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ABSTRACT 
Estimation of the effect of a treatment or exposure with a causal interpretation from studies where exposure is not 
randomized may be biased if confounding and selection bias are not taken into appropriate account. Such adjustment 
for confounding is often carried out through regression modeling of the relationships among treatment, confounders, 
and outcome. Correct specification of the regression m odel is one of the most fundamental assumptions in statistical 
analysis. Even when all relevant confounders have been measured, an unbiased estimate of the treatment effect will 
be obtained only if the model itself reflects the true relationship among treatment, confounders, and the outcome. 
Outside of simulation studies, we can never know whether or not the model we have constructed includes all relevant 
confounders and accurately depicts those relationships. Doubly robust estimation of the effect of exposure on 
outcome combines inverse probability weighting by a propensity score with regression modeling in such a way that as 
long as either the propensity score model is correctly specified or the regression model is correctly specified the 
effect of the exposure on the outcome will be correctly estimated, assuming that there are no unmeasured 
confounders. While several authors have shown doubly-robust estimators to be powerful tools for modeling, they are 
not in common usage yet in part because they are difficult to implement. We have developed a simple SAS® macro 
for obtaining doubly robust estimates. We will present sample code and results from analyses of simulated data. 
 
INTRODUCTION 
Correct specification of the regression model is one of the most fundamental assumptions in statistical analysis. Even 
when all relevant confounders have been measured, an unbiased estimate will be obtained only if the model itself 
reflects the true relationship among treatment, confounders, and the outcome. Outside of simulation studies, we can 
never know whether or not the model we have constructed accurately depicts those relationships. So the correct 
specification of the regression model is typically an unverifiable assumption. 
 
Doubly robust (DR) estimation builds on the propensity score approach of Rosenbaum & Rubin (1983) and the 
inverse probability of weighting (IPW) approach of Robins and colleagues (Robins, 1998; Robins, 1998a; Robins, 
1999; Robins, 1999a; Robins, Hernan, and Brumback, 2000). DR estimation combines inverse probability weighting 
by a propensity score with regression modeling of the relationship between covariates and outcome in such a way 
that as long as either the propensity score model or the regression model is correctly specified, the effect of the 
exposure on the outcome  will be correctly estimated, assuming that there are no unmeasured confounders (Robins, 
Rotnitzky, and Zhao, 1994; Robins, 2000; van der Laan and Robins, 2003; Bang and Robins 2005). Specifically, one 
estimates the probability that a particular patient receives a given treatment as a function of that individual’s 
covariates (the propensity score). Each individual observation is then given a weight equal to the inverse of this 
propensity score to create two pseudopopulations of exposed and unexposed subjects that now represent what 
would have happened to the entire population under those two treatment conditions. Maximum likelihood regression 
is conducted within these pseudopopulations with adjustment for confounders and risk factors. Results from 
extensive simulations by Lunceford and Davidian (2004) as well as Bang and Robins (2005) confirm the theoretical 
properties of this estimator. 
 
MATHEMATICS OF DOUBLY ROBUST ESTIMATION 
We use the following notation: Y is the observed response or outcome, Z is a binary treatment (exposure) variable, 
and X represents a vector of baseline covariates. Y1 and Y0 are the counterfactual responses under treatment and no 
treatment, respectively. All of these variables are further subscripted by i for subjects i=1, . . ., n. In this example, the 
causal effect of interest is the difference in means if everyone in the population received treatment versus everyone 
receiving no treatment, or E(Y1)-E(Y0). In the following equation, e(X,ß) is a postulated model for the true propensity 
score (from logistic regression) and m0(X,a0) and m1(X,a1) are postulated regression models for the true relationship 
between the vector of covariates (confounders plus other prognostic factors) and the outcome within each strata of 
treatment. With these definitions, the estimator of the causal effect is: 
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The standard error of is estimated using the empirical sandwich method (Lunceford & Davidian, 2004, equation 21;  
Stefanski & Boos 2002). Specifically, the sampling variance for the doubly robust estimator is calculated as  

where:  

 
IMPLEMENTING THE DR MACRO 
The DR macro runs two sets of models: one for the probability of receiving a dichotomous treatment or exposure and 
another to predict either the probability of the outcome (for a dichotomous outcome) or its mean value (for a 
continuous outcome) within strata of the exposure. We will introduce the macro using a simple example where the 
exposure of interest is statin use (statin) and the outcome of interest is risk of acute myocardial infarction (acuteMI) 
and two potential confounders (sex, age) have been measured: 
 

%dr(%str(options data=cvdcohort descending; 
  wtmodel statin = sex age / method=dr dist=bin showcurves; 
  model acuteMI = sex age / dist=bin ;)); 

