell transplantation. Cancer. 2010. 116:5001-11 Reprint: exc nri

Donker, A.E., Hoogerbrugge, P.M., Mavinkurve-Groothuis, A.M.C., van de Kar, N.C.A.J., Boetes, C., Hulsbergen-van de Kaa, C.A., Groot-Loonen, J.J.. Metastatic rhabodmyosarcoma cured after chemotherapy and allogenic SCT. Bone Marrow Transplant.. 2009. 43:179-180 Reprint: exc nri

Dunkel, I. J., Gardner, S. L., Garvin, J. H. Jr, Goldman, S., Shi, W., Finlay, J. L.. High-dose carboplatin, thiotepa, and etoposide with autologous stem cell rescue for patients with previously irradiated recurrent medulloblastoma. Neuro Oncol. 2010. 12:297-303 Reprint: exc nrd

Dunkel, I. J., Jubran, R. F., Gururangan, S., Chantada, G. L., Finlay, J. L., Goldman, S., Khakoo, Y., O'Brien, J. M., Orjuela, M., Rodriguez-Galindo, C., Souweidane, M. M., Abramson, D. H.. Trilateral retinoblastoma: potentially curable with intensive chemotherapy. Pediatr Blood Cancer. 2010. 54:384-7 Reprint: exc nrs

Dutra, A. P., E. R. Lima and K. C. Fonseca. Childhood Hodgkin lymphoma: Experience in a single institution in Brazil. Pediatric Blood and Cancer. 2011. 56:886 Reprint: exc nrs

Eleutherakis-Papaiakovou, E., E. Kostis, M. Migkou, D. Christoulas, E. Terpos, M. Gavriatopoulou, M. Roussou, E. Bournakis, E. Kastritis, E. Efstathiou, M. A. Dimopoulos and C. A. Papadimitriou. Prophylactic antibiotics for the prevention of neutropenic fever in patients undergoing autologous stem-cell transplantation: results of a single institution, randomized phase 2 trial. #journal#. 2010. 85:863-7 Reprint: exc nrp

Farge, D., Labopin, M., Tyndall, A., Fassas, A., Mancardi, G. L., Van Laar, J., Ouyang, J., Kozak, T., Moore, J., Kotter, I., Chesnel, V., Marmont, A., Gratwohl, A., Saccardi, R.. Autologous hematopoietic stem cell transplantation for autoimmune diseases: an observational study on 12 years' experience from the European Group for Blood and Marrow Transplantation Working Party on Autoimmune Diseases. Haematologica. 2010. 95:284-92 Reprint: exc nrp

Ferrari, S., K. S. Hall, R. Luksch, A. Tienghi, T. Wiebe, F. Fagioli, T. A. Alvegard, A. B. del Prever, A. Tamburini, M. Alberghini, L. Gandola, M. Mercuri, R. Capanna, S. Mapelli, A. Prete, M. Carli, P. Picci, E. Barbieri, G. Bacci and S. Smeland. Nonmetastatic Ewing family tumors: High-dose chemotherapy with stem cell rescue in poor responder patients. results of the Italian Sarcoma Group/Scandinavian Sarcoma Group III protocol. Annals of Oncology. 2011. 22:1221-1227 Reprint: exc nrp

Ferrari, S., K. Sundby Hall, R. Luksch, A. Tienghi, T. Wiebe, F. Fagioli, T. A. Alvegard, A. Brach Del Prever, A. Tamburini, M. Alberghini, L. Gandola, M. Mercuri, R. Capanna, S. Mapelli, A. Prete, M. Carli, P. Picci, E. Barbieri, G. Bacci and S. Smeland. Nonmetastatic Ewing family tumors: high-dose chemotherapy with stem cell rescue in poor responder patients. Results of the Italian Sarcoma Group/Scandinavian Sarcoma Group III protocol. Ann Oncol. 2011. 22:1221-7 Reprint: exc nrs

Fesslova, V., Corti, P., Sersale, G., Rovelli, A., Russo, P., Mannarino, S., Butera, G., Parini, R.. The natural course and the impact of

therapies of cardiac involvement in the mucopolysaccharidoses. Cardiol. Young. 2009. 19:170-178 Reprint: exc nrd

Finkelstein-Shechter, T., Gassas, A., Mabbott, D., Huang, A., Bartels, U., Tabori, U., Laura, J., Hawkins, C., Taylor, M., Bouffet, E.. Atypical teratoid or rhabdoid tumors: Improved outcome with high-dose chemotherapy. J. Pediatr. Hematol. Oncol.. 2010. 32:e182-e186 Reprint: exc nrs

Flowers, M. E. D., Y. Inamoto, P. A. Carpenter, S. J. Lee, H. P. Kiem, E. W. Petersdorf, S. E. Pereira, R. A. Nash, M. Mielcarek, M. L. Fero, E. H. Warren, J. E. Sanders, R. F. Storb, F. R. Appelbaum, B. E. Storer and P. J. Martin. Comparative analysis of risk factors for acute graft-versus-host disease and for chronic graft-versus-host disease according to National Institutes of Health consensus criteria. Blood. 2011. 117:3214-3219 Reprint: exc nrp

Fukuoka, K., T. Kaneko and M. Akiyama. Progressive multifocal leukoencephalopathy in a 16-year-old patient with pancytopenia after autologous bone marrow transplantation for relapsed Hodgkin lymphoma. Pediatr Blood Cancer. 2011. 56:507-8 Reprint: exc nrs

Gajjar, A., Pizer, B.. Role of high-dose chemotherapy for recurrent medulloblastoma and other CNS primitive neuroectodermal tumors. Pediatr Blood Cancer. 2010. 54:649-51 Reprint: exc nrs

Gassas, A., J. Raiman, L. White, T. Schechter, J. Clarke and J. Doyle. Long-term adaptive functioning outcomes of children with inherited metabolic and genetic diseases treated with hematopoietic stem cell transplantation in a single large pediatric center: parents' perspective. J Pediatr Hematol Oncol. 2011. 33:216-20 Reprint: exc nrs

Gerber, N. U., K. von Hoff, A. O. von Bueren, W. Treulieb, M. Warmuth-Metz, T. Pietsch, N. Soerensen, A. Faldum, A. Emser, P. G. Schlegel, F. Deinlein, R. D. Kortmann and S. Rutkowski. Outcome of 11 children with ependymoblastoma treated within the prospective HIT-trials between 1991 and 2006. J Neurooncol. 2011. 102:459-69 Reprint: exc nri

Ghavamzadeh, A., Alimogaddam, K.,Jahani, M.,Mousavi, S.A.,Iravani, M.,Bahar, B.,Khodabandeh, A.,Khatami, F.,Gaffari, F.,Jalali, A.. Stem cell transplantation; Iranian experience. Arch. Iran. Med.. 2009. 12:69-72 Reprint: exc nrd

Gilman, A. L., C. Jacobsen, N. Bunin, J. Levine, F. Goldman, A. Bendel, M. Joyce, P. Anderson, M. Rozans, D. A. Wall, T. J. Macdonald, S. Simon and R. P. Kadota. Phase I study of tandem high-dose chemotherapy with autologous peripheral blood stem cell rescue for children with recurrent brain tumors: A pediatric blood and marrow transplant consortium study. Pediatric Blood and Cancer. 2011. 57:506-513

Reprint: exc nrs

Goi, K., T. Inukai, H. Honna, K. Akahane, K. Hirose, I. Kuroda, N. Hasuda, K. Koshizuka, K. Takano and K. Sugita. Successful tandem (autologous-cord blood) SCT in advanced neuroblastomas with highly amplified MYCN. Bone Marrow Transplantation. 2011. 46:835-839 Reprint: exc nri

Gramatges, M. M., Dvorak, C.C.,Regula, D.P.,Enns, G.M.,Weinberg, K.,Agarwal, R.. Pathological evidence of Wolman's disease following hematopoietic stem cell transplantation despite correction of lysosomal acid lipase activity. Bone Marrow Transplant.. 2009. 44:449-450 Reprint: exc nrs

Grodman, H., Wolfe, L.,Kretschmar, C.. Outcome of patients with recurrent medulloblastoma or central nervous system germinoma treated with low dose continuous intravenous etoposide along with dose-intensive chemotherapy followed by autologous hematopoietic stem cell rescue. Pediatr. Blood Cancer. 2009. 53:33-36 Reprint: exc nrp

Guffon, N., Bertrand, Y., Forest, I., Fouilhoux, A., Froissart, R.. Bone Marrow Transplantation in Children with Hunter Syndrome: Outcome after 7 to 17 Years. J. Pediatr.. 2009. 154:733-737 Reprint: exc nrs

Guinan, E. C., E. K. Hewett, N. M. Domaney and R. Margossian. Outcome of hematopoietic stem cell transplant in children with congenital heart disease. Pediatric Transplantation. 2011. 15:75-80 Reprint: exc nrp

Hackett, M., Anover-Sombke, S.,Ochs, H.D.,Torgerson, T.R.. The short isoform of FOXP3 lacking exon 2 is insufficient to support regulatory T cell development and IPEX disease in humans. Clin. Immunol.. 2010. 135:305 Reprint: exc nrs

Herr, A.-L., Kabbara, N.,Bonfim, C.M.S.,Teira, P.,Locatelli, F.,Tiedemann, K.,Lankester, A.,Jouet, J.-P.,Messina, C.,Bertrand, Y.,De Heredia, C.D.,Peters, C.,Chaves, W.,Nabhan, S.K.,Ionescu, I.,Gluckman, E.,Rocha, V.. Long-term follow-up and factors influencing outcomes after related HLA-identical cord blood transplantation for patients with malignancies: An analysis on behalf of Eurocord-EBMT. Blood. 2010. 116:1849-1856 Reprint: exc nrp

Ho, J., V. Lewis, G. M. T. Guilcher, D. K. Stephure and D. L. Pacaud. Endocrine complications following pediatric bone marrow transplantation. Journal of Pediatric Endocrinology and Metabolism. 2011. 24:327-332 Reprint: exc nrs

Hutton, A., Bradwell, M., English, M., Chapple, I.. The oral health needs of children after treatment for a solid tumour or lymphoma. Int J Paediatr Dent. 2010. 20:15-23 Reprint: exc nrd Inamoto, Y., M. E. D. Flowers, S. J. Lee, P. A. Carpenter, E. H. Warren, H. J. Deeg, R. F. Storb, F. R. Appelbaum, B. E. Storer and P. J. Martin. Influence of immunosuppressive treatment on risk of recurrent malignancy after allogeneic hematopoietic cell transplantation. Blood. 2011. 118:456-463 Reprint: exc nrp

Ishige-Wada, M., H. Yagasaki, M. Kato, H. Shichino, M. Chin, H. Usui, M. Owada, T. Kitagawa and H. Mugishima. Allogenic hemaopotietic stem cell transplantation for patients with lysosomal and peroxisomal storage diseases: A single institute experiences (Nihon University). Journal of Inherited Metabolic Disease. 2011. 34:S217 Reprint: exc nrd

Kahn, S., C. Flowers, Z. Xu and N. Esiashvili. Does the addition of involved field radiotherapy to high-dose chemotherapy and stem cell transplantation improve outcomes for patients with relapsed/refractory Hodgkin lymphoma?. International Journal of Radiation Oncology Biology Physics. 2011. 81:175-180 Reprint: exc nrp

Kim, Y. J., K. W. Sung, H. S. Hwang, S. H. Jung, J. Y. Kim, E. J. Cho, S. J. Lim, Y. B. Choi, H. W. Cheuh, S. H. Lee, K. H. Yoo and H. H. Koo. Efficacy of itraconazole prophylaxis for autologous stem cell transplantation in children with high-risk solid tumors: A prospective double-blind randomized study. Yonsei Medical Journal. 2011. 52:293-300 Reprint: exc nro

Konja, J., L. Rajic, R. Femenic, E. Bilic and M. Anicic. Management of pediatric Hodgkin lymphoma in Croatia. Pediatric Blood and Cancer. 2011. 56:883 Reprint: exc nrs

Kopp, H. G., S. Wirths, C. Faul, W. Bethge, S. Scheding, W. Brugger, L. Kanz and W. Vogel. Long-term results after transplantation of CD34+ selected (CellPro) versus unselected peripheral blood progenitor cells (PBPC) from related allogeneic donors. #journal#. 2010. 136:1921-7 Reprint: exc nrp

Kubota, M., Okuyama, N., Hirayama, Y., Asami, K., Ogawa, A., Watanabe, A.. Mortality and morbidity of patients with neuroblastoma who survived for more than 10 years after treatment--Niigata Tumor Board Study. J Pediatr Surg. 2010. 45:673-7 Reprint: exc nrs

Kashara D.H. K. Kasasa

Kushner, B. H., K. Kramer, S. Modak and N. K. Cheung. Highdose carboplatin-irinotecan-temozolomide: treatment option for neuroblastoma resistant to topotecan. Pediatr Blood Cancer. 2011. 56:403-8 Reprint: exc nrs

Ladenstein, R., U. Potschger, D. Siabalis, A. Garaventa, C. Bergeron, I. J. Lewis, J. Stein, J. Kohler, P. J. Shaw, W. Holter, V. Pistoia and J. Michon. Dose finding study for the use of subcutaneous recombinant interleukin-2 to augment natural killer

cell numbers in an outpatient setting for stage 4 neuroblastoma after megatherapy and autologous stem-cell reinfusion. J Clin Oncol. 2011. 29:441-8 Reprint: exc nri

Laporte, S., A. C. Couto-Silva, S. Trabado, P. Lemaire, S. Brailly-Tabard, H. Esperou, J. Michon, A. Baruchel, A. Fischer, C. Trivin and R. Brauner. Inhibin B and anti-Mullerian hormone as markers of gonadal function after hematopoietic cell transplantation during childhood. BMC Pediatrics. 2011. 11:#pages# Reprint: exc nrp

Laskin, B. L., J. Goebel, S. M. Davies, J. C. Khoury, J. J. Bleesing, P. A. Mehta, A. H. Filipovich, Z. N. Paff, J. M. Lawrence, H. J. Yin, S. L. Pinkard and S. Jodele. Early clinical indicators of transplant-associated thrombotic microangiopathy in pediatric neuroblastoma patients undergoing auto-SCT. Bone Marrow Transplantation. 2011. 46:682-689 Reprint: exc nri

Lim, Y. J., H. J. Kim, Y. J. Lee, I. J. Seol and Y. H. Lee. Clinical features of encephalopathy in children with cancer requiring cranial magnetic resonance imaging. Pediatric Neurology. 2011. 44:433-438 Reprint: exc nrp

Luisi, F. A. V., F. C. B. Puty, M. T. S. Alves, F. Ladeia, H. M. Lederman and S. T. Schettini. Descriptive analysis of the Hodgkin lymphoma patient's survival status after recurrence: A Brazilian experience. Pediatric Blood and Cancer. 2011. 56:890 Reprint: exc nrs

Luo, X. D., Q. F. Liu, Y. Zhang, J. Sun, G. B. Wang, Z. P. Fan, Z. S. Yi, Y. W. Ling, Y. Q. Wei, X. L. Liu and B. Xu. Nephrotic syndrome after allogeneic hematopoietic stem cell transplantation: Etiology and pathogenesis. Blood Cells, Molecules, and Diseases. 2011. 46:182-187 Reprint: exc nrp

Manjila, S., A. Ray, Y. Hu, D. X. Cai, M. L. Cohen and A. R. Cohen. Embryonal tumors with abundant neuropil and true rosettes: 2 illustrative cases and a review of the literature. Neurosurg Focus. 2011. 30:E2 Reprint: exc nri

Marabelle, A., E. Merlin, P. Halle, C. Paillard, M. Berger, A. Tchirkov, R. Rousseau, G. Leverger, C. Piguet, J. L. Stephan, F. Demeocq and J. Kanold. CD34+ immunoselection of autologous grafts for the treatment of high-risk neuroblastoma. Pediatr Blood Cancer. 2011. 56:134-42 Reprint: exc nri

Masetti, R., C. Biagi, K. Kleinschmidt, A. Prete, F. Baronio, A. Colecchia, D. Festi and A. Pession. Focal nodular hyperplasia of the liver after intensive treatment for pediatric cancer: Is hematopoietic stem cell transplantation a risk factor?. European Journal of Pediatrics. 2011. 170:807-812 Reprint: exc nrp

Masetti, R., S. Cazzato, A. Prete, R. Rondelli, A. O. Di Vincenzo and A. Pession. Organizing pneumonia primed by high-dose chemotherapy and lung irradiation: Two pediatric cases. Journal of Pediatric Hematology/Oncology. 2011. 33:e202-e204 Reprint: exc nro

Massimino, M., Gandola, L.,Spreafico, F.,Biassoni, V.,Luksch, R.,Collini, P.,Solero, C.N.,Simonetti, F.,Pignoli, E.,Cefalo, G.,Poggi, G.,Modena, P.,Mariani, L.,Potepan, P.,Podda, M.,Casanova, M.,Pecori, E.,Acerno, S.,Ferrari, A.,Terenziani, M.,Meazza, C.,Polastri, D.,Ravagnani, F.,Fossati-Bellani, F.. No Salvage Using High-Dose Chemotherapy Plus/Minus Reirradiation for Relapsing Previously Irradiated Medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys.. 2009. 73:1358-1363 Reprint: exc nrp

Mazloom, A., Zangeneh, A. H., Paulino, A. C.. Prognostic factors after extraneural metastasis of medulloblastoma. Int J Radiat Oncol Biol Phys. 2010. 78:72-8 Reprint: exc nrs

Molina, B., L. Alonso, M. Gonzalez-Vicent, M. Andion, C. Hernandez, A. Lassaletta, M. Cormenzana, B. Lopez-Ibor, M. Villa, J. Molina and M. A. Diaz. High-dose busulfan and melphalan as conditioning regimen for autologous peripheral blood progenitor cell transplantation in high-risk neuroblastoma patients. Pediatr Hematol Oncol. 2011. 28:115-23 Reprint: exc nrs

Moskowitz, A.J., J. Yahalom, T. Kewalramani, J. C. Maragulia, J. M. Vanak, A. D. Zelenetz and C. H. Moskowitz. Pretransplantation functional imaging predicts outcome following autologous stem cell transplantation for relapsed and refractory Hodgkin lymphoma. Blood. 2010. 116:4934-7 Reprint: exc nrs

Munoz, A., M. Gonzalez-Vicent, I. Badell, C. Diaz De Heredia, A. Martinez and M. S. Maldonado. Mycobacterial diseases in pediatric hematopoietic SCT recipients. Bone Marrow Transplantation. 2011. 46:766-768 Reprint: exc nrd

Naranjo, A., M. T. Parisi, B. L. Shulkin, W. B. London, K. K. Matthay, S. G. Kreissman and G. A. Yanik. Comparison of (1)(2)(3)I-metaiodobenzylguanidine (MIBG) and (1)(3)(1)I-MIBG semi-quantitative scores in predicting survival in patients with stage 4 neuroblastoma: a report from the Children's Oncology Group. Pediatr Blood Cancer. 2011. 56:1041-5 Reprint: exc nri

Neier, M., Z. Jin, C. Kleinman, L. Baldinger, M. Bhatia, E. Silver, C. Van De Ven, E. Morris, P. Satwani, D. George, J. Garvin, M. B. Bradley, J. Schwartz and M. S. Cairo. Pericardial effusion post-SCT in pediatric recipients with signs and/or symptoms of cardiac disease. Bone Marrow Transplantation. 2011. 46:529-538 Reprint: exc nrp

Novik, A.A., A. N. Kuznetsov, V. Y. Melnichenko, D. A. Fedorenko, A. V. Kartashov, T. I. Ionova, K. A. Kurbatova and G. I. Gorodokin. Reduced intensity conditioning regimen of

autologous hematopoietic stem cell transplantation (+/-) mitoxantrone consolidation in multiple sclerosis Abstract No. 372. #journal#. 2010. 116:#pages# Reprint: exc nrp

Palmer, S. L., Reddick, W.E., Glass, J.O., Ogg, R., Patay, Z., Wallace, D., Gajjar, A.. Regional white matter anisotropy and reading ability in patients treated for pediatric embryonal tumors. Brain Imaging Behav.. 2010. 4:132-140 Reprint: exc nrs

Park, M., K. N. Koh, B. E. Kim, H. J. Im and J. J. Seo. Clinical features of late onset non-infectious pulmonary complications following pediatric allogeneic hematopoietic stem cell transplantation. Clinical Transplantation. 2011. 25:E168-E176 Reprint: exc nrp

Peinemann, F., N. Kroger, C. Bartel, U. Grouven, M. Pittler, R. Erttmann and M. Kulig. High-dose chemotherapy followed by autologous stem cell transplantation for metastatic rhabdomyosarcoma-a systematic review. PLoS One. 2011. 6:#pages# Reprint: exc sr

Polgreen, L. E., S. Chahla, W. Miller, S. Rothman, J. Tolar, T. Kivisto, D. Nascene, P. J. Orchard and A. Petryk. Early diagnosis of cerebral X-linked adrenoleukodystrophy in boys with Addison's disease improves survival and neurological outcomes. European Journal of Pediatrics. 2011. 170:1049-1054 Reprint: exc nrd

Polgreen, L. E., Plog, M.,Schwender, J.D.,Tolar, J.,Thomas, W.,Orchard, P.J.,Miller, B.S.,Petryk, A.. Short-term growth hormone treatment in children with Hurler syndrome after hematopoietic cell transplantation. Bone Marrow Transplant.. 2009. 44:279-285 Reprint: exc nrp

Reston, J. T., S. Uhl, J. R. Treadwell, R. A. Nash and K. Schoelles. Autologous hematopoietic cell transplantation for multiple sclerosis: a systematic review. Mult Scler. 2011. 17:204-13 Reprint: exc sr nrs

Rifkin, R., G. Spitzer, G. Orloff, R. Mandanas, D. McGaughey, F. Zhan, K. A. Boehm, L. Asmar and R. Beveridge. Pegfilgrastim appears equivalent to daily dosing of filgrastim to treat neutropenia after autologous peripheral blood stem cell transplantation in patients with non-Hodgkin lymphoma. #journal#. 2010. 10:186-91 Reprint: exc nrp

Rodriguez, R., A. Nademanee, J. M. Palmer, P. Parker, R. Nakamura, D. Snyder, V. Pullarkat, J. Zain, E. Smith, F. Sahebi, K. Patane, D. Senitzer, K. Chang and S. J. Forman. Thymoglobulin, CYA and mycophenolate mofetil as GVHD prophylaxis for reduced-intensity unrelated donor hematopoietic cell transplantation: beneficial effect seen on chronic GVHD. #journal#. 2010. 45:205-7 Reprint: exc nrp Rosenfeld, A., Kletzel, M., Duerst, R., Jacobsohn, D., Haut, P., Weinstein, J., Rademaker, A., Schaefer, C., Evans, L., Fouts, M., Goldman, S.. A phase II prospective study of sequential myeloablative chemotherapy with hematopoietic stem cell rescue for the treatment of selected high risk and recurrent central nervous system tumors. J Neurooncol. 2010. 97:247-55 Reprint: exc nro

Rubin, J., K. Vettenranta, J. Vettenranta, M. Bierings, J. Abrahamsson, A. N. Bekassy, Y. Hakansson, B. M. Frost, J. Arvidson, C. Spendilow, J. Winiarski and B. Gustafsson. Use of intrathecal chemoprophylaxis in children after SCT and the risk of central nervous system relapse. Bone Marrow Transplant. 2011. 46:372-8 Reprint: exc nrp

Safonova, S. A., E. V. Tsyearlina, N. V. Roschina and Y. A. Punanov. Late endocrine complications in childhood Hodgkin Lymphoma (HL) survivors. Pediatric Blood and Cancer. 2011. 56:893

Reprint: exc nrs

Satwani, P., L. Harrison, M. Bhatia, M. B. Bradley, J. H. Garvin, D. George, P. Martin, J. Kurtzberg, J. Schwartz, L. A. Baxter-Lowe and M. S. Cairo. Myeloablative (MAC) Autologous Stem-Cell Transplantation (AUTOSCT) FOllowed by Reduced Intensity (RIC) Allogeneic Stem-Cell Transplantation (ALLOSCT) in Children, Adolescents, and Young Adults (CAYA) with poor risk Hodgkin Lymphoma (HL): Induction of long-term GVHL effect. Pediatric Blood and Cancer. 2011. 56:890-891 Reprint: exc nrs

Schmitz, N., L. Trumper, M. Ziepert, M. Nickelsen, A. D. Ho, B. Metzner, N. Peter, M. Loeffler, A. Rosenwald and M. Pfreundschuh. Treatment and prognosis of mature T-cell and NKcell lymphoma: an analysis of patients with T-cell lymphoma treated in studies of the German High-Grade Non-Hodgkin Lymphoma Study Group. Blood. 2010. 116:3418-25 Reprint: exc nrd

Seber, A., V. C. Ginani, R. V. Gouveia, V. G. Zecchin, J. F. Marconcini, N. Villela, D. P. Barros, L. A. Ribeiro, S. L. Da Rocha, O. M. W. Oliveira-Felix, P. C. Simoes, A. G. Da Silva, M. T. De Seixas, H. M. Lederman, A. S. Petrilli and F. A. V. Luisi. Hematopoietic stem-cell transplant for Hodgkin Lymphoma (HL). Pediatric Blood and Cancer. 2011. 56:891 Reprint: exc nrs

Shaw, P. J., F. Kan, K. Woo Ahn, S. R. Spellman, M. Aljurf, M. Ayas, M. Burke, M. S. Cairo, A. R. Chen, S. M. Davies, H. Frangoul, J. Gajewski, R. P. Gale, K. Godder, G. A. Hale, M. B. Heemskerk, J. Horan, N. Kamani, K. A. Kasow, K. W. Chan, S. J. Lee, W. H. Leung, V. A. Lewis, D. Miklos, M. Oudshoorn, E. W. Petersdorf, O. Ringden, J. Sanders, K. R. Schultz, A. Seber, M. Setterholm, D. A. Wall, L. Yu and M. A. Pulsipher. Outcomes of pediatric bone marrow transplantation for leukemia and myelodysplasia using matched sibling, mismatched related, or matched unrelated donors. Blood. 2010. 116:4007-15 Reprint: exc nrd Shing, M. M. K., Y. Zhang, Y. Gao, J. Tang, S. Shi, M. Zheng, Y. Duan, K. S. Chian, F. Lu, C. Pan, S. Jiang, L. Ma, M. Xu, A. Liu, X. He, X. Tian and H. C. Lam. Multi-center study of childhood Hodgkin lymphoma in China. Pediatric Blood and Cancer. 2011. 56:884 Reprint: exc nrs

Simon, T., F. Berthold, A. Borkhardt, B. Kremens, B. De Carolis and B. Hero. Treatment and outcomes of patients with relapsed, high-risk neuroblastoma: results of German trials. Pediatr Blood Cancer. 2011. 56:578-83 Reprint: exc nri

Stiff, P. J., Agovi, M. A., Antman, K. H., Blaise, D., Camitta, B. M., Cairo, M. S., Childs, R. W., Edwards, J. R., Gale, R. P., Hale, G. A., Lazarus, H. M., Arora, M.. High-dose chemotherapy with blood or bone marrow transplants for rhabdomyosarcoma. Biol Blood Marrow Transplant. 2010. 16:525-32 Reprint: exc nrp

Tang, J.-Y., Pan, C.,Xu, M.,Xue, H.-L.,Chen, J.,Dong, L.,Zhou, M.,Gu, L.-J.,Chen, Q.-M. Effect of protocol RS-99 for childhood rhabdomysarcoma. Nat. Med. J. China. 2009. 89:121-123 Reprint: exc nrs

Tarella, C., R. Passera, M. Magni, F. Benedetti, A. Rossi, A. Gueli, C. Patti, G. Parvis, F. Ciceri, A. Gallamini, S. Cortelazzo, V. Zoli, P. Corradini, A. Carobbio, A. Mule, M. Bosa, A. Barbui, M. Di Nicola, M. Sorio, D. Caracciolo, A. M. Gianni and A. Rambaldi. Risk factors for the development of secondary malignancy after high-dose chemotherapy and autograft, with or without rituximab: a 20-year retrospective follow-up study in patients with lymphoma. J Clin Oncol. 2011. 29:814-24 Reprint: exc nri

Thepot, S., J. Zhou, A. Perrot, M. Robin, A. Xhaard, R. P. de Latour, L. Ades, P. Ribaud, A. D. Petropoulou, R. Porcher and G. Socie. The graft-versus-leukemia effect is mainly restricted to NIH-defined chronic graft-versus-host disease after reduced intensity conditioning before allogeneic stem cell transplantation. Leukemia. 2010. 24:1852-8 Reprint: exc nrs

Tolar, J., Eapen, M.,Orchard, P.J.,Blazar, B.R.. Acid sphingomyelinase deficiency does not protect from graft-versushost disease in transplant recipients with Niemann-Pick disease. Blood. 2010. 115:434-435 Reprint: exc nrs

Tolar, J., Petryk, A., Khan, K., Bjoraker, K.J., Jessurun, J., Dolan, M., Kivisto, T., Charnas, L., Shapiro, E.G., Orchard, P.J.. Long-term metabolic, endocrine, and neuropsychological outcome of hematopoietic cell transplantation for Wolman disease. Bone Marrow Transplant. 2009. 43:21-27 Reprint: exc nrs

Toledano, H., Yahel, A., Cohen, I. J., Yaniv, I., Stein, J.. Successful mobilization, harvest and transplant of peripheral blood stem cells using AMD3100 and G-CSF following high dose craniospinal irradiation for medulloblastoma in a young child. Pediatr Blood Cancer. 2010. 54:613-5 Reprint: exc nrd

Torrelo, A., Patel, S.,Colmenero, I.,Gurbindo, D.,Lendinez, F.,Hernandez, A.,Lopez-Robledillo, J.C.,Dadban, A.,Requena, L.,Paller, A.S.. Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) syndrome. J. Am. Acad. Dermatol.. 2010. 62:489-495 Reprint: exc nrp

Tsuruta, T., Y. Aihara, H. Kanno, C. Kiyotani, K. Maebayashi, M. Sakauchi, M. Osawa, H. Fujii, O. Kubo and Y. Okada. High-dose chemotherapy followed by autologous and allogeneic peripheral blood stem cell transplantation for recurrent disseminated trilateral retinoblastoma. Child's Nervous System. 2011. 27:1019-1024 Reprint: exc nrs

Turbeville, S., H. Nicely, J. D. Rizzo, T. L. Pedersen, P. J. Orchard, M. E. Horwitz, E. M. Horwitz, P. Veys, C. Bonfim and A. Al-Seraihy. Clinical outcomes following hematopoietic stem cell transplantation for the treatment of mucopolysaccharidosis VI. Molecular Genetics and Metabolism. 2011. 102:111-115 Reprint: exc nro

Tzaribachev, N., Koetter, I. ,Kuemmerle-Deschner, J. B. ,Schedel, J.. Rituximab for the treatment of refractory pediatric autoimmune diseases: a case series. Cases J. 2009. 2:6609 Reprint: exc nri

Valayannopoulos, V., J. de Blic, N. Mahlaoui, B. Stos, F. Jaubert, D. Bonnet, A. Fischer and P. de Lonlay. Laronidase for cardiopulmonary disease in Hurler syndrome 12 years after bone marrow transplantation. Pediatrics. 2010. 126:e1242-7 Reprint: exc nrd

Varlet, P., Peyre, M.,Boddaert, N.,Miquel, C.,Sainte-Rose, C.,Puget, S.. Childhood gangliogliomas with ependymal differentiation. Neuropathol. Appl. Neurobiol.. 2009. 35:437-441 Reprint: exc nro

Versluys, A., Rossen, J.W.A., van Ewijk, B., Schuurman, R., Bierings, M.B., Boelens, J.J.. Strong Association between Respiratory Viral Infection Early after Hematopoietic Stem Cell Transplantation and the Development of Life-Threatening Acute and Chronic Alloimmune Lung Syndromes. Biol. Blood Marrow Transplant.. 2010. 16:782-791 Reprint: exc nrp

Vulcani-Freitas, T. M., N. Saba-Silva, A. Cappellano, S. Cavalheiro, S. K. Marie, S. M. Oba-Shinjo, S. M. Malheiros and S. R. de Toledo. ASPM gene expression in medulloblastoma. Childs Nerv Syst. 2011. 27:71-4 Reprint: exc nrs

Wall, D. A., Chan, K.W.,Nieder, M.L.,Hayashi, R.J.,Yeager, A.M.,Kadota, R.,Przepiorka, D.,Mezzi, K.,Kletzel, M. Safety, efficacy, and pharmacokinetics of intravenous busulfan in children undergoing allogeneic hematopoietic stem cell transplantation. Pediatr. Blood Cancer. 2010. 54:291-298 Reprint: exc nrp

Wang, J. Z., K. Y. Liu, L. P. Xu, D. H. Liu, W. Han, H. Chen, Y. H. Chen, X. H. Zhang, T. Zhao, Y. Wang and X. J. Huang. Basiliximab for the treatment of steroid-refractory acute graftversus-host disease after unmanipulated HLAmismatched/haploidentical hematopoietic stem cell transplantation. Transplantation Proceedings. 2011. 43:1928-1933 Reprint: exc nrp

Wang, R. Y., Cambray-Forker, E. J., Ohanian, K., Karlin, D. S., Covault, K. K., Schwartz, P. H., Abdenur, J. E.. Treatment reduces or stabilizes brain imaging abnormalities in patients with MPS I and II. Mol Genet Metab. 2009. 98:406-11 Reprint: exc nrt

Wiegering, V., M. Eyrich, S. Rutkowski, M. Wolfl, P. G. Schlegel and B. Winkler. TH1 predominance is associated with improved survival in pediatric medulloblastoma patients. Cancer Immunol Immunother. 2011. 60:693-703 Reprint: exc nrd

Woolfrey, A., Storek, J.,Bowyer, S.,Nelson, R.,Robertson, M.,Wallace, C.. Long-term response of juvenile idiopathic arthritis after conditioning with 8 Gy total body irradiation followed by autologous peripheral blood stem cells. Pediatr. Transplant. 2010. 14:E65-E69 Reprint: exc nrp

Worthey, E. A., A. N. Mayer, G. D. Syverson, D. Helbling, B. B. Bonacci, B. Decker, J. M. Serpe, T. Dasu, M. R. Tschannen, R. L. Veith, M. J. Basehore, U. Broeckel, A. Tomita-Mitchell, M. J. Arca, J. T. Casper, D. A. Margolis, D. P. Bick, M. J. Hessner, J. M. Routes, J. W. Verbsky, H. J. Jacob and D. P. Dimmock. Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet Med. 2011. 13:255-62 Reprint: exc nrs

Yeung, A. H., Cowan, M.J., Horn, B., Rosbe, K.W.. Airway management in children with mucopolysaccharidoses. Arch. Otolaryngol. Head Neck Surg.. 2009. 135:73-79 Reprint: exc nrs

Yoo, K. H., S. H. Lee, K. W. Sung, H. H. Koo, N. G. Chung, B. Cho, H. K. Kim, H. J. Kang, H. Y. Shin, H. S. Ahn, H. J. Baek, D. K. Han, H. Kook, T. J. Hwang, S. Y. Kim, Y. H. Lee, J. O. Hah, H. J. Im, J. J. Seo, S. K. Park, H. J. Jung, J. E. Park, Y. J. Lim, S. S. Park, Y. T. Lim, E. S. Yoo, K. H. Ryu, H. J. Park and B. K. Park. Current status of pediatric umbilical cord blood transplantation in Korea: A multicenter retrospective analysis of 236 cases. American Journal of Hematology. 2011. 86:12-17 Reprint: exc t?

Zacharoulis, S., Chi, S., Kadota, R., Kieran, M. Biological modification strategies following marrow ablative, High-Dose Chemotherapy (HDCT) with Autologous Hematopoietic Stem Cell Rescue (AHSCR) for pediatric brain tumors. Pediatr. Blood Cancer. 2010. 54:654-656 Reprint: exc nrd Zhang, W. L., Y. ,Huang, D. S., Wang, Y.Z., Zhu, X., Hong, L., Li, P., Zhang, P.W., Zhou, Y. [Therapeutic effects of high dose chemotherapy combined with autologous peripheral blood stem cell transplantation for neural ectodermal solid tumor originated from neural crest in children]. Zhongguo Dang Dai Er Ke Za Zhi. 2010. 12:244-7 Reprint: exc fla

Appendix C. Systematic Review Data Abstraction

Study (Investigator,						Participant Selection			n, Withdrawn	
country, vear)	Record Number	Indication	Disease	Therapeutic Setting	Group (N)	(Treatment Period)	Design	n, Evaluated	(Lost to F/U)	Comment
Bernstein, USA/Canada 2006	6290	maliq nh	esft	mets at dx	110		phase 2	110	0	
Bhatia,USA, 2007	43210	malgi nh	esft	metastatic dz	60	1992-1994	Children's Oncology Group therapeutic protocol	60		protocol also included less intense CT regimens for other subgroups- not abstracted
Burdach, Germany and Austria, 2000	14310	malig nh	esft	relapse (early, late or multiple) or primary multifocal disease	28	1986-1994	CS	28	0	
Burdach, Germany, 2003	10030	malig nh	esft	primary multifocal or early relapse	32	1986-1994 (single HSCT) 1995-2000 (tandem HSCT)	Comparative study using historical controls	32		study included 54 patients who underwent single or tandem HSCT and survival reported as <=17 yrs of age or >17
Burke, USA 2007	4060	malig nh	esft	"high risk" defined as pelvic primary (n=5) and/or mets (n=4)	7	1992-2003	consecutive pts with es	7	0	One pt age 23 not abstracted
Costa, USA, 2008	1710	malig nh	esft	NR	1	2000-2007	CR	1	0	
Drabko, Poland 2005	6680	malig nh	esft	"high risk"- 1st line therapy with mets or relapse	21	1996-2002	cs from two centers	21	0	

Appendix Table C1. Design	participant selection and enrollment: Ewing's tumors
Appointing rubic e n boolgin	participant colociton and on onnont. Ewing o tamoro

Study (Investigator,						Participant Selection			n, Withdrawn	
country, vear)	Record Number	Indication	Disease	Therapeutic Setting	Group (N)	(Treatment Period)	Design	n, Evaluated	(Lost to F/U)	Comment
Fazekas,		Indication	2100000	ootting	()	1 01100,	Deelgii			
Austria, 2008	2720	m nh	esft	CR1	1		CR	1	0	
Hara Japan				advanced dz or CT-resistant or relapse						
1998	17950	malig nh	esft	relapse n=1	3	1993-1997	cs	3	0	
Harimaya, Japan, 2003	9850	malig nh	esft	primary dx, high- risk (spinal column)	2		cs	2	0	
Hawkins, USA 2000	15360	malig nh	esft	grp 1: CR2 n=8 PR2 n=1 grp 2: CR1 n=2 CR2 n=2 CR3 n=1 PD n=2	grp 1 n=9 grp 2 n=7	1993-1997	CS	16	0	2 different conditioning regimens used grp 1 and grp 2
Kasper, Germany, 2006	2570	malig nh	esft	upfront therapy, 3 with mets transplanted in CR n=4, and PR n=1	5	1998-2004	CS	5	0	other patients >21 yrs not abstracted
Kogawa,	0440	un alla un b							0	
Koscielniak Germany 2005	7860	malig nn m nh	esft	relapsed after tandem auto-auto HSCT	1	1998	CR	1	0	
Kushner, USA, 1995	21430	malig nh	esft	newly dx'd poor risk b/c of tumor volume >100 cm3 or mets to bone or BM	24		Prospective CS	24	0	
Kushner, USA, 2001	14240	malig nh	esft	newly diagnosed with mets to bone or BM - if achieve VGPR or CR, eligible for HSCT	10	1990-1998	cs	10	0	only abstracted pts <21 for HSCT and the 5 pts <21 who did not proceed to HSCT

Study (Investigator,	Pacard			Thorapoutic	Group	Participant Selection		n	n, Withdrawn	
year)	Number	Indication	Disease	Setting	(N)	Period)	Design	Evaluated	F/U)	Comment
Laws, Germany, 2003	9450	malig nh	esft	relapsed	2	1988-1998	cr	2	0	study included a total of 18 patients, but age was only reported for 2 pts
Lucas, USA	2450	malia nh	esft	relansed with mets	1		CR	1	0	
Lucidarme,	2400			refractory dz 1st PR n=1 2nd PR n=1	1		phase 2			
France, 1998	17610	malig nh	esft	PD n=1	3	1987-1995	study	3	0	
Meyers, USA, 2001	13670	malig NH	FSFT	newly diagnosed metastatic to bone and/or BM	32	Feb 1996- Nov 1998	CS	32	9 patients did not proceed to HSCT b/c 4 had progressive dz, 2 secondary to toxicity and 3 who died from toxicity during high-dose phase of the therapy	
Milano, Italy,	10070				52	1100 1330		52	anciapy.	
2006	43290	malig nh	esft		36	1990-2005				
and Canada, 2006	5930	malig nh	esft	mets or tumor >8cm	11	1996-2000	prospective phase II trial	9	2	

Study (Investigator, country,	Record			Therapeutic	Group	Participant Selection (Treatment		n,	n, Withdrawn (Lost to	
year)	Number	Indication	Disease	Setting	(N)	Period)	Design	Evaluated	F/U)	Comment
Japan, 2002	12130	malig nh	esft	primary dx	1	May 1996	CR	1	0	
Oberlin,				newly dxd with						study transplanted 75 patients; survival data reported as <15 yrs of age and >=15; only abstracted
France, 2008	46850	malig nh	esft	mets		1991-1999	CS			<15 yr data
Ozkaynak, USA 1998	18540	malig nh	esft	2nd CR n=4 2nd VGPR n=5 1st CR n=5 1st VGPR n=1 (5 pts transplanted in 1st CR or VGPR were high-risk- 4 with mets at dx bone and/or BM and one had large pelvic primary) CR 2 n=2	15	1992-1995	CS	15	0	
Pession, Italy,	10100	an a line as h	6			4000 400 4				
1999	16120	malig nn	esit	PK N=1 "bigb risk" (largo	3	1992-1994	CS	3	U	
Prete, Italy 1998	17210	malig nh	esft	pelvic mass and/or metastatic dz)	17	1993-1997	cs	17	0	

Study (Investigator,	Record			Therapeutic	Group	Participant Selection (Treatment		n	n, Withdrawn (Lost to	
year)	Number	Indication	Disease	Setting	(N)	Period)	Design	Evaluated	F/U)	Comment
										study included pts
										with nonmet dz- did not
										abstract b/c only survival
										report for
. .										was by
2010	42790	malig nh	esft	mets at dx	36	1992-2005	CS	36	0	mets vs nonmets
Tanaka.				PD n=1		"HSCT since				one patient 35 v/o not
Japan, 2002	11770	malig NH	ESFT	CR1 n=5	6	1986"	CS	6		abstracted
van Winkle,	13550	malia nh	oeft	recurrent/refractory	22	1002-1006	CS	22	0	
00A, 2000	43330	mang min	Con	"high risk"	22	1992-1990	00		0	
				mets at dx, poor						
				defined as <90%						
				necrosis at						
				demnive surgery,						
				primary tumor not						
				Table 1,						
Yaniv, Israel, 2004	9100	malign nh	esft	relapsed	11			11	0	
					group A					
					(<=17					
					yrs) group B	group A:				
					n =13	2000				
Burdach, Germany and		ET multiple		high-risk ET with	(<=17yrs) (Total N	group B: 1992 -				
Austria, 2010	2077	mets	ESFT	bone mets	= 37)	1996	cs	21	0	

Study (Investigator,	Booord			Thoropoutio	Group	Participant Selection		2	n, Withdrawn	
vear)	Number	Indication	Disease	Setting	(N)	Period)	Design	Evaluated	F/U)	Comment
J =,				high-risk localized tumor (tumor volume >200mL, inoperable tumor, or poor histological response to neoadjuvant CT)						
Diaz, Spain,		NH- solid		and those with			retrospective			
2010	2135	tumor	ESFT	Poor prognosis ESFT (metastasis or axis location, or tumor >200 ml or	47	1995-2009	CS consecutive patients, retrospective	47 24-2 patients rapidly progressed during induction and did not proceed to	0	
2010	2230	tumor	ESFT	necrosis <95%)	26	1998-2007	review	HSCT		
Ladenstein, Austria, France, UK,					n=99 < 14 years of age (entire study included 281 patients median age 16.2 years (range 0.4-49 years)- survival data					
Switzerland, Netherlands, Germany, Sweden, 2010	2270	primary disseminated multifocal Ewings	ewings sarcoma	Primary treatment	divided <=14 years of age and >14	1999-2005	Prospective CS	99	0	

Study (Investigator, country,	Record			Therapeutic	Group	Participant Selection (Treatment		n,	n, Withdrawn (Lost to	
year)	Number	Indication	Disease	Setting	(N)	Period)	Design	Evaluated	F/U)	Comment
Kwon, Korea,		NH solid	Ewings				retrospective			
2010	2268	tumor	sarcoma		1	2005-2007	chart review	1	0	

Study (Investigator,	Record	Group		Age	Age	Gender M,	Disease	Disease Histology/Site	
country, year)	Number	(N)	Age (mean)	(median)	(Range)	F (%)	Stage/category	(%)	Comment
Burdach, Germany and Austria, 2000	14310	28		at tx 15 yrs (8-21)		50,50		primary site for relapsed: long bone n=9 pelvis n=1 scapula n=1 chest wall/rib n=1 primary site for multifocal disease: various	entire study incl 36 pts; only abstracted <21 yrs old
Burdach, Germany, 2003	10030	32			<= 17 yrs				
Burke, USA 2007	4060	7		14 yrs (.5- 17)		71, 29	mets in 4 (lung n=2, bone BM and liver n=1, bone and lung n=1)	primary tumor site pelvis n=5 scapula n=1 chest wall n=1	
Costa, USA, 2008	1710	1	15 yrs at first HSCT			NR	NR	es	
Drabko, Poland 2005	6680	21	40	at tx 15 yrs (6-21)		52,48	at HSCT: CR1 n=10 CR2 n=1 PD n=1 PR n=9	pelvis n=3 long bone n=9 vertebra n=1 sternum or clavicle n=3 scapula n=1 rib n=1 skull n=1 NR n=2	
Fazekas, Austria, 2008	2720	1	13 yrs at diagnosis			100,0	stage IV	pelvis	
Hara , Japan 1998 Harimaya,	17950	3	12yrs and	5 yrs (2-12)			relapsed n=1 stage 3 n=1 stage 4 n=1 localized to spinal	PNET n=2 ES n=1	
Japan, 2003	9850	2	14yrs			50,50	column		

Appendix Table C2. Participant characteristics:Treatment, Ewing's tumors
Study (Investigator,	Record	Group		Age	Age	Gender M,	Disease	Disease Histology/Site	
country, year)	Number	(N)	Age (mean)	(median)	(Range)	F (%)	Stage/category	grp 1 2/9 with mets; primary tumor site long	Comment
								bone n=5, axial n=3, kidney n=1	
Hawkins, USA				at HSCT 14.6 yrs				grp 2: 4/7 mets; primary tumor site long bone n=2	
2000	15360	16		(6-21)				axial n=5	
Germany, 2006	2570	5		19 (17-21)				mets: lung n=2 bone n=1	
Kogawa, Japan, 2004	8410	1	7 yrs			0,100		primary cervical spine, epidural, extra-osseous	
			15 YEARS AT TANDEM TX						
Koscielniak Germany 2005	7860	1	15 yrs + 8 mos at relapse/allo			0,100	initial stage - disseminated dz with BM mets		
								primary site of tumor	
Kushner, USA, 2001	14240	5		16.5 y (8- 21 yrs)		70,30	mets to bone or BM	pelvis n=4 long bone n=3 chest wall n=1 paraspinal n=1 perineum n=1	
Laws, Germany, 2003	9450	2			at HSCT 14 yrs and 19 yrs	0.100	relapsed	primary tumor femur n=2	
Lucas, USA 2008	2450	1	4 YRS			0,100	stage IV	iliac crest with mets to BM, multiple vertebrae, ribs, bilateral lung	
Lucidarme, France, 1998	17610	3		8.5 yrs (2- 17) at 1st tx		68, 32	mets at HSCT n=3		age is median for all 22 patients in this mixed study

Study (Investigator.	Record	Group		Age	Age	Gender M.	Disease	Disease Histology/Site	
country, year)	Number	(N)	Age (mean)	(median)	(Range)	F (%)	Stage/category	(%)	Comment
								primary site:	
								nahia n-10	
								peivis n=12	
								chest wall n=5	
								femur n=3	
								multiple sites n=6	
Mevers, USA.				13 vrs (1-			metastatic to bone		
2001	13670	32		22)		62,38	or BM	other n=6	
								HSCT pubis n=1 kidney	
								n=1 chest wall n=1 femur	
				14 Q yrs			nomets n=3		
Navid, US and				(11.7-17.4			mets n=6)5	no HSCT ilium n=1 thorax	
Canada, 2006	5930	9		yrs)		67, 33	underwent HSCT	n=1 leg n=1 rib n=1	
Numata, Japan,			20 years at						
2002	12130	1	HSCT	40.0 (0		0,100		ES- inguinal area	
Oborlin Franco				12.3 yrs (2					
2008	46850			vrs))		59.41			
Ozkaynak, USA				J//		,			
1998	18540			15 (5-21)		53,47			
Pession, Italy,	40400			6 yrs (3-					
1999	16120	3		12)		33,66	motostatia dz at dy		
							n=14		
							localized dz at dx		
							n=3		
							BM involvement		
Prete. Italy 1998	17210			8 (5-14)		65.35	n=3		
	-		1		1	-,		sternum with pleural	
								cavity disssem n=1, ilium	
							"hi risk" incl large	n=2 (one with sacral	
							location lung mets	chest wall with lung	
Tanaka, Japan.				at dx 17.5			pleural cavity	involvement n=1 and	
2002	11770	6		yrs (8-19)		66,33	involvement	humerus n=1	

Study (Investigator, country, year)	Record Number	Group (N)	Age (mean)	Age (median)	Age (Range)	Gender M, F (%)	Disease Stage/category	Disease Histology/Site (%)	Comment
								scapula n=1 cranium n=1 ilium n=3 femur n=2 abdomen n=1	
Yaniv, Israel, 2004	9100	11		13 yrs (0.3-19)		64,36		radius n=1 sacrum n=2	
Ladenstein, Austria, France, UK, Switzerland, Netherlands, Germany, Sweden, 2010	2270	99 (<= 14 years old)	Not reported separately for <= 14 years	Not reported separately for <= 14 years 103 months	Not reported separately for <= 14 years	Not reported separately for <= 14 years	disseminated multifocal	Ewing's sarcoma Primary not reported separately for <= 14 years but for entire study population of 281 patients, extremity 31%, chest/spine/head and neck 24%, abd/pelvis 45% and sites of mets BM plus lung 10%, bone plus lung 45%, bone plus BM plus lungs primary tumor extremity n=7 axial n=17	36%, other plus lungs 10%
llari, Italy, 2010	2230	24		(range 12- 192 months)		42,58	localized n=16 metastatic n=8	Sites of mets lung n=5, BM n=3, bone n=3, other n=2	
Diaz, Spain, 2010	2135	47		13 years (4-21 yrs)		68, 32	localized/regional at diagnosis 57% with metastases at diagnosis 43%	primary site of tumor distal extremity 23%, proximal extremity 13%, pelvis 30%, chest 19%, spine/paravertebral 15%	
Kwon, Korea, 2010	2268	1	8 years			100,0	stage 4		

Study	1					Gender			
(Investigator,	Record		Age	Age		M, F	Disease	Disease	
country, year)	Number	Group (N)	(mean)	(median)	Race (%)	(%)	Stage/category	Histology/Site (%)	Comment
								primary site extremity	
								36% pelvis 29% spine	
								5% chest wall 16%	
								other 14%	
					white 74%				
					Afr Amer			mets site isolated lung	12% of
					6%			35% lung + other 15%	patients
Bernstein,					Hispanic			isolated bone 13%	between
USA/Canada				14.6 yrs (3.0-	15% other			isolated BM 7% other	20-31 yrs
2006	6290	110		27.3)	5%	61,39		30%	old
				total cohort					
				(which					
				included pts					
				that rec'd					
				lesser					
				intensity					
				regimens					
				than the					
				11-00)					
Bhatia LISA				age at dy: 12					
2007	43210	60		vrs(0.30)		56 44			
2001	10210	00		yie (0.00)		00,11		nonmets (ESET and	
								PNFT): primary tumor	
								site chest wall n=4 long	
								bone n=7 paraspinal	
								n=1 pelvis n=3 thigh	
								n=1 retroperitoneal n=1	
								mets: primary tumor	
								site long bone n=3	
		non-						pelvis n=3 perineum	
		metastatic		nonmet 15		non met		n=1	
		dz n=17		yrs (1.5-21)		76,24			
								sites of mets lung only	
Kushner, USA,		metastatic		mets 17 yrs		met		n=3 mult sites incl	
1995	21430	dz n=7		(9-21)		86,14		bone or BM n=4	

Appendix Table C3. Participant characteristics: Comparator, Ewing's tumors

Study (Investigator,	Record	Crown (NI)	Age	Age	Gender M, F	Disease	Disease	Commont
Milano, Italy,	43290	36	(mean)	115 mos (20- 214)	(%)	"high risk"- tumor vol >200 ml or site with poor px (pelvis, chest wall or vertebra) or pulmonary or BM mets at dx First diagnosis pts with mets n=16 (44%)	pelvis n=9 (5 bone and 4 soft tissue) femur n=2 scapula n=2 hip n=2 clavicle n=1 vertebra n=4 humerus n=3 tibia n=3 abdomen n=2 rib n=1 fibula n=2 chest wall n=4 pretibial soft tissue 1 foot soft tissue 1 radius 1 mets lung n=9 BM mets n=7	Comment
Sari, Turkey, 2010	42790	36	all pts <18 yrs old for pts with mets 89% <15 and 11% >=15		39.61		primary tumor chest wall n=4 vertebra n=3 pelvis n=10 extremity n= 19	
Van Winkle, USA. 2005	43550	22		14.1 yrs (2.8- 22.5 yrs) age of all pts in the study which included other tumor types besides ESFT	57.43	recurrent/refractory 1 pt with extraosseus ESFT	sites of recurrence lung 28% extremity 28% pelvis 10% H/N 10% other 24%	

Study (Investigator, country, year)	Record Number	Group (N)	Age (mean)	Age (median)	Race (%)	Gender M, F (%)	Disease Stage/category	Disease Histology/Site (%)	Comment
								sternum n=1, VC n=7,	
								peivis n=7, lung n=4,	
								nonspecified n=1. rib	
								n=1, humerus n=4,	
							high-risk ES (>3	cranium n=3, scapula	
Burdach,							involved bones)	n=1, femur=3, fibula=1,	
Germany and		_					LN mets (n=2) and lung	tibia=1, talus=1,	
Austria, 2010	2077	8	14	15 yrs	NR	37, 63	disease (n=6)	clavicle n=1	

Study (Investiga tor, country,	Recor d Numb	Grou	Stem Cell	Type of	Prior	Conditioning	Immunosuppre ssive therapy for GVHD	Supporti	Comparat ive Treatmen	Comparati ve Treatment Dose/Regi	Commen
year) Bernstein, USA/Cana da 2006	6290	p (N)	Source			Kegimen	prophylaxis	ve Care	t CT +/- complete surgical resection +/- full- dose RT or lower dose RT to microscop ic residual dz.Up to 3 metastatic sites excl BM with RT	CT: I, E, vincr, doxorub, CPM)	
Bhatia,US A, 2007	43210	60							high- intensity CT	doxorubicin, CPM and ifos	
Burdach, Germany and Austria, 2000	14310	28	for auto [n=21] BM n=2 PB n=17 BM+ PB n=2 for allo [n=7] all BM	auto n=21 allo n=7		MEL, Eto, Carbo, TBI n=10 MEL, E, TBI n=15 MEL, E, carbo n=1 MEL, TBI n=1 E, TBI n=1					

Appendix Table C4. Treatment characteristics: Ewing's tumors

Study (Investiga tor, country,	Recor d Numb	Grou	Stem Cell	Type of	Prior	Conditioning	Immunosuppre ssive therapy for GVHD	Supporti	Comparat ive Treatmen	Comparati ve Treatment Dose/Regi	Commen
year)	er	p (N)	Source	ност	Treatment	Regimen	prophylaxis	ve Care	t	men	t
Burdach, Germany, 2003	10030	<+17 yrs singl e HSC T n=18 tande m n=14		single auto or tandem	all pts recd local RT to	single TBI,MEL,E +/- carboplatin tandem MEL, E times 2					
Burke,	4060	7	nh	single auto n=1 tandem auto n=6	complete surgical resection n=6 no surgery n=1 RT n=2 (one to primary tumor and one to an orbital met)	1st: Eto, Carboplatin, CPM 2nd: MEL, CPM n=4; Thio, CPM n=1; MEL and TBI n=1		rec'd for fever, nutrition and hematolo gic indicatio ns prn (n=7)			All pts achv'd CR after first HSCT; only 6 went on to 2nd HSCT b/c one pt progress ed with local and metastati c dz 30 days after 1st HSCT
Costa,	1710	1	NR	auto	vincristine, CY, doxorubicin, ifos VP-16						

Study										Comparati	
(Investiga	Recor						Immunosuppre		Comparat	ve	
tor,	d	Creati	Stem	Turne of	Duiou	Conditioning	ssive therapy	Cumm anti	ive Treatman	Treatment	Common
country,	NUMD	Grou p (N)	Sourco		Trostmont	Conditioning	for GVHD prophylaxis	Supporti	t reatmen	Dose/Regi	t Commen
year)	ei	p (N)	Source	пост	Treatment	BUS MEI	ргорнуваль	ve care		IIIeII	L
						n=12					
						MEL, VP-16,					
						TBI n=1					
						MEL, VP16,					
Drabko,						CBCA n=6					
Poland	6690	21	nh	outo		Trop Mol n=2					
Eazekas	0000	21	pp	auto							
Austria					heminelvect						
2008	2720	1		auto	omv	BUS. MEL					
						double-					
Hara ,					no preHSCT	conditioning					
Japan			bm or pb		surgery or	regimen thio		TPN,			
1998	17950	3	or both	auto	RT	and MEL		Abx			
					surgery n=2						
					(one partially						
					resected.						
					one en bloc)	carboplat and			partial		
					,	E n=1			surgical		
Harimaya,					RT n=1 (pt				resection,		
Japan,					partially	carboplat, E,			multiagent		
2003	9850	2	pb	auto	resected)	ifos n=1			CT, RT	VAIA	
						grp 1: BUS,					
						followed by					
				auto n=14		HSCT then					
						total marrow					
				syngeneic		myeloablative					
				n=1		RT followed by					
						a second		prophyla			
				allo n=1		HSCT		ctic Abx			
			pb n=15	(HLA-				IT IOW			
	15360	16	hm n=1	sibling)		MEL Thio		yranuloc			
03A 2000	10000	10		sioning)		IVIEL, THIO		yte coull			

Study (Investiga tor,	Recor d	Grou	Stem	Tuno of	Prior	Conditioning	Immunosuppre ssive therapy	Supporti	Comparat ive	Comparati ve Treatment	Common
year)	er	p (N)	Source	HSCT	Treatment	Regimen	prophylaxis	ve Care	t	men	t
Kasper, Germany, 2006	2570	5	nb	auto		MEL and E n=2 BUS and MEL n=3					
Kogawa, Japan, 2004	8410	1	pb	auto	surgery and RT	NR					
Koscielnia k Germany 2005	7860	1	mismatc hed related	allo	tandem auto-auto local RT	BUS, Thio, Flu, CPM					
										CT CPM, doxo, VIN, ifos, E	
										nonmets: GTR n=14 inoperable	
										n=2 amputation n=1 RT n=7	
					surgery				non met	met dz: GTR n=3 no surg n=4	
Kushner, USA, 1995	21430	2		auto	GTR n=1 no surg n=1	MEL, TBI			dz CT, surg, RT	RT 71 % (n=5)	
Kushner, USA, 2001	14240	5	bm and pb n=3 bm n=2	auto	RT n=4	TBI, MEL or thio, carboplatin			induction CT and in one pt RT		

Study (Investiga tor, country, year)	Recor d Numb	Grou	Stem Cell	Type of	Prior	Conditioning	Immunosuppre ssive therapy for GVHD prophylaxis	Supporti	Comparat ive Treatmen	Comparati ve Treatment Dose/Regi	Commen
Laws, Germany, 2003	9450	2		auto	resection of primary tumor with wide margins n=2 RT to mets n=2	TBI, MEL, E n=1 NR n=1					
Lucas, USA 2008	2450	1		allo, matched mother	chemothera py leading to resolution of disease at primary tumor site, BM, and lungs and stable disease in the vertebrae and ribs for 6 months	BUS, MEL thymoglobulin	cyclosporin and methotrexate				
Lucidarme , France, 1998	17610	3	bm or pb	auto x 1 (n=1) auto x 2 (n=2)	surgery for primary tumor n=1 (pt with PD) and RT after HSCT	thio RT n=1		TPN Abx			

Study (Investiga tor, country,	Recor d Numb	Grou	Stem Cell	Type of	Prior	Conditioning	Immunosuppre ssive therapy for GVHD	Supporti	Comparat ive Treatmen	Comparati ve Treatment Dose/Regi	Commen
year)	er	p (N)	Source	HSCT	Treatment	Regimen	prophylaxis	ve Care	t	men	t
Meyers,					local RT of primary tumor and				repeated cycles of		9 patients were not transplan ted b/c did not achieve good response in primary tumor and all mets
USA, 2001	13670	23	рр	auto	mets sites	I BI, MEL, Eto		filgrastim			SITES
Milano, Italy, 2006	43290	36							conservati ve surgery after CT n=14 RT n=3	ICE/CAV n=18 ICE n=2 CECAT n=16	
Navid, US and Canada, 2006 Numata, Japan, 2002	5930	9	pb	auto	surgery n=6 RT n=7 conventional CT and regional RT	CPM and E n=3 CPM, Topotecan n=2 carboplatin, e, ifo			4 patients did not undergo HSCT b/c did not achieve PR or CR with induction CT.		
Oberlin, France, 2008	46850										

Study (Investiga tor, country,	Recor d Numb	Grou	Stem Cell	Type of	Prior	Conditioning	Immunosuppre ssive therapy for GVHD	Supporti	Comparat ive Treatmen	Comparati ve Treatment Dose/Regi	Commen
year)	er	p (N)	Source	HSCT	Treatment	Regimen	prophylaxis	ve Care	t	men	t
Ozkaynak,			bm and			MEL, Carbopl,					
USA 1998	18540	15	pb n=8	auto		E +/- CPM					
Pession, Italy, 1999	16120	3	bm	auto	one patient RT to primary tumor	BUS, E, thio					
						BUS, E, Thio (n=16)					
Prete, Italy 1998	17210	17	pb	auto		L-PAM (n=1)					
Sari, Turkey, 2010	42790	36							CT only 8% CT and RT 55% CT and surgery 6% CT,RT and surg 22%	CT EVAIA vincr, ifos, mesna, E, adriamy, actino-D	
Tanaka, Japan, 2002	11770	6	PB	auto	surgery n=2 RT n=2 both surg and RT n=2						
van Winkle, USA, 2005	43550	22							СТ	ICE	
Yaniv, Israel, 2004	9100	11	pb and bm	auto		MEL, E , carbopl or BUS and MEL					

Study (Investiga tor, country,	Recor d Numb	Grou	Stem Cell	Type of	Prior	Conditioning	Immunosuppre ssive therapy for GVHD	Supporti	Comparat ive Treatmen	Comparati ve Treatment Dose/Regi	Commen
year)	er	p (N)	Source	HSCT	Treatment	Regimen	prophylaxis	ve Care	t	men	t
Ladenstein											
France.											
UK,											
Switzerlan						induction VIDE					
d,						x 6 cycles and					
Netherland					resection of						
Germany.					primary and	high dose CT					
Sweden,			autologo	myeloablat	metastatic	oral busulfan					
2010	2270	n=99	us	ive	tumor sites	and melphalan					
					local						
					(surgery						
					with or						
					without RT)-						
					surgery						
					could have						
					diagnosis						
					(n=2) or						
					after 4						
					courses CT						
					(n=13) or						
					(n=5): in						
					inoperable	etoposide,					
llari, Italy,		_		myeloablat	pts, RT was	thiotepa and					
2010	2230	24	auto	ive	after HSCT	CY					
Diaz, Spain					64% local	nigh-dose					
2010	2135	47		auto	radiation	melphalan					

Study (Investiga tor, country, year)	Recor d Numb er	Grou p (N)	Stem Cell Source	Type of HSCT	Prior Treatment	Conditioning Regimen	Immunosuppre ssive therapy for GVHD prophylaxis	Supporti ve Care	Comparat ive Treatmen t	Comparati ve Treatment Dose/Regi men	Commen t
Kwon, Korea, 2010	2268	1	auto	sequential high-dose (2 consequen t courses of RIC followed by a high- dose with auto HSCT)	4 cycles of chemothera py No surgical resection of primary tumor	RIC: etoposide, cyclophospha mide, carboplatin high-dose: carboplatin , etoposide, melphalan with or without TBI					
Burdach, Germany and Austria, 2010	2077	21	auto n = 8 (one pt received auto followed by allo b/c of progressi on after initial auto SCR)	myeloablat ive chemother apy EVAIA and/or VAIA	TB-MRI assessment surgery and/or irradiation	VAIA and E/VAIA high-dose melphalan x 2 and etoposide allo: BU and CY or			induction chemo VAIA and E/VAIA		

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes
Burdach, Germany and Austria, 2000	14310	28	EFS
Burdach, Germany, 2003	10030	<=17 yrs	EFS
			DFS
Burke, USA 2007	4060	7	OS
Costa, USA, 2008	1710	1	OS
			DFS
Drabko, Poland 2005	6680	21	OS
Fazekas, Austria, 2008	2720	1	DFS
			DFS
Hara , Japan 1998	17950	3	OS
Harimaya, Japan, 2003	9850	2	OS
Hawkins, USA 2000	15360	16	EFS
Kasper, Germany, 2006	2570	5	OS
			OS
Kogawa, Japan, 2004	8410	1	DFS
Koscielniak Germany 2005	7860	1	PFS
Kushner, USA, 1995	21430	2	PFS
Kushner, USA, 2001	14240		EFS
Laws, Germany, 2003	9450	2	DFS
Lucas, USA 2008	2450	1	OS
Lucidarme, France, 1998	17610	3	OS
Meyers, USA, 2001	13670	32 and 23	EFS
			EFS
Navid, US and Canada, 2006	5930	9	OS
Numata, Japan, 2002	12130	1	DFS OS
			EFS
Oberlin, France, 2008	46850	<15 yrs	OS
			EFS
Ozkaynak, USA 1998	18540	15	OS (NR)
			OS
Pession, Italy, 1999	16120	3	DFS
			EFS
Prete, Italy 1998	17210	17	OS
Sari, Turkey, 2010	42790		
			DFS
Tanaka, Japan, 2002	11770	6	OS
Yaniv, Israel, 2004	9100		
Ladenstein, Austria, France, UK, Switzerland, Netherlands, Germany, Sweden, 2010	2270	99	OS
Diaz, Spain, 2010	2135	47	PFS
Kwon, Korea, 2010	2268	1	OS

