Living Systematic Review on Cannabis and Other Plant-Based Treatments for Chronic Pain: 2022 Update— Surveillance Report 4

Literature Update Period: Late January 2023 Through Mid-April 2023

Overview

This is the fourth surveillance report since the 2022 annual update of a living systematic review on cannabis and other plant-based treatments for chronic pain. The scope was recently expanded to include adolescents and extended to subacute pain conditions.

The systematic review synthesizes evidence on the benefits and harms of plant-based compounds (PBCs), such as cannabinoids and kratom, used to treat chronic or subacute pain, and addresses concerns about severe adverse effects, abuse, misuse, dependence, and addiction.

The purpose of this surveillance report is to describe new studies identified since the last search (late January 2023) and provide a synthesis of the accumulated evidence. Surveillance update reports are planned on a quarterly basis, and the systematic review will be updated annually. The systematic review is available on the Agency for Healthcare Research and Quality (AHRQ) website (<u>https://effectivehealthcare.ahrq.gov/products/plant-based-chronic-pain-treatment/living-review</u>). Table 1 provides a summary of the version history.

Search End Date	Report (Publication Date)
July 2021	Systematic Review (Oct. 27, 2021)
August 2021	Surveillance Report 1 (Oct. 27, 2021)
October 2021	Surveillance Report 2 (Jan. 28, 2022)
Mid-January 2022	Surveillance Report 3 (May 2022)
March 2022	Surveillance Report 4 (August 2022)
April 2022	Systematic Review (August 2022)
Early July 2022	Surveillance Report 1 (September 2022)
Mid-October 2022	Surveillance Report 2 (January 2023)
Late January 2023	Surveillance Report 3 (May 2023)
Mid-April 2023	Surveillance Report 4 (July 2023)

Table 1.	Version	history
----------	---------	---------

Main Points

The Key Questions (KQs) for this review focus on the benefits (KQ1) and harms (KQ2) of cannabinoids for treating chronic or subacute pain, as well as the benefits (KQ3) and harms (KQ4) of other PBCs, such as kratom, for treating chronic or subacute pain. Studies of cannabisrelated products were grouped based on their tetrahydrocannabinol (THC) to cannabidiol (CBD) ratio using the following categories: high THC to CBD ratio, comparable THC to CBD ratio, and low THC to CBD ratio. One new small randomized controlled trial (RCT) of two different whole-plant derived, sublingual, low THC to CBD ratio products versus placebo for chronic pain in hemodialysis patients,¹ and one new prospective cohort study comparing whole-plant inhaled cannabis, whole-plant extracted sublingual oil, or both for chronic pain (mixed conditions)² were identified for inclusion during this surveillance period. Both studies were conducted in adults. The evidence for low THC to CBD ratio products versus placebo remained insufficient, based on single studies evaluating heterogeneous products. Evidence comparing different cannabis-related products also remained insufficient.

Overall, in patients with chronic (mainly neuropathic) pain with short-term treatment (4 weeks to <6 months):

- Comparable THC to CBD ratio oral spray is probably associated with small improvements in pain severity and overall function versus placebo. There was no increase in risk of serious adverse events or withdrawal due to adverse events. There may be a large increased risk of dizziness and sedation, and a moderate increased risk of nausea.
- Synthetic THC (high THC to CBD ratio) may be associated with small improvement in pain severity but with increased risk of sedation and potential increased risk of nausea versus placebo. Synthetic THC is probably associated with a large increased risk of dizziness.
- Extracted whole-plant high THC to CBD ratio products may be associated with large increases in risk of withdrawal due to adverse events and dizziness versus placebo; outcomes assessing benefit were not reported or insufficient.
- Evidence on whole-plant cannabis (including patient's choice of products), low THC to CBD ratio products (topical, oral, or sublingual CBD), and other cannabinoids (cannabidivarin), and comparisons with other active interventions or different cannabis-related products was insufficient to draw conclusions.
- Other key adverse event outcomes (psychosis, cannabis use disorder, cognitive deficits) and outcomes on the impact on opioid use were not reported or evidence was insufficient to draw conclusions.
- No evidence on other plant-based compounds, such as kratom, met criteria for this review.

Table 2 presents the conclusions from the systematic review, findings from ongoing literature surveillance, and an assessment of new studies on conclusions.

	Conclusions From	Findings From	
Key Question ^a	Systematic Review (2022)	Surveillance to Date	Assessment
KQ1 and KQ2. Comparable THC to CBD Ratio Benefits and Harms	Benefits: small improvements in pain severity and in function (SOE: moderate; 7 RCTs)	No new studies	No change in conclusions
	Harms: no effect on serious adverse events (SOE: low; 2 RCTs); large increased risk of dizziness and sedation; moderate increased risk of nausea (SOE: low; 6 RCTs)		

Table 2. Assessment of systematic review conclusions

	Conclusions From	Findings From	
Key Question ^a	Systematic Review (2022)	Surveillance to Date	Assessment
KQ1 and KQ2. Synthetic High THC to CBD Ratio Benefits and Harms	Benefits: small improvements in pain severity (SOE: low; 7 RCTs); no effect on overall function/disability (SOE: low; 3 RCTs)	No new studies	No change in conclusions
	Harms: moderate increased risk of sedation (SOE: low; 4 RCTs); large increased risk of nausea (SOE: low; 3 RCTs); and moderate increased risk of dizziness (SOE: moderate; 3 RCTs)		
KQ1 and KQ2. Extracted Whole-Plant High THC to CBD Ratio	Benefits: insufficient evidence (2 RCTs)	No new studies	No change in conclusions
Benefits and Harms	Harms: large increase in risk of dizziness and in study withdrawal due to adverse events (SOE: low; 1 RCT)		
KQ1 and KQ2. Low THC to CBD Ratio Benefits and Harms	Insufficient evidence (3 RCTs ^b)	1 new study ^c	No change in conclusions
KQ1 and KQ2. Whole- Plant Cannabis and Other Cannabinoids Benefits and Harms	Insufficient evidence (2 RCTs)	No new studies	No change in conclusions
KQ1 and KQ2. Comparable THC to CBD Ratio Vs. Synthetic THC Benefits and Harms	Insufficient evidence (1 observational study)	No new studies	No change in conclusions
KQ1 and KQ2. Comparable THC to CBD Ratio Vs. LAOs	No studies	1 observational study	Insufficient evidence
KQ1 and KQ2. Whole- Plant High THC to CBD Ratio Flower Vs. Extracted Oils	No studies	1 new study	Insufficient evidence
KQ3 and KQ4. Kratom or Other Plant-Based Substances Benefits and Harms	Insufficient evidence (0 RCTs)	No new studies	No change in conclusions

Abbreviations: CBD = cannabidiol; KQ = Key Question; LAO = long-acting opioid; RCT = randomized controlled trial; SOE = strength of evidence; THC = tetrahydrocannabinol.

^a For Key Question wording, see the Background section below.

^b Products varied regarding origin (synthetic or plant derived) and route (oral or topical), resulting in heterogeneity in products and imprecision for specific low THC to CBD ratio product types.

^cNewly included study evaluated two different plant-derived, sublingual, low THC to CBD ratio products.

Summary of Findings Tables

The KQs for this review focus on the benefits (KQ1) and harms (KQ2) of cannabinoids for treating chronic pain, as well as the benefits (KQ3) and harms (KQ4) of other PBCs, such as kratom, for treating chronic pain. Tables 3 and 4 summarize benefits and harms of cannabinoids, based on evidence reviewed to date. No evidence was available for other PBCs.

Table 3. Key Question 1: Benefits of cannabinoids for chronic pain compared with placebo in the short term (4 weeks to <6 months)

Product, THC to CBD Ratio Product	Pain Response Effect Size (N Studies) [SOE]	Pain Severity Effect Size (N Studies) [SOE]	Function Effect Size (N Studies) [SOE]
Comparable THC/CBD - Extracted From Whole Plant, Oromucosal Spray	Potential effect (4)ª [+]	Small effect (7) [++]	Small effect (6) [++]
High THC – Synthetic, Oral	Insufficient (2)	Small effect (7) [+]	No effect (4) [+]
High THC – Extracted From Whole Plant, Oral	No evidence	Insufficient (2)	Insufficient (1)
Low THC – Topical CBD, Extracted From Whole Plant	No evidence	Insufficient (1)	No evidence
Low THC – Oral CBD, Synthetic	No evidence	Insufficient (1)	Insufficient (1)
Low THC – Oral CBD or CBD/THC, Unclear If Synthetic or Extracted From Whole Plant	Insufficient (1)	Insufficient (1)	Insufficient (1)
Low THC – Sublingual CBD/THC, Extracted From Whole Plant	No evidence	Insufficient <mark>(1 new)</mark> °	No evidence
Other Cannabinoids – CBDV, Oral	Insufficient (1)	Insufficient (1)	No evidence
Whole-Plant Cannabis (12% THC) ^b	No evidence	Insufficient (1)	No evidence

Abbreviations: CBD = cannabidiol; CBDV = cannabidivarin; SOE = strength of evidence; THC = tetrahydrocannabinol.

^a Potential effect: SOE of low or higher; findings indicate at least a small magnitude of effect but not statistically significant. ^b Comparison was "usual care."

^c Text is bolded to indicate that the strength of evidence has changed.

Text is bolded to indicate that the strength of evidence has changed. Text that is red indicates that a new study has been added. Color is used for visual emphasis only.

Effect size: None (i.e., no effect/no statistically significant effect), small, moderate, or large increased benefit; SOE: [+] = low,

[++] = moderate, [+++] = high.

Table 4. Key Question 2: Harms of	cannabinoids for chronic pain compared with placebo in the
short term (4 weeks to <6 months)	

Product/THC to CBD Ratio	WAE Effect Size (N Studies) [SOE]	SAE Effect Size (N Studies) [SOE]	Dizziness Effect Size (N Studies) [SOE]	Nausea Effect Size (N Studies) [SOE]	Sedation Effect Size (N Studies) [SOE]
Comparable THC/CBD – Extracted From Whole Plant, Oromucosal Spray	No effect (5) [+]	No effect (3) [+]	Large effect (6) [+]	Moderate effect (6) [+]	Large effect (6) [+]
High THC – Synthetic, Oral	Potential effect ^a (5) [+]	Insufficient (1)	Large effect (3) [++]	Potential effect ^a (3) [+]	Moderate effect (4) [+]
High THC – Extracted From Whole Plant, Oral	Large effect (1) [+]	Insufficient (1)	Large effect (1) [+]	No evidence	No evidence
Low THC – Topical CBD, Extracted From Whole Plant	No evidence	No evidence	No evidence	No evidence	No evidence
Low THC – Oral CBD, Synthetic	Insufficient (1)	Insufficient (1)	No evidence	No evidence	No evidence

Product/THC to CBD Ratio	WAE Effect Size (N Studies) [SOE]	SAE Effect Size (N Studies) [SOE]	Dizziness Effect Size (N Studies) [SOE]	Nausea Effect Size (N Studies) [SOE]	Sedation Effect Size (N Studies) [SOE]
Low THC – Oral CBD or CBD/THC, Unclear If Synthetic or Extracted From Whole Plant	Insufficient (1)	Insufficient (1)	Insufficient (1)	Insufficient (1)	Insufficient (1)
Low THC – Sublingual CBD/THC, Extracted from Whole Plant	Insufficient (1 new) ^c	Insufficient (1 new) ^c	No evidence	No evidence	No evidence
Other Cannabinoids – CBDV, Oral	Insufficient (1)	Insufficient (1)	No evidence	No evidence	No evidence
Whole-Plant Cannabis (12% THC) ^b	Insufficient (1)	Insufficient (1)	Insufficient (1)	Insufficient (1)	Insufficient (1)

Abbreviations: CBD = cannabidiol; CBDV = cannabidivarin; SAE = serious adverse event; SOE = strength of evidence; THC = tetrahydrocannabinol; WAE = withdrawal due to adverse event.

^a Potential effect: SOE of low or higher, findings indicate at least a small magnitude of effect but not statistically significant.

^b Comparison was "usual care."

^c Text is bolded to indicate that the strength of evidence has changed.

Text that is red indicates that a new study has been added. Color is used for visual emphasis only.

Effect size: None (i.e., no effect/no statistically significant effect), small, moderate, or large increased risk; SOE: [+] = low, [+++] = moderate, [+++] = high.

Background

Chronic pain is defined as pain lasting longer than 3 to 6 months or past normal time for tissue healing,^{3,4} and it affects approximately 100 million people in the United States.⁵ Chronic pain adversely affects physical and mental functioning, productivity, and quality of life, and is often refractory to treatment and associated with substantial costs.⁶⁻⁸

While opioids are often prescribed for chronic pain, a recent series of systematic reviews found that opioids,⁹ several nonopioid drugs,¹⁰ and some nonpharmacologic treatments¹¹ have small to moderate effects on pain and function, but also frequent adverse effects and some less frequent but serious ones. The 2016 Centers for Disease Control and Prevention *Guideline for Prescribing Opioids for Chronic Pain* recommends that nonopioid therapy is preferred for treatment of chronic pain.^{3,4} The limited efficacy of opioids and the ongoing opioid crisis drive a search for alternative pain treatments, including PBCs such as cannabis and related compounds, as some data suggest they may have analgesic properties.¹²

The term *cannabinoid* refers to a group of closely related compounds that are active in cannabis, with the two main cannabinoid compounds being THC and CBD. THC has demonstrated analgesic properties,^{13,14} although its psychoactive effects and abuse potential may limit its suitability as an analgesic. CBD may also have some analgesic or anti-inflammatory properties and is thought to be less intoxicating and not addictive.^{15,16} While not derived from plants, two synthetic cannabinoid products, dronabinol (a synthetic THC) and nabilone (a THC analog), have also been studied for treating chronic pain. Other PBCs with effects similar to opioids or cannabis, such as kratom, have been considered to treat chronic pain. These may also have serious harms, including dependence, addiction, and physiological withdrawal potential.¹⁷

Although the original review and prior surveillance reports and update focused on chronic pain in adults, subacute pain and adolescents are also relevant. Subacute pain, often defined as pain lasting for 4 to 12 weeks, represents a transitional state between acute (<4 weeks) pain, which often resolves, and chronic pain, which is more likely to persist.¹⁸ Effective treatments for reducing the likelihood that subacute pain will become chronic are also needed. Adolescents also experience chronic pain and have a high prevalence of cannabis use (recreational or medical^{19,20}).

Four KQs guide the review:

KQ1: In adults or adolescents with chronic or subacute pain, what are the benefits of cannabinoids for treatment of chronic or subacute pain?

KQ2: In adults or adolescents with chronic or subacute pain, what are the harms of cannabinoids for treatment of chronic or subacute pain?

KQ3: In adults or adolescents with chronic or subacute pain, what are the benefits of kratom or other plant-based substances for treatment of chronic or subacute pain?

KQ4: In adults or adolescents with chronic or subacute pain, what are the harms of kratom or other plant-based substances for treatment of chronic or subacute pain?

The protocol for the systematic review can be found on the AHRQ website (<u>https://effectivehealthcare.ahrq.gov/products/plant-based-chronic-pain-treatment/protocol</u>) and on the PROSPERO systematic reviews registry (registration number CRD42021229579). The scope of the review was reviewed with a Technical Expert Panel (TEP) following the prior annual update, including considerations for expansion of scope.²¹ With TEP input, the protocol was amended to include adolescents and subacute pain. An updated protocol was submitted to PROSPERO,²² and the title, Key Questions, and inclusion and exclusion criteria were revised to reflect the changes.

Methods

In brief, we searched Ovid[®] MEDLINE[®], PsycINFO[®], Embase[®], the Cochrane Library, and SCOPUS[®] databases monthly through mid-April 2023 for studies of patients with chronic or subacute pain with at least 4 weeks of treatment or followup. For the period covered by this surveillance report (late January to mid-April 2023), one new study comparing two low THC to CBD ratio products versus placebo for chronic pain and one prospective cohort study evaluating patients with chronic pain from the UK Medical Cannabis Registry were identified.^{1,2} We selected studies of cannabis, kratom, and similar PBCs compared with a placebo, no treatment, each other, or another treatment. Pain is the primary outcome for this review; details on the search strategies are in <u>Appendix A</u>. Briefly, we included RCTs and observational studies with a concurrent control group with a minimum of 4 weeks' followup assessing cannabis and other plant-based interventions in adults or adolescents with noncancer chronic or subacute pain. The full inclusion and exclusion criteria for all primary and secondary outcomes for this report are in <u>Appendix B</u>.

We followed the methods guidance in the AHRQ Methods Guide,²³ and abstracted key information and conducted risk-of-bias assessments using the Cochrane Back Pain Group's version of the Cochrane guidance for randomized trials²⁴ and criteria developed by the U.S. Preventive Services Task Force²⁵ for observational studies for each included study. Our methods included categorizing studies based on the duration of followup as short-, intermediate-, and long-term. Studies that assessed the cannabinoids THC and/or CBD were grouped based on their THC to CBD ratios and categorized as high THC to CBD ratio, comparable THC to CBD ratio, and low THC to CBD ratio (Table 5). We also grouped studies by whether the product was a whole-plant product (cannabis), cannabinoids extracted or purified from a whole plant, or synthetic. When studies were similar enough to provide a meaningful combined estimate, we conducted meta-analyses using the profile likelihood random effects model and assessed between-study heterogeneity using Cochran's Q statistic chi square and the I² test for inconsistency. Magnitude of benefit was categorized into no effect or small, moderate, and large effects. (See <u>Appendix B</u>, Table B-2.)

Intervention Category (Definition)	Source	Possible Derivatives	Example Products	U.S. Availability
	Synthetic	Synthetic THC (100% THC or analog)	Dronabinol (Marinol [®]) or nabilone (Cesamet [®])	Available via prescription ^a
	Synthetic	Purified from whole-plant with close to 100% THC	Purified dronabinol (Namisol [®]) ^{b,c}	Not available in the U.S.
High THC (THC to CBD ratio equals ≥2:1 ratio)	Plant- based	Commercially marketed product extracted from whole-plant with known high ratio of THC/CBD	THC/CBD extracts with high THC/CBD ratio	Unknown – may be available at dispensaries where allowed
	Plant- based	Whole-plant with known high concentration of THC	Whole-plant cannabis with known high THC concentration	Unknown – may be available at dispensaries where allowed
Comparable THC to	Plant- based	Extracted from whole- plant with comparable ratio of THC/CBD	Nabiximols (Sativex [®]) ^d	Not available in the U.S.
CBD (THC to CBD ratio is <2:1 and >1:2)	Plant- based	Extracted from whole- plant with comparable ratio of THC/CBD	Oral tinctures with similar ratio of THC/CBD	Unknown – may be available at dispensaries where allowed
	Plant- based	Whole-plant with known comparable ratio of THC/CBD	Whole-plant with known comparable ratio of THC/CBD	Unknown – may be available at dispensaries where allowed
Low THC (THC to CBD ratio	Plant-	Extracted from whole plant with low ratio of	CBD topical or oral	Unknown – may be available at dispensaries
equals ≤1:2)	based	THC/CBD		where allowed
Low THC (THC to CBD ratio is ≤1:2)	Synthetic	Synthetic CBD	CBD oral tablets	Unknown

Table 5. Organizing pr	inciple of c	annabis-related studies	based on ratios of T	THC to CBD
Intervention Cotonom				

Intervention Category (Definition)	Source	Possible Derivatives	Example Products	U.S. Availability	
Whole-Plant Cannabis Products			Cannabis flowers,	Unknown – may be	
(THC to CBD ratio categorized based on information provided [potentially unknown])	Plant- based	Whole-plant products	resins, buds, leaves, hashish	available at dispensaries where allowed.	
Other Cannabinoids (Cannabinoids other than THC or CBD)	Plant- based	Extracted from whole- plant	Cannabidivarin (CBDV) extracted oil (oral)	Unknown – may be available at dispensaries where allowed	

Abbreviations: CBD = cannabidiol; FDA = Food and Drug Administration; THC = tetrahydrocannabinol.

^aThese products are approved by the FDA for non-pain indications (anorexia related to HIV infection, nausea related to chemotherapy).

^b Namisol[®] is chemically identical to dronabinol, and is therefore grouped together with synthetic dronabinol.

^c Manufactured in The Netherlands, may be available in some European countries. Not currently FDA-approved.

^d Manufactured and available in Canada and some European countries; not FDA-approved.

A more detailed discussion of methods can be found in the protocol and in Appendix B.

Results to Date

Results Overview

Across all of the monthly literature searches to date, 5,179 citations were screened, from which we included 33 studies.^{1,2,26-56} For the period covered by this surveillance report, 94 citations were screened

Two new studies (n=776) met inclusion criteria for this update period. <u>Appendix C</u> contains a list of included studies, and a literature flow diagram can be found in <u>Appendix D</u>. <u>Appendix E</u> contains summary tables of individual study data for all included studies and the results of synthesis (i.e., forest plots). <u>Appendix F</u> contains detailed evidence tables of included studies, and <u>Appendix G</u> contains risk-of-bias assessments. <u>Appendix H</u> contains details on strength-of-evidence ratings. A list of studies excluded after reviewing the full manuscripts can be found in <u>Appendix I</u> along with reasons for their exclusion. <u>Appendix J</u> provides a funnel plot of high THC ratio studies included in the meta-analysis for pain severity.

Table 6 summarizes the characteristics of included RCTs, and Table 7 summarizes the characteristics of included observational studies.

Characteristic	THC/CBD	THC	Synthetic THC	CBD	CBDV
THC to CBD	Comparable ^a	High	High	Low	NA - other
Ratio		-	-		cannabinoids
Source	Plant-extracted	Plant-extracted	Synthetic	Plant-extracted	Plant-extracted
			Nabilone	(2)	
			Dronabinol	Synthetic (1)	
			Dronabinol/Namisol ^{®b}	Unclear (1)	
N Studies	7	2	10	4 ^c (1 topical, 3	1
				oral)	

Table 6. Characteristics of included randomized controlled trials to date

Characteristic	THC/CBD	THC	Synthetic THC	CBD	CBDV
Comparator (Study Count)	Placebo (7)	Placebo (2)	Placebo (7); Ibuprofen (1); Diphenhydramine (1); Dihydrocodeine (1); Low-THC to CBD ratio (CBD or Dronabinol/CBD ^d) (1)	Placebo (3); Dronabinol ^d (1); Dronabinol/CBD ^d (1) Low-THC to CBD (1:6) (1)	Placebo
Route of Administration, Formulation (Study Count)	Sublingual oromucosal spray, 2.7 mg THC/2.5 mg CBD per 100 mcl	Sublingual oil drops, 24 mg/ml THC/0.51 mg/ml CBD (1) Oral capsule, 2.5 mg THC/0.8 - 1.8 mg CBD extract (1)	Nabilone oral 0.25 mg capsule (1); Nabilone oral 0.5 mg capsule (5); Dronabinol 2.5 mg oral capsule (2); Dronabinol 5 mg oral capsule (1); Namisol ^{®a} 3 mg oral tablet (1)	Topical oil, 83 mg CBD/fluid ounce (1), Oral tablet, 10 mg CBD (1) Oral capsule, 5 mg CBD (1) Oral capsule, 5 mg CBD/2.5 mg dronabinol (1) ^d Sublingual oil, 24.5 mg/mL THC, 147 mg/mL CBD (1)	Oral oil, 50 mg/ml CBDV
Dosing Regimen	Final mean dose 23 mg THC/21 mg CBD daily.	Sublingual drops: 1.2 mg daily, titrated. Final dose 4.4 mg THC daily. Capsule: 2.5 - 12.5 mg THC twice daily, titrated. Final dose NR Oral oil: 1.2 mg daily	Nabilone 0.25 - 2 mg twice daily, titrated. Final mean dose 1.84 Dronabinol capsules: 2.5 - 15 mg once or twice daily, titrated. Final dose range 15 - 25 mg/day Namisol ^{®a} tablet: 3 - 8 mg 3 times daily, titrated. Final dose NR.	Topical oil: applied locally 1- 4 times/day (volume/dose, final dose NR). Oral tablet: 10 mg daily, titrated (max 3 times daily) Final dose NR. Oral CBD capsule: 5 mg twice daily, titrated. Final median dose 50 mg CBD daily. Oral dronabinol/CBD capsule: 2.5 mg THC/5 mg CBD twice daily, titrated. Final median dose 15 mg THC/30 mg CBD daily. Sublingual oil, titrated to max daily dose of 6 drops 3 times daily (15 mg THC/90 mg CBD)	400 mg CBDV daily. Final dose NR.

Characteristic	THC/CBD	THC	Synthetic THC	CBD	CBDV
Risk of Bias	29% high, 57% moderate, 14% low	50% moderate, 50% low	20% high, 40% moderate, 40% low	50% high, 25% moderate, 25% low	100% moderate
Total Randomized	882	297	592	267	34
Age, Mean Years	53	52	53	65	50
Female, %	66%	89%	61%	40%	3%
Non-White, ^e %	1.6% (2)	1% (1)	5.4% (3)	NR	NR
Primary Pain Type (Study Count)	NPP (6); Inflammatory arthritis (1)	NPP (1); Fibromyalgia (1)	NPP (7); Fibromyalgia (1); Headache (1); Visceral pain (1)	NPP (2); OA (1); Unspecified (1)	NPP (1)
Baseline Pain Score, Mean (Range) ^f	6.59 (5.3 to 7.3)	8.47 (8.25 to 8.67)	6.48 (4 to 8.1) ⁹	5.87 (4.67 to 7.4) ^h	6.28 (6.12 to 6.44)
Study Duration	4 to 15 weeks	8 to 12 weeks	4 to 47 weeks	4 to 16 weeks	4 weeks

 Study Duration
 4 to 15 weeks
 8 to 12 weeks
 4 to 47 weeks
 4 to 16 weeks
 4 weeks

 Abbreviations: CBD = cannabidiol; CBDV = cannabidivarin; NA = not applicable; NPP = neuropathic pain; NR = not reported;

 OA
 to 16 weeks
 4 to 16 weeks
 4 weeks

OA = osteoarthritis; RCT = randomized controlled trial; THC = tetrahydrocannabinol.

^a All products were nabixiomols.

^b Namisol[®] is a purified, plant-based product, but grouped with synthetic dronabinol because they are chemically identical.

^c Includes one new RCT for this review.

 $^{\rm d}$ One study compared THC to CBD, CBD/THC, and placebo.

e(n) = number of studies reporting this characteristic at baseline.

^f Scores were standardized to a 0 to 10 scale.

^g Weighted mean includes median scores for 1 study (6 vs. 6).

^h Weighted mean includes median scores for 1 study (5.2 vs. 6.1).

Table 7. Characteristics of included observational studies to date

				THC/CBD Versus	THC/CBD Versus
Characteristic	THC/CBD ^a	THC	Synthetic THC	Synthetic THC	LAOs
THC to CBD	Unclear	High	High	Comparable vs.	Comparable
Ratio		-		high	
Source	Any cannabis product (patient's choice)	Plant-based	Synthetic (nabilone)	Plant-based vs. synthetic	Plant-based
N Studies	5	2	1	1	1 ^b
Comparator (Study Count)	No cannabis use (3); usual care (1); no medical cannabis authorization (1)	Usual care (1); cannabis based oils; cannabis based oils + dried flower (1)	Gabapentin only; gabapentin + nabilone (1)	Active comparator; oral mucosal spray vs. dronabinol	Long-acting opioids (MME 69.4 [SD 38.9] mg/day)

Characteristic	THC/CBD ^a	тнс	Synthetic THC	THC/CBD Versus Synthetic THC	THC/CBD Versus LAOs
Route of Administration, Formulation	Unreported (any available allowed, patient's choice)	Whole-plant cannabis, "certified 12.5% THC" (CBD NR) route determined by patient: smoking 27%, oral 8%, vaporization 4%, combination 61% (1) Inhaled whole plant cannabis 20% THC, 0% CBD (trace amount); THC, CBD, or combination sublingual/oral oils or capsules	Nabilone 0.5 mg oral capsule	Nabiximols sublingual oromucosal spray, 2.7 mg THC/2.5 mg CBD per 100 mcl Dronabinol oral capsule (strength NR)	Nabiximols sublingual oromucosal spray, 2.7 mg THC/2.5 mg CBD per 100 mcl Oral long-acting opioids (dose varied)
Dosing Regimen	None specified. Final dose NR	 (1) None specified; titrated to max dose 5 g/day. Final median dose 2.5 g/day (1) Dried flower: Median 125 mg THC/2.5 mg CBD/24 hours; cannabis oil: median 20 mg CBD/10 mg CBD/24 hours; dried flower + cannabis oil: median 20 mg CBD/120 mg CBD/120 mg THC/24 hours (1) 	None specified; final mean dose 3 mg/day	None specified; final mean dose 16.6/15.4 mg THC/CBD/day vs. 17.2 mg THC/day	None specified; based on individual patient needs; final mean dose 16.7/15.5 mg THC/CBD/day vs. MME 69.4 mg/day
ROB	60% high, 40% moderate	50% high, 50% moderate	100% moderate	100% moderate	100% moderate
N Total	12,508	1,192	156	674	1,310
Age, Mean Years	53	48	61	46	51
Female, %	55%	55%	59%	57%	57%
% Non-White (Study Count)	54% (1); NR (4)	NR	NR	NR	NR
Primary Pain Type(s)	Mixed musculoskeletal, chronic non- cancer pain	Chronic non- cancer pain	NPP	Peripheral NPP	Peripheral neuropathic back pain
Baseline Pain Score, Mean (Range) ^c	5.35 (4.56 to 8.00)	6.68 (6.35 to 7.0)	4.98 (4.58 to 5.31)	4.4 (4.39 to 4.41)	4.32 (4.31 to 4.33)

Characteristic	THC/CBD ^a	тнс	Synthetic THC	THC/CBD Versus Synthetic THC	THC/CBD Versus LAOs
Study Duration, Weeks (Range)	12 to 208	24 to 52	26	24	24

Abbreviations: CBD = cannabidiol; LAO = long-acting opioid; MME = morphine milligram equivalents; NPP = neuropathic pain; NR = not reported; ROB = risk of bias; SD = standard deviation; THC = tetrahydrocannabinol.

^a Patients could choose any medicinal product they preferred in these studies.

^b Includes one new study for this review.

^c Scores were standardized to a 0 to 10 scale.

KQs 1 and 2: Benefits and Harms of Cannabis

The findings for intervention effects and the strength of evidence (SOE) are summarized in Tables 3 and 4. One small new RCT (n=15) by Bassat et al. conducted in Israel evaluated two low THC to CBD ratio products versus placebo.^{1,2} The intervention was whole-plant extracted sublingual THC:CBD oil [1:6 ratio] versus the same product with further purification (\geq 97% pure CBD and THC). Maximum daily doses were 18 drops per day (15 mg THC/90 mg CBD). Median age was 64, and 13 percent were female; specific pain conditions were not reported. Race was also not reported. The study used a crossover design consisting of two 16-week treatment periods with a 2-week washout in between. The trial was rated high risk of bias due to unclear randomization and allocation concealment methods, unclear blinding of outcomes assessors, and high overall and differential attrition; results were not reported for the initial (prior to crossover) period. Estimates for pain severity at the end of treatment were imprecise with no statistically significant between-group differences; the proportion of patients experiencing 30-percent or more improvement in pain and function were not evaluated. There were too few cases of serious adverse events or withdrawals due to adverse events to evaluate these outcomes; specific harms were not reported.

One new moderate risk of bias prospective cohort study (n=761), by Tait et al., evaluated patients with chronic pain (mixed conditions) from the UK Medical Cannabis Registry.² It compared an inhaled dry flower, sublingual cannabis oils, or both. The oils varied in composition, with some containing only THC or CBD, and some with THC:CBD ratios that ranged from 1:1 to 1:20. The mean age was 47, and 47 percent were female. Race was not reported. In multivariate analysis, there were no differences between arms in likelihood of experiencing improvement in Brief Pain Inventory [BPI] pain severity (adjusted odds ratio [OR] 1.36, 95% confidence interval [CI] 0.51 to 3.65 for combination versus oils and 2.12, 95% CI 0.28 to 16.11 for dried flower versus oils) or interference (adjusted OR 1.90, 95% CI 0.68 to 5.29 for combination versus oils and 1.61, 95% CI 0.21 to 12.18 for dried flower versus oils), though estimates were imprecise and favored the combination and dried flower over oils alone. There was no difference between the combination versus oils alone in likelihood of experiencing an adverse event, though this estimate was also imprecise (adjusted OR 1.00, 95% CI 0.64 to 1.58).

In the prior update, the SOE for low THC to CBD ratio products was insufficient, based on three trials that evaluated different types of products (topical, plant-extracted,⁴⁸ oral, synthetic,⁵⁴ or oral, unknown origin²⁶). With the addition of one new RCT, the updated SOE remains insufficient, with additional heterogeneity in interventions, some inconsistency, and imprecision in estimates for specific low THC to CBD products. The SOE for direct comparisons of different cannabis products also remains insufficient following the addition of one new observational study that evaluated previously unreviewed products, and had methodological limitations and imprecise estimates.

Conclusion

One small new placebo-controlled randomized trial of low THC to CBD products and one new prospective cohort study with methodological limitations comparing different cannabis products were identified for this surveillance report. For low THC to CBD ratio products, the SOE remained insufficient after adding the new trial, with additional heterogeneity in products and mode of administration, some inconsistency, and imprecision in estimates for specific products. For head-to-head comparisons of cannabis products, the new cohort study found no clear differences between previously unreviewed products and the SOE also remained insufficient.

Overall, including previously reviewed evidence, this surveillance report found that evidence on cannabis-related interventions remains restricted to short-term outcomes, primarily in patients with neuropathic pain. Improvement in pain appears small with high and comparable THC to CBD ratio products. Compared with placebo, cannabis-related interventions are associated with greater risk of common adverse events (dizziness, nausea, sedation) and study withdrawal due to adverse events. No studies evaluated adolescents or persons with subacute pain, and evidence for other interventions, including kratom, was insufficient or not found. Additional studies are needed to improve confidence in these findings and to provide evidence on longer term followup, other outcomes, and other interventions, including whole-plant cannabis.

Next Report

The next surveillance report update is scheduled for fall 2023.

References

- Kliuk-Ben Bassat O, Schechter M, Ashtamker N, et al. Medical cannabis for pain management in patients undergoing chronic hemodialysis: randomized, doubleblind, cross-over, feasibility study. Clinical Kidney Journal. 2023;16(4):701-10. doi: 10.1093/ckj/sfac275.
- Tait J, Erridge S, Holvey C, et al. Clinical outcome data of chronic pain patients treated with cannabis-based oils and dried flower from the UK Medical Cannabis Registry. Expert Rev Neurother. 2023:1-11. doi: 10.1080/14737175.2023.2195551.
- Dowell D, Haegerich TM, Chou R. CDC guideline for prescribing opioids for chronic pain– United States, 2016. JAMA. 2016 Apr 19;315(15):1624-45. doi: 10.1001/jama.2016.1464. PMID: 26977696.
- Dowell D, Haegerich TM, Chou R. CDC guideline for prescribing opioids for chronic pain - United States, 2016. MMWR Recomm Rep. 2016 Mar 18;65(1):1-49. doi: 10.15585/mmwr.rr6501e1. PMID: 26987082.
- Dahlhamer J, Lucas J, Zelaya C, et al. Prevalence of chronic pain and high-impact chronic pain among adults — United States, 2016. . MMWR Morb Mortal Wkly Rep. 2018;67(36):1001-6. doi: 10.15585/mmwr.mm6736a2. PMID: 30212442.
- Institute of Medicine (US) Committee on Advancing Pain Research C, and Education. Relieving pain in America: a blueprint for transforming prevention, care, education, and research. Washington, DC: National Academies Press; National Academy of Sciences; 2011.
- Ballantyne JC, Shin NS. Efficacy of opioids for chronic pain: a review of the evidence. The Clinical Journal of Pain. 2008 Jul-Aug;24(6):469-78. doi: 10.1097/AJP.0b013e31816b2f26. PMID: 18574357.
- Eriksen J, Sjogren P, Bruera E, et al. Critical issues on opioids in chronic non-cancer pain: an epidemiological study. Pain. 2006 Nov;125(1):172-9. doi: 10.1016/j.pain.2006.06.009. PMID: 16842922.