 
After the usual SAS® options to indicate the location of the dataset and the ‘descending’ option (which both function 
as they do in the GENMOD procedure), there are two model statements. The weight model (wtmodel) is the model 
for the propensity score or probability of treatment given covariates. The second model statement (model) is used to 
specify the covariates to be used for adjustment of the outcome regression model; in this case, risk of acute 
myocardial infarction adjusted for sex and age. Note that the main exposure (statin) is NOT included in the second 
model statement because these regression models are performed within the treatment groups. For the outcome 
regression models, the treatment groups have been reweighted such that they represent the expected outcomes 
under the two treatment conditions: if all individuals had been treated and then as if all individuals had been 
untreated.  To describe the macro syntax, we show a more general implementation of the doubly robust macro with a 
binary exposure (binexp), three covariates for adjustment (x1 x2 x3) and a continuous outcome (response1). 
 

%dr(%str(options data=sim descending;  
 wtmodel binexp = x1 x2 x3 / method=dr dist=bin showcurves; 
 model response1= x1 x2 x3 / dist=n;)); 

 
%dr is the name of the macro. 
 
(%str(options is required code. 
 
data=SAS-data-set is the standard SAS® method for indicating which dataset should be used for the analysis. 
 
descending is standard SAS® coding so that the macro models the probability of the higher response value rather 
than lower response value (the default behavior); if your exposure and outcome are coded as 0=no / 1=yes, you want 
to be sure to include this option. Currently, invoking the descending option applies this to both the propensity score 
model (wtmodel)and the outcome regression model (model) when both are dichotomous variables. 
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PROPENSITY SCORE MODEL  
The propensity score model is specified in the first model statement using the form: 
 

wtmodel exposure = <covariates> </options> 
 
We model the main exposure or treatment on the left side of the equals sign as a function of the covariates on the 
right side. It is appropriate to include as covariates all confounders as well as risk factors for the outcome of interest. 
Options should be specified after a slash (/) : 
 

method=dr indicates that the doubly robust estimation method should be used. In the future, there will be 
other methods that the user can specify to obtain a propensity score adjusted estimate or a standard (not 
doubly-robust) inverse probability of treatment weighted estimate. 

 
dist=bin indicates that this is a logistic regression (log-binomial will be coming in the future, at which 
point a “link=”option will also be available). This is currently required; will be changed in the future to allow 
for option of “n” for a normal distribution, if the main exposure is continuous. 
 
showcurves will produce the graphs of the two overlapping propensity score curves. 
 
common_support=number where number is between 0 and 1 (inclusive), will limit the region of analysis 
to those observations for which there is common support for counterfactual inference. A value of 1 
indicates that the program  should use the entire region of common support; a value of 0.8 would indicate 
that the program should use only the middle 80% region of common support. In addition, the region of 
common support will be shown as vertical lines in the plot generated by showcurves. 
 

OUTCOME REGRESSION MODEL  
The outcome regression model is specified in the second model statement using the form: 
 

model outcome =<covariates> </options> 
 
This models the main outcome of interest (continuous or dichotomous) as a function of the covariates. The main 
exposure should NOT be specified here a second time. Options should be specified after a slash (/): 
 

dist=n indicates that the model is a linear regression, with a normal error distribution. This is appropriate 
for a continuous outcome variable. If the outcome variable is dichotomous, dist=bin is appropriate. 

 
OUTPUT 
Currently, the DR macro outputs five or six results nodes (the +Univariate node is optional and only appears if the 
user specifies the showcurves option in the wtmodel statement) in the results pane (vertically oriented pane, left 
of main window). These results nodes are identified as follows: 
 

+ Logistic 
+ Means 
+ Univariate 
+ Logistic | GLM 
+ Logistic | GLM 
+ Print 

 
These nodes are as follows: 
 
+ Logistic 
This is the logistic regression for the propensity score model (wtmodel) portion of doubly robust estimation. 
 
+ Means 
This node provides the mean, standard deviation, minimum and maximum of the estimated weights. 
 
+ Univariate 
This is the graph of the propensity score curves generated by the wtmodel if the showcurves option is designated. 
If the common_support option is designated, this graph will have lines indicating the region of common support, as 
well. 
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+ Logistic | GLM 
+ Logistic | GLM 
If the distribution (dist=) option of the model statement is set to bin, then nodes will be labeled “Logistic”; if the 
distribution option is set to normal (dist=n), then these nodes will be “GLM”. The first of these two nodes is the 
results of a model among the unexposed (or untreated), weighted such that this represents the expected response 
had all subjects in the analysis population been unexposed; the second is the model among the exposed (or treated) 
weighted such that this  represents the expected response had all subjects in the analysis population been exposed. 
 