Appendix Table C5. Outcome assessment: Treatment, Ewing's tumors

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	Secondary Outcomes
Bernstein, USA/Canada 2006	6290	110	EFS	OS
Bhatia,USA, 2007	43210			
Kushner, USA, 1995	21430	24	PFS	
Milano Italy 2006	43200	36	EFS	
	43290	50	OS	
Sari Turkey 2010	42700	36	EFS	
Sall, Turkey, 2010	42790	50	OS	
van Winkle, USA, 2005	43550	22	OS	
Burdach, Germany and Austria, 2010	2077	8	OS	

Appendix Table C6. Outcome assessment: Comparator, Ewing's tumors

Study (Investigator, country, year)	Record Number	Group (N)	Outcome	Med (mos)	2 yr	5 yr
Costa, USA, 2008	1710	1	73 + months			
Drabko, Poland 2005	6680	21		24 mos (13- 59 mos)	HSCT in CR .68 not in CR <.10	
Fazekas, Austria, 2008	2720	1				
Hara , Japan 1998	17950	3	DOD 3 mos A with D 25+ mos A NED 59+			
Harimaya, Japan, 2003	9850	2	A without D 67+ months DOD from recurrent tumor at 28 mos			
Kasper, Germany, 2006	2570	5	A NED 93+ mos A NED 70+ A NED 59+ A NED 46+ DOD 30 months			
Kogawa, Japan, 2004	8410	1	60 months +			
Koscielniak Germany 2005	7860	1				
Lucas, USA 2008	2450	1	9 months + with disease			
Lucidarme, France, 1998	17610	3	1 tx DOD 2 mos (n=1) of PD 2 txs DOD 7 mos after 2nd tx (?) 2 txs A NED 28+ mos after first tx			
Meyers, USA, 2001	13670					
Navid, US and Canada, 2006	5930	HSCT DOD n=2 at 27 and 28 mos A NED n=3 at median 67 mos (57-73)				
Numata, Japan, 2002	12130	1	50+ months			
Oberlin, France, 2008	46850	<15 yrs				49%
Ozkaynak, USA 1998	18540	15				
Pession, Italy, 1999	16120	3	DOD 7 months ANED 58+ A w D 53+			
Prete, Italy 1998	17210	17		15 (1-40 mos)	70%	

Appendix Table C7. Time to event outcomes: Treatment, Ewing's tumors

Study (Investigator, country, year)	Record Number	Group (N)	Outcome	Med (mos)	2 yr	5 yr
			n=1 DOD 19 mos			
Tanaka, Japan, 2002	11770		n=5 A NED median			
			mos)			
						64% (95%CI
						38-81) (7 year
Ilari, Italy, 2010	2230	24	7 year OS			OS)
Kwon, Korea, 2010	2268	1	DOD 11 months			
						mean .46
Ladenstein, Austria, France, UK, Switzerland,	2270	00	00			SD 0.05 (3
Nethenanus, Germany, Sweden	2270	39	03			year US)

Appendix Table C7. Time to event outcomes: Treatment, Ewing's tumors Continued

Study (Investigator, country, year)	Record Number	Group (N)	Outcome_2	Med (mos)_2	2 yr_2	3 yr_2	5 yr_2	Outcome_3	Med (mos)_3
Burdach, Germany, 2003	10030		EFS in <=17 yrs old	32% +/- 11% with single 40% +/- 13% with tandem					
.Burke, USA 2007	4060		tandem group NED n=4 after mean f/u of 6.25 yrs (3-10 yrs) DOD n=2 at 0.3 and 3.2 yrs					group single tx DOD at .5 yrs	
Costa, USA, 2008	1710	1							
Drabko, Poland 2005	6680	21	DFS		in CR .63 and not in CR 0				

Study (Investigator, country, year)	Record Number	Group (N)	Outcome_2	Med (mos)_2	2 yr_2	3 yr_2	5 yr_2	Outcome_3	Med (mos)_3
Fazekas, Austria, 2008	2720	1	DFS	relapsed 4 mos after HSCT (non- pulm); died after palliative CT					
Hawkins, USA 2000	15360		EFS (n=16)			36%		EFS	grp 1 A NED: 66.7 % median 42 mos (27-66) PD 33.3% median 12 mos (6.3-17) grp 2: PD/DOD 28.6 % median 6.7 mos (0.1- 26) NED/DOC n=2 (one at 9.6 months and one 31 mos after a 2nd HSCT (allo after auto) for MDS that the pt had prior to the auto tx
Kasper, Germany, 2006	2570	5							
Kogawa, Japan, 2004	8410	1	DFS	60+ months					
Koscielniak Germany 2005	7860	1	PFS	after allo 3.5 yrs					PFS after tandem 8 mos
Laws, Germany, 2003	9450		DFS	30 mos and 6 mos					
Lucas, USA 2008	2450	1							
Lucidarme, France, 1998	17610	3							
Meyers, USA, 2001	13670		EFS		20%				

Study (Investigator, country, year)	Record Number	Group (N)	Outcome_2	Med (mos)_2	2 yr_2	3 yr_2	5 yr_2	Outcome_3	Med (mos)_3
Navid, US and Canada, 2006	5930	HSCT DOD n=2 at 27 and 28 mos A NED n=3 at median 67 mos (57-73)	no HSCT DOD n=2 @ 10 and 16 months A NED n=2 @ 73 and 80 months						
Numata, Japan, 2002	12130	1	DFS	50 + months					
Oberlin, France, 2008	46850	<15 yrs	EFS				46%		
Ozkaynak, USA 1998	18540	15	EFS			51% (for pts in 1st remission 66% +/- 19%; for 2nd remission 37%)			
Pession, Italy, 1999	16120	3		DOD 7 months ANED 58+ A w D 53+					
Prete, Italy 1998	17210	17	EFS		63%				
Tanaka, Japan, 2002	11770		DFS	n=4 median 48.5 mos (31-74) n=1 NED at 79 mos					
Diaz, Spain, 2010	2135	47	PFS 56% +/- 4% with a median followup of 92 months for survivors (range 6-168 months)	by localized vs mets at dx PFS for pts with local dz:78% +/- 8% and for mets 27% +/- 10%					

Study (Investigator, country, year)	Record Number	Group (N)	Outcome_2	Med (mos)_2	2 yr_2	3 yr_2	5 yr_2	Outcome_3	Med (mos)_3
			7 year EFS 61% (95%Cl 36-79)						
llari, Italy, 2010	2230	24							
Ladenstein, Austria, France,						mean 0.40			
UK, Switzerland, Netherlands,						SD 0.05			
Germany, Sweden	2270	99	3 year EFS						

Study (Investigator, country, year)	Record Number	Group (N)	1 yr	2 yr	3 yr	5 yr	Outcome_ 2	1 yr 2	2 yr 2	3 yr_2	5 yr 2	Comme nt
Bernstein, USA/Canada 2006	6290	110	77% +/- 4%	46% +/- 5			EFS	65% +/- 5	24% +/- 4%			No statistical differenc e was seen in EFS or OS between pts with isolated lung mets and or those with other or more than isolated mets
Milano, Italy, 2006	43290	36			with ICE/CAV CT 67%+/- 12% with other CT 22%		EFS			with ICE/CA V 74% with other CT 27%		
Sari, Turkey, 2010	42790					27 %	EFS				18%	
van Winkle, USA, 2005	43550	22	43 % (SE 11)	33% (SE 10)								

Appendix Table C8. Time to event outcomes: Comparator, Ewing's tumors

Study (Investigator, country, year)	Record Number	Group (N)	Severity or Grade Infection	%	% Engraftment Failure	% TRM	Severity or Grade Secondary Malignancies	F/U (mos) SM	% SM	Commen ts SM
Burdach, Germany and Austria, 2000	14310	28								
Burdach, Germany, 2003	10030	reported engr, TRM, infec compl, sec malig, and major organ tox, but not by age of < or > 17 yrs								
Burke, USA 2007	4060	7	sepsis n=1		0	0				
Costa, USA, 2008	1710	1			0	0	AML at 53 months post HSCT			
Drabko, Poland 2005	6680	21				5% (n=1 day 35 from multiorgan failure secondary to infection)				
Hara , Japan 1998	17950	3				0 NR				
Harimaya, Japan, 2003	9850	2			0	0				
Kasper, Germany, 2006	2570	5			0	0				
Koscielniak Germany 2005	7860				0	0				
Kushner, USA, 2001	14240	1 HSCT pt died at 17 mos after HSCT with NED but pulmonary failure								
Lucas, USA 2008	2450	1			0	0				
Lucidarme, France, 1998	17610	3				0 (NR)				

Appendix Table C9. Adverse events: Treatment, Ewing's tumors

Study (Investigator, country, year)	Record Number	Group (N)	Severity or Grade Infection	%	% Engraftment Failure	% TRM	Severity or Grade Secondary Malignancies	F/U (mos) SM	% SM	Commen ts SM
Meyers, USA, 2001	13670		sepsis leading to death	4% n=1 pati ent fro m HS CT gro up (incl in TR M)		of HSCT group n=23 n=3 13%				
Navid, US and Canada, 2006	5930	9			0	0				
Numata, Japan, 2002	12130				0	0	CML chronic phase	50 months after HSCT		
Ozkaynak, USA 1998	18540	15			0 (one patient not assessable secondary to early toxic death)	n=2 ATN day 0 and septic shock day 8				
Pession, Italy, 1999	16120	3				0 NR				
Prete, Italy 1998	17210	17				0			ļ	
Tanaka, Japan, 2002	11770			0		0	CML		14 %	not clear if the 35 y/o pt or one of the 6 abstracte d pts
Diaz Spain 2010	2125	47	septic	n =						
Ilari, Italy, 2010	2230	24	sepsis	n = 4		0				

Appendix Table C9. Adverse events: Treatment, Ewing's tumors Continued

Study (Investigator, country, year)	Record Number	% Hepatic veno-occlusive disease (Hepatic Sinusoidal Obstruction)	Comments hVOD	Severity or Grade Serious Hemorrhagic Event	% SHE
Drabko, Poland 2005	6680	10%	moderate to		
	0000	10 70	severe		
Meyers, USA, 2001	13670			HSCT pt died from hemorrhagic pericarditis (included in TRM)	4%
Ladenstein, Austria, France, UK, Switzerland, Netherlands, Germany, Sweden	2270	n = 5	grade 3		
Diaz, Spain, 2010	2135				6%

Appendix Table C10. Adverse events: Comparator, Ewing's tumors

Study (Investigator, country, year)	Record Number	Group (N)	Severity or Grade Infection	%	Severity or Grade Secondary Malignancies	F/U (mos) SM	% SM
Bernstein, USA/Canada 2006	6290		death	5 of 110 (4.5%)	MDS	at 20 mos after dx	1/110 1%
Bhatia,USA, 2007	43210						cumulati ve incidenc e of t- MDS/A ML of 11% at 5 yrs from dx
Kushner, USA, 1995	21430	24			leukemia dead at 10.5 mos after HSCT in CR from ESFT		4
Meyers, USA, 2001	13670	9 nonHSC T		11% sepsis during induction CT			
Sari, Turkey, 2010	42790	36					0%

Study (Investigator, country, year)	Record Number	Indication	Disease	Therapeutic Setting	Group (N)	Participant Selection (Treatment Period)	Desig n	n, Evaluate d	n, Withdrawn (Lost to F/U)	Commen t
Kremens, Germany, 2002	11240	malignant NH	Wilms	1st remission n=4 1st relapse n=19	23	Apr 1992-Dec 1998	Case series	23	0	
Saarinen- Pihkala, Finland, 1998	17940	Malig NH	Wilms	1st CR	3		CS	3	0	
Spreafico, Italy, 2008	2380	malig NH	Wilms and one case of CCSK	relapsed, high risk (3 relapsed in prior RT field)	20	Jan 2001-June 2006	CS consec utive cases	20		20 patients enrolled; 5 did not receive tx (3 due to disease progressi on and 2 at discretion of M.D.).
Campbell, USA, 2004	8570	malig NH	Wilms	relapsed	13	1991-2001	CS	13	0	
Tucci, Brazil, 2007	3910	malig NH	Wilms	resistant, relapsed	1		CR	1	0	
Hempel, Germany, 1998	18100	malig NH	Wilms	relapse s/p 2nd lung metastasect omy	1		CR	1	0	
Termuhlen, USA, 2006	4890	malig NH	Wilms	CR1 n=1 CR2 n=1	2		CS	2	0	
Kullendorff, Sweden, 1997	19290	malig NH	Wilms	2nd relapse	4	1987-1992	cs	4	0	includes one patient with CCSK
Maurer, Austria, 1997	18670	malign NH	Wilms	relapsed during 1st line CT	1		CR	1	0	

Appendix Table C11.	. Design, partic	pant selection	and enrollment:	Wilm's tumor
	. Design, parae	ipunt selection		Thin 3 turnor

Study (Investigator, country, year)	Record Number	Indication	Disease	Therapeutic Setting	Group (N)	Participant Selection (Treatment Period)	Desig n	n, Evaluate d	n, Withdrawn (Lost to F/U)	Commen t
Pein, France, 1998	17570	malig NH	Wilms	recurrent, high risk 2nd CR n=16 3rd CR n=3 5th CR n=1 2nd PR n=4 3rd CR n=5	28	Oct 1988-Oct 1994	CS	28	1 4 mos after HSCT	
Valera, Brazil, 2004	8620	malig NH	Wilms	relapsed, 2nd CR	3		CS	3	0	
Goldman, USA, 2001	13330	malign NH	Wilms	relapsed (6 mos after dx)	1	1994-1998	CR	1	0	
Dagher, USA, 1998	17840	malign NH	Wilms	multiply recurrent	1		CR	1	0	
Hempel, Germany, 1996	20550	malig NH	Wilms	progressive disease, 1st, 2nd or subsequent relapse, metastatic dz	7	April 1992-May 1995	CS	7		1 pt was misdxd and had RMS and is not included in the analysis
Fazekas, Austria, 2008	2720	malig NH	Wilms	relapsed	1		CR	1	0	
Park, Korea, 2006	5450	malign NH	Wilms	recurrent	3	1994-2004	CS	3	0	
Abu-Ghosh 2002 USA	45610		Wilms		11	1992-1999 37 N Amer centers and 2 S Amer centers	CS	11	0	
Malogolowkin USA 2008	44950	malign NH	Wilms	relapsed, high risk	60	1995-2002	CS	60	0	
Lucas, USA, 2010	2295	NH solid tumor	Wilms	chemotx resistant/refr actory wilms	1		CR			
Brown, USA, 2010	2075	NH solid tumor	Wilms	3rd CR	1		CR	n=1	0	

Study (Investigator, country, year)	Record Number	Group (N)	Age (mean)	Age (median)	Age (Range)	Gender M, F (%)	Disease Stage/category	Disease Histology/Site (%)	Commen t
Campbell, USA, 2004	8570	13		at dx 4.8 years (1- 15 years)		31%,69	initial I n=2 II n=1 III n=5 IV n=5	FH n=12 UH n=1	
Dagher, USA, 1998	17840	1		7 years at HSCT		100 F	recurrent	right-sided tumor bed	pt had a left-sided wilms tumor, FH, stage II at age 9 mos and underwen t L nephrect omy and CT. At age 6, develope d a right kidney wilms tumor for which she underwen t R nephrect omy, CT and RT. At 7 yrs of age she had a right- sided recurrenc e and HSCT
Fazekas, Austria, 2008	2720	1	5 yrs at tx			100 M	"intermediate risk" not further defined		

Appendix Table C12. Participant characteristics: Treatment, Wilm's tumor

Study (Investigator, country, year)	Record Number	Group (N)	Age (mean)	Age (median)	Age (Range)	Gender M, F (%)	Disease Stage/category	Disease Histology/Site (%)	Commen t
Goldman, USA, 2001	13330	1		2 yrs at HSCT		100% M	111	relapse in lungs and abdomen	
Hempel, Germany, 1996	20550	7		at tx 7.3 yrs (3.8- 14.7 yrs)		86,14		UH n=1 FH n=6	
Hempel, Germany, 1998	18100	1	11 months			100,0	initial stage 2	"medium" malignancy	
Kremens, Germany, 2002	11240	23		at dx 74 months	11-210 months	52,48	I n=4 II n=4 III n=3 IV n=13 (note does not total 23)	n=14 Intermediate risk n=5 high-risk n=1 completely necrotic	
Kullendorff, Sweden, 1997	19290	4		at dx median 67 months (43-119 mos)		33,66	l n=2 III n=2	FH n=3 UH n=1 site or relapse lung n=2 and bone n=2	
Maurer, Austria, 1997	18670	1	at dx 8 yrs			100 F	IV with lung mets	UH	
Park, Korea, 2006	5450	3		2 yrs (2-3 yrs)		66,33	initial stage: II (n=3)	UH n=2 FH n=1 site of relapse lung n=2, abdomen n=1	
Pein, France, 1998	17570	29		6 yrs (2- 16 years)		41,59	at dx: I n=4 II LN + n=5 II LN- n=7 III n=5 IV n=6 V n=2	UH n=6 (3 anaplastic, 3 CCS) FH n=23	
Saarinen-Pihkala, Finland, 1998	17940	3		at dx 46 months (6-60)		66%, 33%	V (n=3) mets to lung n=1	FH n=2 "rhabdomyomatous" n=1	
Spreafico, Italy, 2008	2380	15		at dx 4.1 years (1.1-11.2)		30,70	Initial stage I n=1 II n=2 III n=8 IV n=8	UH n=1 CCSK n=1	

Study (Investigator,	Record	Group	Age	Age	Age	Gender M,	Disease	Disease	Commen
country, year)	Number	(N)	(mean)	(median)	(Range)	⊢(%)	Stage/category	Histology/Site (%)	t
Termuhlen, USA, 2006	4890	2		40.5 mos (21-60 mos)		100 F	V n=2	FH n=2	
Tucci, Brazil, 2007	3910	1							
Valera, Brazil, 2004	8620	3		at dx 7 yrs (3-9 yrs)		66,33	II n=1 III n =1 IV n=1	FH n=1 not reported n=2	
Brown, USA, 2010	2075	1	at initial diagnosi s 4 yrs at 3rd CR (HSCT) 17 yrs old			male 100%	at initial diagnosis stage 1 at 3rd CR (prior to HSCT) pulmonary and mediastinal involvement only		
Lucas, USA, 2010	2295	1	at diagnosi s 12 months age at HSCT 24 months			male 100%	Wilms- left kidney plus right lung nodules	favorable histology	

Study (Investigator, country, year)	Record Number	Group (N)	Age (mean)	Age (median)	Gender M, F (%)	Disease Stage/category	Disease Histology/Site (%)	Comment
Abu-Ghosh 2002 USA	45610	11		at dx 39 months (13-192 mos)		relapsed/recurrent, high-risk stage at initial dx: I 18% II 9% III 36% IV 27% V 9%	FH 82%, UH 18% site of relapse lung 36%, pleura 9%, kidney 18%, kidney and lung 18% and liver 9%	
Malogolowkin USA 2008	44950	60	at dx 0-23 mos n=4 24-47 mos n=21 48+ n=35		47,53	initial stage II n=1 III n=39 IV n=20	FH n=56 focal anapl n=3 diffuse anapl n=1 site of relapse lung only n=33 operative bed +/- lung +/- other n=7 liver +/- other n=6 abd or pelvis +/- lung n=6 lung and other n=6 other n=2	
Park, Korea, 2006	5450	7 (2 lost to f/u)		2 yrs (1- 11yrs)	71,29	initial stage: I n=1 II n=3 III n=1 IV n=2 relapsed, high risk	FH n=7 relapse lung n=3, abd n=2, lung and abd n=1, abd, lung and bone marrow n=1	Although 13 pts in this study did not undergo HSCT, only 9 were high risk relapse, 2 were lost to f/u so only 7 abstracted.
Tucci, Brazil, 2007	3910	10		2 years		relapsed		Recurred in a mean time of 13.4 +/- 10 months (range 2-36). One of 10 of the relapsed pts had favorable px factors.

Appendix Table C13. Participant characteristics: Comparator, Wilm's tumor

Study (Investigator, country, year)	Record Number	Grou p (N)	Stem Cell Source	Type of HSCT	Prior Treatme nt	Conditionin g Regimen	Supporti ve Care	Comparative Treatment	Comparative Treatment Dose/Regimen	Comment
Abu-Ghosh 2002 USA	45610	11							ICE	
Campbell, USA, 2004	8570	13	РВ	auto	nephrect omy n=13 reinducti on CT n=12	T/CPM n=6 T/CPM/C n=2 T/E n=1 C/CPM/Mel n=4				
Dagher, USA, 1998	17840	1	РВ	auto	bilateral nephrect omy, CT and RT	E/C/CPM				
Fazekas, Austria, 2008	2720	1		auto						
Goldman, USA, 2001	13330	1	PB	auto	nephrect omy Flank RT	VP- 16/T/cytoxan				
Hempel, Germany, 1996	20550	7	РВ	auto		MEC				
Hempel, Germany, 1998	18100	1	ВМ	auto	Nephrect omy lung metastas ectomy x 2 RT to lung	C/M/E				
Kremens, Germany, 2002	11240	23	РВ	autolog ous		MEC n=19 M x2 n=1 E, thio and cyc n=1 mel and ifos n=2	hydration , TPN, prophyla ctic Abx, irradiated blood products			6 patients received RT after HSCT (2 lung consolidation ; 4 to palliate recurrence after HSCT
Kullendorff, Sweden, 1997	19290	4	BM n=2 PB and BM n=2	auto		mel/VP-16/C				

Appendix Table C14. Treatment characteristics: Wilm's tumor

Study (Investigator, country, year)	Record Number	Grou p (N)	Stem Cell Source	Type of HSCT	Prior Treatme nt	Conditionin g Regimen	Supporti ve Care	Comparative Treatment	Comparative Treatment Dose/Regimen	Comment
Malogolowkin USA 2008	44950	60						prior nephrectomy, Radiation, CT	CPM, E, C	
Maurer, Austria, 1997	18670	1	PB and BM	sequent ial double auto	nephrect omy RT to lung mets and surgical removal of lung mets	1st: modified MEC 2nd: EC				
Meyers, USA, 2001	13670	23	РВ	auto	local control RT to primary tumor and mets	TBI MEL E	filgrastim			
Park, Korea, 2006	5450	3	РВ	auto	nephrect omy; prior first-line CT RT after relapse n=1	MEC	TPN	CT RT if stage III or IV or UH (n=3)	In the early group (treated 1983-1993) doxorubicin was added in cases where patient had initially received 2 drugs. In the late group (treated 1983-1993) pts received combinations of CPM/E and C/E.	Groups of pts were divided into two groups (early and late) according to date of relapse.
Pein, France, 1998	17570	29	BM n=28 PB n=1	auto		MEC	"standar d"			
Saarinen-Pihkala, Finland, 1998	17940	3	ВМ	auto	bilateral nephron- sparing nephrect omy	MEL				

Study (Investigator, country, year)	Record Number	Grou p (N)	Stem Cell Source	Type of HSCT	Prior Treatme nt	Conditionin g Regimen	Supporti ve Care	Comparative Treatment	Comparative Treatment Dose/Regimen	Comment
Spreafico, Italy, 2008	2380	14	РВ	auto	nephrect omy n=14	MEC n=7 M/T n=2 E/T/CPM n=2 HD-ICE n=1 HD-ICE, M/CPM n=1 MC n=1 E/T/CPM		СТ	ICE	M=melphalan T=thiotepa CPM=cyclop hosphamide E=etoposide C=carboplati n
Termuhlen, USA, 2006	4890	2	PB n=1 PB and BM n=1	auto	nephron- sparing nephrect omy n=2 RT to 1 kidney n=1	Mel/T/vincris tine	dopamin e, anti HTN Rx, hydration			
Tucci, Brazil, 2007	3910	1	РВ	auto	nephrect omy; lung lesions resected ; RT to lung and liver	E,Mel,C		multiagent salvage CT, abdominal RT (n=6), and lung RT (n=3)	cisplatin, C, CPM, E, ifo	
Valera, Brazil, 2004	8620	3	BM	auto	nephrect omy	C/E/M C/E/pulm RT C/E/Ifos				
Brown, USA, 2010	2075	1		auto	nephrect omy chemoth erapy at diagnosi s at 1st relapse, lung RT and chemo	carboplatin, etoposide, melphalan				

Study (Investigator, country, year)	Record Number	Grou p (N)	Stem Cell Source	Type of HSCT	Prior Treatme nt	Conditionin g Regimen	Supporti ve Care	Comparative Treatment	Comparative Treatment Dose/Regimen	Comment
Lucas, USA, 2010	2295	1	allogenei c (unrelate d matched cord blood)		left nephrect omy, chemoth erapy	busulfan, melphalan, thymoglobuli n				
Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	Secondary Outcomes	F/U Frequency/Duration					
-------------------------------------	---------------	-----------	------------------	--------------------	------------------------					
Campbell, USA, 2004	8570	13	EFS, OS		median 30 mos (7-120)					
Dagher, USA, 1998	17840	1	OS	DFS						
Fazekas, Austria, 2008	2720	1	OS							
Goldman, USA, 2001	13330	1	OS							
Hempel, Germany, 1996	20550	7	DFS, OS							
Hempel, Germany, 1998	18100	1	DFS							
Kremens, Germany, 2002	11240	23	OS, EFS		58 mos (37-116)					
Kullendorff, Sweden, 1997	19290	4	OS							
Maurer, Austria, 1997	18670	1	OS							
Park, Korea, 2006	5450	3	OS, EFS							
Pein, France, 1998	17570	28	DFS, OS		37 mos (7-96 mos)					
Saarinen-Pihkala, Finland, 1998	17940	3	DFS							
Spreafico, Italy, 2008	2380	14	DFS, OS							
Termuhlen, USA, 2006	4890	2	OS							
Tucci, Brazil, 2007	3910	1	DFS, OS							
Valera, Brazil, 2004	8620	3	DFS							
Brown, USA, 2010	2075	1	DFS		15 mos					
Lucas, USA, 2010	2295	1	EFS		2.5 years					

Appendix Table C15. Outcome assessment: Treatment, Wilm's tumor

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	F/U Frequency/Duration
Abu-Ghosh 2002 USA	45610	11	PFS OS	median f/u 4.3 yrs
Malogolowkin USA 2008	44950	60	EFS OS	
Park, Korea, 2006	5450	7	EFS OS	
Tucci, Brazil, 2007	3910	10	DFS OS	

Appendix Table C16. Outcome assessment: Comparator, Wilm's tumor

Study (Investigator, country, year)	Record Number	Grou p (N)	Outc ome	Med (mos)	3 yr	4 yr	HR (95%) Cl	Outco me_2	Med (mos)_2	1 yr_ 2	2 yr_ 2	3 yr_ 2	4 yr TRM	HR (95% CI)_2	Outco me_3
Campbell, USA, 2004	8570	13				73 %	.40- 6.86	EFS					60%	.40-6.88	
Dagher, USA, 1998	17840	1	1.8 years					DFS	.5 years						
Fazekas, Austria, 2008	2720	1	A NED at 12 mos												
Goldman, USA, 2001	13330	1	A NED at 16+ mos												
Hempel, Germany, 1996	20550	7	n=6 A NED at n 2.1 yrs (0.5- 3.7 yrs) n=1 DOD 19 mos					DFS	n=1 8 mos n=6 A NED at median 2.1 yrs (0.5-3.7 yrs)						
Hempel, Germany, 1998	18100	1	DFS A NED at 32 mos post HSCT												

Appendix Table C17. Time to event outcomes: Treatment, Wilm's tumor

Study (Investigator, country, year)	Record Number	Grou p (N)	Outc ome	Med (mos)	3 yr	4 yr	HR (95%) CI	Outco me_2	Med (mos)_2	1 yr_ 2	2 yr_ 2	3 yr_ 2	4 yr TRM	HR (95% Cl)_2	Outco me_3
Kremens, Germany, 2002	11240	23	60.9 % (+/- 10.2 %)					EFS 48.2% (+/- 13.6)							OS and EFS in subgrou p that receive d MEC consolid ation (n=19) OS 63.2 % (+/- 11.0%) EFS 54.1% (+/- 14.9%)
Kullendorff, Sweden, 1997	19290	4	2 A & W at 17 and 28 mos 2 DOD 33 and 7 mos after HSCT												
Malogolowkin USA 2008	44950	60				42. 3		EFS					48		
Maurer, Austria, 1997	18670	1	A & W at 4 years in CR2 yrs												
Meyers, USA, 2001	13670	23						EFS		~40 %	24 %				

Study (Investigator, country, year)	Record Number	Grou p (N)	Outc ome	Med (mos)	3 yr	4 yr	HR (95%) CI	Outco me_2	Med (mos)_2	1 yr_ 2	2 yr_ 2	3 yr_ 2	4 yr TRM	HR (95% CI)_2	Outco me_3
Park, Korea, 2006	5450	3	media n 53+ mont hs (31+- 76+)					EFS	median 53 months (31-76 mos)						
Pein, France, 1998	17570	28			60 % +/- 18 %			DFS				50 % +/- 17			
Saarinen-Pihkala, Finland, 1998	17940	3	DFS	media n 51 month s (40- 53 month s)											
Spreafico, Italy, 2008	2380	20	media n f/u 25 mont hs (14- 79)		55 % +/- 13 %			DFS	25 mos (14-79)			56 % +/- 12 %			
Termuhlen, USA, 2006	4890	2	A NED 7 year after HSCT n=1 DOD 6 y 2 m after HSCT n=1		10 0%	10 0%									

Study (Investigator, country, year)	Record Number	Grou p (N)	Outc ome	Med (mos)	3 yr	4 yr	HR (95%) CI	Outco me_2	Med (mos)_2	1 yr_ 2	2 yr_ 2	3 yr_ 2	4 yr TRM	HR (95% CI)_2	Outco me_3
Tucci, Brazil, 2007	3910	1	A WED 84 mos from relaps e					DFS A WED 84 mos from relapse							
Valera, Brazil, 2004	8620	3						A & W at 12 mos and 48 mos one patient relapse d after HSCT then underw ent CT and is in 3rd CR for 22 mos							

Study (Investigator, country,	Record	Group	Outcom	1 yr	2 yr	3 yr	4 yr	5 yr	Outcome_	Med	3	5
Abu-Ghosh 2002 USA	45610	11	e	~73 %	63.6 +/- 14.5 %	63.6 +/- 14.5 %	63.6 +/- 14.5 %	63.6 +/- 14.5 %	PFS	(1105)_2	63.6 +/- 14.5 %	yı_2
Malogolowkin USA 2008	44950											
Park, Korea, 2006	5450	7	DOD n=5 median 15 mos (2-30 mos) A NED n=1 20+ mos A with D n=1 130+ mos						EFS	median 8 months (2- 20 mos)		
Tucci, Brazil, 2007	3910	10				83.3 %		42.8 %	DFS		66.6 %	42.8 %

Appendix Table C18. Time to event outcomes: Comparator, Wilm's tumor

Study (Investigator, country, year)	Record Number	Group (N)	Severity or Grade Infection	%	% Engraftment Failure	% TRM	Comment TRM	Severity or Grade Serious Hemorrhagic Event	% SHE
Campbell, USA, 2004	8570	13			0%	0%			
Dagher, USA, 1998	17840	1				0			
Fazekas, Austria, 2008	2720	1				0			
Goldman, USA, 2001	13330	1				0			
Hempel, Germany, 1996	20550	7				0			
Hempel, Germany, 1998	18100	1			0%	0%			
Kremens, Germany, 2002	11240	23				0%			
Kullendorff, Sweden, 1997	19290	4				0			
Maurer, Austria, 1997	18670	1 long term renal tubular dysfunc tion				0			
Meyers, USA, 2001	13670	23	sepsis (died)	4 %		13%	one for unreported reasons	hemorrhagic pericarditis after RT (died)	4

Appendix Table C19. Adverse events: Treatment, Wilm's tumor

Study (Investigator, country, year)	Record Number	Group (N)	Severity or Grade Infection	%	% Engraftment Failure	% TRM	Comment TRM	Severity or Grade Serious Hemorrhagic Event	% SHE
Park, Korea, 2006	5450	3				0		¥	
Pein, France, 1998	17570	29				0			
Saarinen-Pihkala, Finland, 1998	17940	3			0%	0%			
Spreafico, Italy, 2008	2380		died of sepsis 4 months after tx in CR n=1	7 %					
Termuhlen, USA, 2006	4890	2			0	0			
Tucci, Brazil, 2007	3910				0%	0%			
Valera, Brazil, 2004	8620	3				0			

Appendix Table C20. Adverse events: Comparator, Wilm's tumor

Study (Investigator, country, year)	Record Number	Group (N)	Severity or Grade Infection	%	Comment	TR M	% TRM	Severity or Grade Secondary Malignancy
Abu-Ghosh 2002 USA	45610		septic shock	27	reversible	TR M	0	
Malogolowkin USA 2008	44950	60	one patient died of infl B virus and aspergillus infec during maintenance chemo	2%		TR M		MDS n=1 2%

Study (Investigator, country, year)	Recor d Numb er	Indication	Disease	Therapeuti c Setting	Group (N)	Participant Selection (Treatment Period)	Design	n, Evaluat ed	n, Withdra wn (Lost to F/U)	Comment
Bisogno, Italy, 2009	75340	Malignant solid tumor	Rhabdomyo sarcoma	Metastatic RMS	HSCT (70)	1999-2006	prospe ctive single arm	70	0	
Breneman, USA, 2003	75360	Malignant Solid Tumor	Rhabdomyo sarcoma	Metastatic RMS	Compara tor (127)	1991-1997	Case series	127		
Carli, Italy, 1999	16010	Malignant Solid Tumor	Rhabdomyo sarcoma	Metastatic RMS	HSCT (52) Compara tor (44)	1989-	single arm study	96		52 transplanted and 44 failed to meet transplant requirements and served as comparators.
Doelken, Germany, 2005	6570	Malignant Solid Tumor	Rhabdomyo sarcoma	Relapsed	HSCT (2)		Case reports	2	0	
Donker, Netherlands, 2009	1420	Malignant Solid tumor	Alveolar Rhabdomyo sarcoma	Stage IV RMS	HSCT (1)		case study	1	0	Allo transplant
Grundy, UK, 2001	14200	Malignant solid Tumor	Rhabdomyo sarcoma congenital	Congenital RMS	HSCT (1)		case report	1		This report also details three other children who died by 3 months of age. The paper also details all other known cases (7). In these cases all patients died
Hara, Japan, 1998	17950	malignant Solid tumor	rhabdomyo sarcoma	Stage III or IV or relapsed RMS	HSCT (7)	1993-1997	Case series	7	0	abstracted from a study of multiple solid tumors

Appendix Table C21. Design, participant selection and enrollment: Rhabdomyosarcoma

Study (Investigator, country, year)	Recor d Numb er	Indication	Disease	Therapeuti c Setting	Group (N)	Participant Selection (Treatment Period)	Design	n, Evaluat ed	n, Withdra wn (Lost to F/U)	Comment
Koscielniak, Germany, 1997	19800	Malignant Solid Tumor	Rhabdomyo sarcoma	Metastatic and recurrent	HSCT (36)	1986-1994	retrosp ective case series	36	0	This paper contains both Allo and Auto transplants. The data are reported together as they cannot be separated.
Kuroiwa, Japan, 2009	390	Malignant Solid Tumor	Rhabdomyo sarcoma	RMS with Beckwith- Weide- mann	HSCT (1)		case report	1	0	
Kwan, Hong Kong, 1996	20800	Malignant Solid Tumor	Rhabdomyo sarcoma	Metastatic RMS	HSCT (1)		Case Report	1	0	
Lucidarme, France, 1998	17610	Malignant Solid Tumor	Rhabdomyo sarcoma	Refractory or relapsed RMS	HSCT (8)	1987-1995	single arm phase II	HSCT (8)	0	
Matsubara, Japan, 2003	10810	Malignant Solid Tumor	Rhabdomyo sarcoma	High-risk RMS	HSCT (22)	1990-1999	Case series	22	0	There is one patient who is 22 years old. He is included in these results. His survival is similar when compared to a 16 and a 20 year old with a similar site of relapse and status at transplant

Study (Investigator, country, year)	Recor d Numb er	Indication	Disease	Therapeuti c Setting	Group (N)	Participant Selection (Treatment Period)	Design	n, Evaluat ed	n, Withdra wn (Lost to F/U)	Comment
McDowell, UK, 2010	75350	Malignant Solid Tumor	Rhabdomyo sarcoma	Metastatic RMS	HSCT (101) Compara tor (45)	1998-2005	Two single arms	HSCT (101) Compar ator (45)		This is not a comparative study but two single arms within the same study
Misawa, Japan, 2003	11040	Malignant Solid Tumor	Alveolar RMS	Refractory RMS	HSCT (1)	1997	Case Study	1	0	Allogeneic transplant
Moritake, Japan, 1998	18280	Malignant Solid Tumor	Rhabdomyo sarcoma	relapsed	HSCT (1)	1994	Case report	1	0	
Navid, USA, 2006	5930	Malignant Solid tumor	Rhabdomyo sarcoma	Metastatic RMS	HSCT (8)	1996-2000	case series	8	1 LFU at 78 months post transpla nt 2 people were removed from the protocol (one due to fungal infection , one due to delayed hem. recovery) 1 patient was non- complia nt	only two were transplanted as they achieved CR, one other achieved CR but was the LFU

Study (Investigator, country, year)	Recor d Numb er	Indication	Disease	Therapeuti c Setting	Group (N)	Participant Selection (Treatment Period)	Design	n, Evaluat ed	n, Withdra wn (Lost to F/U)	Comment
Oue, Japan, 2003	10950	Malignant solid Tumor	Rhabdomyo sarcoma	Metastatic RMS	HSCT (1)	1991-2001	case series	1	one patient died prior to surgery due to progress ive disease	
Pappo, USA, 1999	48020	Malignant Solid Tumor	Rhabdomyo sarcoma	relapsed RMS	Compara tor (605)	1984-1997	retrosp ective analysi s of three single arm studies	605	0	
Pappo, USA, 2001	47860	Malignant Solid Tumor	Rhabdomyo sarcoma	Metastatic RMS	Compara tor (48)	1994-1996	Case series	48		
Raney, USA, 2008	2440	Malignant Solid Tumor	Rhabdomyo sarcoma	Metastatic RMS	Compara tor (91)	1978-1997	case series	91		
Sandler, USA, 2001	12810	Malignant Solid Tumor	Rhabdomyo sarcoma	Metastatic RMS	Compara tor (152)	1988-1991	Case series	152		
Sato, Japan, 1998	48070	Malignant Solid Tumor	Rhabdomyo sarcoma	Stage III or IV RMS	HSCT (5)	1993-1998	case series	HSCT (5)	HSCT (5)	only abstracted treatment arm as comparator treatment was not specified for two historical controls
Scully, USA, 2000	14580	Malignant Solid Tumor	Rhabdomyo sarcoma	Recurrent RMS	HSCT (1)		Case report	1	0	
Shaw, Israel, 1996	20050	Malignant solid Tumor	Rhabdomyo sarcoma	Stage IV RMS	HSCT (9)		prospe ctive case series	9	0	this was a study with mixed solid tumors

Study (Investigator, country, year)	Recor d Numb er	Indication	Disease	Therapeuti c Setting	Group (N)	Participant Selection (Treatment Period)	Design	n, Evaluat ed	n, Withdra wn (Lost to F/U)	Comment
Van Winkle, USA, 2005	43550	Malignant Solid tumor	Rhabdomyo sarcoma	Recurrent/r efractory RMS	Compara tor(27)	1992-1996	Case series	27	0	these patients were enrolled in three treatment protocols but will be reported together
Walterhouse, USA, 1999	17240	Malignant Solid Tumor	Rhabdomyo sarcoma	Metastatic RMS	HSCT (8)	1992-1994	case series	8	0	
Williams, Canada, 2004	9010	Malignant Solid Tumor	Rhabdomyo sarcoma	Metastatic	13 (compar ator) 4 (HSCT)	1989-1999	retrosp ective review	13 (compa rator) 4 (HSCT)	0	

Study (Investigator, country, year)	Record Number	Group (N)	Age (mean)	Age (median)	Age (Range)	Race (%)	Gender M, F (%)	Disease Stage/category	Disease Histology/Site (%)	Comm ent
Bisogno, Italy, 2009	75340	HSCT (70)			<1 year (1) <10 years (38) >=10 (32)		47% Male 53% Female	metastatic most common primary sites include head and neck, limbs and abdomen/pelvis	63% Alveolar RMS 36% Embryonal 1% not otherwise spec	
Carli, Italy, 1999	16010	HSCT (52)		31 pts. < 10 21 Pts. > 10				metastatic	Alveolar (44%) Embryonal/NOS (56%) Primary site Extremity, parameningeal, other (75%), Genitourinary tract and Head and Neck (25%)	
Doelken, Germany, 2005	6570	HSCT (2)	Pt 1- 11.5 Pt 2-13				2 males	Pt 1-Stage IV with mets to lung, pancreas and marrow Pt2-initial stage T1b N0M0, metastatic disease at transplant	Both Alvelolar RMS with various metastatic sites at transplant	
Donker, Netherlands, 2009	1420	HSCT (1)	8 years			White	Female	Stage IV RMS	extensive local, abdominal and thoracic lymph node metastases, no BM invasion.	

Appendix Table C22. Participant characteristics: Treatment, rhabdomyosarcoma

Study (Investigator, country, year)	Record Number	Group (N)	Age (mean)	Age (median)	Age (Range)	Race (%)	Gender M, F (%)	Disease Stage/category	Disease Histology/Site (%)	Comm ent
Grundy, UK, 2001	14200	HSCT (1)	diagnos ed at birth				Male		congenital alveolar RMS/right thigh and multiple skin nodules	
Hara, Japan, 1998	17950	HSCT (7)	6.8 at diagnosi s	3	1-18 years			stage III (2), stage IV (3), relapsed (2)	43% Alveolar 57% Embryonal	
Koscielniak, Germany, 1997	19800	HSCT (36)		6 at diagnosis	(<1-22)				RMS alveolar (61%) RMS embryonal (36%) Undifferentiated (3%)	Patient popula tion contai ns at least one patient over the age of 21. 27 patient s had metast atic diseas e and 9 had relaps ed diseas e.
Kuroiwa, Japan, 2009	390	HSCT (1)		<1 at transplan t					Alveolar RMS/primary skin lesions	
Kwan, Hong Kong, 1996	20800	HSCT (1)	14 years				Female	Stage IV/ Group IV	Alveolar RMS/primary site left thenar region/metastatic to the breast	

Study (Investigator, country, year)	Record Number	Group (N)	Age (mean)	Age (median)	Age (Range)	Race (%)	Gender M, F (%)	Disease Stage/category	Disease Histology/Site (%)	Comm ent
Lucidarme, France, 1998	17610				2-17 for whole study			5/8 had metastatic disease at transplant		
Matsubara, Japan, 2003	10810	HSCT (22)		8.5 at transplan t	2-22 years		14 males (64%) 8 Females (36%)	group III (14) or IV at transplant (8)	Alveolar 7 (32%) and Embryonal 15 (68%) varied primary sites parameningeal was the most common (7)	
Matsubara, Japan, 2005	7580	HSCT (5)	17.6 months at diagnosi s	16 months at diagnosis	3-41		20% Male, 80% Female		distant metastasis	
McDowell, UK, 2010	75350	HSCT (101)		HR' 10.6' SR' 4.28	HR' 1.7-17.5' SR' 0.52- 9.93		HR' 56% Male SR' 60% Male	Metastatic	21% Embryonal, 64% Alveolar, 8% unspecified, 6% unknown primary sites include 28% Orbit,	
Misawa, Japan, 2003	11040	HSCT (1)	17 at present ation				Female	Stage I, Clinical Group III undifferentiated RMS	Alveolar RMS	
Moritake, Japan, 1998	18280	HSCT (1)	10 at diagnosi s				male	metastatic to BM	Unspecified subtype/ primary nasal tumor	
Navid, USA, 2006	5930	HSCT (8)	15.5	13.1	(1.6- 18.7)		38% Male 62% Female	metastatic/	Alveolar RMS/various primary sites	

Study (Investigator, country, year)	Record Number	Group (N)	Age (mean)	Age (median)	Age (Range)	Race (%)	Gender M, F (%)	Disease Stage/category	Disease Histology/Site (%)	Comm ent
Oue, Japan, 2003	10950	HSCT (1)	4.6 years				female	metastatic	primary site Lt. buttock metastatic to the Lt. femur	
Sato, Japan, 1998	48070	HSCT (5)	5.34 at diagnosi s	7	.7-10 years		60% Male 40% female	Stage III RMS	60% Embryonal, 40% undifferentiated retroperitoneum (2), parameningeal (1), Femur (1), Orbit (1)	
Scully, USA, 2000	14580	HSCT (1)	~ 5 at transpla nt				Female	local recurrence	Local recurrence of embryonal RMS/upper arm primary site	
Shaw, Israel, 1996	20050	HSCT (9)	8.5 years		4-15			Stage IV various primary sites		
Taguchi, Japan, 2005	7430	HSCT (1)	4				М	metastatic	maxilla and mandible	
Walterhouse, USA, 1999	17240	HSCT (8)	14	12.5	3-17 years		63% Female 37% Male	Stage IV/group 4 RMS various primary sites	63% Alveolar, 25% Embryonal, 12% unknown various metastatic sites	
Williams, Canada, 2004	9010	HSCT (4)			TX. < 10 ' Comp 7<10' 6>10		TX' 75% Female 25% Male' Comp' 54% Male' 47% Female	Stage IV mets to lung	Embryonal RMS/ primary head and neck, parameningeal, bladder/prostate	

Study (Investigator,	Record	Group	Age	Age	Age	Race	Gender M,	Disease	Disease	Com
country, year)	Number	(N)	(mean)	(median)	(Range)	(%)	F (%)	Stage/category	Histology/Site (%)	ment
Breneman, USA, 2003	75360	Comparat or (127)		7	0-19		56% male 44% Female	Stage IV/Category IV	36% embryonal, 46% alveolar, 3% undiff most common primary sites extremity (28%), parameningeal (20%) and Trunk (20%) Lung was the most common metastatic site, followed by bone marrow, and lymph nodes	
Carli, Italy, 1999	16010	Comparat or (44)			3 Pts. <1, 27 Pts. <10, 14 Pts >=10				Alveolar (30%) Embryonal/NOS (70%) Primary site Extremity, parameningeal, other (80%), Genitourinary tract and Head and Neck (20%)	
McDowell, UK, 2010	75350	Comparat or (45)		4.28	0.52- 9.93		60% Male 40% Female	No bone or bone marrow mets parameningeal (22%) and pelvis (31%) most common primary sites	57% Embryonal 33% alveolar 9% unspecified or unknown 71% had mets to the lung	This is the standa rd risk group in this two arm risk stratifi ed study.

Appendix Table C23. Participant characteristics: Comparator, rhabdomyosarcoma

Study (Investigator,	Record	Group	Age	Age	Age	Race	Gender M,	Disease	Disease	Com
country, year)	Number	(N)	(mean)	(median)	(Range)	(%)	F (%)	Stage/category	Histology/Site (%)	ment
Pappo, USA, 1999	48020	Comparat or (605)	8 years at diagnos is		0-20	73% White	57 % Male 43% Female	stage I 17%, stage II 8%, Stage II 36%, Stage IV 36%, unknown 3% 9% clinical group I, 9% clinical group II, 45% clinical group III, 37% clinical group IV	botryoid (3%), embryonal (53%), alveolar or undiffer (45%) most common primary tumor sites extremities (26%) Parameningeal (19%) and retroperitoneum (13%)	
Pappo, USA, 2001	47860	Comparat or (48)		10 at diagnosi s	0-19	70% White , 15% Black, 15% Other	52% Male, 48% Female	Metastatic	29% Embryonal, 48% alveolar, 4% Undifferentiated, 19% Unspecified Primary sites 43% retroperitoneum/peri neum/trunk, 23% extremities, 15% GU/bladder/prostate, 19% other	
Sandler, USA, 2001	12810	Comparat or (152)		8.5	(0-19)		58% Male, 42% Female	metastatic	48% Embryonal, 37% alveolar, 15% Other primary sites include 31% extremity, 18% HN (including orbit and parameningeal), 18% retroperitoneum, 34% other	
Van Winkle, USA, 2005	43550	Comparat or(27)	11.3		2.1-20.5		48% Female 52% Male	at recurrence 4% stage I, 0 stage II, 11% stage III, 63% Stage IV, 22% Unknown	37% alveolar 41% Embryonal 11% Undifferentiated 11% unknown	

Study (Investigator,	Record	Group	Age	Age	Age	Race	Gender M,	Disease	Disease	Com
country, year)	Number	(N)	(mean)	(median)	(Range)	(%)	F (%)	Stage/category	Histology/Site (%)	ment
Williams, Canada, 2004	9010	Comparat or (13)			7 patients <10 6 patients >10		54% Male 47% Female	Stage IV mets to all sites	9 patients Alveolar, 3 embryonal,1 mixed- primary site Trunk(6), bladder/prostate (2), extremity (4) Genitourinary (1)	

Study (Investigator, country, year)	Record Numbe r	Group (N)	Stem Cell Source	Type of HSCT	Prior Treatment	Condi tion- ing Regi men	Immunosu ppressive therapy for GVHD prophylaxi S	Supporti ve Care	Comparati ve Treatment	Comparative Treatment Dose/Regimen	Comment
Bisogno, Italy, 2009	75340	HSCT (70)	PBSC	Auto	surgery + chemo including ifosfamide, vincristine, actinomycin, CY, carboplatin, vincristine, etoposide	thiote pa, melph alan, CY					those with at least a partial response moved onto HD with stem cell support. Patients received three rounds of HDC and stem cell infusion.
Breneman, USA, 2003	75360	Comp arator (127)							Chemo +/- RT	melphalan- vincristine + vincristine, dactinomycin and CY (VAC) or VAC + ifosfamide + etoposide	
Carli, Italy, 1999	16010	HSCT (52) Comp arator (44)	PBSC or BM	Auto	epirubicin, carboplatin, vincristin, actinomycin, ifosfamide, etoposide	Melph alan				epirubicin, carboplatin, vincristin, actinomycin, ifosfamide, etoposide	

Appendix Table C24. Treatment characteristics: Rhabdomyosarcoma

Study (Investigator, country, year)	Record Numbe r	Group (N)	Stem Cell Source	Type of HSCT	Prior Treatment	Condi tion- ing Regi men	Immunosu ppressive therapy for GVHD prophylaxi s	Supporti ve Care	Comparati ve Treatment	Comparative Treatment Dose/Regimen	Comment
Doelken, Germany, 2005	6570	HSCT (2)	Pt1- PBSC from HLA- identica I sibling Pt 2 PBSC from HLA- identica I fraterna I twin	Pt1- Alloge neic Pt 2- Auto then Allo	pt1-CWS-96 Arm B protocol including ifosfamide, vincristine, carboplatin, epirubicin and actinomycin D, etoposide and RT Pt2- CWS-91 protocol chemo+ RT, relapsed +2 years, Auto transplant after HD w/ thiotepa and CY, resection and RT lung mets	Pt1- TBI, etopo side, CY Pt2- immu nosup pressi on with treosu lfane and fludar abine W/O HD chem o (for Allo)	Pt 1- cyclosporin A and MTX and prednisolon e and CellCept after AGVHD developed				
Donker, Netherlands, 2009	1420	HSCT (1)	Bone Marrow	Alloge neic	SIOP MMT-98 protocol; including vincristine, dactinomycin, ifosfamide, carboplatin, epirubicin, etoposide and CY.	etopo side, CY and TBI	CsA was given				

Study (Investigator, country, year)	Record Numbe r	Group (N)	Stem Cell Source	Type of HSCT	Prior Treatment	Condi tion- ing Regi men	Immunosu ppressive therapy for GVHD prophylaxi s	Supporti ve Care	Comparati ve Treatment	Comparative Treatment Dose/Regimen	Comment
Grundy, UK, 2001	14200	HSCT (1)			chemo including vincristine, actinomycin D, CY, doxorubicin, etoposide + amputation of the right leg	melph alan					transplant was followed by more chemo
Hara, Japan, 1998	17950	HSCT (7)	PBSC or BM	Auto	Chemo containing cisplatin, CY, vincristine. Ifosfamide, dactinomycin, etoposide, carboplatin and pirarubicin were administered in some patients +/- surgery and LRT	Thiote pa, melph alan and busulf an		laminar air flow, total parentera I nutrition and antibiotic s, G-CSF			6 patients were transplanted in CR one was not in CR

Study (Investigator, country, year)	Record Numbe r	Group (N)	Stem Cell Source	Type of HSCT	Prior Treatment	Condi tion- ing Regi men	Immunosu ppressive therapy for GVHD prophylaxi S	Supporti ve Care	Comparati ve Treatment	Comparative Treatment Dose/Regimen	Comment
Koscielniak, Germany, 1997	19800	HSCT (36)	BM -26 patients PBSC- 5 patients Allogen eic - 5 patients	Auto- 31 Allo-5	CWS-81, CWS-86, CWS-91, (23 patients), MMT stage IV (12) CWS relapse (1), treatment included vincristine, dactinomycin, CY, doxorubicin, ifosfamide, VP16, carboplatin, epiadriamycin	melph alan, VP16, carbo platin +/- RT		14 received G-CSF or GM-CSF support			
Kuroiwa, Japan, 2009	390	HSCT (1)		Auto	Chemo including vincristine, actinomycin D, CY	ifosfa mide- cispla tin- etopo side					
Kwan, Hong Kong, 1996	20800	HSCT (1)	PBSC	Auto	adriamycin and CY + Surgery and post-operative radiation	Vincri stine, ifosfa mide, actino mycin D HDC with carbo platin, etopo side, melph alan					transplanted in CR

Study (Investigator, country, year)	Record Numbe r	Group (N)	Stem Cell Source	Type of HSCT	Prior Treatment	Condi tion- ing Regi men	Immunosu ppressive therapy for GVHD prophylaxi s	Supporti ve Care	Comparati ve Treatment	Comparative Treatment Dose/Regimen	Comment
Lucidarme, France, 1998	17610	HSCT (8)	PBSC or BM	Auto	chemo including CY or ifosfamide +/- surgery +/- RT	Thiote pa		laminar air-flow, right atrial catheters , parentera l nutrition, broad spectrum anti- biotics, blood products			

Study (Investigator, country, year)	Record Numbe r	Group (N)	Stem Cell Source	Type of HSCT	Prior Treatment	Condi tion- ing Regi men	Immunosu ppressive therapy for GVHD prophylaxi S	Supporti ve Care	Comparati ve Treatment	Comparative Treatment Dose/Regimen	Comment
Matsubara, Japan, 2003	10810	HSCT (22)	PBSC and BM	Auto	treatment varied and included VAC (vincristine, dactinomycin and CY) VAC- THP (pirarubicin + VAC), VCA(vincristine, dactinomycin, CY, doxorubicin, VAI (vincristine, dactinomycin, ifosfamide) +/- cisplatin, etoposide or methotrexate and +/- surgery & RT	includ ed Hi- MEC (etop oside, carbo platin, melph alan), Hi- MEC + piraru bicin, etopo side + melph alan + ifosfa mide, etopo side + thiote pa, Melph alan alan		intraveno us hyperali mentatio n or blood products as needed. G-CSF was used in 14 patients transplan ted after 1993			

Study (Investigator, country, year)	Record Numbe r	Group (N)	Stem Cell Source	Type of HSCT	Prior Treatment	Condi tion- ing Regi men	Immunosu ppressive therapy for GVHD prophylaxi S	Supporti ve Care	Comparati ve Treatment	Comparative Treatment Dose/Regimen	Comment
McDowell, UK, 2010	75350	HSCT (101) Comp arator (45)	Auto	PBSC	doxorubicin or carboplatin	seque ntial high dose thera py contai ning cyclo phosp hamid e, etopo side, carbo platin			chemo and surgery +/- radiothera py followed by maintenan ce therapy 9 courses of VAC	ifosfamide, vincristine, actinomycin D, carboplatin, etoposide, and epirubicin (induction) after local therapy patients received 9 courses of VAC (maintenance therapy)	sequential HD therapy was given at 14 day intervals regardless of blood count. Four does were given
Misawa, Japan, 2003	11040	HSCT (1)	PBSC	Alloge neic from HLA- identic al sibling	vincristine, CY, pirarubicin alternating with etoposide, ifosfamide, and cisplatin	piraru bicin, etopo side, carbo platin, melph alan	Cyclosporin e and methylpred nisolone				
Moritake, Japan, 1998	18280	HSCT (1)	ВМ	Alloge neic	VCR, actinomycin D, CY, pirarubicin and ifosfamide + RT	etopo side, carbo platin, piraru bicin, melph alan	methotrexat e				

Study (Investigator, country, year)	Record Numbe r	Group (N)	Stem Cell Source	Type of HSCT	Prior Treatment	Condi tion- ing Regi men	Immunosu ppressive therapy for GVHD prophylaxi S	Supporti ve Care	Comparati ve Treatment	Comparative Treatment Dose/Regimen	Comment
Oue, Japan, 2003	10950	HSCT (1)		Auto- Auto	chemo + RT	Ifosfa mide and melph alan (first) Busulf an thiote pa (seco nd)		G-CSF, blood products			this is a tandem transplant
Pappo, USA, 1999	48020	Comp arator (605)							chemo +/- RT	vincristine- Actinomycin (14%), vincristine- Actinomycin-CY or similar (37%), vincristine, doxorubicin, actinomycin, CY +/- other agents (25%), window + other (24%)	
Pappo, USA, 2001	47860	Comp arator (48)							Chemo +/- RT	Topotecan + VAC alternating with vincristine, topotecan, CY or topotecan + VAC	
Raney, USA, 2008	2440	compa rator (91)							chemo +/- RT	vincristin, actinomycin D, CY +/-doxorubicin, cisplatin, dacarbazine, etoposide and/or ifosfamide	
Sandler, USA, 2001	12810	Comp arator (152)							Chemo +/- RT	ifosfamide, doxorubicin and VAC	

Study (Investigator, country, year)	Record Numbe r	Group (N)	Stem Cell Source	Type of HSCT	Prior Treatment	Condi tion- ing Regi men	Immunosu ppressive therapy for GVHD prophylaxi S	Supporti ve Care	Comparati ve Treatment	Comparative Treatment Dose/Regimen	Comment
Sato, Japan, 1998	48070	HSCT (5)	PBSC	Auto	Chemo +/- surgery and or RT	Hi- MEC +/- pyrar ubicin		Hydroxyz ine and hydrocort isone and G- CSF			
Scully, USA, 2000	14580	HSCT (1)	PBSC	Auto	prior chemo for initial disease, chemo for recurrence included ifosfamide carboplatin, etoposide	HDC with CY and carbo platin					tumor was excised after SC rescue and radiation was delivered
Shaw, Israel, 1996	20050	HSCT (9)	PBSC and BM	Auto	Chemo +/- surgery and or radiation therapy chemo included vincristine, adriamycin, CY etoposide, ifosfamide	carbo platin, melph alan,		parentera I nutrition, antibiotic s and anti- fungal therapy was provided based on the pt status. G-CSF or GM-CSF was used in some patients			
Taguchi, Japan, 2005	7430	HSCT (1)			carboplatin and etoposide						
Van Winkle, USA, 2005	43550	Comp arator(27)							chemo	lfosfamide and etoposide	

Study (Investigator, country, year)	Record Numbe r	Group (N)	Stem Cell Source	Type of HSCT	Prior Treatment	Condi tion- ing Regi men	Immunosu ppressive therapy for GVHD prophylaxi S	Supporti ve Care	Comparati ve Treatment	Comparative Treatment Dose/Regimen	Comment
Walterhouse, USA, 1999	17240	HSCT (8)	PBSC	Auto	Chemo and radiation +/- surgical resection chemo regimens included vincristine, dactinomycin, CY, melphalan, etoposide, ifosfamide and doxorubicin	thiote pa, CY, carbo platin		G-CSF, fluconazo le prophyla xis, broad spectrum abx for fever, parentera I nutrition and blood product support			patients achieving a complete response were offered HDC with stem cell rescue
Williams, Canada, 2004	9010	HSCT (4) Comp arator (13)		Auto	ifosfamide and etoposide alternating vincristine, CY, doxorubicin and/or actinomycin +/- radiation and surgical resection	etopo side, CY with or witho ut melph alan			Chemo +/- radiation and surgical resection	ifosfamide and etoposide alternating vincristine, CY, doxorubicin and/or actinomycin	13 patients received radiation with curative intent of these 4 received HDC with Stem cell support

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	Secondary Outcomes	F/U Frequency/Duration	Comment
Bisogno, Italy, 2009	75340	HSCT (70)	Survival	Toxicity		Children less that 10 had significantly better outcomes than older children 54.3%. Under multivariate modeling RR of 2.59 (1.3-5.1) for children over 10 for the role of age as a prognostic factor for survival
Carli, Italy, 1999	16010	HSCT (52)	Overall Survival	Event Free		who was transplanted ended up being center based not response based
Doelken, Germany, 2005	6570	HSCT (1)	Pt 1- died of progressive disease 146 days post transplant due to disease progression Pt 2- recurred three years after Auto transplant, five years after Auto transplant he received an Allo he died 379 days post Allo transplant due to disease progression.			Transplants were not perfomed on patients in complete remission
Donker, Netherlands, 2009	1420	HSCT (1)	Survival		Patient was followed and has survived 4 years post- transplant	Patient had severe ifosfamide tubulopathy that evolved into chronic renal insufficiency but is stable with conservative therapy. Transplant was completed on a patient in complete remission.
Dunkel, USA, 2000	14610	HSCT (4)	Survival	No major harms reported	100% of patients were alive at a median FU of 57 months (46-80)	
Grundy, UK, 2001	14200	HSCT (1)	Survival		Patient recurred and died at 2 years 3 months of age.	
Hara, Japan, 1998	17950	HSCT (7)	Survival	Harms	4 alive NED median 26.5 months (15-32) 3 DOD median 6 months (3- 6) 1 TRM 1 month	

Appendix Table C25. Outcome assessment: Treatment, rhabdomyosarcoma

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	Secondary Outcomes	F/U Frequency/Duration	Comment
Koscielniak, Germany, 1997	19800	HSCT (36)	Survival	estimated Event Free Survival at 2 years after HDC 36 +/- 7% 2 years after diagnosis 55 +/- 8%' Harms	9 alive NED median FU of 57 (32-108) months after diagnosis, 27 (20-100) months after HDC. 1 alive in 2nd CR after additional local treatment	
Kuroiwa, Japan, 2009	390	and ifosfamide- cisplatin- etoposide	Survival		Patient is alive with controlled disease at age 3 years 11 months, 46 months after diagnosis	Patient survived transplant and recurred with metastatic disease after transplant was treated with Chemo
Kwan, Hong Kong, 1996	20800	HSCT (1)	survival		Alive NED 3 months post transplant	
Lucidarme, France, 1998	17610	HSCT (8)	Survival	Harms	One patient was in complete remission at 33 months post-transplant 7 were DOD median 7 months (2-38) post transplant	two patients were transplanted in partial remission and 6 had progressive disease at the time of transplant.
Matsubara, Japan, 2005	7580	HSCT (5)	Survival	harms	60% alive at a median of 107 months FU 40% died at a median of 26 months FU	the two patients who died developed CNS involvement the three others remained non CNS
McDowell, UK, 2010	75350	HSCT (101)	Survival	Harms	16.56 (0.76-101.39)	8 SAE were reported but not further described.
Misawa, Japan, 2003	11040	HSCT (1)	Survival- Patient died of progressive disease 165 days after transplant			Patient was NOT in CR when the transplant was completed
Moritake, Japan, 1998	18280	HSCT (1)	Survival ~21 months after transplant the patient dies due to progressive disease			Patient received donor leukocyte infusion 12 months after transplant as salvage

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	Secondary Outcomes	F/U Frequency/Duration	Comment
Navid, USA, 2006	5930	HSCT (8), 2 transplanted 6 were not	Survival	harms	2 alive NED median 79 months (65-92) post enrollment 1 LFU at 78 months 3 DOD 12 months (9-16) post enrollment 2 Toxic Death median 6.5 (5-8) months post enrollment	Only two patients were transplanted as they reached CR and stayed on study. One who achieved CR was LFU. In a Cox model for all those who were transplanted (more than just RMS) there was no evidence that transplantation had an effect on survival
Oue, Japan, 2003	10950	HSCT (1)	Survival	Harms	patient was alive 19 months after disease onset	harms were for non RMS patients as this was a mixed tumor study
Sato, Japan, 1998	48070	HSCT (5)	Event Free Survival		alive without evidence of disease (EFS) of 23.4 months post-transplant	Transplanted in Complete remission
Scully, USA, 2000	14580	HSCT(1)	Survival	Harms	Alive with secondary malignancy approximately 3 years after transplant for RMS	
Shaw, Israel, 1996	20050	HSCT (9)	Survival	Harms	44% DOD median 286 days follow-up 44% NED median 745 days FU 11% AWD 350 days FU	
Taguchi, Japan, 2005	7430	HSCT (1)	Survival	NR	19 months	Dead at 19 months after transplant Non CNS group
Walterhouse, USA, 1999	17240	HSCT (8)	Survival	Harms	38% DOD at median of 15 months after diagnosis (not transplanted) 75% of those transplanted are DOD median 12 months post transplant or 20 months post diagnosis 25% alive NED at 53 months post trans patient who declined transplant DOD 30 m from diag	Five patients achieved a complete response and were eligible for transplant, one refused

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	Secondary Outcomes	F/U Frequency/Duration	Comment
Williams, Canada, 2004	9010	HSCT (4)	Survival	Event Free Survival		patients with embryonal histology, metastasis confined to the lung, and < 10 had 100% survival at 3 years compared to 0% for the remaining patients
Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	Secon- dary Out- comes	F/U Frequency/Duration	Comment
--	------------------	---------------------	---------------------	---------------------------------	--	---
Breneman, USA, 2003	75360	Comparator (127)	Survival			
Carli, Italy, 1999	16010	Comparator	Overall Survival	Event Free survival		
Grundy, UK, 2001	14200					
McDowell, UK, 2010	75350	Comparator (45)	Survival	Harms	30.16 months (0.69-105.40)	
Pappo, USA, 1999	48020	Comparator (605)	survival		five year survival botroid 64% (40-88), embryonal 26% (21- 31), alveolar/undiff 5% (2-8)	histologic subtype at initial diagnosis associated with survival after recurrence, but survival not affected by site of recurrence.
Pappo, USA, 2001	47860		Survival	Harms		number of metastatic sites influenced survival 1 or 2 vs. +2
Sandler, USA, 2001	12810	Comparator (152)	Survival	Harms		Patients who are < 10 or with embryonal RMS, or a GU primary site, or no nodal disease at presentation and patients lacking bone or bone marrow involvement at presentation fared significantly better.
Van Winkle, USA, 2005	43550	Comparator (27)	Survival	Harms		Male gender (p=.015), Embryonal histology at recurrence (p=.005), and CR (p=.014) were associated in univariate analysis with improved survival
Williams, Canada, 2004	9010	Comparator (13)	Survival	Event Free Survival		