- Chou R, Hartung D, Turner J, et al. Opioid treatments for chronic pain. Rockville (MD): Agency for Healthcare Research and Quality (US); 2020 Apr. Report No.: 20-EHC011. PMID: 32338848.
- McDonagh MS, Selph SS, Buckley DI, et al. Nonopioid pharmacologic treatments for chronic pain. Rockville, MD: Agency for Healthcare Research and Quality; 2020. doi: 10.23970/AHRQEPCCER228. PMID: 32338847.
- Skelly AC, Chou R, Dettori JR, et al. Noninvasive nonpharmacological treatment for chronic pain: a systematic review update. Rockville, MD: Agency for Healthcare Research and Quality; 2020. doi: 10.23970/AHRQEPCCER227. PMID: 32338846.
- Stockings E, Campbell G, Hall WD, et al. Cannabis and Cannabinoids for the treatment of people with chronic noncancer pain conditions: a systematic review and meta-analysis of controlled and observational studies. Pain. 2018 Oct;159(10):1932-54. doi: 10.1097/j.pain.00000000001293. PMID: 29847469.
- Elikkottil J, Gupta P, Gupta K. The analgesic potential of cannabinoids. J Opioid Manag. 2009 Nov-Dec;5(6):341-57. doi: 10.5055/jom.2009.0034. PMID: 20073408.
- Whiting PF, Wolff RF, Deshpande S, et al. Cannabinoids for medical use: a systematic review and meta-analysis. Jama. 2015 Jun 23-30;313(24):2456-73. doi: 10.1001/jama.2015.6358. PMID: 26103030.
- Vučković S, Srebro D, Vujović KS, et al. Cannabinoids and pain: new insights from old molecules. Front Pharmacol. 2018 Nov 13;9:1259. doi: 10.3389/fphar.2018.01259. PMID: 30542280.
- 16. Morales P, Hurst DP, Reggio PH. Molecular targets of the phytocannabinoids: a complex picture. Phytocannabinoids. 2017:103-31.
- 17. White CM. Pharmacologic and clinical assessment of Kratom: an update. Am J Health-Syst Pharm. 2019 Nov 13;76(23):1915-25. doi: 10.1093/ajhp/zxz221. PMID: 31626272.

- Marin TJ, Van Eerd D, Irvin E, et al. Multidisciplinary biopsychosocial rehabilitation for subacute low back pain. Cochrane Database Syst Rev. 2017 Jun 28;6(6):Cd002193. doi: 10.1002/14651858.CD002193.pub2. PMID: 28656659.
- Feldman DE, Nahin RL. National Estimates of Chronic Musculoskeletal Pain and Its Treatment in Children, Adolescents, and Young Adults in the United States: Data From the 2007-2015 National Ambulatory Medical Care Survey. J Pediatr. 2021 Jun;233:212-9.e1. doi: 10.1016/j.jpeds.2021.01.055. PMID: 33524388.
- Zuckermann AME, Battista KV, Bélanger RE, et al. Trends in youth cannabis use across cannabis legalization: Data from the COMPASS prospective cohort study. Prev Med Rep. 2021 Jun;22:101351. doi: 10.1016/j.pmedr.2021.101351. PMID: 33816088.
- Chou R, Ahmed AY, Iyer S, et al. Living Systematic Reviews: Practical Considerations for the Agency for Healthcare Research and Quality Evidencebased Practice Center Program from Year 2 of an Ongoing Review [White Paper in Progress]. In: Quality AfHRa, editor: Pacific Northwest Evidence-based Practice Center; 2023.
- Chou R, Ahmed AY, Morasco BJ, et al. Living Systematic Review on Cannabis and Other Plant-based Treatments for Chronic and Subacute Pain. PROSPERO 2021 CRD42021229579 Available from: . https://www.crd.york.ac.uk/prospero/display _record.php?ID=CRD42021229579.
- Methods guide for effectiveness and comparative effectiveness reviews. Rockville, MD: Agency for Healthcare Research and Quality; 2018. https://effectivehealthcare.ahrq.gov/products /collections/cer-methods-guide. Accessed June 1, 2019.
- Higgins JP, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011 Oct 18;343:d5928. doi: 10.1136/bmj.d5928. PMID: 22008217.

- 25. Berger ML, Mamdani M, Atkins D, et al. Good research practices for comparative effectiveness research: defining, reporting and interpreting nonrandomized studies of treatment effects using secondary data sources: the ISPOR Good Research Practices for Retrospective Database Analysis Task Force Report--part I. Value Health. 2009 Nov-Dec;12(8):1044-52. doi: 10.1111/j.1524-4733.2009.00600.x. PMID: 19793072.
- Zubcevic K, Petersen M, Bach FW, et al. Oral capsules of tetra-hydro-cannabinol (THC), cannabidiol (CBD) and their combination in peripheral neuropathic pain treatment. Eur J Pain. 2022doi: 10.1002/ejp.2072. PMID: 36571471.
- 27. Bestard JA, Toth CC. An open-label comparison of nabilone and gabapentin as adjuvant therapy or monotherapy in the management of neuropathic pain in patients with peripheral neuropathy. Pain Pract. 2011 Jul-Aug;11(4):353-68. doi: 10.1111/j.1533-2500.2010.00427.x. PMID: 21087411.
- Blake DR, Robson P, Ho M, et al. Preliminary assessment of the efficacy, tolerability and safety of a cannabis-based medicine (Sativex) in the treatment of pain caused by rheumatoid arthritis. Rheumatology (Oxford). 2006 Jan;45(1):50-2. PMID: 16282192.
- Chaves C, Bittencourt PCT, Pelegrini A. Ingestion of a THC-Rich Cannabis Oil in People with Fibromyalgia: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Pain Med. 2020;21(10):2212-8. doi: 10.1093/pm/pnaa303. PMID: 33118602.
- de Vries M, van Rijckevorsel DCM, Vissers KCP, et al. Tetrahydrocannabinol Does Not Reduce Pain in Patients With Chronic Abdominal Pain in a Phase 2 Placebocontrolled Study. Clin Gastroenterol Hepatol. 2017 Jul;15(7):1079-86.e4. doi: 10.1016/j.cgh.2016.09.147. PMID: 27720917.
- Eibach L, Scheffel S, Cardebring M, et al. Cannabidivarin for HIV-Associated Neuropathic Pain: A Randomized, Blinded, Controlled Clinical Trial. Clin Pharmacol Ther. 2020 Aug 08;109(4):1055-62. doi: 10.1002/cpt.2016. PMID: 32770831.

- Frank B, Serpell MG, Hughes J, et al. Comparison of analgesic effects and patient tolerability of nabilone and dihydrocodeine for chronic neuropathic pain: randomised, crossover, double blind study. BMJ. 2008 Jan 26;336(7637):199-201. doi: 10.1136/bmj.39429.619653.80. PMID: 18182416.
- 33. Langford RM, Mares J, Novotna A, et al. A double-blind, randomized, placebo-controlled, parallel-group study of THC/CBD oromucosal spray in combination with the existing treatment regimen, in the relief of central neuropathic pain in patients with multiple sclerosis. J Neurol. 2013 Apr;260(4):984-97. doi: 10.1007/s00415-012-6739-4. PMID: 23180178.
- Lynch ME, Cesar-Rittenberg P, Hohmann AG. A double-blind, placebo-controlled, crossover pilot trial with extension using an oral mucosal cannabinoid extract for treatment of chemotherapy-induced neuropathic pain. J Pain Symptom Manage. 2014 Jan;47(1):166-73. doi: 10.1016/j.jpainsymman.2013.02.018. PMID: 23742737.
- 35. Nurmikko TJ, Serpell MG, Hoggart B, et al. Sativex successfully treats neuropathic pain characterised by allodynia: a randomised, double-blind, placebo-controlled clinical trial. Pain. 2007 Dec 15;133(1-3):210-20. PMID: 17997224.
- Pini LA, Guerzoni S, Cainazzo MM, et al. Nabilone for the treatment of medication overuse headache: results of a preliminary double-blind, active-controlled, randomized trial. J Headache Pain. 2012 Nov;13(8):677-84. doi: 10.1007/s10194-012-0490-1. PMID: 23070400.
- 37. Rintala DH, Fiess RN, Tan G, et al. Effect of dronabinol on central neuropathic pain after spinal cord injury: a pilot study. Am J Phys Med Rehabil. 2010 Oct;89(10):840-8. doi: 10.1097/PHM.0b013e3181f1c4ec. PMID: 20855984.
- Rog DJ, Nurmikko TJ, Friede T, et al. Randomized, controlled trial of cannabisbased medicine in central pain in multiple sclerosis. Neurology. 2005 Sep 27;65(6):812-9. PMID: 16186518.

- Schimrigk S, Marziniak M, Neubauer C, et al. Dronabinol Is a Safe Long-Term Treatment Option for Neuropathic Pain Patients. Eur Neurol. 2017;78(5-6):320-9. doi: 10.1159/000481089. PMID: 29073592.
- Selvarajah D, Gandhi R, Emery CJ, et al. Randomized placebo-controlled doubleblind clinical trial of cannabis-based medicinal product (Sativex) in painful diabetic neuropathy: depression is a major confounding factor. Diabetes Care. 2010 Jan;33(1):128-30. doi: 10.2337/dc09-1029. PMID: 19808912.
- 41. Serpell M, Ratcliffe S, Hovorka J, et al. A double-blind, randomized, placebocontrolled, parallel group study of THC/CBD spray in peripheral neuropathic pain treatment. Eur J Pain. 2014 Aug;18(7):999-1012. doi: 10.1002/j.1532-2149.2013.00445.x. PMID: 24420962.
- 42. Skrabek RQ, Galimova L, Ethans K, et al. Nabilone for the treatment of pain in fibromyalgia. J Pain. 2008 Feb;9(2):164-73. PMID: 17974490.
- 43. Toth C, Mawani S, Brady S, et al. An enriched-enrolment, randomized withdrawal, flexible-dose, double-blind, placebo-controlled, parallel assignment efficacy study of nabilone as adjuvant in the treatment of diabetic peripheral neuropathic pain. Pain. 2012 Oct;153(10):2073-82. doi: 10.1016/j.pain.2012.06.024. PMID: 22921260.
- 44. Turcotte D, Doupe M, Torabi M, et al. Nabilone as an adjunctive to gabapentin for multiple sclerosis-induced neuropathic pain: a randomized controlled trial. Pain Med. 2015 Jan;16(1):149-59. doi: 10.1111/pme.12569. PMID: 25288189.
- 45. Vigil JM, Stith SS, Adams IM, et al. Associations between medical cannabis and prescription opioid use in chronic pain patients: A preliminary cohort study. PLoS ONE. 2017;12(11):e0187795. doi: 10.1371/journal.pone.0187795. PMID: 29145417.
- 46. Ware MA, Wang T, Shapiro S, et al. Cannabis for the Management of Pain: Assessment of Safety Study (COMPASS). J Pain. 2015 Dec;16(12):1233-42. doi: 10.1016/j.jpain.2015.07.014. PMID: 26385201.

- 47. Wissel J, Haydn T, Muller J, et al. Low dose treatment with the synthetic cannabinoid Nabilone significantly reduces spasticityrelated pain : a double-blind placebocontrolled cross-over trial. J Neurol. 2006 Oct;253(10):1337-41. PMID: 16988792.
- Xu DH, Cullen BD, Tang M, et al. The Effectiveness of Topical Cannabidiol Oil in Symptomatic Relief of Peripheral Neuropathy of the Lower Extremities. Curr Pharm Biotechnol. 2020;21(5):390-402. doi: 10.2174/1389201020666191202111534. PMID: 31793418.
- Zajicek JP, Hobart JC, Slade A, et al. Multiple sclerosis and extract of cannabis: results of the MUSEC trial. J Neurol Neurosurg Psychiatry. 2012 Nov;83(11):1125-32. doi: 10.1136/jnnp-2012-302468. PMID: 22791906.
- 50. Gruber SA, Smith RT, Dahlgren MK, et al. No pain, all gain? Interim analyses from a longitudinal, observational study examining the impact of medical cannabis treatment on chronic pain and related symptoms. Exp Clin Psychopharmacol. 2021;29(2):147-56. doi: 10.1037/pha0000435. PMID: 33764103.
- 51. Campbell G, Hall WD, Peacock A, et al. Effect of cannabis use in people with chronic non-cancer pain prescribed opioids: findings from a 4-year prospective cohort study. Lancet Public Health. 2018 Jul;3(7):e341-e50. doi: 10.1016/s2468-2667(18)30110-5. PMID: 29976328.

- 52. Lee C, Lin M, Martins KJB, et al. Opioid use in medical cannabis authorization adult patients from 2013 to 2018: Alberta, Canada. BMC Public Health.
 2021;21(1):843. doi: 10.1186/s12889-021-10867-w. PMID: 33933061.
- 53. Merlin JS, Long D, Becker WC, et al. Marijuana Use Is Not Associated With Changes in Opioid Prescriptions or Pain Severity Among People Living With HIV and Chronic Pain. J Acquir Immune Defic Syndr. 2019 06 01;81(2):231-7. doi: 10.1097/QAI.000000000001998. PMID: 30865181.
- 54. Vela J, Dreyer L, Petersen KK, et al. Cannabidiol treatment in hand osteoarthritis and psoriatic arthritis: a randomized, doubleblind placebo-controlled trial. Pain. 2021 Jun 1;163(6):1206-14. PMID: 34510141.
- 55. Ueberall MA, Vila Silvan C, Essner U, et al. Effectiveness, Safety, and Tolerability of Nabiximols Oromucosal Spray vs Typical Oral Long-Acting Opioid Analgesics in Patients with Severe Neuropathic Back Pain: Analysis of 6-Month Real-World Data from the German Pain e-Registry. Pain Med. 2022b;23(4):745-60. doi: 10.1093/pm/pnab263. PMID: 34480564.
- Ueberall MA, Essner U, Silván CV, et al. Comparison of the Effectiveness and Tolerability of Nabiximols (THC:CBD) Oromucosal Spray versus Oral Dronabinol (THC) as Add-on Treatment for Severe Neuropathic Pain in Real-World Clinical Practice: Retrospective Analysis of the German Pain e-Registry. J Pain Res. 2022a;15:267-86. doi: 10.2147/JPR.S340968. PMID: 35140513.

Authors

Roger Chou, M.D., FACP Azrah Y. Ahmed, B.A. Christina Bougatsos, M.P.H. Benjamin J. Morasco, Ph.D. Tracy Dana, M.L.S. Terran Gilbreath, M.P.H. Rongwei Fu, Ph.D.

Acknowledgments

The authors gratefully acknowledge the following individuals for their contributions to this project: Pacific Northwest Evidence-based Practice Center Professor Emerita Marian McDonagh, Pharm.D., informatician Connor Smith, M.S., for work on data visualization, and research associate and librarian Andrew Hamilton, M.L.S., all from Oregon Health & Science University; Jesse Wagner, M.A.; and Task Order Officer Suchitra Iyer, Ph.D., at the Agency for Healthcare Research and Quality.

Disclaimers

This report is based on research conducted by the Pacific Northwest Evidence-based Practice Center under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. 75Q80120D00006). The findings and conclusions in this document are those of the authors, who are responsible for its contents; the findings and conclusions do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services.

None of the investigators have any affiliations or financial involvement that conflicts with the material presented in this report.

The information in this report is intended to help healthcare decision makers—patients and clinicians, health system leaders, and policymakers, among others—make well-informed decisions and thereby improve the quality of health care services. This report is not intended to be a substitute for the application of clinical judgment. Anyone who makes decisions concerning the provision of clinical care should consider this report in the same way as any medical reference and in conjunction with all other pertinent information, i.e., in the context of available resources and circumstances presented by individual patients.

This report is made available to the public under the terms of a licensing agreement between the author and the Agency for Healthcare Research and Quality. Most AHRQ documents are publicly available to use for noncommercial purposes (research, clinical or patient education, quality improvement projects) in the United States, and do not need specific permission to be reprinted and used unless they contain material that is copyrighted by others. Specific written permission is needed for commercial use (reprinting for sale, incorporation into software, incorporation into for-profit training courses) or for use outside of the U.S. If organizational policies require permission to adapt or use these materials, AHRQ will provide such permission in writing.

AHRQ or U.S. Department of Health and Human Services endorsement of any derivative products that may be developed from this report, such as clinical practice guidelines, other quality enhancement tools, or reimbursement or coverage policies, may not be stated or implied.

AHRQ appreciates appropriate acknowledgment and citation of its work. Suggested language for acknowledgment: This work is the fourth surveillance update of a living systematic evidence report, Living Systematic Review on Cannabis and Other Plant-Based Treatments for Chronic Pain: 2022 Update, by the Evidence-based Practice Center Program at the Agency for Healthcare Research and Quality (AHRQ) following the second yearly full systematic review.

Suggested citation: Chou R, Ahmed AY, Bougatsos C, Morasco BJ, Dana T, Gilbreath T, Fu R. Living Systematic Review on Cannabis and Other Plant-Based Treatments for Chronic Pain: 2022 Update—Surveillance Report 4. (Prepared by the Pacific Northwest Evidence-based Practice Center under Contract No. 75Q80120D00006.) AHRQ Publication No. 23-EHC029. Rockville, MD: Agency for Healthcare Research and Quality; July 2023. DOI: https://doi.org/10.23970/AHRQEPCCER250.2022UPDATESR4. Posted final reports are located on the Effective Health Care Program search page.

Afterword

The Agency for Healthcare Research and Quality (AHRQ), through its Evidence-based Practice Centers (EPCs), sponsors the development of systematic reviews to assist public- and private-sector organizations in their efforts to improve the quality of healthcare in the United States. These reviews provide comprehensive, science-based information on common, costly medical conditions, and new healthcare technologies and strategies.

Systematic reviews are the building blocks underlying evidence-based practice; they focus attention on the strength and limits of evidence from research studies about the effectiveness and safety of a clinical intervention. In the context of developing recommendations for practice, systematic reviews can help clarify whether assertions about the value of the intervention are based on strong evidence from clinical studies. For more information about AHRQ EPC systematic reviews, see https://effectivehealthcare.ahrq.gov/about/epc/evidence-synthesis.

This and future quarterly surveillance reports will provide up-to-date information following the last full systematic review about the evidence base to inform health plans, providers, purchasers, government programs, and the healthcare system as a whole on the state of the science. Transparency and stakeholder input are essential to the Effective Health Care Program. Please visit the website (www.effectivehealthcare.ahrq.gov) to see draft research questions and reports or to join an email list to learn about new program products and opportunities for input.

If you have comments on this report, they may be sent by mail to the Task Order Officer named below at: Agency for Healthcare Research and Quality, 5600 Fishers Lane, Rockville, MD 20857, or by email to epc@ahrq.hhs.gov. They will be considered in the next version of the report.

Robert Otto Valdez, Ph.D., M.H.S.A. Director Agency for Healthcare Research and Quality

Craig A. Umscheid, M.D., M.S. Director Evidence-based Practice Center Program Center for Evidence and Practice Improvement Agency for Healthcare Research and Quality Therese Miller, Dr.P.H. Acting Director Center for Evidence and Practice Improvement Agency for Healthcare Research and Quality

Suchitra Iyer, Ph.D. Task Order Officer Evidence-based Practice Center Program Center for Evidence and Practice Improvement Agency for Healthcare Research and Quality

Appendix Contents

Appendix A. Literature Search Strategies	A-1
Appendix B. Methods	B-1
Inclusion and Exclusion Criteria	B-1
Data Extraction	B-3
Risk of Bias Assessment of Individual Studies	B-3
Data Synthesis and Analysis	B-3
Grading the Strength of the Body of Evidence	B-5
Peer Review and Public Commentary	B-6
Assessing Applicability	B-6
Appendix B References	B-1
Appendix C. Included Studies List	C-1
Appendix D. Literature Flow Diagram	D-1
Appendix E. Results	E-1
Individual Study Summary Tables	E-1
Meta-Analysis Results	E-14
Comparable THC to CBD Ratio Studies	
High THC to CBD Ratio Studies	E-18
Appendix F. Evidence Tables	F-1
Appendix G. Risk of Bias Assessment	G-1
Appendix H. Details on Strength of Evidence	H-1
Appendix H References	H-12
Appendix I. Excluded Studies List	I-1
Appendix J. Funnel Plot of High THC Ratio Studies Included in Meta-Analysis for	or Pain Severity
	J-1

Appendix A. Literature Search Strategies

Database: Ovid MEDLINE(R) ALL 1946 to April 7, 2023

1 Chronic Pain/

2 exp arthralgia/ or exp back pain/ or exp headache/ or exp musculoskeletal pain/ or neck pain/

or exp neuralgia/ or exp nociceptive pain/ or pain, intractable/ or fibromyalgia/ or myalgia/

3 Pain/

4 chronic or subacute* or sub-acute*).ti,ab,kw.

5 3 and 4

6 ((chronic or persistent or intractable or refractory or subacute* or sub-acute) adj3 pain).ti,ab,kw.

7 (((back or spine or spinal or leg or musculoskeletal or neuropathic or nociceptive or radicular) adj1 pain) or headache or arthritis or fibromyalgia or osteoarthritis).ti,ab,kw.

8 1 or 2 or 5 or 6 or 7

9 Cannabis/

10 exp Cannabinoids/

11 Medical Marijuana/

12 Mitragyna/

13 (cannabis or cannabinoid* or cannabinol or marijuana or cannabidiol or phytocannabinoid* or tetrahydrocannabinol or dronabinol or nabilone or sativex or "CBD" or "THC" or kratom or khat or qat or psilocybin or hemp or hydroxymitragynine).ti,ab,kf.

14 or/9-13

15 8 and 14

16 limit 15 to english language

17 (Animals/ or Models, Animal/ or Disease Models, Animal/) not Humans/

18 ((animal or animals or avian or bird or birds or bovine or canine or cow* or dog or dogs or cat or cats or feline or hamster* or horse* or lamb or lamb* or mouse or mice or monkey or monkeys or murine or pig or piglet* or pigs or porcine or primate* or rabbit* or rat or rats or rodent* or songbird* or veterinar*) not (human* or patient*)).ti,kf,jw.

19 or/17-18

20 16 not 19

Database: EBM Reviews - Cochrane Central Register of Controlled Trials February 2023

1 Chronic Pain/

2 exp arthralgia/ or exp back pain/ or exp headache/ or exp musculoskeletal pain/ or neck pain/ or exp neuralgia/ or exp nociceptive pain/ or pain, intractable/ or fibromyalgia/ or myalgia/

3 Pain/

4 (chronic or subacute* or sub-acute*).ti,ab,kw.

5 3 and 4

6 ((chronic or persistent or intractable or refractory or subacute* or sub-acute*) adj3 pain).ti,ab,hw.

7 (((back or spine or spinal or leg or musculoskeletal or neuropathic or nociceptive or radicular) adj1 pain) or headache or arthritis or fibromyalgia or osteoarthritis).ti,ab,hw.

8 1 or 2 or 5 or 6 or 7

9 (cannabis or cannabinoid* or cannabinol or marijuana or cannabidiol or phytocannabinoid* or tetrahydrocannabinol or dronabinol or nabilone or sativex or "CBD" or "THC" or kratom or khat or qat or psilocybin or hemp or hydroxymitragynine).ti,ab,hw.

- 10 8 and 9
- 11 conference abstract.pt.
- 12 "journal: conference abstract".pt.
- 13 "journal: conference review".pt.
- 14 "http://.www.who.int/trialsearch*".so.
- 15 "https://clinicaltrials.gov*".so.
- 16 11 or 12 or 13 or 14 or 15
- 17 10 not 16

Database: APA PsycInfo 1806 to March Week 4, 2023

- 1 Chronic Pain/
- 2 exp arthralgia/ or exp back pain/ or exp headache/ or exp musculoskeletal pain/ or neck pain/ or exp neuralgia/ or exp nociceptive pain/ or pain, intractable/ or fibromyalgia/ or myalgia/
- 3 Pain/
- 4 (chronic or subacute* or sub-acute*).ti,ab.
- 5 3 and 4
- 6 ((chronic or persistent or intractable or refractory or subacute* or sub-acute*) adj3 pain).ti,ab.
- 7 (((back or spine or spinal or leg or musculoskeletal or neuropathic or nociceptive or radicular) adj1 pain) or headache or arthritis or fibromyalgia or osteoarthritis).ti,ab.
- 8 1 or 2 or 5 or 6 or 7
- 9 Cannabis/
- 10 exp Cannabinoids/

11 (cannabis or cannabinoid* or cannabinol or marijuana or cannabidiol or phytocannabinoid* or tetrahydrocannabinol or dronabinol or nabilone or sativex or "CBD" or "THC" or kratom or khat or qat or psilocybin or hemp or hydroxymitragynine).ti,ab.

- 12 or/9-11
- 13 8 and 12
- 14 limit 13 to english language

Database: Elsevier Embase to April 9, 2023

('cannabis'/exp OR cannabis OR cannabinoid* OR 'cannabinol'/exp OR cannabinol OR 'marijuana'/exp OR marijuana OR 'cannabidiol'/exp OR cannabidiol OR phytocannabinoid* OR 'tetrahydrocannabinol'/exp OR tetrahydrocannabinol OR 'dronabinol'/exp OR dronabinol OR 'nabilone'/exp OR nabilone OR 'sativex'/exp OR sativex OR 'cbd' OR 'thc' OR 'kratom'/exp OR kratom OR 'khat'/exp OR khat OR 'qat'/exp OR qat OR 'psilocybin'/exp OR psilocybin OR 'hemp'/exp OR hemp OR hydroxymitragynine) AND ('chronic pain'/exp OR 'subacute pain'/exp OR 'subacute pain' OR arthralgia OR 'back pain' OR headache OR 'musculoskeletal pain' OR 'neck pain' OR neuralgia OR 'nociceptive pain' OR 'intractable pain' OR fibromyalgia OR myalgia OR arthritis OR osteoarthrtis) NOT ((animal OR animals OR avian OR bird OR birds OR bovine OR canine OR cow* OR dog OR dogs OR cat OR cats OR feline OR hamster* OR horse* OR lamb OR lamb* OR mouse OR mice OR monkey OR monkeys OR murine OR pig OR piglet* OR pigs OR porcine OR primate* OR rabbit* OR rat OR rats OR rodent* OR songbird* OR veterinar*) NOT (human* OR patient*)) AND ('article'/it OR 'article in press'/it OR 'conference paper'/it OR 'preprint'/it OR 'review'/it) AND [english]/lim AND [embase]/lim NOT ([embase]/lim AND [medline]/lim)

Database: Elsevier Scopus April 9, 2023

((TITLE(

cannabis OR cannabinoid* OR cannabinol OR marijuana OR cannabidiol OR phytocannab inoid* OR tetrahydrocannabinol OR dronabinol OR nabilone OR sativex OR "CBD" OR "THC" OR kratom OR khat OR qat OR psilocybin OR hemp OR hydroxymitragynine)) AND (TITLE ("chronic pain" OR "subacute pain" OR arthralgia OR "back

pain" OR headache OR "musculoskeletal pain" OR "neck

pain" OR neuralgia OR "nociceptive pain" OR "intractable

pain" OR fibromyalgia OR myalgia OR arthritis OR osteoarthritis OR "neuropathic pain")) AND NOT (TITLE-ABS-KEY (

animal OR animals OR avian OR bird OR birds OR bovine OR canine OR cow* OR d og OR dogs OR cat OR cats OR feline OR hamster* OR horse* OR lamb OR lamb* OR mouse OR mice OR monkey OR monkeys OR murine OR pig OR piglet* OR pigs OR porcine OR primate* OR rabbit* OR rat OR rats OR rodent* OR songbird* OR vet erinar*)) AND (LIMIT-TO(LANGUAGE, "English"))

Appendix B. Methods

Inclusion and Exclusion Criteria

Table B-1 outlines the inclusion and exclusion criteria related to populations, interventions, comparators, outcomes, timing, and settings (PICOTS), and study designs of interest for each Key Question (KQ). In the winter of 2022, the protocol was amended to include adolescents and subacute pain.¹ These changes were documented on in a revised protocol submitted to PROSPERO,² the AHRQ Protocol, and the title, Key Questions, and inclusion and exclusion criteria were edited to reflect said changes. The changes expanded inclusion criteria to include subacute pain and adolescents.

KQ1: In adults or adolescents with chronic or subacute pain, what are the benefits of cannabinoids for treatment of chronic or subacute pain? **KQ2:** In adults or adolescents with chronic or subacute pain, what are the harms of cannabinoids for treatment of chronic or subacute pain? **KQ3:** In adults or adolescents with chronic or subacute pain, what are the benefits of kratom or other plant-based substances for treatment of chronic or subacute pain?

KQ4: In adults or adolescents with chronic or subacute pain, what are the harms of kratom or other plant-based substances for treatment of chronic or subacute pain?

PICOTS Element	Inclusion Criteria	Exclusion Criteria
Population	All KQs: Adults or adolescents (including pregnant or breastfeeding women) with noncancer chronic pain (>12 weeks or pain persisting past the time for normal tissue healing) or subacute pain (pain lasting 4 weeks to 3 months). See categorization of specifically included pain populations below.	All KQs: Children; adults with acute pain; patients at end of life or in palliative care (e.g., with late stage cancer-related pain)
Interventions	 KQs 1 and 2: Cannabinoids (including synthetics) using different delivery mechanisms such as oral, buccal, inhalational, topical, or other administration routes KQs 3 and 4: Kratom or other plant-based substances; co-use of kratom or other plant-based substances and opioids All KQs: Co-use of other drugs for pain 	All KQs: Non-plant-based interventions, capsaicin, herbal supplements
Comparators	All KQs: Any comparator or usual care	All KQs: No comparison

Table	B-1.	PICOTS	5
IUNIC	D 1.	110010	•

PICOTS Element	Inclusion Criteria	Exclusion Criteria
Outcomes	All KQs: Primary efficacy outcomes (i.e., pain, general function [e.g., Short-Form 36 Physical Functioning Scale] or pain-related [e.g., Oswestry Disability Index or Roland-Morris Disability Questionnaire, for low back pain] or disability, including pain interference ^a); harms and adverse effects (e.g., dizziness, nausea, sedation, development of cannabis use disorder, serious adverse events as defined by study); secondary outcomes (i.e., psychological distress including depression and anxiety, quality of life, opioid use, sleep quality, sleep disturbance, healthcare utilization)	All KQs: Other outcomes
Time of followup	All KQs: short term (4 weeks to <6 months), intermediate term (6 to <12 months), long term (≥1 year)	All KQs: Studies with <1-month (4 weeks) of treatment or followup after treatment
Setting	All KQs: Any nonhospital setting or setting of self- directed care	All KQs: Hospital care, hospice care, emergency department care
Study design	All KQs: RCTs; observational studies with a concurrent control group for harms, and to fill gaps in the evidence for benefits	All KQs: Other study designs

Abbreviations: KQ = Key Question; PICOTS = populations, interventions, comparators, outcomes, timing, and settings; RCT = randomized controlled trial.

^aThe degree to which pain directly interferes with patients' ability to participate in their daily activities (challenges in performing daily, social, or work-related tasks due to pain).

Important subgroups to consider in evaluating this evidence are:

- Specific types of pain: neuropathic pain (including nociceptive and centralized; patients with multiple sclerosis and painful skin disorders are included in this category), musculoskeletal pain (including low-back pain), visceral pain, fibromyalgia, inflammatory arthritis, headache disorders, sickle cell disease, and cancer pain (non-end of life)
- Degree of nociplasticity/central sensitization
- Patient demographics (e.g., age, race, ethnicity, sex, socioeconomic status)
- Comorbidities, including past or current substance use disorders, mental health disorders, medical comorbidities, and high risk for opioid use disorder)
- Plant-based compound characteristics: route of administration, frequency of administration, potency of product, dose or estimated dose, specific compounds (e.g. tetrahydrocannabinol, cannabidiol, terpenes, flavonoids), and specific formulations used
- Co-use of other interventions for pain: opioids, nonopioids (e.g., nonsteroidal antiinflammatory drugs, acetaminophen, gabapentin, pregabalin)

Below are additional details on the scope of this project:

Study Design: For all Key Questions, we included randomized controlled trials (RCTs) of at least 4 weeks duration. Initially, in the base-year of this living systematic review, we included observational studies for both benefits (to address gaps in evidence where RCTs are not available) and harms. Eligible observational studies must have assessed a mean duration of treatment of at least 4 weeks, and have concurrent controls (e.g., cohort and case-control studies). Those controlling for potential confounders were prioritized. As the evidence grows, and more RCTs become available throughout the project, we will reassess the need to include

observational studies, specifically to address benefits. A decision to discontinue including them will be made based on the strength of the RCT evidence. When the RCT evidence on a given Key Question and outcome is insufficient, we will include observational studies that meet inclusion criteria. When the strength of evidence is low, moderate, or high based on RCTs, we will update our protocol to exclude observational studies. We do not anticipate excluding observational studies assessing harms. For all Key Questions, we excluded uncontrolled observational studies, case series, and case reports. Systematic reviews were used to supplement searches and identify primary studies.

Non–English-Language Studies: We restricted to English-language articles, but reviewed English-language abstracts of non–English language articles to identify studies that would otherwise meet inclusion criteria in order to help assess for the likelihood of language bias.

Data Extraction

After studies were selected for inclusion, data were abstracted into categories that included but are not limited to: study design, year, setting, country, sample size, eligibility criteria, population and clinical characteristics, intervention characteristics, and results relevant to each Key Question as outlined in the previous inclusion and exclusion criteria section. Information that was abstracted that was relevant for assessing applicability included the number of patients randomized relative to the number of patients enrolled, use of run-in or wash-out periods, and characteristics of the population, intervention, and care settings. All study data were verified for accuracy and completeness by a second team member. On a quarterly basis, any newly identified studies were abstracted and evidence tables updated. Quarterly reports were published to the Agency for Healthcare Research and Quality (AHRQ) website, and evidence tables are updated in AHRQ's Systematic Review Data Repository Plus (SRDR+).

Risk of Bias Assessment of Individual Studies

Predefined criteria were used to assess the risk of bias of individual controlled trials, systematic reviews, and observational studies. RCTs were evaluated using criteria and methods developed by the Cochrane Back Review Group,³ and cohort and case-control studies were evaluated using criteria developed by the U.S. Preventive Services Task Force.⁴ These criteria and methods were used in accordance with the approach recommended in the chapter, Assessing the Risk of Bias of Individual Studies When Comparing Medical Interventions in the Methods Guide for Effectiveness and Comparative Effectiveness Reviews developed by AHRQ.⁵ Studies were given an overall rating of "low," "medium," or "high" risk of bias. We used DistillerSR[®] software to conduct these assessments, using dual review by two independent reviewers. Disagreements identified by DistillerSR[®] were resolved through consensus. Assessments and final ratings were converted to evidence tables, and will be uploaded on a quarterly basis to SRDR+.

Data Synthesis and Analysis

We constructed evidence tables showing study characteristics (as discussed above), results, and risk of bias ratings for all included studies, and summary tables to highlight the main findings. Data were qualitatively summarized in tables, using ranges and descriptive analysis and interpretation of the results. Studies identified in prior AHRQ chronic pain reports^{6,7} that meet

inclusion criteria are included in this review. We evaluated the persistence of benefits or harms by evaluating the three periods identified in prior AHRQ pain reports (3 to <6 months, 6 to 12 months, and \geq 12 months).⁶⁻¹⁰

Meta-analyses were conducted to summarize data and obtain more precise estimates on outcomes for which studies were homogeneous enough to provide a meaningful combined estimate.¹¹ The decision to conduct quantitative synthesis depends on presence of at least two studies, completeness of reported outcomes and a lack of heterogeneity among the reported results. To determine whether meta-analyses were indicated, we considered the risk of bias of the studies and the heterogeneity among studies in design, patient population, interventions, and outcomes. Meta-analyses were conducted using a random effects model based on the profile likelihood method,¹² and statistical heterogeneity was assessed using the I² method. Publication bias (small sample size bias) was assessed using funnel plots when there are eight or more studies in meta-analyses. To evaluate subgroup effects, we summarized within-study analyses of subgroup differences and performed study-level analyses on key demographic and clinical factors. Sensitivity analyses were conducted on study risk of bias.