+ Print 
This results node produces output in the following format: 
  
Obs  totalobs  usedobs  dr1          dr0     deltadr       se 
1  100000   79292     0.034117  .005546853    0.028570   .002026204 
 
Where: 
 
totalobs  is the number of observations in the specified dataset 
 
usedobs  is the number of observations actually used in the analysis. usedobs is always less than or 

equal to totalobs; usedobs is less than totalobs when there are missing values, and/or 
when the common_support option is used in the wtmodel statement. 

 
dr1  is an estimate of the average response that we would have observed if everyone in the population 

had been exposed or treated. This is estimated by a regression model adjusted for the covariates 
specified in the model statement in a pseudopopulation created by reweighting the exposed 
group using the propensity score from the wtmodel statement. 

 
In the case of a continuous outcome, this is the mean value for that continuous variable (such as 
blood pressure, cholesterol, weight, etc). In the case of a dichotomous outcome, this is the 
average risk of the outcome. This is the expected mean response in subjects rather than the 
expected value for an average subject; these two values are the same in a linear model but not so 
for a logistic regression model which may lead to discrepancies. 

 
dr1 is Term 1 in Equation (9) in Lunceford and Davidian (2004). 
 

dr0  is an estimate of the average response that we would observe if everyone in the population had 
not been exposed (or not received the treatment). This is estimated by a regression model 
adjusted for the covariates specified in the model statement in a pseudopopulation created by 
reweighting the unexposed group using the propensity score from the wtmodel statement. (See 
dr1.) 

 
dr0 is Term 2 in Equation (9) in Lunceford and Davidian (2004). 
 

deltadr  is the difference (dr1 – dr0), and is equivalent to Equation (9) in Lunceford and Davidian 
(2004). In the case of a continuous outcome, this is the mean difference due to treatment or 
exposure. In the case of a dichotomous outcome, this is the difference in the average predicted 
probability of the outcome, comparing the response in the pseudopopulation as if everyone had 
been unexposed (or untreated) to the response in the pseudopopulation as if everyone had been 
exposed (or treated). 

 
se  is the standard error associated with the measure deltadr based on the sandwich estimator, 

(Lunceford and Davidian, 2004, Equation (21)). 
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EXAMPLE 1 
This is an example that simulates a dataset with a continuous response (response1), a dichotomous exposure 
(tx), and three covariates (x1 x2 and x3) with a total sample size of n=4000 in which the outcome is unrelated to 
the exposure. Therefore, we would expect the difference in the mean response1 under the two exposure conditions 
(tx=1 and tx=0) to be not significantly different than 0. 
 
 

data test; 
 do i=1 to 4000; 
    x1=rannor(101); 

     x2=rannor(202); 
     x3=ranuni(303)<.3; 
     tx=ranuni(404)<.5; 
     response1=rannor(505)+ x1 + x2; 
     output; 
  end; 
run; 

 
We run the doubly robust model on these simulated data using the following code: 
 

title 'Example 1'; 
%dr(%str(options data=test descending; 

wtmodel tx = x1 x2 x3 / method=dr dist=bin ; 
model response1 = x1 x2 x3 / dist=n;)); 

 
This produces the output under + Print: Example 1: 
 
Obs  totalobs  usedobs    dr0       dr1     deltadr     se 
1  4000    4000   0.039756  0.033922  -.005833368  0.031623 
 
This output can be interpreted as follows: 
 
If all subjects in this cohort had been exposed (tx=1), the average outcome would have been 0.0339. 
If all subjects in this cohort had been unexposed (tx=0), the average outcome would have been 0.0398. 
 
deltadr is therefore the difference between the expected outcomes from the pseudo-populations of “all unexposed” 
compared to “all exposed”. 
 
EXAMPLE 2 
The next example represents an analysis of simulated data where the exposure of interested is statin use (statin) 
and the outcome of interest is a continuous cardiovascular disease score (rmi3a). (To run this example, download 
the study dataset from http://www.harryguess.unc.edu and create a libname for ‘sampledata’ that points to the 
appropriate folder on your computer.) Both the weight (propensity score) model and the regression model are 
specified correctly in this first version of the analysis: 
 

title 'Example 2'; 
%dr(%str(options data=sampledata.study descending; 

wtmodel statin=hs smk hxcvd black bmi age income chol exer 
/ method=dr dist=bin showcurves common_support=.99; 

model rmi3a=hs female smk hxcvd bmi bmi2 age age2 chol exer /dist=n; ) ); 
 

The showcurves option produces a histogram that compares the distributions of the propensity score for the two 
levels of exposure with a nonparametric smoothed curve overlayed (See Figure 1). The common_support option 
indicates that the outcome regression models should ‘trim’ off observations that lie at the extreme ends of the 
propensity score distribution. Using common_support=0.99, the regression models are limited to those 
observations with a propensity score between the 0.5 th percentile and the 99.5 th percentile. The vertical dashed lines 
on Figure 1 indicate the boundaries for this portion of the data. In the final results shown below, the number of 
observations used (usedobs) is less than the total number of observations in the dataset (totalobs) because we 
specified the common_support option. 
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Figure 1. Estimated propensity score distributions stratified by exposure with nonparametric smoothed curve. 
 