Appendix Table C26. Outcome assessment: Comparator, rhabdomyosarcoma

Appendix Table C27. Time to event outcomes: Treatment, rhabdomyosarcoma

Study (Investigator, country, year)	Record Number	Group (N)	Outcome	Med (mos)	1 yr	2 yr	3 yr	4 yr	5 yr	р	HR (95%) CI
Bisogno, Italy, 2009	75340	HSCT (70)	42.3% (30.5-53.6) 3 year survival								
Carli, Italy, 1999	16010	HSCT (52)	3 year 40.0(25.5- 54.7)		~8 6%	~4 6%	40.0(25.5 -54.7)	~4 0%	~40 %	0.2 for three year versus comparator	
Matsubara, Japan, 2003	10810	HSCT (22)	45% at 5 years								
McDowell, UK, 2010	75350	HSCT (101)					23.70%		17.9 3%	<0.001	2.46 (1.51- 4.03)
Williams, Canada, 2004	9010	All 17 together	35% (13-58) FFS 29.4% (18-40)	3 yrs							

Study (Investigator, country, year)	Record Number	Group (N)	Outcome_2	1 yr_2	2 yr_2	3 yr_2	4 yr TRM	5 yr_2	p_2	HR (95% Cl)_2
Bisogno, Italy, 2009	75340	HSCT (70)	Progression free survival at 3 years 35.3 (24.3- 46.5)							
Carli, Italy, 1999	16010	HSCT (52)	EFS 29.7 (15.6-43.8)	~46%	~30%	29.7 (15.6- 43.8)	~20%	~20%	0.3 for 3 years versus comparator	
Matsubara, Japan, 2003	10810	HSCT (22)	DFS					36%		
McDowell, UK, 2010	75350	HSCT (101)	Event Free Survival			16.53%		14.88%	<0.001	2.68 (1.64- 4.37)
Williams, Canada, 2004	9010	All 17 together	Overall Survival HSCT (4) only			100%				

Appendix Table C27. Time to event outcomes: Treatment, rhabdomyosarcoma Continued

Appendix Table C27. Time to event outcomes: Treatment, rhabdomyosarcoma Continued

Study (Investigator, country, year)	Record Number	Group (N)	Outcome_3	3 yr_3	5 yr_3	p_3	Comment
Matsubara, Japan, 2003	10810	HSCT (22)	OS (CR) vs. OS (PR) OS Embryonal vs. OS Alveolar OS >8 years vs. OS <8 years		70% vs. 0% 75% vs. 0% 18% vs. 75%	no difference reported 0.015 no difference reported	
McDowell, UK, 2010	75350	HSCT (101)					This study also reported survival differences by induction treatment, however this is beyond the scope of the review.
Williams, Canada, 2004	9010	All 17 together	Failure Free Survival	75% (33- 107)			

Study (Investigator, country, year)	Record Number	Group (N)	Outcome	Med (mos)	1 yr	2 yr	3 yr	4 yr	5 yr
Breneman, USA, 2003	75360	comparator (127)			~85%	~50%	39% (30- 48)	~25%	~25%
Carli, Italy, 1999	16010	Comparator (44)	27.7 (13.3- 42.1) 3 year		~66%	~35%	27.7 (13.3- 42.1)	~26%	~26%
McDowell, UK, 2010	75350	Comparator (45)					62.14%		47.68%
Pappo, USA, 1999	48020	Comparator (605)	17% (14-21)	4.7 years (.8- 12.6)					
Pappo, USA, 2001	47860	Comparator (48)				46% (31-60)			
Sandler, USA, 2001	12810	Comparator (152)			~75%	~43%	~40%	~34%	~37.5%
Van Winkle, USA, 2005	43550	Comparator(27)			56 (10)	26 (8)			
Williams, Canada, 2004	9010	Comparator (13)	15% (-4-35)	3 year					

Appendix Table C28. Time to event outcomes: Comparator, rhabdomyosarcoma

Appendix Table C28. Time to event outcomes: Comparator, rhabdomyosarcoma Continued

Study (Investigator, country, year)	Record Number	Group (N)	Outcome_2	1 yr_2	2 yr_2	3 yr_2	4 yr TRM	5 yr_2	Comment
Breneman, USA, 2003	75360	comparator (127)	FFS	~69%	~33%	25% (17-33)	~20%	~20%	FFS influenced by distant metastasis in lymph nodes. OS influenced by number of metastatic sites
Carli, Italy, 1999	16010	Comparator (44)	EFS	~53%	~30%	19.2 (6.8- 31.6)	~20%	~20%	
McDowell, UK, 2010	75350	Comparator (45)	Event free survival			54.92%		51.00%	
Pappo, USA, 1999	48020	Comparator (605)							
Pappo, USA, 2001	47860	Comparator (48)	failure Free	~57%	24% (13- 36)	~21%	~21%		
Sandler, USA, 2001	12810	Comparator (152)	FFS	~63%	~36%	~28%	~28%	~27%	
Van Winkle, USA, 2005	43550	Comparator(27)							
Williams, Canada, 2004	9010	Comparator (13)	Failure Free survival			15% (- 4-35)			

Study (Investigator, country, year)	Record Number	Group (N)	% Infection	Commen t	Group (N) TRM	Severity or Grade TRM	F/U (mos) TRM	% TRM	Comment TRM	% Secondary Malignancy	Commen ts SM
Bisogno, Italy, 2009	75340		12.7					4.3			
Carli, Italy, 1999	16010				HSCT (52)			1.9 % TR M (1/5 2)	Sepsis related death		
Hara, Japan, 1998	17950		14% (1/7)	sepsis			1 month	14% (1/7)	on additional non RMS patient experience d TRM so in all 2/28 (7.1%)		
Koscielniak, Germany, 1997	19800		2.8			one patient dies due to sepsis					
McDowell, UK, 2010	75350							5.0	It is unclear from the authors' description if any of these are within the first 100 days.		
Navid, USA, 2006	5930	HSCT (8)						25% (2/8)	two patients experience d TRM (radiation pneumoniti s and disseminat ed alveolar infection)		

Appendix Table C29. Adverse events: Treatment, rhabdomyosarcoma

Study (Investigator, country, year)	Record Number	Group (N)	% Infection	Commen t	Group (N) TRM	Severity or Grade TRM	F/U (mos) TRM	% TRM	Comment TRM	% Secondary Malignancy	Commen ts SM
Oue, Japan, 2003	10950							8.3	Patients from a mixed tumor study. Neither of these patients had RMS		
Scully, USA, 2000	14580	HSCT (1)								one patient	develope d precursor T- lymphobl astic lymphom a and early myeloid dysplasti c syndrom e
Shaw, Israel, 1996	20050							6.6	Patients from a mixed tumor study. Neither patient had RMS		
Walterhouse, USA, 1999	17240			Sepsis in 4 fungal infection in 1							

Study (Investigator, country, year)	Record Number	Group (N)	% Infection	Comment	Group (N) TRM	% TRM	Comment TRM
Carli, Italy, 1999	16010				Comparator (44)	2.3% TRM (1/44)	due to anthracycline related cardiotoxicity
McDowell, UK, 2010	75350	Comparator (45)	2% (1/45)			4.4% (2/45)	
Pappo, USA, 2001	47860	Comparator (48)	8.3% Bacteremia (4/48)	at various doses of Topotecan		4.2% (2/48)	died of tracheobronchitis and interstitial pneumonitis. One other patient died on treatment of adult respiratory distress but the authors said this could not with certainty be related to Topotecan.
Sandler, USA, 2001	12810		30.9% Grade IV, and 5.2%) Grade V	28.3% (43/152) Grade IV infection, and 4.6%(7/152) Grade V infection 2.6% (4/152) catheter infection Grade IV, .7 % (1/152) catheter infection Grade V		5.9% (9/152)	seven infection related and two (thrombocytopenia and hemorrhage and one to pulmonary toxicity) It is unclear if these are all within the first 100 days
Van Winkle, USA, 2005	43550					0.6	TRM from infection among 336 courses of ICE

Appendix Table C30. Adverse events: Comparator, rhabdomyosarcoma

Study (Investigator, country, year)	Record Number	Indic ation	Disease	Therapeutic Setting	Group (N)	Participant Selection (Treatment Period)	Design	n, Evaluate d	n, Withdrawn (Lost to F/U)
Antoneli, Brazil, 2003	48830	malig nant solid tumor	retinoblast oma	extraocular	Comparator (83)	1987-1991 period 1 1992-2000 period 2	case series	83	8 LFU (9.6%)
Chang, Taiwan, 2006	48660	malig nant solid tumor	Retinoblas toma	Extraocular	Comparator(15)	1982-2004	retrospe ctive analysis of medical records	15	0
Chantada, Argentina, 1999	16020	Malig nant solid tumor	retinoblast oma	Extraocular	Comparator (10)	1995-1998	Case Series	10	0
Cozza, Italy, 2009	70	malig nant solid tumor	retinoblast oma	metastatic retinoblastom a	HSCT (3) Comparator (3)	1988-2007	retrospe ctive review	6	0
Dai, Canada, 2008	1410	malig nant solid tumor	retinoblast oma	Trilateral retinoblastom a	HSCT (1)		Case report	1	1
Dunkel, USA, 2000	14610	malig nant solid tumor	retinoblast oma	metastatic	HSCT (4)	1993-1996	Case series	4	0
Dunkel, USA, 2010	71500	malig nant solid tumor	trilateral retinoblast oma	trilateral retinoblastom a	HSCT (13)	1997-2005	Case Series	13	0
Gunduz, Turkey, 2006	5310	malig nant solid tumor	retinoblast oma	metastatic retinoblastom a	Comparator (18)	1999-2005	retrospe ctive case series	18	0
Hertzberg et al, Germany, 2001	13810	Malig nant Solid Tumo rs	Retinoblas toma	Metastatic	HSCT (1)	NR	Case Report	1	0

Appendix Table C31. Design, participant selection and enrollment: Retinoblastoma

Study (Investigator, country, year)	Record Number	Indic ation	Disease	Therapeutic Setting	Group (N)	Participant Selection (Treatment Period)	Design	n, Evaluate d	n, Withdrawn (Lost to F/U)
Jubran, USA, 2004	9480	malig nant solid tumor	retinoblast oma	metastatic	HSCT (4) Comparator (3) untreated (3)	1991-1999	retrospe ctive review	10	0
Kremens, Germany, 2003	10860	malig nant solid tumor	retinoblast oma	metastatic	HSCT (5)	1992-2001	Case series	5	0
Matsubara, Japan, 2005	7580	malig nant solid tumor	retinoblast oma	metastatic retinoblastom a without CNS involvement	HSCT (5)	1986-2000	Case Series	5	0
Moshfeghi et al, USA, 2002	12230	malig nant solid tumor	Retinoblas toma	Metastatic	HSCT (1)	NR	Case Report	1	0
Namouni, France, 1997	18090	Malig nant Solid Tumo r	Retinoblas toma	Metastatic or relapse or invasion of the cut end of optic nerve	HSCT (34)	1989-1994	Case Series	25, received HSCT' 9 progresse d/died before treatment	
Rodriguez-Galindo, USA, 2003	10420	malig nant solid tumor	retinoblast oma	metastatic	HSCT (4)		case series	4	0
Schvartzman, Argentina, 1996	49250	malig nant solid tumor	retinoblast oma	extraocular	Comparator (41) Stage II(29) Stage III (6) Stage Iv (6)	1987-1993	prospec tive single arm non- randomi zed	41	0
Taguchi, Japan, 2005	7430	malig nant solid tumor	retinoblast oma	Metastatic	HSCT (1)		Case Report	1	0

Study (Investigator, country, year)	Record Number	Indic ation	Disease	Therapeutic Setting	Group (N)	Participant Selection (Treatment Period)	Design	n, Evaluate d	n, Withdrawn (Lost to F/U)
Dunkel, USA, 2010	2149	retino blasto ma	retinoblast oma	non-CNS metastasis	15	1993-2006	case series	15	0
Dunkel, USA, 2010	2148	retino blasto ma	retinoblast oma	CNS metastasis	8	2000 - 2006	case series	8	0
Dimaras, Canada, 2009	2137	Metas tatic Retin oblast oma	retinoblast oma	Metastatic	1	2001	case report	1	0

Study (Investigator, country, year)	Record Number	Group (N)	Age (mean)	Age (median)	Age (Range)	Race (%)	Gender M, F (%)	Disease Stage/category	Disease Histology/Site (%)
Cozza, Italy, 2009	70	HSCT (3)		440months (diagnosis of metastasis whole group n=6)	18-110 months (n=6)		50% male, 50% female (n=6)		CSF, Pineal, orbit, bone and bone marrow
Dai, Canada, 2008	1410	HSCT (1)	12 months				Female	trilateral retinoblastoma	with CSF involvement
Dunkel, USA, 2000	14610	HSCT (4)	30.5 months at diagnosis	30.5 months at diagnosis	17-44		50% Male, 50 % Female		distant metastasis (BM, Orbit, liver, bone) no CNS involvement
Hertzberg et al, Germany, 2001	13810	HSCT (1)	7				F	metastatic retinoblastoma	lymph nodes, bones and bone marrow
Jubran, USA, 2004	9480	HSCT (4)	12.3 month at diagnosis	11.5 months at diagnosis	2-24				distant no CNS involvement
Kremens, Germany, 2003	10860	HSCT (5)	51.8 months (treatment)	34 months	20-110				bone marrow, extraocular tumor
Matsubara, Japan, 2005	7580	HSCT (5)	17.6 months at diagnosis	16 months at diagnosis	3-41		20% Male, 80% Female		distant metastasis
Moshfeghi et al, USA, 2002	12230	HSCT (1)	5			White	F	metastatic	bone marrow, right humerus, both supraorbital bones, and both tibias, ovary

Appendix Table C32. Participant characteristics: Treatment, retinoblastoma

Study (Investigator, country, year)	Record Number	Group (N)	Age (mean)	Age (median)	Age (Range)	Race (%)	Gender M, F (%)	Disease Stage/category	Disease Histology/Site (%)
Namouni, France, 1997	18090	HSCT (25)		34 months	(9-125) months		76% Male 14% Female	extraocular retinoblastoma	cut end of optic nerve (5) disruption of ocular globe(1) isolated orbital relapse (7) bone or bone marrow (8) CNS/spinal axis (4)
Rodriguez- Galindo, USA, 2003	10420	HSCT (4)	28.5 age at diagnosis	30.5	17-36	75% white 25% Hispanic	75% Male 25% female		distant metastases no CNS involvement
Taguchi, Japan, 2005	7430	HSCT (1)	4				male	metastatic	maxilla and mandible
Dimaras, Canada, 2009	2137	1	4 months at diagnosis				male	CSF mets	CSF
Dunkel, USA, 2010	2148	8	22 months	24.5 months	4-38 months			4b	CNS
Dunkel, USA, 2010	2149	15	25 months	26 months	1-44 months			metastatic retinoblastoma	orbit, bone, bone marrow, liver

Study (Investigator, country, year)	Re- cord Num ber	Grou p (N)	Age (mean)	Age (med-)	Age (Rng)	Race (%)	Gen- der M, F (%)	Disease Stage/category	Disease Histology/Site (%)	Comment
Antoneli, Brazil, 2003	4883 0	Com parat or (83)	32.9 months		2-145	62.7 % Whit e	53% Male	extraocular retinoblastoma	69 class I/III CCG classification 14 Class IV/V	Class IV CNS involvement
Chang, Taiwan, 2006	4866 0			26.3 at diagno sis	1.7- 89 mont hs			all stages of extraocular retinoblastoma were reported together	most common sites Orbit (7) and CNS (7)	
Chantada, Argentina, 1999	1602 0	Com parat or (10)		2 years	1-7		40% M, 60% F	extraocular	Various sites including 3 patients with bone marrow involvement at diagnosis (30%)	
Cozza, Italy, 2009	70	Com parat or (3)		41.5 at diagno sis	3-110 at diagn osis		50% male' 50% femal e		CSF (3)	
Gunduz, Turkey, 2006	5310	Com parat or (18)		45 months at diagno sis	13-86				distant and CNS (5) CNS (9) distant only (4)	
Jubran, USA, 2004	9480	Com parat or (6)	31.3 months at diagnos is	17.5 months	1-96				distant no CNS	two patients were not treated for their extraocular disease, one received no treatment at all
Schvartzman, Argentina, 1996	4925 0	Com parat or (41)						Extraocular retinoblastoma	Orbital (29) intracranial (6) these patients had CNS mets hematogenous metastasis (6) three of these patients also had CNS mets	

Appendix Table C33. Participant characteristics: Comparator, retinoblastoma

Study (Investi- gator, country, year)	Re- cord Num- ber	Group (N)	Stem Cell Source	Type of HSCT	Prior Treatment	Conditioning Regimen	Supportive Care	Comparative Treatment	Comparative Treatment Dose/Regimen
Antoneli, Brazil, 2003	4883 0	Comparat or (83)						Chemo +/- radiation	Cisplatin, teniposide, vincristine, doxorubicin, cyclophosphamid e (period 1) Cisplatin and teniposide with alternating ifosfamide and etoposide (period 2)
Chang, Taiwan, 2006	4866 0	Comparat or (15)						Chemo +/- radiation	cyclophosphamid e, vincristine, adriamycin, intrathecal methotrexate +/- radiation
Chantada, Argentina, 1999	1602 0	Comparat or (10)					GCSF, platelet and RBC transfusions	Idarubicin	10mg/m2/d
Cozza, Italy, 2009	70	HSCT (3) comparato r (3)	PBSC	auto	ifosfamide, carboplatin, etoposide, vincristine, doxorubicin cyclophosphamide (some combination of these)	etoposide, thiotepa, cyclophosphamide +/- radiation		ifosfamide, carboplatin, etoposide, vincristine, doxorubicin cyclophosphamid e, thiotepa with methotrexate (some combination of these)	

Appendix Table C34. Treatment characteristics: Retinoblastoma

Study (Investi- gator, country, year)	Re- cord Num- ber	Group (N)	Stem Cell Source	Type of HSCT	Prior Treatment	Conditioning Regimen	Supportive Care	Comparative Treatment	Comparative Treatment Dose/Regimen
Dai, Canada, 2008	1410	HSCT (1)	PBSC	Auto	cyclosporine- modulated vincristine, etoposide, carboplatin with intraventricular topotecan/cytarabi ne	carboplatin, etoposide cyclophosphamide			
Dunkel, USA, 2000	1461 0	HSCT (4)	BM (3) PBSC (1)	Auto	vincristine, doxorubicin, cyclophosphamide , cisplatin, etoposide, carboplatin (some combination)	thiotepa and carboplatin + radiation			
Dunkel, USA, 2010	7150 0	HSCT (13)	PBSC (6) Marrow (1) PBSC and Marrow (1) Unknow n (1)	Auto	vincristine, cisplatin, cyclophosphamide and etoposide (11) carboplatin, etoposide, cyclophosphamide , doxorubicin (1)' single agent cyclophosphamide (1)	thiotepa based (6) cyclophosphamide and melphalan (2) both (one tandem)			
Gunduz, Turkey, 2006	5310	Comparat or (18)					GCSF was given to those on treatment B	Treatment A cyclophosphamid e, doxorubicin, vincristine, carboplatin, etoposide with intrathecal chemo +/- radiation(4) Treatment B- ifosfamide, carboplatin, etoposide +/- radiation (14)	

Study (Investi- gator, country, year)	Re- cord Num- ber	Group (N)	Stem Cell Source	Type of HSCT	Prior Treatment	Conditioning Regimen	Supportive Care	Comparative Treatment	Comparative Treatment Dose/Regimen
Hertzberg et al, Germany, 2001	1381 0	HSCT (1)	PBSC	Auto	vincristine, cyclophosphamide , etoposide, and carboplatin	HDC Thiotepa by etoposide and carboplatin	Platelet and Red Blood cell transfusion		
Jubran, USA, 2004	9480	HSCT (4) Comparat or (6)	ВМ	Auto	Chemo +/- radiation one patient received no treatment	cyclophosphamide, etoposide and thiotepa		three received no treatment for extraocular disease one radiation alone, one chemo alone, one chemo+ radiation	cyclophosphamid e, etoposide, vincristine, carboplatin, thiotepa
Kremens, Germany, 2003	1086 0	HSCT (5)	PBSC	Auto	cisplatin, etoposide, vindesine vincristine, DTIC, ifosfamide, doxorubicin or cyclophosphamide , etoposide, carboplatin, vincristine	thiotepa, etoposide, carboplatin (4) +/- radiation BCNU, cyclophosphamide, and etoposide (1)	barrier nursing, oral decontaminatio n, oral antifungal, pneumocystis carinii prophylaxis, parenteral nutritional support		
Matsubara, Japan, 2005	7580	HSCT (5)	PBSC (1) BM (4)	Auto	vincristine, cyclophosphamide , doxorubicin, cisplatin, etoposide, carboplatin (some combination) +/- radiation	melphalan with some combination of cisplatin, cyclophosphamide, etoposide, carboplatin, thiotepa +/- radiation	GCSF		
Moshfeghi et al, USA, 2002	1223 0	HSCT (1)		Auto	six courses of chemotherapy, local orbital radiation				

Study (Investi- gator, country, year)	Re- cord Num- ber	Group (N)	Stem Cell Source	Type of HSCT	Prior Treatment	Conditioning Regimen	Supportive Care	Comparative Treatment	Comparative Treatment Dose/Regimen
Namouni, France, 1997	1809 0	HSCT (25)	Marrow	Auto	etoposide, carboplatin, cyclophosphamide , vincristine, doxorubicin, 8 patients had irradiation	Carboplatin, Etoposide, cyclophosphamide +/- radiation	parenteral antibiotics, antifungal therapy, platelet and RBC transfusions		
Rodriguez- Galindo, USA, 2003	1042 0	HSCT (4)	BM	Auto	carboplatin, etoposide, cyclophosphamide , doxorubicin and carboplatin or cisplatin + radiation	carboplatin and etoposide or cyclophosphamide with busulfan and melphalan or etoposide or topotecan	antifungal therapy		
Schvartzma n, Argentina, 1996	4925 0	Comparat or (41)						Chemo +/- radiotherapy	Cyclophosphamid e, Doxorubicin, Vincristine Stage III and IV also received cisplatin and etoposide
Taguchi, Japan, 2005	7430	HSCT (1)			carboplatin and etoposide				
Dimaras, Canada, 2009	2137	1	cord blood	autologou s	systemic chemotherapy and intraventricular chemo	carboplatin, etoposide, cyclophosphamide			
Dunkel, USA, 2010	2148	8		autologou s	surgery, chemotherapy	carboplatin, etoposide, cyclophosphamide, cisplatin, thiotepa			
Dunkel, USA, 2010	2149	15	bone marrow, peripher al blood, both	autologou s	enuculation with or without chemo	carboplatin, thiotepa, topotecan, etoposide			

Study (Investigator, country, year)	Re- cord Num- ber	Group (N)	Primary Outcom es	Secondary Outcomes	F/U Frequency/Duration	Comment
Cozza, Italy, 2009	70	HSCT (3)	Survival	NR	66% alive at median FU of 61.5 months 33% dead at 16 months	
Dai, Canada, 2008	1410	HSCT (1)	Survival	NR	death at 32 months follow-up	she had CNS involvement
Dunkel, USA, 2000	14610	HSCT (4)	Survival	No major harms reported	100% of patients were alive at a median FU of 57 months (46-80)	
Hertzberg et al, Germany, 2001	13810	1	Survival	Harms	Alive 4 years+ post transplant	
Jubran, USA, 2004	9480	HSCT (4)	Survival	No major harms reported	100% dead at median of 25 months FU	
Kremens, Germany, 2003	10860	HSCT (5)	Survival	No major harms reported	100% alive median 57 months (8-107)	
Matsubara, Japan, 2005	7580	HSCT (5)	Survival	harms	60% alive at a median of 107 months FU 40% died at a median of 26 months FU	the two patients who died developed CNS involvement the three others remained non CNS
Moshfeghi et al, USA, 2002	12230	1	Survival	NR	16 months	dead at 16 months
Namouni, France, 1997	18090	cut end of optic nerve/ocular globe (6) Isolated orbital (7) Various metastasis (8) CNS/spinal axis (4)	Overall Survival	Harms	Cut end/globe-83% (NED) at median 33 (8-55) 20% (DOD) 9 months Isolated orbital-86% (NED) at median 51.5 (25-74), 14% (PD) 5 bone or bone marrow-63% (NED) at median 37 (11-70), 37% (DOD) 13(10-20) CNS-75% (DOD) at median 10 (7-26), 25% (NED) 63	all numbers are months the 37% DOD with bone mets developed CNS after transplant
Rodriguez- Galindo, USA, 2003	10420	HSCT (4)	Survival	Harms	50% alive at median FU of 6.5 years (6-7) 50% dead at median FU of 66 months (44-88)	2 who are deceased developed CNS involvement
Taguchi, Japan, 2005	7430	HSCT (1)	Survival	NR	19 months	Dead at 19 months after transplant Non CNS group
Dimaras,	2137	HSCT (1)	Survival	Harms	8.3 years post transplant	

Appendix Table C35. Outcome assessment: Treatment, retinoblastoma

Canada, 2009						
Study (Investigator, country, year)	Record Num- ber	Group (N)	Primary Out- comes	Secondary Outcomes	F/U Frequency/Duration	Comment
Dunkel, USA, 2010	2148	HSCT (8)	Survival	Event free survival, harms		
Dunkel, USA, 2010	2149	HSCT (15)	survival	harms, retinoblasto ma free		13 of the 15 actually received transplant

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	Secondary Outcomes	Independent Response Assessor	F/U Frequency/Duration	Comment
Antoneli, Brazil, 2003	48830	Comparator (83)	Survival	Harms			
Chang, Taiwan, 2006	48660	Comparator (15)	Survival	No major harms reported			
Chantada, Argentina, 1999	16020	Comparator (10)	Survival	Harms (no majors reported)	toxicity was evaluated using the modified Children's cancer group criteria.	60% (NED) 16 months (4-30) 20% (DOD) 7.5 months (5-10) 10% (dead of parental abuse) 8 months 10% DOD with CNS involvement at 3 months	in document 1 DOD at 3 mon CNS, NON-CNS 75% NED, 25% DOD. The one patient dead of parental abuse was not included.
Cozza, Italy, 2009	70	Comparator (3)	Survival	NR		100% dead at median of 8 months FU	
Gunduz, Turkey, 2006	5310	Comparator (18)	Survival	No majors reported		100% of patients with CNS involvement were dead at mean 24 months fu(4-62), this is 9 with CNS only and 5 with CNS and distant metastasis. 100% with distant metastasis only were alive at a median FU of 28.5 months (9-62)	
Jubran, USA, 2004	9480	Comparator (6)	Survival	No major harms reported		100% of those treated (3) were dead at median 7 month FU 100% of those not treated(3) were dead at median 2 months FU	4 patients had CNS involvement (3 were untreated)
Schvartzman, Argentina, 1996	49250	Comparator (41)	Survival	No major Harms reported		50 months	

Appendix Table C36. Outcome assessment: Comparator, retinoblastoma

Appendix Table C37	7. Time to event outcomes:	Treatment, retinoblastoma
--------------------	----------------------------	---------------------------

Study (Investigator, country, year)	Record Number	Group (N)	Outcome	Med (mos)	1 yr	2 yr	3 yr	4 yr	5 yr
Namouni, France, 1997	18090	HSCT (25)	~70%	22 months	~97%	~70%	~70%	~70%	~70%
Dunkel, USA, 2010	2149	HSCT (15)	67%	108 months					67%

Appendix Table C37. Time to event outcomes: Treatment, retinoblastoma Continued

Study (Investigator, country, year)	Record Number	Group (N)	Outcome_ 2	1 yr_2	2 yr_2	3 yr_2	4 yr TR M	5 yr_2	Outcom e_3	Med (mos) _3	1 yr_3	2 yr_3	3 yr_3	4 yr_3	5 yr_3	Commen t
Namouni, France, 1997	18090	HSCT (25)	Intention to treat overall survival n=34	~88 %	~60 %	~57 %	~52 %	~52 %	Event Free intention to treat n=34	37 mont hs	~88 %	~62 %	~57 %	~53 %	~53 %	8 of 9 excluded died due to CNS involvem ent
Dunkel, USA, 2010	2149	HSCT (15)	retinoblast oma free					67 %	progress ion free	10 years					59 %	

Study (Investigator, country, year)	Record Number	Group (N)	Outcome	Med (mos)	1 yr	2 yr	3 yr	4 yr	Comment
Antoneli, Brazil, 2003	48830	Comparator period 1(43) Comparator period 2(40)	Period 1 Class I/III 65.3% Class IV-V 0% Period 2 Class I/III 75.5% class IV/V 20%						no differences in survival between treatment periods was found
Chang, Taiwan, 2006	48660	Comparator (15)	39.2 +/- 14.7 at 5 years						
Schvartzman, Argentina, 1996	49250	Comparator (41)	Stage II 85% (75-97) 29 pts Stage III 0 (CNS) 6 pts Stage IV 50% (11-89) 6 pts	39 months (12-84) of surviving patients	Stage II 85% stage III and IV ~50%	Stage II 85% stage III and IV ~25%	Stage II 85% stage III and IV ~25%	Stage II 85% stage III and IV ~25%	

Appendix Table C38. Time to event outcomes: Comparator, retinoblastoma

Study (Investigator, country, year)	Record Number	Group (N)	Infectious	Severity or Grade	%	Comment	TRM	% TRM	Comment TRM
Dunkel, USA, 2010	71500	HSCT (13)	Infectious				TRM	7.7% (1/13)	Death due to septicemia and multi- organ failure during induction chemo
Rodriguez- Galindo, USA, 2003	10420	HSCT (4)	Infectious	candida albican sepsis	25% (1/4)	successfully treated with antifungals	TRM		
Dunkel, USA, 2010	2149	HSCT (15)					TRM	12.5 % (1/15)	

Appendix Table C39. Adverse events: Treatment, retinoblastoma

Appendix Table C40. Adverse events: Comparator, retinoblastoma

Study (Investigator, country, year)	Record Number	Group (N)	TRM	% TRM	Secondary Malignancies	% SM	Comments SM
Antoneli, Brazil, 2003	48830	Comparator (83)	TRM	4.2	Secondary Malignancies	3.6 % (3/83)	two osteogenic sarcoma and one nonlymphocytic leukemia

Study (Investigator, country, year)	Record Number	Indication	Disease	Therapeutic Setting	Group (N)	Participant Selection (Treatment Period)	Design	n, Eval- uated	n, Withdrawn (Lost to F/U)	Comment
Berthold, Germany, 2005	6760	Malignant Non- Hematopoietic	Neuroblast oma	Consolidate high-risk	295	1997-2002	RCT	212	83	
George, USA, 2006	5440	Malignant Non- Hematopoietic	Neuroblast oma	Consolidate high-risk	97	1994-2002	case series	82	8	6 (of 97) pts developed progressive disease during induction; 2 did not receive HSCT because of parental wishes; 82 (of 89) patients underwent tandem HSCT
Hobbie, USA, 2008	1690	Malignant Non- Hematopoietic	Neuroblast oma	Consolidate high-risk	35	1997-2001	case series	13	22	Lost to F/U: 18 pts died of progressive disease; 4 pts alive with no disease with no follow-up at centre This study is a sub-group analysis (from Georg, 2006, #5440) of late effects

Appendix Table C41. Design, participant selection and enrollment: Neuroblastoma

Study (Investigator, country, year)	Record Number	Indication	Disease	Therapeutic Setting	Group (N)	Participant Selection (Treatment Period)	Design	n, Eval- uated	n, Withdrawn (Lost to F/U)	Comment
Kim, South Korea, 2007	2870	Malignant Non- Hematopoietic	Neuroblast oma	Consolidate high-risk	36	1996-2004	retrosp ective analysi s	36	0	
Ladenstein, EGBMT, 2008	1610	Malignant Non- Hematopoietic	Neuroblast oma	Consolidate high-risk Relapse Not specified	3571	1978-2006	case series	3421 (3350 for outcom es)	(221 for outcomes given autologous single and tandem HSCT)	80%, consolidate high-risk; 10%, relapse; 10%, specified
Matthay, US, 2009; 1999	6210	Malignant Non- Hematopoietic	Neuroblast oma	Consolidate high-risk	560	1991-1996	RCT	539	21	
Pritchard, United Kingdom, 2005	8030	Malignant Non- Hematopoietic	Neuroblast oma	Consolidate high-risk	90	1982-1985	RCT	65	35	
Sung, South Korea, 2007	3950	Malignant Non- Hematopoietic	Neuroblast oma	Consolidate high-risk	52	1997-2005	case series	52		
Sung, Korea, 2010	2433	Malignant Non- Hematopoietic	Neuroblast oma	Consolidate high-risk	161	2000-2005	retrosp ective analysi s	141	20	

Study (Investigator, country, year)	Record Number	Group (N)	Age (mean)	Age (median)	Age (Range)	Gender M, F (%)	Disease Stage/category	Disease Histology/Site (%)
George, USA, 2006	5440	97		35 mos, at diagnosis	6 mos-18 yrs, at diagnosis		IV, 90%; III, 10%	Abdomen, 37; Adrenal, 54; Cervical/paraspinal, 7; Unknown, 2
Hobbie, USA, 2008	1690	13		22 mos	13 mos-72 mos	M, 85%; F, 15%	IV	
Kim, South Korea, 2007	2870	36		3-yr, at diagnosis	7 mos-121 mos	M, 69%; F, 31%	III, 6%; IV, 94%	Abdomen, 89%; Other, 11%
Ladenstein, EGBMT, 2008	1610	3350		47 months	4-744 months	59% M, 41% F	IV, 89% (n=1,681)	
Sung, South Korea, 2007	3950	52		36 mos, at diagnosis	13 mos- 129 mos		IV, 100%; MYCN- amplified, 56%; multi-organ (>=3) metastasis, 38%	Shimada classification: favorable, 27; unfavorable, 71; undetermined, 2 Site: Abdomen, 81; Other, 19
Sung, Korea, 2010	2433	71		36	13-144	M, 46%	IV	

Appendix Table C42. Participant characteristics: Treatment, neuroblastoma

Appendix Table C43. Participant characteristics: Comparator, neuroblastoma

Study (Investigator, country, year)	Record Number	Group (N)	Age (Range)	Disease Stage/category	Disease Histology/Site (%)
Berthold, Germany, 2005	6760	149	(< 1 year, 8%; > 1 year, 92%)	I, 1%; II, 1%; III, 5%; IVS, 3%; IV, 90%	
Matthay, US, 2009; 1999	6210	189	(< 1 yr, 3%; 1-2 yr, 23%; > 2 yr, 74%, at diagnosis)	III, 11%; IV, 89%	Favorable, 3%; Unfavorable, 63%; Unknown, 33%
Pritchard, United Kingdom, 2005	8030	32	(6-12 mos, 9%; 13-24 mos, 25%; > 24 mos, 66%, at diagnosis)	III, 19%; IV, 81%	Abdominal, 88%; Other, 12%

Study (Investigator, country, year)	Dis- ease	Re- cord Num- ber	Gro up (N)	Stem Cell Source	Type of HSCT	Prior Treat- ment	Condi- tioning Regimen	Immunosuppressive therapy for GVHD prophylaxis	Suppo rtive Care	Compara- tive Treatment	Comparative Treatment Dose/Regi- men	Com- ment
Berthold, Germany, 2005	Neuro blasto ma	6760	149	PBSC	single auto	3 cycles of chemo (cisplati n and etoposi de); vindesin e; 3 cycles of vincristi ne and dacarba zine; ifosfami de; doxorub icin; radiothe rapy; surgery	melphala n; etoposide ; carboplati n; (dose and drug adjustme nts in 6 patients)	chimeric monoclonal antibody; retinoic acid after Nov 2002	drugs given to control pain and allergic reactio ns during immun othera py	maintenan ce chemothe rapy	oral cyclophosph amide	
George, USA, 2006	Neuro blasto ma	5440	82	PBSC	tande m auto auto	5 cycles of chemo (multi- agents); surgery after 4th or 5th cycle; radiothe rapy	high-dose chemo (etoposid e, cyclophos phamide, carboplati n, melphala n); total body irradiation	13-cis-retinoic acid				

Appendix Table C44. Treatment characteristics: Neuroblastoma

Study (Investigator, country, year)	Dis- ease	Re- cord Num- ber	Gro up (N)	Stem Cell Source	Type of HSCT	Prior Treat- ment	Condi- tioning Regimen	Immunosuppressive therapy for GVHD prophylaxis	Suppo rtive Care	Compara- tive Treatment	Comparative Treatment Dose/Regi- men	Com- ment
Hobbie, USA, 2008	Neuro blasto ma	1690	13	PBSC	tande m auto auto	5 cycles of chemo; surgery after 4th or 5th cycle; radiothe rapy	high-dose chemo (etoposid e, cyclophos phamide, carboplati n, melphala n) and total body irradiation	13-cis-retinoic acid				
Kim, South Korea, 2007	Neuro blasto ma	2870	36	PBSC	tande m auto auto, 25%; single auto, 75%	4-5 cycles of chemo (cisplati n, VP- 16, doxorub icin, cycloph ospham ide); surgery; radiothe rapy and chemo	MEC (melphala n, etoposide , carboplati n), 65% (N=46 procedur es); no total body irradiation	interleukin-2; 13-cis- retinoic acid				single- auto group consiste d of CD34+ non- selected arm (n=13, 36%) and CD4+ selected arm (n=14, 39%)

Study (Investigator, country, year)	Dis- ease	Re- cord Num- ber	Gro up (N)	Stem Cell Source	Type of HSCT	Prior Treat- ment	Condi- tioning Regimen	Immunosuppressive therapy for GVHD prophylaxis	Suppo rtive Care	Compara- tive Treatment	Comparative Treatment Dose/Regi- men	Com- ment
Ladenstein, EGBMT, 2008	Neuro blasto ma	1610	335 0	BM, 41%; 3%, BM+PB SC; PBSC, 56% (n=329 5)	tande m auto auto, 14%; single auto, 86%	not specifie d 1-4 cycles of chemo (various agents); surgery; radiothe rapy; total body irradiati on (33%)	busulfan; melphala n; cyclophos phamide; thiotepa; total body irradiation (14%, n=2,333) 1-4 cycles of chemo (various agents); melphala n (81%); total body irradiation (34%)					auto- transpla nt group
Matthay, US, 2009; 1999	Neuro blasto ma	6210	189	ВМ	single auto	5 cycles of chemo (cisplati n; doxorub icin; etoposi de; cycloph ospham ide); radiothe rapy; surgery	carboplati n; etoposide ; melphala n; total body irradiation	retinoic acid (n=50)	growth factors	conventio nal therapy	3 cycles of cisplatin; etoposide; doxorubicin; ifosfamide; mesna	

Study (Investigator, country, year)	Dis- ease	Re- cord Num- ber	Gro up (N)	Stem Cell Source	Type of HSCT	Prior Treat- ment	Condi- tioning Regimen	Immunosuppressive therapy for GVHD prophylaxis	Suppo rtive Care	Compara- tive Treatment	Comparative Treatment Dose/Regi- men	Com- ment
Pritchard, United Kingdom, 2005	Neuro blasto ma	8030	32	ВМ	single auto	vincristi ne; cycloph ospham ide; cisplatin ; teniposi de; surgery (no radiothe rapy)	melphala n		nutritio nal supple ments	no further therapy		

Study (Investigator, country, year)	Dis- ease	Re- cord Num- ber	Gro up (N)	Stem Cell Source	Type of HSCT	Prior Treat- ment	Condi- tioning Regimen	Immunosuppressive therapy for GVHD prophylaxis	Suppo rtive Care	Compara- tive Treatment	Comparative Treatment Dose/Regi- men	Com- ment
Sung, South Korea, 2007	Neuro blasto ma	3950	52	PBSC	tande m auto auto, 88%; single auto, 12%	1997- 2003: 5- 7 cycles of chemot herapy; surgery; radiothe rapy (if tumor remaine d post- surgery) ; 1-3 cycles of chemot herapy if no tumor or 3-5 cycles of chemo if tumor evident 2004- 2005: 6 cycles of chemo; surgery; 3-4 cycles of chemo	1997- 2003: high-dose chemo 2004- 2005: chemo and total body irradiation	13-cis-retinoic acid and interleukin-2				

Study (Investigator, country, year)	Dis- ease	Re- cord Num- ber	Gro up (N)	Stem Cell Source	Type of HSCT	Prior Treat- ment	Condi- tioning Regimen	Immunosuppressive therapy for GVHD prophylaxis	Suppo rtive Care	Compara- tive Treatment	Comparative Treatment Dose/Regi- men	Com- ment
Sung, Korea, 2010	Neuro blasto ma	2433	71	PBC	Tand em	Inductio n and consolid ation; total body irradiati on	see Table 1 in article		13-cis- retinoic acid; interle ukin-2; local radioth erapy	Single	single PBC	

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	Secondary Outcomes	F/U Frequency/Duration	Comment
George, USA, 2006	5440	82	OS; PFS	secondary malignancies	5.6-yr (15.1 mos-9.9-yr)	
Hobbie, USA, 2008	1690	13	Endocrine; Sensory; Musculoskeletal; Pulmonary; GI; Dental; Renal; Cardiovascular; Secondary malignancies		9-yr since diagnosis	
Kim, South Korea, 2007	2870	9 (tandem auto auto)	OS; DFS		27 mos (1-93) from transplant; 42 mos (11-103) from diagnosis	
Ladenstein, EGBMT, 2008	1610	455	OS; EFS		5-yr	tandem auto auto
Sung, South Korea, 2007	3950	50	OS; EFS	SM; TRM; Other	53 mos (19 mos-117 mos)	
Sung, Korea, 2010	2433	71	EFS	TRM; Secondary malignancies	5 years	

Appendix Table C45. Outcome assessment: Treatment, neuroblastoma

Appendix Table C46. Outcome assessment: Comparator, neuroblastoma

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	Secondary Outcomes
Bernstein, USA/Canada 2006	6290	110	EFS	OS
Kushner, USA, 1995	21430	24	PFS	
Milano, Italy, 2006	43290	36	EFS OS	
Sari, Turkey, 2010	42790	36	EFS OS	
van Winkle, USA, 2005	43550	22	OS	

Appendix Table C47	Time to event outcomes:	Treatment	neuroblastoma
			, nour opraotorna

Study (Investigator, country, year)	Record Number	Group (N)	Outco me	3 yr	4 yr	5 yr	Test	р	Outcome _2	3 yr_2	5 yr_2	Test_2	p_2
George, USA, 2006	5440	82	time of 1st transpla nt to death	74 (62- 82)		64 (52- 74); 7-yr, 54 (38- 67)	Kapla n- Meier		PFS, time from date of 1st transplant to progressi on or relapse of primary tumor or death	61 (50- 71)	54 (42- 64); 7- yr, 52 (40- 63)	Kaplan -Meier	
Kim, South Korea, 2007	2870	9	OS	66.7 (19. 3)			Kapla n- Meier	NS compar ed to CD34+ selecte d single- auto arm	DFS	50 (20.4)		Kaplan -Meier	p = 0.50 (NS) compar ed to CD34+ selecte d single- auto arm
Ladenstein, EGBMT, 2008	1610	455	OS			33 (3)		0.10	EFS		27 (2)		0.19
Sung, South Korea, 2007	3950	52	OS			64.3 (14. 3)	Kapla n- Meier (log- rank)		EFS		62.1 (13.7)	Kaplan -Meier	
Sung, Korea, 2010	2433	71							EFS		51.2% (12.4 %)	intentio n-to- treat	0.03

Study (Investigator, country, year)	Record Number	Group (N)	Outco me	3 yr	5 yr	Test	р	HR (95%) Cl	Outcom e_2	3 yr_ 2	5 yr_ 2	Test _2	p_2	HR (95% CI)_2
Berthold, Germany, 2005	6760	149	death from any cause or until last exam if patient survive d	62 (54- 70)		Kapl an- Meie r (log- rank)	0.09	1.329 (0.958- 1.843)	EFS; time until disease progres sion or relapse, a 2nd neoplast ic disease, or death from any cause or until last exam	47 (38- 55)		Kapl an- Meie r (log- rank)	0.02	1.404 (1.048- 1.881)
Kim, South Korea, 2007	2870	14	os	55.1 % (+/- 13.9)		Kapl an- Meie r			DFS	40.6 % (+/- 14.7)		Kapl an- Meie r		
Ladenstein, EGBMT, 2008	1610	2895	os		38 (1)				EFS		33 (1)			
Matthay, US, 2009; 1999	6210	189	definiti on not mentio ned		39 (4 %)	log- rank	0.39 (compa red to control s)		EFS		30 (4)	log- rank	0.04 (compa red to control s)	
Pritchard, United Kingdom, 2005	8030	32	time to death from any cause		47 (30 - 64)	log rank	0.1		EFS		38 (21- 54)	log- rank	0.08	

Appendix Table C48. Time to event outcomes: Comparator, neuroblastoma

Appendix Table C49. Time to event outcomes: Regression modeling, neuroblastoma

Study (Investi- gator, country, year)	Recor d Num- ber	Design/Outcom e/ Model	Candidate predictors/Method s for Identifying Candidates	Univariat e Results, Variable (p value)	Selected Predictors/Method s for Selecting predictors Multivar	Proportional Hazards Assumption Assessed?/Interaction s Considered	Multivariat e Model Results, Variable (p Value)	Discrimination/Validatio n Methods/Results
Ladenstein , EGBMT, 2008	1610	Cox proportional hazards	OS: age at transplant (< 2 yr vs. > 2-yr)				Hazards Ratio (95% Cl, p- value): 1.6 (1.4-1.9; < 0.0001)	significantly better OS rates in patients less than 2 years of age at diagnosis
Sung, South Korea, 2007	3950	Cox proportional hazards	EFS	EFS (< 0.05)	application of TBI, application of local radiotherapy, longer interval (>= 12 weeks) between 1st and 2nd transplant.	Yes	Hazards Ratio (95% Cl, p- value): EFS, 9.66, 7.17, 5.73; 1.31- 71.26, 1.69- 30.38, 1.32- 24.88; 0.026, 0.007, 0.020	EFS, application of TBI and local radiotherapy, and longer interval between transplants being favorable predictors.

Study (Investigator, country, year)	Record Number	Grou p (N)	Severity or Grade Infection	%	% Engraftment Failure	% TRM	Severity or Grade Secondary Malignancies	F/U (mos) SM	% SM	Commen ts SM
Burdach, Germany and Austria, 2000	14310	28								
Burdach, Germany, 2003	10030	report ed engr, TRM, infec compl , sec malig, and major organ tox, but not by age of < or > 17 vrs								
Burke, USA 2007	4060	7	sepsis n=1		0	0				
Costa, USA, 2008	1710	1			0	0	AML at 53 months post HSCT			
Drabko, Poland 2005	6680	21				5% (n=1 day 35 from multio rgan failure secon dary to infecti on)				
Hara , Japan 1998	17950	3				0 ŃR				
Harimaya, Japan, 2003	9850	2			0	0				
Kasper, Germany, 2006	2570	5			0	0				

Appendix Table C50. Adverse events: Treatment, neuroblastoma
Study (Investigator, country, year)	Record Number	Grou p (N)	Severity or Grade Infection	%	% Engraftment Failure	% TRM	Severity or Grade Secondary Malignancies	F/U (mos) SM	% SM	Commen ts SM
Koscielniak Germany 2005	7860				0	0				
Kushner, USA, 2001	14240	1 HSCT pt died at 17 mos after HSCT with NED but pulmo nary failure								
Lucas, USA 2008	2450	1			0	0				
Lucidarme, France, 1998	17610	3				0 (NR)				
Meyers, USA, 2001	13670		sepsis leading to death	4% n=1 pati ent fro m HS CT gro up (incl in TR M)		of HSCT group n=23 n=3 13%				
Navid, US and Canada, 2006	5930	9		,	0	0				
Numata, Japan, 2002	12130				0	0	CML chronic phase	50 months after HSCT		

Study (Investigator, country, year)	Record Number	Grou p (N)	Severity or Grade Infection	%	% Engraftment Failure	% TRM	Severity or Grade Secondary Malignancies	F/U (mos) SM	% SM	Commen ts SM
Ozkaynak, USA 1998	18540	15			0 (one patient not assessable secondary to early toxic death)	n=2 ATN day 0 and septic shock day 8				
Pession, Italy, 1999	16120	3				0 NR				
Prete, Italy 1998	17210	17				0				
Tanaka, Japan, 2002	11770			0		0	CML		14 %	not clear if the 35 y/o pt or one of the 6 abstracte d pts
Sung, Korea, 2010	2433	71				3% (5 years F/U)		5 years	0	Thyroid cancer in patient receiving only the first HSCT

Study (Investigator, country, year)	Record Number	% Hepatic veno-occlusive disease (Hepatic Sinusoidal Obstruction)	Comments hVOD	Severity or Grade SHE	% SHE							
Drabko, Poland 2005	6680	10%	moderate to severe									
Meyers, USA, 2001	13670			HSCT pt died from hemorrhagic pericarditis (included in TRM)	4%							

Appendix Table C50. Adverse events: Treatment, neuroblastoma Continued

Appendix Table C51. Adverse events: Comparator, neuroblastoma

Study (Investigator, country, year)	Record Number	Group (N)	Severity or Grade Infection	%	Severity or Grade Secondary Malignancies	F/U (mos) SM	% SM
Bernstein, USA/Canada 2006	6290		death	5 of 110 (4.5%)	MDS	at 20 mos after dx	1/110 1%
Bhatia,USA, 2007	43210						cumulative incidence of t- MDS/AML of 11% at 5 yrs from dx
Kushner, USA, 1995	21430	24			leukemia dead at 10.5 mos after HSCT in CR from ESFT		4
Meyers, USA, 2001	13670	9 nonHSC T		11% sepsis during induction CT			
Sari, Turkey, 2010	42790	36					0%

Study (Investigator, country, year)	Record Number	Indication	Dis ease	Therapeutic Setting	Grou p (N)	Participant Selection (Treatment Period)	Design	n, Evaluat ed	n, Withdrawn (Lost to F/U)	Comment
Agarwal, USA, 2009	72940	Malignant Non- Hematopoi etic	Germ cell tumor	Relapsed	37	1995-2005	case series	37	0	
Lazarus, USA, 2007	72950	Malignant Non- Hematopoi etic	Germ cell tumor	Relapsed	32	1989-2001	retrospe ctive analysis of CIBMT R data	32	0	20 tandem; 12 single; based on data from the CIBMTR on childhood cohort
De Giorgi, UK, 2005	77240	Malignant non- hematopoi etic	Germ cell tumor s	Relapsed	18	1987-2003	cohort	18		
Einhorn, USA, 2007	77230	Malignant non- hematopoi etic	Germ cell tumor s	Relapsed	17	1996-2004	Case series	17	0	Pediatric data from author; N=184

Appendix Table C52. Design, participant selection and enrollment: Germ cell tumor

Appendix Table C53. Participant characteristics: Treatment, germ cell tumor

Study (Investigator, country, year)	Record Number	Group (N)	Age (mean)	Age (median)	Age (Range)	Gender M, F (%)	Disease Stage/category	Disease Histology/Site (%)
Lazarus, USA, 2007	72950	20		20	17-20		Testes (100)	NS (67); SM (0); CC (0); EB (33); Other (0)
Einhorn, USA, 2007	77230	17		20	17-21		NS (81); SM (19)	Testes

Study (Investigator, country, year)	Record Number	Group (N)	Age (median)	Age (Range)	Gender M, F (%)	Disease Stage/category	Disease Histology/Site (%)	Comment
Agarwal, USA, 2009	72940	37	28	9-59	M (92)	Testes (65); Chest/Neck/RP (27); CNS (8)	NS (84); SM (16)	4 (11%) pediatric patients (0-19 yrs)
Lazarus, USA, 2007	72950	12	19	15-20		Testes (90); Extragonadal (10)	NS (53); SM (21); CC (16); EB (5); Other (5)	
De Giorgi, UK, 2005	77240	18	6.5	1-18	M (56)	CNS (39); Sacr (39); Retro (17); Med (6)	NG (94); GM (6)	

Appendix Table C54. Participant characteristics: Comparator, germ cell tumor

Study (Investigator, country, year)	Record Number	Grp (N)	Stem Cell Source	Type of HSCT	Prior Treatment	Condition- ing Regimen	Immunosuppress ive therapy for GVHD prophylaxis	Compara- tive Treatment	Comparative Treatment Dose/Regimen
Agarwal, USA, 2009	72940	37	PBSC	single auto	4 cycles of cisplatin-based chemotherapy (n=29); additional chemotherapy (n=8)	etoposide; carboplatin	(G-CSF)		
Lazarus, USA, 2007	72950	32	BM, 14%; PBC, 74%; BM+PBS C, 12%	Tande m auto auto vs. single auto	(n=100) BEP, 66%; EP, 14%; PVB, 5%; VAB, 0%; Other, 5%; no chemotherapy, 10% - (n=102) surgery, 89% (n=102) 1-5 cycles of chemotherapy, 32%; 6-10 cycles, 56%; >= 11 cycles, 7%; no chemotherapy, 1%	3 drugs, 53%; 2 drugs, 45%; 1 drug, 2%		single auto: BM, 30%; PBSC, 61%; BM+PBSC, 9%	Prior treatment: (n=196) BEP, 60%; EP, 15%; PVB, 9%; VAB, 1%; Other, 7%; no chemotherapy, 8% - surgery, 87% (n=197) 1-5 cycles of chemotherapy, 23%; 6-10 cycles, 62%; >= 11 cycles, 12%; no chemotherapy, 1%
De Giorgi, UK, 2005	77240	18	PB; BM	single HSCT	standard-dose chemotherapy	CarboPEC; CE; TE; CarboPETM; Other			
Einhorn, USA, 2007	77230	17	РВ	tandem HSCT	standard-dose chemotherapy	2 cycles of carboplatin plus etoposide			

Appendix Table C55. Treatment characteristics: Germ cell tumor

Appendix Table C56. Outcome assessment: Treatment, germ cell tumor

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	Secondary Outcomes	Independent Response Assessor	F/U Frequency/Duration
Lazarus, USA, 2007	72950	20	OS; EFS	TRM; other	No	1-yr; 3-yr; 5-yr
Einhorn, USA, 2007	77230	17	OS; DFS			4 years

Appendix Table C57. Outcome assessment: Comparator, germ cell tumor

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	Secondary Outcomes	Independent Response Assessor	F/U Frequency/Duration
Agarwal, USA, 2009	72940	4	EFS; OS	TRM; 2nd malignancies; other effects		3-yr
Lazarus, USA, 2007	72950	12	OS; PFS	TRM; other effects	No	1-yr; 3-yr; 5-yr
De Giorgi, UK, 2005	77240	18	OS; EFS	TRM; other		1-3-5 yr

Appendix Table C58, Time to event outcomes: Treatment, germ cell tumor

Study (Investigator, country, year)	Record Number	Group (N)	Outcome	1 yr	2 yr	3 yr	4 yr	5 yr	Outcome_2	3 yr_2	5 yr_2
Lazarus, USA, 2007	72950	20	OS	67 (34- 86)		42 (15- 67)		36 (10- 59)	EFS	49 (27- 72)	
Einhorn, USA, 2007	77230	17	OS	76.5 (59- 99.5)		63 (43- 92)		63 (43- 92)	EFS		52 (11)

Study (Investigator, country, year)	Record Number	Group (N)	Outcome	1 yr	3 yr	5 yr	Outcome_2	1 yr_2	3 yr_2	5 yr_2	Test_2
Agarwal, USA, 2009	72940	4 (0-19 yrs)	OS		50 (7- 93)		EFS		50 (7- 93)		log- rank
Lazarus, USA, 2007	72950	12	interval between transplant and death from any cause	65 (40- 82)	49 (24- 68)	49 (24- 68)	PFS, survival without recurrence or cancer progression, as measured by exam, radiographs, and/or an increase in serum cancer markers (n=195)	60 (36- 78)	49 (26- 69)	49 (26- 69)	
De Giorgi, UK, 2005	77240	18	OS	67 (45- 88)	56 (33- 78.5)	49 (25- 72)	DFS	50 (26- 74.5)	50 (26- 74.5)	50 (26- 74.5)	

Appendix Table C59. Time to event outcomes: Comparator, germ cell tumor

Study (Investigator, country, year)	Record Number	Group (N)	Severity or Grade Infection	%	% Engraftment Failure	% TRM
Burdach, Germany and Austria, 2000	14310	28				
Burdach, Germany, 2003	10030	reported engr, TRM, infec compl, sec malig, and major organ tox, but not by age of < or > 17 yrs				
Burke, USA 2007	4060	7	sepsis n=1		0	0
Costa, USA, 2008	1710	1			0	0
Drabko, Poland 2005	6680	21				5% (n=1 day 35 from multiorgan failure secondary to infection)
Hara , Japan 1998	17950	3				0 NR
Harimaya, Japan, 2003	9850	2			0	0
Kasper, Germany, 2006	2570	5			0	0
Koscielniak Germany 2005	7860				0	0
Kushner, USA, 2001	14240	1 HSCT pt died at 17 mos after HSCT with NED but pulmonary failure				
Lucas, USA 2008	2450	1			0	0
Lucidarme, France, 1998	17610	3				0 (NR)
Meyers, USA, 2001	13670		sepsis leading to death	4% n=1 patient from HSCT group (incl in TRM)		of HSCT group n=23 n=3 13%
Navid, US and Canada, 2006	5930	9			0	0
Numata, Japan, 2002	12130				0	0
Ozkaynak, USA 1998	18540	15			0 (one patient not assessable secondary to early toxic death)	n=2 ATN day 0 and septic shock day 8
Pession, Italy, 1999	16120	3				0 NR
Prete, Italy 1998	17210	17				0
Tanaka, Japan, 2002	11770			0		0

Appendix Table C60. Adverse events: Treatment, germ cell tumor

Study (Investigator, country, year)	Record Number	Severity or Grade SM	F/U (mos) SM	% SM	Comments SM	Group (N)_7	% Hepatic veno- occlusive disease (Hepatic Sinusoidal Obstruction)	Comments hVOD	Severity or Grade SHE	% SHE
Costa, USA, 2008	1710	AML at 53 months post HSCT								
Drabko, Poland 2005	6680						10%	moderate to severe		
Meyers, USA, 2001	13670								HSCT pt died from hemorrhagic pericarditis (included in TRM)	4%
Numata, Japan, 2002	12130	CML chronic phase	50 months after HSCT							
Tanaka, Japan, 2002	11770	CML		14%	not clear if the 35 y/o pt or one of the 6 abstracted pts	1 of 7				

Appendix Table C60. Adverse events: Treatment, germ cell tumor Continued

Study (Investigator, country, year)	Record Number	Group (N)	Severity or Grade Infection	%	Severity or Grade Secondary Malignancy	F/U (mos) SM	% SM
Bernstein, USA/Canada 2006	6290		death	5 of 110 (4.5%)	MDS	at 20 mos after dx	1/110 1%
Bhatia,USA, 2007	43210						cumulati ve incidenc e of t- MDS/AM L of 11% at 5 yrs from dx
Kushner, USA, 1995	21430	24			leukemia dead at 10.5 mos after HSCT in CR from ESFT		4
Meyers, USA, 2001	13670	9 nonHSC T		11% sepsis during inducti on CT			
Milano, Italy, 2006	43290						
Sari, Turkey, 2010	42790	36					0%
van winkle, USA, 2005	43550						

Appendix Table C61. Adverse events: Comparator, germ cell tumor

Study (Investigator, country, year)	Record Number	Indication	Disease	Therapeutic Setting	Group (N)	Participant Selection (Treatment Period)	Design	n, Evalu- ated	n, Withdrawn (Lost to F/U)
Chi, USA, 2004	7900	Malignant non- hematopoi etic	CNS Embryonal Tumors	Initial therapy	21	1997-2003	Case series	21	0
Dhall, USA/Australia/Argen tina, 2008	52130	Malignant non- hematopoi etic	CNS Embryonal Tumors	Initial therapy	21	1991-2002	Case series	21	0
Fangusaro, USA, 2008	3420	Malignant non- hematopoi etic	CNS Embryonal Tumors	Initial therapy	43	1991-2002	Case series	43	0
Gardner, USA/Australia, 2008	71930	Malignant non- hematopoi etic	CNS Embryonal Tumors	Initial therapy	13	1992-2002	Case series	13	0
Geyer, USA, 2005	73920	Malignant non- hematopoi etic	CNS Embryonal Tumors	Initial therapy	299	1993-1997	RCT	284	15
Gidwani, USA, 2008	71940	Malignant non- hematopoi etic	CNS Embryonal Tumors	Initial therapy	1		Case report	1	0
Packer, USA, 2006	77250	Malignant non- hematopoi etic	CNS Embryonal Tumors	Initial therapy	421	1996-2000	RCT	379	42
Perez-Martinez, Spain, 2005	70470	Malignant non- hematopoi etic	CNS Embryonal Tumors	Initial therapy	13	1995-2002	Case series	13	0
Sung, Korea, 2007	4770	Malignant non- hematopoi etic	CNS Embryonal Tumors	Initial therapy	14 (11 tande m; 3 single)	1999-2005	Case series	14	
Taylor, UK, 2005	52760	Malignant non- hematopoi etic	CNS Embryonal Tumors	Initial therapy	68	1992-2000	Case series	68	0

Appendix Table C62. Design, participant selection and enrollment: Embryonal tumors

Study (Investigator, country, year)	Record Number	Indication	Disease	Therapeutic Setting	Group (N)	Participant Selection (Treatment Period)	Design	n, Evalu- ated	n, Withdrawn (Lost to F/U)
Aihara, Japan, 2010	2008	Malignant non- hematopoi etic	CNS Embryonal Tumors (MB)	Initial therapy	3		Case report	3	0
Badopadhayay, Australia, 2011	92	Malignant non- hematopoi etic	CNS Embryonal Tumors	Initial therapy	33	1999-2005	Case series	18	15

Appendix Table C63. Participant characteristics: Treatment, embryonal tumors

Study (Investigator, country, year)	Record Number	Group (N)	Age (mean)	Age (median)	Age (Range)	Gender M, F (%)	Disease Stage/category	Disease Histology/Site (%)
Chi, USA, 2004	7900	21		38 months	7-119	76% M	M1 (19); M2 (9.5); M3 (71)	МВ
Dhall, USA/Australia/Argentina, 2008	52130	21		21 months	5-35 months	50% M	МО	МВ
Fangusaro, USA, 2008	3420	43		37 months	0-120 months	51% M	M0 (82); M1-M3 (18)	PNET
Gardner, USA/Australia, 2008	71930	13		35 months	4-52 months	54% M	M0 (77); M1 (8); M3 (15)	AT/RT
Gidwani, USA, 2008	71940	1	(4 months)			100% M	M0	AT/RT
Perez-Martinez, Spain, 2005	70470	13		3 months	1-14 months	61.5% M	M1-M4 (NR)	MB (69); PNET (31)
Sung, Korea, 2007	4770	14		51.5 months	17-198 months	50% M	M0 (64); M1 (7); M3 (29)	MB (79); PNET (21)
Aihara, Japan, 2010	2008	3		12 years	7-13 yrs	100% M	М3	Medulloblastoma (MB)
Badopadhayay, Australia, 2011	92	33		20.5 months	3-37 months	61% M	Grade 3-4	MB (27%); AT/RT (18%); PNET (3%)

Study (Investigator, country, year)	Record Number	Group (N)	Age (median)	Age (Range)	Gender M, F (%)	Disease Stage/category	Disease Histology/Site (%)
Geyer, USA, 2005	73920	284		0-36 months	57% M	M0 (75); M1+ (25)	MB (32); PNET (16); AT/RT (10); Other (41)
Packer, USA, 2006	77250	379		36-252 months	59% M	МО	MB
Taylor, UK, 2005	52760	68	94 months	34-197 months	29% M	M2 (19); M3 (81)	MB

Appendix Table C64. Participant characteristics: Comparator, embryonal tumors

Study (Investigator, country, year)	Record Number	Group (N)	Stem Cell Source	Type of HSCT	Prior Treatment	Conditioning Regimen	Supportive Care
Chi, USA, 2004	7900	21	РВ	single	surgery; chemotherapy	carboplatin; thiotepa; etoposide	IV antibiotics; antifungal agents
Dhall, USA/Australia/Argentina, 2008	52130	21	BM; PB	single	surgery; chemotherapy	carboplatin; thiotepa; etoposide	
Fangusaro, USA, 2008	3420	43	BM; PB	single	surgery; chemotherapy	carboplatin; thiotepa; etoposide	radiotherapy for greater/= 6 years of age (37%)
Gardner, USA/Australia, 2008	71930	13		single	surgery; chemotherapy	carboplatin; thiotepa; etoposide	31% radiation
Gidwani, USA, 2008	71940	1	РВ	tandem	surgery; chemotherapy	carboplatin-thiotepa- etoposide; busulfan- melphalan-thiotepa	
Perez-Martinez, Spain, 2005	70470	13	РВ	single	surgery; chemotherapy; radiation	busulfan-melphalan; busulfan-thiotepa	clonazepam; antibiotics; nutritional support
Sung, Korea, 2007	4770	14	PB (92%); BM (8%)	Tandem (79%); Single (21%)	surgery, radiotherapy and/or chemotherapy	cyclophosphamide; melphalan; carboplatin-thiotepa- etoposide for 2nd transplant	43% post- radiotherapy prior to HSCT
Aihara, Japan, 2010	2008	3	PBC	Tandem	surgery; radiotherapy and chemotherapy	ICE	
Badopadhayay, Australia, 2011	92	33	BM/PBC	Single	Induction chemotherapy with stem-cell support	Carboplatin; melphalan	care for febrile neutropenia

Appendix Table C65. Treatment characteristics: Embryonal tumors

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	Secondary Outcomes	F/U Frequency/Duration
Chi, USA, 2004	7900	21	OS; EFS	TRM	40-48 months
Dhall, USA/Australia/Argentina, 2008	52130	21	OS; EFS	QOL; TRM	
Fangusaro, USA, 2008	3420	43	OS; EFS	TRM; SM; Other	5 years
Gardner, USA/Australia, 2008	71930	13	OS; EFS	TRM; Other	54 months
Gidwani, USA, 2008	71940	1	OS; DFS	SM; Other	2 years
Perez-Martinez, Spain, 2005	70470	13	EFS	TRM; SM; Other	34 months (5-93)
Sung, Korea, 2007	4770	14	OS; EFS	TRM; SM; Other	up to 5 years
Aihara, Japan, 2010	2008	3	EFS (complete remission)		40-41 months
Badopadhayay, Australia, 2011	92	33	OS		5 years