The magnitude of effects for pain and function is classified using the same system used in other recent AHRQ Evidence-based Practice Center (EPC) reviews conducted on chronic pain⁶⁻¹⁰ to provide a consistent benchmark for comparing results of pain interventions across reviews. Table B-2 provides thresholds for determining the magnitude of effect. A small effect is defined for pain as a mean between-group difference following treatment of 5 to 10 points on a 0- to 100point visual analog scale (VAS), 0.5 to 1.0 points on a 0- to 10-point numeric rating scale, or equivalent; for function as a mean difference of 5 to 10 points on the 0- to 100-point Oswestry Disability Index (ODI) or 1 to 2 points on the 0- to 24-point Roland-Morris Disability Questionnaire (RDQ), or equivalent; and for any outcome as a standardized mean difference (SMD) of 0.2 to 0.5. A moderate effect is defined for pain as a mean difference of 10 to 20 points on a 0- to 100-point VAS, for function as a mean difference of 10 to 20 points on the ODI or 2 to 5 points on the RDO, and for any outcome as an SMD of 0.5 to 0.8. Large effects are defined as greater than moderate. We apply similar thresholds to other outcomes measures. Small effects using this system may be below published thresholds for clinically meaningful effects; however, there is variability across individual patients regarding what constitutes a clinically meaningful effect, which is influenced by a number of factors such as preferences, duration and type of chronic pain, baseline symptom severity, harms, and costs. For some patients a small improvement in pain or function using a treatment with low cost or no serious harms may be important.

Effect Size	Definition
Small effect	 MD 0.5 to 1.0 points on a 0 to 10-point scale, 5 to 10 points on a 0 to 100-point scale
	• SMD 0.2 to 0.5
	• RR/OR 1.2 to 1.4
Moderate effect	 MD >1 to 2 points on a 0 to10-point scale, >10 to 20 points on a 0 to 100-point scale
	• SMD >0.5 to 0.8
	• RR/OR 1.5 to 1.9
Large effect	 MD >2 points on a 0 to10-point scale, >20 points on a 0 to 100-point scale
	• SMD >0.8
	• RR/OR ≥2.0

Table B-2. Definitions of effect sizes

Abbreviations: MD = mean difference; OR = odds ratio; RR = risk ratio; SMD = standardized mean difference.

Findings that were not statistically significant were interpreted as follows:

- In determining the strength of evidence (SOE), the precision of evidence was downgraded two levels if inadequate sample size (optimal information size) <u>and</u> the 95% confidence interval includes both potentially meaningful benefit and harm (e.g. for a relative effect, the lower bound is ≤ 0.75 <u>and</u> the upper bound is ≥ 1.25)¹³
- If the magnitude of effect is below the threshold for a small effect, the finding is considered to have "No effect"⁶
- If the magnitude of effect is small or greater, and SOE is at least Low, the finding is considered to have a "Potential effect, not statistically significant"
- If the magnitude of effect is small or greater, and SOE is insufficient, the finding is considered to have "failed to demonstrate or exclude a beneficial/detrimental effect."¹⁴

Grading the Strength of the Body of Evidence

We assessed the SOE for all primary comparisons and outcomes listed in Table B-1. Regardless of whether evidence is synthesized quantitatively or qualitatively, the strength of evidence for each Key Question/body of evidence is initially assessed by one researcher for each clinical outcome by using the approach described in the AHRQ Methods Guide.⁵ To ensure consistency and validity of the evaluation, the strength of evidence is reviewed by the entire team of investigators prior to assigning a final grade on the following factors:

- Study limitations (low, medium, or high level of study limitations)
- Consistency (consistent, inconsistent, or unknown/not applicable)
- Directness (direct or indirect)
- Precision (precise or imprecise)
- Reporting/publication bias (suspected or undetected)

The SOE was assigned an overall grade of high, moderate, low, or insufficient according to a four-level scale by evaluating and weighing the combined results of the above domains:

- High—We are very confident that the estimate of effect lies close to the true effect for this outcome. The body of evidence has few or no deficiencies. We believe that the findings are stable, i.e., another study would not change the conclusions.
- Moderate—We are moderately confident that the estimate of effect lies close to the true effect for this outcome. The body of evidence has some deficiencies. We believe that the findings are likely to be stable, but some doubt remains.
- Low—We have limited confidence that the estimate of effect lies close to the true effect for this outcome. The body of evidence has major or numerous deficiencies (or both). We believe that additional evidence is needed before concluding either that the findings are stable or that the estimate of effect is close to the true effect.
- Insufficient—We have no evidence, we are unable to estimate an effect, or we have no confidence in the estimate of effect for this outcome. No evidence is available or the body of evidence has unacceptable deficiencies, precluding reaching a conclusion.

Plain-language statements are used in the Main Points and the Results to Date sections to convey the SOE. High SOE is described as "is associated with" or simply "reduces/increases;" moderate SOE is described as "probably;" and low SOE is described as "may be."¹⁵

Peer Review and Public Commentary

Peer reviewers are invited to provide written comments on the draft report based on their clinical, content, or methodological expertise. The EPC considers all peer review comments on the draft report in preparation of the final report. Peer reviewers do not participate in writing or editing of the final report or other products. The final report does not necessarily represent the views of individual reviewers. The EPC will complete a disposition of all peer review comments. The disposition of comments for systematic reviews and technical briefs will be published 3 months after the publication of the evidence report.

Potential Peer Reviewers must disclose any financial conflicts of interest greater than \$5,000 and any other relevant business or professional conflicts of interest. Invited Peer Reviewers may not have any financial conflict of interest greater than \$5,000. Peer reviewers who disclose potential business or professional conflicts of interest may submit comments on draft reports through the public comment mechanism.

Assessing Applicability

Applicability is assessed in accordance with the AHRQ Methods Guide,¹⁶ which is based on the PICOTS framework. Applicability addresses the extent to which outcomes associated with an intervention are likely to be similar across different patients and settings in clinical practice based on the populations, interventions, comparisons, and outcomes evaluated in the studies. For example, exclusion of chronic pain patients with psychiatric comorbidities reduces applicability to clinical practice since many patients with chronic pain have such comorbidities and may respond more poorly to treatment. Similarly, trials that use active run-in periods evaluate highly selected populations who tolerated and responded well to the study intervention, rather than the general population of chronic pain patients being considered for the intervention. Factors that may affect applicability which we have identified a priori include eligibility criteria and patient factors (e.g., demographic characteristics, duration or severity of pain, underlying pain condition, presence of medical and psychiatric comorbidities, event rates and symptom severity in treatment and control groups), intervention factors (e.g., dose and duration of therapy, intensity and frequency of monitoring, level of adherence, use of co-interventions), comparisons (e.g., type and dosing of comparison), outcomes (e.g., use of unvalidated or nonstandardized outcomes, measurement of short-term or surrogate outcomes), settings (e.g., primary care vs. specialty setting, country), and study design features (e.g., use of run-in periods) relevant to applicability. We use this information to assess the situations in which the evidence is most relevant and to evaluate applicability to real-world clinical practice in typical U.S. settings, summarizing applicability assessments qualitatively.

Appendix B References

- Chou R, Ahmed AY, Iyer S, et al. Living Systematic Reviews: Practical Considerations for the Agency for Healthcare Research and Quality Evidencebased Practice Center Program from Year 2 of an Ongoing Review [White Paper in Progress]. In: Quality AfHRa, editor: Pacific Northwest Evidence-based Practice Center; 2023.
- Chou R, Ahmed AY, Morasco BJ, et al. Living Systematic Review on Cannabis and Other Plant-based Treatments for Chronic and Subacute Pain. PROSPERO 2021 CRD42021229579 Available from: . <u>https://www.crd.york.ac.uk/prospero/display</u> <u>record.php?ID=CRD42021229579</u>.

- Furlan AD, Pennick V, Bombardier C, et al. 2009 updated method guidelines for systematic reviews in the Cochrane Back Review Group. Spine. 2009 Aug 15;34(18):1929-41. doi: 10.1097/BRS.0b013e3181b1c99f. PMID: 19680101.
- 4. U.S. Preventive Services Task Force. Methods and processes. 2019. <u>https://www.uspreventiveservicestaskforce.o</u> <u>rg/uspstf/about-uspstf/methods-and-</u> <u>processes</u>.
- Methods guide for effectiveness and comparative effectiveness reviews. Rockville, MD: Agency for Healthcare Research and Quality; 2018. <u>https://effectivehealthcare.ahrq.gov/products</u> /collections/cer-methods-guide. Accessed June 1, 2019.
- 6. Chou R, Hartung D, Turner J, et al. Opioid treatments for chronic pain. Rockville, MD; 2020.
- McDonagh MS, Selph SS, Buckley DI, et al. Nonopioid pharmacologic treatments for chronic pain. Rockville, MD: Agency for Healthcare Research and Quality; 2020. doi: 10.23970/AHRQEPCCER228. PMID: 32338847.
- Skelly AC, Chou R, Dettori JR, et al. Noninvasive nonpharmacological treatment for chronic pain: a systematic review update. Rockville, MD: Agency for Healthcare Research and Quality; 2020. doi: 10.23970/AHRQEPCCER227. PMID: 32338846.
- 9. Chou R, Deyo R, Friedly J, et al. Noninvasive treatments for low back pain: Agency for Healthcare Research and Quality (US), Rockville (MD); 2016.
- Skelly AC, Chou R, Dettori JR, et al. Noninvasive nonpharmacological treatment for chronic pain: a systematic review: Agency for Healthcare Research and Quality (US), Rockville (MD); 2018.

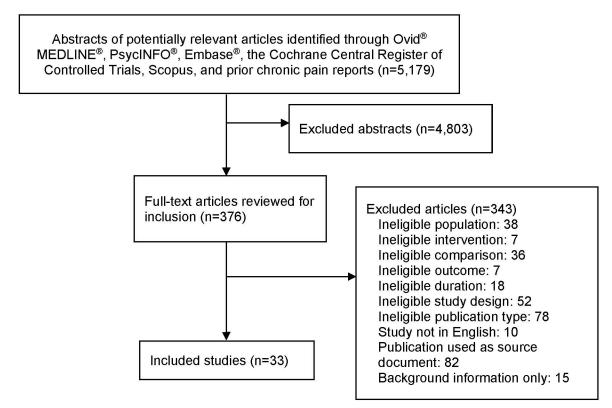
- 11. Morton SC, Murad MH, O'Connor E, et al. Quantitative synthesis—an update: Agency for Healthcare Research and Quality (US), Rockville (MD); 2018.
- Huizenga HM, Visser I, Dolan CV. Testing overall and moderator effects in random effects meta-regression. The British journal of mathematical and statistical psychology. 2011 Feb;64(Pt 1):1-19. doi: 10.1348/000711010x522687. PMID: 21506942.
- Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines 6. Rating the quality of evidence--imprecision. J Clin Epidemiol. 2011 Dec;64(12):1283-93. doi: 10.1016/j.jclinepi.2011.01.012. PMID: 21839614.
- Guyatt GH, Norris SL, Schulman S, et al. Methodology for the development of antithrombotic therapy and prevention of thrombosis guidelines: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2012 Feb;141(2 Suppl):53s-70s. doi: 10.1378/chest.11-2288. PMID: 22315256.
- Gerrity M, Fiordalisi C, Pillay J, et al. AHRQ methods for effective health care. Roadmap for Narratively Describing Effects of Interventions in Systematic Reviews. Rockville (MD): Agency for Healthcare Research and Quality (US); 2020.
- Atkins D, Chang SM, Gartlehner G, et al. Assessing applicability when comparing medical interventions: AHRQ and the Effective Health Care Program. J Clin Epidemiol. 2011 Nov;64(11):1198-207. doi: 10.1016/j.jclinepi.2010.11.021. PMID: 21463926.

Appendix C. Included Studies List

- 1. Bestard JA, Toth CC. An open-label comparison of nabilone and gabapentin as adjuvant therapy or monotherapy in the management of neuropathic pain in patients with peripheral neuropathy. Pain Pract. 2011 Jul-Aug;11(4):353-68. doi: 10.1111/j.1533-2500.2010.00427.x. PMID: 21087411.
- Blake DR, Robson P, Ho M, et al. Preliminary assessment of the efficacy, tolerability and safety of a cannabis-based medicine (Sativex) in the treatment of pain caused by rheumatoid arthritis. Rheumatology (Oxford). 2006 Jan;45(1):50-2. PMID: 16282192.
- Campbell G, Hall WD, Peacock A, et al. Effect of cannabis use in people with chronic non-cancer pain prescribed opioids: findings from a 4-year prospective cohort study. Lancet Public Health. 2018 Jul;3(7):e341-e50. doi: 10.1016/s2468-2667(18)30110-5. PMID: 29976328.
- Chaves C, Bittencourt PCT, Pelegrini A. Ingestion of a THC-Rich Cannabis Oil in People with Fibromyalgia: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Pain Med. 2020;21(10):2212-8. doi: 10.1093/pm/pnaa303. PMID: 33118602.
- de Vries M, van Rijckevorsel DCM, Vissers KCP, et al. Tetrahydrocannabinol Does Not Reduce Pain in Patients With Chronic Abdominal Pain in a Phase 2 Placebocontrolled Study. Clin Gastroenterol Hepatol. 2017 Jul;15(7):1079-86.e4. doi: 10.1016/j.cgh.2016.09.147. PMID: 27720917.
- Eibach L, Scheffel S, Cardebring M, et al. Cannabidivarin for HIV-Associated Neuropathic Pain: A Randomized, Blinded, Controlled Clinical Trial. Clin Pharmacol Ther. 2020 Aug 08;109(4):1055-62. doi: 10.1002/cpt.2016. PMID: 32770831.
- Frank B, Serpell MG, Hughes J, et al. Comparison of analgesic effects and patient tolerability of nabilone and dihydrocodeine for chronic neuropathic pain: randomised, crossover, double blind study. BMJ. 2008 Jan 26;336(7637):199-201. doi: 10.1136/bmj.39429.619653.80. PMID: 18182416.

- Gruber SA, Smith RT, Dahlgren MK, et al. No pain, all gain? Interim analyses from a longitudinal, observational study examining the impact of medical cannabis treatment on chronic pain and related symptoms. Exp Clin Psychopharmacol. 2021;29(2):147-56. doi: 10.1037/pha0000435. PMID: 33764103.
- Kliuk-Ben Bassat O, Schechter M, Ashtamker N, et al. Medical cannabis for pain management in patients undergoing chronic hemodialysis: randomized, doubleblind, cross-over, feasibility study. Clinical Kidney Journal. 2023;16(4):701-10. doi: 10.1093/ckj/sfac275.
- Langford RM, Mares J, Novotna A, et al. A double-blind, randomized, placebocontrolled, parallel-group study of THC/CBD oromucosal spray in combination with the existing treatment regimen, in the relief of central neuropathic pain in patients with multiple sclerosis. J Neurol. 2013 Apr;260(4):984-97. doi: 10.1007/s00415-012-6739-4. PMID: 23180178.
- Lee C, Lin M, Martins KJB, et al. Opioid use in medical cannabis authorization adult patients from 2013 to 2018: Alberta, Canada. BMC Public Health. 2021;21(1):843. doi: 10.1186/s12889-021-10867-w. PMID: 33933061.
- Lynch ME, Cesar-Rittenberg P, Hohmann AG. A double-blind, placebo-controlled, crossover pilot trial with extension using an oral mucosal cannabinoid extract for treatment of chemotherapy-induced neuropathic pain. J Pain Symptom Manage. 2014 Jan;47(1):166-73. doi: 10.1016/j.jpainsymman.2013.02.018. PMID: 23742737.
- Merlin JS, Long D, Becker WC, et al. Marijuana Use Is Not Associated With Changes in Opioid Prescriptions or Pain Severity Among People Living With HIV and Chronic Pain. J Acquir Immune Defic Syndr. 2019 06 01;81(2):231-7. doi: 10.1097/QAI.000000000001998. PMID: 30865181.
- 14. Nurmikko TJ, Serpell MG, Hoggart B, et al. Sativex successfully treats neuropathic pain characterised by allodynia: a randomised, double-blind, placebo-controlled clinical

trial. Pain. 2007 Dec 15;133(1-3):210-20. PMID: 17997224.


- Pini LA, Guerzoni S, Cainazzo MM, et al. Nabilone for the treatment of medication overuse headache: results of a preliminary double-blind, active-controlled, randomized trial. J Headache Pain. 2012 Nov;13(8):677-84. doi: 10.1007/s10194-012-0490-1. PMID: 23070400.
- Rintala DH, Fiess RN, Tan G, et al. Effect of dronabinol on central neuropathic pain after spinal cord injury: a pilot study. Am J Phys Med Rehabil. 2010 Oct;89(10):840-8. doi: 10.1097/PHM.0b013e3181f1c4ec. PMID: 20855984.
- Rog DJ, Nurmikko TJ, Friede T, et al. Randomized, controlled trial of cannabisbased medicine in central pain in multiple sclerosis. Neurology. 2005 Sep 27;65(6):812-9. PMID: 16186518.
- Schimrigk S, Marziniak M, Neubauer C, et al. Dronabinol Is a Safe Long-Term Treatment Option for Neuropathic Pain Patients. Eur Neurol. 2017;78(5-6):320-9. doi: 10.1159/000481089. PMID: 29073592.
- Selvarajah D, Gandhi R, Emery CJ, et al. Randomized placebo-controlled doubleblind clinical trial of cannabis-based medicinal product (Sativex) in painful diabetic neuropathy: depression is a major confounding factor. Diabetes Care. 2010 Jan;33(1):128-30. doi: 10.2337/dc09-1029. PMID: 19808912.
- 20. Serpell M, Ratcliffe S, Hovorka J, et al. A double-blind, randomized, placebocontrolled, parallel group study of THC/CBD spray in peripheral neuropathic pain treatment. Eur J Pain. 2014 Aug;18(7):999-1012. doi: 10.1002/j.1532-2149.2013.00445.x. PMID: 24420962.
- 21. Skrabek RQ, Galimova L, Ethans K, et al. Nabilone for the treatment of pain in fibromyalgia. J Pain. 2008 Feb;9(2):164-73. PMID: 17974490.
- 22. Tait J, Erridge S, Holvey C, et al. Clinical outcome data of chronic pain patients treated with cannabis-based oils and dried flower from the UK Medical Cannabis Registry. Expert Rev Neurother. 2023:1-11. doi: 10.1080/14737175.2023.2195551.

- Toth C, Mawani S, Brady S, et al. An enriched-enrolment, randomized withdrawal, flexible-dose, double-blind, placebo-controlled, parallel assignment efficacy study of nabilone as adjuvant in the treatment of diabetic peripheral neuropathic pain. Pain. 2012 Oct;153(10):2073-82. doi: 10.1016/j.pain.2012.06.024. PMID: 22921260.
- 24. Turcotte D, Doupe M, Torabi M, et al. Nabilone as an adjunctive to gabapentin for multiple sclerosis-induced neuropathic pain: a randomized controlled trial. Pain Med. 2015 Jan;16(1):149-59. doi: 10.1111/pme.12569. PMID: 25288189.
- Ueberall MA, Essner U, Silván CV, et al. Comparison of the Effectiveness and Tolerability of Nabiximols (THC:CBD) Oromucosal Spray versus Oral Dronabinol (THC) as Add-on Treatment for Severe Neuropathic Pain in Real-World Clinical Practice: Retrospective Analysis of the German Pain e-Registry. J Pain Res. 2022a;15:267-86. doi: 10.2147/JPR.S340968. PMID: 35140513.
- 26. Ueberall MA, Vila Silvan C, Essner U, et al. Effectiveness, Safety, and Tolerability of Nabiximols Oromucosal Spray vs Typical Oral Long-Acting Opioid Analgesics in Patients with Severe Neuropathic Back Pain: Analysis of 6-Month Real-World Data from the German Pain e-Registry. Pain Med. 2022b;23(4):745-60. doi: 10.1093/pm/pnab263. PMID: 34480564.
- 27. Vela J, Dreyer L, Petersen KK, et al. Cannabidiol treatment in hand osteoarthritis and psoriatic arthritis: a randomized, doubleblind placebo-controlled trial. Pain. 2021 Jun 1;163(6):1206-14. PMID: 34510141.
- Vigil JM, Stith SS, Adams IM, et al. Associations between medical cannabis and prescription opioid use in chronic pain patients: A preliminary cohort study. PLoS ONE. 2017;12(11):e0187795. doi: 10.1371/journal.pone.0187795. PMID: 29145417.
- 29. Ware MA, Wang T, Shapiro S, et al. Cannabis for the Management of Pain: Assessment of Safety Study (COMPASS). J Pain. 2015 Dec;16(12):1233-42. doi: 10.1016/j.jpain.2015.07.014. PMID: 26385201.

- 30. Wissel J, Haydn T, Muller J, et al. Low dose treatment with the synthetic cannabinoid Nabilone significantly reduces spasticity-related pain : a double-blind placebo-controlled cross-over trial. J Neurol. 2006 Oct;253(10):1337-41. PMID: 16988792.
- Xu DH, Cullen BD, Tang M, et al. The Effectiveness of Topical Cannabidiol Oil in Symptomatic Relief of Peripheral Neuropathy of the Lower Extremities. Curr Pharm Biotechnol. 2020;21(5):390-402. doi: 10.2174/1389201020666191202111534. PMID: 31793418.
- Zajicek JP, Hobart JC, Slade A, et al. Multiple sclerosis and extract of cannabis: results of the MUSEC trial. J Neurol Neurosurg Psychiatry. 2012 Nov;83(11):1125-32. doi: 10.1136/jnnp-2012-302468. PMID: 22791906.
- Zubcevic K, Petersen M, Bach FW, et al. Oral capsules of tetra-hydro-cannabinol (THC), cannabidiol (CBD) and their combination in peripheral neuropathic pain treatment. Eur J Pain. 2022. doi: 10.1002/ejp.2072. PMID: 36571471.

Appendix D. Literature Flow Diagram

Figure D-1. Literature flow diagram

Note: Numbers in parenthesis indicate all records identified up to mid-April 2023.

Appendix E. Results

Individual Study Summary Tables

Tables E-1 through E-5 present details and results for primary outcomes, serious adverse events, and withdrawals due to adverse events for each included study. Tables E-1 through E-3 provide information for randomized controlled trials and are organized by their respective ratio of tetrahydrocannabinol to cannabidiol. Table E-4 includes details for studies of other cannabinoids, and Table E-5 presents details of observational studies.

Author, Year Risk of Bias Study Design Pain Condition	Comparison (n) Followup Duration Derivative	Primary Pain Outcomes (Response, Severity)	Serious Adverse Events and Withdrawals Due to Adverse Events ^a	Other Primary Outcomes (Function/Disability, Pain Interference)
Blake, 2006 Moderate RCT Inflammatory arthritis- rheumatoid arthritis	A: 2.7 mg THC/2.5 mg CBD/100 mcl oromucosal spray, mean dose 5.4 sprays/day (31) B: Placebo (27) 5 weeks Whole plant extracted	Pain severity (mean [SD NR] 0 to 10 NRS scale): 3.1 vs. 4.1, MD -1.04 ^b (95% CI -1.9 to -0.18)	SAE: 0/31 (0%) vs. 2/27 (7.41%), RR 0.18 (95% CI 0.01 to 3.49) WAE: 0/31 (0%) vs. 3/27 (11.11%), RR 0.13 (95% CI 0.01 to 2.32)	Function (mean [SD NR] 0 to 10 28–Joint Disease Activity Score scale): 5 vs. 5.9, MD –0.76° (95% CI –1.23 to –0.28)
Langford, 2013 Low RCT Neuropathic pain- multiple sclerosis	A: 2.7 mg THC/2.5 mg CBD/100 mcl oromucosal spray, mean dose 8.8 sprays/day (167) B: Placebo (172) 15 weeks Whole plant extracted	Pain response ≥30% (NRS scale): 83/167 (49.75%) vs. 77/172 (44.77%), RR 1.11 (95% CI 0.89 to 1.39) Pain severity (mean [SD] 0 to 10 NRS scale): 4.54 (2.24) vs. 4.73 (2.26), MD −0.19 (SE 0.24) (95% CI −0.67 to 0.29)	WAE: 15/167 (8.98%) vs. 12/172 (6.98%), RR 1.29 (95% CI 0.62 to 2.67)	Pain interference (0 to 10 BPI–SF scale): Treatment difference –0.12, p=0.56 Function (0 to 100 SF–36 Physical Functioning scale): Treatment difference –0.45, p=0.785
Lynch, 2014 High RCT (crossover) Neuropathic pain- chemotherapy induced	A: THC/CBD oromucosal spray (dose NR), mean dose 8 sprays/day (8) B: Placebo (8) 4 weeks Whole plant extracted	Pain severity (mean, 0 to 10 NRS-PI scale): 6 (95% CI 6.98 to 5.02) vs. 6.38 (95% CI5.67 to 7.09)	SAE: 0/8 (0%) vs. 0/8 (0%), RR 1.00 (95% CI 0.02 to 45.13) WAE: 0/8 (0%) vs. 0/8 (0%), RR 1.00 (95% CI 0.02 to 45.13)	Function (mean [SD] 0 to 100 SF-36 Physical Functioning scale): 35.5 (9.19) vs. 46.5 (8.5), MD -11 (4.43) (95% CI -20.49 to -1.51)

Table E-1. Comparable THC to CBD ratio study primary outcomes

Author, Year Risk of Bias Study Design Pain Condition	Comparison (n) Followup Duration Derivative	Primary Pain Outcomes (Response, Severity)	Serious Adverse Events and Withdrawals Due to Adverse Events ^a	Other Primary Outcomes (Function/Disability, Pain Interference)
Nurmikko, 2007 Moderate RCT Neuropathic pain- mixed	A: 2.7 mg THC/2.5 mg CBD/100 mcl oromucosal spray, mean dose 10.9 sprays/day (63) B: Placebo (62) 5 weeks Whole plant extracted	Pain response ≥30% (NRS scale): 16/73 (25.4%) vs. 9/62 (14.52%), RR 1.75 (95% CI 0.84 to 3.66) Pain severity (mean [SD NR] 0 to 10 NRS scale): 5.82 vs. 6.68, treatment difference −0.96 (95% CI −1.59 to −0.32)	SAE: 1/63 (1.6%) vs. 0/62 (0%), RR 2.95 (95% CI 0.12 to 71.13) WAE: 11/63 (17.46%) vs. 2/62 (3.23%), RR 5.41 (95% CI 1.25 to 23.43)	Function (0 to 70 Pain Disability Index scale): MD -5.85 (95% CI -9.62 to -2.09)
Rog, 2005 Moderate RCT Neuropathic pain- multiple sclerosis	A: 2.7 mg THC/2.5 mg CBD/100 mcl oromucosal spray, mean dose 9.6 sprays/day (34) B: Placebo (32) 5 weeks Whole plant extracted	Pain severity (mean [95% CI] 0 to 10 NRS scale): 3.85 (3.13 to 4.58) vs. 4.96 (4.19 to 5.72), treatment difference -1.25 (95% CI -2.11 to -0.39)	SAE: 0/34 (0%) vs. 0/32 (0%), RR 0.94 (95% CI 0.02 to 46.16) WAE: 2/34 (5.88%) vs. 0/32 (0%), RR 4.71 (95% CI 0.23 to 94.58)	NR
Selvarajah, 2010 High RCT Neuropathic pain- diabetic neuropathy	A: 2.7 mg THC/2.5 mg CBD/100 mcl oromucosal spray, mean dose 7 sprays/day ^d (15) B: Placebo (14) 12 weeks Whole plant extracted	Pain severity (mean [SD] 0 to 100 NPS scale): 51.6 (21.9) vs. 51.9 (24.1), MD -0.3 (SE 8.54) (95% CI -17.83 to 17.23)	NR	Function (mean [SD] 0 to 100 SF-36 Physical Functioning scale): 30.5 (16.6) vs. 36.5 (27.9), MD 6 (SE 8.5) (95% CI -11.35 to 23.35)
Serpell, 2014 Moderate RCT Neuropathic pain- mixed	A: 2.7 mg THC/2.5 mg CBD/100 mcl oromucosal spray, mean dose 8.9 sprays/day (128) B: Placebo (118) 15 weeks Whole plant extracted	Pain response ≥30% (NRS scale): 34/123 (27.64%) vs. 19/117 (16.24%), RR 1.7 (95% CI 1.03 to 2.91) Pain severity (mean [SE NR] 0 to 10 NRS scale): Mean reduction −0.34 (0.23) (95% CI −0.79 to 0.11)	SAE: 10/128 (7.81%) vs. 7/118 (6%), RR 1.32 (95% CI 0.52 to 3.35) WAE: 25/128 (19.53%) vs. 25/118 (21.19%), RR 0.92 (95% CI 0.56 to 1.51)	Pain interference (0 to 10 BPI-SF scale): Treatment difference -0.32 (SE 0.241) (95% CI -0.8 to 0.15)

Abbreviations: BPI-SF = brief pain inventory-short form; CBD = cannabidiol; CI = confidence interval; MD = mean difference; NPS = neuropathic pain scale; NR = not reported; NRS = numeric rating scale; NRS-PI = numeric rating scale for pain intensity; SAE = serious adverse events; SD = standard deviation; SE = standard error; SF-36 = short form-36; THC = tetrahydrocannabinol; RCT = randomized controlled trial; RR = risk ratio; WAE = withdrawal due to due adverse events.

^aOther serious adverse events (i.e., psychosis and cannabis use disorder) not reported in any study.

^bDifference in median differences.

^cDifference in mean differences.

^dMean sprays calculated by systematic review team.

Author, Year Risk of Bias Study Design Pain Condition	Comparison (n) Followup Duration Derivative	Primary Pain Outcomes (Response, Severity)	Serious Adverse Events and Withdrawals Due to Adverse Events ^a	Other Primary Outcomes (Function/Disability, Pain Interference)
Chaves, 2020 Low RCT Fibromyalgia	A: 1.2 mg THC/0.02 mg CBD sublingual drops, mean 3.6 drops/day (8) B: Placebo (9) 8 weeks Whole plant extracted	Pain severity (mean [SD] 0 to 10 FIQ scale): 3.75 (2.49) vs. 7.67 (1.84), MD -3.92 (1.05) (95% CI -6.17 to -1.68)	WAE: 0/8 (0%) vs. 0/9 (0%), RR 1.11 (95% CI 0.02 to 50.43)	Function (mean [SD] 0 to 10 FIQ scale): 5.83 (2.02) vs. 4.07 (2.25), MD 1.76 (1.04) (95% CI -0.46 to 3.98)
de Vries, 2017 Moderate RCT Visceral pain- chronic pancreatitis and postsurgical abdominal pain	A: THC oral tablet (Dronabinol), range 15 to 24 mg/day (30) B: Placebo (32) 7 weeks Synthetic	Pain severity (mean [SD] 0 to 10 VAS scale): 2.4 (2.28) vs. 3.5 (2.42), MD -1.1 (SE 0.68) (95% CI -2.46 to 0.26)	WAE: 7/30 (23.33%) vs. 2/32 (6.25%), RR 3.73 (95% CI 0.84 to 16.57)	NR
Frank, 2008 Moderate RCT (crossover) Neuropathic pain	A: THC oral capsule (Nabilone), max dose 2 mg/day (48) B: Dihydrocodeine 30 mg, max dose 240 mg/day (48) 6 weeks Synthetic	Pain severity (mean [SD NR] 0 to 100 VAS scale): Treatment effect 5.7 (95% CI 0.5 to 10.9)	SAE: 0/48 (0%) vs. 0/48 (0%), RR 1.00 (95% CI 0.02 to 49.39) WAE: 2/48 (4%) vs. 6/48 (12.5%), RR 0.33 (95% CI 0.07 to 1.57)	Function (mean [SD NR] 0 to 100 SF-36 Physical Functioning scale): Treatment effect 10.8 (95% CI 2.3 to 19.2)

Author, Year Risk of Bias Study Design Pain Condition	Comparison (n) Followup Duration Derivative	Primary Pain Outcomes (Response, Severity)	Serious Adverse Events and Withdrawals Due to Adverse Events ^a	Other Primary Outcomes (Function/Disability, Pain Interference)
Pini, 2012 Low RCT (crossover) Headache- medication overuse headache	A: THC 0.5 mg oral capsule (Nabilone) daily (26) B: Ibuprofen 400 mg/day (26) 8 weeks Synthetic	Pain severity (mean [SD] 0 to 10 VAS scale): 5.55 (2.5) vs. 6.75 (2.4), MD -1.2 (0.68) (95% CI -2.57 to 0.17)	WAE: 1/30 (3.33%) vs. 1/30 (3.33%), RR 1.00 (95% CI 0.07 to 15.26)	NR
Rintala, 2010 High RCT (crossover) Neuropathic pain- spinal cord injury	A: THC 5 mg oral capsule (Dronabinol), max dose 20 mg/day (7) B: Diphenhydramine 25 mg, max dose 75 mg/day (5) 47 weeks Synthetic	Pain severity (mean [SD NR] 0 to 10 BPI scale): 5.8 vs. 5.8	SAE: 1/7 (14.29%) vs. 1/5 (20%), RR 0.71 (95% CI 0.06 to 8.91) WAE: 1/7 (14.29%) vs. 0/5 (0%), RR 2.25 (95% CI 0.11 to 46.13)	NR
Schimrigk, 2017 Low RCT Neuropathic pain- multiple sclerosis	A: THC 2.5 mg oral capsule (Dronabinol), mean dose 13 mg/day (124) B: Placebo (116) 16 weeks Synthetic	Pain severity (mean [SD] 0 to 10 NRS scale): 4.48 (2.04) vs. 4.92 (2.04), MD NR, p=0.676	SAE: 12/124 (9.68%) vs. 7/116 (6.03%), RR 1.53 (95% CI 0.63 to 3.76) WAE: 19/124 (15.32%) vs. 12/116 (10.34%), RR 1.48 (95% CI 0.75 to 2.91)	NR
Skrabek, 2008 Moderate RCT Fibromyalgia	A: THC 0.5 mg oral capsule (Nabilone), endpoint dose 2 mg/day (15) B: Placebo (18) 4 weeks Synthetic	Pain severity (mean [SD NR] 0 to 10 VAS scale): 4.8 vs. 5.6, MD −1.43, p<0.05	SAE: 0/15 (0%) vs. 0/18 (0%), RR 1.19 (95% CI 0.02 to 56.54) WAE: 1/20 (5%) vs. 1/20 (5%), RR 1.00 (95% CI 0.07 to 14.90)	NR
Toth, 2012 Low RCT Neuropathic pain- diabetic neuropathy	A: THC 0.5 mg oral capsule (Nabilone), max dose 4 mg/day (13) B: Placebo (13) 5 weeks Synthetic	Pain response ≥30% (NRS scale): 11/13 (84.62%) vs. 5/13 (38.46%), RR 2.2 (95% CI 1.06 to 4.55) Pain severity (mean [SD] 0 to 10 NRS scale): 3.5 (1.3) vs. 5.4 (1.7), MD −1.9 (0.59) (95% CI −3.13 to −0.68)	NR	Pain interference (mean [SD] 0 to 10 MBPI scale): 2.5 (1.6) vs. 3.6 (0.9), MD -1.1 (0.51) (95% CI -2.15 to -0.05)

Author, Year Risk of Bias Study Design Pain Condition	Comparison (n) Followup Duration Derivative	Primary Pain Outcomes (Response, Severity)	Serious Adverse Events and Withdrawals Due to Adverse Events ^a	Other Primary Outcomes (Function/Disability, Pain Interference)
Turcotte, 2015 Moderate RCT Neuropathic pain- multiple sclerosis	A: THC 0.5 mg oral capsule (Nabilone), max dose 2 mg/day (8) B: Placebo (7) 9 weeks Synthetic	Pain severity (mean [SD NR] 0 to 100 VAS scale): 35 vs. 57 ^b	SAE: 0/8 (0%) vs. 0/7 (0%), RR 0.89 (95% CI 0.02 to 39.84) WAE: 1/8 (12.5%) vs. 0/7 (0%), RR 2.67 (95% CI 0.13 to 56.63)	Pain interference (mean [SD NR] 0 to 100 VAS impact scale): 41 vs. 40 ^b
Wissel, 2006 High RCT (crossover) Neuropathic pain- multiple sclerosis	A: THC 0.5 mg oral capsule (Nabilone), endpoint dose 1 mg/day (13) B: Placebo (13) 4 weeks Synthetic	Pain severity (median [SD NR] 11 Point Box Test): 4 vs. 6, p<0.05	WAE: 2/13 (15.38%) vs. 0/13 (0%), RR 5.00 (95% CI 0.26 to 95.02)	NR
Zajicek, 2012 Moderate RCT Neuropathic pain- multiple sclerosis	A: THC 2.5 mg capsule, max dose 25 mg/day (143) B: Placebo (134) 12 weeks Whole plant extracted	Pain severity (mean [SD] 0 to 10 CRS scale): 4.1 (2.9) vs. 4.7 (3.0), MD -0.6 (95% CI -1.3 to 0.1)	SAE: 7/143 (4.9%) vs. 3/134 (2.24%), RR 2.19 (95% CI 0.58 to 8.28) WAE: 30/143 (20.98%) vs. 9/134 (6.72%), RR 3.12 (95% CI 1.54 to 6.33)	NR

Author, Year Risk of Bias Study Design Pain Condition	Comparison (n) Followup Duration Derivative	Primary Pain Outcomes (Response, Severity)	Serious Adverse Events and Withdrawals Due to Adverse Events ^a	Other Primary Outcomes (Function/Disability, Pain Interference)
Zubcevic, 2022 Low RCT Peripheral neuropathic pain	A: THC 2.5 mg capsule (dronabinol), max dose 25 mg/day (28) B: CBD 5 mg capsule (unknown if synthetic or plant-derived), max dose 50 mg/day (27) C: CBD/THC capsule, max dose 50 mg CBD (unknown of synthetic or plant-derived)/25 mg THC (dronabinol)/day (30) D: Placebo (30)	Pain response ≥30% (NRS scale): 12/28 (42.86%) vs. 9/27 (33.34%) vs. 18/30 (60.00%) vs. 17/30 (56/67%), RR (95% CI) A vs. B: 1.29 (0.65 to 2.55) A vs. C: 0.71 (0.43 to 1.20) A vs. D: 0.76 (0.45 to 1.28) B vs. C: 0.56 (0.30 to 1.02) B vs. D: 0.59 (0.32 to 1.09) C vs. D: 1.06 (0.69 to 1.62) Pain severity change from baseline (mean [95% CI] 0 to 10 NRS scale): -1.4 (-2.2 to -0.7) vs0.6 (-1.2 to 0.1) vs1.9 (-2.7 to -1.2) vs1.9 (-2.7 to -1.0)	SAE: 0/28 (0%) vs. 0/27 (0%) vs. 1/30 (3.3%) vs. 0/30 (0%), RR (95% Cl) A vs. B: 0.96 (0.02 to 47.01) A vs. C: 0.36 (0.02 to 8.40) A vs. D: 1.07 (0.02 to 52.14) B vs. C: 0.37 (0.02 to 8.70) B vs. D: 1.11 (0.02 to 53.97) C vs. D: 3.00 (0.13 to 70.83) WAE: 1/28 (3.57%) vs. 2/27 (7.41%) vs. 4/30 (13.33%) vs. 0/30 (0%), RR (95% Cl) A vs. B: 0.48 (0.05 to 5.01) A vs. C: 0.27 (0.03 to 2.25) A vs. D: 3.21 (0.14 to 75.62) B vs. C: 0.56 (0.11 to 2.80) B vs. D: 5.54 (0.28 to 110.42) C vs. D: 9.00 (0.51 to 160.18)	Pain interference (mean [SD] 0 to 10 Pain Impact on Daily Activities Scale): MD (95% CI) A vs. D: 0.36 (-1.19 to 1.91) B vs. D: 1.24 (-0.32 to 2.81) C vs. D: 0.89 (-0.64 to 2.42)

Abbreviations: BPI = brief pain inventory; CBD = cannabidiol; CI = confidence interval; CRS = category rating scale; FIQ = fibromyalgia impact questionnaire; MBPI = modified brief pain inventory; MD = mean difference; NR = not reported; NRS = numeric rating scale; RCT = randomized controlled trial; SAE = serious adverse events; SD = standard deviation; SE = standard error; THC = tetrahydrocannabinol; RR = risk ratio; VAS = visual analog scale; WAE = withdrawal due to due adverse events. ^aOther serious adverse events (i.e., psychosis and cannabis use disorder) not reported in any study.