The doubly robust estimate of the average treatment effect when we have specified both models correctly is a 
difference of -1.10. 
 

Obs  totalobs         usedobs    dr0           dr1    deltadr        se 
1  10000           9852        -8.83820        -9.94092  -1.10273  0.024158 

 
If we alter the set of covariates included in the models to intentionally misspecify the weight or regression model by 
removing the covariate chol, we find that the doubly-robust estimator is unbiased when only one of the models is 
misspecified but is  no longer unbiased when both models are misspecified. 
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EXAMPLE 3 
The final example represents an analysis of simulated data where the exposure of interested is statin use (statin) 
and the outcome of interest is a dichotomous variable indicating whether or not the subject experienced a myocardial 
infarction within the follow-up period (mi3). (To run this example, download the study dataset from 
http://www.harryguess.unc.edu and create a libname for ‘sampledata’ that points to the appropriate folder on your 
computer.) Both the weight (propensity score) model and the regression model are specified correctly: 
 

title 'Example 3'; 
%dr(%str(options data=sampledata.study descending; 

wtmodel statin=hs smk hxcvd black bmi age income chol exer 
/ method=dr dist=bin showcurves; 

model mi3=hs female smk hxcvd bmi bmi2 age age2 chol exer /dist=bin; ) ); 
 
The doubly robust estimate of the average treatment effect when we have specified both models correctly is a risk 
difference of -0.014. 
 
Obs  totalobs  usedobs      dr0     dr1      deltadr  se 
1     10000   10000     0.039522  0.025832  -0.013689   .003676795 
 
CONSIDERATIONS 
Development of the macro is ongoing, but at this time there are several limitations that users should be aware of. The 
exposure variable must be binary and coded as 0/1. The outcome may be binary (logistic regression) or continuous 
(linear regression).   
 
Although we have intentionally designed the macro so that it behaves much like typical SAS procedures to improve 
its usability, there are some SAS conventions that are not currently implemented. Specifically, variables for interaction 
terms and higher order terms must be created in a data step – not within in the model statements. The class 
statement is also not recognized at this time and therefore all categorical variables should be coded using indicator 
variables. 
 
Standard errors based on the sandwich estimator are known to be too conservative in small sample sizes. In this  
circumstance, bootstrapping provides a more reliable estimate of the standard error. We expect to implement this in a 
future release. As of version 0.90, the macro only calculates the doubly robust estimate for the difference between 
the average response or risk. In a future release, we will provide the relative risk and the odds ratio with the 
associated standard errors. In the meantime, one can manually calculate the relative effect measures from dr1 and 
dr0 but obtaining an appropriate standard error will require bootstrapping. 
 
Please note that while University researchers created this program in good faith and have used it repeatedly, the 
University has not rigorously tested the tool as a commercial software provider would.  The University welcomes 
information about any problems arising from use of the program. 
 
 
DOWNLOADING & INSTALLING 
The DR macro can be downloaded from the Resources section of http://www.harryguess.unc.edu along with the 
sample data used for examples 2 and 3. Please review the Readme.pdf file first for important information regarding 
installation.  
 
CONCLUSION 
Observational studies rely on data from non-randomized patients who have used the agent(s) of interest in the course 
of normal clinical care. Because patients and their health care providers decide whether and which agent to use, 
differing response rates and adverse event rates may reflect differences between the groups of patients rather than 
differences  between the agents themselves. In the presence of confounding, an unbiased estimate of the effect of 
treatment can still be obtained if all of the factors that affect prognosis have been measured accurately. In order to 
obtain an unbiased estimate of the treatment effect, these confounding factors must be incorporated into a statistical 
model that represents the true relationship between each factor and the outcome of interest. Doubly robust estimation 
methods – which provide the analyst with two chances to correctly specify the true relationships among covariates  in 
the data - are potentially valuable in studies of comparative effectiveness and other epidemiologic studies, but no 
standard software packages or user programs have previously been available to use this method. Our hope is that 
the availability of a SAS® macro will facilitate greater use of this method in the field of epidemiology broadly. 
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