Appendix Table C66. Outcome assessment: Treatment, embryonal tumors

Appendix Table C67. Outcome assessment: Comparator, embryonal tumors

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	Secondary Outcomes	F/U Frequency/Duration
Geyer, USA, 2005	73920	284	OS; EFS	TRM; SM; Other	6.6 years
Packer, USA, 2006	77250	379	OS; EFS	TRM; SM; Other	5 years
Taylor, UK, 2005	52760	68	OS; EFS	TRM; Other	7.2 years

Study (Investigator, country, year)	Record Number	Group (N)	Outcome	2 yr	3 yr	4 yr	5 yr	Outcome_2	2 yr_2	3 yr_2	5 yr_2
Chi, USA, 2004	7900	21	OS		60 (36- 84)			EFS		49 (27- 72)	
Dhall, USA/Australia/Argentina, 2008	52130	21	OS				70 (10)	EFS			52 (11)
Fangusaro, USA, 2008	3420	43	OS			49 (33- 62)		EFS			39 (24- 53)
Gardner, USA/Australia, 2008	71930	13	OS		23 (11)			EFS		23 (11)	
Gidwani, USA, 2008	71940	1	OS	Alive				DFS	Disease- free		
Perez-Martinez, Spain, 2005	70470	13	OS					EFS	57 (15)		
Sung, Korea, 2007	4770	11	OS	82 (59- 100)			82 (59- 100)	EFS	73 (46- 99)	73 (46- 99)	58 (25- 91)
Aihara, Japan, 2010	2008	3						EFS (complete remission)		67% (2/3 patients)	
Badopadhayay, Australia, 2011	92	18		50% MB; 20% AT/RT; 0% PNET			50% MB				

Appendix Table C68. Time to event outcomes: Treatment, embryonal tumors

Study (Investigator, country, year)	Record Number	Group (N)	Outcome_1	2 yr	3 yr	5 yr	Outcome_2	2 yr_2	3 yr_2	5 yr_2
Geyer, USA, 2005	73920	284	OS			43 (3)	EFS			27 (3)
Packer, USA, 2006	77250	379	OS			86 (9)	EFS			81 (2)
Sung, Korea, 2007	4770	3	OS	67 (13- 100)			EFS	67 (13- 100)		
Taylor, UK, 2005	52760	68	OS		50 (38- 62)	44 (32- 56)	EFS		40 (28- 51)	35 (23- 46)

Appendix Table C69. Time to event outcomes: Comparator, embryonal tumors

Appendix Table C70. Quality of life: Embryonal tumors

Study (Investigator, country, year)	Record Number	Group (N)	Scale	Domain	F/U	Group	n	mn+/-sd
Dhall, USA/Australia/Argentina, 2008	52130	21	Parent Form of the Child Health Questionnaire	mean intellectual function and QOL	70 months; 124 months	single	4	within average range

Study (Investigator, country, year)	Record Number	Group (N)	Severity or Grade Infection	%	% Engraftment Failure	% TRM	Severity or Grade SM	F/U (mos) SM	% SM	Comment s SM
Burdach, Germany and Austria, 2000	14310	28								
Burdach, Germany, 2003	10030	reported engr, TRM, infec compl, sec malig, and major organ tox, but not by age of < or > 17 yrs								
Burke, USA 2007	4060	7	sepsis n=1		0	0				
Costa, USA, 2008	1710	1			0	0	AML at 53 months post HSCT			
Drabko, Poland 2005	6680	21				5% (n=1 day 35 from multiorga n failure secondar y to infection)				
Hara , Japan 1998	17950	3				0 NR				
Harimaya, Japan, 2003	9850	2			0	0				
Kasper, Germany, 2006	2570	5			0	0				
Koscielniak Germany 2005	7860				0	0				
Kushner, USA, 2001	14240	1 HSCT pt died at 17 mos after HSCT with NED but pulmonary failure								
Lucas, USA 2008	2450	1			0	0				
Lucidarme, France, 1998	17610	3				0 (NR)				

Appendix Table C71. Adverse events: Treatment, embryonal tumors

Study (Investigator, country, year)	Record Number	Group (N)	Severity or Grade Infection	%	% Engraftment Failure	% TRM	Severity or Grade SM	F/U (mos) SM	% SM	Comment s SM
Meyers, USA, 2001	13670		sepsis leading to death	4% n=1 patient from HSCT group (incl in TRM)		of HSCT group n=23 n=3 13%				
Navid, US and Canada, 2006	5930	9			0	0				
Numata, Japan, 2002	12130				0	0	CML chronic phase	50 months after HSCT		
Ozkaynak, USA 1998	18540	15			0 (one patient not assessable secondary to early toxic death)	n=2 ATN day 0 and septic shock day 8				
Pession, Italy, 1999	16120	3				0 NR				
Prete, Italy 1998	17210	17				0				
Tanaka, Japan, 2002	11770			0		0	CML		14 %	not clear if the 35 y/o pt or one of the 6 abstracted pts

Appendix Table C71. Adverse events: Treatment, embryonal tumors Continued

Study (Investigator, country, year)	Record Number	% Hepatic veno-occlusive disease (Hepatic Sinusoidal Obstruction)	Comments hVOD	Severity or Grade Serious Hemorrhagic Event	% SHE
Drabko, Poland 2005	6680	10%	moderate to severe		
Meyers, USA, 2001	13670			HSCT pt died from hemorrhagic pericarditis (included in TRM)	4%

Study (Investigator, country, year)	Record Number	Group (N)	Severity or Grade Infection	%	Severity or Grade Secondary Malignancies	F/U (mos) SM	% SM
Bernstein, USA/Canada 2006	6290		death	5 of 110 (4.5%)	MDS	at 20 mos after dx	1/110 1%
Bhatia,USA, 2007	43210						cumulati ve incidenc e of t- MDS/A ML of 11% at 5 yrs from dx
Kushner, USA, 1995	21430	24			leukemia dead at 10.5 mos after HSCT in CR from ESFT		4
Meyers, USA, 2001	13670	9 nonHSC T		11% sepsis during induction CT			
Milano, Italy, 2006	43290						
Sari, Turkey, 2010	42790	36					0%
van winkle, USA, 2005	43550						

Appendix Table C72. Adverse events: Comparator, embryonal tumors

Study (Investiga- tor, country, year)	Re- cord Numb er	Indication	Dis- ease	Therapeutic Setting	Group (N)	Partici- pant Selection (Treat- ment Period)	Design	n, Evaluate d	n, Withdrawn (Lost to F/U)	Comment
Ayan, Turkey, 1995	74690	Malignant Non- hematopoiet ic	Glial	Newly diagnosed, high-risk	Anaplastic ependymoma 4	January 1990 - May 1991	Case series	4	1 patient lost to follow up at 9 months, had no response to treatment	
Berger, France, 1998	75380	Malignant non- hematopoiet ic	glial	Newly Diagnosed	HSCT Choroid plexus tumor (2) Conventional Therapy Choroid plexus tumor (20)	1984- 1995	Case series	22	0	
Bertolone, United States, 2003	10380	Malignant Non- Hematopoie tic	Glial	Patients with no previous CHM or RT who had been histopathologically confirmed to have a high-grade astrocytoma after surgical resection	18	April 1985 - May 1990	Randomized trial with non randomized infant component	18	0	4 patients were excluded due to consensus pathology diagnosis, 1 juvenile pilocytic astrocytoma 2 low-grade astrocytoma and 1 medulloblastom a
Bouffet, France, 1997	78760	Malignant Non- Hematopoie tic	Glial	Recurrent	5	NR	Case Series	5	0	13 children with high grade glioma were enrolled in this study. 8 were newly diagnosed and exclude while 5 were recurrent after induction chemotherapy

Appendix Table C73. Design, participant selection and enrollment: Glial tumors

Study (Investiga- tor, country, year)	Re- cord Numb er	Indication	Dis- ease	Therapeutic Setting	Group (N)	Partici- pant Selection (Treat- ment Period)	Design	n, Evaluate d	n, Withdrawn (Lost to F/U)	Comment
Bouffet, France, 2000	78770	Malignant Non- hematopoiet ic	Glial	Newly diagnosed pontine glioma	36	March 1990-?	Case series	24	12	
Busca, Italy, 1997	73190	Malignant Non- hematopoiet ic	Glial	Malignant recurrent or progressive CNS tumor	Ependymoma 2, Anaplastic Astrocytoma 1, Glioblastoma Multiforme 2, Oligodendroglio ma 1	May 1991 - August 1996	Case series	6	0	Preliminary results of the present study indicate that children with both recurrent and newly diagnosed brain tumors may benefit from high-dose chemotherapy
Conter, France, 2009	73540	Malignant Non- hematopoiet ic	Glial	Varied	Ependymoma 24	Novembe r 1996 - Decembe r 2002	Retrospectiv e case series	24	0	
Doireau, France, 1998	55990	Malignant Non- Hematopoie tic	Glial	Recurrent or unresectable tumors	8	May 1992 - January 1998	Case series	8	1 dead of disease	
Dunkel, United States, 1998	78780	Malignant Non- Hematopoie tic	Glial	Recurrent	10	NR	Case Series	10	0	16 patients were enrolled in this study, 6 were excluded based on newly diagnosed pontine tumors with no previous therapy

Study (Investiga- tor, country, year)	Re- cord Numb er	Indication	Dis- ease	Therapeutic Setting	Group (N)	Partici- pant Selection (Treat- ment Period)	Design	n, Evaluate d	n, Withdrawn (Lost to F/U)	Comment
Finlay, United States	1300	Malignant Non- Hematopoie tic	Glial	Recurrent Malignant Astrocytoma	27	NR	Quasi- Experimental Study w/ prospective cohort compared to CCG-945 controls	27, 56 control	0	
Grill, France, 1996	73240	Malignant Non- Hematopoie tic	Glial	Recurrent	Ependymoma 16	1988 - 1994	Case Series	16	0	authors suggest the high-dose busulfan- thiotepa combination had little if any activity in refractory or relapsed ependymoma of children. New therapeutic approaches must be evaluated
Grill, France, 2001	74360	Malignant non- hematopoiet ic	Glial	Newly Diagnosed, high grade ependymoma	73	June 1990 - Decembe r 1998	Case Series	73	0	
Grovas, United States, 1999	16600	Malignant Non- hematopoiet ic	Glial	Newly Diagnosed High-Risk	11	1993- 1995	Case series	11	0	
Grundy, United Kingdom, 2007	73750	Malignant non- hematopoiet ic	Glial	Newly Diagnosed, 9 pts metastatic	Ependymoma 89	1992 - 2003	case-series	89	0	

Study (Investiga- tor, country, year)	Re- cord Numb er	Indication	Dis- ease	Therapeutic Setting	Group (N)	Partici- pant Selection (Treat- ment Period)	Design	n, Evaluate d	n, Withdrawn (Lost to F/U)	Comment
Grundy, United States, 2010	51800	Malignant Non- Hematopoie tic	Glial	No prior adjuvant drug or radiotherapy	45	March 1993 - July 2003	Case series	41	4	
Gururangan, United States, 1998	18000	Malignant non- hematopoiet ic	Glial	recurrent	N=7, 1 ependymoma, 4 glioblastoma multiforme, 1 anaplastic astrocytoma, 1 CPC	1989- 1996	Cohort	n=7	0	
Horn, Untied States, 1999	74470	Malignant non- hematopoiet ic	Glial	Varied	Ependymoma 83	1987- 1991	Retrospectiv e case series	83	0	11 center retrospective
Hurwitz, United States, 2001	53330	Malignant Non- Hematopoie tic	Glial	Recurrent or Progressive brain tumors	45	June 1993 - March 1998	Case Series	45	0	75 enrolled 45 eligible based on histology
Jaing, Taiwan, 2004	74030	Malignant Non- hematopoiet ic	Glial	Newly diagnosed high and low grade ependymomas	Ependymoma 46			43	3 excluded due to one death in immediate postoperati ve period and 2 spinal cord tumors. 2 patients were also lost to follow up	

Study (Investiga- tor, country, year)	Re- cord Numb er	Indication	Dis- ease	Therapeutic Setting	Group (N)	Partici- pant Selection (Treat- ment Period)	Design	n, Evaluate d	n, Withdrawn (Lost to F/U)	Comment
Jakacki, United States, 1999	15920	Malignant non- hematopoiet ic	glial	High-dose chemotherapy	11	April 1997 - June 1998	Case series	11	0	Study enrollment stopped early due to concerns about radio- potentiating effects of chemotherapy given concurrently with radiation 1 pt excluded due to age above 21 years
Kobrinsky, United States, 1999	53560	Malignant Non- Hematopoie tic	Glial	Recurrent or unresponsive	42	Decembe r 1988 - February 1992	Case Series	42	0	99 patients enrolled, 42 eligible based on histology glioma
Korones, United States, 2006	52670	Malignant Non- Hematopoie tic	Glial	Recurrent	9	June 2002 - October 2003	Retrospectiv e case series	9	0	2 patients excluded due to being above age 21
Kuhl, Germany, 1998	17700	Malignant Non- hematopoiet ic	Glial	Untreated, newly diagnosed ependymoma	21	1987 - 1991	Phase II trial	10	11	
Macdonald, United States, 2005	55000	Malignant Non- Hematopoie tic	Glial	Newly Diagnosed High-Grade	102	1993- 1998	Randomized Trial	76	11 pts did not complete HDCT due to toxicities	26 patients excluded after central neuroradiograp hic review or pathological review
Mahoney, United States, 1996	73250	Malignant Non- hematopoiet ic	Glial	Recurrent or Progressive	7	Decembe r 1990 - Septemb er 1993	case series	7	0	7 of 19 patients included based on tumor diagnosis

Study (Investiga- tor, country, year)	Re- cord Numb er	Indication	Dis- ease	Therapeutic Setting	Group (N)	Partici- pant Selection (Treat- ment Period)	Design	n, Evaluate d	n, Withdrawn (Lost to F/U)	Comment
Mason, United States, 1998	73180	Malignant Non- hematopoiet ic	Glial	Recurrent	Ependymoma 15	Decembe r 1986 - Novembe r 1993	PII trial	15	0	Given the dismal performance of this regimen in controlling recurrent intracranial ependymoma in children we cannot recommend this approach of invasive chemotherapy with this regimen as an effective strategy for recurrent disease.
Massimino, Italy, 2005	55220	Malignant Non- Hematopoie tic	Glial	Consolidate high- risk	21	August 1996- March 2003	Case series	21	0	*Was in comparator search
Merchant, United States, 2002	74280	Malignant non- hematopoiet ic	Glial	Varied	Ependymoma 64	June 1997 -	PII trial	64	0	
Ozkaynak, United States, 2004	7850	Malignant Non- Hematopoie tic	Glial	Relapsed/Progress ive : Tandem Treatment	6	1995- 2002	Case Series	6	0	Tandem Treatment, not on initial indications for abstraction

Study (Investiga- tor, country, year)	Re- cord Numb er	Indication	Dis- ease	Therapeutic Setting	Group (N)	Partici- pant Selection (Treat- ment Period)	Design	n, Evaluate d	n, Withdrawn (Lost to F/U)	Comment
Robertson, United States, 1998	74630	Malignant non- hematopoiet ic	Glial	High-risk	ependymoma 20, anaplastic ependymoma 12	May 1986 - June 1992	RCT	32	0	High degree of discordance between local institutional diagnoses and centralized review (31% concordance)
Shih, United States, 2008	2530	Malignant Non- Hematopoie tic	Glial	Recurrent	5	1989- 2004	Retrospectiv e case series	5	0	Of 27 initial patients 5 met inclusion criteria for this abstraction (19)
Sio, Italy, 2006	6950	Malignant Non- Hematopoie tic	Glial	Relapsed	14	April 1998 - April 2004	Case series (off-label compassiona te use)	14		52 total patients, 38 excluded based on histology or age > 21
Thorarinsdott ir, United States, 2007	73050	Malignant Non- hematopoiet ic	Glial	Malignant CNS	6	1998 - 2005	Case series	6	0	6 of 15 patients included based on tumor type
Wrede, Germany, 2009	75590	Malignant Non- hematopoiet ic	Glial	Newly Diagnosed	34 CPC	2000- 2008	Case series	29 CPC	5	
Yule, United Kingdom, 1997	18960	Malignant Non- hematopoiet ic	Glial	High-Risk and Recurrent Tandem (?)	5	1993- 1995	Case Series	5	0	8 patients excluded based on tumor histology
Zacharoulis, United States, 2007	73020	Malignant Non- hematopoiet ic	Glial	No previous treatment, confirmed ependymoma	29	1991- 1997 (Head Start 1), 1997 - 2002 (Head Start 2)	Cohort study	29	0	

Study (Investiga- tor, country, year)	Re- cord Numb er	Indication	Dis- ease	Therapeutic Setting	Group (N)	Partici- pant Selection (Treat- ment Period)	Design	n, Evaluate d	n, Withdrawn (Lost to F/U)	Comment
Gilheeney, United States, 2010	2187	Malignant Solid Tumor	High Grade Gliom a	Metastatic or Recurrent Glioma	Anaplastic Astrocytoma (1); Oligoastrocytom a (1); Glioblastoma multiforme (2)	1999- 2002	Case Series	4	0	

Study (Investi- gator, country, year)	Re- cord Num- ber	Group (N)	Age (mea n)	Age (median)	Age (Range)	Age (SD)	Rac e (%)	Gender M, F (%)	Disease Stage/cate gory	Disease Histology/Site (%)	Comment
Berger, France, 1998	75380	Choroid Plexus Carcinoma (2)			24 and 33 months			0, 2 (0, 100)	One patient had spinal metastase s at diagnosis	Both CPC located supratentorially (100)	
Bouffet, France, 1997	78760	5	7	6	3-14		nr	3,2 (60, 40)	All high- grade	1 parieto- occipital, 3 brain stem, 1 thalamus	
Bouffet, France, 2000	78770	24		7 years	3-17 years		NR	15, 21	Diffuse pontine tumor	At least 2/3rd of pts tumor had to be in the pons	these patient characteristic s were reported for the whole patient population and not those evaluated by HDC
Busca, Italy, 1997	73190	Ependymoma 2, Anaplastic Astrocytoma 1, Glioblastoma Multiforme 2, Oligodendrogl ioma 1		11 years for total group of 11 patients,	3-16 years for total group of 11 patients			5, 6 (46, 54%) for total group		Ependymoma 2, Anaplastic Astrocytoma 1, Glioblastoma Multiforme 2, Oligodendrogli oma 1	
Dunkel, United States, 1998	78780	10	7.89	7.9	3.5-14.9		nr	7, 3 (70, 30)	10 High- grade glial malignanci es	Pons	
Finlay, United States	1300	27	NR	8.5	.2-20.0	NR	NR	15,12 (55,45%)	NR	Glioblastoma Multiform 17 (63%) Aplastic Astrocytoma 10 (37%)	

Appendix Table C74. Participant characteristics: Treatment, glial tumors

Study (Investi- gator, country, year)	Re- cord Num- ber	Group (N)	Age (mea n)	Age (median)	Age (Range)	Age (SD)	Rac e (%)	Gender M, F (%)	Disease Stage/cate gory	Disease Histology/Site (%)	Comment
Grill, France, 1996	73240	Ependymoma 16		3 years	.5 to 15 years			8, 8 (50, 50)	2 patients had tumor cells in CSF. 3 WHO low- grade tumors, 13 WHO high- grade tumors	6 Supratentorial, 10 Infratentorial	
Grovas, United States, 1999	16600	11		12years	5-18years		ne	7,4 (63)		11 Glioblastoma multiform (100)	one patient's GBM arose from pilocytic xanthoastrocy toma
Gururanga n, United States, 1998	18000	N=7, 1 cpc, 1 ependymoma , 4 glioblastoma multiforme, 1 anaplastic astrocytoma			Ependymoma 18mo, Anaplastic Astrocytoma 23mo, Glioblastoma multiforme .24, 3.6, 10.8, and 57.6mo		no	Ependymoma 0,1 (0, 100), anaplastic astrocytoma 0, 1 (0,100), Glioblastoma multiforme 2,2 (50, 50)	All patients recurrent	1 ependymoma, 4 glioblastoma multiforme, 1 anaplastic astrocytoma	
Jakacki, United States, 1999	15920	11	7.2 year s	7.2 years	3.1-12.6 years		NR	4, 7 (36, 64)	High grade glial tumor or a diffuse pontine tumor	3 GBM (27), 2 AA (18), 6 Pons (55)	
Mahoney, United States, 1996	73250	Anaplastic Astrocytoma 2, Ependymoma 3, Glioblastoma multiforme 1, Brainstem glioma 1		Anaplastic Astrocytoma 12, Ependymom a 5, Glioblastoma multiforme 15.5, Brainstem Glioma 5	AA (8-16), EP (3-7.5), GBM 15.5, BSG 5			AA 2,0 (100, 0) EP 1,2 (33, 67), GBM 1,0 (100, 0), BSG 0,1 (0, 100)		Anaplastic Astrocytoma 2 (29), Ependymoma 3 (43), Glioblastoma multiforme 1 (14), Brainstem glioma 1 (14)	

Study (Investi- gator, country, year)	Re- cord Num- ber	Group (N)	Age (mea n)	Age (median)	Age (Range)	Age (SD)	Rac e (%)	Gender M, F (%)	Disease Stage/cate gory	Disease Histology/Site (%)	Comment
Mason, United States, 1998	73180	Ependymoma 15	45 mont hs	22 months	5 months - 12 years			8, 7 (53, 47)	9 low- grade ependymo ma (60%), 6 anaplastic (40%)	13 posterior fossa (87%), 2 supratentorial (13%)	
Massimino , Italy, 2005	55220	21	NR	10	3.5-19	NR	NR	7, 14 (33, 67%)	NR, All High- Grade	GBM 10 (48), Anaplastic AST 9 (42), Anaplastic oligodendroglio ma 2 (10) spine 2 (10), Posterior fossa 2 (10), Supratentorial 17 (80)	
Ozkaynak, United States, 2004	7850	6	11.5	11	4.5-18		nr	3,3 (50, 50)	Progressiv e 3 (50), Recurrent 3 (50)	AA 2 (33), GBM 1 (17), BSG 2 (33), Ependymoma 1 (17)	
Shih, United States, 2008	2530	5	7.8 yrs	7.4 yrs	.4-16.6 yrs		NR	nr	NR	1 EPD, 2 AA, 2 GBM	
Thorarinsd ottir, United States, 2007	73050	Oligodendrogl iomas 1, Ganglioma 1, Anaplastic glioma 3, Ependymoma 1		Oligodendrog liomas 27 months, Ganglioma 25 months, Anaplastic glioma 18 months, Ependymom a 6 months	Oligodendrogl iomas 27 months, Ganglioma 25 months, Anaplastic glioma (9-29) months, Ependymoma 6 months			Oligodendrogli omas 1 male, Ganglioma 1 male, Anaplastic glioma 2 male, 1 female (67, 33), Ependymoma 1 female	All WHO grade III	Oligodendrogli omas right frontal, Ganglioma temporal, Anaplastic glioma 1 c- spine 1 brainstem and one parietal, Ependymoma IV ventricle	

Study (Investi- gator, country, year)	Re- cord Num- ber	Group (N)	Age (mea n)	Age (median)	Age (Range)	Age (SD)	Rac e (%)	Gender M, F (%)	Disease Stage/cate gory	Disease Histology/Site (%)	Comment
Yule, United Kingdom, 1997	18960	5		11.5	10.25	5-14	NR	nr		1 anaplastic ependymoma (25%), 1 recurrent GBM (25), 1 GBM (25), 1 suprasellar gbm (25)	
Zacharouli s, US, 2007	73020	Ependymoma 29	2.3 year s	2.1 years	.7-8.9 years		NR	18, 11 (62, 38)	M0 24 (83), M1 1 (3), M2 0, M3 4 (14)	Posterior fossa 22 (76), supratentorial 7 (24)	
Gilheeney, United States, 2010	2187	Anaplastic Astrocytoma (1); Oligoastrocyt oma (1); Glioblastoma multiforme (2)	AA 7.4 year s; OA 8.9 year s; GBM 11.6	AA 7.4 years; OA 8.9 years; GBM 11.6	AA 7.4 years; OA 8.9 years; GBM 4.4-18.8 years						

Study (Investi- gator, country, year)	Record Num- ber	Group (N)	Age (mean)	Age (median)	Age (Range)	Age (SD)	Race (%)	Gender M, F (%)	Disease Stage/category	Disease Histology/Site (%)	Comment
Ayan, Turkey, 1995	74690	Anaplastic ependymoma 4		12.5 years	5-15 years			3, 1 (75, 25%)	Anaplastic 4 (100%)	frontal lobe 1 (25), temporoparietal- occipital lobe 1 (25%), Multiple parenchymal meningial lesions 1 (25%), Temporoparietal lobe 1 (25%). CSF cytology positive in one patient (25%)	
Berger, France, 1998	75380	Choroid plexus carcinoma (22)		31 mo	4-111 mo			9, 11 (35, 55)	3 patients had metastases at diagnosis (2 spinal/bifocal, 1 bifocal) 4 patients had no metastases and 13 patients had unknown metastases	12 supratentorial (60), 8 infratentorial (40)	
Bertolone, United States, 2003	10380	18		4	<1 year - 16 years		NR	11, 8 (58, 42)		11 Anaplastic Astrocytoma (61), 3 Ependymoma (17), 2 Glioblastoma multiforme (11), 1 Anaplastic mixed glioma (6), 1 anaplastic ganglioglioma (6)	

Appendix Table C75. Participant characteristics: Comparator, glial tumors

Study (Investi- gator, country, year)	Record Num- ber	Group (N)	Age (mean)	Age (median)	Age (Range)	Age (SD)	Race (%)	Gender M, F (%)	Disease Stage/category	Disease Histology/Site (%)	Comment
Conter, France, 2009	73540	Ependymoma 24		8.6 years	5-17 years			16, 8 (67, 33)	Grade 2 13 (57), Grade 3 10 (43)	Supratentorial 4 (17), Infratentorial 20 (83)	
Doireau, France, 1998	55990	8	4.6	3.8	3 mo - 4.5			nr	Six patients had low-grade tumors while two had grade III tumors. All tumors were progressive and three had metastases before chemotherapy.	5 astrocytoma (63), 3 oligoastrocytoma (37)	Ages at diagnosis
Finlay, United States	1300	56	nr	11.1	.1-19.3	nr	nr	29,27 (52,48%)	NR	Glioblastoma Multiform 27 (48%) Aplastic Astrocytoma 29 (52%)	
Grill, France, 2001	74360	Ependymoma 73		27 months	5-62 months			40, 33 (55, 45)	73 Ependymoma 100%	56 (82%) of patients had a high grade tumor, 12 (18%) had a low-grade tumor	5 patients were not assigned a histological grade
Grundy, United Kingdom, 2007	73750	Metastatic ependymoma 9, non- metastatic ependymoma 80		1.93, 1.36	(.05- 3.16), (.24- 2.25)			54 (67.5 % male), 4 (44 % male)	Non-metastatic 80 (90), Metastatic 9 (10)	Infratentorial 69 (86), Supratentorial 11 (14) Infratentorial 7 (78), Supratentorial 2 (22) WHO II 54 (68), WHO III 26 (32) WHO II 5 (56), WHOIII (44)	

Study (Investi- gator, country, year)	Record Num- ber	Group (N)	Age (mean)	Age (median)	Age (Range)	Age (SD)	Race (%)	Gender M, F (%)	Disease Stage/category	Disease Histology/Site (%)	Comment
Grundy, United States, 2010	51800	41		High Grade Glioma 1.8 years, Brain Stem Glioma 2.52 years	High Grade Glioma .33- 3.09 years, Brain Stem Glioma .68- 3.01 years			18, 8 (69)	HGG: Anaplastic Astrocytoma 7, Astroblastoma 1, Anaplastic oliodendroglioma 2, Glioblastoma 5, unknown 3 Diffuse pontine glioma: diffuse astrocytoma 1, glioblastoma 1, unclassified 1, inoperable 4	High Grade Glioma 19 (73), Brain Stem Tumor 7 (27) HGG metastatic in posterior fossa 2 (11), metastatic in supratentorial 17 (89) Brain Stem Glioma metastatic in Brainstem 7 (100), 15 cpc	
Horn, United States, 1999	74470	Ependymoma 83		51.5 mo	8mo - 20 years			50, 33 (60, 40)	M0 61 (85), M1- M3 11 (15)	WHO II grade 2 51 (61), WHO II grade 3 31 (37) Infratentorial 64 (77), Supratentorial 19 (23)	Age ≤ 3 29 *=(35), Age >3 54 (65)
Hurwitz, United States, 2001	53330	45		7.7	4mos- 19yr		NR	56, 44%	Recurrent or progressive disease	Astrocytoma 4 (9), Malignant Glioma 13 (29), Brain Stem Glioma 15(33), Ependymoma 13 (29)	Age and Gender reported for entire 75 enrolled pts, not available by histology
Jaing, Taiwan, 2004	74030	Ependymoma 43		6.6 years	8 months to 18 years			25, 18 (58, 42)	Grade II 20 (47), Grade III [anaplastic] (53)	Supratentorial 15 (35), Infratentorial (65)	
Kobrinsky, United States, 1999	53560	42	NR	NR	NR	NR	White 63, Black 12, Hispanic 19, Asian 3, Other/Mixed 3	Male 54, Female 45	NR	High grade astrocytoma 20 (48), Brain stem glioma 22 (52)	Race and sex statistics reported for the sum total 99 patients
Study (Investi- gator, country, year)	Record Num- ber	Group (N)	Age (mean)	Age (median)	Age (Range)	Age (SD)	Race (%)	Gender M, F (%)	Disease Stage/category	Disease Histology/Site (%)	Comment
---	-----------------------	------------------	---------------	-----------------	------------------------	-------------	--	------------------------	---	--	--
Korones, United States, 2006	52670	9	12.2	9	5-21		NR	7,2 (77,23%)		5 Glioblastoma, 2 anaplastic astrocytoma 2 brainstem glioma	
Kuhl, Germany, 1998	17700	21			3-16				19 anaplastic (90), 14 infratentorial (67). 29% of patients had microscopic tumor cells in CSF	21 ependymoma (100%)	
Macdonald, United States, 2005	55000	76		11.95yrs	3-20yrs		69.7% white, 14.5% Hispanics, 10.5% Blacks, and 5.3% other	36, 40 (47. 53%)	All patients had histologic verification of high-grade astrocytoma	GMB/GV 40 (53), AA 30 (39), Other 6 (8)supratentorial tumor 86.8%, five patients had metastatic disease	4 patients not evaluable because imaging reports demonstrating residual disease were not available before chemotherapy
Merchant, United States, 2002	74280	Ependymoma 64		3 years	1.1 - 22.9 years			32, 32 (50, 50%)	45 differentiated ependymoma (70), 19 anaplastic ependymoma (30)		
Robertson, United States, 1998	74630	32		7	2-17.3		Caucasian 22 (69), African American 3 (9), Hispanic 4 (13), Other 3 (9)	17, 15 (53, 47)	Anaplastic 12 (38)	posterior fossa 21 (66), supratentorial 11 (34)	

Study (Investi- gator, country, year)	Record Num- ber	Group (N)	Age (mean)	Age (median)	Age (Range)	Age (SD)	Race (%)	Gender M, F (%)	Disease Stage/category	Disease Histology/Site (%)	Comment
Sio, Italy, 2006	6950	14	9.6	8.4	4.2- 19.6		nr	9, 5 (64, 36)		Ependymoma 2 (14), Anaplastic Astrocytoma 3 (21), Brain Stem Glioma 8 (57), Glioblastoma Multiforme 1 (7)	
Wrede, Germany, 2009	75590	34 CPC		2.3 years	.3-17.1 years			17, 17 (50, 50%)	Metastatic 7 (21%)	Lateral Ventricle 30 (88%), Fourth ventricle 4 (12%)	

Study (Investi gator, country, year)	Record Num- ber	Group (N)	Stem Cell Sour ce	Type of HSCT	Prior Treatment	Conditioning Regimen	Immunosu ppressive therapy for GVHD prophylax- is	Supportive Care	Compar- ative Treatment	Compar- ative Treatment Dose/Reg- imen	Comment
Ayan, Turkey, 1995	74690	Anapla stic Ependy moma 4							"8 in 1" chemother apy	methylpred nisolone, vincristine, lomustine, procarbazi ne, hydroxyure a, cisplatin, cytosine arabinosid e, cyclophosp hamide in a targeted 8 courses or until disease progressio n	

Appendix Table C76. Treatment characteristics: Glial tumors

Study (Investi gator, country, year)	Record Num- ber	Group (N)	Stem Cell Sour ce	Type of HSCT	Prior Treatment	Conditioning Regimen	Immunosu ppressive therapy for GVHD prophylax- is	Supportive Care	Compar- ative Treatment	Compar- ative Treatment Dose/Reg- imen	Comment
Berger, France, 1998	75380	HSCT CPC (2) Conven tional therapy CPC (20)	Perip heral blood	Autolog ous	Surgical resection	1 HSCT patient received: carboplatin, procarbazine, etoposide, cisplatin, vincristine, cyclophosphamide. 1 patient received etoposide, ifosfamide and carboplatin			Conventio nal chemother apy was given to 17 of 20 remaining patients. 2 of the patients. 2 of the patients who did not receive chemother apy had radiothera py, and two had no treatment other than partial surgical resection. Chemothe rapy regimen varied by patient.	10 patients had: carboplatin , procarbazi ne, etoposide, cisplatin, vincristine, cyclophosp hamide. 3 patients had etoposide, carboplatin . 1 patient had carboplatin and ifosfamide; 1 patient received monthly lomustine	

Study (Investi gator, country, year)	Record Num- ber	Group (N)	Stem Cell Sour ce	Type of HSCT	Prior Treatment	Conditioning Regimen	Immunosu ppressive therapy for GVHD prophylax- is	Supportive Care	Compar- ative Treatment	Compar- ative Treatment Dose/Reg- imen	Comment
Bertolon e, United States, 2003	10380	18			Surgical Excision				Standard Chemothe rapy Regimen (A) vs. Experime ntal 8-in-1 Chemothe rapy Regimen (B)	(A) 10 week induction with 8 weekly injections of vincristine, 48 week maintenan ce with 8 cycles of vincristine, CCNU, and prednisone . (B) 10 week induction of two cycles of 8-in-1 chemother apy followed by 5400 GY	8-in-1 chemother apy consisted of (Vincristin e, CCNU, procarbazi ne, hydroxyur ea, cisplatin, cytarabine , dacarbazi ne, and methylpre dnisone)

Study (Investi gator, country, year)	Record Num- ber	Group (N)	Stem Cell Sour ce	Type of HSCT	Prior Treatment	Conditioning Regimen	Immunosu ppressive therapy for GVHD prophylax- is	Supportive Care	Compar- ative Treatment	Compar- ative Treatment Dose/Reg- imen	Comment
Bouffet, France, 1997	78760	5	Bone Marr ow	Single Autolog ous	2 VM- BCNU- PCZ with radiothera py, 2 VM- CDDP-FU- DTIC- CPM-PCZ one with radiothera py, and 1 VM- BCNU- PCZ						
Bouffet, France, 2000	78770	24	Bone Marr ow	Autolog ous	NR, Newly Diagnosed	RT initiated as soon as possible after post-op recovery in surgery or after radiologic diagnosis. 50-50Gy given over 6 weeks at a rate of 8-9 Gy per week in 5 daily fracs. HDC initiated 40-60 days after RT. HDC consisted of busulfan 150mg/m^2/d on -8,- 7,	-6, and -5. And Thiotepa 300 mg/m^2/d - 4, -3, and - 2. clonazepa m .1 mg/kg/day Day -8 to - 1. ABM reinfused 48 hours after chemo.				Only 24 of 35 children proceeded to HDC. One child died during RT, 8 other children experienc ed early disease progressio n preventing consolidati on, two families declined further treatment.

Study (Investi gator, country, year)	Record Num- ber	Group (N)	Stem Cell Sour ce	Type of HSCT	Prior Treatment	Conditioning Regimen	Immunosu ppressive therapy for GVHD prophylax- is	Supportive Care	Compar- ative Treatment	Compar- ative Treatment Dose/Reg- imen	Comment
Busca, Italy, 1997	73190	Ependy moma 2, Anapla stic Astrocy toma 1, Gliobla stoma Multifor me 2, Oligode ndrogli oma 1	ABM T	Autolog ous	All pts had maximal surgical resection. 3 pts (50%) had 1st line RT, 1 pt. had 1st line chemother apy (17%). 3 pts had secondary total resection after relapse (50%), 3 pts had secondary chemother apy and 1 pt had radiothera py (17%).	Two regimen: A, BCNU 2x/d for 3 days and etoposide 1x/d for 3 days (n=5). B, Thiotepa and etoposide 1x/d for 3 days (n=6)		HEPA filtered room, low microbial diet, IV acyclovir, oral nonabsorbable antibiotics, and cotrimoxazole. Broad-spectrum antibiotics were administered to febrile patients. Blood component therapy to keep elevated platelet count			

Study (Investi gator, country, year)	Record Num- ber	Group (N)	Stem Cell Sour ce	Type of HSCT	Prior Treatment	Conditioning Regimen	Immunosu ppressive therapy for GVHD prophylax- is	Supportive Care	Compar- ative Treatment	Compar- ative Treatment Dose/Reg- imen	Comment
Conter, France, 2009	73540	Ependy moma 24							Surgical resection followed by radiothera py	In a complete resection, patients were given 60 Gy HFRT in two daily frac of 1 Gy (photon energy was >8 MeV. For partial removal, second look surgery discussed before RT. If not complete resection a 6 Gy boost was given to the initial 60Gy	No patients received chemother apy

Study (Investi gator, country, year)	Record Num- ber	Group (N)	Stem Cell Sour ce	Type of HSCT	Prior Treatment	Conditioning Regimen	Immunosu ppressive therapy for GVHD prophylax- is	Supportive Care	Compar- ative Treatment	Compar- ative Treatment Dose/Reg- imen	Comment
Doireau, France, 1998	55990	8			ventriculo- peritoneal shunt in 1 pt, 2 pts had biopsy alone, and partial excision in 6 patients				chemother apy	16 month/sev en cycle of carboplatin (15 mg/kg), procarbazi ne (4 mg/kg), etoposide (5 mg/kg), cisplatin (1mg/kg) vincristine (.05 mg/kg), and cyclophosp hamide (50 mg/kg)	
Dunkel, United States, 1998	78780	10	Bone Marr ow	Single Auto	10 radiothera py, 5 with chemother apy, 1 with beta- interferon	6 Thiotepa Etoposide, 2 BCNU Thiotepa Etoposide, 2 Carboplatin Thiotepa Etoposide					
Finlay, United States	1300	27	Bone marr ow	Autolog ous	NR	ThioTEPA 900 mg/m ² w/ etoposide 750 or 1,500 mg/m ² over 3 days (n=11), 600 mg/m ² over 3 days preceded by carmustine (n=5), or carboplatin 1,500 mg/m ² over 3 days (n=11) w/ AEUC of 7 mg/ml/min day	NR	NR	Chemothe rapy Only		

Study (Investi gator, country, year)	Record Num- ber	Group (N)	Stem Cell Sour ce	Type of HSCT	Prior Treatment	Conditioning Regimen	Immunosu ppressive therapy for GVHD prophylax- is	Supportive Care	Compar- ative Treatment	Compar- ative Treatment Dose/Reg- imen	Comment
Grill, France, 1996	73240	Ependy moma 16	Bone Marr ow Stem Cells in 15 pts and PBS C in 1 pt.	Autolog ous	NR. 8 patients received HDCT + autologous SCT as first treatment of relapse, 8 patients received ASCT as second or further relapse treatment	Busulfan, Thiotepa,		Isolated laminar air flow rooms with atrial catheters. Parenteral nutrition and broad spectrum antibiotics when needed.			

Study (Investi gator, country, year)	Record Num- ber	Group (N)	Stem Cell Sour ce	Type of HSCT	Prior Treatment	Conditioning Regimen	Immunosu ppressive therapy for GVHD prophylax- is	Supportive Care	Compar- ative Treatment	Compar- ative Treatment Dose/Reg- imen	Comment
Grill, France, 2001	74360	73							Resection and Chemothe rapy followed by irradiation in the event of progressio n or relapse	Maximal surgical resection followed by three courses of two different drugs (carboplati n and procarbazi ne, etoposide and mannitol, and vincristine cyclophosp hamide and uromitexan). Irradiation for relapse was 50 Gy 1.8 Gy/frac 5x week	

Study (Investi gator, country, year)	Record Num- ber	Group (N)	Stem Cell Sour ce	Type of HSCT	Prior Treatment	Conditioning Regimen	Immunosu ppressive therapy for GVHD prophylax- is	Supportive Care	Compar- ative Treatment	Compar- ative Treatment Dose/Reg- imen	Comment
Grovas, United States, 1999	16600	11	2 PBS C (18), 9 ABM T (82)	single autolog ous	NR, newly diagnosed	carmustine, thiotepa, and etoposide. Carmustine at dose of 100 mg/m^2 for six doses, Thiotepa 300 mg/M^2/d * 3 , Etoposide 250 mg/m^2/d *3		Corticosteroids for control of tumor mass effect and cerebral edema. Pts not given corticosteroids had dexamethasone 5 mg/m^2/d *3. 6 Pts given G-CSF on reinfusion (55). All pts received RT on approximately day +42. 30 fracs 180 cGy 5200 cGy w/ 540 boost			1 patient died before radiothera py
Grundy, United Kingdo m, 2007	73750	Ependy moma 89							Chemothe rapy w or w/o RT	4 courses alternating myelosupp ressive and non- myelosupp ressive carboplatin , vincristine, methotrexa te, cyclophosp hamide and mesna, cisplatin. RT after progressio n	

Study (Investi gator, country, year)	Record Num- ber	Group (N)	Stem Cell Sour ce	Type of HSCT	Prior Treatment	Conditioning Regimen	Immunosu ppressive therapy for GVHD prophylax- is	Supportive Care	Compar- ative Treatment	Compar- ative Treatment Dose/Reg- imen	Comment
Grundy, United States, 2010	51800	41			Surgical Resection: HGG 14 (74), Brain Stem Glioma 0 (0)				Chemothe rapy with or without radiothera py	Four courses with 7 cycles: course 1 vincristine (1.5mg/^2) and carboplatin (550 mg/m^2), course 2 Vincristine (1.5mg/m^ 2) Methotrexa te (8000mg/ m^2) and Folinic Acid 15 mg, course 3 Vincristine (1.5 mg/m^2) Cyclophos phamide (1500mg/ m^2) and Mesna (1800 mg	Course 4 Cisplatin continuou s infusion for 4 hours (40 mg/m^2 x 2 days), children 10 kg and under were dosed to weight rather than surface area. Six patients completed Chemothe rapy

Study (Investi gator, country, year)	Record Num- ber	Group (N)	Stem Cell Sour ce	Type of HSCT	Prior Treatment	Conditioning Regimen	Immunosu ppressive therapy for GVHD prophylax- is	Supportive Care	Compar- ative Treatment	Compar- ative Treatment Dose/Reg- imen	Comment
Gururan gan, United States, 1998	18000	N=7,1 cpc, 1 ependy moma, 4 glioblas toma multifor me, 1 anapla stic astrocy toma	Bone marr ow	Autolog ous	Surgery and chemother apy in all pts except the astrocytom a patient who had biopsy online	Four patients had carboplatin, thiotepa, and etoposide, one patient had thiotepa and etoposide only, and one patient had carboplatin, thiotepa and carmustine		Varied by treatment protocol. Patients received antifungal and antibiotics if febrile and neutropenic. Maintenance of platelet counts. GCSF use varied by protocol.			
Horn, Untied States, 1999	74470	Ependy moma 83							Patients in this multicente r retrospecti ve study were classified as having either surgery alone 6 (7), chemother apy alone 17 (20), radiation alone 31 (37), or radiation and chemother apy 29 (35).	Chemother apy type was broken into: None 37 (45), Nitrosoure a based 13 (16), Alkylating agent based 21 (25), Nitrosoure a and alkylating 9 (11), other types 3 (4) No RT 23 (28), Local 36 (41), Local and cranial 5 (6), and craniospin al 21 (25)	

Study (Investi gator, country, year)	Record Num- ber	Group (N)	Stem Cell Sour ce	Type of HSCT	Prior Treatment	Conditioning Regimen	Immunosu ppressive therapy for GVHD prophylax- is	Supportive Care	Compar- ative Treatment	Compar- ative Treatment Dose/Reg- imen	Comment
Hurwitz, United States, 2001	53330	45							Chemothe rapy	Dexameth asone .25 mg/kg 14 and 7 hours before other drug administrat ion, paclitaxel 1mg/kg 350mg/m ^A 2 over 24 hours every 3 weeks, and diphenhydr amine 1mg/kg	

Study (Investi gator, country, year)	Record Num- ber	Group (N)	Stem Cell Sour ce	Type of HSCT	Prior Treatment	Conditioning Regimen	Immunosu ppressive therapy for GVHD prophylax- is	Supportive Care	Compar- ative Treatment	Compar- ative Treatment Dose/Reg- imen	Comment
Jaing, Taiwan, 2004	74030	Ependy moma 43							Surgical excision followed by 30 Gy irradiation w/ 20-25 Gy boost to the primary tumor area [spinal mets irradiated with a total dose of 30-45 Gy]. 9 pts did not receive RT due to >3 years old. 13 pts received chemother apy	Chemother apy protocols varied between patients [5 protocols, either platinum or nitrosourea or other combinatio ns exclusive of nitrosourea or platinum]	

Study (Investi gator, country, year)	Record Num- ber	Group (N)	Stem Cell Sour ce	Type of HSCT	Prior Treatment	Conditioning Regimen	Immunosu ppressive therapy for GVHD prophylax- is	Supportive Care	Compar- ative Treatment	Compar- ative Treatment Dose/Reg- imen	Comment
Jakacki, United States, 1999	15920	11	PBS C	Autolog ous given in four doses concurr ent with chemot herapy and radioth erapy	NR, newly diagnosed	CCNU 130mg/m ² , vincristine 1.5mg/m ² on day 0 and procarbazine 150 mg/m ¹ /d on 1- 7.PBSC infusion was infused 36-72 hrs after procarbazine. RT began 48-72 hrs after PBSC 180cGY (5040-5940 cGy).2nd, 3rd, and 4th chemotherapy regimens started 4 wks after prev		Pts who developed a procarbazine related rash received diphenhydramine prior to subsequent doses			1 pt with spinal cord glioblasto ma had 3600 cGy craniospin al radiation therapy with boost to tumor area, all other pts had involved field RT.4 pts w/ non- brainstem large volume tumors had <4 PBSC and Chemothe rapy, due to progressio n recruitmen t was stopped

Study (Investi gator, country, year)	Record Num- ber	Group (N)	Stem Cell Sour ce	Type of HSCT	Prior Treatment	Conditioning Regimen	Immunosu ppressive therapy for GVHD prophylax- is	Supportive Care	Compar- ative Treatment	Compar- ative Treatment Dose/Reg- imen	Comment
Kobrins ky, United States, 1999	53560	High grade astrocy toma 20, brain stem glioma 22			Previously treated with chemother apy and/or radiation therapy				Etoposide or etoposide/ mannitol	150mg/M^ 2 lv over 3h for 5 days	
Korones , United States, 2006	52670	9			3 RT alone, 2 RT and Chemo, 4 BMT and other therapy				Chemothe rapy	Temozolo mide and VP-16	

Study (Investi gator, country, year)	Record Num- ber	Group (N)	Stem Cell Sour ce	Type of HSCT	Prior Treatment	Conditioning Regimen	Immunosu ppressive therapy for GVHD prophylax- is	Supportive Care	Compar- ative Treatment	Compar- ative Treatment Dose/Reg- imen	Comment
Kuhl, German y, 1998	17700	21							Chemothe rapy: procarbazi ne, ifosfamide , mesna, vp-16, methotrex ate, CF- rescue, cisplatin, cytarabine followed by radiothera py of 35.2 gy in 22 frac and maintenan ce chemother apy in some patients (% unknown for EPD)		

Study (Investi gator, country, year)	Record Num- ber	Group (N)	Stem Cell Sour ce	Type of HSCT	Prior Treatment	Conditioning Regimen	Immunosu ppressive therapy for GVHD prophylax- is	Supportive Care	Compar- ative Treatment	Compar- ative Treatment Dose/Reg- imen	Comment
Macdon ald, United States, 2005	55000	76			Induction, four 3 week cycles in three different regiments: A) carboplatin , VP-16 B) ifosfamide, mesna VP-16 C) Cyclophos phamide, mesna, VP-16.			Corticosteroids used at clinician recommendation; recommended for raised intracranial pressure and adrenal insufficiency restriction	Chemothe rapy with Radiother apy	Interim therapy: one 12- week course Vincristine at 1.5 mg/m^2 (2 mg max) for 8 weeks w/ 6-week RT followed by 4-week rest. Maintenan ce cycle of eight 4- week cycles 6 weeks after RT consisting of oral CCNU 100mg/m^ 2 * 1 day and vincristine 1.5 mg/m^2	(Dose informatio n not entered due to char limit - available in paper)

Study (Investi gator, country, year)	Record Num- ber	Group (N)	Stem Cell Sour ce	Type of HSCT	Prior Treatment	Conditioning Regimen	Immunosu ppressive therapy for GVHD prophylax- is	Supportive Care	Compar- ative Treatment	Compar- ative Treatment Dose/Reg- imen	Comment
Mahone y, United States, 1996	73250	7	Bone Marr ow	Autolog ous	Radiation and Chemothe rapy	CTX 4 days, Melphalan 3 days following marrow infusion patients were given escalating CTX dose with mesna support		Amino Acid withholding during melphalan treatment. Irradiated CMV for hematocrit level maintenance, Fluconazole, Acyclovir in pts. With positive HSV			
Mason, United States, 1998	73180	Ependy moma 15	ABM R	Autolog ous	Maximal surgical resection in all pts. 13 pts had radiothera py (87%), 14 of the pts had prior chemother apy (93%).	5 patients received thiotepa/etoposide (33), 10 received thioTEPA/etoposide/ carboplatin (67)		platelet counts maintained above 50,000, hemoglobin maintained above 8.0g/dL, febrile neutropenic patients treated with broad- spectrum antibiotics and antifungal agents. Pts received trimethoprim- sulfamethoxazole prophylaxis from day 30			

Study (Investi gator, country, year)	Record Num- ber	Group (N)	Stem Cell Sour ce	Type of HSCT	Prior Treatment	Conditioning Regimen	Immunosu ppressive therapy for GVHD prophylax- is	Supportive Care	Compar- ative Treatment	Compar- ative Treatment Dose/Reg- imen	Comment
Massimi no, Italy, 2005	55220	21	PBC	Single Auto, in 4 pts two cycles due to residual tumor respons e after first course	Surgical Excision	CDDP plus VP-16 week 1 and 4; VCR plus CTX and hd- MTX week 7 and 10, hd-Thiotepa and G- CSFT week 13					

Study (Investi gator, country, year)	Record Num- ber	Group (N)	Stem Cell Sour ce	Type of HSCT	Prior Treatment	Conditioning Regimen	Immunosu ppressive therapy for GVHD prophylax- is	Supportive Care	Compar- ative Treatment	Compar- ative Treatment Dose/Reg- imen	Comment
Mercha nt, United States, 2002	74280	Ependy moma 64							Radiother apy with three dimension al treatment planning	Conventio nal fractionatio n of 1.8 Gy/d to 59.4 Gy. 4 young children with Ependymo ma received 54.0 Gy. Dose limiting to upper cervical spinal cord was 54 Gy, optic chiasm 55.8 Gy, optic nerves 50.4 Gy, and optic globe 50.4 Gy	

Study (Investi gator, country, year)	Record Num- ber	Group (N)	Stem Cell Sour ce	Type of HSCT	Prior Treatment	Conditioning Regimen	Immunosu ppressive therapy for GVHD prophylax- is	Supportive Care	Compar- ative Treatment	Compar- ative Treatment Dose/Reg- imen	Comment
Ozkayn ak, United States, 2004	7850	6	PBS C	Tande m Autolog ous	2 Surgery XRT (5400 cGY) and Chemothe rapy (CTX, CDDP, VP-16, VCR, CCNU), 3 XRT alone (dose NA), 1 surgery and chemo (CCG- 9921)	Cyclophosphamide 4-6 g/m ² with G- CSF 10 ug/kg/d, Thiotepa 240 mg/m ² /d * 3, carboplatin 400 mg/m ² /d * 3,		Rifampin, trimethoprim/sulf amethoxazole, gentamicin, amphotericin-B, fluconazole, acyclovir.			4 of these pts. GBM, Ependymo ma, 1 BSG, and 1 AA had only 1 PBSC. 2 were due to parental decision and 2 were due to tumor progressio n after first course transplant

Study (Investi gator, country, year)	Record Num- ber	Group (N)	Stem Cell Sour ce	Type of HSCT	Prior Treatment	Conditioning Regimen	Immunosu ppressive therapy for GVHD prophylax- is	Supportive Care	Compar- ative Treatment	Compar- ative Treatment Dose/Reg- imen	Comment
Roberts on, United States, 1998	74630	Ependy moma 32							Maximal surgical resection, randomize d assignme nt to one of two treatment arms.	Regimen A: Craniospin al radiothera py w/ 8 weekly doses of IV vincristine concurrent with radiothera py. Pts then received 8 6-week courses of vincristine, ccnu, and prednisone . Regimen B: 8-in-1 regimen, followed by RT, and then maintenan ce 8-in-1	8-in-1 regimen consisted of methylpre dnisone, vincristine, lomustine [ccnu] or carmustin e [bcnu], procarbazi ne, hydroxyur ea, cisplatin, cytarabine , and cyclophos phamide

Study (Investi gator, country, year)	Record Num- ber	Group (N)	Stem Cell Sour ce	Type of HSCT	Prior Treatment	Conditioning Regimen	Immunosu ppressive therapy for GVHD prophylax- is	Supportive Care	Compar- ative Treatment	Compar- ative Treatment Dose/Reg- imen	Comment
Shih, United States, 2008	2530	5	Bone Marr ow	Single Autolog ous	1 chemother apy for EPD, 1 chemother apy + local RT for AA, 1 craniospin al irradiation for AA, 1 Chemothe rapy + craniospin al irradiation for GBM, and 1 craniospin al irradiation for GBM	1 Busulfan and Thiotepa for EPD, 2 Thiotepa and cyclophosphamide for AA, 1 carboplatin and etoposide for GBM, and 1 Thiotepa and cyclophosphamide for GBM					

Study (Investi gator, country, year)	Record Num- ber	Group (N)	Stem Cell Sour ce	Type of HSCT	Prior Treatment	Conditioning Regimen	Immunosu ppressive therapy for GVHD prophylax- is	Supportive Care	Compar- ative Treatment	Compar- ative Treatment Dose/Reg- imen	Comment
Sio, Italy, 2006	6950	14			Surgery 3 (21%), Chemothe rapy 6 (43%), Radiothera py 12 (86%), Bone Marrow Transplant 2 (14%), 1 patient had no prior treatment			Authors not explicit; antibiotics, blood products were administered when required and steroid therapy was limited to treatment of raised intracranial pressure or cerebral edema in brain tumor pts.	Chemothe rapy	Temozolo mide single oral dose for 5 consecutiv e days (214 mg/m^2/da y in patients with no prior CSI and 180 mg/m^2/da y in CSI or BMT) Courses were repeated every 21- 28 days. TMZ reduced by 25% in patients with grade 4 toxicity.	
Thorarin sdottir, United States, 2007	73050	6	PBS C	Autolog ous	Newly Diagnosed	3 cycles induction cisplatin, cyclophosphamide, etoposide, vincristine. 3 cycles consolidation carboplatin, thiotepa					

Study (Investi gator, country, year)	Record Num- ber	Group (N)	Stem Cell Sour ce	Type of HSCT	Prior Treatment	Conditioning Regimen	Immunosu ppressive therapy for GVHD prophylax- is	Supportive Care	Compar- ative Treatment	Compar- ative Treatment Dose/Reg- imen	Comment
Wrede, German y, 2009	75590	34 CPC			Newly Diagnosed , surgical resection				6 cycles chemother apy 31 (91%), radiothera py in children over 3 years of age		3 patients did not receive chemother apy (9%)
Yule, United Kingdo m, 1997	18960	5	BMP	Tande m Autolog ous	Surgery 2 (50), RT 1 (25), No Chemothe rapy	2 dose CTX accompanied by mesna at 160%. Starting dose CTX was 2.5m/m^2/d and escalated at .5m/m^2/d to 2 g/m^2. stem		oral dexamethasone before CTX 10 mg/m ² /d, prophylactic acyclovir 1,500 mg/m ² /d) and ciprofloxacin (10 mg/kg/d), and oral nystatin.			
Zacharo ulis, United States, 2007	73020	Ependy moma 29	PBS C	Autolog ous	Newly diagnosed	Maximal surgical resection followed by induction (vincristine, etoposide, cyclophosphamide w/ mesna, methotrexate) and consolidation (carboplatin, thiotepa, etoposide) chemotherapy with radiotherapy when indicated by tumor response, age, and location		platelet counters were maintained above 10,00/mm with transfusion as necessary. Febrile neutropenic pts were given broad spectrum IV antibiotics. Pts received PCP pneumonia prophylaxis			

Study (Investi gator, country, year)	Record Num- ber	Group (N)	Stem Cell Sour ce	Type of HSCT	Prior Treatment	Conditioning Regimen	Immunosu ppressive therapy for GVHD prophylax- is	Supportive Care	Compar- ative Treatment	Compar- ative Treatment Dose/Reg- imen	Comment
Gilheen ey, United States, 2010	2187	Anapla stic Astrocy toma (1); Oligoas trocyto ma (1); Gliobla stoma multifor me (2)		Autolo gous	AA: resection and radiothera py; OA: sub-total resection; GBM: 1 patient gross total resection, 1 patient resection radiothera py and chemother apy	Thiotepa 300mg/m ² day -8, -7, -6; topotecan 2 mg/m ² day -8, -7, -6, -5, -4; carboplatin ~500 mg day -5, -4, -3		Granulocyte colony- stimulating factor			

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	Secondary Outcomes	F/U Frequency/Duration
Berger, France, 1998	75380	HSCT CPC (2)	Survival, tumor response	toxicity	21 and 25 mo
Bouffet, France, 1997	78760	5	Survival		
Bouffet, France, 2000	78770	24	Survival, EFS	Toxicity	26 months
Busca, Italy, 1997	73190	Ependymoma 2, Anaplastic Astrocytoma 1, Glioblastoma Multiforme 2, Oligodendroglioma 1	OS, PFS, Tumor response	toxicity	
Dunkel, United States, 1998	78780	10	Survival		
Finlay, United States	1300	27	EFS, OS	toxicity	14 months
Grill, France, 1996	73240	Ependymoma 16	Tumor response, outcome, toxicity		1.7 - 66 months
Grovas, United States, 1999	16600	11	Tumor response, toxicity, survival		Study entry, +21, +42, +100 days and then every 2 months until 1 year after ASCR
Gururangan, United States, 1998	18000	N=6, 1 ependymoma, 4 glioblastoma multiforme, 1 anaplastic astrocytoma	Progression, survival	toxicity, but not given by tumor type	NR
Jakacki, United States, 1999	15920	12	OS, PFS, Tumor response	toxicity	5-19months
Mahoney, United States, 1996	73250	7	Toxicity, Tumor Response, PFS, OS		2.6 years
Mason, United States, 1998	73180	Ependymoma 15	Survival, Progression,	Toxicity	

Appendix Table C77. Outcome assessment: Treatment, glial tumors

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	Secondary Outcomes	F/U Frequency/Duration
Massimino, Italy, 2005	55220	21	OS, PFS	TAE	Median FU 57mo (13-84)
Ozkaynak, United States, 2004	7850	6	Disease Outcome	Toxicity	
Shih, United States, 2008	2530	5	Time to Progression, OS, Final Status		73-3727 days
Thorarinsdottir, United States, 2007	73050	6	Tumor Response, PFS, OS, Toxicity		median 22 months (8-82 mo)
Yule, United Kingdom, 1997	18960	4	Tumor Response, Outcome, OS	Toxicity	median 27 months (12-34)
Zacharoulis, United States, 2007	73020	29	EFS, OS	toxicity	.6-12+ years FU range
Gilheeney, United States, 2010	2187	Anaplastic Astrocytoma (1); Oligoastrocytoma (1); Glioblastoma multiforme (2)	Survival	Harms	.1-7.7 years

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	Secondary Outcomes	F/U Frequency/Duration
Ayan, Turkey, 1995	74690	Anaplastic Ependymoma 4	Tumor Response, Progression, Survival	Toxicity	9-35 mo
Berger, France, 1998	75380	Conventional therapy CPC (20)	OS, tumor response	toxicity	1-72 mo
Bertolone, United States, 2003	10380	18	Survival	Toxicity	5 year
Conter, France, 2009	73540	OS, EFS			87.5 mo (66-90, 95% CI)
Doireau, France, 1998	55990	8	OS	Tumor response	5.5 years
Finlay, United States, 2008	1300	56	EFS, OS	toxicity	nr
Grill, France, 2001	74360	Ependymoma 73	PFS, OS		4.7 years median FU (5 mo - 8 years)
Grundy, United Kingdom, 2007	73750	Ependymoma 89	OS, PFS,	toxicity	median 6 years (1.5-11.3 years) [for pts alive at last FU]
Grundy, United States, 2010	51800	26	OS, PFS		median FU .89 years, (.19- 8.04 years)
Horn, Untied States, 1999	74470	Ependymoma 83	EFS, OS		75.5 mo (9 - 121 mo)
Hurwitz, United States, 2001	53330	45	TTP, progressive disease and early death, tumor response	toxicity	
Jaing, Taiwan, 2004	74030	Ependymoma 43	OS, PFS	toxicity	5 year
Kobrinsky, United States, 1999	53560	42	OS		4 yr

Appendix Table C78. Outcome assessment: Comparator, glial tumors

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	Secondary Outcomes	F/U Frequency/Duration
Korones, United States, 2006	52670	9	PFS, tumor response	toxicity	16 months
Kuhl, Germany, 1998	17700	10	PFS, OS, Tumor Response, Toxicity		7 years
Macdonald, United States, 2005	55000	76	OS, EFS, Tumor Response	Toxicity	Physical and Neurological examination every 3 weeks during induction and interim therapy. Then, at 1 year intervals from entry or at time of progressive disease or relapse.
Merchant, United States, 2002	74280	Ependymoma 64	OS, PFS		17 months (3-44 months)
Robertson, United States, 1998	74630	Ependymoma 32	PFS, OS,		6.5 years
Sio, Italy, 2006	6950	14	PFS, OS, status at final follow up	Toxicity	Range 1-41 months based on survival
Wrede, Germany, 2009	75590	CPC	OS, EFS		0-8.2 yrs (2.2 yrs median)

Study (Investigator, country, year)	Record Num- ber	Group (N)	OS	Med (mos)	1 yr	2 yr	3 yr	4 yr	5 yr	Test	р	HR (95%) Cl
Berger, France, 1998	75380	CPC (2)	21 and 25 mo									
Bouffet, France, 1997	78760	5	Total, (1) Parieto-occipital, (3) Brain stem, (1) Thalamus	3, .4, 4, 3								
Bouffet, France, 2000	78770	24	Group OS	10±3.6	~25	~4	0	0	0			
Busca, Italy, 1997	73190	Ependymoma 2, Anaplastic Astrocytoma 1, Glioblastoma Multiforme 2, Oligodendroglioma 1	Two patients died. One AA at 15 months and 1 oligodendrogliom a at 10 months. All other patients alive with no progression or evidence of disease									
Dunkel, United States, 1998	78780	10	range .1-18 months	4								
Finlay, United States	1300	ABMR transplanted(N=27) , AA (N=10) and GBM (N=17)	AA and GBM @ 4 months 22±7% months AA @ 4 months 40±14% months GBM @ 4 months 12±6%					AA: 40±14 % GBM: 12±6%		Chemo vs. ABMR unstratified and stratified (Cox)	.018, stratified by histology .010	1.9 (1.1- 3.1)

Appendix Table C79. Time to event outcomes: Treatment, glial tumors OS

Study (Investigator, country, year)	Record Num- ber	Group (N)	OS	Med (mos)	1 yr	2 yr	3 yr	4 yr	5 yr	Test	р	HR (95%) CI
Grill, France, 1996	73240	Ependymoma 16	5 patients alive at last followup. 1 patient was in second complete response, 1 patient had relapse in the spinal cord, 1 pt had stable residual mass, 1 pt was alive with hemispheric disseminated disease, and 1 patient was alive without evidence of disease	20 month s (1.7- 45 mo)								
Gururangan, United States, 1998	18000	N=7, 1 ependymoma, 4 glioblastoma multiforme, 1 anaplastic astrocytoma	2 glioblastoma patients died of disease. One toxic death at .03 months and one dead of disease at 17 mo. Two other patients are alive with no evidence of disease at 40+ and 98+ mo. Ependymoma patient DOD at 25 mo. AA pt alive/NED at 98+, 1 CPC DOD 5mo									
Jakacki, United States, 1999	15920	12	Total (12), GBM (4), AA (2), Pons (6) with 1 Pons patient alive	8.5 (5- 19), 15 (6- 19), 8 (7-9) ,8 (5- 14)								