^bEstimated from graph.

Author, Year Risk of Bias Study Design Pain Condition	Comparison (n) Followup Duration Derivative	Primary Pain Outcomes (Response, Severity)	Serious Adverse Events and Withdrawals Due to Adverse Events ^a	Other Primary Outcomes (Function/Disability, Pain Interference)
Bassat, 2023 High RCT (crossover) Chronic pain-mixed	A: 3 drops (2.5 mg THC/15 mg CBD) sublingual oil, max dose 18 drops per day (15 mg THC/90 mg CBD) (7) B: 3 drops (2.5 mg THC/15 mg CBD) ≥97% purified sublingual oil, max dose 18 drops per day (15 mg THC/90 mg CBD) (5) C: Placebo (9) 16 weeks Whole plant extracted	NR	SAE: 6/9 (67%) vs. 4/6 (67%) vs. 3/10 (30%) WAE: 1/4 (25%) vs. 1/5 (20%) vs. 1/6 (16.7%)	NR
Vela, 2021 Moderate RCT Musculoskeletal - hand osteoarthritis and psoriatic arthritis	A: CBD oral tablet (20 to 30 mg/day) (68) B: Placebo (61) 12 weeks Synthetic CBD	Pain response ≥30% (VAS 0 to 100 scale): 27/68 (39.7%) vs. 24/61 (39.3%), RR 1.01 (95% CI 0.66 to 1.55) Pain severity (0 to 100 VAS scale): mean NR, MD 0.23 (95% CI −9.41 to 9.9)	SAE: 2/58 (3.4%) vs. 2/61 (3.3%), RR 1.05 (95% CI 0.15 to 7.22) WAE: 0/70 (0%) vs. 2/66 (3%), RR 0.19 (95% CI 0.01 to 3.86)	Function/disability (0 to 3 HAQ-DI scale): mean NR, MD 0.03 (95% CI -0.11 to 0.18)
Xu, 2020 High RCT (crossover) Neuropathic pain- mixed	A: CBD cream (250 mg/3 oz) up to 4 times daily (15) B: Placebo (14) 4 weeks Whole plant extracted	Pain severity (mean [SD] 0 to 10 NPS scale): 3.33 (2.02) vs. 5.55 (2.81), MD -2.22 (95% CI -4.07 to -0.37)	SAE: 0/15 (0%) vs. 0/14 (0%)	NR

Abbreviations: CBD = cannabidiol; CI = confidence interval; HAQ-DI = Health Assessment Questionnaire Disability Index; MD = mean difference; NPS = neuropathic pain scale; NR = not reported; RCT = randomized controlled trial; SAE = serious adverse event; SD = standard deviation; THC = tetrahydrocannabinol. ^aOther serious adverse events (i.e., psychosis and cannabis use disorder) not reported in any study.

 Table E-4. Other cannabinoids study primary outcomes

Author, Year Risk of Bias Study Design Pain Condition	Comparison (n) Followup Duration Derivative	Primary Pain Outcomes (Response, Severity)	Serious Adverse Events and Withdrawals Due to Adverse Events ^a	Other Primary Outcomes (Function/Disability, Pain Interference)
Eibach, 2020 Moderate RCT (crossover) Neuropathic pain- HIV associated	A: CBDV oral solution (50 mg/mL) 400 mg/day (16) B: Placebo (16) 4 weeks Whole plant extracted	Pain response ≥30% (NRS scale): 6/16 (37.5%) vs. 13/16 (81.25%), RR NR Pain severity (mean [SD] 0 to 10 NRS scale): 2.74 (1.47) vs. 3.67 (2.62), MD −0.62 (95% CI −0.27 to 1.51)	SAE: 1/16 (6.25%) vs. 0/16 (0%), RR 3.00 (95% CI 0.13 to 68.57) WAE: 1/16 (6.25%) vs. 0/16 (0%), RR 3.00 (95% CI 0.13 to 68.57)	Pain interference (0 to 10 BPI−SF scale): MD −0.35 (95% CI −1.36 to 0.43)

Abbreviations: BPI-SF = Brief Pain Inventory - Short Form; CBDV = cannabidivarin; CI = confidence interval; MD = mean difference; NR = not reported; RCT = randomized controlled trial; RR = risk ratio; SAE = serious adverse event; SD = standard deviation; WAE = study withdrawals due to adverse events.^aOther serious adverse events (i.e., psychosis and cannabis use disorder) not reported in any study.

Table E-5. Observational study primary outcomes

Author, Year Risk of Bias Study Design Pain Condition	Comparison (n) Followup Duration Derivative	Primary Pain Outcomes (Response, Severity)	Serious Adverse Events and Withdrawals Due to Adverse Events ^a	Other Primary Outcomes (Function/Disability, Pain Interference)
Bestard, 2011 Moderate Prospective cohort Neuropathic pain- mixed	A: THC oral capsule (Nabilone), mean dose 3.05 mg/day (49) B: Gabapentin, mean dose 2,295.5 mg/day (52) C: Gabapentin + THC capsule, mean dose NR + 3.02 mg/day (55) 6 months Synthetic	Pain intensity (mean [SD] 0 to 100 VAS scale): 28.0 (10.5) vs. 33.8 (11.6) vs. 33.1 (20.2), MD -5.8 (95% CI -10.18 to -1.42) for A vs. B, -5.1 (95% CI -11.48 to 1.28) for A vs. C	SAE: 0/49 (0%) vs. 0/52 (0%) vs. 0/55 (0%) WAE: 5/49 (10%) vs. 12/52 (23%) vs. 5/55 (9%), RR 0.44 (95% CI 0.17 to 1.16 for A vs. B, RR 1.12 (95% CI 0.34 to 3.65) for A vs. C, RR 2.54 (95% CI 0.96 to 6.71) for B vs. C	Pain interference (mean [SD] 0 to 10 BPI scale): 4.5 (2.3) vs. 4.6 (2.2) vs. 4.5 (2.2), MD -0.1 (95% CI -0.99 to 0.79) for A vs. B, MD 0.00 (95% CI -0.88 to 0.88) for A vs. C Function (mean [SD] 0 to 100 SF-36 scale ^a): 48.3 (27.2) vs. 46.5 (25.1) vs. 43.7 (26.4), MD 1.80 (95% CI -8.53 to 12.13) for A vs. B, MD 4.60 (95% CI - 5.83 to 15.03) for A vs. C
Campbell, 2018 Moderate	A: Self-reported frequent cannabis use of ≥20 days/mo B: No cannabis use Overall N Baseline: 1,514 4-year followup: 1,217 Groups unclear 4 years Unclear THC concentration; patient- driven choice	A vs. B (reference) Pain intensity (Adjusted mean [SE]; BPI, 0-10 scale): 5.2 (0.14) vs. 4.9 (0.03); Beta: 0.37 (95% CI, -0.23 to 1.10), p=0.20	NR	A vs. B Pain Interference (Adjusted mean [SE]; BPI pain interference, 0 to 10 scale): 5.2 (0.19) vs. 5.4 (0.04); Beta: -0.63 (95% Cl, -1.46 to 0.19), p=0.13
Gruber, 2021 High Prospective cohort Mixed (primarily musculoskeletal)	A: THC/CBD: Medicinal cannabis program, mean dose THC 13.3 mg/day, CBD 28.9 mg/day (37) B: Usual care, dose NA (9) 12 weeks Mixed cannabis products	Pain intensity (mean [SD] 0 to 100 VAS scale): 34.07 (22.36) vs. 48.78 (30.42); MD -14.71 (95% CI, -32.71 to 3.29)	NR	A vs. B Function (mean [SD], 0 to 10 PDI scale): 18.13 (12.26) vs. 19.22 (12.73); MD -1.09 (95% CI -10.33 to 8.16) SF-36 Function (mean [SD], 0 to 100 scale ^a): 70.00 (22.87) vs. 69.44 (26.98); MD 0.56 (95% CI -17.17 to 18.29)

Author, Year Risk of Bias Study Design Pain Condition	Comparison (n) Followup Duration Derivative	Primary Pain Outcomes (Response, Severity)	Serious Adverse Events and Withdrawals Due to Adverse Events ^a	Other Primary Outcomes (Function/Disability, Pain Interference)
Lee, 2021 ^b Moderate Matched cohort NR	A: Chronic opioid users authorized to use medical cannabis in Canada (5,373) B: Controls who did not receive authorization for medical cannabis in Canada (5,373) 20 months Unknown THC concentration; patient- driven choice	NR	NR	NR
Merlin, 2019 ^b High Prospective cohort Chronic non-cancer pain (HIV)	A: Daily or weekly use of marijuana (55) B: Monthly or 1-2 times a month use of marijuana (65) C: No use (313) 52 weeks Unknown THC concentration; patient- driven choice	NR	NR	NR

Author, Year Risk of Bias Study Design Pain Condition	Comparison (n) Followup Duration Derivative	Primary Pain Outcomes (Response, Severity)	Serious Adverse Events and Withdrawals Due to Adverse Events ^a	Other Primary Outcomes (Function/Disability, Pain Interference)
Tait, 2023 Moderate Prospective cohort Chronic non-cancer pain	A: A. Cannabis-based sublingual/oral medium-chain triglyceride-based oil containing CBD and THC (348) B. Inhaled dried cannabis flower containing trace CBD and THC (36) C. A + B (377) Dried flower concentration: 20% THC, 0% (trace) CBD Cannabis-based oils ranged from all THC, all CBD, and ratios ranging from 1:1 to 1:20	A vs. B vs. C Pain, VAS score (scale 0-10; median, IQR) 1 month: 7.00 (5.00-8.00) vs. 5.50 (3.00-6.75) vs. 6.00 (5.00- 7.75) 3 months: 6.00 (4.00-7.00) vs. 5.00 (3.00-7.00) vs. 6.00 (4.00- 7.00) 6 months: 6.00 (3.00-7.25) vs. 3.00 (1.50-5.00) vs. 5.00 (3.00- 7.00)	NR	A vs. B. vs. C BPI-Interference score (scale 0-10; median, IQR) 1 month: 5.86 (3.64-7.36) vs. 5.14 (2.21-5.93) vs. 5.79 (3.57-7.43) 3 months: 5.29 (3.43-6.82) vs. 4.14 (2.43-6.29) vs. 5.00 (2.86-6.93) 6 months: 4.71 (3.14-6.43) vs. 2.14 (1.50-3.64) vs. 4.50 (2.64-6.64) Likelihood of improvement, adjusted OR A vs. B: 1.61 (95% CI 0.21 to 12.18); A vs. C: 1.90 (95% CI 0.68 to 5.29)
Ueberall, 2022a Moderate Retrospective cohort Peripheral neuropathic pain	A: Nabiximols as an add-on treatment; 16.6 (SD 6.5) mg THC/15.4 (SD 4.1) mg CBD/day (337) B: Dronabinol as an add-on treatment; 17.2 (SD 7.6) mg THC/day (337) 24 weeks Whole plant extracted vs. synthetic	A vs. B Pain intensity index (VAS 0-100 scale) mean relative change (improvement) rates at week 24 83.4% vs. 75.9%, p<0.001 Pain intensity index (VAS 0-100 scale, converted to 0-10) mean difference: 3.50 (95% CI 1.6 to 5.4)	NR	A vs. B Pain-related disabilities (VAS 0-100 scale) mean relative change (improvement) rates at week 24 76.0% vs. 68.3%, p<0.001

Author, Year Risk of Bias Study Design Pain Condition	Comparison (n) Followup Duration Derivative	Primary Pain Outcomes (Response, Severity)	Serious Adverse Events and Withdrawals Due to Adverse Events ^a	Other Primary Outcomes (Function/Disability, Pain Interference)
Ueberall, 2022b Moderate Retrospective cohort Peripheral neuropathic back pain- mixed	A: 2.7 mg THC/2.5 mg CBD/100 mcl oromucosal spray, mean dose 16.7 mg THC/15.5 mg CBD/day (655) B: Long-acting opioid, MME 69.4 mg/day 24 weeks Whole plant extracted and long-acting opioid	Pain intensity index (mean relative change from baseline at week 24, 0 to 100 VAS scale): -72.3% (SD 30.5) vs49.2% (SD 39.9) Pain intensity index (VAS 0-100 scale, converted to 0-10) mean difference: 9.90 (95% CI 8.05 to 11.75)	WAE: 7.9% vs. 29.3%, RR 0.27 (95% CI 0.20 to 0.36)	Pain-related disabilities (mean relative change [improvement] rates at week 24, 0 to 100 VAS scale): -66.1 (28.7) vs42.9 (34.5), p<0.001
Vigil, 2017 ^b High Preliminary historical cohort Mixed musculoskeletal pain	A: THC/CBD: Participation in New Mexico Medical Cannabis Program (37) B: Not participating in medical marijuana program and not using cannabis (29) 21 months Unknown THC concentration	NR	NR	NR
Ware, 2015 High Prospective cohort Chronic non-cancer pain	A: THC 12.5 +/- 1.5% herbal cannabis, median dose 2.5 g/day (215) B: Usual care (216) 13 months Whole plant non- extracted	NR	SAE: 28/215 (13%) vs. 42/216 (19.4%), RR 0.67 (95% CI 0.43 to 1.04) WAE: 10/215 (4.65%) vs. NR (assumed 0)	NR

Abbreviations: BPI = brief pain inventory; CBD = cannabidiol; CI = confidence interval; IQR = interquartile range; MD = mean difference; NA = not applicable; NR = not reported; OR = odds ratio; PDI = Pain Disability Index; SAE = serious adverse events; SD = standard deviation; SF-36= short form-36; THC = tetrahydrocannabinol; VAS = visual analog scale; WAE = withdrawal due to due adverse events.

^aHigher scores indicate better outcomes.

^bOnly included outcome reported was opioid use.

Meta-Analysis Results

Comparable THC to CBD Ratio Studies

Pooled results and the forest plot for the sensitivity analysis conducted for improvement in pain severity are available upon request by emailing ahmedaz@ohsu.edu.

Figure E-1. Change in pain severity with comparable THC to CBD ratio versus placebo (short-term,
4 weeks to 6 months followup)

	Pain Population	Treatment Duration (weeks)	Intervention Dose	Risk of Bias	N, Mean (SD), Intervention	N, Mean (SD), Control		Mean difference (95% CI)
Lynch, 2014	NPP	4	8 sprays/day	High	8, 6.31 (0.87)	8, 6.38 (0.85)		-0.07 (-0.91, 0.77)
Blake, 2006	IA	5	5.4 sprays/day	Moderate	31, 3.10 (NR)	27, 4.10 (NR) —		-1.04 (-1.90, -0.18)
Rog, 2005	NPP	5	9.6 sprays/day	Moderate	33, 3.85 (2.04)	32, 4.96 (2.12) —		-1.25 (-2.11, -0.39)
Nurmikko, 2007	NPP	5	10.9 sprays/day	Moderate	63, 5.82 (NR)	62, 6.68 (NR) -		-0.96 (-1.59, -0.33)
Selvarajah, 2010	NPP	12	7 sprays/day	High	15, 5.16 (2.19)	14, 5.19 (2.41) 🗕		-0.03 (-1.78, 1.72)
Langford, 2013	NPP	15	8.8 sprays/day	Low	167, 4.54 (2.24)	172, 4.73 (2.26)		-0.19 (-0.67, 0.29)
Serpell, 2014	NPP	15	8.9 sprays/day	Moderate	NR	NR	- -	-0.34 (-0.79, 0.11)
Overall, PL (p = 0.	.133, I ² = 38.9	9%)						-0.54 (-0.95, -0.19)

Favors Intervention Favors Control

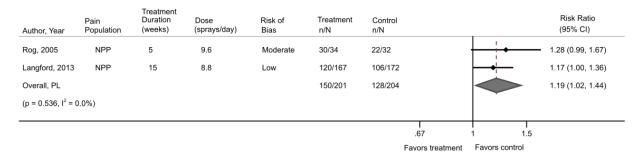
Abbreviations: CI = confidence interval; IA = inflammatory arthritis; NPP = neuropathic pain; NR = not reported; PL = profile likelihood; SD = standard deviation.

Figure E-2. Proportion of patients with pain response (\geq 30% improvement) with comparable THC to CBD ratio versus placebo (short-term, 4 weeks to 6 months followup)

Pain Author, Year Population	Treatmen Duration (weeks)	t Intervention Dose	Risk of Bias	Treatmen n/N	t Control n/N		Risk Ratio (95% CI)
Nurmikko, 2007 NPP	5	10.9 sprays/day	Moderate	16/63	9/62		- 1.75 (0.84, 3.66)
Selvarajah, 2010NPP	12	7 sprays/day	High	8/15	9/14		0.83 (0.45, 1.53)
Langford, 2013 NPP	15	8.8 sprays/day	Low	83/167	77/172		1.11 (0.89, 1.39)
Serpell, 2014 NPP	15	8.9 sprays/day	Moderate	34/123	19/117		1.70 (1.03, 2.81)
Overall, PL				141/368	114/365	-	1.18 (0.93, 1.71)
(p = 0.195, l ² = 36.1%)							
					.25 Favors Ci	1 1	4 s Intervention

Favors Control Favors Intervention

Abbreviations: CI = confidence interval; NPP = neuropathic pain; PL = profile likelihood.


Figure E-3. Overall function: comparable THC to CBD ratio versus placebo (short-term, 4 weeks to 6 months followup)

Author, Year	Pain Population	Treatment Duration (weeks)	Intervention Dose	Risk of Bias	N, Mean (SD), Intervention	N, Mean (SD), Control		Mean difference (95% CI)
Blake, 2006	IA	5	5.4 sprays/day	Moderate	31, 5.00 (NR)	27, 5.90 (NR)	- B +	-0.76 (-1.23, -0.29)
Rog, 2005	NPP	5	9.6 sprays/day	Moderate	33, -0.27 (0.75)	32, -0.08 (0.73)	- i	-0.26 (-0.62, 0.10)
Nurmikko, 2007	NPP	5	10.9 sprays/day	Moderate	63, -0.80 (NR)	62, 0.03 (NR)	- -	-0.84 (-1.37, -0.31)
Selvarajah, 2010	NPP	12	7 sprays/day	High	15, 6.95 (1.66)	14, 6.35 (2.79) —		-0.60 (-2.33, 1.13)
Langford, 2013	NPP	15	8.8 sprays/day	Low	167, -1.47 (NR)	172, -1.35 (NR)	-	-0.12 (-0.52, 0.28)
Serpell, 2014	NPP	15	8.9 sprays/day	Moderate	NR	NR	- e +	-0.32 (-0.79, 0.15)
Overall, PL (p =	0.193, I ² = 32	2.4%)						-0.42 (-0.73, -0.16)

-2 -1 0 1 2 Favors Intervention Favors Control

Abbreviations: CI = confidence interval; IA = inflammatory arthritis; NPP = neuropathic pain; NR = not reported; PL = profile likelihood; SD = standard deviation.

Figure E-4. Any adverse events for comparable THC to CBD ratio versus placebo (short-term, 4 weeks to 6 months followup)

Abbreviations: CI = confidence interval; NPP = neuropathic pain; PL = profile-likelihood.

Figure E-5. Serious adverse events for comparable THC to CBD ratio versus placebo (short-term, 4 weeks to 6 months followup)

Author, Year	Pain Population	Treatment Duration (weeks)	Dose (sprays/day)	Risk of Bias	Treatment n/N	Control n/N			Risk Ratio (95% CI)
Blake, 2006	IA	5	5.4	Moderate	0/31	2/27	+	1	0.18 (0.01, 3.49)
Nurmikko, 2007	NPP	5	10.9	Moderate	1/63	0/62			2.95 (0.12, 71.13)
Serpell, 2014	NPP	15	8.9	Moderate	10/128	7/118	_	*	1.32 (0.52, 3.35)
Overall, PL					11/222	9/207	<		1.18 (0.28, 3.43)
(p = 0.380, l ² = 0.	0%)							Ŧ	
							1		
							.0078125	1 12	8
							Favors treatment	Favors control	


Abbreviations: CI = confidence interval; IA = inflammatory arthritis; NPP = neuropathic pain; PL = profile-likelihood.

		Treatmen	t						
F	Pain	Duration		Risk of	Treatme	nt Contro	ol		Risk Ratio
Author, Year F	Population	(weeks)	Intervention Dose	Bias	n/N	n/N			(95% CI)
Blake, 2006	IA	5	5.4 sprays/day	Moderate	0/31	3/27		-	0.13 (0.01, 2.32)
Rog, 2005	NPP	5	9.6 sprays/day	Moderate	2/34	0/32			4.71 (0.23, 94.58)
Nurmikko, 200)7 NPP	5	10.9 sprays/day	Moderate	11/63	2/62			5.41 (1.25, 23.43)
Langford, 201	3 NPP	15	8.8 sprays/day	Low	15/167	12/172	-	-	1.29 (0.62, 2.67)
Serpell, 2014	NPP	15	8.9 sprays/day	Moderate	25/128	25/118			0.92 (0.56, 1.51)
Overall, PL					53/423	42/411	•		1.14 (0.65, 3.02)
(p = 0.084, I ² =	= 51.3%)								
							.016	1 64	
							ntoruontio		Control

Figure E-6. Withdrawal due to adverse events for comparable THC to CBD ratio versus placebo (short-term, 4 weeks to 6 months followup)

Favors Intervention Favors Control

Abbreviations: CI = confidence interval; IA = inflammatory arthritis; NPP = neuropathic pain; PL = profile-likelihood.

Author, Year	Pain Population	Treatment Duration (weeks)	Dose (sprays/day)	Risk of Bias	Treatment n/N	Control n/N		Risk Ratio (95% CI)
Lynch, 2014	NPP	4	8	High	6/16	0/16	↓	13.00 (0.79, 213.09)
Blake, 2006	IA	5	5.4	Moderate	8/31	1/27	+	6.97 (0.93, 52.20)
Rog, 2005	NPP	5	9.6	Moderate	18/34	5/32	_ + _	3.39 (1.43, 8.05)
Nurmikko, 2007	NPP	5	10.9	Moderate	18/63	9/62	-	1.97 (0.96, 4.04)
Langford, 2013	NPP	15	8.8	Low	34/167	7/172	-	5.00 (2.28, 10.97)
Serpell, 2014	NPP	15	8.9	Moderate	52/128	12/118	+	3.99 (2.25, 7.10)
Overall, PL					136/439	34/427	•	3.57 (2.42, 5.60)
(p = 0.448, I ² = 0.0	0%)						Ť	

Favors treatment Favors control

Abbreviations: CI = confidence interval; IA = inflammatory arthritis; NPP = neuropathic pain; PL = profile likelihood.

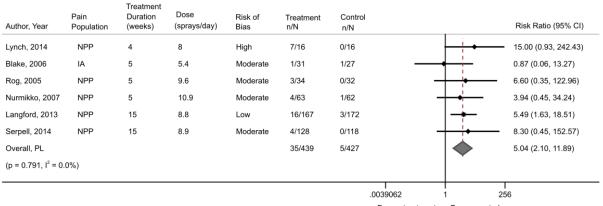

Author, Year	Pain Population	Treatment Duration (weeks)	Dose (sprays/day)	Risk of Bias	Treatment n/N	Control n/N		Risk Ratio (95% Cl)
Lynch, 2014	NPP	4	8	High	6/16	1/16		6.00 (0.81, 44.35)
Blake, 2006	IA	5	5.4	Moderate	2/31	1/27	i	1.74 (0.17, 18.16)
Rog, 2005	NPP	5	9.6	Moderate	3/34	2/32		1.41 (0.25, 7.91)
Nurmikko, 2007	NPP	5	10.9	Moderate	14/63	7/62	↓	1.97 (0.85, 4.54)
Langford, 2013	NPP	15	8.8	Low	13/167	7/172		1.91 (0.78, 4.68)
Serpell, 2014	NPP	15	8.9	Moderate	23/128	14/118	- -	1.51 (0.82, 2.80)
Overall, PL					61/439	32/427	•	1.79 (1.19, 2.77)
(p = 0.872, I ² = 0.	0%)							
						I		1
						.0312	5 1	32

Figure E-8. Nausea for comparable THC to CBD ratio versus placebo (short-term, 4 weeks to 6 months followup)

Favors treatment Favors control

Abbreviations: CI = confidence interval; IA = inflammatory arthritis; NPP = neuropathic pain; PL = profile likelihood.

Figure E-9. Sedation for comparable THC to CBD ratio versus placebo (short-term, 4 weeks to 6 months followup)

Favors treatment Favors control

Abbreviations: CI = confidence interval; IA = inflammatory arthritis; NPP = neuropathic pain; PL = profile likelihood.

High THC to CBD Ratio Studies

Figure E-10. Change in pain severity with high THC ratio versus placebo (short-term, 4 weeks to 6 months followup)

Derivative Type and Author, Year			Treatme DDuratior (weeks)	Intervention	Intervention Dos	Risk of Bias	N, Mean(SD), Intervention	N, Mean(SD) Control).	Mean difference (95% CI)
	· opulation		(1100110)	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						(00/0 01)
Synthetic										
de Vries, 2017 ^a	VP	All THC	7	Dronabinol	15 to 24 mg/day	Moderate	21, 2.40(2.28)	29, 3.50(2.42	2) —	-1.10 (-2.46, 0.26)
Zubcevic, 2022	NPP	All THC	8	Dronabinol	Up to 25 mg/day	Low	28, -1.40(1.93)	30, -1.90(2.2	.8)	0.50 (-0.58, 1.58)
Schimrigk, 2017	NPP	All THC	16	Dronabinol	13 mg/day	Low	124, 4.48(2.04)	116, 4.92(2.0	04)	-0.44 (-0.96, 0.08)
Skrabek, 2008	FM	All THC	4	Nabilone	EP 2 mg/day	Moderate	15, 4.80(1.76)	18, 5.60(1.62	2) — — — — — — — — — — — — — — — — — — —	-0.80 (-1.96, 0.36)
Wissel, 2006	NPP	All THC	4	Nabilone	Ep 1 mg per day	High	13, 4.00(.)	13, 6.00(.)	_	-2.00 (-4.00, -0.00
Toth, 2012	NPP	All THC	5	Nabilone	1 to 4 mg/day	Low	13, 3.50(1.30)	13, 5.40(1.70	D) — 🖬 🕂 🗌	-1.90 (-3.12, -0.68
Turcotte, 2015	NPP	All THC	9	Nabilone	TD 2 mg/day	Moderate	8, 3.50(1.28)	7, 5.70(1.65)		-2.20 (-3.71, -0.69
Subgroup, PL (p	= 0.019, I ² =	60.3%)								-0.95 (-1.81, -0.25
Plant-derived										
Chaves, 2020	FM	48:1	8	PD extracted	4.4/0.08 mg T/C	Low	8, 3.75(2.49)	9, 7.67(1.84)) — — — :	-3.92 (-6.16, -1.68
Zajicek, 2012	NPP	2:1	12	PD extracted	Max 25 mg/day	Moderate	143, -1.20(2.60)	134, -0.30(2.	.40)	-0.90 (-1.49, -0.31
Subgroup, PL (p	= 0.011, I ² =	84.6%)								-1.97 (-5.91, 1.21)
Heterogeneity be	tween arour	ne: n = 0.3	26							
Overall, PL (p = 0			20						-	-1.12 (-1.97, -0.48
									-4 -2 0	2
									Favors Intervention Fa	avors Control

Abbreviations: CBD = cannabidiol; CI = confidence interval; EP = end-point; FM = fibromyalgia; NA = not applicable; NPP = neuropathic pain; PD = plant-derived; PL = profile likelihood; SD = standard deviation; TD = total dose; T/C = THC/CBD; THC = tetrahydrocannabinol; VP = visceral pain.

^aNamisol[®] is a purified, plant-based product, but grouped with synthetic dronabinol because they are chemically identical.

Figure E-11. Stratified results on pain severity of RCTs using dronabinol and nabilone (short term, 4 weeks to 6 months followup)

Intervention Type and Author, Year		THC/CBI Ratio	Treatmer DDuration (weeks)	Intervention	Risk of Bias	N, Mean(SD), Intervention	N, Mean(SD), Control				Mean difference (95% CI)
Dronabinol de Vries, 2017 ^a Zubcevic, 2022 Schimrigk, 2017 Subgroup, PL (p	VP NPP NPP = 0.162, I ² =	All THC All THC All THC 45.1%)		15 to 24 mg/day Up to 25 mg/day 13 mg/day		21, 2.40(2.28) 28, -1.40(1.93) 124, 4.48(2.04)	29, 3.50(2.42) 30, -1.90(2.28) 116, 4.92(2.04)				-1.10 (-2.46, 0.26) 0.50 (-0.58, 1.58) -0.44 (-0.96, 0.08) -0.35 (-1.08, 0.44)
Nabilone Skrabek, 2008 Wissel, 2006 Toth, 2012 Turcotte, 2015 Subgroup, PL (p	FM NPP NPP NPP = 0.422, I ² =	All THC All THC All THC All THC All THC 0.0%)	4 5	Ep 1 mg per day 1 to 4 mg/day	Low	15, 4.80(1.76) 13, 4.00(.) 13, 3.50(1.30) 8, 3.50(1.28)	18, 5.60(1.62) 13, 6.00(.) 13, 5.40(1.70) 7, 5.70(1.65)		╺ ╺ ╺ ┙	-	-0.80 (-1.96, 0.36) -2.00 (-4.00, -0.00) -1.90 (-3.12, -0.68) -2.20 (-3.71, -0.69) -1.59 (-2.49, -0.82)
Heterogeneity be Overall, PL (p = 0)3					-4 -	-2	0 2	-0.95 (-1.81, -0.25)

Abbreviations: CBD = cannabidiol; CI = confidence interval; EP = end point; FM = fibromyalgia; NPP = neuropathic pain; NR = not reported; PL = profile likelihood; RCT = randomized controlled trials; SD = standard deviation; TD = total dose; THC = tetrahydrocannabinol; VP = visceral pain.

^aNamisol[®] is a purified, plant-based product, but grouped with synthetic dronabinol because they are chemically identical.

Table E-6. Interaction effect of randomized controlled trials assessing synthetic cannabinoids: nabilone versus dronabinol

Group Difference	Coefficient	Standard Error	t-Test	p-Value	95% Confidence Interval
Result	-1.29	0.510	-2.53	0.053	-2.60 to 0.022

Group Difference	Coefficient	Standard Error	t-Test	p-Value	95% Confidence Interval
Result	-0.986	0.85	-1.16	0.272	-2.87 to 0.90

Table E-7. Interaction effect of randomized controlled trials: synthetic versus plant-extracted
interventions

Figure E-12. Overall function for high THC versus placebo (short-term, 1-6 months followup)

	Pain	THC/CB	Duration	Intervention	Intervention	Risk of	N, Mean(SD),	N, Mean(SD),		Mean differen
Author, Year	Population	Ratio	(weeks)	Туре	Dose	Bias	Intervention	Control		(95% CI)
Zubcevic, 2022	NPP	All THC	8	Dronabinol	Up to 25 mg/d	alµow	NR	NR		- 0.36 (-1.19, 1
Toth, 2012	NPP	All THC	5	Nabilone	1 to 4 mg/day	Low	13, 2.50(1.60)	13, 3.60(0.90)		-1.10 (-2.15, -
Turcotte, 2015	NPP	All THC	9	Nabilone	TD 2 mg/day	Moderate	• NR	NR	-	0.10 (-0.57, 0
Overall, PL (p =	= 0.130, I ² = 5	51.0%)								-0.18 (-1.25, 0

Abbreviations: CBD = cannabidiol; CI = confidence interval; NPP = neuropathic pain; NR = not reported; PL = profile likelihood; SD = standard deviation; TD = total dose; THC = tetrahydrocannabinol.

Figure E-13. Withdrawal due to adverse events for high THC versus placebo (short-term, 4 weeks to 6 months followup)

Risk Ratio (95% CI)		nControl n/N	Treatme n/N	Risk of Bias	DIntervention Dose	THC/CB	Treatme Duration (weeks)		Intervention Type and Pair Author, Year Pop
- 3.73 (0.84, 16.57) 3.21 (0.14, 75.61) 1.48 (0.75, 2.91) 1.77 (0.90, 5.44)		2/32 0/30 - 12/116 14/178	7/30 1/28 19/124 27/182		15 to 24 mg/day Up to 25 mg/day 13 mg/day	All THC All THC All THC	7 8 16	VP NPP NPP 0%)	Dronabinol de Vries, 2017 ^a Zubcevic, 2022 Schimrigk, 2017 Subgroup, PL $(p = 0.505, l^2 = 0.)$
- 1.00 (0.07, 14.90) - 2.67 (0.13, 56.63) - 1.54 (0.14, 17.71)		1/20 — 0/7 — 1/27 —	1/20 1/8 2/28	Moderate Moderate	EP 2 mg/day TD 2 mg/day	All THC All THC	4 9	FM NPP 0%)	Nabilone Skrabek, 2008 Turcotte, 2015 Subgroup, PL $(p = 0.637, l^2 = 0.)$
1.75 (0.95, 4.11)	•	15/205	29/210			0.894	roups: p =	0	Heterogeneity be Overall, PL (p = 0.808, $I^2 = 0.1$
	1 1 rvention Favo	15/205 .063 Favors Inter	29/210					0%)	Overall, PL ($p = 0.808$, $I^2 = 0$.

Abbreviations: CBD = cannabidiol; CI = confidence interval; EP = end point; FM = fibromyalgia; NA = not applicable; NPP = neuropathic pain; PL = profile likelihood; TD = total dose; THC = tetrahydrocannabinol; VP = visceral pain. ^aNamisol® is a purified, plant-based product, but grouped with synthetic dronabinol because they are chemically identical.

ioliowup)		Treatment						
Derivative Type and Author, Year	Pain Population	Duration (weeks)	Intervention Type	Intervention Dose	Risk of Bias	Treatment n/N	Control n/N	Risk Ratio (95% Cl)
Synthetic								
Schimrigk, 2017	NPP	16	Dronabinol	13 mg/day	Low	109/124	85/116	1.20 (1.06, 1.36)
Toth, 2012	NPP	5	Nabilone	1 to 4 mg/day	Low	7/13	6/13	1.17 (0.54, 2.53)
Subgroup						116/137	91/129	1.20 (0.96, 1.48)
(I ² = 0.0%, p = 0.9	943)							
							.25	
							Favors Intervention	Favors Control

Figure E-14. Any adverse event for high THC versus placebo (short-term, 4 weeks to 6 months followup)

Abbreviations: CI = confidence interval; NPP = neuropathic pain.

Figure E-15. Dizziness for high THC versus placebo (short-term, 4 weeks to 6 months followup)

Derivative Type and Pain Author, Year Populati		THC/CBE) Intervention Type	Intervention Dose	Risk of Bias	Treatme n/N	ntControl n/N		Risk Ratio (95% CI)
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	P 16	All THC All THC All THC	Dronabinol Dronabinol Dronabinol	15 to 24 mg/day Up to 25 mg/day 13 mg/day		24/30 3/26 25/124 52/180	11/32 3/25 5/116 19/173	•	2.33 (1.40, 3.88) 0.96 (0.21, 4.32) 4.68 (1.85, 11.81) 2.52 (1.20, 4.82)
Plant-derived Zajicek, 2012 NPP Subgroup, PL $(p = ., l^2 = 0.0\%)$	12	2:1	PD extracted	Max 25 mg/day	Moderate	89/143 89/143	10/134 10/134	-	8.34 (4.53, 15.34) 8.34 (4.53, 15.34)
Heterogeneity between Overall, PL $(p = 0.004, ^2 = 77.5\%)$		0.002				141/323	29/307		3.57 (1.30, 8.32)
							.063 Favors Intervention	1 16 Favors (

Abbreviations: CBD = cannabidiol; CI = confidence interval; NA = not applicable; NPP = neuropathic pain; PL = profile likelihood; THC = tetrahydrocannabinol; VP = visceral pain.

^aNamisol[®] is a purified, plant-based product, but grouped with synthetic dronabinol because they are chemically identical.

	Pain Population	Treatmer Duration (weeks)	Intervention	Risk of Bias	Treatme n/N	ntControl n/N		Risk Ratio (95% CI)
Dronabinol de Vries, 2017 Zubcevic, 2022 Schimrigk, 201 Subgroup, PL (p = 0.815, l ² =	2 NPP 7 NPP	7 8 16	15 to 24 mg/day Up to 25 mg/day 13 mg/day		15/30 6/26 10/124 31/180	11/32 5/25 — 5/116 - 21/173		1.45 (0.80, 2.64) 1.15 (0.40, 3.30) 1.87 (0.66, 5.31) 1.46 (0.88, 2.42)
Nabilone Skrabek, 2008 Subgroup, PL (p = ., I [°] = 0.0%		4	EP 2 mg/day	Moderate	7/15 7/15	1/18 1/18		8.40 (1.16, 60.84) 8.40 (1.16, 60.84)
Heterogeneity Overall, PL (p = 0.355, I ² =	Ũ	oups: p = 0	.092		38/195	22/191	•	1.60 (1.01, 2.95)
						.063 Favors Intervention	1 16 Favors Con	itrol

Figure E-16. Sedation for high THC versus placebo (short-term, 4 weeks to 6 months followup)

Abbreviations: CI = confidence interval; EP = end point; FM = fibromyalgia; NA = not applicable; NPP = neuropathic pain; PL = profile likelihood; VP = visceral pain. aNamisol[®] is a purified, plant-based product, but grouped with synthetic dronabinol because they are chemically identical.

Figure E-17. Nausea for high THC versus placebo (short-term, 4 weeks to 6 months followup)

Derivative Type	Pain	Duration	Intervention	Intervention	Risk of	Treatme	nt Control		Risk Ratio
and Author, Year	Population	(weeks)	Туре	Dose	Bias	n/N	n/N		(95% CI)
Synthetic									
de Vries, 2017	VP	7	Dronabinol	15 to 24 mg/day	Moderate	13/30	5/32	-	2.77 (1.12, 6.84)
Zubcevic, 2022	NPP	8	Dronabinol	Up to 25 mg/day	Low	1/26	0/25		- 2.89 (0.12, 67.75
Schimrigk, 2017	NPP	16	Dronabinol	13 mg/day	Low	6/124	4/116 -		1.40 (0.41, 4.85)
Subgroup						20/180	9/173		2.22 (0.90, 5.05)
(I-squared = 0.0%,	p = 0.674)								
							.063	1 16 on Favors Co	

Abbreviations: CI = confidence interval; NPP = neuropathic pain; VP = visceral pain. ^aNamisol[®] is a purified, plant-based product, but grouped with synthetic dronabinol because they are chemically identical.

THC to CBD Ratio	Outcome	N; k Studies	Point Estimate	PL 95% CI	BC 95% CI	I-Squared
Comparable	Pain severity	N=702; k=7	MD -0.54	-0.95 to -0.19	-1.03 to -0.11	39%
Comparable	Pain response (≥30% improvement)	N=733; k=4	RR 1.18	0.93 to 1.71	0.67 to 2.43	36%
Comparable	Function	N=616; k=6	MD -0.42	-0.73 to -0.16	-0.80 to -0.10	32%
Comparable	Adverse events	N=405; k=2	RR 1.19	1.02 to 1.44	0.74 to 2.03	0%
Comparable	SAEs	N=427; k=3	RR 1.18	0.26 to 3.43	0.02 to 35.25	0%
Comparable	WAEs	N=834; k=5	RR 1.14	0.65 to 3.02	0.31 to 6.16	51%
Comparable	Dizziness	N=866; k=6	RR 3.57	2.42 to 5.60	2.15 to 6.62	0%
Comparable	Nausea	N=866; k=6	RR 1.79	1.19 to 2.77	1.06 to 3.32	0%
Comparable	Sedation	N=866; k=6	RR 5.04	2.10 to 11.89	1.41 to 17.29	0%
High	Pain severity	N=742; k=9	MD -1.12	-1.97 to -0.48	-2.08 to -0.40	65%
High (synthetic)	Pain severity	N=448; k=7	MD -0.95	-1.81 to -0.25	−1.95 to −0.13	60%
High (synthetic - dronabinol)	Pain severity	N=348; k=3	MD -0.35	-1.08 to 0.44	-2.21 to 1.54	45%
High (synthetic - nabilone)	Pain severity	N=100; k=4	MD -1.59	-2.49 to -0.82	-2.21 to -0.39	0%
High (plant-derived)	Pain severity	N=294; k=2	MD -1.97	-5.91 to 1.21	-11.33 to 6.53	85%
High	Function	N=unclear; k=3	MD -0.18	-1.25 to 0.77	-2.23 to 1.78	51%
High	WAEs	N=692; k=6	RR 2.21	1.27 to 4.14	0.96 to 5.58	0%
High (synthetic)	WAEs	N=415; k=5	RR 1.75	0.95 to 4.11	0.50 to 8.88	0%
High (synthetic - dronabinol)	WAEs	N=360; k=3	RR 1.77	0.90 to 5.44	0.25 to 24.91	0%
High (synthetic - nabilone)	WAEs	N=55; k=2	RR 1.54	0.14 to 17.71	0.01 to 280.12	0%
High	Any adverse event	N=266; k=2	RR 1.20	0.96 to 1.48	0.42 to 3.36	0%
High	Dizziness	N=637; k=4	RR 3.57	1.30 to 8.32	0.90 to 11.47	78%
High (synthetic)	Dizziness	N=360; k=3	RR 2.52	1.20 to 4.82	0.42 to 12.00	41%
High	Sedation	N=335; k=3	RR 1.73	1.03 to 4.63	0.44 to 15.71	28%
High (synthetic - dronabinol)	Sedation	N=360; k=3	RR 1.46	0.88 to 2.42	0.59 to 3.66	0%
High	Nausea	N=360; k=3	RR 2.22	0.90 to 5.05	0.40 to 11.80	0%

Table E-8. Meta-analysis results and sensitivity analysis using the Bartlett's Correction

Abbreviations: BC = Bartlett's correction; CBD = cannabidiol; CI = confidence interval; MD = mean difference; PL = profile likelihood; RR = risk ratio; SAEs = serious adverse events; THC = tetrahydrocannabinol; WAEs = study withdrawals due to adverse events.

Appendix F. Evidence Tables

Shown in associated Excel files at <u>https://effectivehealthcare.ahrq.gov/products/plant-based-chronic-pain-treatment/living-review</u>.

Appendix G. Risk of Bias Assessment

Shown in associated Excel files at <u>https://effectivehealthcare.ahrq.gov/products/plant-based-chronic-pain-treatment/living-review</u>.

Appendix H. Details on Strength of Evidence

Comparison Comparable THC to CBD Ratio vs.	Outcome Pain response (≥30% improvement	Number of Studies (N) and Total Participants 4 RCTs (N=733) ¹⁻⁴	Study Limitations Moderate	Directness Direct	Consistency Consistent	Precision Imprecise	Publication Bias Unknown	Effect Size (95% CI) Potential small effect, not statistically significant, with	SOE Grade Low
Placebo Comparable	from baseline) Pain severity	7 RCTs (N=878) ¹⁻⁷	Moderate	Direct	Consistent	Precise	Unknown	THC:CBD 38% vs. 31%, RR 1.18 (0.93 to 1.71); I ² =36% Small benefit with	Moderate
THC to CBD Ratio vs. Placebo	(change)	/ NOTS (N=070)	Moderate		Consistent			THC:CBD 0 to 10 scale, MD -0.54 (-0.95 to -0.19; l ² =40%) Subgroup analysis removing high risk of bias studies: Moderate benefit MD -0.64 (-1.15 to -0.24)	Moderate
Comparable THC to CBD Ratio vs. Placebo	Function or Disability	6 RCTs (N=616) ¹⁻	Moderate	Direct	Consistent	Precise	Unknown	Small benefit with THC:CBD, MD -0.42, 95% CI -0.73 to -0.16, I ² =32% (scale 0 to 10)	Moderate
Comparable THC to CBD Ratio vs. Placebo	WAEs	5 RCTs (N=834) ^{1.2,4,5,7}	Moderate	Direct	Consistent	Imprecise	Unknown	Failed to demonstrate or exclude a detrimental effect 13% vs. 10%, RR 1.14 (0.65 to 3.02); I ² =51%	Insufficien
Comparable THC to CBD Ratio vs. Placebo	SAEs	3 RCTs (N=429) ^{2,4,5}	Moderate	Direct	Consistent	Imprecise	Unknown	No effect 5.0% vs. 4.3%, RR 1.18 (0.28 to 3.43; I ² =0%)	Low

Table H-1. KQ1 and 2: Cannabinoids to treat chronic pain – comparable THC to CBD ratio

Comparison	Outcome	Number of Studies (N) and Total Participants	Study Limitations	Directness	Consistency	Precision	Publication Bias	Main Findings Effect Size (95% CI)	SOE Grade
Comparable THC to CBD Ratio vs. Placebo	Dizziness	6 RCTs (N=866) ^{1,2,4-7}	Moderate	Direct	Consistent	Imprecise	Unknown	Large effect with THC:CBD 30% vs. 8%, RR 3.57 (2.42 to 5.60; l ² =0%)	Low
Comparable THC to CBD Ratio vs. Placebo	Nausea	6 RCTs (N=866) ^{1,2,4-7}	Moderate	Direct	Consistent	Imprecise	Unknown	Moderate effect with THC:CBD 14% vs. 7.5% RR 1.79 (1.19 to 2.77; I ² =0%)	Low
Comparable THC to CBD Ratio vs. Placebo	Sedation	6 RCTs (N=866) ^{1,2,4-7}	Moderate	Direct	Consistent	Imprecise	Unknown	Large effect with THC:CBD RR 5.04 (2.10 to 11.89; I ² =0%)	Low

Abbreviations: BPI-SF = Brief Pain Inventory (Short Form); CBD = cannabidiol; CI = confidence interval; KQ = Key Question; MD = mean difference; RCT = randomized controlled trial; RR = risk ratio; SAE = serious adverse event; SOE = strength of evidence; THC = tetrahydrocannabinol; WAE = withdrawal due to adverse event

Comparison	Outcome	Number of Studies and Total Participants (N)	Study Limitations	Directness	Consistency	Precision		Main Findings Effect Size (95% Cl)	Strength of Evidence Grade
Synthetic THC vs. Placebo	Pain response (≥30% improvement from baseline)	2 RCTs (N=84) ^{8,9}	Low	Direct	Very serious inconsistency	Imprecise	Unknown	Unable to assess, due to inconsistency from two trials (one trial of nabilone, 85% vs. 38%, RR 2.20 [1.06 to 4.55] and one trial of dronabinol, 43% vs. 57%, RR 0.76 [0.45 to 1.28])	Insufficient (previously low)
Synthetic THC vs. Placebo	Pain severity	7 RCTs (N=448) ⁸⁻¹⁴	Moderate	Direct	Consistent	Imprecise	Unknown	Small effect with synthetic THC 0 to 10 scale, MD -0.95 (-1.81 to -0.25; l ² =60%)	Low
Synthetic THC vs. Placebo	Function/disability	3 RCTs (N=unclear) ^{8,9,13} 1 RCT (N=13) not Included in meta- analysis ¹⁴	Moderate	Direct	Consistent	Imprecise	Unknown	No effect (scale 0 to 10) MD: -0.18, -1.25 to 0.77, I ² =51%)	Low
Synthetic THC vs. Placebo	WAEs	5 RCTs (N=415) ⁹⁻¹³	Moderate	Direct	Consistent	Imprecise	Unknown	Potential moderate effect, not statistically significant 14% vs. 7%, RR 1.75 (0.95 to 4.11; I ² =0%)	Low
Synthetic THC vs. Placebo	SAEs	1 RCT (N=240) ¹¹	Low	Direct	Unknown	Imprecise	Unknown	Failed to demonstrate or exclude a detrimental effect 10% vs. 6%, RR 1.60 (0.65 to 3.93)	Insufficient

Table H-2. KQ1 and 2: Cannabinoids to treat chronic pain – high THC to CBD ratio, synthetic THC

Comparison	Outcome	Number of Studies and Total Participants (N)	Study Limitations	Directness	Consistency			Main Findings Effect Size (95% Cl)	Strength of Evidence Grade
Synthetic THC vs. Placebo	Dizziness	3 RCTs (N=360) ⁹⁻	Low	Direct	Consistent	Imprecise	Unknown	Large effect with dronabinol 29% vs. 11%, RR 2.52 (1.20 to 4.82; l ² =41%)	Moderate
Synthetic THC vs. Placebo	Nausea	3 RCTs (N=302) ⁹⁻	Low	Direct	Consistent	Imprecise	Unknown	Potential large effect with dronabinol, not statistically significant 11% vs. 5%, RR 2.22 (0.90 to 5.05; l ² =0%)	Low
Synthetic THC vs. Placebo	Sedation	4 RCTs (N=335) ⁹⁻	Moderate	Direct	Consistent	Imprecise	Unknown	Moderate effect with dronabinol 19% vs. 12%, RR 1.60 (1.01 to 2.95; I ² =7.7%)	Low

 Abbreviations: CBD = cannabidiol; CI = confidence interval; KQ = Key Question; MD = mean difference; RCT = randomized controlled trial; RR = risk ratio; SAE = serious adverse event; SOE = strength of evidence; THC = tetrahydrocannabinol; WAE = withdrawal due to adverse event.

Comparison	Outcome	Number of Studies and Total Participants (N)	•	Directness	Consistency		Publication	Main Findings Effect Size (95% CI)	Strength of Evidence Grade
Extracted High THC vs. Placebo	Pain severity	2 RCTs (N=297) ^{15,16}	Moderate	Direct	Inconsistent	Imprecise	Unknown	Failed to demonstrate or exclude a detrimental effect MD -1.97 (-5.91 to 1.21; l ² =85%)	Insufficient
	Function/disability	1 RCT (N=18) ¹⁶	High	Direct	Unknown	Imprecise	Unknown	Failed to demonstrate or exclude a detrimental effect MD 1.75 (-0.46 to 3.98)	Insufficient
	WAEs	1 RCT (N=277) ¹⁵	Moderate	Direct	Unknown	Imprecise	Unknown	Large increased risk 13.9% vs. 5.7%, RR 3.12 (1.54 to 6.33)	Low
	SAEs	1 RCT (N=277) ¹⁵	Moderate	Direct	Unknown	Imprecise	Unknown	Failed to demonstrate or exclude a detrimental effect 4.9% vs. 2.2%, RR 2.19 (0.58 to 8.28)	Insufficient
	Dizziness	1 RCT (N=277) ¹⁵	Moderate	Direct	Unknown	Imprecise	Unknown	Large effect 62.2% vs. 7.5%, RR 8.34 (4.53 to 15.34)	Low

Table H-3. KQ1 and 2: Cannabinoids to treat chronic pain – high THC to CBD ratio, extracted from whole plant

Abbreviations: CBD = cannabidiol; CI = confidence interval; KQ = Key Question; MD = mean difference; RCT = randomized controlled trial; RR = risk ratio; SAE = serious adverse event; SOE = strength of evidence; THC = tetrahydrocannabinol; WAE = withdrawal due to adverse event.

Table H-4. KQ1 and 2: Cannabinoids to treat chronic pain – high THC to CBD ratio, combined synthetic and whole-plant extracted studies

Comparison			Study Limitations	Directness	Consistency	Precision	Publication		Strength of Evidence Grade
Combined	Pain severity	9 RCTs (N=742)8-	Moderate	Direct	Consistent	Precise	Unknown	Moderate effect	Moderate
High THC	·	16						MD -1.12 (-1.97 to	
Ratio Studies								-0.48; l ² =65%)	
(Synthetic and								, ,	
Whole-plant									
extracted)									

Abbreviations: CBD = cannabidiol; CI = confidence interval; KQ = Key Question; MD = mean difference; RCT = randomized controlled trial; SOE = strength of evidence; THC = tetrahydrocannabinol.

Comparison	Outcome	Number of Studies and Total Participants (N)		Directness	Consistency	Precision	Publication Bias	Main Findings Effect Size (95% CI)	Strength of Evidence Grade
Whole plant cannabis (standardized to 12% THC) vs. Usual Care	Pain Severity change	1 (N=431, 302 contribute to pain outcome) ¹⁷	High	Direct	Unknown	Imprecise	Unknown	Moderate effect 0 to 10 scale, Adjusted MD at 12 months: -1.10 (-1.56 to -0.72)	Insufficient
	WAE	1 (N=431) ¹⁷	High	Direct	Unknown	Imprecise	Unknown	Large effect with cannabis 4.7% vs. 0%, RR 21.10 (1.24 to 357.80)	Insufficient
	SAE	1 (N=431) ¹⁷	High	Direct	Unknown	Imprecise	Unknown	No effect 13% vs. 19%, OR 0.64 (0.38 to 1.04)	Insufficient
	Dizziness	1 (N=431) ¹⁷	High	Direct	Unknown	Imprecise	Unknown	Failed to demonstrate or exclude a detrimental effect 12.6% vs. 9.7%, RR 1.29 (0.75 to 2.21)	Insufficient
	Nausea	1 (N=431) ¹⁷	High	Direct	Unknown	Imprecise	Unknown	Moderate effect 16.7% vs. 9.7%, RR 1.72 (1.04 to 2.85)	Insufficient
	Sedation	1 (N=431) ¹⁷	High	Direct	Unknown	Imprecise	Unknown	Large effect 13.5% vs. 4.63%, RR 2.91 (1.46 to 5.83)	Insufficient
	Cognitive Disorder	1 (N=431) ¹⁷	High	Direct	Unknown	Imprecise	Unknown	Large effect 13.9% vs. 5.7%, RR 3.12 (1.54 to 6.33)	Insufficient

Abbreviations: CI = confidence interval; KQ = Key Question; MD = mean difference; OR = odds ratio; RCT = randomized controlled trial; RR = risk ratio; SAE = serious adverse event; SOE = strength of evidence; THC = tetrahydrocannabinol; WAE = withdrawal due to adverse event.

Comparison		Number of Studies (N) and Total Participants	Study Limitations	Directness	Consistency	Precision	Publication Bias	Main Findings Effect Size (95% CI)	Strength of Evidence Grade
Topical, Plant- Extracted CBD vs. Placebo		1 RCT (N=29) ¹⁸	High	Direct	Unknown	Imprecise	Unknown	Small effect with CBD cream MD -0.75, P=0.009 by ANCOVA (0 to 10 scale)	
Oral Synthetic CBD vs. Placebo	Pain response (≥30% improvement)	1 RCT (N=136) ¹⁹	Moderate	Direct	Unknown	Imprecise	Unknown	No effect with oral synthetic CBD RR 1.01 (0.66 to 1.55)	Insufficient
Oral CBD or THC/CBD (Unknown If Synthetic or Plant-extracted vs. Placebo ^a	Pain severity (change)	1 RCT (N=87) ⁹	Low	Unclear	Unknown	Imprecise	Unknown	Potential increase in pain for CBD (MD 1.14 [0.11 to 2.19]) and no difference but imprecise for THC/CBD (MD -0.12 [-1.13 to 0.89])	Insufficient
	Pain response (≥30% improvement)	1 RCT (N=87) ⁹	Low	Unclear	Unknown	Imprecise	Unknown	Imprecise estimates for CBD (RR 0.59 [0.32 to 1.09]) and THC/CBD (RR 1.06 [0.69 to 1.62])	Insufficient
	Function/disability	1 RCT (N=87) ⁹	Low	Unclear	Unknown	Imprecise	Unknown	Imprecise estimates for CBD (MD 1.24 [- 0.32 to 2.81]) and THC CBD (MD 0.89 [- 0.64 to 2.42])	Insufficient

Table H-6. KQ1: Cannabinoids to treat chronic pain – low THC to CBD ratio

Abbreviations: ANCOVA = analysis of covariance; CBD = cannabidiol; CI = confidence interval; KQ = Key Question; MD = mean difference; RCT = randomized controlled trial; RR = relative risk; SOE = strength of evidence; THC = tetrahydrocannabinol.

^aStudy did not report whether CBD was synthetic or plant-extracted, and did not provide any details about the product composition.

Comparison	Outcome	Number of Studies (N) and Total Participants	Study Limitations	Directness	Consistency	Precision		Main Findings	Strength of Evidence Grade
CBDV vs. Placebo	Pain Response (≥30% improvement from baseline)	1 RCT (N=31) ²⁰	Moderate	Direct	Unknown	Imprecise	Unknown		Insufficient
CBDV vs. Placebo	Pain severity (change)	1 RCT (N=31) ²⁰	Moderate	Direct	Unknown	Imprecise	Unknown	Failed to demonstrate or exclude a detrimental effect MD 0.62 (-0.05 to 1.32)	Insufficient

Table H-7. KQ1 and 2: Cannabinoids to treat chronic pain – low THC to CBD ratio

Abbreviations: CBDV = cannabidivarin; CI = confidence interval; KQ = Key Question; MD = mean difference; RCT = randomized controlled trial; RR = risk ratio; SOE = strength of evidence.

Comparison	Outcome	Number of Studies (N) and Total Participants	Study Limitations	Directness	Consistency	Precision	Bias	Main Findings Effect Size (95% Cl)	SOE Grade
Unknown THC to CBD Ratio vs. Usual Care	Pain response (≥30% improvement from baseline)	No studies	NA	NA	NA	NA	NA	NA	No evidence
Unknown THC to CBD Ratio vs. Usual Care	Pain severity (change) Short-term (3 months)	2 cohort studies: short- to intermediate-term (N=202) ^{21,22}	High	Direct	Inconsistent	Imprecise	Unknown	VAS (0-100): 41.5 vs. 43.6 at 3 months ²¹ 34.1 vs. 48.8; mean difference -14.71 (95% CI, -32.71 to 3.29) ²²	Insufficien
Unknown THC to CBD Ratio vs. Usual Care	Long-term (12 months)	1 cohort (N=1,514) ²³	High	Direct	Unknown	Precise	Unknown	Adjusted mean; BPI, 0-10 scale) 5.2 vs. 4.9; Beta: 0.37 (95% CI -0.23 to 1.10), p=0.20 ²³	Insufficien
Unknown THC to CBD Ratio vs. Usual Care	Function or Disability (SF-36 Physical Function)	2 cohorts = short to medium-term (N=202) ^{21,22}	High	Direct	Consistent	Imprecise	Unknown	SF-36 Physical Functioning (mean, 0 to 100 scale) 46.5 vs. 43.7 at 6 months ²¹ 70.0 vs. 69.4; MD 0.56 (95% CI –17.2 to 18.3) at 3 months ²²	Insufficien
Unknown THC to CBD Ratio vs. Usual Care (Nabilone + Gabapentin vs. Gabapentin Alone)	WAEs	1 cohort study, short- and intermediate-term (N=156) ²¹	Moderate	Direct	Unknown	Imprecise	Unknown	6 months: 23% (12/52) vs. 9% (5/55), RR 2.54 (95% Cl 0.95 to 6.71)	Insufficien

Table H-8. KQ1 and 2: Observational studies of cannabinoids to treat chronic pain – unknown THC to CBD ratio (patient-choice)

Comparison	Outcome	Number of Studies (N) and Total Participants	Study Limitations	Directness	Consistency	Precision	Publication Bias	Main Findings Effect Size (95% CI)	SOE Grade
Unknown THC to CBD Ratio vs. Usual Care (Nabilone + Gabapentin vs. Gabapentin Alone)	SAEs	1 cohort study, short- and intermediate-term (N=156) ²¹	Moderate	Direct	Unknown	Imprecise	Unknown	None in any group	Insufficient
Unknown THC to CBD Ratio vs. Usual Care (Nabilone + gabapentin vs. Gabapentin Alone)	Dizziness	1 cohort study, short- and intermediate-term (N=156) ²¹	Moderate	Direct	Unknown	Imprecise	Unknown	3 months: 33% (17/52) vs. 29% (16/55), RR 1.12 (95% CI 0.64 to 1.98) 6 months: 39% (20/52) vs. 33% (18/55), RR 1.17 (95% CI 0.70 to 0.91)	Insufficient
Unknown THC to CBD Ratio vs. Usual Care (Nabilone + gabapentin vs. Gabapentin Alone)	Nausea	No studies	NA	NA	NA	NA	NA	NA	No evidence
Unknown THC to CBD Ratio vs. Usual Care (Nabilone + Gabapentin vs. Gabapentin Alone)	Sedation	1 cohort study, short- and intermediate-term (N=156) ²¹	Moderate	Direct	Unknown	Imprecise	Unknown	3 months: 54% (28/52) vs. 33% (18/55) RR 1.65 (95% CI 1.04 to 2.59) 6 months: 60% (31/52) vs. 36% (20/55) RR 1.64 (95% CI 1.08 to 2.48)	Insufficient

Abbreviations: BPI-SF = Brief Pain Inventory (Short Form); CBD = cannabidiol; CI = confidence interval; KQ = Key Question; MD = mean difference; NA = not applicable; RCT = randomized controlled trial; RR = risk ratio; SAE = serious adverse event; SOE = strength of evidence; THC = tetrahydrocannabinol; WAE = withdrawal due to adverse event.

Appendix H References

- Langford RM, Mares J, Novotna A, et al. A double-blind, randomized, placebocontrolled, parallel-group study of THC/CBD oromucosal spray in combination with the existing treatment regimen, in the relief of central neuropathic pain in patients with multiple sclerosis. J Neurol. 2013 Apr;260(4):984-97. doi: 10.1007/s00415-012-6739-4. PMID: 23180178.
- Nurmikko TJ, Serpell MG, Hoggart B, et al. Sativex successfully treats neuropathic pain characterised by allodynia: a randomised, double-blind, placebo-controlled clinical trial. Pain. 2007 Dec 15;133(1-3):210-20. PMID: 17997224.
- Selvarajah D, Gandhi R, Emery CJ, et al. Randomized placebo-controlled doubleblind clinical trial of cannabis-based medicinal product (Sativex) in painful diabetic neuropathy: depression is a major confounding factor. Diabetes Care. 2010 Jan;33(1):128-30. doi: 10.2337/dc09-1029. PMID: 19808912.
- 4. Serpell M, Ratcliffe S, Hovorka J, et al. A double-blind, randomized, placebocontrolled, parallel group study of THC/CBD spray in peripheral neuropathic pain treatment. Eur J Pain. 2014 Aug;18(7):999-1012. doi: 10.1002/j.1532-2149.2013.00445.x. PMID: 24420962.
- Blake DR, Robson P, Ho M, et al. Preliminary assessment of the efficacy, tolerability and safety of a cannabis-based medicine (Sativex) in the treatment of pain caused by rheumatoid arthritis. Rheumatology (Oxford). 2006 Jan;45(1):50-2. PMID: 16282192.
- Lynch ME, Cesar-Rittenberg P, Hohmann AG. A double-blind, placebo-controlled, crossover pilot trial with extension using an oral mucosal cannabinoid extract for treatment of chemotherapy-induced neuropathic pain. J Pain Symptom Manage. 2014 Jan;47(1):166-73. doi: 10.1016/j.jpainsymman.2013.02.018. PMID: 23742737.

- Rog DJ, Nurmikko TJ, Friede T, et al. Randomized, controlled trial of cannabisbased medicine in central pain in multiple sclerosis. Neurology. 2005 Sep 27;65(6):812-9. PMID: 16186518.
- Toth C, Mawani S, Brady S, et al. An enriched-enrolment, randomized withdrawal, flexible-dose, double-blind, placebo-controlled, parallel assignment efficacy study of nabilone as adjuvant in the treatment of diabetic peripheral neuropathic pain. Pain. 2012 Oct;153(10):2073-82. doi: 10.1016/j.pain.2012.06.024. PMID: 22921260.
- Zubcevic K, Petersen M, Bach FW, et al. Oral capsules of tetra-hydro-cannabinol (THC), cannabidiol (CBD) and their combination in peripheral neuropathic pain treatment. Eur J Pain. 2022doi: 10.1002/ejp.2072. PMID: 36571471.
- de Vries M, van Rijckevorsel DCM, Vissers KCP, et al. Tetrahydrocannabinol Does Not Reduce Pain in Patients With Chronic Abdominal Pain in a Phase 2 Placebocontrolled Study. Clin Gastroenterol Hepatol. 2017 Jul;15(7):1079-86.e4. doi: 10.1016/j.cgh.2016.09.147. PMID: 27720917.
- Schimrigk S, Marziniak M, Neubauer C, et al. Dronabinol Is a Safe Long-Term Treatment Option for Neuropathic Pain Patients. Eur Neurol. 2017;78(5-6):320-9. doi: 10.1159/000481089. PMID: 29073592.
- 12. Skrabek RQ, Galimova L, Ethans K, et al. Nabilone for the treatment of pain in fibromyalgia. J Pain. 2008 Feb;9(2):164-73. PMID: 17974490.
- Turcotte D, Doupe M, Torabi M, et al. Nabilone as an adjunctive to gabapentin for multiple sclerosis-induced neuropathic pain: a randomized controlled trial. Pain Med. 2015 Jan;16(1):149-59. doi: 10.1111/pme.12569. PMID: 25288189.

- 14. Wissel J, Haydn T, Muller J, et al. Low dose treatment with the synthetic cannabinoid Nabilone significantly reduces spasticityrelated pain : a double-blind placebocontrolled cross-over trial. J Neurol. 2006 Oct;253(10):1337-41. PMID: 16988792.
- Zajicek JP, Hobart JC, Slade A, et al. Multiple sclerosis and extract of cannabis: results of the MUSEC trial. J Neurol Neurosurg Psychiatry. 2012 Nov;83(11):1125-32. doi: 10.1136/jnnp-2012-302468. PMID: 22791906.
- Chaves C, Bittencourt PCT, Pelegrini A. Ingestion of a THC-Rich Cannabis Oil in People with Fibromyalgia: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Pain Med. 2020;21(10):2212-8. doi: 10.1093/pm/pnaa303. PMID: 33118602.
- 17. Ware MA, Wang T, Shapiro S, et al. Cannabis for the Management of Pain: Assessment of Safety Study (COMPASS). J Pain. 2015 Dec;16(12):1233-42. doi: 10.1016/j.jpain.2015.07.014. PMID: 26385201.
- Xu DH, Cullen BD, Tang M, et al. The Effectiveness of Topical Cannabidiol Oil in Symptomatic Relief of Peripheral Neuropathy of the Lower Extremities. Curr Pharm Biotechnol. 2020;21(5):390-402. doi: 10.2174/1389201020666191202111534. PMID: 31793418.
- Vela J, Dreyer L, Petersen KK, et al. Cannabidiol treatment in hand osteoarthritis and psoriatic arthritis: a randomized, doubleblind placebo-controlled trial. Pain. 2021 Jun 1;163(6):1206-14. PMID: 34510141.
- Eibach L, Scheffel S, Cardebring M, et al. Cannabidivarin for HIV-Associated Neuropathic Pain: A Randomized, Blinded, Controlled Clinical Trial. Clin Pharmacol Ther. 2020 Aug 08;109(4):1055-62. doi: 10.1002/cpt.2016. PMID: 32770831.
- 21. Bestard JA, Toth CC. An open-label comparison of nabilone and gabapentin as adjuvant therapy or monotherapy in the management of neuropathic pain in patients with peripheral neuropathy. Pain Pract. 2011 Jul-Aug;11(4):353-68. doi: 10.1111/j.1533-2500.2010.00427.x. PMID: 21087411.

- 22. Gruber SA, Smith RT, Dahlgren MK, et al. No pain, all gain? Interim analyses from a longitudinal, observational study examining the impact of medical cannabis treatment on chronic pain and related symptoms. Exp Clin Psychopharmacol. 2021;29(2):147-56. doi: 10.1037/pha0000435. PMID: 33764103.
- Campbell G, Hall WD, Peacock A, et al. Effect of cannabis use in people with chronic non-cancer pain prescribed opioids: findings from a 4-year prospective cohort study. Lancet Public Health. 2018 Jul;3(7):e341-e50. doi: 10.1016/s2468-2667(18)30110-5. PMID: 29976328.