Study (Investigator, country, year)	Record Num- ber	Group (N)	OS	Med (mos)	1 yr	2 yr	3 yr	4 yr	5 yr	Test	р	HR (95%) CI
Mahoney, United States, 1996	73250	Anaplastic Astrocytoma 2, Ependymoma 3, Glioblastoma multiforme 1, Brainstem glioma 1	AA 1 month and 4 months, EPD 7 months 9 months and 25+ months, GBM 7 months, BSG 2 months									
Mason, United States, 1998	73180	Ependymoma 15		4.5 month s	33±1 1%	20±9%						
Massimino, Italy, 2005	55220	21	Total, GBM, other glioma	37, ~12, >60	~74, ~60, ~73	~50, ~40, ~73	~50 , ~30 , ~73	~44, ~30, ~73	~37, 0, ~73	log-rank	=.008 (GBM vs. other glioma)	
Ozkaynak, United States, 2004	7850	6	3 patients had stable disease at a median follow up of 62 months. 3 patients were dead of disease at a median follow up of 4 months.									
Shih, United States, 2008	2530	5	Total, EPD (1), AA (2), GBM (2)	3.9, 2.4, 7.1, 63								
Thorarinsdottir, United States, 2007	73050	Oligodendroglioma s 1, Ganglioma 1, Anaplastic glioma 3, Ependymoma 1	ODG 8 mo, GG 59 mo, AG 10 22 and 33.5 mo, EPD 37 mo	ODG 8 mo, GG 59 mo, AG 22 mo, EPD 37 mo								
Study (Investigator, country, year)	Record Num- ber	Group (N)	OS	Med (mos)	1 yr	2 yr	3 yr	4 yr	5 yr	Test	р	HR (95%) CI
---	-----------------------	---	---	--------------	------	------	------	------	--	--	--	-------------------
Yule, United Kingdom, 1997	18960	4	1 GBM patient survived with stable disease at a follow up of 12 months, a recurrent gbm patient died of disease at 6 months follow up, 1 anaplastic ependymoma patient died of disease at 15 months, and 1 suprasellar gbm pt died of toxicity, 1 CPC DOD 11mo									
Zacharoulis, United States, 2007	73020	Ependymoma 29		~48		69%		38	38±10 % (Kapla n Meier curve vies 24%?)	Univariate Cox Proportion al Hazards likelihood ratio	EFS Unstratifie d: Age P=.04, Extent of resection p=.49, Site P=.65. OS: Age p=.20, Extent of resection p=.53, Site P=.70	
Gilheeney, United States, 2010	2187	Anaplastic Astrocytoma (1); Oligoastrocytoma (1); Glioblastoma multiforme (2)	AA: 1 pt alive w/ residual disease at 7.7 years; OA: 1 pt dead of toxicity at 1 mo; GBM: 2 pts DOD at .5-8 years									

Study (Investigator, country, year)	Record Number	Group (N)	Outcome_2	Med (mos)_2	1 yr_2	2 yr_2	3 yr_2	4 yr TRM	5 yr_2	Test_2	p_2
Berger, France, 1998	75380	CPC (2)									
Bouffet, France, 1997	78760	5									
Bouffet, France, 2000	78770	24	PFS	~7	~4	~4	0	0	0		
Busca, Italy, 1997	73190	Ependymoma 2, Anaplastic Astrocytoma 1, Glioblastoma Multiforme 2, Oligodendroglio ma 1	PFS Ependymoma 2, Anaplastic Astrocytoma 1, Glioblastoma Multiforme 2, Oligodendroglio ma 1	Two patients disease progressed . One AA at 11 months and 1 oligodendroglio ma at 4 months. All other patients alive with no progression or evidence of disease							
Dunkel, United States, 1998	78780	10									
Finlay, United States	1300	ABMR transplanted(N=2 7), AA (N=10) and GBM (N=17)	EFS: Total ABMR (27)					22±7%		Unstratifie d comparis on EFS ABMR vs CHM (Cox)	.014
Grill, France, 1996	73240	Ependymoma 16	For those who had stable disease after HDCT (4), PFS lasted 5-8 mo with a median of 7 months								

Appendix Table C79. Time to event outcomes: Treatment, glial tumors OS Continued

Study (Investigator, country, year)	Record Number	Group (N)	Outcome_2	Med (mos)_2	1 yr_2	2 yr_2	3 yr_2	4 yr TRM	5 yr_2	Test_2	p_2
Gururangan, United States, 1998	18000	N=7, 1 ependymoma, 4 glioblastoma multiforme, 1 anaplastic astrocytoma	PFS	Two patients progressed one GBM at 8 mo and 1 ependymoma at 16 mo. 1 patient died of toxicity before progression							
Jakacki, United States, 1999	15920	12	PFS: Total (12), GBM (4), AA (2), Pons (6) with 1 Pons patient	4.75 (2-12+), 4 (2-7), 4.75 (4.5- 5), 7 (3-12+)							
Mahoney, United States, 1996	73250	Anaplastic Astrocytoma 2, Ependymoma 3, Glioblastoma multiforme 1, Brainstem glioma 1	PFS Anaplastic Astrocytoma 2, Ependymoma 3, Glioblastoma multiforme 1, Brainstem glioma 1	PFS evaluated in 3 of 7 patients. GBM 4 mo, BSG 1 mo, EPD 12 mo							
Mason, United States, 1998	73180	Ependymoma 15	PFS	4 months	~22	0					
Massimino, Italy, 2005	55220	21	PFS: Total, GBM, other glioma	~18, ~10, ~12	~55, ~40, ~73	~46, ~20, ~73	~46, ~20, ~73	~46, ~20, ~73	~40, 0, ~73	log-rank	=.04 PFS other gliomas vs PFS glioblasto ma
Ozkaynak, United States, 2004	7850	6									
Shih, United States, 2008	2530	5	Time to Progression: Total, EPD (1), AA (2), GBM (2)	2.54, .95, 1.4, 5, 2.5							

Study (Investigator, country, year)	Record Number	Group (N)	Outcome_2	Med (mos)_2	1 yr_2	2 yr_2	3 yr_2	4 yr TRM	5 yr_2	Test_2	p_2
Thorarinsdottir, United States, 2007	73050	Oligodendroglio mas 1, Ganglioma 1, Anaplastic glioma 3, Ependymoma 1	PFS	ODG 8 mo, GG 59 mo, AG 3 17 and 33.5 mo, EPD 37 mo	ODG 8 mo, GG 59 mo, AG 17 mo, EPD 37 mo						
Yule, United Kingdom, 1997	18960	4									
Zacharoulis, United States, 2007	73020	Ependymoma 29	EFS	~22		35%		14%	12±6 %		

Study (Investigator, country, year)	Record Number	Group (N)	Outcome_3	Med (mos)_3	2 yr_3	4 yr_3	5 yr_3	Comment
Berger, France, 1998	75380	CPC (2)						
Bouffet, France, 1997	78760	5						
Bouffet, France, 2000	78770	24						
Busca, Italy, 1997	73190	Ependymoma 2, Anaplastic Astrocytoma 1, Glioblastoma Multiforme 2, Oligodendroglioma 1						
Dunkel, United States, 1998	78780	10						
Finlay, United States	1300	ABMR transplanted(N=27), AA (N=10) and GBM (N=17)						
Grill, France, 1996	73240	Ependymoma 16						
Gururangan, United States, 1998	18000	N=7, 1 ependymoma, 4 glioblastoma multiforme, 1 anaplastic astrocytoma						
Jakacki, United States, 1999	15920	12						1 GBM patient was given an alternative treatment of HDC for progression and was not included in OS, but remains alive 18 months after initial treatment
Mahoney, United States, 1996	73250	Anaplastic Astrocytoma 2, Ependymoma 3, Glioblastoma multiforme 1, Brainstem glioma 1						
Mason, United States, 1998	73180	Ependymoma 15						One patient is alive 25+ months post ABMR
Massimino, Italy, 2005	55220	21						
Ozkaynak, United States, 2004	7850	6						
Shih, United States, 2008	2530	5						All Patients Were Dead of Disease as final status
Thorarinsdottir, United States, 2007	73050	Oligodendrogliomas 1, Ganglioma 1, Anaplastic glioma 3, Ependymoma 1						
Yule, United Kingdom, 1997	18960	4						

Appendix Table C79. Time to event outcomes: Treatment, glial tumors OS Continued

Study (Investigator, country, year)	Record Number	Group (N)	Outcome_3	Med (mos)_3	2 yr_3	4 yr_3	5 yr_3	Comment
Zacharoulis, United States, 2007	73020	Ependymoma 29	Post-progression survival Ependymoma 22	~28	46%	9%	9%	14 pts (48%) Dead of Disease, 3 Dead of Toxicity (10.3), 2 are alive with progressive disease (7%), 4 are alive with stable disease (14%), 6 have no evidence of disease at last followup (21)

Study (Investigator, country, year)	Record Number	Group (N)	Outcome	Med (mos)	1 yr	2 yr	3 yr	4 yr	5 yr	Test	р	HR (95%) CI
Ayan, Turkey, 1995	74690	Anaplastic Ependymoma 4		33 mo (16- 35 mo) [1 pt not included due to loss to fu at 9 months. Pt was non- responsive to therapy)								
Berger, France, 1998	75380	CPC total (20), CPC partial resection (12), CPC gross total surgical resection (8)	1 patient in the partial resection group (9%) was alive and well at 55mo follow up. 7 patients in the gross total resection group were alive and well at a median 25 mo (3- 72mo) follow up	Total median OS was 10 mo (1-41mo). Partial resection OS had a median of 11 mo (3- 41 mo). Gross total resection OS was 5 mo in 1 patient.							Kaplan Meier survival curves for gross total resection vs. partial resection were significa ntly different at p=.009	
Bertolone, United States, 2003	10380	18	GBM and AA only non-infants, Infants	~48, ~22	~83, ~52	~64, ~25	~57, ~25	36+- 13%, 25+- 15%	36+- 13%, 25+- 15%			
Conter, France, 2009	73540	Ependymoma 24	8 patients died all of neoplastic disease				79.2%		74.8%			
Doireau, France, 1998	55990	8	87.5% at median 4.8 years F/U									

Appendix Table C80. Time to event outcomes: Comparator, glial tumors O	Appendix Table C80.	Time to event outcomes:	Comparator, glial tumors OS
--	---------------------	-------------------------	-----------------------------

Study (Investigator, country, year)	Record Number	Group (N)	Outcome	Med (mos)	1 yr	2 yr	3 yr	4 yr	5 yr	Test	р	HR (95%) Cl
Finlay, United States, 2008	1300	56	@ 4 months	~.7 months AA ~ .6 months GBM ~ 6 months Bulky ~.7 months Non-Bulky ~1.2 months	HSCT, Compar ator AA: ~41%, ~26%, GBM: ~43%, ~22%		HSCT, Compar ator AA: 40+- 14%,7+- 4% GBM: 12+-6%, 0		HSCT, Compar ator AA: 40+- 14%,~4 GBM: 12+-6%, 0	Wilco xon	.018 overall, by histology .010	1.9 (1.1- 3.1)

Study (Investigator, country, year)	Record Number	Group (N)	Outcome	Med (mos)	1 yr	2 yr	3 yr	4 yr	5 yr	Test	р	HR (95%) CI
Grill, France, 2001	74360	Ependymoma 73, Supratentorial 13, Posterior Fossa 60, Low grade 8, High grade 60, Complete resection 44, incomplete resection 29, no residuum, radiographic residuum		~5.2 years for total population	Ependy moma 88%,	Ependy moma 79 (68- 87%)	Ependy moma 53%	Ependy moma 73%, Suprate ntorial 100, Posterio r Fossa 50 (37- 64), Low grade 58 (26- 85%), High grade 61 (47- 73), Complet e resectio n 69 (53-82), incompl ete resectio n 46 (28-65), no residuu m 74 (59-86), radiogra phic reseiduu m 35	Ependy moma 24%	two- tailed log rank test	RR differenc e multivar/ univar between Age p=.86/.6 1, Location p=.0004/ .013, Grade .97/.89, Surgery p=.92/.2 2, Imaging p=.0009/ .008	
Grundy, United Kingdom, 2007	73750	Non- metastatic ependymoma 80, metastatic ependymoma 9				90, 78		59, 33				

Study (Investigator, country, year)	Record Number	Group (N)	Outcome	Med (mos)	1 yr	2 yr	3 yr	4 yr	5 yr	Test	р	HR (95%) Cl
Grundy, United States, 2010	51800	41	HGG, Brain Stem Tumor, CPC		57.9 (33.2- 76.3 Cl), 14.3 (.7- 46.5), 50.3 (23.1- 72.4)		40.5 (18.7- 61.5), 0, 21.5 (5.2- 45.0)		34.7 (14.6- 56.0), 0, 21.5 (5.2- 45.0)			
Horn, Untied States, 1999	74470	Ependymoma 83							57.2±5 %			
Hurwitz, United States, 2001	53330	45										
Jaing, Taiwan, 2004	74030	WHO II 20, WHO III 23, Male 25, Female 23, <3 25, >3 34, Supratentorial 15, Infratentorial 28, GTR 18, STR 19, biopsy 6, RT involved field 31, without RT 12, CHM 13, without CHM 30	WHO II 74%, WHO III 35, Male 49, Female 62, <3 42, >3 57, Supratentor ial 57, Infratentori al 52, GTR 82, STR 37, biopsy 33, RT involved field 58, without RT 48, CHM 54, without CHM 54						Ependy moma total 53.9	Fisch er's exact chi- squar e test	5 year OS: Histology p=.005, Gender p=.425, Age p=.036, Location p=.917, Surgical resection <.001, Leptospi nal dissemin ation .388, Radiothe rapy .150, Chemoth erapy .279	
Kobrinsky, United States, 1999	53560	42	Brain Stem Glioma, High Grade Astrocytom a	~5, ~5	9+-5%, 28+- 10%,	0, ~9%	0, ~9%					

Study (Investigator, country, year)	Record Number	Group (N)	Outcome	Med (mos)	1 yr	2 yr	3 yr	4 yr	5 yr	Test	р	HR (95%) CI
Korones, United States, 2006	52670	5 (2 BSG, 2 AST, 1 Glioblastoma)	OS: 1 AA pt DOD at 4 mos, 1 AWD at 10+ mo, 1 glioblastom a pt DF at 15+ mo, 2 BSG pts DOG at 9 and 4 mo									
Kuhl, Germany, 1998	17700	10	Anaplastic Ependymo ma (11)						62 ± 11,			
Macdonald, United States, 2005	55000	76	Total (76), Regiment A (23), Regimen B (27), Regimen C (26), Anaplastic Astrocytom a (30), Glioblastom a Multiforme (40), Other (6)	~13, ~18, ~19, ~12, ~12, ~14, ~46	~51, ~55, ~55, ~37, ~46, ~45, ~62	~30, ~33, ~39, ~19, ~28, ~28, ~62	~28, ~27, ~39, ~16, ~22, ~22, ~62	~25, ~20, ~39, ~16, ~25, ~24,~40	24±5, 18±8, 39±10, 16±7, 25±8, 22±7, 40±22	Log- rank?	P=.23, P=.47	
Merchant, United States, 2002	74280	Ependymoma 64										
Robertson, United States, 1998	74630	Ependymoma 32			97%		75%		53%			

Study (Investigator, country, year)	Record Number	Group (N)	Outcome	Med (mos)	1 yr	2 yr	3 yr	4 yr	5 yr	Test	р	HR (95%) CI
Sio, Italy, 2006	6950	14	OS: Brainstem Glioma	Total 5.5 (n=8), Ependymo ma 4.5(n=2), Anaplastic Astrocytom a 5 (n=3), Brainstem Glioma 6 (n=2) 6 Alive with Disease at median 11.5 mos, Brainstem Glioma 11 (n=5), GBM 12 mos (n=1)								
Wrede, Germany, 2009	75590	CPC 34	OS: CPC (N=29)		~82		~70		36	Cox, CPC vs CPP/ APP	P.003	26.4

Study (Investigator, country, year)	Record Number	Group (N)	Outcome _2	Med (mos)_ 2	1 yr_2	2 yr_2	3 yr_2	4 yr TRM	5 yr_2	Test_2	p_2	HR (95% Cl)_2	Commen t
Ayan, Turkey, 1995	74690	Anapla stic Ependy moma 4	PFS, Anaplasti c Ependym oma 4	27 mo (only 1 pt evaluat ed. Other patients had only partial respon se or no respon se to treatme nt)									
Berger, France, 1998	75380	CPC total (20), CPC partial resectio n (12), CPC gross total surgical resectio n (8)											

Appendix Table C81. Time to event outcomes: Comparator, glial tumors PFS

Study (Investigator, country, year)	Record Number	Group (N)	Outcome _2	Med (mos)_ 2	1 yr_2	2 yr_2	3 yr_2	4 yr TRM	5 yr_2	Test_2	p_2	HR (95% Cl)_2	Commen t
Bertolone, United States, 2003	10380	18											The infants category includes 1 case excluded by this review of medullobl astoma that could not be abstracte d separatel y
Conter, France, 2009	73540	Ependy moma 24	PFS	median time to first relapse was 22 months (4-46 months)			62.5%		54.2%				
Doireau, France, 1998	55990	8	Event free survival: 50% at 4 years										1 patient died at 32 months
Finlay, United States, 2008	1300	56	EFS CHM unstratifi ed		HSCT, Compa rator AA: ~30, ~10 GBM: 22+- 7%, 0%		HSCT, Compa rator AA: ~22+-7, 0 GBM: 22+-7, 0%		HSCT, Compa rator AA: ~22+-7, 0 GBM: 22+-7, 0%				

Study (Investigator, country, year)	Record Number	Group (N)	Outcome _2	Med (mos)_ 2	1 yr_2	2 yr_2	3 yr_2	4 yr TRM	5 yr_2	Test_2	p_2	HR (95% CI)_2	Commen t
Grill, France, 2001	74360	Ependy moma 73, Suprate ntorial 13, Posteri or Fossa 60, Low grade 8, High grade 60, Comple te resectio n 44, incompl ete resectio n 29, no residuu m, radiogr aphic residuu m	PFS Ependym oma 73	Ependy moma total ~ 1.8 years	Ependy moma 56%	Ependy moma 29%	Ependy moma 23 %	Ependy moma 12%	Ependy moma 12%				At time of analysis 31 patients had died of progressi ve disease from 3 months to 5.8 years (Median 29 months). Age was analyzed in univariat e analysis but no differenc e between strata > 2 years and below 2 years was observed

Study (Investigator, country, year)	Record Number	Group (N)	Outcome _2	Med (mos)_ 2	1 yr_2	2 yr_2	3 yr_2	4 yr TRM	5 yr_2	Test_2	p_2	HR (95% CI)_2	Commen t
Grundy, United Kingdom, 2007	73750	Non- metast atic ependy moma 80, metast atic ependy moma 9	EFS: Non- metastati c ependym oma 80, metastati c ependym oma 9	~34, ~18		64, 33		43, 0		Cox- propor tional hazar ds model	Metasta tic OS vs non- metasta tic p<.0001	4.1 (2.0-8.7 95% CI)	
Grundy, United States, 2010	51800	41	Event Free Survival HGG, Brain Stem Tumor		52.6 (28.7- 71.9),0. 0		24.1 (7.8- 45.1)		18.1 (4.6- 38.6)				7 pts alive at last follow up
Horn, Untied States, 1999	74470	Ependy moma 83	PFS						42.2±5. 5%				

Study (Investigator, country, year)	Record Number	Group (N)	Outcome _2	Med (mos)_ 2	1 yr_2	2 yr_2	3 yr_2	4 yr TRM	5 yr_2	Test_2	p_2	HR (95% CI)_2	Commen t
Hurwitz, United States, 2001	53330	45	Time to progressi on	Astrocy toma 21.2 (1.2- 49.3), Maligna nt glioma 1.4 (.4- 7.2), Brain Stem Glioma 1.4 (.5- 37.8), Ependy moma 2.1 (.0- 30.3)									No astrocyto ma patients had progressi ve disease or early death, 10 malignan t glioma (77%) had progressi ve disease and early death, 9 brainste m glioma (60%), 7 ependym oma (53)

Study (Investigator, country, year)	Record Number	Group (N)	Outcome _2	Med (mos)_ 2	1 yr_2	2 yr_2	3 yr_2	4 yr TRM	5 yr_2	Test_2	p_2	HR (95% CI)_2	Commen t
Jaing, Taiwan, 2004	74030	WHO II 20, WHO III 23, Male 25, Female 23, <3 25, >3 34, Suprate ntorial 15, Infraten torial 28, GTR 18, STR 19, biopsy 6, RT involve d field 31, without RT 12, CHM 13, without CHM 30	PFS WHO II 68%, WHO III 27, Male 42, Female 52, <3 22, >3 51,Supra tentorial 42, Infratento rial 52, GTR 72, STR 31, biopsy 18, RT involved field 52, without RT 31, CHM 35, without CHM 52						Ependy moma total 45.9	Fische r's exact chi- squar e test	5 year PFS: Histolog y p=.002 Gender p=.775, Age p=.005, Locatio n p=.957, Surg resectio n <.001, Leptosp inal dissemi nation .663, Radioth erapy .029, Chemot herapy .820		
Kobrinsky, United States, 1999	53560	42											

Study (Investigator, country, year)	Record Number	Group (N)	Outcome _2	Med (mos)_ 2	1 yr_2	2 yr_2	3 yr_2	4 yr TRM	5 yr_2	Test_2	p_2	HR (95% Cl)_2	Commen t
Korones, United States, 2006	52670	5 (2 BSG, 2 AST, 1 Gliobla stoma)	PFS: 1 BSG pt progress ed at 4 mo, 1 GBM progressi on free at 15+ mo, anaplasti c astrocyto ma progressi on free at 10+ mo										
Kuhl, Germany, 1998	17700	10	PFS Anaplasti c Ependym oma (11), pts with residual tumor (11), pts with no residual tumor (10)	10 months					52 ± 11, 36±15, 70±14		non- significa nt statistic al differen ce		

Study (Investigator, country, year)	Record Number	Group (N)	Outcome _2	Med (mos)_ 2	1 yr_2	2 yr_2	3 yr_2	4 yr TRM	5 yr_2	Test_2	p_2	HR (95% CI)_2	Commen t
Macdonald, United States, 2005	55000	76	Event- free Survival: Total, A (23), B (27), C (26), AA (30), GBM (40), Other (6)	~5, ~9, ~3, ~3, ~3, ~11	~23, ~27, ~10, ~20, ~15, ~40	~10, ~14, ~8, ~8, ~10, ~8, ~21	~10, ~14, ~4, ~8, ~10, ~8, ~21	~8, ~14, ~4, ~8, ~7, ~8, ~21	8±3, 14±7, 4±4, 8±6, 7±5, 8±4, 21±18	Log- rank?	P=.07, P=.28		Of the 76 patients 56 (74%) died; 52 deaths were disease related, 1 was due to infection, 2 to hemorrha ge, and 1 to AML develop ment. All analysis ITT EFS defined as minimum time from entry to disease progressi on, relapse a second mal. Neoplas m/death
Merchant, United States, 2002	74280	Ependy moma 64	PFS			88±6%	71%						6 ependym oma patients suffered recurrent or progressi ve disease.

Study (Investigator, country, year)	Record Number	Group (N)	Outcome _2	Med (mos)_ 2	1 yr_2	2 yr_2	3 yr_2	4 yr TRM	5 yr_2	Test_2	p_2	HR (95% CI)_2	Commen t
Robertson, United States, 1998	74630	Ependy moma 32	PFS		88%		56%		38%		No significa nt differen ce betwee n the two chemot herapy groups, p>.2		
Sio, Italy, 2006	6950	14	Progressi on Free Survival: Total, Ependym oma, Anaplasti c Astrocyto ma, Brainste m glioma, Glioblast oma multiform e	3 (n=14), Ependy moma 11 (n=2), Anapla stic Astrocy toma 3 (n=3), Brain Stem Glioma 1 (n=8), Gliobla stoma multifor me 11 (n=1)									
Wrede, Germany, 2009	75590	CPC 34	EFS CPC N=29		~56		~56		~36	Cox, CPC vs. CPP/A PP	p<.0001	HR=15. 2	

Study (Investigator, country, year)	Record Number	Group (N) (NNO)	Comments (NNO)	Group (N) (NDP)	Comments (NDP)	Group (N) (OOI)	Comments (OOI)
Conter, France, 2009	73540		Two patients were placed in a special school, and two were ≥ 2 years behind at school	Ependymoma 16 (living patients)	Mild retardation 2 (13), Severe retardation 2 (13)	Ependymoma 16 (living patients)	Diplopia 5 (32), mild decrease of visual acuity 1 (6), Severe decrease of visual acuity 1 (6)
Grundy, United States, 2010	51800	21 children alive at last follow up (all histologies, 7 of whom were high-grade gliomas; authors do not give histology in toxicity discussion)	5 children required special needs education				
Thorarinsdottir, United States, 2007	73050			Oligodendrogliomas 1, Ganglioma 1, Anaplastic glioma 3, Ependymoma 1	ODG pt had decreased neurologic responsiveness/ blindness, GG pt had ADD, 1 AG patient had L hemiparesis, 1 AG pt had Ataxia, 1 EPD pt had hypotonia/multiple neuropathies GR 2-4 hearing loss/poor speech		

Appendix Table C82. Neurological outcomes : Glial tumors

Study (Investi-gator, country, year)	Record Number	Group (N)	Severity or Grade Infection	%	Commen t	Group (N) TRM	Severity or Grade TRM	F/U (mos) TRM	% TRM	Comment TRM
Bouffet, France, 2000	78770	24	1 Aspergillus fumigatus , 1 cytomegalovirus	4, 4		24	1 VOD, 1 toxic exfoliative dermatitis with acute renal failure, 1 aspergillus fumigatus pneumonia		4, 4, 4	
Finlay, United States	1300					HSCT (27)	5 toxic deaths	media n 17 days	19%	Single death in thiotepa/etoposid e (9%), 2 with carmustine (40%), and 2 with carboplatin (9%)regimens
Grill, France, 1996	73240	Ependymoma 16	six documented infectious episodes (2 septicemia, 3 pneumonia, 1 viral encephalitis)	38%		Ependymoma 16	1 death at day 50 following ABMT, 1 pt experienced coma w/ seizures during multiorgan failure leading to death		13%	
Gururangan, United States, 1998	18000					N=4 glioblastoma multiforme	1 patient died of treatment related toxicity at .03 months.		25%	
Jakacki, United States, 1999	15920	12	Two patients had interstitial pneumonia which resolved with treatment	17						

Appendix Table C83. Adverse events: Treatment, glial tumors

Study (Investi-gator, country, year)	Record Number	Group (N)	Severity or Grade Infection	%	Commen t	Group (N) TRM	Severity or Grade TRM	F/U (mos) TRM	% TRM	Comment TRM
Mahoney, United States, 1996	73250					Ependymoma 3	Death at 32 days after BMT due to pulmonary hemorrhage in pt with multiple relapsed ependymom a	1 mo	33%	
Mason, United States, 1998	73180					Ependymoma 15	Toxic mortality		5 pts (33%)	Authors state toxic mortality rate was unexpected and unacceptable
Thorarinsdotti r, United States, 2007	73050	Oligodendroglio mas 1, Ganglioma 1, Anaplastic glioma 3, Ependymoma 1	# G+ bacterium: Oligodendroglioma s 2, Ganglioma 3, Anaplastic glioma 0, 1, 2, Ependymoma 4	ODG 100, GG 100, AG 67, EPD 100						
Zacharoulis, United States, 2007	73020	Ependymoma 29	3 cases of sepsis leading to toxic morality.	10.3 %	No toxic deaths since 1998					
Gilheeney, United States, 2010	2187	Oligoastrocyto ma (1)				Oligoastrocytom a (1)		1 mo	100 % (n=1)	

Study (Investigator, country, year)	Record Number	Group (N)	Group (N) Hepatic veno- occlusive disease (Hepatic Sinusoidal Obstruction)	Severity or Grade hVOD	% hVOD	Comments hVOD	Serious Hemorrhagic Event	Group (N)_12	Severity or Grade SHE	% SH E
Bouffet, France, 2000	78770	24	24	4 mild- severe, 1 fatal	17, 4	Pt died due to multiorgan failure	Serious Hemorrhagic Event			
Grill, France, 1996	73240	Epend ymom a 16	Ependymoma 16		3 grade 2 VOD (19%)		Serious Hemorrhagic Event	Epend ymom a 16	2 pts had severe epistaxis requiring platelet transfusion	13 %

Appendix Table C83. Adverse events: Treatment, glial tumors Continued

Study (Investi- gator, country, year)	Recor d Numb er	Group (N)	Infecti ous	Severi ty or Grade	%	Comme nt	Group (N) TRM	TR M	Severity or Grade TRM	F/U (mos) TRM	% TR M	Serious Hemorrha gic Event	Grou p (N)_ 12	Severi ty or Grade SHE	% SH E	Comme nts SHE
Grundy, United Kingdom , 2007	73750		Infecti ous				Ependymo ma 89	TR M	1 postoperat ive death		1%	Serious Hemorrha gic Event				
Macdona ld, United States, 2005	55000	Total (76), A (23), B (27), C (26)	Infecti ous	3 or 4	6 (8), 2 (9), 3 (11), 1 (4)	1 patient died due to infectio n (group not given)		TR M				Serious Hemorrha gic Event	Total (76)	Death	2 (3)	Group not given for deaths
Robertso n, United States, 1998	74630		Infecti ous				Ependymo ma 32	TR M	1 toxic treatment related death	1 death at 14 mont hs	3%	Serious Hemorrha gic Event				

Appendix Table C84. Adverse events: Comparator, glial tumors

Study (Investi- gator, country, year)	Record Number	Indica tion	Disease	Therapeutic Setting	Grou p (N)	Participant Selection (Treatment Period)	Design	n, Evaluat ed	n, Withdrawn (Lost to F/U)	Comment
Arvio M, Finland, 2001	14180	Inherit ed Metab olic Disea ses	aspartylglucos aminuria		7 HSCT , 12 non- HSCT	transplant: 1991- 1997follow-up: 1-7.6 yrs	case series	5 HSCT, 12 non- HSCT		2 HSCT with longer follow- up entered under Malm #8490
Autti T, Finland, 1999	15540	Inherit ed Metab olic Disea ses	aspartylglucos aminuria		2 HSCT , 6 non- HSCT , 7 non- disea sed	follow-up: 4-7 yrs	quasi- experim ental	15	0	
Banjar H, Saudi Arabia, 1998	17920	Inherit ed Metab olic Disea se	Gaucher Type 3		7	follow-up: 2.5-3.5 yrs	case series	3	0	This study combined two disease types, Gaucher Type 1 and Gaucher Type 3. Three of the pts had Gaucher Type 3.
Chan LL, Malaysia, 2002	11330	Inherit ed Metab olic Disea se	Gaucher Type 3		1	treatment: Jun 1996 - May 1998follow-up: 1.8 yrs on treatment, 2.7 yrs after treatment stopped	case report	1	0	
Chen R, Taiwan, 2007	4490	Inherit ed Metab olic Disea se	Gaucher Type 3		1	transplant: Jul 2004follow-up: 1.5 yrs	case report	1	0	

Appendix Table C85. Design, participant selection and enrollment: Inherited metabolic diseases

Study (Investi- gator, country, year)	Record Number	Indica tion	Disease	Therapeutic Setting	Grou p (N)	Participant Selection (Treatment Period)	Design	n, Evaluat ed	n, Withdrawn (Lost to F/U)	Comment
Coppa GV, Italy, 1999	16350	Inherit ed Metab olic Disea se	MPS II, Hunter disease		1	transplantation: 1995follow-up: 4 yrs	case report	1	0	
Ehlert K, Germany, 2006	4690	Inherit ed Metab olic Disea se	Farber disease		3	follow-up: 0.7-1.3 yrs	case series	3	0	
El-Beshlawy A, Egypt, 2006	5750	Inherit ed Metab olic Disea se	Gaucher Type 3		22	follow-up: 5-26 mos	case series	11	0	This study combined Gaucher Type 1 and Gaucher Type 3 pts, and 11 were Gaucher Type 3.
Erikson A, Sweden, 1995	21630	Inherit ed Metab olic Disea se	Gaucher Type 3		8	follow-up: 2.0-2.4 yrs	case series	3	0	This study included 5 adult pts and 3 pediatric pts.
Goker-Alpan O, US, 2008	1790	Inherit ed Metab olic Disea ses	Gaucher Type 3		32		2 HSCT followed by ERT; 30 ERT only	2	0	
Grewel S, US, 2003	9750	Inherit ed Metab olic Disea se	Mucolipidosis II (I-cell disease)		1	follow-up: 5 yrs	case report	1	0	

Study (Investi- gator, country, year)	Record Number	Indica tion	Disease	Therapeutic Setting	Grou p (N)	Participant Selection (Treatment Period)	Design	n, Evaluat ed	n, Withdrawn (Lost to F/U)	Comment
Guffon N, France, 2009	680	Inherit ed Metab olic Disea se	MPS II, Hunter disease		8	transplantations: 1990- 2000 follow-up: 5-14 yrs	case series	8	0	
Hsu YS, Taiwan, 1999	16540	Inherit ed Metab olic Disea ses	Niemann-Pick Type C		1	follow-up: 0.8 yrs	case report	1	0	
Imaizumi M, Japan, 1994	23220A	Inherit ed Metab olic Disea ses	MPS II, Hunter disease		4	follow-up: 2 yrs	case series	1	0	this study combined diseases, only one was Hunter disease
Imaizumi M, Japan, 1994	23220B	Inherit ed Metab olic Disea se	Mucolipidosis II (I-cell disease)		4	transplant: 1986follow- up: 5.6 yrs	case series	1	0	this case series combined diseases, only 1 in case series had mucolipidosis II
Jacobs JFM, Netherlands, 2005	6740	Inherit ed Metab olic Disea se	Tay-Sachs disease		1	follow-up: 2 yrs	case report	1	0	
Laitinen A, Finland, 1997	19620	Inherit ed Metab olic Disea se	aspartylglucos aminuria		1	follow-up: 4 mos	case report	1	0	

Study (Investi- gator, country, year)	Record Number	Indica tion	Disease	Therapeutic Setting	Grou p (N)	Participant Selection (Treatment Period)	Design	n, Evaluat ed	n, Withdrawn (Lost to F/U)	Comment
Lange MC, Brazil, 2006	5690	Inherit ed Metab olic Disea se	MPS III, Sanfilippo syndrome		8	transplant: 1988-2000 (total study pop)follow- up: 3.3-14.2 yrs (total study pop)	case series	1	0	only 1 of 8 pts in study population with Sanfilippo syndrome (MPS III)
Li P, US, 1996	20260	Inherit ed Metab olic Disea se	MPS II, Hunter disease		1	follow-up: 5 yrs	case report	1	0	
Lonnquist T, Finland, 2001	12960	Inherit ed Metab olic Disea se	ceroid lipofuscinosis		3	transplant: Jun 1996 - Oct 1998follow-up: 2-4 yrs	case series	3	0	
Maegawa GHB, Canada, 2009	56590A	Inherit ed Metab olic Disea se	Sandhoff's disease		5	follow-up: 2 yrs	single arm	3	0	This study combined diseases and 3 are Sandhoff's disease.
Maegawa GHB, Canada, 2009	56590B	Inherit ed Metab olic Disea se	Tay-Sachs disease		5	follow-up: 2 yrs	single arm	2	0	This study combined diseases and 2 pts had Tay- Sachs disease.
Malm G, Sweden, 2004	8490	Inherit ed Metab olic Disea ses	aspartylglucos aminuria		2	transplant: 1996follow- up: 5 yrs	case series	2	0	

Study (Investi- gator, country, year)	Record Number	Indica tion	Disease	Therapeutic Setting	Grou p (N)	Participant Selection (Treatment Period)	Design	n, Evaluat ed	n, Withdrawn (Lost to F/U)	Comment
McKinnis EJR, US, 1996	20560	Inherit ed Metab olic Disea se	MPS II, Hunter disease		1	transplant: 1988follow- up: 5.6 yrs	case report	1	0	
Morel CF, Canada, 2007	3010	Inherit ed Metab olic Disea ses	Niemann-Pick Type A		1	follow-up: 2.7 yrs	case report	1	0	
Muenzer J, US, 2006	57160	Inherit ed Metab olic Disea se	MPS II, Hunter disease		96	follow-up: 1 yr	RCT	96	0	Age range of study participants: 5-31 yrs and cannot separate the adult data from the pediatric data.
Muenzer J, US, 2007	57070	Inherit ed Metab olic Disea ses	MPS II, Hunter disease		12	follow-up: 1 yr	RCT for 6 mos, followed by open- label extensio n for another 6 mos	12	0	
Mullen CA, US, 2000	15300	Inherit ed Metab olic Disea se	MPS II, Hunter disease		1	follow-up: 2.2 yrs	case report	1	0	

Study (Investi- gator, country, year)	Record Number	Indica tion	Disease	Therapeutic Setting	Grou p (N)	Participant Selection (Treatment Period)	Design	n, Evaluat ed	n, Withdrawn (Lost to F/U)	Comment
Paciorkowsk i AR, US, 2008	2980	Inherit ed Metab olic Disea se	Niemann-Pick Type C		1	follow-up: 1 yr	case report	1	0	
Page KM, US, 2008	1280A	Inherit ed Metab olic Disea se	Tay-Sachs disease		19	transplant: Sep 1998 - Apr 2007	case series	1	0	this is one case within a case series which included other diseases
Page KM, US, 2008	1280B	Inherit ed Metab olic Disea se	MPS II, Hunter disease		19	transplantations: Sep 1998 - Apr 2007	case series	2	0	This study combined several diseases, only 2 pts had MPS II.
Patterson MC, US, 2007	56970	Inherit ed Metab olic Disea se	Niemann-Pick Type C		41	enrollment: Mar 2002 - Apr 2004follow-up: 1 yr	randomi zed controll ed trial	12	1	This study included adults. Results presented by grps of <12 (n=12) and >=12 (n=29). Most results were presented for the >=12 grp, but some results were available for the <12 grp.
Patterson MC, US, 2010	56500	Inherit ed Metab olic Disea se	Niemann-Pick Type C		10	treatment: Aug 2003- Jan 2008follow-up: 1 yr RCT, 1 yr extension study	open label extensio n study	9	1 withdrew due to adverse event of Crohn disease	12 entered RCT, 10 entered 1 yr extension

Study (Investi- gator, country, year)	Record Number	Indica tion	Disease	Therapeutic Setting	Grou p (N)	Participant Selection (Treatment Period)	Design	n, Evaluat ed	n, Withdrawn (Lost to F/U)	Comment
Pineda M, Spain, 2009	56560	Inherit ed Metab olic Disea se	Niemann-Pick Type C		66	observational period: 2003 - Jul 2008	retrospe ctive observa tional	66	0	
Ringden O, Sweden, 1995	22020	Inherit ed Metab olic Disea ses	Gaucher Type 3		6	follow-up: 5-11 yrs	case series	6	0	
Ringden O, Sweden, 2006	5940A	Inherit ed Metab olic Disea se	MPS III, Sanfilippo syndrome		71	follow-up: 0.4-14.0 yrs	case series	2	0	This is a study of HSCT in 71 pts with inborn errors of metabolism; 2 pts have MPS III.
Ringden O, Sweden, 2006	5940B	Inherit ed Metab olic Disea se	Sandhoff's disease		71	follow-up: 0.4-14.0 yrs	case series	1	0	This is a study of HSCT in 71 pts with inborn errors of metabolism; 1 pt has Sandhoff's disease.
Schiffman R, Netherlands, 2008	56750	Inherit ed Metab olic Disea se	Gaucher Type 3	substrate reduction therapy combined with ERT	30	follow-up: 2 yrs	phase II open- label clinical trial	30	0	Year 1: 21 received substrate reduction therapy, 9 received no treatment Year 2: all received substrate reduction therapy

Study (Investi- gator, country, year)	Record Number	Indica tion	Disease	Therapeutic Setting	Grou p (N)	Participant Selection (Treatment Period)	Design	n, Evaluat ed	n, Withdrawn (Lost to F/U)	Comment
Schiffmann R, Netherlands, 1997	58150	Inherit ed Metab olic Disea se	Gaucher Type 3		5	follow-up: up to 5 yrs	case series	5	0	
Seto T, Japan, 2001	13460A	Inherit ed Metab olic Disea se	MPS II, Hunter disease		23	follow-up: up to 7.0 yrs	case series	10	0	This study followed 23 mucopolysacc haridosis pts, 10 had MPS II, 3 of those 10 had HSCT.
Seto T, Japan, 2001	13460B	Inherit ed Metab olic Disea se	MPS IV, Morquio disease		23	follow-up: up to 7 yrs	case series	4	0	This study followed 23 mucopolysacc haridosis pts, 4 had MPS IV and 1 underwent HSCT.
Shield JPH, England, 2005	6720	Inherit ed Metab olic Disea se	GM1 gangliosidosis		1	follow-up: 7 yrs	case report	1	0	
Sivakumar P, England, 1999	16200	Inherit ed Metab olic Disea se	MPS III, Sanfilippo syndrome		2: 1 HSCT , 1 non- HSCT	follow-up: 7.4 yrs	compar ative study	2	0	comparison of one treated sibling with one untreated sibling
Stein J, Israel, 2007	4880	Inherit ed Metab olic Disea se	Wolman disease		1	follow-up: 11 yrs	case report	1	0	

Study (Investi- gator, country, year)	Record Number	Indica tion	Disease	Therapeutic Setting	Grou p (N)	Participant Selection (Treatment Period)	Design	n, Evaluat ed	n, Withdrawn (Lost to F/U)	Comment
Takahashi, Japan, 2001	14030	Inherit ed Metab olic Disea se	MPS II, Hunter disease		7	follow-up: 1.1 yrs	quasi- experim ental	1 HSCT; 2 non- HSCT	0	This study combined several diseases, 3 had MPS II, one of which underwent HSCT, two did not.
Tokimasa, Japan, 2008	1310	Inherit ed Metab olic Disea se	MPS II, Hunter disease		5	transplantation: Sep 2005follow-up: 0.8 yrs	case series	1	0	This study combined several diseases, only one was MPS II.
Tolar J, US, 2009	1370	Inherit ed Metab olic Disea se	Wolman disease		4	follow-up 0.2-11.0 yrs, thru Apr 2008	case series	4	0	
Tsai P, US, 1992	25120	Inherit ed Metab olic Disea se	Gaucher Type 3		1	follow-up: 2 yrs	case report	1	0	
Vellodi A, England, 1999	16650	Inherit ed Metab olic Disea se	MPS II, Hunter disease		10	transplantations: 1982- 1991follow-up: 7-14 yrs	case series	9	1	4 died <100 days post, 1 died 4 yrs post, 1 died unknown follow-up of GVHD, detailed follow-up on only 3 pts

Study (Investi- gator, country, year)	Record Number	Indica tion	Disease	Therapeutic Setting	Grou p (N)	Participant Selection (Treatment Period)	Design	n, Evaluat ed	n, Withdrawn (Lost to F/U)	Comment
Vormoor J, Germany, 2004	9420	Inherit ed Metab olic Disea ses	Farber disease		2	follow-up: 0.9-1.2 yrs	case series	2	0	
Yeager AM, US, 2000	14880	Inherit ed Metab olic Disea se	Farber disease		1	follow-up: 2.3 yrs	case report	1	0	
Styczynski, Poland, 2011	442	Inherit ed Metab olic Disea se	Wolman disease		12	between Jul 2002 - Dec 2008	case series	1		This study was conducted on pts with different diseases, only 1 of the 12 pts had Wolman disease.
Study (Investigator, country, year)	Record Number	Group (N)	Age (mean)	Age (median)	Age (Range)	Race (%)	Gender M, F (%)	Disease Stage/category		
---	------------------	--------------	---------------	--------------	-------------	--------------------------------	-----------------------------	---		
Arvio M, Finland, 2001	14180	5	3.04	2.75	1.6-5.5	white (100%)	M (40.0%) F (60.0%)			
Autti T, Finland, 1999	15540	2	2.3 yrs		2.0-2.6 yrs	white (100%)	M (100%)			
Chen R, Taiwan, 2007	4490	1	5.8 yrs			Asian (100%)	F (100%)			
Coppa GV, Italy, 1999	16350	1	3 yrs			White (100%)	M (100%)			
Ehlert K, Germany, 2006	4690	3	3.2 yrs	3.8 yrs	2.0-3.9 yrs		M (33.3%) F (66.7%)	Type 2/3, no CNS involvement		
Goker-Alpan O, US, 2008	1790	2	1.3 yrs at dx			White (50%), Hispanic (50%)	Male (50%), Female (50%)			
Grewel S, US, 2003	9750	1	1.6 yrs				F (100%)			
Guffon N, France, 2009	680	8	5.8 yrs	4.6 yrs	7-17 yrs		M (100%)	2 attenuated1 intermediate5 severe		
Hsu YS, Taiwan, 1999	16540	1	2.5 yrs			Asian (100%)	F (100%)			
Imaizumi M, Japan, 1994	23220A	1	9.8			Asian (100%)	Male (100%)	attenuated form		
Imaizumi M, Japan, 1994	23220B	1	0.7 yrs			Asian (100%)	Female (100%)	CNS impairment present		
Jacobs JFM, Netherlands, 2005	6740	1	3.8 yrs				F (100%)	asymptomatic		
Laitinen A, Finland, 1997	19620	1	1.5 yrs			white (100%)	M (100%)	asymptomatic		
Lange MC, Brazil, 2006	5690	1	6 yrs			Hispanic (100%)	F (100%)			
Li P, US, 1996	20260	1	5.0 yrs				M (100%)	severe		
Lonnquist T, Finland, 2001	12960	3	0.5 yrs	0.3 yrs	0.3-0.6 yrs	white (100%)	M (33.3%) F (66.7%)	infantile neuronal form: one mildly symptomatic two asymptomatic		
Malm G, Sweden, 2004	8490	2	8.1 yrs		5.8-10.4	white (100%)	M (50%) F (50%)			
McKinnis EJR, US, 1996	20560	1	2.4 yrs				M (100%)	severe		

Appendix Table C86. Participant characteristics: Treatment, inherited metabolic diseases

Study (Investigator, country, year)	Record Number	Group (N)	Age (mean)	Age (median)	Age (Range)	Race (%)	Gender M, F (%)	Disease Stage/category
Morel CF, Canada, 2007	3010	1	0.25 yrs				F (100%)	
Mullen CA, US, 2000	15300	1	0.8 yrs				M (100%)	Type IIB, mild
Page KM, US, 2008	1280A	1	0.06 yrs					
Page KM, US, 2008	1280B	2	<= 0.25 yrs					
Ringden O, Sweden, 1995	22020	6	3.5 yrs	2 yrs	2-9 yrs		Male (67%); Female (33%)	2 advanced, 2 early, 2 progressive
Ringden O, Sweden, 2006	5940A	2						1 Type A and 1 Type C
Seto T, Japan, 2001	13460A	3	5.7 yrs	6.0 yrs	2.0-9.0 yrs	Asian (100%)	Male (100%)	1 intermediate2 mild
Seto T, Japan, 2001	13460B	1	15 yrs			Asian (100%)	Male (100%)	Туре А
Shield JPH, England, 2005	6720	1	0.6 yrs			Asian (100%)	M (100%)	asymptomatic
Sivakumar P, England, 1999	16200	1	0.6 yrs				M (100%)	type IIIA
Stein J, Israel, 2007	4880	1	0.25 yrs			White (100%)	F (100%)	
Takahashi, Japan, 2001	14030	1	4.7 yrs			Asian (100%)		severe
Tokimasa, Japan, 2008	1310	1	5.8 yrs			Asian (100%)	M (100%)	
Tolar J, US, 2009	1370	4	0.8 yrs	1.3 yrs	0.2-2.1 yrs	White (50%)Not reported (50%)	Male (25%), Female (75%)	
Tsai P, US, 1992	25120	1	2 yrs				Female (100%)	
Vellodi A, England, 1999	16650	3	2.5 yrs	1.7 yrs	0.8-5.1 yrs		M (100%)	
Vormoor J, Germany, 2004	9420	2	3.9 yrs		3.8-3.9 yrs	white (100%)	M (50%) F (50%)	type 2/3, no CNS involvement
Yeager AM, US, 2000	14880	1	0.8 yrs				F (100%)	Type I with CNS involvement
Styczynski, Poland, 2011	442	1	16 yrs				F (100%)	stable disease

Study (Investigator, country, year)	Record Number	Group (N)	Age (mean)	Age (med)	Age (Rng)	Age (SD)	Race (%)	Gender M, F (%)	Disease Stage/category	Disease Histology/Site (%)	Comment
Arvio M, Finland, 2001	14180	12					white (100%)	M (58.3%) F (41.7%)			
Autti T, Finland, 1999	15540	6 non- HSCT , 7 non- disea sed	non- HSCT: 6.0 yrs	non- HSCT: 5.8 yrs	non- HSCT : 3.0- 10.0 yrs						
Banjar H, Saudi Arabia, 1998	17920	3	2.6 yrs	2.8 yrs	2.0- 3.0 yrs			Male (33%), Female (67%)			
Chan LL, Malaysia, 2002	11330	1	7.6				Asian (100%)	Female (100%)			
El-Beshlawy A, Egypt, 2006	5750	11	6.14 yrs		1-16 yrs						Mean age and range are for the whole study population of 22, which includes 11 Gaucher Type 1 pts.
Erikson A, Sweden, 1995	21630	3	7.4 yrs	4.8 yrs	3.8- 13.7 yrs			Male (33%), Female (67%)			
Goker-Alpan O, US, 2008	1790	30			0.2- 2.5 yrs at dx		Hispani c (36.7%) , Black (6.7%), White (56.7%)	Male (53.3%), Female (46.7%)			
Maegawa GHB, Canada, 2009	56590B	2	13.1 yrs	13.1 yrs	10.1- 16.0 yrs			Female (100%)	juvenile form		

Appendix Table C87. Participant characteristics: Comparator, inherited metabolic diseases

Study (Investigator, country, year)	Record Number	Group (N)	Age (mean)	Age (med)	Age (Rng)	Age (SD)	Race (%)	Gender M, F (%)	Disease Stage/category	Disease Histology/Site (%)	Comment
Maegawa GHB, Canada, 2009	56590A	3	15.6 yrs	18 yrs	8.7- 20.1 yrs			Male (67%), Female (33%)	juvenile form		
Muenzer J, US, 2006	57160	96	placeb o, n=32: 13.1 +/- 1.22 yrs ERT EOW, n=32: 14.4 +/- 1.2 yrs ERT wkly, n=32: 15.1 +/- 1.11 yrs		placeb o, n=32: 5.0- 29.0 yrs ERT EOW, n=32: 5.4- 30.9 yrs ERT wkly, n=32: 6.3- 26.0 yrs		placebo : Asian (9.4%), Black (12.5%) , White (75.0%) , Other (3.1%) ERT EOW: S Amer Ind (6.3%), Asian (6.3%), Black (3.2%), White (84.3%) ERT wkly: S Amer Ind (3.1%), Black (6.3%), White (87.5%) , Other (31%)		Disease score (2-6):placebo: 3 (22%), 4 (44%), 5 (28%), 6 (6%)ERT EOW: 2 (6%), 3 (19%), 4 (34%), 5 (28%), 6 (13%)ERT wkly: 2 (6%), 3 (22%), 4 (31%), 5 (31%), 6 (9%)		Age stratification: placebo: 5-11 yrs (46.9%), 12-18 yrs (31.3%), 19- 31 yrs (21.9%)ERT EOW: 5-11 yrs (43.8%), 12-18 yrs (31.3%), 19- 31 yrs (25.0%) ERT wkly: 5-11 yrs (43.8%), 12- 18 yrs (28.1%), 19- 31 yrs (28.1%)

Study (Investigator, country, year)	Record Number	Group (N)	Age (mean)	Age (med)	Age (Rng)	Age (SD)	Race (%)	Gender M, F (%)	Disease Stage/category	Disease Histology/Site (%)	Comment
Muenzer J, US, 2007	57070	12	placeb o: 16.7 yrs ERT .15 mg/kg: 11.0 yrs ERT .5 mg/kg: 20.0 yrs ERT 1.5 mg/kg: 10.0 yrs	placeb o: 17 yrs ERT .15 mg/kg: 10 yrs ERT .5 mg/kg: 20 yrs ERT 1.5 mg/kg: 8 yrs	placeb o: 13- 20 yrs ERT .15 mg/kg : 9-14 yrs ERT .5 mg/kg : 20 yrs ERT 1.5 mg/kg : 6-10 yrs		White (100%)	Male (100%)	attenuated		
Paciorkowski AR, US, 2008	2980	1	3.3 yrs					Female (100%)			
Patterson MC, US, 2007	56970	12	7.2		4-11	2.5		Male (42%), Female (58%)			
Patterson MC, US, 2010	56500	12	7.2 yrs	7 yrs	4-11 yrs	2.5 yrs		Male (42%), Female (58%)			
Pineda M, Spain, 2009	56560	66	12.8 yrs	<6 yrs: n=206 -11 yrs: n=14> =12 yrs: n=27	0.6- 43.0 yrs	9.5 yrs		Male (47%), Female (53%)			Cannot separate pediatric and adult pt data.

Study (Investigator, country, year)	Record Number	Group (N)	Age (mean)	Age (med)	Age (Rng)	Age (SD)	Race (%)	Gender M, F (%)	Disease Stage/category	Disease Histology/Site (%)	Comment
Schiffman R, Netherlands, 2008	56750	30	substra te reducti on therapy (n=21): 10.4 yrs no treatm ent (n=9): 9.9 yrs			substr ate reduc tion thera py (n=21): 5.1 yrs no treat ment (n=9): 4.0 yrs		substrate reduction therapy (n=21): Male (48%)no treatment (n=9): Male (22%)			Age distribution grps:substrat e reduction therapy: 2-11 yrs (52%), 12-17 yrs (33%), >=18 yrs (14%)no treatment: 2- 11 yrs (88%), 12-17 yrs (0%), >=18 yrs (11%)
Schiffmann R, Netherlands, 1997	58150	5	6.6 yrs	7.5 yrs	3.5- 8.5 yrs			Male (75%), Female (25%)	aggressive systemic disease		3 had partial splenectomy prior to ERT
Seto T, Japan, 2001	13460A	7	7 yrs	6 yrs	4-12 yrs		Asian (100%)	Male (100%)	2 severe2 intermediate3 mild		
Seto T, Japan, 2001	13460B	3	11.7 yrs	13 yrs	4-18 yrs		Asian (100%)	Male (66.7%), Female (33.3%)	Туре А		
Sivakumar P, England, 1999	16200	1	5 yrs					F (100%)	type IIIA		
Takahashi, Japan, 2001	14030	2	5.9 yrs		5.8- 6.0 yrs		Asian (100%)				

Study (Investigator, country, year)	Reco rd Num ber	Gr ou p (N)	Stem Cell Source	Type of HSCT	Prior Treatment	Conditionin g Regimen	Immunosuppres sive therapy for GVHD prophylaxis	Supportive Care	Comparative Treatment	Comparative Treatment Dose/Regim en	Comm ent
Arvio M, Finland, 2001	1418 0	3		allogene ic					natural history of disease		
Autti T, Finland, 1999	1554 0	2	related HLA- identical bone marrow	allogene ic		busulfan cyclophosp hamide one pt total nodal irradiation			non-HSCT non- diseased		
Banjar H, Saudi Arabia, 1998	1792 0	3							pt 1: 60 units/kg every 2 wks, for 3.2 yrs pt 2: 30 units/kg every 2 wks for 3.5 yrs pt 3: 30 units/kg every 2 wks for 2.5 yrs		
Chan LL, Malaysia, 2002	1133 0	1							ERT	20 units/kg/dos e every 2 wks	

Appendix Table C88. Treatment characteristics: Inherited metabolic diseases

Study (Investigator, country, year)	Reco rd Num ber	Gr ou p (N)	Stem Cell Source	Type of HSCT	Prior Treatment	Conditionin g Regimen	Immunosuppres sive therapy for GVHD prophylaxis	Supportive Care	Comparative Treatment	Comparative Treatment Dose/Regim en	Comm ent
Chen R, Taiwan, 2007	4490	1	unrelate d HLA- matche d bone marrow	allogene	ERT for 3 yrs prior to HSCT During ERT, growth maintaine d, hepatospl enomegal y resolved, and hematolog ic and bone density abnormalit ies resolved. Daily activity functions were deteriorati ng and intellectual impairmen t was developin g.	busulfan cyclophosp hamide tecelac	cyclosporine methotrexate				Electiv e splene ctomy prior to HSCT is standar d for Gauch er diseas e, but was not done on this pt, and no advers e effects of spleen retentio n was seen.
Coppa GV, Italy, 1999	1635 0	1	unrelate d bone marrow	allogene ic		busulfan cyclophosp hamide	cyclosporin methotrexate				
Ehlert K, Germany, 2006	4690	3	2 bone marrow 1 peripher al blood	allogene ic		busulfan myeloablati ve	cyclosporin A methotrexate with or without anti-thymocyte globulin				

Study (Investigator, country, year)	Reco rd Num ber	Gr ou p (N)	Stem Cell Source	Type of HSCT	Prior Treatment	Conditionin g Regimen	Immunosuppres sive therapy for GVHD prophylaxis	Supportive Care	Comparative Treatment	Comparative Treatment Dose/Regim en	Comm ent
El-Beshlawy A, Egypt, 2006	5750	11			1 pt had splenecto my prior to ERT				ERT intravenously 1-2 hrs every two wks, 60 microgm/kg body weight		
Erikson A, Sweden, 1995	2163 0	3			pt 1: partial splenecto my at 10.7 yrs pt 2: splenecto my and HSCT at 2.1 yrs from donor father, but no engraftme nt				ERT	pt 1: high dose 2x wkly, at .6 yrs dose halved, at 1.8 yrs dose increased 2: high dose 2x wkly, at .5 yrs dose halved, at 1.3 yrs dose 1/4pt 3: high dose 2x wkly, at .8 yrs dose halved, at 1.8 yrs dose halved, at 1.8 yrs dose halved, at 1.8 yrs dose halved, at 1.8 yrs dose 1/4, at 2.3 yrs dose increased	
Goker-Alpan O, US, 2008	1790	2	bone marrow	allogene ic					ERT only		
Grewel S, US, 2003	9750	1	related HLA- identical bone marrow	allogene ic		cyclophosp hamide antithymoc yte globulin total body irradiation	cyclosporin A prednisone				

Study (Investigator, country, year)	Reco rd Num ber	Gr ou p (N)	Stem Cell Source	Type of HSCT	Prior Treatment	Conditionin g Regimen	Immunosuppres sive therapy for GVHD prophylaxis	Supportive Care	Comparative Treatment	Comparative Treatment Dose/Regim en	Comm ent
Guffon N, France, 2009	680	8	6 HLA- identical related bone marrow 1 HLA- identical unrelate d bone marrow 1 mismatc hed unrelate d bone marrow	allogene ic		busulfan cyclophosp hamide thymoglobu lin when donor unrelated	cyclosporin A methotrexate	intravenous polyvalent immunoglob ulins penicillin acyclovir trimethoprim /sulfamethox azole			
Hsu YS, Taiwan, 1999	1654 0	1	related HLA- identical bone marrow	allogene ic		busulfan cyclophosp hamide	cyclosporine methotrexate				
Imaizumi M, Japan, 1994	2322 0A	1	HLS- matche d sibling bone marrow	allogene ic		busulfan cyclophosp hamide	cyclosporine				
Imaizumi M, Japan, 1994	2322 0B	1	HLA- matche d sibling bone marrow (carrier)	allogene ic		busulfan cyclophosp hamide	cyclosporine				

Study (Investigator, country, year)	Reco rd Num ber	Gr ou p (N)	Stem Cell Source	Type of HSCT	Prior Treatment	Conditionin g Regimen	Immunosuppres sive therapy for GVHD prophylaxis	Supportive Care	Comparative Treatment	Comparative Treatment Dose/Regim en	Comm ent
Jacobs JFM, Netherlands, 2005	6740	1	unrelate d bone marrow	allogene ic		busulfan cyclophosp hamide antithymoc yte globulin	cyclosporin A				substra te reducti on therapy started at 1.5 yrs post HSCT
Laitinen A, Finland, 1997	1962 0	1	related HLA- identical bone marrow	allogene ic		busulfan cyclophosp hamide					
Lange MC, Brazil, 2006	5690	1	related bone marrow	allogene ic		busulfan cyclophosp hamide	cyclosporine methotrexate				
Li P, US, 1996	2026 0	1	related HLA- identical bone marrow	allogene ic							
Lonnquist T, Finland, 2001	1296 0	з	two umbilica I cord blood one bone marrow	allogene ic		busulfan cyclophosp hamide antilympho cyte globulin	cyclosporin A				
Maegawa GHB, Canada, 2009	5659 0A	3							substrate reduction therapy orally, 100-200 mg t.i.d., adjusted to body surface area		

Study (Investigator, country, year)	Reco rd Num ber	Gr ou p (N)	Stem Cell Source	Type of HSCT	Prior Treatment	Conditionin g Regimen	Immunosuppres sive therapy for GVHD prophylaxis	Supportive Care	Comparative Treatment	Comparative Treatment Dose/Regim en	Comm ent
Maegawa GHB, Canada, 2009	5659 0B	2							substrate reduction therapy orally 100-200 mg t.i.d. adjusted to body surface area		
Malm G, Sweden, 2004	8490	2	unrelate d bone marrow	allogene ic							
McKinnis EJR, US, 1996	2056 0	1	related HLA- identical bone marrow	allogene ic		busulfan cyclophosp hamide	methotrexate cyclosporine				
Morel CF, Canada, 2007	3010	1	umbilica I cord blood	allogene ic		busulfan cyclophosp hamide	cyclosporin methylprednison e				
Muenzer J, US, 2006	5716 0	96							ERT	placebo, n=32ERT every other week, n=32ERT weekly, n=32	
Muenzer J, US, 2007	5707 0	12							ERT	4 grps: placebo, ERT 0.15 mg/kg, ERT 0.5 mg/kg, ERT 1.5 mg/kg	
Mullen CA, US, 2000	1530 0	1	unrelate d umbilica l cord blood	allogene ic		busulfan cyclophosp hamide antithymoc yte globulin methyl prednisolon e	tacrolimus methotrexate				

Study (Investigator, country, year)	Reco rd Num ber	Gr ou p (N)	Stem Cell Source	Type of HSCT	Prior Treatment	Conditionin g Regimen	Immunosuppres sive therapy for GVHD prophylaxis	Supportive Care	Comparative Treatment	Comparative Treatment Dose/Regim en	Comm ent
Paciorkowski AR, US, 2008	2980	1							substrate reduction therapy	total dose = (body surface area / 1.73) X adult dose40 mg, 3 times/day, oral liquid	
Page KM, US, 2008	1280 A	1	unrelate d umbilica l cord blood	allogene ic		busulfan cyclophosp hamide antithymoc yte globulin	cyclosporin methylprednison e	IV immunoglob ulin acyclovir variconozole			
Page KM, US, 2008	1280 B	2	unrelate d umbilica l cord blood	allogene ic		busulfan cyclophosp hamide antithymoc yte globulin myeloablati ve conditionin g	cyclosporine methylprednison e	IV immunoglob ulin acyclovir voriconazole			
Patterson MC, US, 2007	5697 0	12							substrate reduction therapy, dose adjusted to body weight		
Patterson MC, US, 2010	5650 0	10							substrate reduction therapy	median dose: 350 mg/day (range: 100- 600 mg/day)medi an length of exposure: 1073 days (range: 725- 1604 days)	

Study (Investigator, country, year)	Reco rd Num ber	Gr ou p (N)	Stem Cell Source	Type of HSCT	Prior Treatment	Conditionin g Regimen	Immunosuppres sive therapy for GVHD prophylaxis	Supportive Care	Comparative Treatment	Comparative Treatment Dose/Regim en	Comm ent
Pineda M, Spain, 2009	5656 0	66							substrate reduction therapy	mean daily dose (95% CI):<6 yrs: 197.7 (138.0- 257.3) mg6- 11 yrs: 350.0 (266.0- 433.9) mg>=12 yrs: 464.8 (403.8- 525.9) mg	
Ringden O, Sweden, 1995	2202 0	6	4 HLA- matche d related bone marrow 1 HLA- mismatc hed related bone marrow 1 HLA- matche d unrelate d bone marrow	allogene ic		pts 1, 2: cyclophosp hamide and total body irradiation pts 3-6: busulfan and cyclophosp hamide	pt 1: cyclosporine pts 2-6: cyclosporine and methotrexate				pt 4 did not engraft and was put on ERT
Ringden O, Sweden, 2006	5940 A	2		allogene ic		busulfan cyclophosp hamide	cyclosporin	reversed isolation			
Ringden O, Sweden, 2006	5940 B	1		allogene ic		busulfan cyclophosp hamide	cyclosporin	reversed isolation			

Study (Investigator, country, year)	Reco rd Num ber	Gr ou p (N)	Stem Cell Source	Type of HSCT	Prior Treatment	Conditionin g Regimen	Immunosuppres sive therapy for GVHD prophylaxis	Supportive Care	Comparative Treatment	Comparative Treatment Dose/Regim en	Comm ent
Schiffman R, Netherlands, 2008	5675 0	30			29 of 30 receiving ERT simultane ously1 of 30 had HSCT at 13 and 16 yrs and engrafted				substrate reduction therapy combined with ERT (and one HSCT)	Year 1: 21 pts received substrate reduction therapy, 9 received no treatment Year 2: all pts received substrate reduction therapy pts >=12 yrs received adult dosage of 200 mg 3 times/day pts<12 yrs received lower dosages adjusted to body surface area	
Schiffmann R, Netherlands, 1997	5815 0	5							ERT	dosage adjusted by severity of disease, infusions weekly or every other week	
Seto T, Japan, 2001	1346 0A	3	related HLA- matche d bone marrow	allogene ic							

Study (Investigator, country, year)	Reco rd Num ber	Gr ou p (N)	Stem Cell Source	Type of HSCT	Prior Treatment	Conditionin g Regimen	Immunosuppres sive therapy for GVHD prophylaxis	Supportive Care	Comparative Treatment	Comparative Treatment Dose/Regim en	Comm ent
Seto T, Japan, 2001	1346 0B	1	related HLA- matche d bone marrow	allogene ic							
Shield JPH, England, 2005	6720	1	related HLA- matche d bone marrow	allogene ic							
Sivakumar P, England, 1999	1620 0	1	related bone marrow	allogene ic					natural history of disease		
Stein J, Israel, 2007	4880	1	unrelate d umbilica l cord blood	allogene ic		cyclophosp hamide antithymoc yte globulin total body irradiation	cyclosporin A methylprednison e	difluconazol e acyclovir polymyxin gammaglobu lin			
Takahashi, Japan, 2001	1403 0	1	bone marrow	allogene ic							
Tokimasa, Japan, 2008	1310	1	unrelate d umbilica l cord blood	allogene ic		busulfan cyclophosp hamide fludarabine anticonvuls ants mesna	methotrexate tacrolimus	laminar air flow room parenteral nutrition antibiotics heparin			

Study (Investigator, country, year)	Reco rd Num ber	Gr ou p (N)	Stem Cell Source	Type of HSCT	Prior Treatment	Conditionin g Regimen	Immunosuppres sive therapy for GVHD prophylaxis	Supportive Care	Comparative Treatment	Comparative Treatment Dose/Regim en	Comm ent
Tolar J, US, 2009	1370	4	3 unrelate d bone marrow 1 unrelate d umbilica I cord blood	allogene ic		1 cyclophosp hamide, antithymoc yte globulin, total body irradiation1 cyclophosp hamide, total body irradiation 1 busulfan, fludarabine, total body irradiation1 busulfan, cyclophosp hamide, antithymoc yte globulin					
Tsai P, US, 1992	2512 0	1	HLA- matche d related bone marrow	allogene ic		anti- thymocyte globulin busulfan cyclophosp hamide	methotrexate				