Appendix I. Excluded Studies List

- Vaporized Cannabis for chronic pain associated with Sickle Cell Disease. Cannabinoid-based therapy and approaches to quantify pain in Sickle Cell disease. 2013. Exclusion Reason: Ineligible Publication Type
- Cannabis-opioid interaction in the treatment of Fibromyalgia pain â" an open label proof of concept study with randomization between treatment groups: Cannabis, Oxycodone or Cannabis/Oxycodon combination. 2019.
 Exclusion Reason: Ineligible Study Design
- Proof of concept trial of Cannabis derivatives in neuropathic pain. Proof of Concept Trial of Cannabis Derivatives in Neuropathic Pain. 2022. Exclusion Reason: Ineligible Publication Type
- 4. Topical CBD for musculoskeletal pain. Immediate effect of topical CBD for Musculoskeletal pain. 2022. Exclusion Reason: Ineligible Population
- Cannabinoids for the Reduction of Inflammation and Sickle Cell Related Pain. Dronabinol for the Reduction of Chronic Pain and Inflammation in People With Sickle Cell Disease. 2022. Exclusion Reason: Ineligible Publication Type
- 6. A Phase III study to investigate the effect of EMD-RX5 on symptoms of psychological distress in adults with chronic pain. A multisite, parallel-arm, randomised, double blind, placebo-controlled study to investigate the effect of EMD-RX5 on symptoms of psychological distress in adults with chronic pain. 2022. Exclusion Reason: Ineligible Publication Type
- Comparison of VER-01 to Opioids in Patients With Chronic Non-specific Low Back Pain. Multicentre, Randomized, Openlabel Study to Prove an Additional Benefit of the Full-spectrum Cannabis Extract VER-01 Over Opioids in the Treatment of Patients With Chronic Non-specific Low Back Pain. 2022. Exclusion Reason: Ineligible Publication Type
- 8. Effects of Cannabidiol (CBD) on Restingstate Electroencephalography (EEG) and Neuropathic Pain Severity in People With

Spinal Cord Injury (SCI). 2022. Exclusion Reason: Ineligible Publication Type

- Abelev S, Warne LN, Benson M, et al. Medicinal Cannabis for the treatment of chronic refractory pain: an investigation of the adverse event profile and health-related quality of life impact of an oral formulation. Med Cannabis Cannabinoids. 2022;5(1):20-31. doi: 10.1159/000521492. PMID: 35950052. Exclusion Reason: Ineligible Comparator
- Abo Ziad R, Grynbaum MB, Peleg R, et al. The Attitudes and Beliefs of Family Physicians Regarding the Use of Medical Cannabis, Knowledge of Side Effects, and Barriers to Use: A Comparison Between Residents and Specialists. Am J Ther. 2020;Publish Ahead of Printdoi: 10.1097/MJT.00000000001236. PMID: 33416237. Exclusion Reason: Ineligible Study Design
- Aboud T, Schuster NM. Pain management in Multiple Sclerosis: a review of available treatment options. Curr Treat Options Neurol. 2019 Nov 27;21(12):62. doi: 10.1007/s11940-019-0601-2. PMID: 31773455. Exclusion Reason: SR used as source document
- Abrams DI, Couey P, Dixit N, et al. Effect of inhaled Cannabis for pain in adults with Sickle Cell Disease: a randomized clinical trial. JAMA Netw Open. 2020 Jul 01;3(7):e2010874. doi: 10.1001/jamanetworkopen.2020.10874. PMID: 32678452. Exclusion Reason: Inadequate Duration
- Abrams DI, Jay CA, Shade SB, et al. Cannabis in painful HIV-associated sensory neuropathy: a randomized placebocontrolled trial. Neurology. 2007 Feb 13;68(7):515-21. doi: 10.1212/01.wnl.0000253187.66183.9c. PMID: 17296917. Exclusion Reason: Inadequate Duration
- Abuhasira R, Ron A, Sikorin I, et al. Medical Cannabis for older patientstreatment protocol and initial results. J Clin Med. 2019 Nov 01;8(11):1819. doi:

10.3390/jcm8111819. PMID: 31683817. **Exclusion Reason:** Ineligible Population

- Abuhasira R, Ron A, Sikorin I, et al. Medical Cannabis for older patients treatment protocol and initial results. J Clin Med. 2019;8(11)doi: 10.3390/jcm8111819. PMID: 31683817. Exclusion Reason: Ineligible Population
- Aebischer JH, Dieckmann NF, Jones KD, et al. Chronic pain clinical and prescriptive practices in the Cannabis era. Pain Manag Nurs. 2021 Dec 29;29:29. doi: 10.1016/j.pmn.2021.11.009. PMID: 34973920. Exclusion Reason: SR used as source document
- Akgün K, Essner U, Seydel C, et al. Daily practice managing resistant Multiple Sclerosis spasticity with Delta-9-Tetrahydrocannabinol: Cannabidiol oromucosal spray: a systematic review of observational studies. J Cent Nerv Syst Dis. 2019;11doi: 10.1177/1179573519831997. PMID: 30886530. Exclusion Reason: SR used as source document
- Allan GM, Finley CR, Ton J, et al. Systematic review of systematic reviews for Medical Cannabinoids: pain, nausea and vomiting, spasticity, and harms. Can Fam Physician. 2018 Feb;64(2):e78-e94. PMID: 29449262. Exclusion Reason: Ineligible Publication Type
- Almog S, Aharon-Peretz J, Vulfsons S, et al. The pharmacokinetics, efficacy, and safety of a novel selective-dose Cannabis inhaler in patients with chronic pain: a randomized, double-blinded, placebo-controlled trial. Eur J Pain. 2020 Sep;24(8):1505-16. doi: 10.1002/ejp.1605. PMID: 32445190.
 Exclusion Reason: Inadequate Duration
- Aly E, Masocha W. Targeting the Endocannabinoid system for management of HIV-associated neuropathic pain: a systematic review. IBRO Neurosci Rep. 2021 Jun;10:109-18. doi: 10.1016/j.ibneur.2021.01.004. PMID: 34179865. Exclusion Reason: SR used as source document
- 21. Amato L, Minozzi S, Mitrova Z, et al. Systematic review of safeness and therapeutic efficacy of Cannabis in patients with Multiple Sclerosis, neuropathic pain, and in oncological patients treated with

chemotherapy. Epidemiol Prev. 2017;41(5-6)doi: 10.19191/EP17.5-6.AD01.069. PMID: 29119763. **Exclusion Reason:** Ineligible Publication Type

- AminiLari M, Wang L, Neumark S, et al. Medical Cannabis and Cannabinoids for impaired sleep: a systematic review and meta-analysis of randomized clinical trials. Sleep. 2021doi: 10.1093/sleep/zsab234.
 PMID: 34546363. Exclusion Reason: SR used as source document
- 23. Anaya HJM, Ortiz MPT, Valencia DHF, et al. Efficacy of Cannabinoids in Fibromyalgia: a literature review. Colomb J Anesthesiol. 2021;49(4)doi: 10.5554/22562087.e980. Exclusion Reason: Inadequate Duration
- Andreae MH, Carter GM, Shaparin N, et al. Inhaled Cannabis for chronic neuropathic pain: a meta-analysis of individual patient data. J Pain. 2015 Dec;16(12):1221-32. doi: 10.1016/j.jpain.2015.07.009. PMID: 26362106. Exclusion Reason: Inadequate Duration
- 25. Anonymous. National Institute for Health and Care Excellence (UK). 2019 11;11:11. PMID: 35107907. **Exclusion Reason:** SR used as source document
- Arnold JC, McCartney D, Suraev A, et al. The safety and efficacy of low oral doses of cannabidiol: An evaluation of the evidence. Clinical and translational science. 2022doi: https://dx.doi.org/10.1111/cts.13425.
 Exclusion Reason: SR used as source document
- Aviram J, Atzmony D, Eisenberg E. Longterm effectiveness and safety of Medical Cannabis administered through the metereddose Syqe Inhaler. Pain reports. 2022;7(3):e1011. doi: 10.1097/PR9.000000000001011. PMID: 35620248. Exclusion Reason: Ineligible Comparator
- Aviram J, Lewitus GM, Pud D, et al. Specific Phytocannabinoid compositions are associated with analgesic response and adverse effects in chronic pain patients treated with Medical Cannabis. Pharmacol Res. 2021 Jul;169:105651. doi: 10.1016/j.phrs.2021.105651. PMID: 34000362. Exclusion Reason: Ineligible Comparator

- Aviram J, Lewitus GM, Vysotski Y, et al. Sex differences in Medical Cannabis-related adverse effects. Pain. 2021doi: 10.1097/j.pain.000000000002463. PMID: 34538843. Exclusion Reason: Ineligible Comparator
- Aviram J, Pud D, Gershoni T, et al. Medical Cannabis treatment for chronic pain: outcomes and prediction of response. Eur J Pain. 2020 Oct 16;16:16. doi: 10.1002/ejp.1675. PMID: 33065768. Exclusion Reason: Ineligible Comparator
- Aviram J, Samuelly-Leichtag G. Efficacy of Cannabis-based medicines for pain management: a systematic review and metaanalysis of randomized controlled trials. Pain Physician. 2017 Sep;20(6):E755-E96. PMID: 28934780. Exclusion Reason: SR used as source document
- Bajtel A, Kiss T, Toth B, et al. The safety of Dronabinol and Nabilone: a systematic review and meta-analysis of clinical trials. Pharmaceuticals (Basel). 2022 Jan 14;15(1):14. doi: 10.3390/ph15010100. PMID: 35056154. Exclusion Reason: SR used as source document
- Bakewell BK, Sherman M, Binsfeld K, et al. The Use of Cannabidiol in Patients With Low Back Pain Caused by Lumbar Spinal Stenosis: An Observational Study. Cureus. 2022;14(9):e29196. doi: https://dx.doi.org/10.7759/cureus.29196.
 Exclusion Reason: Ineligible Study Design
- Ball S, Vickery J, Hobart J, et al. The Cannabinoid Use in Progressive Inflammatory brain Disease (CUPID) trial: a randomised double-blind placebo-controlled parallel-group multicentre trial and economic evaluation of cannabinoids to slow progression in multiple sclerosis. Health Technol Assess. 2015;19(12):1-187. doi: 10.3310/hta19120. PMID: 25676540. Exclusion Reason: Ineligible Outcome
- Balu A, Mishra D, Marcu J, et al. Medical Cannabis certification is associated with decreased opiate use in patients with chronic pain: a retrospective cohort study in Delaware. Cureus. 2021 Dec;13(12):e20240. doi: 10.7759/cureus.20240. PMID: 35004055. Exclusion Reason: Ineligible Comparator

- Barakji J, Korang SK, Feinberg J, et al. Cannabinoids versus placebo for pain: A systematic review with meta-analysis and Trial Sequential Analysis. PLoS ONE. 2023;18(1):e0267420. doi: https://dx.doi.org/10.1371/journal.pone.0267 420. Exclusion Reason: SR used as source document
- 37. Barnes MP. Sativex: clinical efficacy and tolerability in the treatment of symptoms of Multiple Sclerosis and neuropathic pain. Expert Opin Pharmacother. 2006 Apr;7(5):607-15. doi: 10.1517/14656566.7.5.607. PMID: 16553576. Exclusion Reason: Ineligible Publication Type
- Becker WC, Li Y, Caniglia EC, et al. Cannabis use, pain interference, and prescription opioid receipt among persons with HIV: a target trial emulation study. AIDS Care. 2021 Jun 28:1-9. doi: 10.1080/09540121.2021.1944597. PMID: 34180721. Exclusion Reason: Ineligible Population
- Bellnier T, Brown GW, Ortega TR. Preliminary evaluation of the efficacy, safety, and costs associated with the treatment of chronic pain with Medical Cannabis. Ment Health Clin. 2018 Apr 26;8(3):110-5. doi: 10.9740/mhc.2018.05.110. PMID: 29955555. Exclusion Reason: Ineligible Comparator
- Benedict G, Sabbagh A, Conermann T. Medical Cannabis used as an alternative treatment for chronic pain demonstrates reduction in chronic opioid use - a prospective study. Pain Physician. 2022 Jan;25(1):E113-E9. PMID: 35051158.
 Exclusion Reason: Ineligible Comparator
- 41. Bennici A, Mannucci C, Calapai F, et al. Safety of Medical Cannabis in neuropathic chronic pain management. Molecules (Basel). 2021;26(20):16. doi: 10.3390/molecules26206257. PMID: 34684842. Exclusion Reason: SR used as source document
- 42. Berger AA, Keefe J, Winnick A, et al. Cannabis and Cannabidiol (CBD) for the treatment of Fibromyalgia. Best Pract Res Clin Anaesthesiol. 2020doi: 10.1016/j.bpa.2020.08.010. PMID:

33004171. **Exclusion Reason:** Ineligible Publication Type

- 43. Berman JS, Symonds C, Birch R. Efficacy of two Cannabis based medicinal extracts for relief of central neuropathic pain from brachial plexus avulsion: results of a randomised controlled trial. Pain. 2004 Dec;112(3):299-306. doi: 10.1016/j.pain.2004.09.013. PMID: 15561385. Exclusion Reason: Inadequate Duration
- 44. Bialas P, Fitzcharles M-A, Klose P, et al. Long-term observational studies with Cannabis-based medicines for chronic noncancer pain: a systematic review and metaanalysis of effectiveness and safety. Eur J Pain. 2022doi: 10.1002/ejp.1957. PMID: 35467781. **Exclusion Reason:** SR used as source document
- 45. Bicket MC, Stone EM, McGinty EE. Use of Cannabis and Other Pain Treatments Among Adults With Chronic Pain in US States With Medical Cannabis Programs. JAMA Netw Open. 2023;6(1):e2249797. doi: https://dx.doi.org/10.1001/jamanetworkopen .2022.49797. **Exclusion Reason:** Ineligible Study Design
- 46. Bilbao A, Spanagel R. Medical Cannabinoids: a pharmacology-based systematic review and meta-analysis for all relevant medical indications. BMC medicine. 2022;20(1):259. doi: 10.1186/s12916-022-02459-1. PMID: 35982439. Exclusion Reason: SR used as source document
- 47. Blake A, Wan BA, Malek L, et al. A selective review of Medical Cannabis in cancer pain management. Ann Palliat Med. 2017 Dec;6(Suppl 2):S215-S22. doi: 10.21037/apm.2017.08.05. PMID: 28866904. Exclusion Reason: Ineligible Population
- Boehnke KF, Clauw DJ. Cannabinoids for Chronic Pain: Translating Systematic Review Findings Into Clinical Action. Ann Intern Med. 2022doi: 10.7326/M22-1512. PMID: 35667063. Exclusion Reason: Background
- Boehnke KF, Gagnier JJ, Matallana L, et al. Cannabidiol Use for Fibromyalgia: Prevalence of Use and Perceptions of Effectiveness in a Large Online Survey. J

Pain. 2021doi: 10.1016/j.jpain.2020.12.001. PMID: 33400996. **Exclusion Reason:** Ineligible Study Design

- Boehnke KF, Gagnier JJ, Matallana L, et al. Substituting Cannabidiol for opioids and pain medications among individuals with Fibromyalgia: a large online survey. J Pain. 2021doi: 10.1016/j.jpain.2021.04.011. PMID: 33992787. Exclusion Reason: Background
- Boehnke KF, Hauser W, Fitzcharles M-A. Cannabidiol (CBD) in Rheumatic Diseases (Musculoskeletal Pain). Curr Rheumatol Rep. 2022doi: 10.1007/s11926-022-01077-3. PMID: 35503198. Exclusion Reason: SR used as source document
- 52. Boehnke KF, Scott JR, Litinas E, et al. High-frequency Medical Cannabis use is associated with worse pain among individuals with chronic pain. J Pain. 2020 May - Jun;21(5-6):570-81. doi: 10.1016/j.jpain.2019.09.006. PMID: 31560957. Exclusion Reason: Ineligible Comparator
- 53. Bonomo Y, Norman A, Collins L, et al. Pharmacokinetics, safety, and tolerability of a Medicinal Cannabis formulation in patients with chronic non-cancer pain on long-term high dose opioid analgesia: a pilot study. Pain Ther. 2021;18:18. doi: 10.1007/s40122-021-00344-y. PMID: 34921662. Exclusion Reason: Ineligible Comparator
- 54. Boychuk DG, Goddard G, Mauro G, et al. The effectiveness of Cannabinoids in the management of chronic nonmalignant neuropathic pain: a systematic review. J Oral Facial Pain Headache. 2015;29(1):7-14. doi: 10.11607/ofph.1274. PMID: 25635955. Exclusion Reason: Ineligible Publication Type
- 55. Busse JW, MacKillop J. Medical Cannabis and Cannabinoids for chronic pain: summary of a rapid recommendation. J Mil Veteran Fam Health. 2021;7:118-22. doi: 10.3138/jmvfh-2021-0056. Exclusion Reason: Ineligible Publication Type
- 56. Busse JW, Wang L, Kamaleldin M, et al. Opioids for chronic noncancer pain: a systematic review and meta-analysis. Jama. 2018 Dec 18;320(23):2448-60. doi: 10.1001/jama.2018.18472. PMID:

30561481. Exclusion Reason: SR used as source document

- 57. Canavan C, Inoue T, McMahon S, et al. The efficacy, adverse events, and withdrawal rates of the pharmacological management of chronic spinal cord injury pain: a systematic review and meta-analysis. Pain Med. 2022 Feb 01;23(2):375-95. doi: 10.1093/pm/pnab140. PMID: 33844010. Exclusion Reason: SR used as source document
- 58. Carreira DS, Garden S, Huffman A, et al. Cannabinoids in the Orthopedic Setting: A Literature Review. Orthopedics. 2022:1-7. doi: 10.3928/01477447-20220225-11. PMID: 35245146. Exclusion Reason: SR used as source document
- 59. Chan CJ. Efficacy of plant based Cannabis in reducing pain in patients with chronic pain: a meta analysis. Diss Abstr Int. 2020;81(10-B):No Pagination Specified. Exclusion Reason: Ineligible Publication Type
- 60. Christ MM. Pain medicine: Cannabis is effective in neuropathic pain.
 Arzneimitteltherapie. 2019;37(6):242-3.
 Exclusion Reason: Not in English
- 61. Clermont-Gnamien S, Atlani S, Attal N, et al. The therapeutic use of Δ9-tetrahydrocannabinol (dronabinol) in refractory neuropathic pain. Presse Med. 2002;31(39 I):1840-5. PMID: 12496714. Exclusion Reason: Not in English
- 62. Coates MD, Dalessio S, Walter V, et al. Symptoms and extraintestinal manifestations in active Cannabis users with Inflammatory Bowel Disease. Cannabis Cannabinoid Res. 2022;7(4):445-50. doi: 10.1089/can.2020.0155. PMID: 33998892.
 Exclusion Reason: Ineligible Population
- 63. Cooper ZD, Abrams DI. Considering abuse liability and neurocognitive effects of Cannabis and Cannabis-derived products when assessing Analgesic efficacy: a comprehensive review of randomized-controlled studies. Am J Drug Alcohol Abuse. 2019;45(6):580-95. doi: 10.1080/00952990.2019.1669628. PMID: 31687845. Exclusion Reason: SR used as source document
- 64. Corey-Bloom J, Wolfson T, Gamst A, et al. Smoked Cannabis for spasticity in Multiple

Sclerosis: a randomized, placebo-controlled trial. Cmaj. 2012 Jul 10;184(10):1143-50. doi: 10.1503/cmaj.110837. PMID: 22586334. Exclusion Reason: Inadequate Duration

- Costales B, van Boemmel-Wegmann S, Winterstein A, et al. Clinical conditions and prescription drug utilization among early medical marijuana registrants in Florida. J Psychoactive Drugs. 2021:1-10. doi: 10.1080/02791072.2020.1864069. PMID: 33393877. Exclusion Reason: Ineligible Study Design
- 66. Coughlin LN, Ilgen MA, Jannausch M, et al. Progression of Cannabis withdrawal symptoms in people using Medical Cannabis for chronic pain. Addiction. 2021doi: 10.1111/add.15370. PMID: 33400332.
 Exclusion Reason: Ineligible Study Design
- 67. Crestani F. Medical Cannabis for the treatment of Fibromyalgia. J Clin Rheumatol. 2018 Aug;24(5):281. doi: 10.1097/RHU.0000000000000823. PMID: 29757806. Exclusion Reason: Ineligible Study Design
- 68. Cumenal M, Selvy M, Kerckhove N, et al. The safety of medications used to treat peripheral neuropathic pain, part 2 (opioids, Cannabinoids and other drugs): review of double-blind, placebo-controlled, randomized clinical trials. Expert Opin Drug Saf. 2020doi: 10.1080/14740338.2021.1842871. PMID: 33103931. Exclusion Reason: SR used as source document
- 69. Cunetti L, Manzo L, Peyraube R, et al. Chronic pain treatment with Cannabidiol in kidney transplant patients in Uruguay. Transplant Proc. 2018 Mar;50(2):461-4. doi: 10.1016/j.transproceed.2017.12.042. PMID: 29579828. Exclusion Reason: Ineligible Comparator
- 70. Cunningham CO, Starrels JL, Zhang C, et al. Medical marijuana and opioids (MEMO) study: protocol of a longitudinal cohort study to examine if medical cannabis reduces opioid use among adults with chronic pain. BMJ Open. 2020;10(12):e043400. doi: 10.1136/bmjopen-2020-043400. PMID: 33376181. Exclusion Reason: Ineligible Study Design

- Curtis SA, Brandow AM, Deveaux M, et al. Daily Cannabis users with Sickle Cell Disease show fewer admissions than others with similar pain complaints. Cannabis Cannabinoid Res. 2020;5(3):255-62. doi: 10.1089/can.2019.0036. PMID: 32923662.
 Exclusion Reason: Ineligible Study Design
- Darnall BD, Humphreys KN. An experimental method for assessing whether marijuana use reduces opioid use in patients with chronic pain. Addiction. 2018 Aug;113(8):1552-3. doi: 10.1111/add.14239. PMID: 29882256.
 Exclusion Reason: Ineligible Study Design
- 73. Datta S, Ramamurthy PC, Anand U, et al. Wonder or evil?: multifaceted health hazards and health benefits of Cannabis Sativa and its Phytochemicals. Saudi J Biol Sci.28(12):7290-313. doi: 10.1016/j.sjbs.2021.08.036. PMID: 34867033. Exclusion Reason: Ineligible Publication Type
- 74. Degenhardt L, Lintzeris N, Campbell G, et al. Experience of adjunctive Cannabis use for chronic non-cancer pain: findings from the pain and opioids in treatment (POINT) study. Drug Alcohol Depend. 2015 Feb 01;147:144-50. doi: 10.1016/j.drugalcdep.2014.11.031. PMID: 25533893. Exclusion Reason: Ineligible Study Design
- 75. Denduluri SK, Woolson ST, Indelli PF, et al. Cannabinoid and Opioid Use Among Total Joint Arthroplasty Patients: A 6-Year, Single-Institution Study. Orthopedics. 2020 Oct 01:1-6. doi: 10.3928/01477447-20200928-02. PMID: 33002174. Exclusion Reason: Ineligible Outcome
- Deshpande A, Mailis-Gagnon A, Zoheiry N, et al. Efficacy and adverse effects of medical marijuana for chronic noncancer pain: systematic review of randomized controlled trials. Can Fam Physician. 2015 Aug;61(8):e372-81. PMID: 26505059.
 Exclusion Reason: Ineligible Publication Type
- 77. Dimitrios L, Aris F. Efficacy, tolerability and safety of Cannabinoids for management of pain in adult patients with Multiple Sclerosis: a systematic review and metaanalysis. Signa Vitae. 2021;17:S10. doi: 10.22514/sv.2021.157. Exclusion Reason: Ineligible Publication Type

- 78. Domnic G, Narayanan S, Mohana-Kumaran N, et al. Kratom (Mitragyna speciosa Korth.) an overlooked medicinal plant in Malaysia. J Subst Use. 2022;27(1):1-6. doi: 10.1080/14659891.2021.1885515.
 Exclusion Reason: SR used as source document
- 79. Durán M, Capellà D. Cannabis and Cannabinoids in the treatment of neuropathic pain. DOLOR. 2005;20(4):213-6. Exclusion Reason: Not in English
- Dykukha I, Malessa R, Essner U, et al. Nabiximols in chronic neuropathic pain: a meta-analysis of randomized placebocontrolled trials. Pain Med. 2021 04 20;22(4):861-74. doi: 10.1093/pm/pnab050. PMID: 33561282. Exclusion Reason: SR used as source document
- 81. Eadie L, Lo LA, Christiansen A, et al. Duration of neurocognitive impairment with Medical Cannabis use: a scoping review. Front Psychiatry. 2021;12doi: 10.3389/fpsyt.2021.638962. PMID: 33790818. Exclusion Reason: SR used as source document
- 82. Edinoff AN, Fort JM, Singh C, et al. Alternative Options for Complex, Recurrent Pain States Using Cannabinoids, Psilocybin, and Ketamine: A Narrative Review of Clinical Evidence. Neurology int. 2022;14(2):423-36. doi: 10.3390/neurolint14020035. PMID: 35645354. Exclusion Reason: Ineligible Publication Type
- 83. Eichorn NL, Shult HT, Kracht KD, et al. Making a joint decision: Cannabis as a potential substitute for opioids in Obstetrics and Gynecology. Best practice & research. Clinical obstetrics & gynaecology. 2022;S1521-6934(22):00100-6. doi: 10.1016/j.bpobgyn.2022.07.002. PMID: 35970747. Exclusion Reason: Ineligible Publication Type
- 84. Ellis RJ, Toperoff W, Vaida F, et al. Smoked Medicinal Cannabis for neuropathic pain in HIV: a randomized, crossover clinical trial. Neuropsychopharmacology. 2009 Feb;34(3):672-80. doi: 10.1038/npp.2008.120. PMID: 18688212. Exclusion Reason: Inadequate Duration
- 85. Ergisi M, Erridge S, Harris M, et al. An updated analysis of clinical outcome

measures across patients from the UK Medical Cannabis registry. Cannabis Cannabinoid Res. 2022 Jan 24;24:24. doi: 10.1089/can.2021.0145. PMID: 35073160. **Exclusion Reason:** Ineligible Population

- 86. Fallon MT, Albert Lux E, McQuade R, et al. Sativex oromucosal spray as adjunctive therapy in advanced cancer patients with chronic pain unalleviated by optimized opioid therapy: two double-blind, randomized, placebo-controlled phase 3 studies. Br J Pain. 2017 Aug;11(3):119-33. doi: 10.1177/2049463717710042. PMID: 28785408. Exclusion Reason: Ineligible Population
- Feingold D, Brill S, Goor-Aryeh I, et al. Depression and Anxiety among chronic pain patients receiving prescription opioids and medical marijuana. J Affect Disord. 2017 Aug 15;218:1-7. doi: 10.1016/j.jad.2017.04.026. PMID: 28453948. Exclusion Reason: Ineligible Study Design
- Ferrie ML, Rogers AH, Zvolensky MJ, et al. Alcohol and marijuana co-use among adults with chronic low back pain: Associations with substance misuse, mental health, and pain experience. The American journal on addictions. 2022;31(6):546-9. doi: 10.1111/ajad.13343. PMID: 36184876.
 Exclusion Reason: Ineligible Study Design
- Fiani B, Sarhadi KJ, Soula M, et al. Current application of Cannabidiol (CBD) in the management and treatment of neurological disorders. Neurol Sci. 2020 Nov;41(11):3085-98. doi: 10.1007/s10072-020-04514-2. PMID: 32556748. Exclusion Reason: Background
- 90. Filippini G, Minozzi S, Borrelli F, et al. Cannabis and Cannabinoids for symptomatic treatment for people with Multiple Sclerosis. The Cochrane database of systematic reviews. 2022;5:CD013444. doi: 10.1002/14651858.CD013444.pub2. PMID: 35510826. Exclusion Reason: SR used as source document
- 91. First L, Douglas W, Habibi B, et al. Cannabis use and low-back pain: a systematic review. Cannabis Cannabinoid Res. 2020;5(4):283-9. doi: 10.1089/can.2019.0077. PMID: 33381642.
 Exclusion Reason: SR used as source document

- 92. Fishbain DA, Cutler RB, Rosomoff HL, et al. Validity of self-reported drug use in chronic pain patients. Clin J Pain. 1999 Sep;15(3):184-91. doi: 10.1097/00002508-199909000-00005. PMID: 10524471.
 Exclusion Reason: Background
- 93. Fisher E, Moore RA, Fogarty AE, et al. Cannabinoids, Cannabis, and Cannabisbased medicine for pain management: a systematic review of randomised controlled trials. Pain. 2021 Jul 1;162(Suppl 1):S45s66. doi: 10.1097/j.pain.0000000000001929. PMID: 32804836. Exclusion Reason: SR used as source document
- 94. Fitzcharles M-A, Rampakakis E, Sampalis J, et al. Use of Medical Cannabis by patients with Fibromyalgia in Canada after Cannabis legalisation: a cross-sectional study. Clin Exp Rheumatol. 2021doi: 10.55563/clinexprheumatol/qcyet7. PMID: 33938797. Exclusion Reason: Ineligible Study Design
- 95. Fitzcharles MA, Baerwald C, Ablin J, et al. Efficacy, tolerability and safety of Cannabinoids in chronic pain associated with rheumatic diseases (Fibromyalgia Syndrome, back pain, Osteoarthritis, Rheumatoid Arthritis): a systematic review of randomized controlled trials. Schmerz. 2016 Feb;30(1):47-61. doi: 10.1007/s00482-015-0084-3. PMID: 26767993. Exclusion Reason: Ineligible Publication Type
- 96. Fitzcharles MA, Petzke F, Tolle TR, et al. Cannabis-based medicines and Medical Cannabis in the treatment of nociplastic pain. Drugs.81(18):2103-16. doi: 10.1007/s40265-021-01602-1. PMID: 34800285. Exclusion Reason: Ineligible Publication Type
- 97. Fitzcharles MA, Ste-Marie PA, Hauser W, et al. Efficacy, tolerability, and safety of Cannabinoid treatments in the rheumatic diseases: a systematic review of randomized controlled trials. Arthritis care & research. 2016 May;68(5):681-8. doi: 10.1002/acr.22727. PMID: 26548380. Exclusion Reason: Ineligible Publication Type
- 98. Flachenecker P, Henze T, Zettl UK. Nabiximols (THC/CBD oromucosal spray, Sativex®) in clinical practice--results of a multicenter, non-interventional study (MOVE 2) in patients with Multiple

Sclerosis spasticity. Eur Neurol. 2014;71(5-6):271-9. doi: 10.1159/000357427. PMID: 24525548. Exclusion Reason: Ineligible Comparator

- 99. Flachenecker P, Henze T, Zettl UK. Longterm effectiveness and safety of Nabiximols (tetrahydrocannabinol/cannabidiol oromucosal spray) in clinical practice. Eur Neurol. 2014;72(1-2):95-102. doi: 10.1159/000360285. PMID: 24943098.
 Exclusion Reason: Ineligible Comparator
- 100. Gado F, Mohamed KA, Meini S, et al. Variously substituted 2-oxopyridine derivatives: extending the structure-activity relationships for allosteric modulation of the Cannabinoid CB2 receptor. Eur J Med Chem. 2020;211:113116. doi: 10.1016/j.ejmech.2020.113116. PMID: 33360803. Exclusion Reason: Ineligible Study Design
- 101. Gambino A, Cabras M, Panagiotakos E, et al. Evaluating the suitability and potential efficiency of Cannabis Sativa oil for patients with primary Burning Mouth Syndrome: a prospective, open-label, single-arm pilot study. Pain Med. 2020doi: 10.1093/pm/pnaa318. PMID: 33123730.
 Exclusion Reason: Ineligible Comparator
- 102. Garmon EH, Olson K. Narrative review of Kratom, an emerging psychoactive substance with perianesthetic implications. Anesthesia and analgesia. 2022;XXXdoi: 10.1213/ANE.00000000006177. PMID: 35986675. Exclusion Reason: Ineligible Publication Type
- 103. Gedin F, Blome S, Ponten M, et al. Placebo Response and Media Attention in Randomized Clinical Trials Assessing Cannabis-Based Therapies for Pain: A Systematic Review and Meta-analysis. JAMA Netw Open. 2022;5(11):e2243848. doi: https://dx.doi.org/10.1001/jamanetworkopen .2022.43848. Exclusion Reason: SR used
 - as source document
- 104. Gershoni T, Pud D, Aviram J, et al. Wellness of patients with chronic pain is not only about pain intensity. Pain practice : the official journal of World Institute of Pain. 2022;00:1-10. doi: 10.1111/papr.13168. PMID: 36181347. Exclusion Reason: Ineligible Comparator

- 105. Gilman JM, Schuster RM, Potter KW, et al. Effect of medical marijuana card ownership on pain, Insomnia, and Affective Disorder symptoms in adults: a randomized clinical trial. JAMA Netw Open. 2022;5(3):e222106. doi: 10.1001/jamanetworkopen.2022.2106. PMID: 35302633. Exclusion Reason: Ineligible Intervention
- 106. Giossi R, Carrara F, Padroni M, et al. Systematic review and meta-analysis seem to indicate that Cannabinoids for chronic primary pain treatment have limited benefit. Pain Ther. 2022doi: 10.1007/s40122-022-00434-5. PMID: 36129666. Exclusion Reason: SR used as source document
- 107. Goedel WC, Macmadu A, Shihipar A, et al. Association of medical cannabis licensure with prescription opioid receipt: A population-based, individual-level retrospective cohort study. Int J Drug Policy. 2021;100:103502. doi: 10.1016/j.drugpo.2021.103502. PMID: 34695720. Exclusion Reason: Ineligible Comparator
- Greis A, Larsen E, Liu C, et al. Perceived efficacy, reduced prescription drug use, and minimal side effects of Cannabis in patients with chronic orthopedic pain. Cannabis Cannabinoid Res. 2021;12:12. doi: 10.1089/can.2021.0088. PMID: 34767730. Exclusion Reason: Ineligible Comparator
- 109. Greis A, Renslo B, Wilson-Poe AR, et al. Medical Cannabis use reduces opioid prescriptions in patients with chronic back pain. Cureus. 2022;14(1):e21452. doi: 10.7759/cureus.21452. PMID: 35223236. Exclusion Reason: Ineligible Comparator
- 110. Grossman S, Tan H, Gadiwalla Y. Cannabis and orofacial pain: a systematic review. Br J Oral Maxillofac Surg. 2021doi: 10.1016/j.bjoms.2021.06.005. PMID: 35305839. Exclusion Reason: SR used as source document
- 111. Grotenhermen F. Treatment of severe chronic pain with Cannabis preparations. Arztl Prax Neurol Psychiatr. 2002(5):28-30.
 Exclusion Reason: Not in English
- 112. Guillouard M, Authier N, Pereira B, et al. Cannabis use assessment and its impact on pain in Rheumatologic diseases: a systematic review and meta-analysis.

Rheumatology (Oxford). 2020doi: 10.1093/rheumatology/keaa534. PMID: 33159797. **Exclusion Reason:** SR used as source document

- 113. Gundin JS, Rubio-Valera M, Romero LG, et al. Off-label use of Cannabinoids efficacy and safety. Eur J Clin Pharm. 2017;19(3):158-63. Exclusion Reason: Ineligible Study Design
- 114. Gutierrez T, Hohmann AG. Cannabinoids for the treatment of neuropathic pain: Are they safe and effective? Future Neurol. 2011;6(2):129-33. doi: 10.2217/fnl.11.6. Exclusion Reason: Ineligible Publication Type
- 115. Habib G, Khazin F, Artul S. The effect of Medical Cannabis on pain level and quality of sleep among Rheumatology clinic outpatients. Pain Res Manag. 2021;2021:1756588. doi: 10.1155/2021/1756588. PMID: 34531934.
 Exclusion Reason: Ineligible Comparator
- 116. Häckel A. Cannabis for chronic back pain?: Pivotal study for whole Cannabis extract started. MMW Fortschr Med. 2021;163(14):63. doi: 10.1007/s15006-021-0197-9. Exclusion Reason: Ineligible Publication Type
- 117. Haddad F, Dokmak G, Karaman R. The efficacy of Cannabis on Multiple Sclerosis-related symptoms. Life (Basel, Switzerland). 2022;12(5)doi: 10.3390/life12050682. PMID: 35629350. Exclusion Reason: Ineligible Publication Type
- 118. Haleem R, Wright R. A scoping review on clinical trials of pain reduction with Cannabis administration in adults. J Clin Med Res. 2020 Jun;12(6):344-51. doi: 10.14740/jocmr4210. PMID: 32587650. Exclusion Reason: Ineligible Population
- 119. Hall N, James B, Bhuiyan MAN, et al. Topical cannabidiol is well tolerated in individuals with a history of elite physical performance and chronic lower extremity pain. J Cannabis Res. 2023;5(1):11. doi: https://dx.doi.org/10.1186/s42238-023-00179-8. Exclusion Reason: Ineligible Comparator
- 120. Hameed M, Prasad S, Jain E, et al. Medical Cannabis for Chronic Nonmalignant Pain Management. Current pain and headache reports. 2023doi:

https://dx.doi.org/10.1007/s11916-023-01101-w. **Exclusion Reason:** Ineligible Publication Type

- 121. Hansen JS, Hansen RM, Petersen T, et al. The effect of Cannabis-based medicine on neuropathic pain and spasticity in patients with Multiple Sclerosis and spinal cord injury: study protocol of a national multicenter double-blinded, placebocontrolled trial. Brain sci. 2021;11(9)doi: 10.3390/brainsci11091212. PMID: 34573231. Exclusion Reason: Ineligible Publication Type
- 122. Haroutounian S, Arendt-Nielsen L, Belton J, et al. International association for the study of pain presidential task force on Cannabis and Cannabinoid Analgesia: research agenda on the use of Cannabinoids, Cannabis, and Cannabis-based medicines for pain management. Pain. 2021 Jul 01;162(Suppl 1):S117-S24. doi: 10.1097/j.pain.00000000002266. PMID: 34138827. Exclusion Reason: Background
- Harris M, Erridge S, Ergisi M, et al. UK Medical Cannabis Registry: an analysis of clinical outcomes of Medicinal Cannabis therapy for chronic pain conditions. Expert Rev Clin Pharmacol. 2021:1-13. doi: 10.1080/17512433.2022.2017771. PMID: 34937477. Exclusion Reason: Ineligible Comparator
- Hassan S, Zheng Q, Rizzolo E, et al. Does integrative medicine reduce prescribed opioid use for chronic pain? A systematic literature review. Pain Med. 2020 Apr 01;21(4):836-59. doi: 10.1093/pm/pnz291. PMID: 31755962. Exclusion Reason: Ineligible Intervention
- Haungs A, Elizondo J. Does smoking Cannabis help with chronic neuropathic pain? Evid Based Pract. 2018;21(2):E7-E8. doi: 10.1097/01.EBP.0000541985.24333.b1.
 Exclusion Reason: Ineligible Publication Type
- Hauser W, Fitzcharles M-A. Register-based studies on Cannabis-based medicines and Medical Cannabis need reliable diagnoses and Cannabis treatment details. Eur J Pain. 2022;26(1):3-4. doi: 10.1002/ejp.1881. PMID: 34743399. Exclusion Reason: Ineligible Publication Type

- Hauser W, Fitzcharles M-A, Radbruch L, et al. Cannabinoids in pain management and palliative medicine: an overview of systematic reviews and prospective observational studies. Dtsch Arztebl Int. 2017 Sep;114(38):627-34. doi: 10.3238/arztebl.2017.0627. PMID: 29017688. Exclusion Reason: SR used as source document
- Hauser W, Fitzcharles MA, Radbruch L, et al. Cannabinoids in Pain Management and Palliative Medicine. Dtsch Arztebl Int. 2017 Sep 22;114(38):627-34. doi: 10.3238/arztebl.2017.0627. PMID: 29017688. Exclusion Reason: Ineligible Population
- Hayes C, Martin JH. Lack of efficacy of Cannabidiol for relieving back pain: time to re-set expectations? Med J Aust. 2021doi: 10.5694/mja2.51025. PMID: 33846981.
 Exclusion Reason: Ineligible Publication Type
- Hefner K, Sofuoglu M, Rosenheck R. Concomitant Cannabis abuse/dependence in patients treated with opioids for non-cancer pain. The American journal on addictions. 2015 Sep;24(6):538-45. doi: 10.1111/ajad.12260. PMID: 26246069. Exclusion Reason: Ineligible Outcome
- Heineman JT, Forster GL, Stephens KL, et al. A randomized controlled trial of topical Cannabidiol for the treatment of thumb basal joint arthritis. J Hand Surg Am. 2022 May 27doi: 10.1016/j.jhsa.2022.03.002. PMID: 35637038. Exclusion Reason: Inadequate Duration
- 132. Hendricks O, Andersen TE, Christiansen AA, et al. Efficacy and safety of Cannabidiol followed by an open label addon of tetrahydrocannabinol for the treatment of chronic pain in patients with Rheumatoid Arthritis or Ankylosing Spondylitis: protocol for a multicentre, randomised, placebo-controlled study. BMJ Open. 2019 Jun 04;9(6):e028197. doi: 10.1136/bmjopen-2018-028197. PMID: 31167870. Exclusion Reason: Ineligible Study Design
- 133. Hershkovich O, Hayun Y, Oscar N, et al. The role of cannabis in treatment-resistant fibromyalgia women. Pain practice : the official journal of World Institute of Pain. 2022doi:

https://dx.doi.org/10.1111/papr.13179. Exclusion Reason: Ineligible Study Design

- 134. Hesselink JM, Kopsky DJ. Enhancing acupuncture by low dose Naltrexone. Acupunct Med. 2011 Jun;29(2):127-30. doi: 10.1136/aim.2010.003566. PMID: 21415049. Exclusion Reason: Ineligible Publication Type
- 135. Hill KP, Hurley-Welljams-Dorof WM. Low to moderate quality evidence demonstrates the potential benefits and adverse events of Cannabinoids for certain medical indications. Evid Based Med. 2016 Feb;21(1):17. doi: 10.1136/ebmed-2015-110264. PMID: 26490847. Exclusion Reason: Ineligible Publication Type
- Hill KP, Palastro MD, Johnson B, et al. Cannabis and pain: a clinical review. Cannabis Cannabinoid Res. 2017;2(1):96-104. doi: 10.1089/can.2017.0017. PMID: 28861509. Exclusion Reason: SR used as source document
- Hjorthøj C, La Cour P, Nordentoft M, et al. Cannabis-based medicines and Medical Cannabis for patients with neuropathic pain and other pain disorders: nationwide register-based pharmacoepidemiologic comparison with propensity score matched controls. Eur J Pain. 2021doi: 10.1002/ejp.1874. PMID: 34624164.
 Exclusion Reason: Ineligible Outcome
- 138. Hjorthoj C, La Cour P, Nordentoft M, et al. Cannabis-based medicines and Medical Cannabis for patients with neuropathic pain and other pain disorders: nationwide register-based pharmacoepidemiologic comparison with propensity score matched controls. Eur J Pain. 2022;26(2):480-91. doi: 10.1002/ejp.1874. PMID: 34624164. Exclusion Reason: Ineligible Population
- Hoggart B, Ratcliffe S, Ehler E, et al. A multicentre, open-label, follow-on study to assess the long-term maintenance of effect, tolerance and safety of THC/CBD oromucosal spray in the management of neuropathic pain. J Neurol. 2015 Jan;262(1):27-40. doi: 10.1007/s00415-014-7502-9. PMID: 25270679. Exclusion Reason: Ineligible Study Design
- Hojsted J, Ekholm O, Kurita GP, et al. Addictive behaviors related to opioid use for chronic pain: a population-based study.

Pain. 2013;154(12):2677-83. doi: 10.1016/j.pain.2013.07.046. PMID: 23906554. **Exclusion Reason:** Ineligible Intervention

- 141. Holdcroft A, Smith M, Jacklin A, et al. Pain relief with oral Cannabinoids in familial Mediterranean fever. Anaesthesia. 1997 May;52(5):483-6. doi: 10.1111/j.1365-2044.1997.139-az0132.x. PMID: 9165969.
 Exclusion Reason: Ineligible Study Design
- Horsted T, Lichon Hesthaven K, Leutscher PDC. Safety and Effectiveness of Cannabinoids to Danish Patients with Treatment Refractory Chronic Pain - A Retrospective Observational Real-world Study. Eur J Pain. 2022doi: https://dx.doi.org/10.1002/ejp.2054.
 Exclusion Reason: Ineligible Study Design
- Huang IC, Alberts NM, Buckley MG, et al. Change in pain status and subsequent opioid and marijuana use among long-term adult survivors of childhood cancer. JNCI Cancer Spectr. 2020;4(6):pkaa070. doi: 10.1093/jncics/pkaa070. PMID: 33409451.
 Exclusion Reason: Ineligible Study Design
- Hughes PR, Nwokocha J. Medical Cannabis or Cannabinoids for chronic pain: BMJ rapid recommendation. American Family Physician. 2022;106(2):208-9. PMID: 35977118. Exclusion Reason: Ineligible Publication Type
- 145. Hunter D, Oldfield G, Tich N, et al. Synthetic transdermal cannabidiol for the treatment of knee pain due to osteoarthritis. Osteoarthritis Cartilage. 2018;26:S26. doi: 10.1016/j.joca.2018.02.067. Exclusion Reason: Ineligible Publication Type
- Hwang JK, Clarke H. Cannabis and pain: a review. J Pain Manag. 2016;9(4):395-413.
 Exclusion Reason: Ineligible Publication Type
- 147. Iskedjian M, Bereza B, Gordon A, et al. Meta-analysis of Cannabis based treatments for neuropathic and Multiple Sclerosisrelated pain. Curr Med Res Opin. 2007 Jan;23(1):17-24. doi: 10.1185/030079906x158066. PMID: 17257464. Exclusion Reason: Ineligible Publication Type
- 148. Issa MA, Narang S, Jamison RN, et al. The subjective psychoactive effects of oral dronabinol studied in a randomized,

controlled crossover clinical trial for pain. Clin J Pain. 2014 Jun;30(6):472-8. doi: 10.1097/AJP.000000000000022. PMID: 24281276. **Exclusion Reason:** Inadequate Duration

- 149. Jain N, Moorthy A. Cannabinoids in Rheumatology: friend, foe or a bystander? Musculoskeletal care. 2022doi: 10.1002/msc.1636. PMID: 35476898.
 Exclusion Reason: Ineligible Publication Type
- 150. Jashinski J, Grossman E, Quaye A, et al. Randomised, pragmatic, waitlist controlled trial of Cannabis added to prescription opioid support on opioid dose reduction and pain in adults with chronic non-cancer pain: study protocol. BMJ Open. 2022;12(6):e064457. doi: 10.1136/bmjopen-2022-064457. PMID: 35680252. Exclusion Reason: Ineligible Publication Type
- 151. Jawahar R, Oh U, Yang S, et al. A systematic review of pharmacological pain management in Multiple Sclerosis. Drugs. 2013 Oct;73(15):1711-22. doi: 10.1007/s40265-013-0125-0. PMID: 24085618. Exclusion Reason: SR used as source document
- 152. Jensen TS, Madsen CS, Finnerup NB. Pharmacology and treatment of neuropathic pains. Curr Opin Neurol. 2009 Oct;22(5):467-74. doi: 10.1097/WCO.0b013e3283311e13. PMID: 19741531. Exclusion Reason: Ineligible Publication Type
- 153. Johal H, Devji T, Chang Y, et al. Cannabinoids in chronic non-cancer pain: a systematic review and meta-analysis. Clin Med Insights Arthritis Musculoskelet Disord. 2020 Feb 19;13:1179544120906461. doi: 10.1177/1179544120906461. PMID: 32127750. Exclusion Reason: SR used as source document
- 154. Jugl S, Okpeku A, Costales B, et al. A mapping literature review of Medical Cannabis clinical outcomes and quality of evidence in approved conditions in the USA from 2016 to 2019. Med Cannabis Cannabinoids. 2021;4(1):21-42. doi: 10.1159/000515069. PMID: 34676348.
 Exclusion Reason: SR used as source document

- 155. Kafil TS, Nguyen TM, MacDonald JK, et al. Cannabis for the treatment of Ulcerative Colitis. Cochrane Database Syst Rev. 2018 Nov 08;11:CD012954. doi: 10.1002/14651858.CD012954.pub2. PMID: 30406638. Exclusion Reason: Ineligible Population
- 156. Karst M, Salim K, Burstein S, et al. Analgesic effect of the synthetic cannabinoid CT-3 on chronic neuropathic pain: a randomized controlled trial. Jama. 2003 Oct 01;290(13):1757-62. doi: 10.1001/jama.290.13.1757. PMID: 14519710. Exclusion Reason: Inadequate Duration
- 157. Kaskie B, Kang H, Bhagianadh D, et al. Cannabis use among older persons with Arthritis, Cancer and Multiple Sclerosis: are we comparing apples and oranges? Brain sci. 2021;11(5)doi: 10.3390/brainsci11050532. PMID: 33922425. Exclusion Reason: Ineligible Study Design
- 158. Kawka M, Erridge S, Holvey C, et al. Clinical outcome data of first cohort of chronic pain patients treated with Cannabisbased sublingual oils in the United Kingdom - analysis from the UK Medical Cannabis Registry. J Clin Pharmacol. 2021doi: 10.1002/jcph.1961. PMID: 34473850.
 Exclusion Reason: Ineligible Comparator
- 159. Khurshid H, Qureshi IA, Jahan N, et al. A systematic review of Fibromyalgia and recent advancements in treatment: is Medicinal Cannabis a new hope? Cureus. 2021;13(8):e17332. doi: 10.7759/cureus.17332. PMID: 34567876. Exclusion Reason: SR used as source document
- 160. Kliuk-Ben Bassat O, Brill S, Vaisman N, et al. POS-676 exploratory study to assess the safety of sublingual oil based Medical Cannabis BOL-DP-O-04 in dialysis patients who have chronic pain. Kidney international reports. 2021;6(4):S295. doi: 10.1016/j.ekir.2021.03.707. Exclusion Reason: Ineligible Publication Type
- 161. Kocot-Kepska M, Zajaczkowska R, Mika J, et al. Topical treatments and their molecular/cellular mechanisms in patients with peripheral neuropathic pain-narrative review. Pharmaceutics. 2021;13(4)doi: 10.3390/pharmaceutics13040450. PMID:

33810493. Exclusion Reason: Ineligible Publication Type

- 162. Korownyk CS, Montgomery L, Young J, et al. PEER simplified chronic pain guideline: management of chronic low back, osteoarthritic, and neuropathic pain in primary care. Can Fam Physician. 2022;68(3):179-90. doi: 10.46747/cfp.6803179. PMID: 35292455. Exclusion Reason: SR used as source document
- 163. Kruger DJ, Kruger JS. Consumer experiences with Delta-8-THC: medical use, pharmaceutical substitution, and comparisons with Delta-9-THC. Cannabis Cannabinoid Res. 2021;19:19. doi: 10.1089/can.2021.0124. PMID: 34797727.
 Exclusion Reason: Ineligible Study Design
- 164. Kurlyandchik I, Tiralongo E, Schloss J. Safety and efficacy of Medicinal Cannabis in the treatment of Fibromyalgia: a systematic review. J Altern Complement Med. 2020;27(3):198-213. doi: 10.1089/acm.2020.0331. PMID: 33337931. Exclusion Reason: SR used as source document
- 165. Lake S, Walsh Z, Kerr T, et al. Frequency of Cannabis and illicit opioid use among people who use drugs and report chronic pain: a longitudinal analysis. PLoS Med. 2019 Nov 19;16(11):e1002967. doi: 10.1371/journal.pmed.1002967. PMID: 31743343. Exclusion Reason: Ineligible Study Design
- 166. Lamb LC, Di Fiori MM, Feeney JM. Cannabis to reduce opiate use in patients with acute rib fractures. Journal of the American College of Surgeons. 2018;227(4):S259. doi: 10.1016/j.jamcollsurg.2018.07.531.
 Exclusion Reason: Ineligible Publication Type
- 167. Lee G, Grovey B, Furnish T, et al. Medical Cannabis for neuropathic pain. Curr Pain Headache Rep. 2018 Feb 01;22(1):8. doi: 10.1007/s11916-018-0658-8. PMID: 29388063. Exclusion Reason: SR used as source document
- 168. Liang AL, Gingher EL, Coleman JS. Medical Cannabis for Gynecologic pain conditions: a systematic review. Obstet Gynecol. 2022 Feb 01;139(2):287-96. doi:

10.1097/AOG.000000000004656. PMID: 35104069. **Exclusion Reason:** Ineligible Intervention

- 169. Lichtman AH, Lux EA, McQuade R, et al. Results of a double-blind, randomized, placebo-controlled study of Nabiximols Oromucosal Spray as a adjunctive therapy in advanced cancer patients with chronic uncontrolled pain. J Pain Symptom Manage. 2017(pagination)doi: 10.1016/j.jpainsymman.2017.09.001. PMID: 28923526. Exclusion Reason: Ineligible Population
- 170. Lichtman AH, Lux EA, McQuade R, et al. Results of a double-blind, randomized, placebo-controlled study of nabiximols oromucosal spray as an adjunctive therapy in advanced cancer patients with chronic uncontrolled pain. J Pain Symptom Manage. 2018 Feb;55(2):179-88.e1. doi: 10.1016/j.jpainsymman.2017.09.001. PMID: 28923526. Exclusion Reason: Ineligible Population
- 171. Lick D, Mirza N, Trevor R. Are cannabinoids effective for treatment of noncancer musculoskeletal pain? Evid Based Pract. 2022;25(7):40-1. doi: 10.1097/EBP.000000000001631. PMID: 32655704. Exclusion Reason: Ineligible Publication Type
- 172. Ling H-Q, Chen Z-H, He L, et al. Comparative efficacy and safety of 11 drugs as therapies for adults with neuropathic pain after spinal cord injury: a bayesian network analysis based on 20 randomized controlled trials. Frontiers in neurology. 2022;13:818522. doi: 10.3389/fneur.2022.818522. PMID: 35386408. Exclusion Reason: SR used as source document
- 173. Longo R, Oudshoorn A, Befus D. Cannabis for chronic pain: a rapid systematic review of randomized control trials. Pain Manag Nurs. 2020;22(2):141-9. doi: 10.1016/j.pmn.2020.11.006. PMID: 33353819. Exclusion Reason: SR used as source document
- 174. Longworth J, Szafron M, Gruza A, et al. Cannabis and cannabinoid medications for the treatment of chronic orofacial pain: A scoping review: Cannabinoids and Chronic Orofacial Pain. Dentistry Review. 2023;3(1)doi:

10.1016/j.dentre.2023.100063. Exclusion Reason: SR used as source document

- 175. Lopez-Sendon Moreno JL, Garcia Caldentey J, Trigo Cubillo P, et al. A double-blind, randomized, cross-over, placebo-controlled, pilot trial with Sativex in Huntington's Disease. J Neurol. 2016;263(7):1390-400. doi: 10.1007/s00415-016-8145-9. PMID: 27159993. Exclusion Reason: Ineligible Population
- 176. Lucas P, Boyd S, Milloy MJ, et al. Cannabis significantly reduces the use of prescription opioids and improves quality of life in authorized patients: results of a large prospective study. Pain Med. 2020doi: 10.1093/pm/pnaa396. PMID: 33367882.
 Exclusion Reason: Ineligible Population
- 177. Luchetti M, Zanarella C, Moretti C, et al. Cannabinoids for the treatment of neuropathic pain. Acta Anaesthesiol Ital. 2008;59(2):187-95. Exclusion Reason: Not in English
- 178. Lyes M, Yang KH, Castellanos J, et al. Microdosing psilocybin for chronic pain: a case series. Pain. 2022doi: 10.1097/j.pain.00000000002778. PMID: 36066961. Exclusion Reason: Ineligible Study Design
- 179. Lynch ME, Campbell F. Cannabinoids for treatment of chronic non-cancer pain; a systematic review of randomized trials. Br J Clin Pharmacol. 2011 Nov;72(5):735-44. doi: 10.1111/j.1365-2125.2011.03970.x. PMID: 21426373. Exclusion Reason: Ineligible Publication Type
- Lynch ME, Ware MA. Cannabinoids for the treatment of chronic non-cancer pain: an updated systematic review of randomized controlled trials. J Neuroimmune Pharmacol. 2015 Jun;10(2):293-301. doi: 10.1007/s11481-015-9600-6. PMID: 25796592. Exclusion Reason: Ineligible Publication Type
- 181. Maayah ZH, Takahara S, Ferdaoussi M, et al. The anti-inflammatory and Analgesic effects of formulated full-spectrum Cannabis extract in the treatment of neuropathic pain associated with Multiple Sclerosis. Inflamm Res. 2020 Jun;69(6):549-58. doi: 10.1007/s00011-020-01341-1. PMID: 32239248. Exclusion Reason: Ineligible Publication Type

- 182. MacCallum CA, Eadie L, Barr AM, et al. Practical strategies using Medical Cannabis to reduce harms associated with long term opioid use in chronic pain. Front Pharmacol. 2021;12doi: 10.3389/fphar.2021.633168. PMID: 33995035. Exclusion Reason: Ineligible Publication Type
- 183. MacKay M, Zurier R, Kamen D, et al. A Phase 2, Double-blind, Randomized, Placebo-Controlled Multicenter Study to Evaluate Efficacy, Safety, and Tolerability of JBT-101/Lenabasum in Systemic Lupus Erythematosus, an Autoimmunity Centers of Excellence Study (ALE09). Arthritis rheumatol. 2022;74:735. doi: https://doi.org/10.1002/art.42355. Exclusion Reason: Ineligible Publication Type
- 184. Maida V, Ennis M, Irani S, et al. Adjunctive Nabilone in cancer pain and symptom management: a prospective observational study using propensity scoring. J Support Oncol. 2008 Mar;6(3):119-24. PMID: 18402303. Exclusion Reason: Ineligible Population
- 185. Malik Z, Bayman L, Valestin J, et al. Dronabinol increases pain threshold in patients with functional chest pain: a pilot double-blind placebo-controlled trial. Dis Esophagus. 2017 Feb 1;30(2):1-8. doi: 10.1111/dote.12455. PMID: 26822791. Exclusion Reason: Ineligible Population
- 186. Markovà J, Essner U, Akmaz B, et al. Sativex(®) as add-on therapy vs. further optimized first-line ANTispastics (SAVANT) in resistant Multiple Sclerosis spasticity: a double-blind, placebocontrolled randomised clinical trial. Int J Neurosci. 2019 Feb;129(2):119-28. doi: 10.1080/00207454.2018.1481066. PMID: 29792372. Exclusion Reason: Ineligible Population
- 187. Martin-Sanchez E, Furukawa TA, Taylor J, et al. Systematic review and meta-analysis of Cannabis treatment for chronic pain. Pain Med. 2009 Nov;10(8):1353-68. doi: 10.1111/j.1526-4637.2009.00703.x. PMID: 19732371. Exclusion Reason: Ineligible Publication Type
- 188. Matarazzo AP, Elisei LMS, Carvalho FC, et al. Mucoadhesive nanostructured lipid carriers as a Cannabidiol nasal delivery system for the treatment of neuropathic pain. Eur J Pharm Sci. 2021:105698. doi:

10.1016/j.ejps.2020.105698. PMID: 33406408. **Exclusion Reason:** Ineligible Study Design

- 189. Maurer M, Henn V, Dittrich A, et al. Delta-9-Tetrahydrocannabinol shows antispastic and analgesic effects in a single case doubleblind trial. Eur Arch Psychiatry Clin Neurosci. 1990;240(1):1-4. doi: 10.1007/bf02190083. PMID: 2175265.
 Exclusion Reason: Inadequate Duration
- Maurotti S, Mare R, Pujia R, et al. Hemp seeds in post-arthroplasty rehabilitation: a pilot clinical study and an in vitro investigation. Nutrients. 2021;13(12)doi: 10.3390/nu13124330. PMID: 34959882.
 Exclusion Reason: Ineligible Intervention
- 191. Mazza M. Medical Cannabis for the treatment of Fibromyalgia syndrome: a retrospective, open-label case series. J Cannabis Res. 2021;3(1):4. doi: 10.1186/s42238-021-00060-6. PMID: 33597032. Exclusion Reason: Ineligible Comparator
- 192. McDonagh MS, Selph SS, Buckley DI, et al. Nonopioid pharmacologic treatments for chronic pain. Agency for Healthcare Research and Quality (US). 2020 PMID: 32338847. Exclusion Reason: SR used as source document
- McDonagh MS, Wagner J, Ahmed AY, et al. Living systematic review on Cannabis and other plant-based treatments for chronic pain quarterly progress report: May 2021. Agency for Healthcare Research and Quality (US). 2020 12;12:12. PMID: 34228409. Exclusion Reason: Ineligible Publication Type
- 194. McGinty EE, Tormohlen KN, Barry CL, et al. Protocol: mixed-methods study of how implementation of US state Medical Cannabis laws affects treatment of chronic non-cancer pain and adverse opioid outcomes. Implement Sci. 2021;16(1):2. doi: 10.1186/s13012-020-01071-2. PMID: 33413454. Exclusion Reason: Ineligible Publication Type
- McMichael BJ, Van Horn RL, Viscusi WK. The impact of Cannabis access laws on opioid prescribing. J Health Econ. 2020 Jan;69:102273. doi: 10.1016/j.jhealeco.2019.102273. PMID:

31865260. Exclusion Reason: Ineligible Population

- 196. McParland AL, Bhatia A, Matelski J, et al. Evaluating the impact of cannabinoids on sleep health and pain in patients with chronic neuropathic pain: a systematic review and meta-analysis of randomized controlled trials. Regional anesthesia and pain medicine. 2022doi: https://dx.doi.org/10.1136/rapm-2021-103431. Exclusion Reason: SR used as source document
- 197. Meade E, Hehir S, Rowan N, et al. Mycotherapy: potential of fungal bioactives for the treatment of mental health disorders and morbidities of chronic pain. J Fungi (Basel). 2022;8(3)doi: 10.3390/jof8030290. PMID: 35330292. Exclusion Reason: SR used as source document
- 198. Meng H, Johnston B, Englesakis M, et al. Selective Cannabinoids for chronic neuropathic pain: a systematic review and meta-analysis. Anesth Analg. 2017 Nov;125(5):1638-52. doi: 10.1213/ANE.00000000002110. PMID: 28537982. Exclusion Reason: Ineligible Publication Type
- 199. Meng H, Page MG, Ajrawat P, et al. Patient-reported outcomes in those consuming Medical Cannabis: a prospective longitudinal observational study in chronic pain patients. Canadian journal of anaesthesia = Journal canadien d'anesthésie. 2021doi: 10.1007/s12630-020-01903-1. PMID: 33469735. Exclusion Reason: Ineligible Population
- 200. Meuth SG, Henze T, Essner U, et al. Tetrahydrocannabinol and cannabidiol oromucosal spray in resistant Multiple Sclerosis spasticity: consistency of response across subgroups from the SAVANT randomized clinical trial. International Journal of Neuroscience 2020;130(12):1199-205. doi: 10.1080/00207454.2020.1730832. PMID: 32065006. Exclusion Reason: Ineligible Population
- 201. Mistry M, Simpson P, Morris E, et al. Cannabidiol for the Management of Endometriosis and Chronic Pelvic Pain. J Minim Invasive Gynecol. 2021;25:25. doi: 10.1016/j.jmig.2021.11.017. PMID:

34839061. **Exclusion Reason:** Ineligible Publication Type

- 202. Mohiuddin M, Blyth FM, Degenhardt L, et al. General risks of harm with Cannabinoids, Cannabis, and Cannabis-based medicine possibly relevant to patients receiving these for pain management: an overview of systematic reviews. Pain. 2021 Jul 01;162(Suppl 1):S80-S96. doi: 10.1097/j.pain.000000000000000000. PMID: 32941319. Exclusion Reason: Background
- 203. Montero-Oleas N, Arevalo-Rodriguez I, Nunez-Gonzalez S, et al. Therapeutic use of Cannabis and Cannabinoids: an evidence mapping and appraisal of systematic reviews. BMC Complement Med Ther. 2020 Jan 15;20(1):12. doi: 10.1186/s12906-019-2803-2. PMID: 32020875. Exclusion Reason: SR used as source document
- 204. Moore RA, Fisher E, Finn DP, et al. Cannabinoids, Cannabis, and Cannabisbased medicines for pain management: an overview of systematic reviews. Pain. 2021 Jul 1;162(Suppl 1):S67-s79. doi: 10.1097/j.pain.000000000001941. PMID: 32804833. Exclusion Reason: SR used as source document
- 205. Moreno Torres I, Sanchez AJ, Garcia-Merino A. Evaluation of the tolerability and efficacy of Sativex in Multiple Sclerosis. Expert Rev Neurother. 2014 Nov;14(11):1243-50. doi: 10.1586/14737175.2014.971758. PMID: 25331416. Exclusion Reason: Ineligible Publication Type
- 206. Moreno-Sanz G, Madiedo A, Hernandez P, et al. Sex-dependent prescription patterns and clinical outcomes associated with the use of two oral Cannabis formulations in the multimodal management of chronic pain patients in Colombia. Frontiers in pain research (Lausanne, Switzerland).
 2022;3:854795. doi: 10.3389/fpain.2022.854795. PMID: 35399153. Exclusion Reason: Ineligible Comparator
- 207. Moreno-Sanz G, Madiedo A, Lynskey M, et al. "Flower Power": Controlled Inhalation of THC-Predominant Cannabis Flos Improves Health-Related Quality of Life and Symptoms of Chronic Pain and Anxiety in Eligible UK Patients. Biomedicines. 2022;10(10)doi:

10.3390/biomedicines10102576. Exclusion Reason: Ineligible Study Design

- 208. Mucke M, Phillips T, Radbruch L, et al. Cannabis-based medicines for chronic neuropathic pain in adults. Cochrane Database Syst Rev. 2018 Mar 07;3(3):CD012182. doi: 10.1002/14651858.CD012182.pub2. PMID: 29513392. Exclusion Reason: SR used as source document
- 209. Muller C, Reggio PH. An Analysis of the Putative CBD Binding Site in the Ionotropic Cannabinoid Receptors. Front Cell Neurosci. 2020;14:615811. doi: 10.3389/fncel.2020.615811. PMID: 33362478. Exclusion Reason: Ineligible Study Design
- 210. Murff HJ. Review: weak evidence of benefits of Cannabis for chronic neuropathic pain; moderate to weak evidence of adverse effects. Ann Intern Med. 2017 Dec 19;167(12):JC62. doi: 10.7326/ACPJC-2017-167-12-062. PMID: 29255852.
 Exclusion Reason: Ineligible Publication Type
- 211. Narang S, Gibson D, Wasan AD, et al. Efficacy of Dronabinol as an adjuvant treatment for chronic pain patients on opioid therapy. J Pain. 2008 Mar;9(3):254-64. doi: 10.1016/j.jpain.2007.10.018. PMID: 18088560. Exclusion Reason: Ineligible Study Design
- 212. Neilson LM, Swift C, Swart ECS, et al. Impact of marijuana legalization on opioid utilization in patients diagnosed with pain. J Gen Intern Med. 2021doi: 10.1007/s11606-020-06530-6. PMID: 33575906. Exclusion Reason: Background
- 213. Nguyen T, Li Y, Greene D, et al. Changes in Prescribed Opioid Dosages Among Patients Receiving Medical Cannabis for Chronic Pain, New York State, 2017-2019. JAMA Netw Open. 2023;6(1):e2254573. doi: https://dx.doi.org/10.1001/jamanetworkopen .2022.54573. Exclusion Reason: Ineligible Comparator
- 214. Nielsen S, Picco L, Murnion B, et al. Opioid-sparing effect of Cannabinoids for analgesia: an updated systematic review and meta-analysis of preclinical and clinical studies. Neuropsychopharmacology : official publication of the American College of

Neuropsychopharmacology. 2022doi: 10.1038/s41386-022-01322-4. PMID: 35459926. **Exclusion Reason:** SR used as source document

- 215. Nielsen S, Picco L, Murnion B, et al. Opioid-sparing effect of Cannabinoids for analgesia: an updated systematic review and meta-analysis of preclinical and clinical studies. Neuropsychopharmacology. 2022;47(7):1315-30. doi: 10.1038/s41386-022-01322-4. PMID: 35459926. Exclusion Reason: SR used as source document
- 216. Noori A, Miroshnychenko A, Shergill Y, et al. Opioid-sparing effects of Medical Cannabis or Cannabinoids for chronic pain: a systematic review and meta-analysis of randomised and observational studies. BMJ Open. 2021 07 28;11(7):e047717. doi: 10.1136/bmjopen-2020-047717. PMID: 34321302. Exclusion Reason: SR used as source document
- 217. Novotna A, Mares J, Ratcliffe S, et al. A randomized, double-blind, placebo-controlled, parallel-group, enriched-design study of Nabiximols* (Sativex), as add-on therapy, in subjects with refractory spasticity caused by Multiple Sclerosis. Eur J Neurol. 2011;18(9):1122-31. doi: 10.1111/j.1468-1331.2010.03328.x. PMID: 21362108.
 Exclusion Reason: Ineligible Outcome
- 218. Nowell WB, Gavigan K, L Silverman S. Cannabis for Rheumatic Disease pain: a review of current literature. Curr Rheumatol Rep. 2022;24(5):119-31. doi: 10.1007/s11926-022-01065-7. PMID: 35486218. Exclusion Reason: SR used as source document
- 219. Nugent SM, Kansagara D. The effects of Cannabis among adults with chronic pain. Ann Intern Med. 2018 Apr 03;168(7):525. doi: 10.7326/L17-0732. PMID: 29610910.
 Exclusion Reason: Ineligible Publication Type
- Nugent SM, Morasco BJ, O'Neil ME, et al. The effects of Cannabis among adults with chronic pain and an overview of general harms: a systematic review. Ann Intern Med. 2017 Sep 05;167(5):319-31. doi: 10.7326/M17-0155. PMID: 28806817. Exclusion Reason: SR used as source document

- Nunnari P, Ladiana N, Ceccarelli G, et al. Long-term Cannabis-based oil therapy and pain medications prescribing patterns: an Italian observational study. Eur Rev Med Pharmacol Sci. 2022;26(4):1224-34. doi: 10.26355/eurrev_202202_28114. PMID: 35253178. Exclusion Reason: Ineligible Comparator
- 222. Nurmikko TJ, Serpell MG, Hoggart B, et al. A multi-centre, double-blind, randomized, controlled trial of oro-mucosal Cannabis based medicine in the treatment of neuropathic pain characterized by Allodynia. Neurology. no: PO6;64(Suppl 1):A374. Exclusion Reason: Ineligible Publication Type
- 223. Nutt DJ, Phillips LD, Barnes MP, et al. A multicriteria decision analysis comparing pharmacotherapy for chronic neuropathic pain, including Cannabinoids and Cannabisbased medical products. Cannabis Cannabinoid Res. 2021 Mar 17;17:17. doi: 10.1089/can.2020.0129. PMID: 33998895. Exclusion Reason: Ineligible Study Design
- O'Connell M, Sandgren M, Frantzen L, et al. Medical Cannabis: effects on opioid and benzodiazepine requirements for pain control. Ann Pharmacother. 2019 Nov;53(11):1081-6. doi: 10.1177/1060028019854221. PMID: 31129977. Exclusion Reason: Ineligible Comparator
- 225. Okusanya BO, Asaolu IO, Ehiri JE, et al. Medical Cannabis for the reduction of opioid dosage in the treatment of non-cancer chronic pain: a systematic review. Syst Rev. 2020 Jul 28;9(1):167. doi: 10.1186/s13643-020-01425-3. PMID: 32723354. Exclusion Reason: SR used as source document
- 226. Okusanya BO, Lott BE, Ehiri J, et al. Medical Cannabis for the treatment of migraine in adults: a review of the evidence. Frontiers in Neurology. 2022;13doi: 10.3389/fneur.2022.871187. PMID: 35711271. Exclusion Reason: SR used as source document
- 227. Paulsingh CN, Mohamed MB, Elhaj MS, et al. The efficacy of marijuana use for pain relief in adults with Sickle Cell Disease: a systematic review. Cureus.
 2022;14(5):e24962. doi: 10.7759/cureus.24962. PMID: 35706744.