Study (Investigator, country, year)	Reco rd Num ber	Gr ou p (N)	Stem Cell Source	Type of HSCT	Prior Treatment	Conditionin g Regimen	Immunosuppres sive therapy for GVHD prophylaxis	Supportive Care	Comparative Treatment	Comparative Treatment Dose/Regim en	Comm ent
Vellodi A, England, 1999	1665 0	10	6 related non- identical bone marrow 2 related identical bone marrow 1 unrelate d bone marrow 1 unknow n bone marrow source	allogene ic		busulfan cyclophosp hamide	cyclosporin methotrexate				
Vormoor J, Germany, 2004	9420	2	one related bone marrow, one unrelate d peripher al blood	allogene ic		busulfan cyclophosp hamide antithymoc yte globulin	cyclosporin methotrexate				
Yeager AM, US, 2000	1488 0	1	related HLA- matche d bone marrow	allogene ic		busulfan cyclophosp hamide	cyclosporin				

Study (Investigator, country, year)	Reco rd Num ber	Gr ou p (N)	Stem Cell Source	Type of HSCT	Prior Treatment	Conditionin g Regimen	Immunosuppres sive therapy for GVHD prophylaxis	Supportive Care	Comparative Treatment	Comparative Treatment Dose/Regim en	Comm ent
Styczynski, Poland, 2011	442	1	mismatc hed unrelate d donor	allogene ic		reduced toxicity regimen: BU, fludarabine, and alemtuzum ab	tacrolimus, MMF	HEPA filtration and reverse isolation			

Appendix Table C89. Outcome assessment: Treatment, inherited metabolic diseases

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	Secondary Outcomes	F/U Frequency/Duration
Arvio M, Finland, 2001	14180	5	intellectual skills overall health	dysmorphic features	
Autti T, Finland, 1999	15540	2	MRI findings:cortex-white matter differentiation thalami signal intensity		
Chen R, Taiwan, 2007	4490	1	neuropsychologic scores	enzyme activity neurodevelopmental milestones	
Coppa GV, Italy, 1999	16350	1	enzyme activity neurocognitive scores		
Ehlert K, Germany, 2006	4690	3	number of subcutaneous nodules number of joints with limited range of motion	GVHD infections toxicity	
Goker-Alpan O, US, 2008	1790	2	neuropsychometric assessments		
Grewel S, US, 2003	9750		neuropsychologic scores neurodevelopmental milestones		
Guffon N, France, 2009	680	8	enzyme activity neuropsychologic scores		
Hsu YS, Taiwan, 1999	16540	1	neuropsychologic scores neurodevelopmental milestones	MRI findings	
Imaizumi M, Japan, 1994	23220A	1	enzyme activity neuropsychologic measurements neurodevelopmental measurements		2 yrs
Imaizumi M, Japan, 1994	23220B	1	enzyme activity neuropsychologic measurements neurodevelopmental measurements		5.6 yrs
Jacobs JFM, Netherlands, 2005	6740	1	enzyme activity MRI findings:cerebral cortical atrophy		

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	Secondary Outcomes	F/U Frequency/Duration
Laitinen A, Finland, 1997	19620	1	identification of gene mutations	enzyme activity	
Lange MC, Brazil, 2006	5690	1	overall survival GVHD		
Li P, US, 1996	20260	1	enzyme activity neuropsychologic scores neurodevelopmental milestones		
Lonnquist T, Finland, 2001	12960	3	neuropsychologic scores enzyme activity	MRI findings:cerebral cortical atrophy periventricular white matter hyperintensity	neuropsychologic testing every 0.5 yrs
Malm G, Sweden, 2004	8490	2	neuropsychologic scores enzyme activity		
McKinnis EJR, US, 1996	20560	1	neuropsychologic scores neurodevelopmental milestones enzyme activity		
Morel CF, Canada, 2007	3010	1	enzyme activity neurologic measurements neurodevelopmental milestones		
Mullen CA, US, 2000	15300	1	enzyme activity	adverse events	
Paciorkowski AR, US, 2008	2980				
Page KM, US, 2008	1280B	2	event-free survival	GVHD development of autoimmune cytopenias	
Page KM, US, 2008	1280A	1	event-free survival	GVHD development of autoimmune cytopenias	
Patterson MC, US, 2007	56970	12			
Ringden O, Sweden, 1995	22020	6	enzyme activity liver size skeletal symptoms growth		
Ringden O, Sweden, 2006	5940A	2	cumulative overall survival cumulative treatment-related mortality	cumulative incidence of cGVHD	
Ringden O, Sweden, 2006	5940B	1	cumulative overall survival cumulative treatment-related mortality	cumulative incidence of cGVHD	
Seto T, Japan, 2001	13460A	10	MRI findings in MPS pts		
Seto T, Japan, 2001	13460B	4	MRI findings in MPS pts		
Shield JPH, England, 2005	6720	1	MRI findings neurodevelopmental milestones	enzyme activity	
Sivakumar P, England, 1999	16200	2	neuropsychologic scores neurodevelopmental milestones		

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	Secondary Outcomes	F/U Frequency/Duration
Stein J, Israel, 2007	4880	1	enzyme activity MRI findings		
Takahashi, Japan, 2001	14030	3	magnetic resonance spectroscopy measurement of mucopolysaccharides in the central nervous system		
Tokimasa, Japan, 2008	1310	1	engraftment GVHD		
Tolar J, US, 2009	1370	1	overall survival neuropsychologic scores	enzyme activity GVHD	
Tsai P, US, 1992	25120	1	neurocognitive scores growth enzyme activity		
Vellodi A, England, 1999	16650	10	TRM neurocognitive scores		
Vormoor J, Germany, 2004	9420	2	number of subcutaneous nodules number of joints with limited range of motion		
Yeager AM, US, 2000	14880	1	enzyme activity neuropsychologic scores	MRI findings joint measurements	
Styczynski, Poland, 2011	442	1	aGVHD, cGVHD	overall survival	0.3 yrs

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	Secondary Outcomes	F/U Frequency/Duration	Comment
Arvio M, Finland, 2001	14180	12				
Autti T, Finland, 1999	15540	6 non- HSCT7 non- diseased				
Banjar H, Saudi Arabia, 1998	17920	3	pulmonary involvement	skeletal changes		
Chan LL, Malaysia, 2002	11330	1	organomegaly growth			
El-Beshlawy A, Egypt, 2006	5750	11	skeletal changes			
Erikson A, Sweden, 1995	21630	3	neuropsychologic scores glucosylceramide levels (lower is better)	growth		
Goker-Alpan O, US, 2008	1790	30	neuropsychometric assessments			
Maegawa GHB, Canada, 2009	56590B	2	neurological assessments neuropsychological tests, 2 types depending on severity of impairment		neurological assessments at baseline and every 3 mos neuropsychological tests at baseline and every 6 mos	
Maegawa GHB, Canada, 2009	56590A	3	neurological assessments neuropsychological tests, 2 types depending on severity of impairment		neurological assessments at baseline and every 3 mos neuropsychological tests at baseline and every 6 mos	
Malm G, Sweden, 2004	8490	2				
Muenzer J, US, 2006	57160	96	6-minute walk test forced vital capacity		baseline, 18 wks, 36 wks, 53 wks	
Muenzer J, US, 2007	57070	12	change in urinary glucosaminoglycans	liver and spleen size 6-minute walk test pulmonary function joint mobility heart size and function sleep study	baseline, wk 13, wk 24, wk 25, wk 51	
Paciorkowski AR, US, 2008	2980	1	gait analysis neurologic exams growth parameters		gait every 6 mos neurologic exams every 3 mos	

Appendix Table C90. Outcome assessment: Comparator, inherited metabolic diseases

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	Secondary Outcomes	F/U Frequency/Duration	Comment
Patterson MC, US, 2007	56970	12	change in horizontal saccadic eye movement- alpha (HSEM-alpha)	mini-mental status examination ambulatory index difficulty in swallowing		HSEM-alpha is an indicator of disease severity
Patterson MC, US, 2010	56500	10	horizontal saccadic eye movement (correlates well with disease progression)	neurological assessments swallowing ambulation		
Pineda M, Spain, 2009	56560	66	4 disease disability scales: ambulation, manipulation, language, swallowing (the lower the score, the better)		at diagnosis, at start of treatment, last clinical contact	Psychiatric impairment was not part of the disability scales because most psychiatric impairment in this disease starts in adolescence or adulthood.
Schiffman R, Netherlands, 2008	56750	30	change in vertical saccadic eye movement velocity (VSEM)	neurological assessments pulmonary function liver and spleen volume hematological assessments safety evaluations		VSEM chosen end point because supranuclear gaze palsy is the only universal neurological symptom of Gaucher Type 3
Schiffmann R, Netherlands, 1997	58150	5	neurocognitive scores lumbar puncture (3 of 5 pts)		lumbar puncture every 3-6 mos for 3 yrs	
Seto T, Japan, 2001	13460A	7	MRI findings in MPS pts			
Seto T, Japan, 2001	13460B	3	MRI findings in MPS pts			
Sivakumar P, England, 1999	16200	1	neuropsychologic scores neurodevelopmental milestones			
Takahashi, Japan, 2001	14030	2	magnetic resonance spectroscopy measurement of mucopolysaccharides in the central nervous system			

Study (Investigator, country)	Record Number	Group (N)	Outcome	Comment
Arvio M, Finland, 2001	14180	3	alive:pt 1: 7.6 yrs pt 2: 5.4 yrs pt 3: 1.8 yrs	
Autti T, Finland, 1999	15540	2	alive:pt 1: 7 yrs pt 2: 4 yrs	
Banjar H, Saudi Arabia, 1998	17920			
Chan LL, Malaysia, 2002	11330			
Chen R, Taiwan, 2007	4490	1	alive at 1.5 yrs post	
Coppa GV, Italy, 1999	16350	1	alive at 4 yrs post	
Ehlert K, Germany, 2006	4690		alive:pt 1: 1.2 yrs pt 2: 0.5 yrs pt 3: 0.7 yrs	
El-Beshlawy A, Egypt, 2006	5750			
Erikson A, Sweden, 1995	21630			
Goker-Alpan O, US, 2008	1790	2	alive at 19-21 yrs	
Grewel S, US, 2003	9750	1	alive at 5 yrs post	
Guffon N, France, 2009	680	8	7 alive at 12.7 yrs avg post1 dead at 6.1 yrs post	cause of death unrelated to transplant
Hsu YS, Taiwan, 1999	16540	1	alive at 0.8 yrs post	
Imaizumi M, Japan, 1994	23220A	1	alive at 2 yrs	
Imaizumi M, Japan, 1994	23220B	1	dead at 5.6 yrs follow-up	died of natural progression of disease
Jacobs JFM, Netherlands, 2005	6740	1	alive at 2.0 yrs post	
Laitinen A, Finland, 1997	19620	1	alive at 4 mos post	
Lange MC, Brazil, 2006	5690	1	alive at 3.3-14.2 yrs post (for total study pop of 8)	follow-up time for single MPS III pt not given
Li P, US, 1996	20260	1	alive at 5.0 yrs post	
Lonnquist T, Finland, 2001	12960	3	alive:pt 1: 4 yrs pt 2: 3 yrs pt 3: 2 yrs	
Maegawa GHB, Canada, 2009	56590A			
Maegawa GHB, Canada, 2009	56590B			
Malm G, Sweden, 2004	8490	2	alive:pt 1: 5 yrs pt 2: 5 yrs	
McKinnis EJR, US, 1996	20560	1	alive at 5.6 yrs post	
Morel CF, Canada, 2007	3010		alive at 2.7 yrs post	
Muenzer J, US, 2006	57160			
Muenzer J, US, 2007	57070			
Mullen CA, US, 2000	15300		alive at 2.2 yrs	
Paciorkowski AR, US, 2008	2980			
Page KM, US, 2008	1280A	1	dead at 4.6 yrs post	cause of death unknown, probably infection
Page KM, US, 2008	1280B	1	1 alive at 5.1 yrs post1 dead at 1.8 yrs post	cause of death: multi-system organ failure
Patterson MC, US, 2007	56970			

Appendix Table C91. Time to event outcomes: Treatment, inherited metabolic diseases

Study (Investigator, country)	Record Number	Group (N)	Outcome	Comment
Patterson MC, US, 2010	56500			
Pineda M, Spain, 2009	56560			
Ringden O, Sweden, 1995	22020	6	6 alive, 5-11 yrs follow-up	
Ringden O, Sweden, 2006	5940A	2	1 alive at 14 yrs follow-up (Type C), without engraftment1 dead at 0.4 yrs post (Type A)	Cause of death: pneumonia
Ringden O, Sweden, 2006	5940B	1	1 dead, unknown follow-up	Cause of death: progressive disease
Schiffman R, Netherlands, 2008	56750			
Schiffmann R, Netherlands, 1997	58150			
Seto T, Japan, 2001	13460A	3	3 alive, 1 at 3 yrs post, 1 at 8 yrs post, 1 unknown follow-up	
Seto T, Japan, 2001	13460B	1	alive, unknown follow-up	
Shield JPH, England, 2005	6720		alive at 7 yrs post	
Sivakumar P, England, 1999	16200	1	alive at 7.4 yrs post	
Stein J, Israel, 2007	4880	1	alive at 4 yrs post	
Takahashi, Japan, 2001	14030	1	alive at 1.1 yrs post	
Tokimasa, Japan, 2008	1310	1	dead at 0.8 yrs post	cause of death: post-transplant lymphoproliferative disorder
Tolor I US 2000	1270	4	2 dead at 0.2 and 0.7 yrs post2 alive at 4	
Total 3, 03, 2009	1370	4	and 11 yrs post	
Tsai P, US, 1992	25120	1	dead at 2 yrs post	s. pneumoniae sepsis
Vellodi A, England, 1999	16650	10	2 alive at 7-14 yrs post1 dead 11.8 yrs post from natural progression of disease4 dead <100 days post, 2 from aGVHD, 2 from sepsis1 dead 4 yrs post from bronchiolitis1 dead unknown follow-up of GVHD	Authors attribute high mortality to poor donor selection.
Vormoor J, Germany, 2004	9420	2	alive:pt 1: 1.2 yrs pt2: 0.9 yrs	
Yeager AM, US, 2000	14880	1	dead at 2.3 yrs post	cause of death: pulmonary failure after aspiration pneumonitis (disease-related, not treatment-related)
Styczynski, Poland, 2011	442	1	alive, 0.3 yrs	

Study (Investigator, country, vear)	Record Number	Group (N)	Outcom	1 yr	2 yr	3 yr	4 yr	5 yr	Outcome_ 2	Med (mos) 2	3 vr 2	5 vr 2
Abu-Ghosh 2002 USA	45610	11		~73 %	63.6 +/- 14.5 %	63.6 +/- 14.5 %	63.6 +/- 14.5 %	63.6 +/- 14.5 %	PFS	(63.6 +/- 14.5 %	
Park, Korea, 2006	5450	7	DOD n=5 median 15 mos (2-30 mos) A NED n=1 20+ mos A with D n=1 130+ mos						EFS	median 8 months (2- 20 mos)		
Tucci, Brazil, 2007	3910	10				83.3 %		42.8 %	DFS		66.6 %	42.8 %

Appendix Table C92. Time to event outcomes: Comparator, inherited metabolic diseases

Study (Investi- gator, country, year)	Record Number	Group (N) (NDP)	Normal Level (NDP)	Pre- Transplant (NDP)	Post- Transplant (NDP)	Comments (NDP)	Group (N) (OOI)	Normal Level (OOI)	Pre- Transplant (OOI)	Post- Transplant (OOI)	Comment s (OOI)
Arvio M, Finland, 2001	14180	3 HSCT 12 non- HSCT			3 HSCT: developmen tal age was on average 5 yrs lower than real age 12 non- HSCT: developmen tal age was on average 3.4 yrs lower than real age						
Autti T, Finland, 1999	15540	2 HSCT		both HSCT pts: gross motor clumsiness, slight balance problems			2 HSCT		frequent respiratory and ear infections	no reports of respiratory and ear infections	
Banjar H, Saudi Arabia, 1998	17920	3			No changes in skeletal symptoms were found.		3		all 3 have diffuse reticular pattern on chest x- rays	2 improved and 1 had no change in lung involvement	
Chan LL, Malaysia, 2002	11330	1		height <3rd percentile	improved growth		1		spleen volume: 1592 cu cm liver: 3 cm below coastal margin mild anemia thrombocyt openia	spleen volume: 856 cu cm liver: 2 cm below coastal margin anemia corrected thrombocyt openia corrected	

Appendix Table C93. Neurocognitive/neuropsychological outcomes: Inherited metabolic diseases

Study (Investi- gator, country, year)	Record Number	Group (N) (NDP)	Normal Level (NDP)	Pre- Transplant (NDP)	Post- Transplant (NDP)	Comments (NDP)	Group (N) (OOI)	Normal Level (OOI)	Pre- Transplant (OOI)	Post- Transplant (OOI)	Comment s (OOI)
Chen R, Taiwan, 2007	4490	1			stable growth and improved bone density						
Coppa GV, Italy, 1999	16350	1		significant joint limitations in hands, knees, elbows sensorineural hearing loss	mild joint limitations at 0.7 yrs post minimal joint limitations at 2.6 yrs post		1		hepatosple nomegaly mild mitral and tricuspid insufficienc y	hepatosplen omegaly resolved 2.6 yrs post slight improveme nts in valve abnormalitie s at 2.6 yrs post	
Ehlert K, Germany, 2006	4690	3		no. subcutaneou s nodules:pt 1: 58pt 2: 39pt 3: 18no. joints with limited motion:pt 1: 26pt 2: 24pt 3: 10	no. subcutaneo us nodules:pt 1: 8 at 1.2 yrs post pt 2: 14 at 0.5 yrs post pt 3: 0 at 0.7 yrs post no. joints with limited motion:pt 1: 2 at 1.2 yrs post pt 2: 4 at 0.5 yrs post pt 3: 4 at 0.7 yrs post	all 3 pts showed improveme nt in mobility, less pain, and considerab le gain in function					

Study (Investi- gator, country, year)	Record Number	Group (N) (NDP)	Normal Level (NDP)	Pre- Transplant (NDP)	Post- Transplant (NDP)	Comments (NDP)	Group (N) (OOI)	Normal Level (OOI)	Pre- Transplant (OOI)	Post- Transplant (OOI)	Comment s (OOI)
El- Beshlawy A, Egypt, 2006	5750	11		Grading severity level of marrow involvement: 0A level: 3 pts, 2A level: 6 pts, 3A level: 1 pt, 3B level: 1 pt	0A level:0A level: 1 constant and 2 worsened, 2A level: 5 complete improvemen t and 1 constant, 3A level: 1 constant, 3B level: 1 constant	3B pt had prior splenecto my	11	radiograph y of both femora	7 no abnormal osseous changes2 single lesions2 complex lesion	7 no abnormal osseous changes remained same2 single lesions had complete improveme nt2 complex lesions had 1 remain same and 1 partial improveme nt	
Erikson A, Sweden, 1995	21630	3	stunted growth skeletal deformities	pt 2: grew 2 cm/yr pt 3: grew 4 cm/yr	pt 2: grew 9 cm 1 yr post pt 3: grew 12 cm 1 yr post	pt 1 had femur deformity, kyphosis, cortex thinning and pt 3 had femur deformity; no change in skeletal deformities found	3	liver size spleen size	liver: pt 1: 4.3% body wt, pt 2: 6.2% body wt, pt 3: 8.3% body wt spleen:pt 1: 4.6% body wt, pt 2: splenectom y, pt 3: 14.6% body wt	liver: pt 1: 2.7% at 2.1 yrs, pt 2: 3.6% at 2 yrs, pt 3: 4.3% at 1.9 yrs spleen:pt 1: 1.0% at 2.1 yrs, pt 2: splenectom y, pt 3: 3.3% at 1.9 yrs	

Study (Investi- gator, country, year)	Record Number	Group (N) (NDP)	Normal Level (NDP)	Pre- Transplant (NDP)	Post- Transplant (NDP)	Comments (NDP)	Group (N) (OOI)	Normal Level (OOI)	Pre- Transplant (OOI)	Post- Transplant (OOI)	Comment s (OOI)
Goker- Alpan O, US, 2008	1790	2		bone abnormalities in 1 pt (50%)	bone abnormalitie s stable	or whole grp, 2 HSCT followed by ERT, and 30 ERT only: 100% slowing of horizontal saccadic eye movement					
Grewel S, US, 2003	9750	1		real age: 1.4 yrs development al age: 0.9 yrs	real age: 3.0 yrs, gross motor age: 1.2 yrs real age: 3.5 yrs, gross motor age: 1.3 yrs real age: 4.7 yrs, gross motor age: 1.5 yrs real age: 5.7 yrs, gross motor age: 1.5 yrs real age: 6.7 yrs, gross motor age: 1.5 yrs	gross motor skills impaired fine motor skills slowly growing	1		echocardio graph showed trivial aortic insufficienc y frequent respiratory infections	echocardiog raph showed no further progression of cardiac symptoms no respiratory infections during follow-up	surgery for cataracts, bilateral carpal tunnel, 8 trigger digit releases multiple dental extraction s insertion of bilateral ear tubes

Study (Investi- gator, country, year)	Record Number	Group (N) (NDP)	Normal Level (NDP)	Pre- Transplant (NDP)	Post- Transplant (NDP)	Comments (NDP)	Group (N) (OOI)	Normal Level (OOI)	Pre- Transplant (OOI)	Post- Transplant (OOI)	Comment s (OOI)
Guffon N, France, 2009	680	8			8 showed improvemen t in joint stiffness2 no kyphosis5 mild kyphosis1 severe kyphosis2 no carpal tunnel syndrome6 carpal tunnel syndrome requiring surgery		8		8 valvular abnormaliti es detected by echocardio graphy5 hearing problems3 no hearing problems8 hepatosple nomegaly	cardiovascu lar abnormalitie s stabilized1 with hearing problems improved7 hearing remain same8 hepatosplen omegaly resolved in 3 mos post	
Hsu YS, Taiwan, 1999	16540	1		1.2 yrs: sat without support and crawled2.4 yrs: became bed-ridden during conditioning phase			1		frequent respiratory infections hepatosple nomegaly lipid-filled foamy cells among hematopoi etic cells	chest CT at 0.5 and 0.8 yrs post show resolution of lung infiltrates hepatosplen omegaly resolved at 0.5 yrs post normal cellular marrow with no foamy cells at 0.5 yrs post	

Study (Investi- gator, country, year)	Record Number	Group (N) (NDP)	Normal Level (NDP)	Pre- Transplant (NDP)	Post- Transplant (NDP)	Comments (NDP)	Group (N) (OOI)	Normal Level (OOI)	Pre- Transplant (OOI)	Post- Transplant (OOI)	Comment s (OOI)
Imaizumi M, Japan, 1994	23220A	1		moderate to severe joint contractures nodular hypertrophy present	improved joint contractures nodular hypertrophy absent		1		cardiac valvular thickness hepatomeg aly at 12 cm moderate hearing loss	no change in cardiac valvular thickness hepatomeg aly at 4 cm no change in hearing loss	
Imaizumi M, Japan, 1994	23220B	1		moderate to severe joint contractures marked short stature dystosis multiplex present	no change in joint contractures marked short stature dystosis multiplex still present		1		high dependenc e on respirator and frequent infections left ventricular hypertroph y mild corneal cloudiness hepatomeg aly at 6 cm	low dependenc e on respirator and less frequent infections left ventricular hypertrophy same mild corneal cloudiness hepatomeg aly at 0 cm	at 5 yrs, infections began increasin g again and at 5.6 yrs post transplant , pt died of pneumoni a
Jacobs JFM, Netherland s, 2005	6740	1			motor skills deteriorating at 0.5 yrs post	Deteriorati on of this pt similar to deterioratio n of untreated older sister.	1			ophthalmolo gical deterioratio n at 1.5 yrs post	
Laitinen A, Finland, 1997	19620	1					1		mild hepatomeg aly recurrent respiratory infections	clinically well	

Study (Investi- gator, country, year)	Record Number	Group (N) (NDP)	Normal Level (NDP)	Pre- Transplant (NDP)	Post- Transplant (NDP)	Comments (NDP)	Group (N) (OOI)	Normal Level (OOI)	Pre- Transplant (OOI)	Post- Transplant (OOI)	Comment s (OOI)
Li P, US, 1996	20260	1		multiple bone abnormalities	improvemen ts in joint range of motion improvemen ts in fine and gross motor skills		1		hepatosple nomegaly cardiac enlargeme nt with normal function	hepatosplen omegaly resolved cardiac status unimproved	
Lonnquist T, Finland, 2001	12960	3		one pt mildly symptomatic and two pts asymptomati c	all three pts by end of follow-up at 2-4 yrs of age were hypotonic and spastic, with some head control remaining		3		no optic atrophy or retinopathy	optic atrophy: developmen t of one severe and one mild retinopathy: developmen t of one mild	
Maegawa GHB, Canada, 2009	56590A	3		pt 1: muscle wasting, fully dependent for feeding and ambulation pt 2: moderate skeletal muscle weakness, independent ambulation, feeding, bathing pt 3: independent ambulation, feeding, and bathing	pt 1: 3 mos incoordinati on progressed, 15 mos wheelchair, 21 mos can't stand pt 2: at 18 mos gait disturbance progressed & muscle strength reduced pt 3: 6 mos gait disturbance, 16 mos notable wt loss	pt 2 and pt 3 stopped tx at 21 mos due to excessive weight loss					

Study (Investi- gator, country, year)	Record Number	Group (N) (NDP)	Normal Level (NDP)	Pre- Transplant (NDP)	Post- Transplant (NDP)	Comments (NDP)	Group (N) (OOI)	Normal Level (OOI)	Pre- Transplant (OOI)	Post- Transplant (OOI)	Comment s (OOI)
Maegawa GHB, Canada, 2009	56590B	2		pt 1: mild muscle weakness, moderate muscle impairment, independent feeding and ambulation pt 2: needs support for ambulation	pt 1: at 6 mos handwriting deteriorated, at 12 mos fine tremor in hands, from 12-24 mos, progressive muscle atropy pt 2: at 15 mos muscle bulk decreased markedly, at 24 mos wheelchair dependent						
Malm G, Sweden, 2004	8490	2			pt 1: can walk, ride bike, dress self pt 2: can walk, ride bike, drive tractor, some fine motor skills						
McKinnis EJR, US, 1996	20560	1		real age: 1.9 yrs development al age: 1.3- 1.5 yrs	persistent skeletal deformities reversion in balance and coordination though can still walk and ride tricycle		1		hearing deficits hepatomeg aly	hearing deficits persist, but have not progressed hepatomeg aly resolved	

Study (Investi- gator, country, year)	Record Number	Group (N) (NDP)	Normal Level (NDP)	Pre- Transplant (NDP)	Post- Transplant (NDP)	Comments (NDP)	Group (N) (OOI)	Normal Level (OOI)	Pre- Transplant (OOI)	Post- Transplant (OOI)	Comment s (OOI)
Morel CF, Canada, 2007	3010	1			alert, active, interactive, rolling back to front to back at 0.6 yrs post head lag and hypotonic at 1 yr post significant developmen tal delay, limited social interaction, unable to sit or stand at 1.7 yrs post		1		hepatosple nomegaly	splenomega ly resolved cherry red spots and worsening vision at 0.6 yrs post recurrent respiratory infections failure to thrive gastronomy feeding at 1.3 yrs post sleep apnea at 1.7 yrs post exclusively g-tube fed at 2.3 yrs post	

Study (Investi- gator, country, year)	Record Number	Group (N) (NDP)	Normal Level (NDP)	Pre- Transplant (NDP)	Post- Transplant (NDP)	Comments (NDP)	Group (N) (OOI)	Normal Level (OOI)	Pre- Transplant (OOI)	Post- Transplant (OOI)	Comment s (OOI)
Muenzer J, US, 2006	57160	96	6-minute walk test, meters	placebo: 392 +/- 19ERT EOW: 401 +/- 18ERT wkly: 392 +/- 19	Changes in 6-minute walk test:placebo : 7.3 +/- 9.5ERT EOW: 30.3 +/- 10.3 (p=0.07)ER T wkly: 44.3 +/- 12.3 (p=0.01)		96	Forced vital capacity (L)	placebo: 1.09 +/- 0.09ERT EOW: 1.17 +/- 0.10ERT wkly: 1.19 +/- 0.10	Changes in forced vital capacity (p- value):place bo: 0.06 +/- 0.03ERT EOW: 0.07 +/- 0.03 (p=0.37)ER T wkly: 0.22 +/- 0.05 (p=0.001)	Liver volume % change:pl acebo: - 0.8 +/- 1.6ERT EOW: - 24.0 +/- 1.7 (p<0.000 1)ERT wkly: - 25.3 +/- 1.6 (p<0.000 1)Spleen volume % change:pl acebo: 7.2 +/- 4.2ERT EOW: - 19.8 +/- 3.2 (p<0.000 1)ERT wkly: - 25.1 +/- 2.4 (p<0.000 1)
Study (Investi- gator, country, year)	Record Number	Group (N) (NDP)	Normal Level (NDP)	Pre- Transplant (NDP)	Post- Transplant (NDP)	Comments (NDP)	Group (N) (OOI)	Normal Level (OOI)	Pre- Transplant (OOI)	Post- Transplant (OOI)	Comment s (OOI)
---	------------------	-----------------------	----------------------------------	--	---	--	--------------------	--------------------------	------------------------------	---	---
Muenzer J, US, 2007	57070	12	6-minute walk test, meters	placebo: 374.7ERT .15 mg/kg: 448.7ERT .5 mg/kg: 324.3ERT 1.5 mg/kg: 439.7	6 mos: no change12 mos: 8 improved, 4 no change	pooled 6- minute walk test, including placebo which received ERT after 6 mos:baseli ne: 398 +/- 1171 yr: 445 +/- 124 (p=0.013)	12		12 hepatosple nomegaly	pooled 1 yr: 11 reduced liver and spleen size, changes in size not dose- related	forced vital capacity: pooled 1 yr data did not show significant change, measure ments difficult and unreliable sleep study:6 of 7 pts eligible experienc ed decrease in O2 desaturati on events/hr (from 19.2 to 2.4)
Mullen CA, US, 2000	15300	1			growing and developing normally		1		hepatomeg aly	hepatomeg aly resolved	

Study (Investi- gator, country, year)	Record Number	Group (N) (NDP)	Normal Level (NDP)	Pre- Transplant (NDP)	Post- Transplant (NDP)	Comments (NDP)	Group (N) (OOI)	Normal Level (OOI)	Pre- Transplant (OOI)	Post- Transplant (OOI)	Comment s (OOI)
Paciorkows ki AR, US, 2008	2980	1		proximal weakness in extremities ataxic hand tremor ataxic gait motion analysis: walked 0.24 m/sec, 62 steps/min	3 mos: hand tremor diminished9 -12 mos: lost ability to walk motion analysis at 6 mos: walked 0.12 m/sec, 32.4 steps/min		1		splenomeg aly	unchanged splenomega ly	
Patterson MC, US, 2007	56970	12	horizontal saccadic eye movement -alpha		mean decrease of -0.465 ms/deg p=0.028 for whole grp (including >=12 yr grp)	improveme nt in ambulation seen for whole grp including pts >=12:p=0. 052					
Patterson MC, US, 2010	56500	10	Standard Ambulatio n Index	2.0 (0.7-3.3)	1 yr: 2.3 (0.6-4.0)2 yrs: 2.6 (0.7- 4.5)	8 of 10 pts are considered stable in ambulation	9	Horizontal Saccadic Eye Movement , alpha and beta	HSEM alpha mean (95% Cl): 2.181 (1.3- 3.0)HSEM beta mean (95% Cl): 28.96 (13.9-44.0)	1 yr HSEM alpha mean (95% CI): 1.692 (1.0- 2.4)2 yr HSEM alpha mean (95% CI): 2.106 (1.3- 2.9)1 yr HSEM beta mean (95% CI): 33.66 (18.3-49.0)2 yr HSEM beta mean (95% CI): 33.47 (17.9- 49.1)	no improvem ent, but overall stability of disease

Study (Investi- gator, country, year)	Record Number	Group (N) (NDP)	Normal Level (NDP)	Pre- Transplant (NDP)	Post- Transplant (NDP)	Comments (NDP)	Group (N) (OOI)	Normal Level (OOI)	Pre- Transplant (OOI)	Post- Transplant (OOI)	Comment s (OOI)
Pineda M, Spain, 2009	56560	57	Disability scale componen t scores	at diagnosis:am bulation: 0.18 (0.16,0.20)m anipulation: 0.27 (0.24,0.30)la nguage: 0.16 (0.14,0.18)s wallowing: 0.12 (0.10,0.15)at start of treatment: overall deterioration of scores	at last clinical visit, % with stable/impro ved scores:amb ulation: 76.6%manip ulation: 76.2%langu age: 77.0%swallo wing: 81.0%		57	Annual change in composite score, by age grp		<6 yrs: - 0.070 (- 0.275,0.136)6-11 yrs: - 0.0157 (- 0.394,0.080)>=12 yrs: - 0.162 (- 0.329,0.006)	most improvem ent seen in older grps (6- 11 yrs and >=12 yrs)
Ringden O, Sweden, 1995	22020	6		pts 1, 5, 6: kyphosis pts 2, 3, 4: no kyphosis	pts 1, 5, 6: kyphosis pts 2, 3, 4: no kyphosis all experienced growth spurt	pt 4 who did not engraft and is on ERT, has decreased motor skills	6		hepatomeg aly	hepatomeg aly resolved	

Study (Investi- gator, country, year)	Record Number	Group (N) (NDP)	Normal Level (NDP)	Pre- Transplant (NDP)	Post- Transplant (NDP)	Comments (NDP)	Group (N) (OOI)	Normal Level (OOI)	Pre- Transplant (OOI)	Post- Transplant (OOI)	Comment s (OOI)
Schiffman R, Netherland s, 2008	56750	26 (4 withdrew during extensio n phase of study)	vertical saccadic eye movement (VSEM)		No treatment effect on VSEM.	Study may not have been long enough for neurologic al defects to improve, or neurologic al defects are irreversible	30	forced vital capacity	substrate reduction therapy: 75.1 (62.0- 88.2)no treatment: 79.5 (61.3- 97.6)	81.1 (65.7- 96.5)no treatment: 81.3 (62.7- 99.9)	No difference between groups detected, but in subgroup analysis on pts with abnormal forced vital capacity, improvem ent was seen with substrate reduction therapy.
Seto T, Japan, 2001	13460B	1 HSCT, 3 non- HSCT		HSCT pt: mild bone deformities	HSCT pt: no follow-up post HSCT	3 non- HSCT pts:#1: bone deformities 1 yr, overflexion of neck becoming quadriplegi c 9 yrs#2: decreased tendon reflexes 14 yrs#3: increased deep tendon reflexes 4 yrs					

Study (Investi- gator, country, year)	Record Number	Group (N) (NDP)	Normal Level (NDP)	Pre- Transplant (NDP)	Post- Transplant (NDP)	Comments (NDP)	Group (N) (OOI)	Normal Level (OOI)	Pre- Transplant (OOI)	Post- Transplant (OOI)	Comment s (OOI)
Shield JPH, England, 2005	6720	1			walking at 0.6 yrs post became clumsy at 1.7-2.1 yrs post limited motor skills at 4.0 yrs post wheelchair at 6.0 yrs post						
Sivakumar P, England, 1999	16200	2: 1 HSCT, 1 non- HSCT			HSCT pt: immobile at 7.4 yrs post non-HSCT pt: immobile at 10 yrs of age		2: 1 HSCT, 1 non- HSCT			both treated and untreated pts have swallowing dysfunction	
Stein J, Israel, 2007	4880	1		weight, height, and head circumferenc e at <3rd percentile	at 4 yrs post:weight 10th percentile height 3rd percentile head circumferen ce 3rd percentile		1		hepatosple nomegaly	hepatosplen omegaly resolved by 0.5 yrs post	
Tokimasa, Japan, 2008	1310										

Study (Investi- gator, country, year)	Record Number	Group (N) (NDP)	Normal Level (NDP)	Pre- Transplant (NDP)	Post- Transplant (NDP)	Comments (NDP)	Group (N) (OOI)	Normal Level (OOI)	Pre- Transplant (OOI)	Post- Transplant (OOI)	Comment s (OOI)
Tolar J, US, 2009	1370	4		pt 1: considerable development al delay	pt 1 at 11 yrs post: motor function improved pt 4 at 4 yrs post: fine motor skills below avg, gross motor skills avg		4		pt 1: hepatosple nomegaly	pt 1: hepatosplen omegaly resolved	
Tsai P, US, 1992	25120	1		failure to thrive, height < 3rd percentile	height 10th percentile at 9 mos post height 50th percentile at 2 yrs post		1	expected liver volume based on body wt	300%	225% at .2 yrs post 136% at .7 yrs post116% at 1.1 yrs post125% at 2 yrs post	
Vellodi A, England, 1999	16650	3		Griffiths Mental Development Scale:pt 1: locomotor 63, eye-hand 58pt 2: locomotor 55, eye-hand 58pt 3: locomotor 110, eye- hand 93	Griffiths Mental Developmen t Scale:pt 1 at 10 yrs post: locomotor 11, eye- hand 8pt 2 at 2.7 yrs post: locomotor 6.5, eye- hand 2.5	significant neurodevel opmental decline in pts 1 and 2					

Study (Investi- gator, country, year)	Record Number	Group (N) (NDP)	Normal Level (NDP)	Pre- Transplant (NDP)	Post- Transplant (NDP)	Comments (NDP)	Group (N) (OOI)	Normal Level (OOI)	Pre- Transplant (OOI)	Post- Transplant (OOI)	Comment s (OOI)
Vormoor J, Germany, 2004	9420	2		no. subcutaneou s nodules:pt 1: 58pt 2: 39no. joints with limited range of motion:pt 1: 26pt 2: 24	no. subcutaneo us nodules:pt 1: 8pt 2: 12no. joints with limited range of motion:pt 1: 2pt 2: 2	dramatic improveme nt in motor activity	2				
Yeager AM, US, 2000	14880	1		wt, ht, and head circumferenc e:10th-25th percentile	wt, ht, and head circumferen ce:5th percentile at 0.8 yrs post<5th percentile at 1.5 yrs post		1		subcutaneo us nodules present	subcutaneo us nodules:nod ules resolved 0.1 yrs post increased joint range of motion at 1.5 yrs post swallowing: no swallowing dysfunction at 0.7 yrs post severe gastroesop hageal reflux at 1.3 yrs post	

Study (Investi- gator, country, year)	Record Number	Grou p (N)	Normal Level	Pre- Transpl ant	Post- Transplan t	Comme nts	Group (N) (NNO)	Normal Level (NNO)	Pre- Transplant (NNO)	Post- Transplant (NNO)	Comments (NNO)
Arvio M, Finland, 2001	14180						3 HSCT 12 non- HSCT				Dysmorphic Facial and Body Features remained unchanged following HSCT
Autti T, Finland, 1999	15540	2 HSC T			2 HSCT: reached heterozyg ous activity level		2 HSCT, 6 non- HSCT		2 HSCT:poor cortex- white matter differentiati on decreased thalami signal intensity	2 HSCT:decline from poor to evident cortex-white matter differentiation improvement in thalami signal intensity improvement in concentration and cooperation6 non- HSCT:poor cortex-white matter differentiation decreased thalami signal intensity	True clinical effect of HSCT will not be seen until pts reach puberty, which is when rapid mental decline usually occurs with aspartylglucosami nuria.
Chan LL, Malaysia, 2002	11330						1				Behavioral and learning difficulties developed after stopping ERT. Recurrent seizures occurred 2.6 yrs after stopping ERT.

Appendix Table C93. Neurocognitive/neuropsychological outcomes: Inherited metabolic diseases Continued

Study (Investi- gator, country, vear)	Record Number	Grou p (N)	Normal Level	Pre- Transpl ant	Post- Transplan t	Comme nts	Group (N) (NNO)	Normal Level (NNO)	Pre- Transplant (NNO)	Post- Transplant (NNO)	Comments (NNO)
Chen R, Taiwan, 2007	4490	1	26 +/- 5 nmol/h/m g protein	1.2 nmol/h/ mg protein	16.2, 22.7 nmol/h/mg protein at 0.5 yrs, 0.8 yrs post		1		Weschler Intelligence Scales:perf ormance: 67verbal: 69complete : 67	at 1.5 yrs post, Weschler Intelligence Scales:perfor mance: 60verbal: 69complete: 62	
Coppa GV, Italy, 1999	16350	1	2.6-20.4 U/mg	0.2 U/mg	2.3, 1.0, and 3.3 U/mg at 0.25 yrs, 1.6 yrs, and 3.6 yrs post		1		IQ: 72	IQ: 69, 70, and 70 at 0.7 yrs, 2.6 yrs, and 4.0 yrs post	attends kindergarten, sociable, can speak simple sentences, writes a few letters
Ehlert K, Germany, 2006	4690										
El-Beshlawy A, Egypt, 2006	5750	11	1-5 micromol /hr/gm protein	mean: 0.4 +/- 0.3 microm ol/hr/gm protein range: 0.0-0.9 microml /hr/gm protein		measur ements for whole grp, Gauche r Type 1 and 3 combin ed					

Study (Investi- gator, country, year)	Record Number	Grou p (N)	Normal Level	Pre- Transpl ant	Post- Transplan t	Comme nts	Group (N) (NNO)	Normal Level (NNO)	Pre- Transplant (NNO)	Post- Transplant (NNO)	Comments (NNO)
Erikson A, Sweden, 1995	21630	3	level of accumul ated glucosylc eramide in plasma (micromo l/liter plasma) (lower is better)	pt 1: 15pt 2: 21pt 3: 13	pt 1: 8,10,8,9,8, 9,10 at 3,6,9,12,1 3,15,18 mos pt 2: 11,6,11,12 ,11,13,12 at 3,6,9,12,1 5,18,21 mos pt 3: 11,5,8,7,7, 7,8 at 3,6,9,12,1 8,21,23 mos	normal levels (5-10) were reached by those with intact spleen	3	EEG Wechsler Intelligenc e Scale and Griffith mental developm ent scale	EEG normal pt 1: 82-88 on Wechsler Scale pt 2: 82-88 on Griffith Scale pt 3: 104-111 on Griffith Scale	EEG normal pt 1: 89-96 on Wechsler Scale at 1.3 yrs post pt 2: 74-81 on Griffith Scale at 1 yr post pt 3: 97-103 on Griffith Scale at 1 yr post	all 3 pts became more active and needed less sleep pts 2 and 3 were tired and slow and became active pre-schooler post treatment
Goker-Alpan O, US, 2008	1790						2		nr	borderline mental retardation	for whole grp, 2 HSCT followed by ERT, and 30 ERT only: 12.5% cognitive and neurological decline

Study (Investi- gator, country, year)	Record Number	Grou p (N)	Normal Level	Pre- Transpl ant	Post- Transplan t	Comme nts	Group (N) (NNO)	Normal Level (NNO)	Pre- Transplant (NNO)	Post- Transplant (NNO)	Comments (NNO)
Grewel S, US, 2003	9750	1		6.5% of control	20-24% of control at 0.2 yrs, 0.3 yrs, and 0.5 yrs post		1		real age: 1.4 yrs developme ntal age, expressive language, and receptive language: 0.9 yrs	real age: 3.0 yrs, development al age: 1.6 yrs real age: 3.5 yrs, development al age: 2.1 yrs real age: 4.7, development al age: 3.3 yrs real age: 5.7 yrs, development al age: 4.3 yrs real age: 6.7 yrs, development al age: 5.3 yrs	attends school with individualized education program; slow progress in communication, daily living, socialization, and expressive language; mild to moderate cognitive impairment
Guffon N, France, 2009	680	8		<= 1% of day control	at latest evaluation : 6 100% of day control1 57% of day control1 50% of day control	The two pts at <100% enzyme activity had carrier donors.	8		IQ/DQ:pt 1: 125pt 2: 72pt 3: 87pt 4: 70pt 5: 70pt 6: 65pt 7: 100pt 8: 100	IQ/DQ:pt 1: 110, normal language pt 2: 60, very poor language pt 3: 65, poor language pt 4: <50, no language pt 5: <50, speech loss 3 yrs post pt 6:<50, speech loss 8 yrs post, pt 7: 100, normal language pt 8: <50, poor language	2 attend normal schools5 attend special schools1 attends special apprenticeship3 very poor social adjustment2 poor social adjustment2 good social adjustment1 very good social adjustment

Study (Investi- gator, country, year)	Record Number	Grou p (N)	Normal Level	Pre- Transpl ant	Post- Transplan t	Comme nts	Group (N) (NNO)	Normal Level (NNO)	Pre- Transplant (NNO)	Post- Transplant (NNO)	Comments (NNO)
Hsu YS, Taiwan, 1999	16540	1		40% of normal control			1		real age: 2.4 yrs developme ntal age: 0.8-1.2 yrs	development al age decreasing steadily:real age: 2.6 yrs, development al age: 0.4- 0.7 mos real age: 2.9 yrs, development al age: 0.3- 0.4 yrs real age: 3.3 yrs, development al age: 0.2- 0.3 yrs	MRI pre-transplant showed normal myelination and no obvious brain atrophy MRI 0.5 yrs post-transplant showed normal myelination and evident brain atrophy
Imaizumi M, Japan, 1994	23220A	1		4% of normal controls	34.9% of normal controls		1		no CNS involvemen t, attends normal school	no change	
Imaizumi M, Japan, 1994	23220B	1		not detecta ble	63.3% of normal control		1		severe psychomot or retardation	severe, gained development of 4-8 month old: sit by self, use walker, exhibited emotional expressions	

Study (Investi- gator, country, vear)	Record Number	Grou p (N)	Normal Level	Pre- Transpl ant	Post- Transplan t	Comme nts	Group (N) (NNO)	Normal Level (NNO)	Pre- Transplant (NNO)	Post- Transplant (NNO)	Comments (NNO)
Jacobs JFM, Netherlands, 2005	6740	1		44-50 nmol/h/ mg protein	919, 728, 133, 115, 126, and 128 at 0.1 yrs, 0.5 yrs, 1.25 yrs, 1.3 yrs, 1.6 yrs, and 1.9 yrs post		1		MRI shows cerebral atrophy at 0.5 yrs post worsening neuropsych ological tests at 0.5 yrs post speech deterioratin g at 0.5 yrs post		Deterioration of this pt similar to deterioration of untreated older sister.
Laitinen A, Finland, 1997	19620	1		0% of normal control	30.8%, 19.0%, 21.0% of normal control at 6 wks, 3 mos, 4 mos		1		mild global delay		
Lange MC, Brazil, 2006	5690						1			no significant neuropsychol ogical improvement	
Li P, US, 1996	20260	1	4-18 cpm x 1000/hr/ mg protein	0 cpm x 1000/hr/ mg protein	0.3, 2.5, 2.4 cpm x 1000/hr/m g protein at 1.0, 3.0, 4.0 yrs post		i		IQ: 44	IQ: 44 at 3 yrs post	

Study (Investi- gator, country,	Record	Grou	Normal	Pre- Transpl	Post- Transplan	Comme	Group (N)	Normal Level	Pre- Transplant	Post- Transplant	Comments (NNO)
year)	Number	P (N)	Level	ant	t	1115	(NNO)	(NNO)	(NNO)	(NNO)	
Lonnquist T, Finland, 2001	12960	3	in leukocyt es: 24- 100 nmol/h/m g in cerebros pinal fluid: 8- 24 nmol/h/m g	in leukocyt es in all 3 pts: decreas ed in cerebro spinal fluid in 1 pt: decreas ed	in leukocytes in all 3 pts: normal in cerebrospi nal fluid: 1 normal, 2 decreased		3			cortical atrophy: from moderate to severe in one pt, from not detectable to moderate in two pts periventricula r white matter hyperintensity : from mild to severe in one pt, from not detectable to moderate in two pts	
Maegawa GHB, Canada, 2009	56590A						3		pt 1: severe cognitive dysfunction , hallucinatio ns, agitation, scores 1.5 yrs below age pt 2: episodic psychosis, cognitive function well- preserved, works part time pt 3: 2 episodes of psychosis, IQ=75	pt 1: neuropsych scores unchanged pt 2: 18 mos post, neuropsych scores stable, speech less intelligible, hallucinations reduced, anxiety ongoing pt 3: at 16 mos post, spasticity developed, anxiety aggravated, neuropsych scores stable	

Study (Investi- gator, country, year)	Record Number	Grou p (N)	Normal Level	Pre- Transpl ant	Post- Transplan t	Comme nts	Group (N) (NNO)	Normal Level (NNO)	Pre- Transplant (NNO)	Post- Transplant (NNO)	Comments (NNO)
Maegawa GHB, Canada, 2009	56590B						2		pt 1: mild cognitive impairment, attends regular school with assistance pt 2: severe cognitive impairment, generalized seizures	pt 1: at 15 mos acute psychotic event pt 2: at 15 mos marked increase in seizures, alertness deteriorated, at 24 mos spasticity increased	
Malm G, Sweden, 2004	8490	2	0.8-2.2 microkat/ kg	pt 1: 0.10 microka t/kgpt 2: 0.09 microka t/kg	pt 1: 0.98, 1.10 at 3 mos, 60 mos pt 2: 1.59, 0.80 at 3 mos, 60 mos		2		pt 1: developme ntal age 4.7 yrs below real age	pt 1 and 2: development al age stabilizing at 5 yrs over time	pt 1 and 2: mentally retarded, speaks in sentences, understands Swedish and Finnish words
McKinnis EJR, US, 1996	20560	1	23-45 units/mg protein	undetec table	38 units/mg protein		1			intelligence ratio (age equivalent/re al age): 0.68, 0.51, 0.48, 0.54, 0.50, 0.42, 0.29, 0.17, 0.12, 0.09 at 2.8, 3.3, 3.4, 3.9, 4.2, 5.0, 5.9, 6.0, 6.9, 8.0 yrs of age	Along with decreasing intelligence ratio, pt went from mild behavioral difficulties pre- transplant to increased behavioral problems post- transplant. Reversion in language, communication, concentration, cooperation, and attention span also

Study (Investi- gator, country, year)	Record Number	Grou p (N)	Normal Level	Pre- Transpl ant	Post- Transplan t	Comme nts	Group (N) (NNO)	Normal Level (NNO)	Pre- Transplant (NNO)	Post- Transplant (NNO)	Comments (NNO)
Morel CF, Canada, 2007	3010	1	0.6-1.8 nmol/h/m g protein	0.1	5.7, 1.3, 8.4, 2.2, 1.4, 0.6, 1.7 at 0.2 yrs, 0.4 yrs, 0.5 yrs, 0.6 yrs, 1 yr, 1.3 yrs, 2.7 yrs post		1		neurologica Ily intact	neurological regression:bil ateral cerebral atrophy at 0.6 yrs postseizure disorder developed at 1.7 yrs post	
Muenzer J, US, 2006	57160	96	Urine GAG levels (in microgra ms/mg creatinin e)	placebo : 419 +/- 34ERT EOW: 338 +/- 21ERT wkly: 326 +/- 26	Percent change (p- value):pla cebo: 21.4 +/- 11.6ERT EOW: - 44.7 +/- 4.0 (p<0.0001)ERT wkly: -52.5 +/- 5.3 (p<0.0001)						

Study (Investi- gator, country, vear)	Record Number	Grou p (N)	Normal Level	Pre- Transpl ant	Post- Transplan t	Comme nts	Group (N) (NNO)	Normal Level (NNO)	Pre- Transplant (NNO)	Post- Transplant (NNO)	Comments (NNO)
Muenzer J, US, 2007	57070	12	Urine GAG, in microgra ms/mg creatinin e	placebo : 371.3E RT .15 mg/kg: 386 +/- 124ERT .5 mg/kg: 364+/- 50ERT 1.5: 445 +/- 101	6 mos post:ERT .15 mg/kg: 230 +/- 76ERT .5 mg/kg: 211 +/- 110ERT 1.5: 168 +/- 611 yr post:ERT .15 mg/kg: 203 +/- 55ERT .5 mg/kg: 209 +/- 98ERT 1.5 mg/kg: 178 +/- 32	pooled urine GAG measur ements, includin g placebo which receive d ERT after 6 mos:ba seline: 398 +/- 946 mos: 203 +/- 821 yr: 200 +/- 18					
Mullen CA, US, 2000	15300	1		< 1% of normal control	8%, 22%, and 55% of normal control at 0.2 yrs, 0.7 yrs, and 2.2 yrs post		1			growing and developing normally	
Paciorkowski AR, US, 2008	2980						1		modest cognitive abilities	3 mos: some improvement in adaptive social domains6 mos: regression, speech decline12 mos: <0.1 percentile in development al scales	

Study (Investi- gator, country, year)	Record Number	Grou p (N)	Normal Level	Pre- Transpl ant	Post- Transplan t	Comme nts	Group (N) (NNO)	Normal Level (NNO)	Pre- Transplant (NNO)	Post- Transplant (NNO)	Comments (NNO)
Patterson MC, US, 2007	56970						29	mini- mental status examinatio n		mean change in score:1.2 for treatment grp-0.3 for non- treatment grp p=0.165	only results for those >=12 provided
Pineda M, Spain, 2009	56560						57	Annual change in composite score, by age grp		in subset with neurological disease (n=43): - 0.210 (- 0.336,0.085)i n whole grp: - 0.125 (- 0.235,0.115)	A greater treatment effect was seen in subset of those with neurological disease.
Ringden O, Sweden, 1995	22020	6			5 who engrafted were within normal range		6	Weschler Intelligenc e Scale	pt 1: stanine 7	pt 1: stanine 7, 5, 6, 7, 7 at 1 yr, 3 yrs, 5 yrs, 8 yrs, and 10 yrs follow-up; IQ=112-120 pt 2: stanine 7 at 6 yrs pt 3: 3 at 4 yrs pt 4: below age pt 5: at age pt 6: below age at 1 yr	

Study (Investi- gator, country, year)	Record Number	Grou p (N)	Normal Level	Pre- Transpl ant	Post- Transplan t	Comme nts	Group (N) (NNO)	Normal Level (NNO)	Pre- Transplant (NNO)	Post- Transplant (NNO)	Comments (NNO)
Schiffman R, Netherlands, 2008	56750						30				No statistically significant differences between study grps using Purdue Peg Board test, Wechsler Scale, Benton visual retention test, Rey auditory verbal learning test, d2 test of attention, continuous performance test, and Trail Making Test.
Schiffmann R, Netherlands, 1997	58150	5	0.585 nmol/ml (0.399- 0.764)		0.741 nmol/ml (0.04- 2.363)		5		3 mild- moderate mental retardation 2 normal IQ	no change in IQ, 1 showed clinical function deterioration	4 stable 9or slightly improved, 1 deteriorated cerebrospinal fluid measurements showed that glucocerebrosidas e delivery to the cerebrospinal fluid was minimal (not significantly different)

Study (Investi- gator, country, year)	Record Number	Grou p (N)	Normal Level	Pre- Transpl ant	Post- Transplan t	Comme nts	Group (N) (NNO)	Normal Level (NNO)	Pre- Transplant (NNO)	Post- Transplant (NNO)	Comments (NNO)
Seto T, Japan, 2001	13460A						10: 3 HSCT, 7 non- HSCT		HSCT:#1: lesions in white matter and corpus callosum#2 : enlargeme nt of perivascula r spaces at basal ganglia, intensity changes in periventricu lar white matter#3: lesions in parietal and occipital lobes, intensity in white matter	HSCT:#1: no follow-up MRI#2: no change at 7 yrs post#3: lesions slightly diminished at 2.5 yrs post	non-HSCT:#1: cortical atrophy, white matter lesions & intensity#2: brain atrophy 9 yrs, cerebrum atrophy 15 yrs#3: brain atrophy 12 yrs#4: white matter lesions#5: ventricular dilation, white matter intensity 18 yrs#6: normal 18 yrs#7: normal 16 yrs
Seto T, Japan, 2001	13460B						1 HSCT, 3 non- HSCT		HSCT pt: no pathologica I findings in brain or spinal cord	HSCT pt: no MRI following HSCT	3 non-HSCT pts:#1: brain image normal, intellect fairly good, severe spinal cord compression 19 yrs#2: normal intellect, spinal cord compression 13 yrs#3: spinal cord compression, remainder CNS normal 4 yrs

Study (Investi- gator, country, year)	Record Number	Grou p (N)	Normal Level	Pre- Transpl ant	Post- Transplan t	Comme nts	Group (N) (NNO)	Normal Level (NNO)	Pre- Transplant (NNO)	Post- Transplant (NNO)	Comments (NNO)
Shield JPH, England, 2005	6720	1		8 nmol/h/ mg protein	246 nmol/h/mg protein at 7 yrs post		1			normal language development at 0.6 yrs post language declining at 1.7-2.1 yrs post demyelination and diffuse cerebral function at 2.4 yrs post no language at 4.0 yrs post	
Sivakumar P, England, 1999	16200	1 HSC T pt	875- 1716 pmol/h/m g protein	4 pmol/h/ mg protein	280-666 pmol/h/mg protein over 7 yrs follow-up	no enzyme data for 1 non- HSCT pt	2: 1 HSCT, 1 non- HSCT			development al quotient scores for HSCT pt: 99, 72, 55, 43, 24, 11, 6 at 1.5, 2.5, 3.5, 4.5, 6, 7, 8, 10 yrs of age development al quotient scores for non-HSCT pt: 25, 21, 10, 5 at 6, 7, 8, 10 yrs of age	developmental quotients decreasing with age for both treated and untreated pts
Stein J, Israel, 2007	4880	1	8 nmol/mg protein/h	0	7 nmol/mg protein/h at 1.5 yrs post		1		MRI showed 0.5 yr delay in myelination	MRI showed appropriate myelination for age at 1 yr post	at 4 yrs post, pt has normal intellectual development, attends regular school, and speaks Russian and Hebrew

Study (Investi- gator, country, year)	Record Number	Grou p (N)	Normal Level	Pre- Transpl ant	Post- Transplan t	Comme nts	Group (N) (NNO)	Normal Level (NNO)	Pre- Transplant (NNO)	Post- Transplant (NNO)	Comments (NNO)
Takahashi, Japan, 2001	14030	1 HSC T, 2 non- HSC T		1 HSCT pt: non- detecta ble 2 non- HSCT pts: non- detecta ble	1 HSCT pt: 6.7 and 6.7 nmol/hr/m g protein at 0.5 and 1.1 yrs post	measur ements for non- HSCT given only once	1 HSCT, 2 non- HSCT		DQ:1 HSCT pt: 722 non- HSCT pts: 94 and 124	DQ:1 HSCT pt: 61 and 54 at 0.5 yrs and 1.1 yrs post2 non-HSCT pts: no follow- up measurement	MRI findings:1 HSCT pt:ventricular dilatation present pre-transplant and worsened post- transplant lesions in white matter present both pre- transplant and post-transplant 2 non-HSCT pts:no ventricular dilatation lesions in white matter
Tokimasa, Japan, 2008	1310						1		mental retardation		
Tolar J, US, 2009	1370	4		pt 1: 0pt 2: 6% of normal pt 3: 3.8% of normal pt 4: 12.5% of normal	pt 1: 50%, 80-90%, 100% of normal at 0.1, 2.0, 3.5 yrs post pt 2: 50% of normal pt 3: 4.1 (normal)pt 4: 5.9 (normal)		4			pt 1 at 11 yrs post: mildly impaired cognitive abilities, sustained visual attention impaired, verbal fluency avg, attends special school, mostly homeschoole d, no behavior problems, English and Spanish language development	pt 4 at 4 yrs post: cognition improved from baseline, receptive and expressive language high avg, adaptive skills avg, emotional and social behavior avg, attends special education preschool, speaks 3 languages

Study (Investi- gator, country, year)	Record Number	Grou p (N)	Normal Level	Pre- Transpl ant	Post- Transplan t	Comme nts	Group (N) (NNO)	Normal Level (NNO)	Pre- Transplant (NNO)	Post- Transplant (NNO)	Comments (NNO)
Tsai P, US, 1992	25120	1			near normal	measur ed in liver, lung, lymph nodes, brain	6		RA: 22 mos; DA: 15 mos;DQ=6 8	RA: 33 mos; DA: 21 mos;DQ=64R A: 39 mos; DA: 25 mos; DQ=64bilingu al at 1.6 yrs post	
Vellodi A, England, 1999	16650	3			pt 1: consistentl y reduced compared to control, donor was carrier pt 2: normal reference at 6.5 yrs post pt 3: normal reference range		3		Griffiths Mental Developme nt Scale: pt 1: social 61, speech 61 pt 2: social 71, speech 71 pt 3: social 93, speech 93	Griffiths Mental Development Scale:pt 1 at 10 yrs post: social 10, speech 10 pt 2: social 2, speech 2 pt 3: full IQ 78, verbal IQ 80 performance IQ 81	steady deterioration in pts 1 and 2pt 3 attends mainstream school, has difficulty with concentration, but is otherwise doing well
Vormoor J, Germany, 2004	9420	2					2				
Yeager AM, US, 2000	14880	1		6% of normal control	44%, 53%, 52%, 18%, 41%, 47%, 48%, and 53% at 0.1 yrs, 0.3 yrs, 0.5 yrs, 0.7 yrs, 0.8 yrs, 1.1 yrs, 1.4 yrs, and 2.3 yrs		1		normal myelination at 0.75 yrs	normal myelination at 0.3 yrs post loss of grey and white matter differentiation at 0.7 yrs post poor grey and white matter contrast at 1.3 yrs post	Bayley Scales of Infant Development:deve lopmental age and real age equivalent at time of transplant (0.75 yrs)development age plateaued at 0.6 yrs at real age of 1.3 yrs and 2.1 yrs

Study (Investigator, country, year)	Record Number	Group (N)	Severity or Grade Infection	F/U (mos)	%	Group (N) AGVHD	Severity or Grade AGVHD	F/U (mos)_2	%_2
Arvio M, Finland, 2001	14180	3				3			
Autti T, Finland, 1999	15540	2				2			
Chen R, Taiwan, 2007	4490	1	staphylococcus epidermis sepsis		1 (100 %)	1	grade 1		1 (100 %)
Coppa GV, Italy, 1999	16350	1			0 (0%)	1			0 (0%)
Ehlert K, Germany, 2006	4690	3	cytomegalovirus (2 pts)mucositis (2 pts)colitis (1 pt)clostridium difficile enteritis (1 pt)		3 (100 %)	3	grade I (1 pt)grade II (2 pts)		3 (100 %)
Grewel S, US, 2003	9750					1	grade 2 gastrointestinal		1 (100 %)
Guffon N, France, 2009	680					8			0 (0%)
Hsu YS, Taiwan, 1999	16540	1			0 (0%)	1	grade 1	0.5 yrs	1 (100 %)
Imaizumi M, Japan, 1994	23220A					1			0 (0%)
Imaizumi M, Japan, 1994	23220B					1			0 (0%)
Laitinen A, Finland, 1997	19620	1				1			
Lange MC, Brazil, 2006	5690					1			0 (0%)
Lonnquist T, Finland, 2001	12960	3				3			
Malm G, Sweden, 2004	8490	2	shingles		1 (50%)	2	pt 1: severe skin, gastrointestinal, liver pt 2: grade I skin		2 (100 %)
McKinnis EJR, US, 1996	20560					1			0 (0%)
Morel CF, Canada, 2007	3010					1	skin		1 (100 %)

Appendix Table C94. Adverse events: Treatment, inherited metabolic diseases

Study (Investigator, country, year)	Record Number	Group (N)	Severity or Grade Infection	F/U (mos)	%	Group (N) AGVHD	Severity or Grade AGVHD	F/U (mos)_2	%_2
Mullen CA, US, 2000	15300	1	2 episodes of gram- positive bacteremia, one of limited gastrointestinal bleeding while thrombocytopenic, and one mucositis requiring total parenteral nutrition for several wks		1 (100 %)	1	grade 3 skin and grade 2 gastrointestinal skin rash	2 wks post17 wks post	1 (100 %)
Page KM, US, 2008	1280A					1	grade 2		1 (100 %)
Ringden O, Sweden, 1995	22020	6	pt 2: pneumococcal meningitis at 7 mos pt 3: pneumonia, 3 mos in hospital pt 4: strep septicemia at day 10pt 5: septicemia day 6		4 (67%)	6	grade I		4 (67%)
Sivakumar P, England, 1999	16200					1	mild		1 (100 %)
Stein J, Israel, 2007	4880	1	cytomegalovirus antigenemia		1 (100 %)	1	mild skin rash	0.2 yrs	1 (100 %)
Takahashi, Japan, 2001	14030								
Tokimasa, Japan, 2008	1310	1	septicemia (MRSA)		1 (100 %)	1	stage 1		1 (100 %)
Tolar J, US, 2009	1370	4	sepsis	0.2 and 0.7 yrs	2 (50%)	4	pt 1: grade 3 skin, liver pt 3: grade 3 skin, liver pt 4: grade 3 skin		3 (75%)
Tsai P, US, 1992	25120	1	bilateral pneumonia	18-21 mos	1 (100 %)	1			0 (0%)
Vellodi A, England, 1999	16650	3	rotavirus gastroenteritis leading to severe hypoalbuminaenemia and cerebral edema	1 mo	1 (33.3 %)	3	moderate		1 (33.3 %)

Study (Investigator, country, year)	Record Number	Group (N)	Severity or Grade Infection	F/U (mos)	%	Group (N) AGVHD	Severity or Grade AGVHD	F/U (mos)_2	%_2
Vormoor J, Germany, 2004	9420	2	mucositis:pt 1: grade 2pt 2: grade 3		2 (100 %)	2	pt 1: grade II pt 2: grade I		2 (100 %)
Yeager AM, US, 2000	14880					1			0 (0%)
Styczynski, Poland, 2011	442	1				1	skin, grade III gut, grade III	0.3 yrs	1 (100 %)

Appendix Table C94: Adverse events: Treatment, inherited metabolic diseases Continued

Study (Investigator, country, record#)	Record Number	Group (N) CGVHD	Severity or Grade CGVHD	F/U (mos)_3	%_3	Comment_3
Arvio M, Finland, 2001	14180	3				
Autti T, Finland, 1999	15540	2				
Chen R, Taiwan, 2007	4490	1			0 (0%)	
Coppa GV, Italy, 1999	16350	1			0 (0%)	
Ehlert K, Germany, 2006	4690	3			0 (0%)	
Guffon N, France, 2009	680	8	grade 1, lung		1 (12.5%)	chronic pulmonary disease developed
Imaizumi M, Japan, 1994	23220A	1			0 (0%)	
Imaizumi M, Japan, 1994	23220B	1			0 (0%)	
Lange MC, Brazil, 2006	5690	1			0 (0%)	
Malm G, Sweden, 2004	8490	2			0 (0%)	
McKinnis EJR, US, 1996	20560	1			0 (0%)	
Mullen CA, US, 2000	15300	1	severe hemolytic anemia	0.75 yrs post	1 (100%)	
Page KM, US, 2008	1280A	1			0 (0%)	
Ringden O, Sweden, 1995	22020	6	pancreatitis		1 (17%)	
Sivakumar P, England, 1999	16200	1			0 (0%)	
Stein J, Israel, 2007	4880	1			0 (0%)	
Tolar J, US, 2009	1370	4			2 (50%)	pt 1 and pt 4
Vellodi A, England, 1999	16650	3			0 (0%)	
Yeager AM, US, 2000	14880	1			0 (0%)	
Styczynski, Poland, 2011	442	1		0.3 yrs	0 (0%)	