Exclusion Reason: SR used as source document

- 228. Pellesi L, Licata M, Verri P, et al. Pharmacokinetics and tolerability of oral Cannabis preparations in patients with medication overuse headache (MOH)—a pilot study. Eur J Clin Pharmacol. 2018;74(11):1427-36. doi: 10.1007/s00228-018-2516-3. PMID: 29980818. Exclusion Reason: Ineligible Study Design
- 229. Perras C. Sativex for the management of Multiple Sclerosis symptoms. Issues Emerg Health Technol. 2005 Sep(72):1-4. PMID: 16317825. **Exclusion Reason:** Ineligible Publication Type
- Petzke F, Tolle T, Fitzcharles MA, et al. Cannabis-based medicines and Medical Cannabis for chronic neuropathic pain. CNS Drugs. 2021;21:21. doi: 10.1007/s40263-021-00879-w. PMID: 34802112. Exclusion Reason: SR used as source document
- 231. Pham MN, Hudnall MT, Nadler RB. Marijuana, lower urinary tract symptoms, and pain in the urologic patient. Urology. 2020 05;139:8-13. doi: 10.1016/j.urology.2020.01.029. PMID: 32027882. Exclusion Reason: SR used as source document
- 232. Phillips KT, Pedula KL, Choi NG, et al. Chronic health conditions, acute health events, and healthcare utilization among adults over age 50 in Hawai'i who use Cannabis: a matched cohort study. Drug Alcohol Depend. 2022;234:109387. doi: 10.1016/j.drugalcdep.2022.109387. PMID: 35279458. Exclusion Reason: Ineligible Population
- 233. Philpot LM, Ramar P, Jatoi A, et al. Cannabis in Cancer Survivors Who Report High Impact Chronic Pain: Findings from a 1500+ Patient Survey. American Journal of Hospice and Palliative Medicine. 2022doi: 10.1177/10499091221143098. Exclusion Reason: Ineligible Study Design
- 234. Pichini S, Pacifici R, Busardo FP, et al. The challenge of clinical application of FM2 Cannabis oil produced in Italy for the treatment of neuropathic pain. Eur Rev Med Pharmacol Sci. 2018 Feb;22(4):863-5. doi: 10.26355/eurrev_201802_14363. PMID: 29509231. Exclusion Reason: Ineligible Publication Type

- 235. Pinsger M, Schimetta W, Volc D, et al. Benefits of an add-on treatment with the synthetic cannabinomimetic nabilone on patients with chronic pain--a randomized controlled trial. Wien Klin Wochenschr. 2006;118(11-12):327-35. doi: 10.1007/s00508-006-0611-4. PMID: 16855921. Exclusion Reason: Not in English
- 236. Pinsger M, Schimetta W, Volc D, et al. Benefits of an add-on treatment with the synthetic cannabinomimetic nabilone on patients with chronic pain - A randomized controlled trial. Wien Klin Wochenschr. 2006;118(11-12):327-35. doi: 10.1007/s00508-006-0611-4. PMID: 16855921. Exclusion Reason: Not in English
- 237. Podda G, Constantinescu CS. Nabiximols in the treatment of spasticity, pain and urinary symptoms due to Multiple Sclerosis. Expert Opin Biol Ther. 2012 Nov;12(11):1517-31. doi: 10.1517/14712598.2012.721765. PMID: 22954177. Exclusion Reason: Ineligible Publication Type
- 238. Poli P, Carnevale S, Scocca A, et al. Promising health benefits of adjuvant Acmella and Zingiber extracts combined with Coenzyme Q10 Phytosomes, supplementation in chronic pain treated with Medical Cannabis: a prospective and openlabel clinical study. Evidence-based complementary and alternative medicine : eCAM. 2022;2022:7099161. doi: 10.1155/2022/7099161. PMID: 35733629. Exclusion Reason: Ineligible Comparator
- 239. Portenoy RK, Ganae-Motan ED, Allende S, et al. Nabiximols for opioid-treated cancer patients with poorly-controlled chronic pain: a randomized, placebo-controlled, graded-dose trial. J Pain. 2012 May;13(5):438-49. doi: 10.1016/j.jpain.2012.01.003. PMID: 22483680. Exclusion Reason: Ineligible Population
- 240. Prevete E, Hupli A, Marrinan S, et al. Exploring the use of Kratom (Mitragyna Speciosa) via the YouTube data tool: A novel netnographic analysis. Emerg Trends Drugs Addict Health. 2021 2021/01/01/;1:100007. doi: 10.1016/j.etdah.2021.100007. Exclusion Reason: Background

- 241. Price RL, Charlot KV, Frieler S, et al. The efficacy of Cannabis in reducing back pain: a systematic review. Global Spine J. 2022doi: 10.1177/21925682211065411.
 PMID: 35128969. Exclusion Reason: SR used as source document
- 242. Prieto Gonzalez JM, Vila Silvan C. Safety and tolerability of nabiximols oromucosal spray: a review of real-world experience in observational studies, registries and case reports. Expert Rev Neurother. 2021doi: 10.1080/14737175.2021.1904896. PMID: 33749480. Exclusion Reason: SR used as source document
- 243. Prieto Gonzalez JM, Vila Silvan C. Safety and tolerability of nabiximols oromucosal spray: a review of more than 15 years' accumulated evidence from clinical trials. Expert Rev Neurother. 2021 Jun 07;07:07. doi: 10.1080/14737175.2021.1935879. PMID: 34092180. Exclusion Reason: SR used as source document
- Prozialeck WC, Lamar PC, Krupp M, 2nd, et al. Kratom use within the context of the evolving Opioid Crisis and the COVID-19 Pandemic in the United States. Front Pharmacol. 2021;12:729220. doi: 10.3389/fphar.2021.729220. PMID: 34512353. Exclusion Reason: Background
- 245. Quintero J-M, Pulido G, Giraldo L-F, et al. A systematic review on Cannabinoids for neuropathic pain administered by routes other than oral or inhalation. Plants (Basel, Switzerland). 2022;11(10)doi: 10.3390/plants11101357. PMID: 35631782.
 Exclusion Reason: SR used as source document
- 246. Rabgay K, Waranuch N, Chaiyakunapruk N, et al. The effects of Cannabis, Cannabinoids, and their administration routes on pain control efficacy and safety: a systematic review and network meta-analysis. J Am Pharm Assoc (2003). 2020 Jan -Feb;60(1):225-34.e6. doi: 10.1016/j.japh.2019.07.015. PMID: 31495691. Exclusion Reason: SR used as source document
- 247. Rapin L, Gamaoun R, El Hage C, et al. Cannabidiol use and effectiveness: realworld evidence from a Canadian medical cannabis clinic. J Cannabis Res. 2021;3(1)doi: 10.1186/s42238-021-00078-

w. PMID: 34162446. Exclusion Reason: Ineligible Outcome

- 248. Reisdorf S. Analgesia: Cannabis for neuropathic pain. MMW Fortschr Med. 2020;162(7):58. doi: 10.1007/s15006-020-0397-8. Exclusion Reason: Not in English
- 249. Renslo B, Greis A, Liu CS, et al. Medical Cannabis use reduces opioid prescriptions in patients with Osteoarthritis. Cureus. 2022;14(1):e21564. doi: 10.7759/cureus.21564. PMID: 35228923.
 Exclusion Reason: Ineligible Comparator
- 250. Richards BL, Whittle SL, Buchbinder R. Neuromodulators for pain management in Rheumatoid Arthritis. Cochrane Database Syst Rev. 2012 Jan 18;1:CD008921. doi: 10.1002/14651858.CD008921.pub2. PMID: 22258992. Exclusion Reason: Ineligible Publication Type
- 251. Richet E, Ferret L, Gaboriau L, et al. Use of dronabinol in the treatment of resistant neuropathic pain: Feedback from patients followed in a multidisciplinary pain center. Annales Pharmaceutiques Francaises.
 2022doi: 10.1016/j.pharma.2022.12.005. Exclusion Reason: Not in English
- 252. Riera R, Pacheco RL, Bagattini AM, et al. Efficacy and safety of therapeutic use of Cannabis derivatives and their synthetic analogs: overview of systematic reviews. Phytother Res. 2021;29:29. doi: 10.1002/ptr.7263. PMID: 34841610. Exclusion Reason: SR used as source document
- 253. Robinson D, Ritter S, Yassin M. Comparing Sublingual and Inhaled Cannabis Therapies for Low Back Pain: An Observational Open-Label Study. Rambam Maimonides med. 2022;13(4)doi: https://dx.doi.org/10.5041/RMMJ.10485.
 Exclusion Reason: Ineligible Study Design
- 254. Rogers AH, Bakhshaie J, Buckner JD, et al. Opioid and Cannabis co-use among adults with chronic pain: relations to substance misuse, mental health, and pain experience. J Addict Med. 2019 Jul/Aug;13(4):287-94. doi: 10.1097/ADM.000000000000493. PMID: 30557213. Exclusion Reason: Ineligible Study Design
- 255. Ross J, Slawek DE, Zhang C, et al. Firstyear trajectories of Medical Cannabis use among adults taking opioids for chronic

pain: an observational cohort study. Pain Med. 2021doi: 10.1093/pm/pnab257. PMID: 34411246. **Exclusion Reason:** Background

- 256. Rouhollahi E, Macleod BA, Barr AM, et al. Cannabis extract CT-921 has a high efficacy– adverse effect profile in a neuropathic pain model. Drug Des Devel Ther. 2020;14:3351-61. doi: 10.2147/DDDT.S247584. PMID: 32884239
 Exclusion Reason: Ineligible Population
- 257. Russo E. Cannabis and Cannabis based medicine extracts: additional results. J Cannabis Ther. 2004;3(4):153-61. doi: 10.1300/J175v03n04_03. Exclusion Reason: Ineligible Study Design
- 258. Russo M, Naro A, Leo A, et al. Evaluating Sativex in neuropathic pain management: a clinical and neurophysiological assessment in Multiple Sclerosis. Pain Med. 2016 Jun;17(6):1145-54. doi: 10.1093/pm/pnv080. PMID: 26764336.
 Exclusion Reason: Ineligible Population
- 259. S G, Hb S, K L, et al. Safety and efficacy of low-dose Medical Cannabis oils in Multiple Sclerosis. Mult Scler Relat Disord.
 2020;48:102708. doi: 10.1016/j.msard.2020.102708. PMID: 33387864. Exclusion Reason: Ineligible Outcome
- 260. Safakish R, Ko G, Salimpour V, et al. Medical Cannabis for the management of pain and quality of life in chronic pain patients: a prospective observational study. Pain Med. 2020 Nov 01;21(11):3073-86. doi: 10.1093/pm/pnaa163. PMID: 32556203. Exclusion Reason: Ineligible Study Design
- 261. Sagy I, Bar-Lev Schleider L, Abu-Shakra M, et al. Safety and efficacy of Medical Cannabis in Fibromyalgia. J Clin Med. 2019 Jun 05;8(6):807. doi: 10.3390/jcm8060807. PMID: 31195754. Exclusion Reason: Ineligible Comparator
- 262. Sainsbury B, Bloxham J, Pour MH, et al. Efficacy of Cannabis-based medications compared to placebo for the treatment of chronic neuropathic pain: a systematic review with meta-analysis. J Dent Anesth Pain Med. 2021;21(6):479-506. doi: 10.17245/jdapm.2021.21.6.479. PMID: 34909469. Exclusion Reason: SR used as source document

- 263. Salmasi V, Nelson LM, Hong J, et al. Association of cannabis and/or opioid with quality of life and healthcare utilization in patients with chronic pain. Frontiers in pain research (Lausanne, Switzerland). 2022;3:1015605. doi: https://dx.doi.org/10.3389/fpain.2022.10156 05. Exclusion Reason: Ineligible Study Design
- 264. Sanchez-Florez JC, Seija-Butnaru D, Valero EG, et al. Pain management strategies in Rheumatoid Arthritis: a narrative review. J Pain Pall Care Pharmacother. 2021;35(4):291-9. doi: 10.1080/15360288.2021.1973647. PMID: 34623946. Exclusion Reason: SR used as source document
- 265. Santos SA, Kontorinis N, Dieterich DT. Management of chronic Hepatitis C virus in patients with HIV. Curr Treat Options Gastroenterol. 2005;8(6):433-41. doi: 10.1007/s11938-005-0029-5. PMID: 16313860. Exclusion Reason: Ineligible Population
- 266. Schenk M. Chronic neuropathic pain: minimal side effects of therapy with Cannabis. MMW Fortschr Med. 2020;162(3):72. doi: 10.1007/s15006-020-0171-y. Exclusion Reason: Not in English
- 267. Schindler E. Sustained reductions in headache burden after the limited administration of low dose psilocybin in migraine and cluster headache: results from two preliminary studies. Neuropsychopharmacology. 2020;45:57-8. doi: 10.1038/s41386-020-00889-0.
 Exclusion Reason: Ineligible Publication Type
- 268. Schindler EAD, Sewell RA, Gottschalk CH, et al. Exploratory investigation of a patientinformed low-dose psilocybin pulse regimen in the suppression of cluster headache: Results from a randomized, double-blind, placebo-controlled trial. Headache. 2022doi: https://dx.doi.org/10.1111/head.14420. Exclusion Reason: Ineligible Intervention
- 269. Schloss J, Lacey J, Sinclair J, et al. A phase 2 randomised clinical trial assessing the tolerability of two different ratios of Medicinal Cannabis in patients with high grade gliomas. Front Oncol. 2021;11doi: 10.3389/fonc.2021.649555. PMID:

34094937. Exclusion Reason: Ineligible Population

- 270. Schrader NHB, Duipmans JC, Renken RJ, et al. The C4EB study-Transvamix (10% THC / 5% CBD) to treat chronic pain in epidermolysis bullosa: A protocol for an explorative randomized, placebo controlled, and double blind intervention crossover study. PLoS ONE. 2022;17(12):e0277512. doi: https://dx.doi.org/10.1371/journal.pone.0277 512. Exclusion Reason: Ineligible Publication Type
- 271. Schubert EA, Alffenaar JC, Johnstone MT, et al. Medicinal cannabis for patients with chronic non-cancer pain: analysis of safety and concomitant medications. The International journal of pharmacy practice. 2022doi: https://dx.doi.org/10.1093/ijpp/riac073.
 Exclusion Reason: Ineligible Study Design
- 272. Schulze-Schiappacasse C, Duran J, Bravo-Jeria R, et al. Are Cannabis, Cannabis-Derived Products, and Synthetic Cannabinoids a Therapeutic Tool for Rheumatoid Arthritis? A Friendly Summary of the Body of Evidence. J Clin Rheumatol. 2021doi: 10.1097/RHU.000000000001745. PMID: 33859125. Exclusion Reason: Background
- 273. Scuteri D, Guida F, Boccella S, et al. Nabiximols clinical translation to the treatment of pain and agitation in severe dementia (NACTOPAISD): clinical trial protocol. Biomedicine & pharmacotherapy. 2022;153doi: 10.1016/j.biopha.2022.113488. PMID: 36076584. Exclusion Reason: Ineligible Study Design
- 274. Scuteri D, Rombolà L, Hamamura K, et al. Is there a rational basis for Cannabinoids research and development in ocular pain therapy? A systematic review of preclinical evidence. Biomed Pharmacother. 2022;146doi: 10.1016/j.biopha.2021.112505. PMID: 34891121. Exclusion Reason: Ineligible Population
- 275. Seehusen DA, Kehoe K. Cannabis for treatment of chronic pain. American family physician. 2022;106(2):202-4. PMID: 35977124. Exclusion Reason: Ineligible Publication Type

- 276. Senderovich H, Wagman H, Zhang D, et al. The effectiveness of Cannabis and Cannabis derivatives in treating lower back pain in the aged population: a systematic review. Gerontology. 2021:1-13. doi: 10.1159/000518269. PMID: 34515130.
 Exclusion Reason: SR used as source document
- 277. Senderovich H, Wagman H, Zhang D, et al. The effectiveness of Cannabis and Cannabis derivatives in treating lower back pain in the aged population: a systematic review. Gerontology. 2022;68(6):612-24. doi: 10.1159/000518269. PMID: 34515130.
 Exclusion Reason: SR used as source document
- 278. Serrano A, Galvez R, Paremes E, et al. Offlabel pharmacological treatment for neuropathic pain: A Delphi study by the Spanish Pain Society Neuropathic Pain Task Force. Pain practice : the official journal of World Institute of Pain. 2022doi: https://dx.doi.org/10.1111/papr.13176. Exclusion Reason: Background
- 279. Shah J, Fermo O. Review of systemic and syndromic complications of cannabis use: A review. Medicine (United States).
 2022;101(49):E32111. doi: 10.1097/MD.00000000032111.
 Exclusion Reason: Ineligible Publication Type
- 280. Shebaby W, Saliba J, Faour WH, et al. In vivo and in vitro anti-inflammatory activity evaluation of Lebanese Cannabis Sativa L. ssp. Indica (Lam.). J Ethnopharmacol. 2020:113743. doi: 10.1016/j.jep.2020.113743. PMID: 33359187. Exclusion Reason: Ineligible Study Design
- 281. Shehata I, Hashim A, Elsaeidy A, et al. Cannabinoids and Their Role in Chronic Pain Treatment: Current Concepts and a Comprehensive Review. Health Psychology Research. 2022;10(4)doi: 10.52965/001c.35848. Exclusion Reason: SR used as source document
- 282. Shoshan S, Solt I. Medical Cannabis for Gynecologic pain conditions: a systematic review. Obstetrics and gynecology. 2022;139(5):937-8. doi: 10.1097/AOG.000000000004777. PMID: 35104069. Exclusion Reason: Ineligible Publication Type

- 283. Sihota A, Smith BK, Ahmed SA, et al. Consensus-based recommendations for titrating Cannabinoids and tapering opioids for chronic pain control. Int J Clin Pract. 2021;75(8):e13871. doi: 10.1111/ijcp.13871. PMID: 33249713. Exclusion Reason: Ineligible Publication Type
- 284. Smaga S, Gharib A. In adults with chronic low back pain, does the use of inhaled Cannabis reduce overall opioid use? Evid Based Pract. 2017;20(1):E10-E1. doi: 10.1097/01.EBP.0000541620.26384.bf.
 Exclusion Reason: Ineligible Publication Type
- 285. Socias ME, Choi J, Lake S, et al. Cannabis use is associated with reduced risk of exposure to Fentanyl among people on opioid agonist therapy during a community-wide overdose crisis. Drug Alcohol Depend. 2020;219:108420. doi: 10.1016/j.drugalcdep.2020.108420. PMID: 33342591. Exclusion Reason: Ineligible Population
- Sotoodeh R, Waldman LE, Vigano A, et al. Predictors of pain reduction among Fibromyalgia patients using Medical Cannabis: a long-term prospective cohort study. Arthritis care & research. 2022doi: 10.1002/acr.24985. PMID: 35876631.
 Exclusion Reason: Ineligible Comparator
- 287. Stephens KL, Heineman JT, Forster GL, et al. Cannabinoids and Pain for the Plastic Surgeon: What Is the Evidence? Annals of plastic surgery. 2022doi: 10.1097/SAP.000000000003128. PMID: 35502947. Exclusion Reason: SR used as source document
- 288. Stockings E, Campbell G, Hall WD, et al. Cannabis and Cannabinoids for the treatment of people with chronic noncancer pain conditions: a systematic review and meta-analysis of controlled and observational studies. Pain. 2018 Oct;159(10):1932-54. doi: 10.1097/j.pain.000000000001293. PMID: 29847469. Exclusion Reason: SR used as source document
- 289. Sturgeon JA, Khan J, Hah JM, et al. Clinical profiles of concurrent cannabis use in chronic pain: a CHOIR study. Pain Med. 2020 Nov 01;21(11):3172-9. doi: 10.1093/pm/pnaa060. PMID: 32232476. Exclusion Reason: Ineligible Population

290. Sun N, Cunha N, Amar S, et al. Synthetic cannabinoid for the treatment of severe chronic noncancer pain in children and adolescents. Can J Pain. 2022;6(1):225-31. doi: https://dx.doi.org/10.1080/24740527.2022.2
132138. Exclusion Reason: Ineligible

Study Design

- 291. Svendsen KB, Jensen TS, Bach FW. Does the Cannabinoid Dronabinol reduce central pain in Multiple Sclerosis? Randomised double blind placebo controlled crossover trial. BMJ. 2004 Jul 31;329(7460):253. doi: 10.1136/bmj.38149.566979.AE. PMID: 15258006. Exclusion Reason: Inadequate Duration
- 292. Swogger MT, Smith KE, Garcia-Romeu A, et al. Understanding Kratom use: a guide for healthcare providers. Front Pharmacol. 2022;13doi: 10.3389/fphar.2022.801855. PMID: 35308216. Exclusion Reason: SR used as source document
- 293. Swogger MT, Walsh Z. Kratom use and mental health: a systematic review. Drug Alcohol Depend. 2018 Feb 1;183:134-40. doi: 10.1016/j.drugalcdep.2017.10.012. PMID: 29248691. Exclusion Reason: SR used as source document
- 294. Syed Y, McKeage K, Scott L. Delta-9-Tetrahydrocannabinol/Cannabidiol (Sativex(R)): a review of its use in patients with moderate to severe spasticity due to Multiple Sclerosis. Drugs. 2014;74(5):563-78. doi: 10.1007/s40265-014-0197-5. PMID: 24671907. Exclusion Reason: SR used as source document
- 295. Sznitman S, Mabouk C, Said Z, et al. Opioid and healthcare service use in Medical Cannabis patients with chronic pain: a prospective study. BMJ Support Palliat Care. 2021;14:14. doi: 10.1136/bmjspcare-2020-002661. PMID: 34521640. Exclusion Reason: Ineligible Comparator
- 296. Sznitman SR, Vulfsons S, Meiri D, et al. Medical Cannabis and cognitive performance in middle to old adults treated for chronic pain. Drug Alcohol Rev. 2020 Sep 22;22:22. doi: 10.1111/dar.13171. PMID: 32964502. Exclusion Reason: Ineligible Study Design
- 297. Sznitman SR, Vulfsons S, Meiri D, et al. Medical Cannabis and cognitive

performance in middle to old adults treated for chronic pain. Drug Alcohol Rev. 2021;40(2):272-80. doi: 10.1111/dar.13171. PMID: 32964502. **Exclusion Reason:** Ineligible Study Design

- 298. Takakuwa KM, Sulak D. A Survey on the effect that Medical Cannabis has on prescription opioid medication usage for the treatment of chronic pain at three medical Cannabis practice sites. Cureus.
 2020;12(12):e11848. doi: 10.7759/cureus.11848. PMID: 33409086.
 Exclusion Reason: Ineligible Study Design
- 299. Tctr. The study of effectiveness of Zingiber Cassumunar Roxb.(Plai) mixed Cannabis Sativa l. leaf oil for chronic pain in elderly randomized controlled trial. https://trialsearch.who.int/Trial2.aspx?TrialI D=TCTR20211116004. 2021. Exclusion Reason: Ineligible Publication Type
- 300. Terrie YC. Medical Cannabis for chronic pain. US Pharm. 2020;45(3):24-8.
 Exclusion Reason: Ineligible Publication Type
- 301. Tervo-Clemmens B, Schmitt W, Wheeler G, et al. Cannabis use and sleep quality in daily life: a daily diary study of adults starting Cannabis for health concerns. medRxiv. 2022 2022-01-01 00:00:00doi: 10.1101/2022.01.19.22269565. Exclusion Reason: Ineligible Population
- 302. Thomas J. Inhaled Cannabis relieves neuropathic pain. Aust J Pharm. 2011;92(1091):88. doi: 10.3316/informit.861962231552691.
 Exclusion Reason: Ineligible Publication Type
- 303. Thomas PA, Carter GT, Bombardier CH. A scoping review on the effect of Cannabis on pain intensity in people with spinal cord injury. J Spinal Cord Med. 2021:1-12. doi: 10.1080/10790268.2020.1865709. PMID: 33465022. Exclusion Reason: SR used as source document
- 304. Tsai SHL, Lin C-R, Shao S-C, et al. Cannabinoid Use for Pain Reduction in Spinal Cord Injuries: A Meta-Analysis of Randomized Controlled Trials. Front Pharmacol. 2022;13:866235. doi: 10.3389/fphar.2022.866235. PMID: 35571093. Exclusion Reason: SR used as source document

- 305. Turcotte DA, Namaka MP, Gomori AJ, et al. A randomized, double-blinded, placebo-controlled study evaluating the efficacy and safety of Nabilone as an adjunctive to Gabapentin in managing Multiple Sclerosis-induced neuropathic pain: an interim analysis. Pain Res Manag. 2011;15(2):99. Exclusion Reason: Ineligible Publication Type
- 306. Uberall MA. A review of scientific evidence for THC: CBD oromucosal spray (Nabiximols) in the management of chronic pain. J Pain Res. 2020 Feb 14;13:399-410. doi: 10.2147/JPR.S240011. PMID: 32104061. Exclusion Reason: SR used as source document
- 307. Ueberall MA, Essner U, Mueller-Schwefe GH. Effectiveness and tolerability of THC:CBD oromucosal spray as add-on measure in patients with severe chronic pain: analysis of 12-week open-label realworld data provided by the German Pain e-Registry. J Pain Res. 2019 May 20;12:1577-604. doi: 10.2147/JPR.S192174. PMID: 31190969. Exclusion Reason: Ineligible Comparator
- 308. Ueberall MA, Horlemann J, Schuermann N, et al. Effectiveness and tolerability of Dronabinol use in patients with chronic pain a retrospective analysis of 12-week openlabel real-world data provided by the German Pain e-Registry. Pain Med. 2022 Feb 01;01:01. doi: 10.1093/pm/pnac010. PMID: 35104881. Exclusion Reason: Ineligible Study Design
- 309. Urits I, Adamian L, Fiocchi J, et al. Advances in the understanding and management of chronic pain in Multiple Sclerosis: a comprehensive review. Curr Pain Headache Rep. 2019 Jul 25;23(8):59. doi: 10.1007/s11916-019-0800-2. PMID: 31342191. Exclusion Reason: SR used as source document
- Urits I, Charipova K, Gress K, et al. Adverse Effects of Recreational and Medical Cannabis. Psychopharmacol Bull. 2021;51(1):94-109. PMID: 33897066.
 Exclusion Reason: Ineligible Study Design
- 311. van Amerongen G, Kanhai K, Baakman AC, et al. Effects on spasticity and neuropathic pain of an oral formulation of DELTA9tetrahydrocannabinol in patients with progressive Multiple Sclerosis. Clin Ther.

2018 Sep;40(9):1467-82. doi: 10.1016/j.clinthera.2017.01.016. PMID: 28189366. **Exclusion Reason:** Ineligible Population

- 312. van Dam CJ, van Velzen M, Kramers C, et al. Cannabis-opioid interaction in the treatment of fibromyalgia pain: an open-label, proof of concept study with randomization between treatment groups: cannabis, oxycodone or cannabis/oxycodone combination-the SPIRAL study. Trials. 2023;24(1):64. doi: https://dx.doi.org/10.1186/s13063-023-07078-6. Exclusion Reason: Ineligible Publication Type protocol
- 313. Vela J, Kjaer Petersen K, Dreyer L, et al. The effect of Cannabidiol on quantitative sensory testing parameters in patients with Hand Osteoarthritis and Psoriatic Arthritis: a randomized double-blind placebo-controlled trial. Ann Rheum Dis. 2022;81:821-2. doi: 10.1136/annrheumdis-2022-eular.1101. Exclusion Reason: Ineligible Publication Type
- 314. Vermersch P, Trojano M. Tetrahydrocannabinol: cannabidiol oromucosal spray for Multiple Sclerosisrelated resistant spasticity in daily practice. Eur Neurol. 2016;76(5-6):216-26. doi: 10.1159/000449413. PMID: 27732980. Exclusion Reason: Ineligible Comparator
- 315. Vickery AW, Roth S, Ernenwein T, et al. A large Australian longitudinal cohort registry demonstrates sustained safety and efficacy of oral medicinal cannabis for at least two years. PLoS ONE. 2022;17(11):e0272241. doi: https://dx.doi.org/10.1371/journal.pone.0272 241. Exclusion Reason: Ineligible Study Design
- 316. Vicknasingam B, Chooi WT, Rahim AA, et al. Kratom and pain tolerance: a randomized, placebo-controlled, double-blind study. Yale J Biol Med.
 2020;93(2):229-38. PMID: 32607084.
 Exclusion Reason: Ineligible Population
- Vila Silvan C, Vaney C, Dykukha I.
 Systematic reviews of randomized controlled trials of Cannabinoid products in chronic pain conditions and for symptoms associated with Multiple Sclerosis: what do they tell us? Expert Rev Clin Pharmacol. 2022doi: 10.1080/17512433.2022.2088501.

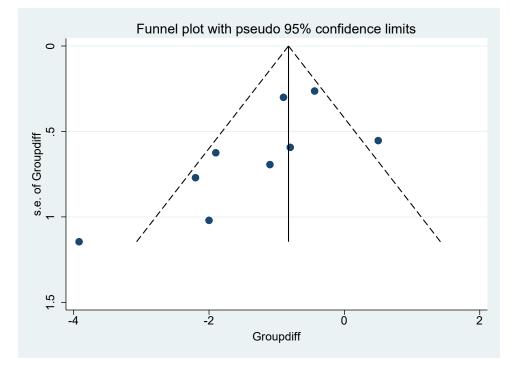
PMID: 35679523. Exclusion Reason: SR used as source document

- 318. Villanueva MRB, Joshaghani N, Villa N, et al. Efficacy, safety, and regulation of Cannabidiol on chronic pain: a systematic review. Cureus. 2022;14(7):e26913. doi: 10.7759/cureus.26913. PMID: 35860716. Exclusion Reason: SR used as source document
- 319. Wade DT, Makela P, Robson P, et al. Do Cannabis-based medicinal extracts have general or specific effects on symptoms in Multiple Sclerosis? A double-blind, randomized, placebo-controlled study on 160 patients. Mult Scler. 2004;10(4):434-41. doi: 10.1191/1352458504ms10820a. PMID: 15327042. Exclusion Reason: Ineligible Population
- Walitt B, Klose P, Fitzcharles MA, et al. Cannabinoids for Fibromyalgia. Cochrane Database Syst Rev. 2016 Jul 18;7:CD011694. doi: 10.1002/14651858.CD011694.pub2. PMID: 27428009. Exclusion Reason: Ineligible Publication Type
- Wallace MS, Marcotte TD, Umlauf A, et al. Efficacy of inhaled Cannabis on painful Diabetic Neuropathy. J Pain. 2015 Jul;16(7):616-27. doi: 10.1016/j.jpain.2015.03.008. PMID: 25843054. Exclusion Reason: Inadequate Duration
- 322. Wang L, Hong PJ, May C, et al. Medical cannabis or cannabinoids for chronic noncancer and cancer related pain: a systematic review and meta-analysis of randomised clinical trials. BMJ. 2021;374:n1034. doi: 10.1136/bmj.n1034. PMID: 34497047. Exclusion Reason: SR used as source document
- Wang T, Collet JP, Shapiro S, et al. Adverse effects of medical cannabinoids: a systematic review. CMAJ. 2008;178(13):1669-78. doi: 10.1503/cmaj.071178. PMID: 18559804. Exclusion Reason: Ineligible Publication Type
- 324. Wang Y, Jean Jacques J, Li Z, et al. Health outcomes among adults initiating Medical Cannabis for chronic pain: a 3-month prospective study incorporating ecological momentary assessment (EMA). Cannabis.

2021;4(2):69-83. doi: 10.26828/cannabis/2021.02.006. PMID: 34671723. **Exclusion Reason:** Ineligible Comparator

- 325. Ware MA, Fitzcharles MA, Joseph L, et al. The effects of Nabilone on sleep in Fibromyalgia: results of a randomized controlled trial. Anesth Analg. 2010 Feb 01;110(2):604-10. doi: 10.1213/ANE.0b013e3181c76f70. PMID: 20007734. Exclusion Reason: Inadequate Duration
- Ware MA, Wang T, Shapiro S, et al. Smoked Cannabis for chronic neuropathic pain: a randomized controlled trial. Cmaj. 2010 Oct 05;182(14):E694-701. doi: 10.1503/cmaj.091414. PMID: 20805210.
 Exclusion Reason: Inadequate Duration
- White CM. Pharmacologic and clinical assessment of Kratom. Am J Health-Syst Pharm. 2018 Mar 1;75(5):261-7. doi: 10.2146/ajhp161035. PMID: 29255059.
 Exclusion Reason: Background
- White CM. Pharmacologic and clinical assessment of Kratom: an update. Am J Health-Syst Pharm. 2019 Nov 13;76(23):1915-25. doi: 10.1093/ajhp/zxz221. PMID: 31626272. Exclusion Reason: Background
- Williams AR, Hill KP. Care of the patient using Cannabis. Ann Intern Med. 2020;173(9):ITC65-ITC80. doi: 10.7326/AITC202011030. PMID: 33137270. Exclusion Reason: Ineligible Publication Type
- Williams AR, Mauro CM, Feng T, et al. Adult Medical Cannabinoid Use and Changes in Prescription Controlled Substance Use. Cannabis Cannabinoid Res. 2022doi: 10.1089/can.2021.0212. PMID: 35486854. Exclusion Reason: Ineligible Comparator
- Wilsey B, Marcotte T, Deutsch R, et al. Low-dose vaporized Cannabis significantly improves neuropathic pain. J Pain. 2013 Feb;14(2):136-48. doi: 10.1016/j.jpain.2012.10.009. PMID: 23237736. Exclusion Reason: Inadequate Duration
- 332. Wilsey B, Marcotte T, Tsodikov A, et al. A randomized, placebo-controlled, crossover trial of Cannabis cigarettes in neuropathic

pain. J Pain. 2008 Jun;9(6):506-21. doi: 10.1016/j.jpain.2007.12.010. PMID: 18403272. **Exclusion Reason:** Inadequate Duration


- 333. Wong SSC, Chan WS, Cheung CW. Analgesic effects of Cannabinoids for chronic non-cancer pain: a systematic review and meta-analysis with metaregression. J Neuroimmune Pharmacol. 2020 Dec;15(4):801-29. doi: 10.1007/s11481-020-09905-y. PMID: 32172501. Exclusion Reason: SR used as source document
- 334. Xantus G, Gyarmathy V. Cannabidiol in acute low back pain-a protocol and rationale of a clinical effectiveness trial. Med Cannabis Cannabinoids. 2020;3(2):134. doi: 10.1159/000511664. PMID: 634190900.
 Exclusion Reason: Ineligible Publication Type
- 335. Yacyshyn B, Hanauer S, Klassen P, et al. Safety, Pharmacokinetics, and efficacy of Olorinab, a peripherally acting, highly selective, full agonist of the Cannabinoid receptor 2, in a Phase 2a study of patients with chronic abdominal pain associated with Crohn's Disease. Crohns Colitis 360. 2021;3(1)doi: 10.1093/crocol/otaa089.
 Exclusion Reason: Ineligible Intervention
- 336. Yanes JA, McKinnell ZE, Reid MA, et al. Effects of Cannabinoid administration for pain: a meta-analysis and meta-regression. Exp Clin Psychopharmacol. 2019 Aug;27(4):370-82. doi: 10.1037/pha0000281. PMID: 31120281. Exclusion Reason: Ineligible Population
- 337. Yassin M, Oron A, Robinson D. Effect of adding Medical Cannabis to Analgesic treatment in patients with low back pain related to Fibromyalgia: an observational cross-over single centre study. Clin Exp Rheumatol. 2019 Jan-Feb;37(Suppl 116):S13-S20. PMID: 30418116.
 Exclusion Reason: Ineligible Study Design
- 338. Yimam M, O'Neal A, Horm T, et al. Antinociceptive and Anti-Inflammatory Properties of Cannabidiol Alone and in

Combination with Standardized Bioflavonoid Composition. J Med Food. 2021doi: 10.1089/jmf.2020.0178. PMID: 33570460. Exclusion Reason: Ineligible Population

- 339. Yu JS, Premkumar A, Liu S, et al. Rates of self-directed perioperative Cannabidiol use in patients undergoing total hip or knee arthroplasty. Pain manag. 2021 Jun 09;09:09. doi: 10.2217/pmt-2021-0018. PMID: 34102871. Exclusion Reason: Ineligible Study Design
- Zajicek J, Fox P, Sanders H, et al. Cannabinoids for treatment of spasticity and other symptoms related to multiple sclerosis (CAMS study): multicentre randomised placebo-controlled trial. Lancet. 2003 Nov 8;362(9395):1517-26. doi: 10.1016/s0140-6736(03)14738-1. PMID: 14615106.
 Exclusion Reason: Ineligible Population
- 341. Zavori L, Xantus G, Matheson C, et al. Cannabidiol in low back pain: scientific rationale for clinical trials in low back pain. Expert Rev Clin Pharmacol. 2021doi: 10.1080/17512433.2021.1917379. PMID: 33861675. Exclusion Reason: Background
- 342. Zeraatkar D, Cooper MA, Agarwal A, et al. Long-term and serious harms of Medical Cannabis and Cannabinoids for chronic pain: a systematic review of nonrandomized studies. medRxiv. 2021 2021-01-01 00:00:00doi: 10.1101/2021.05.27.21257921. PMID: 35926992. Exclusion Reason: SR used as source document
- 343. Zloczower O, Brill S, Zeitak Y, et al. Risk and benefit of Cannabis prescription for chronic non-cancer pain. J Addict Dis. 2021 Aug 02:1-11. doi: 10.1080/10550887.2021.1956673. PMID: 34338621. Exclusion Reason: Ineligible Study Design

Appendix J. Funnel Plot of High THC Ratio Studies Included in Meta-Analysis for Pain Severity

Figure J-1. Funnel plot of nine trials of pain severity for high THC ratio products versus placebo

Abbreviations: Groupdiff = group difference; SE = standard error; THC = tetrahydrocannabinol.