Study (Investigator, country, year)	Record Number	Group (N) Engraftment Failure	Severity or Grade_4	F/U (mos)_4	%_4	Comment_4
Arvio M, Finland, 2001	14180	5			3 (60.0%)	1 was re- transplanted and
Autti T. Finland, 1000	15540	2			0 (0%)	was successiui
Chop P. Taiwan, 1999	10040	1			0 (0%)	
Coppo CV Italy 1000	4490	1			0(0%)	
Eblert K. Cormony, 2006	10330				0(0%)	
Crowol S. U.S. 2002	4090	3			0(0%)	
Glewel S, US, 2003	9750	0			0(0%)	
Hey VS. Toiwan, 1000	16540	8			0(0%)	
	10040	1				
imaizumi M, Japan, 1994	23220A	1			0 (0%)	a na cura ftura a nat
Imaizumi M, Japan, 1994	23220B	1			1 (100%)	engrattment incomplete for 1st 4 yrs, then complete engraftment at 5 yrs
Jacobs JFM, Netherlands, 2005	6740	1			0 (0%)	
Laitinen A, Finland, 1997	19620	1			0 (0%)	
Lange MC, Brazil, 2006	5690	1			0 (0%)	
Li P, US, 1996	20260	1			0 (0%)	
Lonnquist T, Finland, 2001	12960	3			1 (33.3%)	second transplant in engraftment failure pt was successful
Malm G, Sweden, 2004	8490	2			0 (0%)	
McKinnis EJR, US, 1996	20560	1			0 (0%)	
Morel CF, Canada, 2007	3010	1			0 (0%)	
Mullen CA, US, 2000	15300	1			0 (0%)	
Page KM, US, 2008	1280A	1			0 (0%)	
Ringden O, Sweden, 1995	22020	6	was put on ERT	rejected bone marrow at 3 mos	1 (17%)	
Ringden O, Sweden, 2006	5940A	2			2 (100%)	
Seto T, Japan, 2001	13460A	3			0 (0%)	
Seto T, Japan, 2001	13460B					
Sivakumar P, England, 1999	16200	1			1 (100%)	

Appendix Table C94. Adverse events: Treatment, inherited metabolic diseases Continued

Study (Investigator, country, year)	Record Number	Group (N) Engraftment Failure	Severity or Grade_4	F/U (mos)_4	%_4	Comment_4
Stein J, Israel, 2007	4880	1			0 (0%)	
Takahashi, Japan, 2001	14030	1			0 (0%)	
Tokimasa, Japan, 2008	1310					
Tolar J, US, 2009	1370	4			1 (25%)	pt 3 had 2 failures at 1.6 yrs and 1.7 yrs prior to successful engraftment at 2.1 yrs
Vellodi A, England, 1999	16650	10			2 (20.0%)	
Vormoor J, Germany, 2004	9420	2			0 (0%)	
Yeager AM, US, 2000	14880	1			0 (0%)	
Styczynski, Poland, 2011	442	1		0.3 yrs	0 (0%)	

Appendix Table C94. Adverse events: Treatment, inherited metabolic diseases Continued

Study (Investi- gator, country, year)	Grou p (N) TRM	Severity or Grade TRM	F/U (mos) TRM	% TRM	Comment TRM	Group (N) Second- ary Maligna n-cies	Severity or Grade SM	F/U (mos) SM	% SM	Comments SM	Record Number
Arvio M, Finland, 2001	3			0 (0%)		3					14180
Autti T, Finland, 1999	2			0 (0%)		2					15540
Chen R, Taiwan, 2007	1			0 (0%)							4490
Coppa GV, Italy, 1999	1			0 (0%)							16350
Ehlert K, Germany, 2006	3			0 (0%)							4690
Grewel S, US, 2003	1			0 (0%)		1	EBV-positive B- cell lymphoma	0.7 yrs	1 (100%)	successfully treated by withdrawal of immunosuppressi on and one donor lymphocyte infusion	9750
Guffon N, France, 2009	8			0 (0%)							680

Study (Investi- gator, country, year)	Grou p (N) TRM	Severity or Grade TRM	F/U (mos) TRM	% TRM	Comment TRM	Group (N) Second- ary Maligna n-cies	Severity or Grade SM	F/U (mos) SM	% SM	Comments SM	Record Number
Hsu YS, Taiwan, 1999	1			0 (0%)							16540
Imaizumi M, Japan, 1994	1			0 (0%)							23220A
Imaizumi M, Japan, 1994	1			0 (0%)							23220B
Jacobs JFM, Netherlands, 2005	1			0 (0%)							6740
Laitinen A, Finland, 1997	1			0 (0%)		1					19620
Lange MC, Brazil, 2006	1			0 (0%)							5690
Li P, US, 1996	1			0 (0%)							20260
Lonnquist T, Finland, 2001	3			0 (0%)		3					12960
Malm G, Sweden, 2004	2			0 (0%)		2					8490
McKinnis EJR, US, 1996	1			0 (0%)							20560
Morel CF, Canada, 2007	1			0 (0%)							3010
Mullen CA, US, 2000	1			0 (0%)							15300
Page KM, US, 2008	1				dead at 4.6 yrs post, unknown cause, probable infection						1280A
Ringden O, Sweden, 2006	2			1 (50%)	Type A pt, died of pneumonia 0.4 yrs post						5940A
Seto T, Japan, 2001	3			0 (0%)							13460A
Seto T, Japan, 2001	1			0 (0%)							13460B

Study (Investi- gator, country, year)	Grou p (N) TRM	Severity or Grade TRM	F/U (mos) TRM	% TRM	Comment TRM	Group (N) Second- ary Maligna n-cies	Severity or Grade SM	F/U (mos) SM	% SM	Comments SM	Record Number
Sivakumar P, England, 1999	1			0 (0%)							16200
Stein J, Israel, 2007	1			0 (0%)							4880
Takahashi, Japan, 2001	1			0 (0%)							14030
Tokimasa, Japan, 2008	1	PTLD		1 (100%)		1	post-transplant lymphoproliferati ve disease	0.8 yrs	1 (100%)	cause of death	1310
Tolar J, US, 2009	4		0.2 and 0.7 yrs	2 (50%)	pt 2: hepatorenal failure, pulmonary failure, coagulopath y, sepsis pt 3: sepsis and liver failure						1370
Tsai P, US, 1992	1	s. pneumonia e sepsis		1 (100%)							25120
Vellodi A, England, 1999	10			4 (40%)	4 < 100 days post, 2 of sepsis, 2 of aGVHD						16650
Vormoor J, Germany, 2004	2			0 (0%)		2					9420
Yeager AM, US, 2000	1			0 (0%)							14880
Styczynski, Poland, 2011	1		0.3 yrs	0 (0%)							442

Appendix Table C95. Adverse events: Comparator, inherited metabolic diseases

Study (Investigator.	Record	Gro	Severity or	F/U		Comme	Group	Severity	%	Group	Severity	%	Group (N)	
country year)	Numbe	up	Grade	(mo	%	nt	(N)	or	2	(N)	or	3	Engraftme	%_4
country, year)	r	(N)	Infectious	s)			AGVHD	Grade_2	2	CGVHD	Grade_3	3	nt failure	

Study (Investigator, country, year)	Record Numbe r	Gro up (N)	Severity or Grade Infectious	F/U (mo s)	%	Comme nt	Group (N) AGVHD	Severity or Grade_2	%_ 2	Group (N) CGVHD	Severity or Grade_3	%_ 3	Group (N) Engraftme nt failure	%_4
Arvio M, Finland, 2001	14180	12												
Banjar H, Saudi Arabia, 1998	17920													
Chan LL, Malaysia, 2002	11330													
El-Beshlawy A, Egypt, 2006	5750													
Erikson A, Sweden, 1995	21630													
Muenzer J, US, 2006	57160													
Muenzer J, US, 2007	57070													
Paciorkowski AR, US, 2008	2980	1	viral infection (fever, transient leukopenia, thrombocytop enia)	11 mos	1 (10 0%)									
Page KM, US, 2008	1280B	2				other complic ations (not infectiou s):2 develop ed autoimm une hemolyti c anemia2 thrombo cytopeni a	2	1 grade 11 grade 2	2 (10 0%)	2	1 extensive cytopenia 1 limited cytopenia (skin)	2 (10 0%)	2	0 (0%)
Patterson MC, US, 2007	56970													
Patterson MC, US, 2010	56500													

Study (Investigator, country, year)	Record Numbe r	Gro up (N)	Severity or Grade Infectious	F/U (mo s)	%	Comme nt	Group (N) AGVHD	Severity or Grade_2	%_ 2	Group (N) CGVHD	Severity or Grade_3	%_ 3	Group (N) Engraftme nt failure	%_4
Pineda M, Spain, 2009	56560													
Schiffman R, Netherlands, 2008	56750													
Schiffmann R, Netherlands, 1997	58150													

Appendix Table C95. Adverse events: Comparator, inherited metabolic diseases Continued

Study (Investigator, country, year)	Record Number	Group (N) TRM	Severity or Grade TRM	F/U (mos) TRM	% TRM	Group (N)Developme ntal Delay	Severity or Grade DD	% D D	Comm ents DD	Group (N)_9	Severity or Grade SSGR	% SS GR
Arvio M, Finland, 2001	14180											
Banjar H, Saudi Arabia, 1998	17920	3			0 (0%)							
Chan LL, Malaysia, 2002	11330	1			0 (0%)							
El-Beshlawy A, Egypt, 2006	5750	11			0 (0%)							
Erikson A, Sweden, 1995	21630	3			0 (0%)							
Muenzer J, US, 2006	57160	96			0 (0%)							
Muenzer J, US, 2007	57070											
Paciorkowski AR, US, 2008	2980											
Page KM, US, 2008	1280B	2	1 multi- system organ failure	1.8 yrs	1 (50%)							
Patterson MC, US, 2007	56970	12			0 (0%)	12	lethargy, memory impairment, depression	1 (8 %)	withdre w from study	12	severe weight loss	3 (25 %)
Patterson MC, US, 2010	56500	10			0 (100 %)							
Pineda M, Spain, 2009	56560	66			0 (0%)							
Schiffman R, Netherlands, 2008	56750	30			0 (0%)							

Study (Investigator, country, year)	Record Number	Group (N) TRM	Severity or Grade TRM	F/U (mos) TRM	% TRM	Group (N)Developme ntal Delay	Severity or Grade DD	% D D	Comm ents DD	Group (N)_9	Severity or Grade SSGR	% SS GR
Schiffmann R, Netherlands, 1997	58150					5		1 (2 0 %)	One pt experie nced precoci ous puberty due to human chorioni c gonadot ropin used in ERT prepara tion			

Study (Investigator, country, year)	Record Number	Indication	Disease	Therapeutic Setting	Group (N)	Participant Selection (Treatment Period)	Design	n, Evaluated	n, Withdrawn (Lost to F/U)	Comment
Brunner et al, Austria, 2002	11910	Non- hematologic autoimmune	Systemic lupus erythematosus (SLE)	Refractory	Case report	WHO class IV nephritis, pneumonitis, cutaneous vasculitis	Case report	1		
Chen et al, China, 2005	7790	Non- hematologic autoimmune	Systemic lupus erythematosus	Refractory	SLE (2)	class III or IV lupus nephritis (1996, 2001)	case reports	2		
Connor et al, UK, 2008	2220	Hematologic autoimmune	Evans syndrome	Refractory	Evans syndrome case report					
Couri et al, Brazil, 2009	290	Non- malignant autoimmune	Type 1 diabetes mellitus	Newly diagnosed	18	Inclusion: both sexes, age 13-21 yrs, clinical and laboratory diagnosis of type 1 DM during previous 6 wks Exclusion: positive serology for HIV, HBV, HCV, underlying disease precluding HSCT, pregnancy (11/2003-04/2008)	Prospective phase I/II	18	0	
Crino et al, Italy, 2005	62110	Non- hematologic autoimmune	Type 1 diabetes mellitus	Newly diagnosed	nicotinamide plus intensive insulin therapy (25) intensive insulin therapy (27)	recent onset type 1 diabetes mellitus (< 4 wks duration from dx) (NR)	retrospective	25 27	0 0	
Daikeler et al, Switzerland, 2009	740	Hematologic autoimmune	Evans syndrome	Refractory	Evans syndrome (5)	unselected (1984- 2007)	EBMT registry report	5	0	All cases reported to EBMT registry 1984-2007
Daikeler et al, Switzerland, 2009	740A	Hematologic autoimmune	Autoimmune hemolytic anemia	Refractory	Autoimmune hemolytic anemia (7)	unselected (1984- 2007)	EBMT registry reports	7		All cases reported to EBMT registry 1984-2007

Appendix Table C96. Design, participant selection and enrollment: Autoimmune disease

Study (Investigator, country, year)	Record Number	Indication	Disease	Therapeutic Setting	Group (N)	Participant Selection (Treatment Period)	Design	n, Evaluated	n, Withdrawn (Lost to F/U)	Comment
de Kleer et al, Netherlands, 2004	8350	Non- hematologic autoimmune	Juvenile idiopathic arthritis	Refractory	Juvenile idiopathic arthritis (34)	all patients with refractory JIA who underwent autologous HSCT since 1997 29 systemic 5 polyarticular	Registry	34 of 41 pts	7 without sufficient data to allow evaluation	
De Stefano et al, Italy, 1999	16180	Hematologic autoimmune	Autoimmune hemolytic anemia	Refractory	Autoimmune hemolytic anemia case report					
Elhasid et al, Israel, 2004	9050	Non- hematologic autoimmune	Diffuse calcinosis	Refractory, severe disease	1		case report	1		
Fagius et al, Sweden, 2009	1270	Non- hematologic autoimmune	Multiple sclerosis (MS)	Refractory, malignant progressive MS of short duration	MS (2)	very frequent (> 4/yr) and severe EDSS > 6.0) relapses; disease duration < 1.5 yrs; absence of irreversible CNS damage with documented recent improvement suggesting HSCT can benefit patient	case series	2 pediatric cases of 9 total cases		
Farge et al, France, 2004	8600	Non- hematologic autoimmune	Systemic sclerosis (SSc)	Refractory	SSc (5)	Rapidly progressing, early diffuse life- threatening SSc (< 3 yrs duration) or limited SSc if life- threatening	open, multicenter phase I/II	5 pediatric cases out of total 41 cases		Patients included from record #s 11400, 13740, 16270
Huhn et al, USA, 2003	11550	Hematologic autoimmune	Autoimmune thrombocytopenia	Refractory	Autoimmune thrombocytopenia case report					
Jones et al, USA, 2004	9110	Non- hematologic autoimmune	Overlap syndrome	Refractory, severe	1	1998	case report	1		
Kimiskidis et al, Greece, 2008	3020	Non- hematologic autoimmune	Multiple sclerosis (MS)	Refractory, malignant progressive MS of short duration	MS (1)		case report	1		
Kishimoto et al, Japan, 2003	9500	Non- hematologic autoimmune	Juvenile idiopathic arthritis	Refractory	Juvenile idiopathic arthritis (3)	Not reported	Case reports	3	0	Japanese experience

Study (Investigator, country, year)	Record Number	Indication	Disease	Therapeutic Setting	Group (N)	Participant Selection (Treatment Period)	Design	n, Evaluated	n, Withdrawn (Lost to F/U)	Comment
Lisukov et al, Russia, 2004	9190	Non- hematologic autoimmune	Systemic lupus erythematosus (SLE)	Refractory	SLE (4)	refractory WHO class III-IV glomerulonephritis, CNS, lung, heart involvement, life- threatening cytopenias	case series	4		4 of 6 were pediatric pts
Mancardi et al, Italy, 2005	7110	Non- hematologic autoimmune	Malignant multiple sclerosis (MS)	Life- threatening, progressive, refractory	MS (2)	Malignant life- threatening MS, refractory to alternative therapies	case reports	2		
Mastrandrea et al, USA, 2009	40050	Non- hematologic autoimmune	Type 1 diabetes mellitus	Newly diagnosed	etanercept plus intensive insulin therapy	10/2002-10/2007	RCT	10		Using one arm of an RCT
Musso et al, Italy, 2001	13570	Non- hematologic autoimmune	Systemic lupus erythematosus (SLE)	Refractory	SLE (2)	life-threatening severe, refractory disease, SLICC/ACR damage index score < 3,	case series	2		
Nakagawa et al, Japan, 2001	13910	Non- hematologic autoimmune	Juvenile idiopathic arthritis	Refractory	Juvenile idiopathic arthritis (1)	1998	Case report	1		
Oyama et al, USA, 2005	7570	Non- hematologic autoimmune	Crohn's Disease (CD)	Refractory	CD (4)	Clinical and histologic evidence of CD, < 60 yrs old, failed treatment with corticosteroids, mesalamine, metronidazole, azathioprine, 6- mercaptopurine, infliximab, CDAI of 250-400	Case series	4		
Burt et al, USA, 2010	273	autoimmune	Crohn's disease	refractory	3	NR	phase I/II	3	0	Long term followup of Oyama et al, 2005
Paillard et al, 2000, France	14650	Hematologic autoimmune	Autoimmune hemolytic anemia	Refractory	Autoimmune hemolytic anemia case report					
Study (Investigator, country, year)	Record Number	Indication	Disease	Therapeutic Setting	Group (N)	Participant Selection (Treatment Period)	Design	n, Evaluated	n, Withdrawn (Lost to F/U)	Comment
--	------------------	-----------------------------------	--	---	---	---	--------------	-----------------	-------------------------------------	--
Rabusin et al, Italy, 2000	13940	Non- hematologic autoimmune	Juvenile idiopathic arthritis	Refractory systemic or polyarticular disease	Juvenile idiopathic arthritis (5)	1996-2000	Case series	5		
Raetz et al, USA, 1997	18920	Hematologic autoimmune	Evans syndrome	Refractory	Evans syndrome case report					
Statkute eta, USA, 2005	7370	Non- hematologic autoimmune	Systemic lupus erythematosus (SLE)	Refractory	SLE (9)	SLE refractory to pulse cyclophosphamide and > 20 mg prednisone daily, , 4 of 11 ACR criteria for SLE, class III or IV GN, lung, CNS, or visceral involvement (1997- 2004)	Case series	9		9 of 28 in the series were pediatric age
Strober et al, USA, 2009	230	Non- hematologic autoimmune	Myasthenia gravis (MG)	Refractory	MG (1)		case report	1		
Trysberg et al, Sweden, 2000	15570	Non- hematologic autoimmune	Systemic lupus erythematosus (SLE)	Refractory	1	CNS lupus, bilateral opticus neuritis, transverse myelitis	case report	1		
Urban et al, Austria, 2006	5970	Hematologic autoimmune	Evans syndrome	Refractory	Evans syndrome case report					
Wulffrat et al, Netherlands, 2001	13970	Non- hematologic autoimmune	Systemic lupus erythematosus (SLE)	Refractory	Case reports (2)	Severe, WHO class IV glomerulonephritis, polyarthritis, malar rash	case reports	2		

Study (Investigator, country, year)	Record Number	Group (N)	Age (mean)	Age (median)	Age (Range)	Age (SD)	Race (%)	Gender M, F (%)	Disease Stage/category	Disease Histology/Site (%)	Com ment
Brunner et al, Austria, 2002	11910	SLE case report	18 yrs					F			
Chen et al, China, 2005	7790	SLE (2)			13, 18 yrs				severe, refractory to corticosteroids, 6- mercaptopurine , cyclophospham ide		
Connor et al, UK, 2008	2220	Evans syndrome case report	7 yrs					F			
Couri et al, Brazil, 2009	290	18		18	13-21		white (75)	67, 33			
Daikeler et al, Switzerland, 2009	740	Evans syndrome (5)		11	2-21 yrs			M 5 (100)			All cases report ed to EBMT registr y 1984- 2007
Daikeler et al, Switzerland, 2009	740A	Autoimmun e hemolytic anemia (7)		7	2-14			5 M (71)			All cases report ed to EBMT registr y 1984- 2007
de Kleer et al, Netherlands, 2004	8350	Juvenile idiopathic arthritis (34)	8.9 yrs		4-18 yrs	3.6 yrs	NR	19 M, 15 F (56/44)	refractory	29 systemic5 polyarticular	

Appendix Table C97. Participant characteristics: Treatment, autoimmune disease

Study (Investigator, country, year)	Record Number	Group (N)	Age (mean)	Age (median)	Age (Range)	Age (SD)	Race (%)	Gender M, F (%)	Disease Stage/category	Disease Histology/Site (%)	Com ment
De Stefano et al, Italy, 1999	16180	Autoimmun e hemolytic anemia case report	6 yrs					М			
Elhasid et al, Israel, 2004	9050	Diffuse calcinosis (1)	15 yrs					F	Severe, progressive		
Fagius et al, Sweden, 2009	1270	MS (2)	9, 16 yrs					1 M, 1 F	EDSS 4.0, 8.0; annualized relapse rate 15, 18, respectively		
Farge et al, France, 2004	8600	SSc (5)		12 yrs	9-17 yrs			F 4, M 1		scleroderma lung disease, 4 diffuse, 1 limited	
Huhn et al, USA, 2003	11550	Autoimmun e thrombocyt openia case report	17 yrs					м			
Jones et al, USA, 2004	9110	1	10					F	Severe, refractory with small vessel vasculitis		
Kimiskidis et al, Greece, 2008	3020	MS (1)	17 yrs					М	Malignant MS, EDSS score 5.0		
Kishimoto et al, Japan, 2003	9500	Juvenile idiopathic arthritis (2)	3, 13, 21 yrs					1 M, 2 F	Systemic disease, refractory to conventional therapies		
Lisukov et al, Russia, 2004	9190	SLE (4)	19 yrs		15-21 yrs	2.8 yrs		F (100)	refractory to pulse cyclophospham ide, corticosteroids, azathioprine		
Mancardi et al, Italy, 2005	7110	MS (2)	16, 18 yrs					1 M, 1 F		Paralyzing lesions within CNS	

Study (Investigator, country, year)	Record Number	Group (N)	Age (mean)	Age (median)	Age (Range)	Age (SD)	Race (%)	Gender M, F (%)	Disease Stage/category	Disease Histology/Site (%)	Com ment
Musso et al, Italy, 2001	13570	SLE (2)	17, 20 yrs					F (100)	severe refractory		
Nakagawa et al, Japan, 2001	13910	Juvenile idiopathic arthritis (1)	15 yrs						Refractory disease		
Oyama et al, USA, 2005	7570	CD (4)	17 yrs		15-21 yrs	2.7 yrs	white	M (n = 3)	severe refractory		
Burt et al, USA, 2010	273	HSCT (3)			16, 18, 21 years		NR	2 M, 1 F	refractory to all standard treatments	NR	
Paillard et al, 2000, France	14650	Autoimmun e hemolytic anemia case report	8 yrs					М			
Rabusin et al, Italy, 2000	13940	Juvenile idiopathic arthritis (5)	14.6 yrs		9-20 yrs	3.9 yrs		1 M (20)	Refractory, 3- 12 yrs duration		
Raetz et al, USA, 1997	18920	Evans syndrome case report	5 yrs					М			
Statkute eta, USA, 2005	7370	SLE (9)	19 yrs		15-21 yrs	2yrs		F (100)	Refractory		
Strober et al, USA, 2009	230	MG (1)	17 yrs					М	Severe, refractory		
Trysberg et al, Sweden, 2000	15570	SLE (1)	18 yrs					F	Severe, refractory		
Urban et al, Austria, 2006	5970	Evans syndrome case report	2 yrs					М			
Wulffrat et al, Netherlands, 2001	13970	SLE (2)	14 yrs					1 M, 1 F	Severe, refractory		

Appendix Table C98, Pa	articipant characteristics	: Comparator	. autoimmune disease
		. oomparator	

Study (Investigator, country, year)	Record Number	Group (N)	Age (mean)	Age (Range)	Age (SD)	Gender M, F (%)
Crino et al, Italy, 2005	62110	nicotinamide plus intensive insulin therapy (25) intensive insulin therapy (27)	14.7 14	NR	5 4.3	
Mastrandrea et al, USA, 2009	40050	etanercept plus intensive insulin therapy (10)	12.5 yrs	3-18 yrs	3.3 yrs	8 (80)

Study (Investigator, country, year)	Record Numbe r	Group (N)	Stem Cell Source	Type of HSCT	Prior Treatmen t	Conditioni ng Regimen	Immunosuppr essive therapy for GVHD prophylaxis	Supportive Care	Comparative Treatment	Comparative Treatment Dose/Regimen	Commen t
Brunner et al, Austria, 2002	11910	SLE case report	РВ	autolog ous	corticoste roids, azathiopri ne, cyclophos phamide, immunop heresis	cyclophosp hamide plus ATG	N/A		N/A		
Chen et al, China, 2005	7790	SLE (2)	PB	autolog ous	corticoste roids, cyclophos phamide	ATG, cyclophosp hamide	N/A	bactrim, IVIG, G-CSF in 1 pt	N/A		
Connor et al, UK, 2008	2220	1 case report	NR	allogen eic	corticoste roids, IVIG, cyclospori ne, mycophe nolate mofetil, rituximab	alemtuzum ab, fludarabine , melphalan	cyclosporine and mycophenolate mofetil	NR	NA	NA	
Couri et al, Brazil, 2009	290	18	peripher al blood	autolog ous nonmye loablativ e	None	cyclophosp hamide, antithymoc yte globulin		dexchlorphe niramine, G- CSF			
Crino et al, Italy, 2005	62110	nicotina mide plus intensiv e insulin therapy (25) intensiv e insulin therapy (27)			None				nicotinamide plus intensive insulin therapy	nicotinamide 25 mg/kg daily, plus 3-4 injections per day of regular plus intermediate- acting insulin 3-4 injections per day of regular plus intermediate- acting insulin both groups 55% carbohydrate diet	

Appendix Table C99. Treatment characteristics: Autoimmune disease

Study (Investigator, country, year)	Record Numbe r	Group (N)	Stem Cell Source	Type of HSCT	Prior Treatmen t	Conditioni ng Regimen	Immunosuppr essive therapy for GVHD prophylaxis	Supportive Care	Comparative Treatment	Comparative Treatment Dose/Regimen	Commen t
Daikeler et al, Switzerland, 2009	740	Evans syndro me (5)	3 BM, 1 PB, 1 CB	allogen eic	Standard therapy (NR)	various combinatio ns, including cyclophosp hamide, fludarabine , busulfan, thiotepa, ATG, TBI	cyclosporine A with either methotrexate or mycophenolate mofetil	NR	NA	NA	5 cases reported to EBMT registry between 1984 and 2007
Daikeler et al, Switzerland, 2009	740A	Autoim mune hemolyti c anemia (7)		allogen eic	Standard therapy (NR)	various combinatio ns, including cyclophosp hamide, fludarabine , busulfan, thiotepa, ATG, TBI	cyclosporine A with either methotrexate or mycophenolate mofetil	NR	NA	NA	5 cases reported to EBMT registry between 1984 and 2007
de Kleer et al, Netherlands, 2004	8350	Juvenile idiopathi c arthritis (34)	BM 25, PB 9	autolog ous	various combinati ons of corticoste roids, methotrex ate, cyclospori n A, azathiopri ne, NSAIDs, sulphasal azine, cyclophos phamide, gold im, IVIG, hydroxyxc hloroquin e, anti- TNF agents	3 different regimens used: A = ATG, cyclophosp hamide, low dose TBI B = ATG, cyclophosp hamide C = fludarabine , cyclophosp hamide, methylpred nisolone					

Study (Investigator, country, year)	Record Numbe r	Group (N)	Stem Cell Source	Type of HSCT	Prior Treatmen t	Conditioni ng Regimen	Immunosuppr essive therapy for GVHD prophylaxis	Supportive Care	Comparative Treatment	Comparative Treatment Dose/Regimen	Commen t
De Stefano et al, Italy, 1999	16180	Autoim mune hemolyti c anemia case report	bone marrow	allogen eic	autologou s HSCT, splenecto my, prednison e, azathiopri ne, cyclospori ne A,	busulfan, fludarabine , thiotepa	cyclosporine A, methotrexate, ATG	NR	NA	NA	
Elhasid et al, Israel, 2004	9050	Diffuse calcinos is (1)	РВ	autolog ous	corticoste roids, cyclophos phamide, azathiopri ne, methotrex ate, hydroxyc hloroquin e, thalidomi de	BEAM	N/A		N/A		
Fagius et al, Sweden, 2009	1270	MS (2)	РВ	autolog ous	methylpre dnisolone , plasma exchange , beta-IFN	cyclophosp hamide in 1 case, BEAM (BCNU, etoposide, ara-C, melphalan) in the second	N/A	ATG, acyclovir, bactrim	N/A		

Study (Investigator, country, year)	Record Numbe r	Group (N)	Stem Cell Source	Type of HSCT	Prior Treatmen t	Conditioni ng Regimen	Immunosuppr essive therapy for GVHD prophylaxis	Supportive Care	Comparative Treatment	Comparative Treatment Dose/Regimen	Commen t
Farge et al, France, 2004	8600	SSc (5)	РВ	autolog ous	NR	Combinatio ns including cyclophosp hamide alone, cyclophosp hamide plus ATG and TBI, cyclophosp hamide plus CAMPATH -1H	N/A	NR	N/A		
Huhn et al, USA, 2003	11550	Autoim mune thrombo cytopeni a case report	РВ	autolog ous	prednison e, splenecto my, IVIG, azathiopri ne, danazol. Interferon -alpha, plasmaph eresis	cyclophosp hamide		MESNA, G- CSF, fluconazole, Bactrim			
Jones et al, USA, 2004	9110	1	ВМ	allogen eic	methotrex ate, cyclophos phamide, corticoste roids, nifedipine , enalapril, amitriptyli ne, celecoxib	nonmyeloa blative, fludarabine , cyclophosp hamide, TBI	mycophenolate mofetil, cyclosporine A	methylpredni solone, IVIG	N/A		
Kimiskidis et al, Greece, 2008	3020	MS (1)	PB	autolog ous	iv methylpre dnisolone , IFN-beta	busulfan, ATG	N/A	G-CSF,	N/A		

Study (Investigator, country, year)	Record Numbe r	Group (N)	Stem Cell Source	Type of HSCT	Prior Treatmen t	Conditioni ng Regimen	Immunosuppr essive therapy for GVHD prophylaxis	Supportive Care	Comparative Treatment	Comparative Treatment Dose/Regimen	Commen t
Kishimoto et al, Japan, 2003	9500	Juvenile idiopathi c arthritis (2)	1 BM, 2 PBSC	autolog ous	corticoste roids, cyclospori ne A, NSAIDs, methotrex ate, cyclophos phamide	cyclophosp hamide and ATG (n = 1), etoposide, thiotepa, ATG (n = 2)	N/A	Not reported	N/A		
Lisukov et al, Russia, 2004	9190	SLE (4)	PB or BM (not specified)	autolog ous	corticoste roids, azathiopri ne, cyclophos phamide	various dose regimens of BEAM with ATG, cyclophosp hamide with ATG, etoposide plus melphalan, all with methylpred nisolone	N/A	anti-emetics, analgesia, ciprofloxacin, fluconazole, acyclovir, G- CSF, bactrim	N/A		
Mancardi et al, Italy, 2005	7110	MS (2)	РВ	autolog ous	high-dose corticoste roids, cyclophos phamide, plasma exchange , IFN-beta	BCNU, ara-C, etoposide, melphalan, with or without ATG		IV cyclosporine A	N/A		
Mastrandrea et al, USA, 2009	40050	etanerc ept plus intensiv e insulin therapy (10)							etanercept plus intensive insulin therapy	etanercept 0.4 mg/kg twice weekly up to max dose of 25 mg/kg three-injection insulin regimen with Humalog and NPH before breakfast	

Study (Investigator, country, year)	Record Numbe r	Group (N)	Stem Cell Source	Type of HSCT	Prior Treatmen t	Conditioni ng Regimen	Immunosuppr essive therapy for GVHD prophylaxis	Supportive Care	Comparative Treatment	Comparative Treatment Dose/Regimen	Commen t
Musso et al, Italy, 2001	13570	SLE (2)	РВ	autolog ous	corticoste roids, cyclophos phamide, IVIG, azathiopri ne, plasma exchange	cyclophosp hamide plus ATG and prednisolo ne	N/A	ciprofloxacin, bactrim, acyclovir, itraconazole	N/A		
Nakagawa et al, Japan, 2001	13910	Juvenile idiopathi c arthritis (1)	РВ	autolog ous	corticoste roids, methotrex ate, NSAIDs	ALG, cyclophosp hamide,	N/A	IVIG, acyclovir, antipruritic drugs	N/A		
Oyama et al, USA, 2005	7570	CD (4)	РВ	autolog ous	corticoste roids, mesalami ne, metronida zole, azathiopri ne, 6- mercapto purine, infliximab	cyclophosp hamide, ATG	N/A	mesna, methylpredni solone, G- CSF, Iow microbial diet, ciprofloxacin, fluconazole, valacyclovir, pentamidine, bactrim	N/A		

Study (Investigator, country, year)	Record Numbe r	Group (N)	Stem Cell Source	Type of HSCT	Prior Treatmen t	Conditioni ng Regimen	Immunosuppr essive therapy for GVHD prophylaxis	Supportive Care	Comparative Treatment	Comparative Treatment Dose/Regimen	Commen t
Burt et al, USA, 2010	273	HSCT (3)	T-cell depleted, peripher al blood CD34+ enriched	autolog ous	various combinati ons, including mesalami ne, cyclospori ne, corticoste roids, 6- mercapto purine, methotrex ate, infliximab, azathiopri ne, budesoni de, interleuki n 11, tacrolimu s	nonmyeloa blative, cyclophosp hamide 50 mg/kg daily for 4 days	equine or rabbit ATG	ciprofloxacin, fluconazole, acyclovir, aerosolized pentamidine, piperacillin/ta zobactam, bactrim, leukoreduce d RBC and platelet transfusions until engraftment	N/A	N/A	
Paillard et al, 2000, France	14650	Autoim mune hemolyti c anemia case report	РВ	autolog ous	autologou s HSCT, prednison e, IVIG, plasmaph eresis, splenecto my, ATG	BCNU, etoposide, ara-C, melphalan, ATG	NA	cyclosporine A	NA	NA	
Rabusin et al, Italy, 2000	13940	Juvenile idiopathi c arthritis (5)	NR, all cells treated in vitro with vincristin e and methylpr ednisolo ne	autolog ous	Corticoste roids, NSAIDs, methotrex ate, cyclospori ne A, cyclophos phamide	ATG, plus cyclophosp hamide or fludarabine	N/A	hyperhydrati on, uromitexane, cortisone, antihistamine , cyclosporine A	N/A	N/A	

Study (Investigator, country, year)	Record Numbe r	Group (N)	Stem Cell Source	Type of HSCT	Prior Treatmen t	Conditioni ng Regimen	Immunosuppr essive therapy for GVHD prophylaxis	Supportive Care	Comparative Treatment	Comparative Treatment Dose/Regimen	Commen t
Raetz et al, USA, 1997	18920	Evans syndro me case report	umbilical cord blood	allogen eic	prednison e, IVIG, 6- mercapto purine, azathiopri ne, anti- D, cyclospori ne A, vincristine	cyclophosp hamide and TBI	cyclosporine A	G-CSF	NA	NA	
Statkute eta, USA, 2005	7370	SLE (9)	РВ	autolog ous	pulse cyclophos phamide, > 20 mg prednison e daily	ATG, cyclophosp hamide	N/A	G-CSF, pentamidine, fluoroquinolo ne, acyclovir or valacyclovir, bactrim	N/A		
Strober et al, USA, 2009	230	MG (1)	РВ	allogen eic	pyridostig mine, IVIG, thymecto my, corticoste roids, mycophe nolate mofetil, azathiopri ne, plasmaph eresis, rituximab, high-dose cyclophos phamide	alemtuzum ab, busulfan, fludarabine	methotrexate, cyclosporine A		N/A		
Trysberg et al, Sweden, 2000	15570	SLE (1)	PB	autolog ous	corticoste roids, cyclophos phamide, warfarin, aspirin, ATG,	cyclophosp hamide and TBI	N/A	cyclosporin A, low dose corticosteroi ds, anti- herpes, anti- fungal, antibiotics	N/A		

Study (Investigator, country, year)	Record Numbe r	Group (N)	Stem Cell Source	Type of HSCT	Prior Treatmen t	Conditioni ng Regimen	Immunosuppr essive therapy for GVHD prophylaxis	Supportive Care	Comparative Treatment	Comparative Treatment Dose/Regimen	Commen t
Urban et al, Austria, 2006	5970	Evans syndro me case report	umbilical cord blood	allogen eic	2 autologou s HSCT corticoste roids, IVIG, rituximab, vincristine	busulfan, ATG, thiotepa, etoposide	prednisone, cyclosporine A	NR	NA	NA	
Wulffrat et al, Netherlands, 2001	13970	SLE (2)	ВМ	autolog ous	corticoste roids, cyclophos phamide, azathiopri ne, hydroxyc hloroquin e	cyclophosp hamide, ATG, low- dose TBI	N/A	NR	N/A		

Study (Investigator	Record		Primary	Secondary	Independent Response	F/U	
country, year)	Number	Group (N)	Outcomes	Outcomes	Assessor	Frequency/Durati	Comment
· · · · · · · · · · · · · · · · · · ·						on	
			0			Complete drug-	
Brunner et al, Austria,	11910	SLE case	Complete			tree resolution of	
2002		report	remission			SLE at 21 mos	
						F/U, KPS 100%	
						Pt 1: SLEDAI 6, 0~	
						P[Z] SLEDALIZ, $0 \sim Pt 1$ in	
						0~ FL 1 III complete clinical	
			nre-nost			and laboratory	
						remission 44 mos	
Chen et al. China. 2005	7790	$SI \in (2)$	score~ drug-			nosttransplant [.] Pt	
	1100		free clinical			2 in complete	
			remission			clinical and	
						laboratory	
						remission until 9	
						mos, when she	
						was lost to F/U	
						at 10 mos she was	
						weaning	
Connor et al LIK 2008	2220	1 case report	survival			immunosuppressio	
	2220	r case report	301 11 201			n, with full donor	
						chimerism and no	
						evidence of GVHD	
			AUC of C-				
			peptide levels				
			during mixed-			/4.5 +/- 24.8	
			meal tolerance			nmol/L, 260.0 +/-	
			test, 0,24, 36			30 nmoi/L, 241.0	AUC data
Couri et al, Brazil, 2009	290	18	mos∼ r RM			+/-48 nmol/L (p =	Includes /
			free post			(0.001, 0.0524)	patients >
						(90%) range 7.52	20 yrs olu
			time free from			months	
			exogenous			monuno	
			insulin				

Appendix Table C100. Outcome assessment: Treatment, autoimmune disease

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	Secondary Outcomes	Independent Response Assessor	F/U Frequency/Durati on	Comment
Daikeler et al, Switzerland, 2009	740	Evans syndrome (5)	survival			3 alive at 36, 85 and 113 mos 1 dead from disease at 59 mos 1 dead from interstitial pneumonitis at 6 mos	
Daikeler et al, Switzerland, 2009	740A	Autoimmune hemolytic anemia (7)	survival			4 alive at 3.9, 86, 112, 124 mos 3 dead at 0.7, 1.4, 5.2 mos	Survival reported as alive or dead at follow-up time; not Kaplan- Meier curves

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	Secondary Outcomes	Independent Response Assessor	F/U Frequency/Durati on	Comment
de Kleer et al, Netherlands, 2004	8350	Juvenile idiopathic arthritis (34)	Complete drug-free response (%) partial response (%) no response (%) OS EFS	TRM other adverse events	CR = 53%~ PR = 18%~ NR = 21%~ OS = 79% at 5 yrs~ EFS = 54% at 5 yrs~ TRM = 9%		Five of 6 rheumatolo gical outcomes (VAS - wellbeing, CHAQ- pain, disability, active joint count, ESR) improved within 3 mos from pre-HSCT values (p < 0.04); EPM-ROM did not decline. JIA among those who relapsed was as severe and refractory as prior HSCT
De Stefano et al, Italy, 1999	16180	Autoimmune hemolytic anemia case report	survival			patient alive and well 18 mos posttransplant, weaned off immune suppressive therapy, full donor chimerism, normally functioning immune system	

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	Secondary Outcomes	Independent Response Assessor	F/U Frequency/Durati on	Comment
Elhasid et al, Israel, 2004	9050	Diffuse calcinosis (1)	activities of daily living~ clinical disease			At 2 yrs post- HSCT, patient is free from laboratory and clinical evidence of disease, is able to stand, sit, and walk unaided	
Fagius et al, Sweden, 2009	1270	MS (2)	EDSS score pre-post HSCT~ clinical condition			Pt 1: 4.0, 0.0; Pt 2: 8.0, 1.0~ both patients reported without disease- modifying treatments and stable at 28 and 35 mos	Results except EDSS reported as a group
Farge et al, France, 2004	8600	SSc (5)	Outcomes for 5 patients were reported in scant detail. All 5 were alive, with 4 CR, 1 PR. TRM was reported in a 6th patient. 1 patient relapsed at about 9 mos after initial CR.			median 38 mos (range 14-68 mos)	

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	Secondary Outcomes	Independent Response Assessor	F/U Frequency/Durati on	Comment
Huhn et al, USA, 2003	11550	Autoimmune thrombocyto penia case report	response to therapy (self- sustained platelet count > 100,000/mm3, reduced bleeding complications and transfusion requirements			no response at 39 mos follow-up	
Jones et al, USA, 2004	9110	1	complete drug-free remission~ activities of daily living			Patient's cushingoid features resolved, all immune suppressant therapies were stopped, grew 17.7 cm in 3 yrs, full-time student in a regular classroom	
Kimiskidis et al, Greece, 2008	3020	MS (1)	EDSS pre- post HSCT~ clinical remission			EDSS = 3.5 at 1 mo, 1.0 at 12 mos~drug-free clinical remission at 62 mos, able to finish college and work	

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	Secondary Outcomes	Independent Response Assessor	F/U Frequency/Durati on	Comment
Kishimoto et al, Japan, 2003	9500	Juvenile idiopathic arthritis (3)	Disease response~ Survival			Pt 1: No response to AHSCT, subsequent allogeneic transplant was followed by patient death 48 days posttransplant~ Pt 2: Disease flares at 11 and 23 mos, medication-free at 39 mos~ Pt 3: drug-free clinical remission at > 35 mos	
Lisukov et al, Russia, 2004	9190	SLE (4)	Complete remission (SLEDAI < 3, prednisolone dose < 10 mg daily, absence of other immunosuppre ssive therapy) (%)			1 pt (25%) achieved CR with F/U > 60 mos; 1 pt improved functionally but did not achieve primary endpoint	
Mancardi et al, Italy, 2005	7110	MS (2)	EDSS score pre-post HSCT~ neurological improvement~ mobility			Pt 1: 7.4, 4.0; Pt 2; 9, 4.5~ Pt 1 could walk and perform activities of daily living independently at 29 mos F/U~ Pt 2 neurological condition improved dramatically (not described) at 14 mos F/U	

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	Secondary Outcomes	Independent Response Assessor	F/U Frequency/Durati on	Comment
Musso et al, Italy, 2001	13570	SLE (2)	Corticosteroid- free complete remission~ KPS pre- and posttransplant			2 of 2 (100) at > 30 mos and > 3.8 mos F/U~ Pt 1: 40, 100; Pt 2: 60, 100	Both patients reported drug-free at F/U
Nakagawa et al, Japan, 2001	13910	Juvenile idiopathic arthritis (1)	Medication- free survival~ growth rate			15 mos posttransplant~ 16 cm/yr compared to 2 cm/yr in preceding 3 yrs	
Oyama et al, USA, 2005	7570	CD (4)	Clinical drug- free remission (%)~ survival (%)~ KPS pre- post HSCT~CDAI pre-post HSCT~ disease manifestations post-HSCT			100%~ 100% at 37, 36, 16, 7 mos F/U~ 40, 100; 50, 100; 40, 80; 60, 90~ 337, 51; 293, 59; 250, 78; 274, 74~ 2 asymptomatic (50%), 2 (50%) with occasional abdominal pain or diarrhea	
Burt et al, USA, 2010	273	HSCT (3)	immunosuppre ssive drug-free remission, with CDAI< 150 and CSI < 12; clinical relapse-free survival; HSCT- associated adverse events	CDAI, CSI	NR	6, 12, 24, 36, 48, 60 mos post- HSCT	
Paillard et al, 2000, France	14650	Autoimmune hemolytic anemia case report	survival			Patient in hematological remission 20 mos posttransplant	

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	Secondary Outcomes	Independent Response Assessor	F/U Frequency/Durati on	Comment
Rabusin et al, Italy, 2000	13940	Juvenile idiopathic arthritis (5)	Complete drug-free response 6 mos (%)~ Partial response 6 mos (%)~ Relapse (%)			CR = 4 of 5 (80) at 3 mos, 3 of 5 (60) at 6 mos~ PR = 1 of 5 (20) at 3 mos~ Relapse = 5 of 5 (100) between 6 and 18 mos (mn = 10 +/- 5.1 mos)	Disease evolution followed according to Giannini, including joint- swelling scores, pain scores, and ESR
Raetz et al, USA, 1997	18920	Evans syndrome case report	survival			patient dead 289 days posttransplant of fulminant liver failure	
Statkute eta, USA, 2005	7370	SLE (9)	SLE drug-free remission (%)~			7 of 9 (78), remission maintained for median 29 mos (rng 12-78 mos)	
Strober et al, USA, 2009	230	MG (10	Activities of daily living			At 40 mos post- HSCT pt if free of all immune suppressant and MG therapies, plays basketball, and is completely independent	
Trysberg et al, Sweden, 2000	15570	SLE (1)	CNS deficit, mobility			Neurological deficits improved promptly after HSCT, patient was able to read again, walk freely, with MRI observed regression of brain lesions	Required corticostero ids,

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	Secondary Outcomes	Independent Response Assessor	F/U Frequency/Durati on	Comment
Urban et al, Austria, 2006	5970	Evans syndrome case report	survival			at 18 mos patient in good clinical condition, with 100% donor chimerism, no evidence of GVHD, weaned off immune suppressive therapy	
Wulffrat et al, Netherlands, 2001	13970	SLE (2)	Pre-post SLEDAI score~ complete drug-free clinical remission			Pt 1: 20, 0; Pt 2: 27, 8~ 2 (100) drug-free complete remission at 18 and 12 mos F/U	Post-HSCT SLEDAI score of 8 in Pt 2 is due to the presence of permanent vasculitic retinal lesions

Study (Investigator, country, year)	Record Number	Group (N)	Primary Outcomes	F/U Frequency/Duration
Crino et al, Italy, 2005	62110	nicotinamide plus intensive insulin therapy (25) intensive insulin therapy only (27)	glycosylated hemoglobin (%) 0, 12, 24 mos fasting C- peptide (nmol/L) 0, 12, 24 mos	nicotinamide plus intensive insulin therapy 9.6+/-2.2, 5.4+/-0.8, 6.1+/-0.9, 1.9+/-0.15, 0.25+/-0.2, 0.19+/-0.2 intensive insulin therapy 10.5+/-2.2, 6.5+/-0.9, 7.0+/-0.9, 0.16+/-0.12, 0.21+/-0.2, 0.19+/-0.13
Mastrandrea et al, USA, 2009	40050	etanercept plus intensive insulin therapy (10)	glycosylated hemoglobin (%) 0, 24 wks meal stimulated C peptide AUC (ng/mL/hr) 0, 24 wks	12.8+/-3.2, 5.9+/-0.5 3.1+/-1.2 ng/mL/hr, 3.9+/-1.6 ng/mL/hr

Appendix Table C101. Outcome assessment: Comparator, autoimmune disease

Study (Investigator, country, year)	Record Number	Disease	Outcome Assessment Group (N)	Primary Outcomes	Secondary Outcomes	F/U Frequency/Duration	Time to Event Outcomes Group (N)	Outc ome	Outco me_2
Brunner et al, Austria, 2002	11910	Systemic lupus erythemat osus (SLE)	SLE case report	Complete remission		Complete drug-free resolution of SLE at 21 mos F/U, KPS 100%			
Chen et al, China, 2005	7790	Systemic lupus erythemat osus	SLE (2)	pre-post SLEDAI score~ drug- free clinical remission		Pt 1: SLEDAI 6, 0~ Pt 2: SLEDAI 12, 0~ Pt 1 in complete clinical and laboratory remission 44 mos posttransplant; Pt 2 in complete clinical and laboratory remission until 9 mos, when she was lost to F/U at 10 mos she was			
Connor et al, UK, 2008	2220	Evans syndrome	1 case report	survival		weaning immunosuppression, with full donor chimerism and no evidence of GVHD			
Couri et al, Brazil, 2009	290	Type 1 diabetes mellitus	18	AUC of C- peptide levels during mixed-meal tolerance test, 0,24, 36 mos~ TRM total insulin free post- HSCT (%) time free from exogenous insulin		74.5 +/- 24.8 nmol/L, 260.0 +/- 30 nmol/L, 241.0 +/-48 nmol/L (p = 0.001, 0 vs 24 mos) 0 16 of 18 (89%), range 7-52 months	16	100	

Appendix Table C102. Time to event outcomes: Treatment, autoimmune disease

Study (Investigator, country, year)	Record Number	Disease	Outcome Assessment Group (N)	Primary Outcomes	Secondary Outcomes	F/U Frequency/Duration	Time to Event Outcomes Group (N)	Outc ome	Outco me_2
Daikeler et al, Switzerland, 2009	740	Evans syndrome	Evans syndrome (5)	survival		3 alive at 36, 85 and 113 mos 1 dead from disease at 59 mos 1 dead from interstitial pneumonitis at 6 mos			
Daikeler et al, Switzerland, 2009	740A	Autoimmu ne hemolytic anemia	Autoimmune hemolytic anemia (7)	survival		4 alive at 3.9, 86, 112, 124 mos 3 dead at 0.7, 1.4, 5.2 mos			
de Kleer et al, Netherlands, 2004	8350	Juvenile idiopathic arthritis	Juvenile idiopathic arthritis (34)	Complete drug-free response (%) partial response (%) no response (%) OS EFS	TRM other adverse events		Juvenile idiopathic arthritis (34)	OS, 1-5 years 79%	EFS, 1-5 years approx 1-54%
De Stefano et al, Italy, 1999	16180	Autoimmu ne hemolytic anemia	Autoimmune hemolytic anemia case report	survival		patient alive and well 18 mos posttransplant, weaned off immune suppressive therapy, full donor chimerism, normally functioning immune system			
Elhasid et al, Israel, 2004	9050	Diffuse calcinosis	Diffuse calcinosis (1)	activities of daily living~ clinical disease		At 2 yrs post-HSCT, patient is free from laboratory and clinical evidence of disease, is able to stand, sit, and walk unaided			
Fagius et al, Sweden, 2009	1270	Multiple sclerosis (MS)	MS (2)	EDSS score pre-post HSCT~ clinical condition		Pt 1: 4.0, 0.0; Pt 2: 8.0, 1.0~ both patients reported without disease-modifying treatments and stable at 28 and 35 mos			

Study (Investigator, country, year)	Record Number	Disease	Outcome Assessment Group (N)	Primary Outcomes	Secondary Outcomes	F/U Frequency/Duration	Time to Event Outcomes Group (N)	Outc ome	Outco me_2
Farge et al, France, 2004	8600	Systemic sclerosis (SSc)	SSc (5)	Outcomes for 5 patients were reported in scant detail. All 5 were alive, with 4 CR, 1 PR. TRM was reported in a 6th patient. 1 patient relapsed at about 9 mos after initial CR.		median 38 mos (range 14-68 mos)			
Huhn et al, USA, 2003	11550	Autoimmu ne thromboc ytopenia	Autoimmune thrombocytopenia case report	response to therapy (self- sustained platelet count > 100,000/mm 3, reduced bleeding complication s and transfusion requirement s		no response at 39 mos follow-up			
Jones et al, USA, 2004	9110	Overlap syndrome	1	complete drug-free remission~ activities of daily living		Patient's cushingoid features resolved, all immune suppressant therapies were stopped, grew 17.7 cm in 3 yrs, full-time student in a regular classroom			

Study (Investigator, country, year)	Record Number	Disease	Outcome Assessment Group (N)	Primary Outcomes	Secondary Outcomes	F/U Frequency/Duration	Time to Event Outcomes Group (N)	Outc ome	Outco me_2
Kimiskidis et al, Greece, 2008	3020	Multiple sclerosis (MS)	MS (1)	EDSS pre- post HSCT~ clinical remission		EDSS = 3.5 at 1 mo, 1.0 at 12 mos~drug- free clinical remission at 62 mos, able to finish college and work			
Kishimoto et al, Japan, 2003	9500	Juvenile idiopathic arthritis	Juvenile idiopathic arthritis (3)	Disease response~ Survival		Pt 1: No response to AHSCT, subsequent allogeneic transplant was followed by patient death 48 days posttransplant~ Pt 2: Disease flares at 11 and 23 mos, medication-free at 39 mos~ Pt 3: drug-free clinical remission at > 35 mos			
Lisukov et al, Russia, 2004	9190	Systemic lupus erythemat osus (SLE)	SLE (4)	Complete remission (SLEDAI < 3, prednisolone dose < 10 mg daily, absence of other immunosupp ressive therapy) (%)		1 pt (25%) achieved CR with F/U > 60 mos; 1 pt improved functionally but did not achieve primary endpoint			
Mancardi et al, Italy, 2005	7110	Malignant multiple sclerosis (MS)	MS (2)	EDSS score pre-post HSCT~ neurological improvement ~ mobility		Pt 1: 7.4, 4.0; Pt 2; 9, 4.5~ Pt 1 could walk and perform activities of daily living independently at 29 mos F/U~ Pt 2 neurological condition improved dramatically (not described) at 14 mos F/U			

Study (Investigator, country, year)	Record Number	Disease	Outcome Assessment Group (N)	Primary Outcomes	Secondary Outcomes	F/U Frequency/Duration	Time to Event Outcomes Group (N)	Outc ome	Outco me_2
Musso et al, Italy, 2001	13570	Systemic lupus erythemat osus (SLE)	SLE (2)	Corticosteroi d-free complete remission~ KPS pre- and posttranspla nt		2 of 2 (100) at > 30 mos and > 3.8 mos F/U~ Pt 1: 40, 100; Pt 2: 60, 100	SLE (2)		
Nakagawa et al, Japan, 2001	13910	Juvenile idiopathic arthritis	Juvenile idiopathic arthritis (1)	Medication- free survival~ growth rate		15 mos posttransplant~ 16 cm/yr compared to 2 cm/yr in preceding 3 yrs			
Oyama et al, USA, 2005	7570	Crohn's Disease (CD)	CD (4)	Clinical drug-free remission (%)~ survival (%)~ KPS pre-post HSCT~CDAI pre-post HSCT~ disease manifestatio ns post- HSCT		100%~ 100% at 37, 36, 16, 7 mos F/U~ 40, 100; 50, 100; 40, 80; 60, 90~ 337, 51; 293, 59; 250, 78; 274, 74~ 2 asymptomatic (50%), 2 (50%) with occasional abdominal pain or diarrhea			
Paillard et al, 2000, France	14650	Autoimmu ne hemolytic anemia	Autoimmune hemolytic anemia case report	survival		Patient in hematological remission 20 mos posttransplant			
Rabusin et al, Italy, 2000	13940	Juvenile idiopathic arthritis	Juvenile idiopathic arthritis (5)	Complete drug-free response 6 mos (%)~ Partial response 6 mos (%)~ Relapse (%)		CR = 4 of 5 (80) at 3 mos, 3 of 5 (60) at 6 mos~ PR = 1 of 5 (20) at 3 mos~ Relapse = 5 of 5 (100) between 6 and 18 mos (mn = 10 +/- 5.1 mos)			

Study (Investigator, country, year)	Record Number	Disease	Outcome Assessment Group (N)	Primary Outcomes	Secondary Outcomes	F/U Frequency/Duration	Time to Event Outcomes Group (N)	Outc ome	Outco me_2
Raetz et al, USA, 1997	18920	Evans syndrome	Evans syndrome case report	survival		patient dead 289 days posttransplant of fulminant liver failure			
Statkute eta, USA, 2005	7370	Systemic lupus erythemat osus (SLE)	SLE (9)	SLE drug- free remission (%)~		7 of 9 (78), remission maintained for median 29 mos (rng 12-78 mos)			
Strober et al, USA, 2009	230	Myastheni a gravis (MG)	MG (10	Activities of daily living		At 40 mos post-HSCT pt if free of all immune suppressant and MG therapies, plays basketball, and is completely independent			
Trysberg et al, Sweden, 2000	15570	Systemic lupus erythemat osus (SLE)	SLE (1)	CNS deficit, mobility		Neurological deficits improved promptly after HSCT, patient was able to read again, walk freely, with MRI observed regression of brain lesions			
Urban et al, Austria, 2006	5970	Evans syndrome	Evans syndrome case report	survival		at 18 mos patient in good clinical condition, with 100% donor chimerism, no evidence of GVHD, weaned off immune suppressive therapy			
Wulffrat et al, Netherlands, 2001	13970	Systemic lupus erythemat osus (SLE)	SLE (2)	Pre-post SLEDAI score~ complete drug-free clinical remission		Pt 1: 20, 0; Pt 2: 27, 8~ 2 (100) drug-free complete remission at 18 and 12 mos F/U			

Study (Investigator, country, year)	Record Number	Disease	Primary Outcomes	F/U Frequency/Duration
Crino et al, Italy, 2005	62110	Type 1 diabetes mellitus	glycosylated hemoglobin (%) 0, 12, 24 mos fasting C-peptide (nmol/L) 0, 12, 24 mos	nicotinamide plus intensive insulin therapy 9.6+/-2.2, 5.4+/-0.8, 6.1+/- 0.9, 1.9+/-0.15, 0.25+/-0.2, 0.19+/- 0.2 intensive insulin therapy 10.5+/-2.2, 6.5+/-0.9, 7.0+/-0.9, 0.16+/-0.12, 0.21+/-0.2, 0.19+/- 0.13
Mastrandrea et al, USA, 2009	40050	Type 1 diabetes mellitus	glycosylated hemoglobin (%) 0, 24 wks meal stimulated C peptide AUC (ng/mL/hr) 0, 24 wks	12.8+/-3.2, 5.9+/-0.5 3.1+/-1.2 ng/mL/hr, 3.9+/-1.6 ng/mL/hr

Appendix Table C103. Time to event outcomes: Comparator, autoimmune disease

Appendix D. Disease-Free/Event-Free Survival

Ewing's Sarcoma Family of Tumors (ESFT)

EFS or DFS was reported or generated in 13 HSCT studies (Oberlin, 2008 #2020; Meyers, 2001, #13670; Drabko, 2005, #6680; Prete, 1998, #17210; Hawkins, 2000, #15360; Ozkaynak, 1998, #18540; Laws, 2003, #9450; Yaniv, 2004, #9100; Kushner, 2001, #14240; Lucas, 2008, #9450; Diaz, 2010 #1212; Ilari, 2010 #1208; Ladenstein, 2010 #1209) and 4 comparative studies (Bernstein, 2006, #6290; Sari, 2010 #42790; Kushner, 1995, #44560; Milano, 2006,#5960;)

Appendix Table D1. Event-free survival (DFS; PFS) for treatment (single and tandem auto HSCT) and comparison (conventional chemotherapy +/- radiation) groups: ESFT

	Intervention	Comparator	Study
	Single (%; ± 95% Cl)	Chemo (%; ± 95% Cl)	
1 year	54% (25-84)*		Yaniv, Israel, 2004 (n=11) #9100
	20% (0-45)*		Kushner, USA, 2001(n=10) #14240
	50% (0-100%)*		Laws, Germany, 2003 (n=2) #9450
	Stable disease 9 mos after HSCT		Lucas, USA, 2008 (n=1) #2450
		65% +/- 5% [isolated lung mets vs other and more than isolated lung mets 72% +/-7% and 62% +/- 6%; p=.39]	Bernstein, USA/Canada 2006 (n=110) #6290
		83% (67-98%)	Kushner, USA, 1995 (n=24) #44560
2 year	20%		Meyers, USA, 2001 (n=32) #13670
	63%		Drabko, Poland, 2005 (n=21) #6680
	63%		Prete, Italy, 1998 (n=17) #17210
	50% (0-100%)*		Laws, Germany, 2003 (n=2) #9450
		24% (+/-4%) [31% +/-7% for pts with isolated lung mets and 20% +/-5% for pts with more widespread dz; p=.39]	Bernstein, USA/Canada 2006 (n=110) #6290
3 year	36%		Hawkins, USA, 2000 (n=16) #15360

		Comparator	Study
	Single (%; ± 95% Cl)	Chemo (%; ± 95% Cl)	Orkeynek USA 1009 (n=15) #19540
	51% for all pts 66% ±/.10% for 1st remission		Ozkaynak, USA, 1996 (1=15) #16540
	37% for 2nd remission		
	18% (0-41%)*		Yaniv, Israel, 2004 (n=11) #9100
	20% (0-45)*		Kushner, USA, 2001 (n=10) #14240
		75% (55-95%)	Kushner, USA, 1995 (n=24) #44560
		74%	Milano, Italy, 2006 (n=18) #5960
	40% (SD: 0.05)		Ladenstein, Austria, France, UK, Switzerland, Netherlands, Germany, Sweden, 2010 #1209
4 year	A NED (ESFT) at 50 mos after HSCT ^a		Numata, Japan, 2006 (n=1) #12130
5 year	46%		Oberlin, France, 2008 (n=61) #2020
	32% (+/- 11%) in HyperME with median f/u 146 mos (98-190) and 40% (+/-13%) in TandemME with median f/u 68 mos (28-88 mos)		Burdach, Germany and Austria, 2003 (n=32) #10030
	18% (0-41%)*		Yaniv, Israel, 2004 (n=11) #9100
	20% (0-45)*		Kushner, USA, 2001 (n=10) #14240
	A NED 60 months after surgery		Kogawa, Japan, 2004 (n=1) #8410
		18%	Sari, Turkey, 2010 (n=36) #42790
		75% (55-95%)	Kushner, USA, 1995 (n=24) #44560
	PFS 56% (+/- 4%) with a median f/u of 92 months for survivors (range 6-168 months) by localized vs mets at dx PFS for pts with local dz:78% (+/- 8%); for mets: 27% (+/- 10%)		Diaz, Spain, 2010 (n=47) #1212
	7 year f/u 61% (95%Cl 36-79)		llari, Italy, 2010 (n=24) #1208

^aNumata (#12130)-pt dxd with CML, chronic phase at 50 mos

Wilm's Tumor

Event-free/disease-free survival

Sixteen studies reported event or disease-free survival (Spreafico, 2008, #2380; Malogolowkin, 2008, ##44950; Tucci, 2007, ##3910; Park, 2006, ##5450; Campbell, 2004, #8570; Valera, 2004, ##8620; Kremens, 2002, ##11240; Abu-Ghosh, 2002, #45610; Saarinen-Pihkala, 1998, ##17940; Pein, 1998, ##17570; Dagher, 1998, #17840; Hempel, 1998, ##18100; Hempel, 1996, #20550; Kullendorff, 1997, #19290; Brown, 2010, #1211; Lucas, 2010, #1210).

Appendix Table D2. Event-free survival (DFS; PFS) for treatment (single auto HSCT) and comparison (conventional chemotherapy +/- radiation) groups: Wilm's tumor

	Intervention Single (%; ± 95% Cl)	Comparator Chemo (%; ± 95% Cl)	Study
1 year	1 yr 52% [32-73] (n=23)		Kremens, 2002, #11240
		1 yr ~73% (n=11)	Abu-Ghosh, 2002, #45610
	1 yr 86% [60-100]* (n=7)		Hempel, 1996, #20550
	1 yr 75% [33-100]* (n=4)		Kullendorff, 1997, #19290
	1 yr 67% [13-100]* (n=3)		Valera, 2004, #8620
	.5 yrs (n=1)		Dagher, 1998, #17840
	DFS at 15 months after HSCT (n=1)		Brown, 2010, #1211
1 year PFS range across studies	52%-86% (Kremens, Spreafico, Hempel, Kullendorff, Valera)	~73% (Abu-Ghosh)	
2 year	2 yr 75% [33-100]* (n=4)		Kullendorff, 1997, #19290

	Intervention Single (%: + 95% CI)	Comparator	Study
	2 yr 86% [60-100]* (n=7)		Hempel,1996, #20550
	alive at 32 months after HSCT (n=1)		Hempel, 1998, #18100
	EFS at 2.5 years (n=1)		Lucas, 2010, #1210
3 year	3 yr 50% +/- 17 (n=28)		Pein, 1998, #17570
	3 yr 52% [32-73] (n=23)		Kremens, 2002, #11240
	3 yr 56% +/-12% (n=20)		Spreafico, 2008, #2380
		3 year 66.6% (n=10)	Tucci, 2007, #3910
		3 yr 64% (n=11)	Abu-Ghosh, 2002, #45610
	3 yr 67% [13-100]* (n=3)		Valera, 2004, #8620
4 year	4-year 60% (n=13)		Campbell, 2004, #8570
	median 51 months (40-53 months) (n=3)		Saarinen-Pihkala, 1998, #17940
		4 yr 48% (n=60)	Malogolowkin, 2008, #44950
5 year	5 yr 52% [32-73]* (n=23)		Kremens,2002, #11240
	A NED at 7 yr (n=1)	5 year 42.8% (n=10)	Tucci, 2007, #3910
		5 yr 64% (n=11)	Abu-Ghosh, 2002, #45610
Rhabdomyosarcoma

Event-free survival

Data on intermediate outcomes were reported in eleven studies and calculated from the raw data from two additional studies (Hara, 1998 #17950; Lucidarme, 1998 #17610). Event free survival estimates are presented below.

Appendix Table D3. Event-free survival (DFS; PFS) for treatment (single auto HSCT) and comparison (conventional chemotherapy +/- radiation) groups: Rhabdomyosarcoma

Setting	Outcome	Intervention	Comparator	P-value	Study
		Single (%; ± 95% Cl)	Chemo (%; ± 95% Cl)		
Metastatic	1 year	~46% at 1 year	~53% at 1 year		Carli, Italy, 1999 #16010
Auto		(11-52)	(11-42)		#10010
			~63% at 1 year		Sandler, USA, 2001
			(1=152)		#12810
			~69% at 1 year		Breneman, USA,
			(n=127)		2003 #75360
Mixed Tumor		12.5 (4,35) at 1 year			Lucidarme, France,
Stage		(n=8)			1998± #17610
Auto		66.7 (28.9,100) at 1 year (n=7)			Hara, Japan, 1998± #17950
Metastatic	3 year	29.7 (15.6,43.8) at 3 years	19.2 (6.8-31.6)at 3 years	0.3	Carli, Italy, 1999
Auto		(n=52)	(n=42)		#16010
		16.5 at 3 years	54.9 at 3 years		McDowell, UK, 2010
		(n=101)	(n=45)		#75350
		75% (33-107) at 3 years (n=4)	15% (-4-35) at 3 years (n=13)		Williams, Canada, 2004 #9010
		35.3% (24.3-46.5) at 3	(Bisogno, Italy, 2009
		years			#75340
		(n=70)			
			~28% at 3 years (n=152)		Sandler, USA, 2001 #12810
			25% (17-33) at 3 years		Breneman, USA,
			(n=127)		2003 #75360

Setting	Outcome	Intervention Single (%; ± 95% CI)	Comparator Chemo (%; ± 95% Cl)	P-value	Study
Mixed Tumor Stage Auto		66.7 (28.9,100) at 3 years (n=7)			Hara, Japan, 1998± #17950
Metastatic Auto	5 year	14.9 at 5 years (n=101)	51.0% at 5 years (n=45)		McDowell, UK, 2010 #75350
			~20% at 5 years (n=127)		Breneman, USA, 2003 #75360
			~27% at 5 years (n=152)		Sandler, USA, 2001 #12810
Mixed Tumor Stage		36% at 5 years (n=22)			Matsubara**, Japan, 2003 #10810
Cranial Parameningeal			32% (22-42) at 10 years (n=91)		Raney, USA, 2008 #2440
Metastatic (summary)	EFS range for 3 years for studies with > 20 patients	29.7-35.3% (Carli #16010, Biosgno #75340)	19.2-28% (Carli #16010, Sandler #12810, Breneman #75360)		This range does not Include the McDowell #75350 study as the patients in the treatment arm are not comparable to other studies due to their higher risk category.
Mixed Tumor stage (summary)	EFS range for 3 years for studies with > 5 patients	66.7% (Hara #17950)	No comparator		

Retinoblastoma

Four studies reported event free survival (Namouni, 1997 #18090; Kremens, 2003 #10860; Dunkel, 2010 #28560; Dunkel, 2010 #1204), and EFS was calculated from the raw data from two studies (Galindo, 2003; Matsubara, 2005 #7580). These studies were all single arm case series. At five years the event free survival for patients without CNS involvement ranges from 66.7 to 85.7.

	Appendix Table D4. Event-free	e survival (DFS; PFS) for treatment (single auto	o HSCT) and comp	barison (coi	nventional chemothera	py +/-
r	adiation) groups: Retinoblast	oma				
	Outcome	Intervention	Comparator	P-value	Study	

Outcome	Intervention	Comparator	P-value	Study
	Single (%; ± 95% Cl)	Chemo (%; ±		
		95% CI)		
Event Free no CNS	Isolated orbital disease (n=7)			Namouni, 1997±
	85.7 (59.8-100) at 1-5 years			#18090
	100% at 1-3 years			Galindo, 2003±
	75% at 4-5 years [⊳] (n=4)			#10420
	100% at mean Follow-up of 38 months			Matsubara, 2005
	(n=3)			#7580
	66.7% at mean follow-up of 8.9 years			Kremens, 2003
	(n=5)			# 10860
	67% (38-85) at follow-up of 5 years (DFS)			Dunkel, 2010, #1204
	59% (31-79) at follow-up of 10 years (PFS)			
Event Free mixed	~88% at 1 year ^a			Namouni, 1997
	~ 62% at 2 years			#18090
	~57% at 3 years			
	~53% at 4-5 years			
	(n=34) ⁶			
	Patients with Trilateral retinoblastoma			Dunkel, 2010
	(n=13)			#28560
	~68% at 1 year			
	~38% at 2-5 years			
EFS range for 5+ years for	66.7-85.7%	NR		
studies with >2 patients	(Kremens 2003 # 10860,Galindo 2003			
without CNS involvement	#10420, Namouni 1997 #18090)			
not including trilateral				
retinoblastoma				
EFS range for 5+ years for	~38%	No comparator		
studies with >2 trilateral	(Dunkel, 2010 #28560)	study identified		

retinoblastoma				
^a estimated preceded by a ~ wer	e estimated from published Kaplan-Meier curves.	^b this includes all p	atients incl	uding those who died prior

treatment. ± survival curves were constructed using the raw data published in the articles.

Neuroblastoma

Data on intermediate outcomes were reported in all seven primary studies. Six studies reported data as event-free survival (EFS), one study as disease-free survival (DFS), and another as progression-free survival (PFS). No significant differences between treatment groups in either three-year DFS or five-year EFS were identified in the two comparative studies.(Kim, 2007 [2870]; Ladenstein, 2008 [1610]) Multivariate analysis of the Sung et al. (2007) data showed the application of total body radiation and local radiotherapy during the treatment regimen, and a longer interval (≥ 12 weeks) between the first and second transplant to be independent favorable predictors for EFS (HR, 9.66, 7.17, 5.73; 95% CI, 1.31-71.26, 1.69-30.38, 1.32-24.88; p = 0.026, 0.007, 0.020, respectively).(Sung, 2007 [3950]) It should be noted that five studies (71%) did not define *a priori* these outcomes.

Outcome	Intervention	Comparator	P-	Study
	Tandem	Single	value	(record #)
	(%; ± 95% CI; SE) [N]	(%; ± 95% CI; SE) [N]		
3 year rate	50 (20.4) [9]	40.6 (14.7) [27]	0.50	Kim, 2007 (2870)
	61 (50-71) [82]			George, 2006 (5440)
		47 (38-55) [149]		Berthold, 2005 (6760)
5 year rate	27 (2) [455]	33 (1) [2,895]	0.19	Ladenstein, 2008 (1610)
	54 (42-64) [82]			George, 2006 (5440)
	62.1 (13.7) [52]			Sung, 2007 (3950)
		38 (21-54) [32]		Pritchard, 2005 (8030)
		30 (4) [189]		Matthay, 2009 (6210)
	51.2 (12.4) [71]		0.03	Sung, 2010 (1206)
> 5 year rate	52 (40-63) [82]			George, 2006 (5440)
EFS range for ≥5 years for studies with > 10 patients	27-62	30-38		

Appendix Table D5. Event-free survival (DFS; PFS) for treatment (tandem HSCT) and comparison (single HSCT) groups: Neuroblastoma

CI, confidence interval; DFS, disease-free survival; N, number of patients; PFS, progression-free survival; SE, standard error

Germ-Cell Tumor

Data on intermediate outcomes were reported in all four studies. The CIBMTR cohort reported data as progression-free survival (PFS) and the remaining three studies either as disease-free survival (Einhorn 2007, De Giorgi 2005) or event-free survival (Agarwal). Data were available to compute three-year rates across all studies, and five-year rates for three studies. For the CIBMTR cohort, there was a trend toward a lower probability of PFS at one-year in the tandem group compared to the single HSCT group (36% vs. 60%), although no p-values were computed due to the small number of cases. PFS did not differ between treatment groups across studies. For the CIBMTR cohort, PFS at 5 years for the tandem group remained at 36% (11%-63%) compared to 49% (26%-69%) in the single HSCT group. PFS was defined as survival without recurrence (or cancer progression) as measured by exam, radiographs, and/or an increase in serum marker levels.(CIBMTR, 2010)

Outcome	Intervention Tandem (%; ± 95% CI) [N]	Comparator Single (%; ± 95% Cl) [N]	P-value	Study (record #)
1-year rate	36 (11-63)	60 (36-78)	NR	CIBMTR, 2010
	59 (39.5-88)			Einhorn, 2007 (77230)
		50 (26-74.5)		De Giorgi, 2005 (77240)
3 year rate	36 (11-63)	49 (26-69)	NR	CIBMTR, 2010
	59 (39.5-88)			Einhorn, 2007 (77230)
		50 (7-93)		Agarwal, 2009 (72940)
		50 (26-74.5)		De Giorgi, 2005 (77240)
5 year rate	36 (11-63)	49 (26-69)	NR	CIBMTR. 2010
	59 (39.5-88)			Einhorn, 2007 (77230)
		50 (26-74.5)		De Giorgi, 2005 (77240)
EFS range for 5 years for studies with > 10 patients	36-59	49-50		

Appendix Table D6. Event-free survival (DFS; PFS) for treatment (tandem HSCT) and comparison (single HSCT) groups: Germ-cell tumor

^a EFS for stage IV patients; CI, confidence interval; DFS, disease-free survival; N, number of patients; NR, not reported; PFS, progression-free survival

CNS/Embryonal Tumors

Data on intermediate outcomes were reported in 11 (of 12) studies. For comparisons between tandem vs. single HSCT, data were available to compute two-year, three-year, and five-year rates for three studies. For Sung et al. (2007), EFS at 2 years for the tandem group was 73% (46%-99%) compared to 67% (13%-100%) in the single HSCT group [4770] The AT/RT patient reported in Gidwani et al. (2008) was disease free for two years following tandem HSCT.[71940] EFS was defined as the interval between diagnosis to progression/relapse or death from any cause.

For the conventional-care group of studies, data were available to compute three-year rates for one study and five-year rates for three studies. There were no comparative studies between single HSCT vs. conventional care. For Geyer et al. (2005) on multiple tumor types, overall five-year EFS was 27% (3%) for children under three years of age; for MB, PNET and AT/RT, the corresponding rates were 32% (5%), 17% (6%), and 14% (7%), respectively.[49990] Similar trends to OS above observed in EFS rates between studies. **Appendix Table D7. Event-free survival (DFS; PFS) for treatment (tandem HSCT) and comparison (single HSCT) groups: CNS/embryonal tumors**

Outcome	Intervention	Comparator	P-value	Study
(Tumor type)	Tandem	Single		(record #)
	(%; ± 95% CI; SE) [N]	(%; ± 95% CI; SE) [N]		
2 year rate				
(MB-PNET)	73 (46-99) [11]	67 (13-100) [3]	NR	Sung, 2007 (4770)
(AT/RT)	[One patient remained disease-free]			Gidwani, 2008 (71940)
(MB-PNET)		57 (15) [13]		Perez-Martinez, 2005 (7650)
3 year rate				
(MB-PNET)	73 (46-99) [11]	NA		Sung, 2007 (4770)
(MB)		49 (27-72) [21]		Chi, 2004 (7900)
(AT/RT)		23 (11) [13]		Gardner, 2008 (71930)
(MB)	67 [2 of3 patients with complete remission]			Aihara, 2010, #1201
5 year rate				
(MB-PNET)	58 (25-91) [11]	NA		Sung, 2007 (4770)
(PNET)		39 (24-53) [43]		Fangusaro, 2008 (3420)
(MB)		52 (11) [21]		Dhall, 2008 (52130)
EFS range for 5 years for studies with > 10 patients	58	39-52		

AT/RT, atypical teratoid/rhabdoid tumor; CC, conventional care; CI, confidence interval; DFS, disease-free survival; EFS, event-free survival; MB, medulloblastoma; N, number of patients; NA, not available; PFS, progression-free survival; PNET, supratentorial primitive Neuroectodermal tumors; SE, standard error

Appendix Table D8. Event-free survival (DFS; PFS) for treatment (single HSCT) and comparison (conventional care) groups: CNS/embryonal tumors

Outcome	Intervention	Comparator	P-	Study
(Tumor type)	Single	ċc	value	(record #)
	(%; ± 95% ČI; SE) [N]	(%; ± 95% CI; SE) [N]		· · · ·
3 year rate				
(MB)	49 (27-72) [21]			Chi, 2004 (7900)
(MB)		40 (28-51) [68]		Taylor, 2005 (52760)
(AT/RT)	23 (11) [13]			Gardner, 2008 (71930)
5 year rate				
(MB)	52 (11) [21]			Dhall, 2008 (52130)
PNET	39 (24-53) [43]			Fangusaro, 2008 (3420)
(MB)		81 (2) [379]		Packer, 2006 (77250)
(MB-PNET-AT/RT-Other)		27 (3) [284]		Geyer, 2005 (49990)
(MB)		35 (23-46) [68]		Taylor, 2005 (52760)
EFS range for 5 years for studies with >10 patients	39-52	27-81		

AT/RT, atypical teratoid/rhabdoid tumor; CC, conventional care; CI, confidence interval; DFS, disease-free survival; EFS, event-free survival; MB, medulloblastoma; N, number of patients; NA, not available; PFS, progression-free survival; PNET, supratentorial primitive neuro-ectodermal tumors; SE, standard error

Glial Tumors

Data on intermediate outcomes were reported in twenty-nine studies and calculated from the raw data. Event free survival estimates are presented below.

Appendix Table D9. Event-free survival (DFS; PFS) for treatment (single auto HSCT) and comparison (conventional chemotherapy +/- radiation) groups
Glial tumors

Setting	Outcome	Intervention Single (%; ± 95% CI)	Comparator Chemo (%; ± 95% Cl)	P-value	Study
Astrocytoma	1 year	AA/GBM PFS: ~30% (These HSCT and chemotherapy estimates are grouped EFS for astrocytoma and glioblastoma multiforme) (N=27)	AA/GBM year PFS ~10% (N=56)	Chemo versus ABMR unstratified comparison of event-free survival: P=0.014	Finlay, 2008
			2 patients progressed at 1.5 and 8.5 mo (N=2)		Shih, 2008
			3 patients progressed at 3,3, and 8 mo (N=3)		Sio, 2006
			1 astrocytoma patient progressed at 4 months, and one patient was progression free at 10 months (N=2)		Koronoes, 2006
		Other Glioma ~ 73 (9 AA and 2 Oligodendroglioma) (N=11)		PFS for glioblastoma multiforme compared to other histotypes (AA and ODG) were significantly worse P=.008	Massimino, 2005
			Median AA PFS 21.2mo (1.2- 49.3) (N=4)		Hurwitz, 2001
			1 OA patient progressed shortly after chemotherapy and received irradiation (33% of OA) (N=6)		Doireau, 1999
		2 patients progressed at 4.5 and 5.5 months (N=2)			Jakacki, 1999
		1 patient progressed at 11 mo (N=1)			Busca, 1997

Setting	Outcome	Intervention Single (%: + 95% CI)	Comparator	P-value	Study
	3 Year	AA/GBM PFS: 22±7% (These HSCT and chemotherapy estimates are grouped EFS for astrocytoma and glioblastoma multiforme) (N=27)	AA/GBM year PFS 0% (N=56)	Chemo versus ABMR unstratified comparison of event-free survival: P=0.014	Finlay, 2008
		Other Glioma ~ 73 (9 AA and 2 Oligodendroglioma) (N=11)		PFS for glioblastoma multiforme compared to other histotypes (AA and ODG) were significantly worse P=.008	Massimino, 2005
	5 Year	AA/GBM PFS: 22±7% (These HSCT and chemotherapy estimates are grouped EFS for astrocytoma and glioblastoma multiforme) (N=27)	AA/GBM year PFS 0% (N=56)	Chemo versus ABMR unstratified comparison of event-free survival: P=0.014	Finlay, 2008
		Other Glioma ~ 73 (9 AA and 2 Oligodendroglioma) (N=11)		PFS for glioblastoma multiforme compared to other histotypes (AA and ODG) were significantly worse P=.008	Massimino, 2005
Glioblastoma Multiforme	1 Year	AA/GBM PFS: 22±7% (These HSCT and chemotherapy estimates are grouped EFS for astrocytoma and glioblastoma multiforme) This AA PFS remained constant up to 5- years follow up (N=27)	1 AA/GBM year PFS 0% (N=56)	Chemo versus ABMR unstratified comparison of event-free survival: P=0.014	Finlay, 2008
			2 patients progressed at 1 and 4.2 mo (N=2)		Shih, 2008
			Median 6 mo (5-12) (86) 1 patient is alive without progression at 15+ mo (N=5)		Korones, 2006
			1 patient progressed at 11mo (N=1)		Sio, 2006
		~40 (N=10)		PFS for glioblastoma multiforme compared to other histotypes (AA and ODG) were significantly worse P=.008	Massimino, 2005
		64±14 (N=11)			Grovas, 1999

Setting	Outcome	Intervention	Comparator	P-value	Study
_		Single (%; ± 95% Cl)	Chemo (%; ± 95% Cl)		
		4 patients progressed at 2, 3, 4 and			Jakacki, 1999
		7 months			
		(N=4)			
		1 patient was alive with no			Busca, 1997
		progression at last FU (N=1)			
	3 Year	AA/GBM PFS: 22±7% (These HSCT	1 AA/GBM year PFS 0%	Chemo versus	Finlay, 2008
		and chemotherapy estimates are	(N=56)	ABMR unstratified	
		grouped EFS for astrocytoma and		comparison of event-free	
		glioblastoma multiforme) This AA		survival: P=0.014	
		PFS remained constant up to 5-			
		years follow up			
		(N=27)			NA
		~20		PFS for glioblastoma	Massimino, 2005
		(N=10)		multiforme compared to	
				ODC) were significantly	
				ODG) were significantly	
				worse P=.008	Croves 1000
		2 year FF3. 40±14 (N=11)			GIOVAS, 1999
		1 patient progressed at 34months			Mahoney 1996
		(N=1)			Manoney, 1000
	5 Year	AA/GBM PES: 22+7% (These HSCT	1 AA/GBM year PFS 0%	Chemo versus	Finlay, 2008
	• • • • •	and chemotherapy estimates are	(N=56)	ABMR unstratified	
		grouped EFS for astrocytoma and	(comparison of event-free	
		glioblastoma multiforme) This AA		survival: P=0.014	
		PFS remained constant up to 5-			
		years follow up			
		(N=27)			
		0		PFS for glioblastoma	Massimino, 2005
		(N=10)		multiforme compared to	
				other histotypes (AA and	
				ODG) were significantly	
				worse P=.008	

Setting	Outcome	Intervention	Comparator	P-value	Study
		Single (%; ± 95% Cl)	Chemo (%; ± 95% Cl)		
Anaplastic Ependymoma	1 Year		91% (76-100%) (N=12)	Neurosurgical estimate of GTR vs. < GTR, P=.0001	Robertson, 1998
				Post-op radiographic residual tumor 1,5cm ² vs	
				< 1.5cm², P<.0001	
				No difference found for anaplastic vs. non- anaplastic progression	
		1 patient progressed at 27 mo (25) (N=4)			Ayan, 1995
	3 Year		65% (38-93%) (N=12)	Neurosurgical estimate of GTR vs. < GTR, P=.0001	Robertson, 1998
				Post-op radiographic residual tumor 1.5cm ² vs	
				< 1.5cm ² , P<.0001	
				No difference found for	
				anaplastic vs. non- anaplastic progression	
	5 Year		35.2±11.0% (N=23)	Grade II vs. anaplastic P=.005	Jaing, 2004
			~14% (N=31)		Horn, 1999
			Complete resection 70% (± 14) (N=10)	Resection: P=.09	Kuhl, 1998
			incomplete resection		
			(N=11)		
			52% (±11) all anaplastic ependymoma (N=21)		

Setting	Outcome	Intervention	Comparator	P-value	Study
			47% (17-61%) (N=12)	Neurosurgical estimate of GTR vs. < GTR, P=.0001	Robertson, 1998
				Post-op radiographic residual tumor 1.5cm ² vs < 1.5cm ² , P<.0001	
				No difference found for anaplastic vs. non- anaplastic progression	
Non- anaplastic,	1 Year		~88 (N=23)	Complete vs. partial resection not significant	Conter, 2009
mixed, or unspecified Ependymoma			2 patients progressed at 1 mo and 1 at 1.4 mo (N=2)		Shih, 2008
			Non-metastatic: ~87% (N=80)		Grundy, 2007
			Metastatic ~62.5% (N=9)		
		~63% (N=29)		EFS across the three age groups: <18 months, 18– 35 months and 36 months significant difference P=0.04	Zacharoulis, 2007
				significant	
			2 patients progressed at 2 and 3 mo (N=2)		Sio, 2006
			~92% (N=64)		Merchant, 2002
				Median 2.1mo (.0-30.3) (N=13)	Hurwitz, 2001

Setting	Outcome	Intervention Single (%; ± 95% CI)	Comparator Chemo (%; ± 95% CI)	P-value	Study
			56% (N=73)	Posterior Fossa Tumor RR 2.1 (1-2.5) P=.05	Grill, 2001
				Postoperative radiologic documented residuum	
		~22 (N=15)		RR 2.9 (1.0-3.1) P=.0004	Mason, 1998
		57 (31-83 95% CI) (N=14)			Grill, 1996
		1 patient progressed at 12 mo (N=7)			Mahoney, 1996
		75% (56-95%) (N=20)		Neurosurgical estimate of GTR vs. < GTR, P=.0001	Robertson, 1995
				Post-op radiographic residual tumor 1.5cm ² vs < 1.5cm ² , P<.0001	
				No difference found for anaplastic vs. non- anaplastic progression	
	3 Year		3 year PFS: 62.5 54.2 (N=23)	Complete vs. partial resection not significant	Conter, 2009
			metastatic: ~46% (N=80)		Grundy, 2007
			Metastatic 0% (N=9)		
		~28% (N=29)		EFS across the three age groups: <18 months, 18– 35 months and 36 months significant difference P=0.04	Zacharoulis, 2007
				significant	

Setting	Outcome	Intervention	Comparator	P-value	Study
		Single (%; ± 95% Cl)	Chemo (%; ± 95% Cl)		
			:~71%		Merchant, 2002
			(N=64)		
	Ī		23%	Posterior Fossa Tumor	Grill, 2001
			(N=73)	RR 2.1 (1-2.5) P=.05	
				Postoperative radiologic	
				documented residuum	
				RR 2.9 (1.6-5.1) P=.0004	
		0%			Mason, 1998
		(N=15)			
		27 (0-55 95% CI)			Grill, 1996
		(N=14)			
		54% (31-76%)		Neurosurgical estimate of	Robertson, 1995
		(N=20)		GTR vs. < GTR, P=.0001	
				Post-op radiographic	
				residual tumor 1.5cm ² vs	
				< 1.5cm²,	
				P<.0001	
				No difference found for	
				anaplastic vs. non-	
				anaplastic progression	
	5 Year		54.2%	Complete vs. partial	Conter, 2009
	_		(N=23)	resection not significant	-
			Non-metastatic: ~39%		Grundy, 2007
			(N=80)		
			Metastatic 0%		
			(N=9)		

Setting	Outcome	Intervention	Comparator	P-value	Study
		Single (%, ± 95 % Ci)	Grade II: 67.5±11.0% (N=20)	Gr II vs. Anaplastic P=.002	Jaing, 2004
			Age<3 (N=9) 22.2±13.9	Age: P=.005	
			Age>3 (N=34): 52.2±9%	Surgical Resection: P<.001	
			GTR (N=18): 71.8±10.7% STR (N=19): 30.7±11.3 Biopsy (N=6): 16.7±15.2%	Radiotherapy: P=.029	
			RT involved field (N=31) 52.3±9.3% RT without involved field (N=12): 31.3±14%		
			12% (N=73)	Posterior Fossa Tumor RR 2.1 (1-2.5) P=.05	Grill, 2001
				Postoperative radiologic documented residuum RR 2.9 (1.6-5.1) P=.0004	

Setting	Outcome		Comparator	P-value	Study
		Single (%; ± 95% Cl)	Chemo (%; ± 95% Cl)		11
				Age<3, Age >3:	Horn, 1999
			42.2±5.5%	P<.01	
			(N=03)	Condori	
			<2 years (N=20)		
			~18	FN.01	
			>3 years (N=54):	GTR:	
			~56	P<.01	
			<gtr (n="48):</th"><th>Residual Disease by</th><th></th></gtr>	Residual Disease by	
			~23	scan:	
			GTR (N=35): ~71	P<.01	
				Histology Gr II vs Gr III:	
			Grade II	P<.01	
			(N=51):		
			~53		
			54% (31-76%)	Neurosurgical estimate of	Robertson, 1998
			(N=20)	GTR vs. < GTR, P=.0001	
				Post-op radiographic	
				residual tumor 1.5cm ² vs	
				< 1.5cm ² .	
				P<.0001	
				No difference found for	
				anaplastic vs. non-	
				anaplastic progression	
		2 patients alive with no disease			Busca, 1997
		progression at last follow up (N=2)			
		14 (0-37 95% CI)			Grill, 1996
		(N=14)			
CPC	1 Year		28.9% (9.0-48.0)%		Grundy, 2010
			(N=15)		
			~56%		Wrende, 2009
			(N=29)	TK=13.2, P<.0001	
				Chemotherapy yes vs.	
				no,	
				HR=6.4, P=.004	

Setting	Outcome	Intervention Single (%: ± 95% CI)	Comparator Chemo (%: ± 95% CI)	P-value	Study
		1 patient progressed at 4 months (N=1)			Gururangan, 1998
	3 Year		28.9% (9.0-48.0)% (N=15)		Grundy, 2010
			~56% (N=29)	CPC vs. CPP/APP HR=15.2, P<.0001	Wrende, 2009
				Chemotherapy yes vs. no, HR=6.4, P=.004	
	5 Year		21.7(5.3-45.1)% (N=15)	CPC vs. CPP/APP HR=15.2, P<.0001	Grundy, 2010
				Chemotherapy yes vs. no, HR=6.4, P=.004	
			~36% (N=29)	28 (7-100)% (N=29)	Wrende, 2009
Other Glioma	1 Year		HGG: 52.6 (33.2-763) (N=19)		Grundy, 2010
		1 patient with oligodendroglioma progressed at 8 mo. (N=1)			Thorarinsdottir, 2007
		1 patients with anaplastic glioma progressed at 3 mo(N=3)			
			BSG Median 1 mo (0-5 mo 95% CI)		Sio, 2006
			BSG 13 (0-35% 95% CI) (N=8)		
			1 BSG patient progressed at 4 months, one at 8 months (N=2)		Korones, 2006
		1 year PFS: Other Glioma ~ 73 (9 AA and 2 Oligodendroglioma) (N=11)		PFS for glioblastoma multiforme compared to other histotypes (AA and ODG) were significantly worse P=.008	Massimino, 2005

Setting	Outcome	Intervention Single (%; ± 95% CI)	Comparator Chemo (%; ± 95% Cl)	P-value	Study
			BSG median 2.9mo (.1-19.8) (N=15)		Hurwitz, 2001
			Malignant glioma Median 1.4mo (.4-7.2) (N=13)		
			Miscellaneous glioma median 2.1mo (.6-12.9) (N=12)		
		1 year PFS Pontine glioma ~3 (N=35)			Bouffet, 1999
		5 Pontine glioma patients progressed Median 5 mo (3-12) (N=6)			Jakacki, 1999
		1 patient was progression free at 12 months. (N=6)			
		1 ODG patient was alive and progression free at last follow up (N=1)			Busca, 1997
		1 BSG patient progressed at 1 mo (N=1)			Mahoney, 1996
	3 Year		HGG: 24.1(7.8-45.1) (N=19)		Grundy, 2010
		2 patients with anaplastic glioma progressed at 17, and 33.5 mo (N=3)			Thorarinsdottir, 2007
			BSG 0		Sio, 2006
		3 year PFS: Other Glioma ~ 73 (9 AA and 2 Oligodendroglioma) (N=11)		PFS for glioblastoma multiforme compared to other histotypes (AA and ODG) were significantly worse P=.008	Massimino, 2005
	5 Year		HGG: 18.1 (4.6-38.6) (N=19)		Grundy, 2010
		1 patient with ganglioma progressed at 59 mo (N=1)			Thorarinsdottir, 2007

Setting	Outcome	Intervention	Comparator	P-value	Study
		Single (%; ± 95% Cl)	Chemo (%; ± 95% Cl)		NA
		5 year PFS: Other Glioma ~ 73		PFS for glioblastoma	Massimino, 2005
		(9 AA and 2 Oligodendrogiloma)		multionne compared to	
		(N-11)			
				worse $P = 0.08$	
			Malignant Glioma 36 + 10	worse r =.000	Kubl 1998
			(N=22)		
Astrocytoma	1 year PFS	Recurrent/Progressive:	Recurrent/Progressive:		
-	N≥	~30%	~10		
	10	(Finlay N=27)	(Finlay N=56)		
		[This estimate includes glioblastoma	[This estimate includes		
		multiforme tumor types]	glioblastoma multiforme tumor		
		Measured from time of	types]		
		myeloablative chemotherapy	Finlay et al measured from time		
			of tumor recurrence		
Astrocytoma	1 year PFS	Newly Diagnosed:			
,,,	N≥	~73%*			
	10	(Massimo, 2005)			
		[*This study included 9 Anaplastic			
		Astrocytoma patients and 2 lower-			
		grade oligodendroglioma			
		patients.]			
		Massimo measured from time of			
Clicklastoma			Begurrent/Drogregoiver		
Multiforme	N > 10	~30%	~10-42%		
Matthornic		(Finlay N=27*)	(Finlay* N=56 Korones** N=7)		
		[*This estimate includes anaplastic	[*This estimate includes		
		astrocytoma tumor types]	glioblastoma multiforme tumor		
		Measured from time of	types, ** 1 patient DOD before		
		myeloablative chemotherapy	progression]		
			Finlay et al measured from time		
			of tumor recurrence		
			Korones time measurement		
			uncertain		

Setting	Outcome	Intervention	Comparator	P-value	Study
		Single (%; ± 95% Cl)	Chemo (%; ± 95% Cl)		
Glioblastoma	1 year PFS	Newly Diagnosed:	Recurrent/Progressive:		
Multiforme	N ≥ 10	Grovas measured from time of stem	(Korones N=7)		
		cell rescue	14%		
		Massimo considered OS from date			
		of chemotherapy			
		64 Grovas(N=11)			
Ependymoma	5 year PES				Grundy et al was not included
Ependymonia	for studies	Newly Diagnosed	Newly Diagnosed Non-		in this estimate because the
	with N ≥10	12%	anaplastic, mixed, or		study stratified by metastasis
	patients	(Zacharoulis (N=29))	unspecified		finding a 5 year PFS of 0% for
	•	Zacharoulis estimated PFS from	Ependymoma:		metastatic ependymoma and
		date of diagnosis	12-67%		46% for non-metastatic
			(Conter (N=23), Grill,2001		disease and measured the
			(N=73), Horn (N=51), Jaing		PFS from date of surgery.
			(N=20), Robertson (N=20))		
			Conter and Jaing estimated OS		
			from date of surgery, Grill		
			measured from date of		
			measured from date of		
			randomization and horn		
			measured from date of		
			diagnosis.		
			Ũ		
			Newly Diagnosed Anaplastic		
			Ependymoma:		
			14-52%		
			(Jaing (N=23), Horn (N=31),		
			kuni (N=21), Robertson (N=12))		
			PES calculation. Horn used date		
			of diagnosis Kublused date of		
			chemotherapy and Robertson		
			used date of randomization		

Setting	Outcome	Intervention	Comparator	P-value	Study
		Single (%; ± 95% Cl)	Chemo (%; ± 95% Cl)		
Ependymoma	5 year PFS	Recurrent/Progressive:			Grundy et al. was not included
	for studies	14%			in this estimate because the
	with N ≥10	(Grill, 1996 (N=14))			study stratified by metastasis
	patients	Grill measured PFS from date of			finding a 5 year PFS of 0% for
		autologous bone marrow transplant			metastatic ependymoma and
					46% for non-metastatic
					disease and measured the
					PFS from date of surgery.
CPC	5 Year PFS	1 patient progressed at 4 mo	21.7-36%		
	All studies:	(Gururangan (N=1))	(Grundy (N=15) and Wrede		
		Gururangan assessed EFS after	(N=29))		
		myeloablative chemotherapy	Wrede measured EFS from date		
			of diagnosis and Grundy used		
			date of surgery		
AA= anaplastic ep	endymoma, AV	VD= Alive with disease, BSG, Brain sten	n glioma; CPC, Choroid plexus carci	noma; DOD=Dead of disease	e, GBM=Glioblastoma
multiforme; HGG,	high-grade glio	ma			

Appendix E. Neurodevelopmental and Neurocognitive Outcomes

Disease	Neurocognitive Pre-Intervention	Neurocognitive Post-Intervention	Neurodevelopmental Pre-Intervention	Neurodevelopmental Post-Intervention	Study treatment, study design (N)
Wolman disease	nr	pt 1 at 11 yrs post: mildly impaired cognitive abilities, sustained visual attention impaired, verbal fluency avg, attends special school, mostly homeschooled, no behavior problems, English and Spanish language development pt 4 at 4 yrs post: cognition improved from baseline, receptive and expressive language high avg, adaptive skills avg, emotional and social behavior avg, attends special education preschool, speaks 3 languages	pt 1: considerable developmental delay pt 4: nr	pt 1 at 11 yrs post: motor function improved pt 4 at 4 yrs post: fine motor skills below avg, gross motor skills avg	Tolar J, US, 2009 (1370), HSCT, case series (N=4)
	nr	nr	failure to thrive	nr	Gramatges MM, US, 2009 (83290), HSCT, case report (N=1)
	MRI showed 0.5 yr delay in myelination	MRI showed appropriate myelination for age at 1 yr post at 4 yrs post, pt has normal intellectual development, attends regular school, and speaks Russian and Hebrew	weight, height, and head circumference at <3rd percentile	at 4 yrs post: weight 10th percentile, height 3rd percentile, head circumference 3rd percentile	Stein J, Israel, 2007 (4880), HSCT, case report (N=1)

Appendix Table E1. Neurocognitive and neurodevelopmental outcomes for treatment (HSCT) of inherited metabolic diseases with rapid progression

Disease	Neurocognitive Pre-Intervention	Neurocognitive Post-Intervention	Neurodevelopmental Pre-Intervention	Neurodevelopmental Post-Intervention	Study treatment, study design (N)
Niemann-Pick Type A	neurologically intact	neurological regression: alert, socially engaged, verbalizing appropriately for age at 0.6 yrs post brain CT shows bilateral cerebral atrophy at 0.6 yrs post limited social interaction, seizure disorder developed at 1.7 yrs post	nr	alert, active, interactive, rolling back to front to back at 0.6 yrs post head lag and hypotonic at 1 yr post significant developmental delay, unable to sit or stand at 1.7 yrs post	Morel CF, Canada, 2007 (3010), HSCT, case report
	pt 1 and 2: normal MRI/CAT, EEG pt 1: Denver Developmental Exam, 2-3 mos (real age 10 mos) pt 2: Gessell Schedules, appropriate for age at 4 mos	pt 1 and 2: neurological deterioration seen in MRI/CAT, EEG pt 2 at 6 mos post: mild developmental delay, cognitive skills at 7-8 mos (real age 11 mos) pt 2 at 12 mos post: moderate developmental delay, cognitive skills 12 mos (real age 167mos)	pts 1 and 2: hyponic, depressed reflexes	pt 2 at 6 mos post: moderate developmental delay, motor skills at 6 mos (real age 11 mos) pt 2 at 12 mos post: severe developmental delay, motor skills at 6 mos (real age 17 mos)	Bayever E, US, 1995 (25460), HSCT, case series (N=2)
Mucolipidosis II (I-cell disease)	nr	nr	failure to thrive	nr	Li CK, China, 2004 (9070), HSCT, case series (n=1)
	real age: 1.4 yrs expressive language and receptive language: 0.9 yrs	real age: 3.0 yrs, developmental age: 1.6 yrs real age: 3.5 yrs, developmental age: 2.1 yrs real age: 4.7, developmental age: 3.3 yrs real age: 5.7 yrs, developmental age: 4.3 yrs real age: 6.7 yrs, developmental age: 5.3 yrs attends school with individualized education program; slow progress in communication, daily living, socialization, and expressive language; mild to moderate cognitive impairment	real age: 1.4 yrs developmental age: 0.9 yrs	real age: 3.0 yrs, gross motor age: 1.2 yrs real age: 3.5 yrs, gross motor age: 1.3 yrs real age: 4.7 yrs, gross motor age: 1.5 yrs real age: 5.7 yrs, gross motor age: 1.5 yrs real age: 6.7 yrs, gross motor age: 1.5 yrs gross motor skills impaired fine motor skills slowly developing	Grewel S, US, 2003 (9750), HSCT, case report

Disease	Neurocognitive Pre-Intervention	Neurocognitive Post-Intervention	Neurodevelopmental Pre-Intervention	Neurodevelopmental Post-Intervention	Study treatment, study design (N)
	nr	exhibiting emotional expressions	moderate to severe joint contractures, marked short stature, dystosis multiplex severe psychomotor retardation	no change in joint contractures still severe psychomotor retardation, but gained 4-8 mo-old skills of sitting up and using walker	Imaizumi M, 1994, Japan, (23220B), HSCT, case series (n=1)

Appendix Table E2. Neurocognitive and neurodevelopmental outcomes for treatment (HSCT) and comparators (ERT, substrate reduction therapy) of inherited metabolic diseases with slow progression

Disease	Neurocognitive Pre-Intervention	Neurocognitive Post-Intervention	Neurodevelopmental Pre-Intervention	Neurodevelopmental Post-Intervention	Study treatment, study design (N)
MPS II (Hunter's disease)	Severe form: IQ/DQ: pt 2: 72 pt 4: 70 pt 5: 70 pt 6: 65 pt 8: 100	Severe form: IQ/DQ: pt 2: 60, very poor language pt 4: <50, no language pt 5: <50, speech loss 3 yrs post pt 6:<50, speech loss 8 yrs post, pt 8: <50, poor language all 5 attend special schools	Severe form: nr	Severe form: 2 no motor problems 3 bedridden	Guffon, France, 2009 (680), HSCT, case series (N=8)
	Attenuated form: IQ/DQ: pt 1: 125 pt 3: 87 pt 7: 100	Attenuated form: IQ/DQ: pt 1: 110, normal language pt 3: 65, poor language pt 7: 100 2 attend mainstream school, 1 attends special apprenticeship 3 sociable	Attenuated form:	Attenuated form: 3 no motor problems	
	Form not specified:	Form not specified: nr	Form not specified:	Form not specified:	Page, US, 2008 (1280B), HSCT, case series (n=2)
	Form not specified: real age: 5.9 yrs mental age: 2.3 yrs MRI: brain atrophy	Form not specified: real age: 6.5 yrs mental age: 2.5 yrs at autopsy: brain cells distended from accumulation of substrate	Form not specified: nr	Form not specified: nr	Tokimasa, Japan, 2008 (1310), HSCT, case series (n=1)
	Attenuated form: pt 1: lesions in white matter and corpus callosum pt 2: enlargement of perivascular spaces at basal ganglia, intensity changes in periventricular white matter pt 3: lesions in parietal and occipital lobes, intensity in white matter	Attenuated form: pt 1: no follow-up MRI pt 2: no change at 7 yrs post pt 3: lesions slightly diminished at 2.5 yrs post	Attenuated form:	Attenuated form: nr	Seto, Japan, 2001 (13460A), HSCT, case series (n=3)

Disease	Neurocognitive Pre-Intervention	Neurocognitive Post-Intervention	Neurodevelopmental Pre-Intervention	Neurodevelopmental Post-Intervention	Study treatment, study design (N)
	Severe form: DQ and MRI findings: 1 HSCT pt: 72, ventricular dilatation present, white matter lesions 2 non-HSCT pts: 94 and 124, no ventricular dilatation, lesions in white matter	Severe form: DQ and MRI findings: 1 HSCT pt: 61 and 54 at 0.5 yrs and 1.1 yrs post, ventricular dilatation worsened, white matter lesions 2 non-HSCT pts: no follow-up measurement	Severe form: nr	Severe form: nr	Takahashi, Japan, 2001 (14030), HSCT, comparative study (n=1)
	Attenuated form: nr	Attenuated form: "developing and growing normally"	Attenuated form: nr	Attenuated form: "growing and developing normally"	Mullen, US, 2000 (15300), HSCT, case report
	Attenuated form: IQ: 72	Attenuated form: IQ: 69, 70, and 70 at 0.7 yrs, 2.6 yrs, and 4.0 yrs post	Attenuated form: significant joint limitations in hands, knees, elbows	Attenuated form: mild joint limitations at 0.7 yrs post minimal joint limitations at 2.6 yrs post	Coppa, Italy, 1999 (16350), HSCT, case report
	Form not specified: Griffiths Mental Development Scale: pt 1: social 61, speech 61 pt 2: social 71, speech 71 pt 3: social 93, speech 93	Form not specified: Griffiths Mental Development Scale: pt 1 at 10 yrs post: social 10, speech 10; steady deterioration pt 2: social 2, speech 2, steady deterioration pt 3: full IQ 78, verbal IQ 80 performance IQ 81; attends mainstream school, trouble with concentration	Form not specified: Griffiths Mental Development Scale: pt 1: locomotor 63, eye- hand 58 pt 2: locomotor 55, eye- hand 58 pt 3: locomotor 110, eye-hand 93	Form not specified: Griffiths Mental Development Scale: pt 1 at 10 yrs post: locomotor 11, eye-hand 8 pt 2 at 2.7 yrs post: locomotor 6.5, eye-hand 2.5 pt 3: nr	Vellodi, England, 1999 (16650), HSCT, case series (N=9)
	Severe form: IQ: 44	Severe form: IQ: 44 at 3 yrs post	Severe form: multiple bone abnormalities	Severe form: improvements in joint range of motion improvements in fine and gross motor skills	Li, US, 1996 (20260), HSCT, case report

Disease	Neurocognitive Pre-Intervention	Neurocognitive Post-Intervention	Neurodevelopmental Pre-Intervention	Neurodevelopmental Post-Intervention	Study treatment, study design (N)
	Severe form: Mild behavioral difficulties	Severe form: Decreasing intelligence ratio (age equivalent/real age) from 0.68 at 2.8 yrs of age to 0.09 at 8.0 yrs of age Increased behavioral problems, reversion in language, communication, concentration, cooperation, and attention span.	Severe form: real age: 1.9 yrs developmental age: 1.3-1.5 yrs	Severe form: persistent skeletal deformities reversion in balance and coordination though can still walk and ride tricycle	McKinnis, US, 1996 (20560), HSCT, case report
	Form not specified: DQ: normal	Form not specified: DQ not reported	Form not specified: stiff joints dystosis multiplex	Form not specified: joint mobility improved dystosis multiplex stabilized	Hoogerbrugg e PM, Netherlands, 1995 (21780B), HSCT, case series (n=1)
	Form not specified: Brunet-Lezine scales: mental age: 25 mos real age: 31 mos good socialization	Form not specified: Brunet-Lezine scales: at 3 mos post: mental age: 2 yrs real age: 3 yrs worsening of verbal capabilities, measured at 10 mos level at 20 mos post: mental age: 2.5 yrs real age: 4.5 yrs no change in verbal capabilities	Form not specified: mild flexion contractures good motor capabilities	Form not specified: joint mobility improved growth in ht and wt	Coppa GV, Italy, 1995 (21950), HSCT, case report
	Attenuated form: Stanford-Benet scales: within normal range, attends regular school	Attenuated form: no decrease in school performance, has plans for college	Attenuated form: moderate mobility impairment due to deformed bones, joints energy & activity normal ht: <5 th percentile, wt: 5 th - 10 th percentile, head circumference: 98 th percentile	Attenuated form: moderate improvement in joint flexibility growth spurt	Bergstrom SK, US, 1994 (22650), HSCT, case report

Disease	Neurocognitive Pre-Intervention	Neurocognitive Post-Intervention	Neurodevelopmental Pre-Intervention	Neurodevelopmental Post-Intervention	Study treatment, study design (N)
	Attenuated form: no CNS involvement, attends regular school	Attenuated form: no change	Attenuated form: moderate to severe join contractures nodular hypertrophy present	Attenuated form: improvement in joint contractures nodular hypertrophy absent	Imaizumi, Japan, 1994 (23220A), HSCT, case series (n=1)
	Attenuated form:	Attenuated form:	Attenuated form: 6-minute walk test: placebo: 374.7 ERT .15 mg/kg: 448.7 ERT .5 mg/kg: 324.3 ERT 1.5 mg/kg: 439.7	Attenuated form: Changes in 6-minute walk test: 6 mos: no change 12 mos: 8 improved, 4 no change	Muenzer, US, 2007 (57070), ERT, open label extension (N=12)
	Attenuated form:	Attenuated form: nr	Attenuated form: 6-minute walk test: placebo: 392 +/- 19 ERT EOW: 401 +/- 18 ERT wkly: 392 +/- 19	Attenuated form: Changes in 6-minute walk test: placebo: 7.3 +/- 9.5 ERT EOW: 30.3 +/- 10.3 (p=0.07) ERT wkly: 44.3 +/- 12.3 (p=0.01)	Muenzer, US, 2006 (57160), ERT, RCT (N=96)
MPS III (Sanfilippo disease)	nr	nr	nr	nr	Ringden, Sweden, 2006 (5940B), HSCT, case series (n=1)
	nr	no significant neuropsychological improvement	nr	nr	Lange, Brazil, 2006 (5690), HSCT, case series (n=1)
	nr	developmental quotients decreasing with age from 99 at 1.5 yrs of age to 6 at 10 yrs of age	nr	pt immobile at 7.4 yrs post, wheelchair bound like sibling who was untreated	Sivakumar, England, 1999, (16200), HSCT, comparative study (n=1)
	DQ: pt 1: 72, hyperactive pt 2: 80, monosyllabic pt 3: 38, dystonic, dysarthric	DQ: pt 1:41, dysarthric pt 2: 50, hypotonic pt 3: 26, no speech	nr	nr	Hoogerbrugg e PM, Netherlands, 1995 (21780A), HSCT, case series (n=3)

Disease	Neurocognitive Pre-Intervention	Neurocognitive Post-Intervention	Neurodevelopmental Pre-Intervention	Neurodevelopmental Post-Intervention	Study treatment, study design (N)
	Ruth Griffiths Mental Development: pt 1: 82 pt 2: 95 functioning in low-average range Social skills: pt 1 and 2: normal	Ruth Griffiths Mental Development: pt 1: 35-40 pt 2: 15-25 significant developmental delays, both attend special school though scores decreased, it is unknown if the decreases would have been greater without HSCT; untreated brothers are severely retarded Social skills: pt 1: normal pt 2: anti-social	Overall growth: pt 1 and 2: normal	Overall growth: pt 1: pubertal development pt 2: has no pubertal development Untreated brothers are wheelchair-bound; unclear if neurodevelopment better for treated sisters due to treatment or if differences due to heterogeneic variations of disease	Vellodi A, England, 1992, (25600), HSCT, case series (N=2)
MPS IV (Morquio syndrome)	no pathological findings in brain or spinal cord MRI	nr	mild bone deformities	nr	Seto, Japan, 2001 (13460B), HSCT, case series (n=1)
	nr	nr	aortic stenosis left ventricular dilatation	no change	Gatzoulis MA, England, 1995 (21610), HSCT, case series (n=1)
Gaucher Type 3	nr	borderline mental retardation in 2 pts	bone problems in 1 pt	bone problems stable in 1 pt	Goker-Alpan 2008, US, HSCT followed by ERT, case series (n=2)
	Weschler Intelligence Scales: performance: 67 verbal: 69 complete: 67	Weschler Intelligence Scales at 1.5 yrs post: performance: 60 verbal: 69 complete: 62	nr	stable growth and improved bone density	Chen R, Taiwan, 2007 (4490), HSCT, case report

Disease	Neurocognitive Pre-Intervention	Neurocognitive Post-Intervention	Neurodevelopmental Pre-Intervention	Neurodevelopmental Post-Intervention	Study treatment
					study design (N)
	Weschler Intelligence Scales: pt 1: stanine 7	Weschler Intelligence Scales: pt 1: stanine 7, 5, 6, 7, 7 (at 1 yr, 3 yrs, 5 yrs, 8 yrs, 10 yrs post); IQ=112-120 pt 2: stanine 7 (at 6 yrs post) pt 3: stanine 3 (at 4 yrs post) pt 4: below age (did not engraft, on ERT) pt 5: RA**: 5; DA**: 5 pt 6: RA: 5; DA: 3 (at 1 yr post) pre-transplant data not given for pts 2, 5, and 6, but authors state psychological development was excellent in these 3 pts	Skeletal involvement: pts 1, 5, 6: kyphosis pts 2, 3, 4: no kyphosis Growth: below average	Skeletal involvement pts 1, 5, 6: kyphosis pts 2, 3, 4: no kyphosis Growth: All 6 have growth spurt, even pt 4 who did not engraft and is on ERT	Ringden O, Sweden, 1995 (22020), HSCT, case series (N=6)
	RA**: 22 mos; DA**: 15 mos Developmental Quotient=68	RA: 33 mos; DA: 21 mos; DQ=64 at 0.7 yrs post RA: 39 mos; DA: 25 mos; DQ-=64 at 1.1 yrs post bilingual at 1.6 yrs post	Failure to thrive, height < 3 rd percentile	Height at 10 th percentile at 9 mos post Height at 50 th percentile at 2 yrs post	Tsai P, US, 1992, (25120), case report
	nr	No statistically significant differences between study grps using Purdue Peg Board test, Wechsler Scale, Benton visual retention test, Rey auditory verbal learning test, d2 test of attention, continuous performance test, and Trail Making Test.	nr	No treatment effect on Vertical Saccadic Eye Movement Study may not have been long enough for neurological defects to improve, or neurological defects are irreversible.	Schiffman R, Netherlands, 2008 (56750), substrate reduction therapy with ERT, RCT (N=30)
	nr	nr	Grading severity level of marrow involvement: 0A level: 3 pts 2A level: 6 pts 3A level: 1 pt 3B level: 1 pt	0A level: 1 constant and 2 worsened 2A level: 5 complete improvement and 1 constant 3A level: 1 constant 3B level: 1 constant	El-Beshlawy A, Egypt, 2006 (5750), ERT, case series (n=11)
	nr	Behavioral and learning difficulties developed after stopping ERT Recurrent seizures 2.6 yrs after stopping ERT	height <3rd percentile	improved growth	Chan LL, Malaysia, 2002 (11330), ERT, case report

Disease	Neurocognitive Pre-Intervention	Neurocognitive Post-Intervention	Neurodevelopmental Pre-Intervention	Neurodevelopmental Post-Intervention	Study treatment, study design
	nr	nr	nr	no change in skeletal deformities	(N) Banjar H, Saudi Arabia, 1998 (17920), ERT, case series (n=3)
	3 mild-moderate mental retardation 2 normal IQ	no change in IQ 1 showed clinical function deterioration cerebrospinal fluid measurements showed that glucocerebrosidase delivery to the cerebrospinal fluid was minimal (not significantly different)	nr	nr	Schiffmann R, Netherlands, 1997 (58150), ERT, case series (n=5)
	EEG normal for all pts Weschler Intelligence Scales: pt 1: 82-88 Griffith Scale: pt 2: 82-88 pt 3: 104-111	EEG normal for all pts Weschler Intelligence Scales: pt 1: 89-96 at 1.3 yrs post Griffith Scale: pt 2: 74-81 at 1 yr post pt 3: 97-103 at 1 yr post all 3 pts became more active and needed less sleep pts 2 and 3 were tired and slow and became active pre-schooler post treatment	pt 1: femur deformity, kyphosis, cortex thinning pt 2: grew 2 cm/yr pt 3: grew 4 cm/yr, femur deformity	pt 1: no change in skeletal deformities pt 2: grew 9 cm 1 yr post pt 3: grew 12 cm 1 yr post, no change in skeletal deformities	Erikson A, Sweden, 1995 (21630), ERT, case series (n=3)
Aspartyl- glucos- aminuria	pt 1: developmental age 4.7 yrs below real age pt 2: nr	pt 1 and 2: developmental age stabilizes at 5 yrs pt 1 and 2: mentally retarded, speaks in sentences, understands Swedish and Finnish words	nr	pt 1: can walk, ride bike, dress self pt 2: can walk, ride bike, drive tractor, some fine motor skills	Malm G, Sweden, 2004 (8490), HSCT, case series (N=2)
	nr	5 HSCT: developmental age was on average 5 yrs lower than real age 12 non-HSCT: developmental age was on average 3.4 yrs lower than real age HSCT pts may have lower developmental ages because 2 pts with more severe disease were chosen for HSCT	nr	Dysmorphic Facial and Body Features remained unchanged following HSCT	Arvio M, Finland, 2001 (14180), HSCT, comparative study (n=5)

Disease	Neurocognitive Pre-Intervention	Neurocognitive Post-Intervention	Neurodevelopmental Pre-Intervention	Neurodevelopmental Post-Intervention	Study treatment, study design (N)
	2 HSCT: poor cortex-white matter differentiation, decreased thalami signal intensity 6 non-HSCT: poor cortex-white matter differentiation, decreased thalami signal intensity	2 HSCT: slight improvement from poor to evident cortex-white matter differentiation, improvement in thalami signal intensity, improvement in concentration and cooperation	both HSCT pts: gross motor clumsiness, slight balance problems	nr	Autti T, Finland, 1999 (15540), HSCT, comparative study (n=2)
	mild global delay	nr	nr	nr	Laitinen A, Finland, 1997 (19620), HSCT, case report
Niemann- Pick Type C	real age: 2.4 yrs developmental age: 0.8-1.2 yrs developmental regression began prior to transplant, no speech development in previous yr MRI pre-transplant showed normal myelination and no obvious brain atrophy	real age: 2.6 yrs, developmental age: 0.4-0.7 yrs real age: 2.9 yrs, developmental age: 0.3-0.4 yrs real age: 3.3 yrs, developmental age: 0.2-0.3 yrs MRI 0.5 yrs post-transplant showed normal myelination and evident brain atrophy	1.2 yrs: sat without support and crawled 2.4 yrs: pt became bed- ridden during conditioning phase	6-9 mos post: head lag, could not raise body	Hsu YS, Taiwan, 1999 (16540), HSCT, case report
	MRI: normal brain activity	MRI: developing neurologically, but with delayed speech	mildly hypotonic normal developmental milestones (standing)	fine motor coordination (can hold pencil, draw) at 1.7 yrs post tolerates normal activity walks independently	Bonney DK, England, 2009, (81700) HSCT, case report
	nr	nr	Standard ambulation index: 2.0 (0.7-3.3)	Standard ambulation index: 1 yr: 2.3 (0.6-4.0) 2 yrs: 2.6 (0.7-4.5) 8 of 10 pts are considered stable in ambulation	Patterson MC, US, 2010 (56500), substrate reduction therapy, open label extension (N=12)

Disease	Neurocognitive Pre-Intervention	Neurocognitive Post-Intervention	Neurodevelopmental Pre-Intervention	Neurodevelopmental Post-Intervention	Study treatment, study design (N)
	nr	Change in composite disability score combined pediatric and adult pts: greater treatment effect was seen in subset of those with neurological disease	at diagnosis, mean scores: ambulation: 0.18, manipulation: 0.27, language: 0.16, swallowing: 0.12 at start of treatment: overall deterioration of scores	at last clinical visit, % with stable/improved scores: ambulation: 76.6%, manipulation: 76.2%, language: 77.0%, swallowing: 81.0%	Pineda M, Spain, 2009 (56560)*, substrate reduction therapy, retrospective cohort (N=66)
	modest cognitive abilities	3 mos: some improvement in adaptive social domains 6 mos: regression, speech decline 12 mos: <0.1 percentile in developmental scales	proximal weakness in extremities ataxic hand tremor motion analysis: walked 0.24 m/sec, 62 steps/min	3 mos: hand tremor diminished 9-12 mos: lost ability to walk motion analysis at 6 mos: walked 0.12 m/sec, 32.4 steps/min	Paciorkowski AR, US, 2008 (2980), substrate reduction therapy, case report
	nr	Mini-mental status examination data only provided for pts >=12 yrs: difference between treated and untreated groups, p=0.165	nr	Ambulatory index data only provided for pts >=12 yrs: difference between treated and untreated groups, p=0.052	Patterson MC, US, 2007 (56970)*, substrate reduction therapy, RCT (n=12)

*cannot separate adult and pediatric data within this study **RA: real age, DA: developmental age

Appendix Table E3. Neurocognitive and neurodevelopmental outcomes for treatment (HSCT) and comparators (ERT, substrate reduction therapy) of inherited metabolic diseases with both rapid and slow progression

Disease	Neurocognitive Pre-Intervention	Neurocognitive Post-Intervention	Neurodevelopmental Pre-Intervention	Neurodevelopmental Post-Intervention	Study (record #), treatment, study design (N)
Farber disease	Type 2/3, with no CNS involvement nr	Type 2/3, with no CNS involvement nr	Type 2/3, with no CNS involvement # subcutaneous nodules: pt 1: 58 pt 2: 39 pt 3: 18 # joints with limited motion: pt 1: 26 pt 2: 24 pt 3: 10	Type 2/3, with no CNS involvement # subcutaneous nodules: pt 1: 8 at 1.2 yrs post pt 2: 14 at 0.5 yrs post pt 3: 0 at 0.7 yrs post # joints with limited motion: pt 1: 2 at 1.2 yrs post pt 2: 4 at 0.5 yrs post pt 3: 4 at 0.7 yrs post	Ehlert K, Germany, 2006 (4690), HSCT, case series (N=3)
	Type 2/3, with no CNS involvement nr	Type 2/3, with no CNS involvement nr	Type 2/3, with no CNS involvement # subcutaneous nodules: pt 1: 58 pt 2: 39 # joints with limited motion: pt 1: 26 pt 2: 24	Type 2/3, with no CNS involvement # subcutaneous nodules: pt 1: 8 pt 2: 12 # joints with limited motion: pt 1: 2 pt 2: 2	Vormoor J, Germany, 2004 (9420), HSCT, case series (N=2)
	Type 1, with CNS involvement normal myelination at 0.75 yrs Bayley Scales of Infant Development: developmental age and real age equivalent at time of transplant (0.75 yrs)	Type 1, with CNS involvement normal myelination at 0.3 yrs post, decrease in grey and white matter differentiation at 0.7 yrs post, poor grey and white matter contrast at 1.3 yrs post development age plateaued at 0.6 yrs at real age of 1.3 yrs and 2.1 yrs	Type 1, with CNS involvement wt, ht, and head circumference: 10th-25th percentile	Type 1, with CNS involvement wt, ht, and head circumference: 5th percentile at 0.8 yrs post <5th percentile at 1.5 yrs post	Yeager AM, US, 2000 (14880), HSCT, case report
	Type 1, with CNS involvement mental regression	Type 1, with CNS involvement mental regression worsened, cerebral atrophy seen in brain imaging	Type 1, with CNS involvement unable to stand decreased tendon reflexes	Type 1, with CNS involvement regression of motor abilities increasing tremor	Hoogerbrugg e, PM, Netherlands, 1995 (21780D), HSCT, case series (n=1)
Disease	Neurocognitive Pre-Intervention	Neurocognitive Post-Intervention	Neurodevelopmental Pre-Intervention	Neurodevelopmental Post-Intervention	Study (record #), treatment, study design (N)
-------------------------	---	--	---	---	--
GM₁ ganglio- sidosis	juvenile form: nr	juvenile form: normal language development at 0.6 yrs post language declining at 1.7-2.1 yrs post demyelination and diffuse cerebral function at 2.4 yrs post no language at 4.0 yrs post	juvenile form: nr	juvenile form: walking at 0.6 yrs post became clumsy at 1.7-2.1 yrs post limited motor skills at 4.0 yrs post wheelchair at 6.0 yrs post	Shield JPH, England, 2005 (6720), HSCT, case report
Tay-Sachs disease	form not specified: nr	ot specified: nrform not specified: nrform not specified: nrot specified: regression aging showed widened hnoidal spacesform not specified: vegetative state no brain imaging follow-upform not specified: psychomotor retardation myoclonic jerks		form not specified: nr	Page KM, US, 2008 (1280A), HSCT, case series (n=1)
	form not specified: mental regression brain imaging showed widened subarachnoidal spaces			form not specified: vegetative state	Hoogerbrugg e PM, Netherlands, 1995 (21780C), HSCT, case series (n=1)
	juvenile form: nr	juvenile form: MRI shows cerebral atrophy at 0.5 yrs post worsening neuropsychological test scores at 0.5 yrs post speech deteriorating at 0.5 yrs post	juvenile form: nr	juvenile form: motor skills deteriorating at 0.5 yrs post Deterioration of this pt similar to deterioration of untreated older sister	Jacobs JFM, Netherlands, 2005 (6740), HSCT with substrate reduction therapy added at 2 yrs post, case report
	juvenile form: pt 1: mild cognitive impairment, attends regular school with assistance pt 2: severe cognitive impairment, generalized seizures	juvenile form: pt 1: at 15 mos acute psychotic event pt 2: at 15 mos marked increase in seizures, alertness deteriorated, at 24 mos spasticity increased	juvenile form: pt 1: mild muscle weakness, moderate muscle impairment, independent feeding and ambulation pt 2: needs support for ambulation	juvenile form: pt 1: at 6 mos handwriting deteriorated, at 12 mos fine tremor in hands, from 12-24 mos, progressive muscle atrophy pt 2: at 15 mos muscle bulk decreased markedly, at 24 mos wheelchair dependent	Maegawa GHB, Canada, 2009 (56590B), substrate reduction therapy, single arm (n=2)

Disease	Neurocognitive Pre-Intervention	Neurocognitive Post-Intervention	Neurodevelopmental Pre-Intervention	Neurodevelopmental Post-Intervention	Study (record #), treatment, study design (N)
ceroid lipo- fuscinosis	cerebral cortical atrophy: moderate in one pt, not detectable in 2 pts periventricular white matter hyperintensity: mild in 1 pt, not detectable in 2 pts	cerebral cortical atrophy: moderate became severe in one pt, not detectable became moderate in two pts periventricular white matter hyperintensity: mild became severe in one pt, not detectable became moderate in two pts	one pt mildly symptomatic and two pts asymptomatic	all three pts by end of follow- up at 2-4 yrs of age were hypotonic and spastic, with some head control remaining	Lonnquist T, Finland, 2001 (12960), HSCT, case series (N=3)
Sandhoff's disease nr	nr	nr	nr	nr	Ringden O, Sweden, 2006 (5940B), HSCT, case series (n=1)
	pt 1: severe cognitive dysfunction, hallucinations, agitation, scores 1.5 yrs below age pt 2: episodic psychosis, cognitive function well- preserved, works part time pt 3: 2 episodes of psychosis, IQ=75	pt 1: neuropsych scores unchanged pt 2: 18 mos post, neuropsych scores stable, speech less intelligible, hallucinations reduced, anxiety ongoing pt 3: at 16 mos post, spasticity developed, anxiety aggravated, neuropsych scores stable	pt 1: muscle wasting, fully dependent for feeding and ambulation pt 2: moderate skeletal muscle weakness, independent ambulation, feeding, bathing pt 3: independent ambulation, feeding, and bathing	pt 1: 3 mos incoordination progressed, 15 mos wheelchair, 21 mos can't stand pt 2: at 18 mos gait disturbance progressed & muscle strength reduced pt 3: 6 mos gait disturbance, 16 mos notable wt loss pt 2 and pt 3 stopped tx at 21 mos due to excessive weight loss	Maegawa GHB, Canada, 2009 (56590A), substrate reduction therapy, single arm (n=3)

Appendix F. C-Peptide and HbA1c Outcomes

In all studies, serum C-peptide levels were measured using radioimmunoassay. To accommodate differences in data presentation and analysis, they are presented in the tables as a percentage change from values at study entry.

C-Peptide Level

Data on C-peptide levels were reported in all three studies included in this review, at follow-up times that range from 6 months in one IIT study (Crino et al, 2005, rec#23080) to more than 4 years in the HSCT study (Couri et al, 2009, rec#290) (Table F1). The proportional change in C-peptide levels in the HSCT study refer only to patients who remained continuously insulin free.

Outcome	Intervention	Comparator	p-value	Study
	% Δ in Mean value	% Δ in Mean Value	(vs Mean Baseline Value)	(rec#)
6 months	+ ~ 113		< 0.001	Couri et al, 2009
	(n = 11)			(290)
1 year	+ ~ 100		0.001	
	(n = 12)			
2 year	+ 249		< 0.001	
	(n = 8)			
3 year	+ 224		0.001	
	(n = 3)			
4 year	NR		NR	
	(n = 1)			
1 year		+ 131	NS	Crino et al, 2005
		(n = 27)		(23080)
2 year		+ 119		
		(n = 27)		
6 months		- 20	0.05	Mastrandrea et al, 2009
		(n = 8)		(40050)

AppendixTable F1. C-peptide levels following autologous HSCT or IIT in pediatric patients

The data in Table F1 show that C-peptide levels following a mixed-meal tolerance test were significantly increased above baseline values in the HSCT study (Couri et al, 2009, rec#290) for more than two years in 8 of 12 patients who became continuously insulin free following the procedure. In one IIT study, mean fasting C-peptide levels were not changed significantly at 1 or 2 years following initiation of treatment from that at study entry (Crino et al, 2005, rec#23080). In the

second IIT study, the mean C-peptide level following a Boost meal test was slightly lower at 6 months following initiation of treatment than that at study entry (Mastrandrea et al, 2009, rec#40050).

Hemoglobin A1C Levels

Table F2 shows HbA1C levels in patients treated with nonmyeloablative autologous HSCT (Couri et al, 2009, rec#290) or IIT (Crino et al, 2005, rec#23080; Mastrandrea et al, 2009, rec#40050).

Hemoglobin A1C (HbA1C) levels pretransplant ranged from 5.4% to 11.6% (mean 8.4 \pm 1.6%) among 18 pediatric patients in the HSCT study (Couri et al, 2009, rec#290). Among those who became continuously insulin-free, HbA1C declined from a mean 8.0% to 5.7%, 5.7%, 5.5%, and 6.0%, respectively, at 12, 24, 36, and 48 months after transplantation (p < 0.001 at all time points versus pretreatment value).

In one IIT study, HbA1C did not change significantly from a mean $10.5 \pm 2.2\%$ at diagnosis to $5.4 \pm 0.8\%$ and $6.5 \pm 0.9\%$ at 12 and 24 months, respectively (Crino et al, 2005, rec# 23080). In the second IIT study, mean HbA1C at study entry (12.4 ± 2.5%) declined to an average 7.0 ± 1.2% (p-value NR) (Mastrandrea et al, 2009, rec#40050).

		U	0	· · · · · · · · · · · · · · · · · · ·
Outcome	Intervention	Comparator	p-value	Study
	% Δ in Mean	% Δ in Mean	(vs Mean	(rec#)
	Value	Value	Baseline Value)	
3 months	- 32		< 0.001	Couri et al, 2009 (290)
1 year	- 29			
2 year	- 29			
3 year	- 31			
4 year	- 25			
1 year		- 48	NS	Crino et al, 2005 (23080)
2 year		- 38		
6 months		- 44	NR	Mastrandrea et al, 2009 (40050)

AppendixTable F2. HbA1C levels following autologous HSCT or IIT in pediatric patients