Living Systematic Review on Cannabis and Other Plant-Based Treatments for Chronic Pain: 2023 Update
This report is based on research conducted by the Pacific Northwest Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. 75Q80120D00006). The findings and conclusions in this document are those of the authors, who are responsible for its contents; the findings and conclusions do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services.

None of the investigators have any affiliations or financial involvement that conflicts with the material presented in this report.

The information in this report is intended to help healthcare decision makers—patients and clinicians, health system leaders, and policymakers, among others—make well-informed decisions and thereby improve the quality of healthcare services. This report is not intended to be a substitute for the application of clinical judgment. Anyone who makes decisions concerning the provision of clinical care should consider this report in the same way as any medical reference and in conjunction with all other pertinent information, i.e., in the context of available resources and circumstances presented by individual patients.

This report is made available to the public under the terms of a licensing agreement between the author and the Agency for Healthcare Research and Quality. Most AHRQ documents are publicly available to use for noncommercial purposes (research, clinical or patient education, quality improvement projects) in the United States, and do not need specific permission to be reprinted and used unless they contain material that is copyrighted by others. Specific written permission is needed for commercial use (reprinting for sale, incorporation into software, incorporation into for-profit training courses) or for use outside of the U.S. If organizational policies require permission to adapt or use these materials, AHRQ will provide such permission in writing.

AHRQ or U.S. Department of Health and Human Services endorsement of any derivative products that may be developed from this report, such as clinical practice guidelines, other quality enhancement tools, or reimbursement or coverage policies, may not be stated or implied.

A representative from AHRQ served as a Contracting Officer’s Representative and reviewed the contract deliverables for adherence to contract requirements and quality. AHRQ did not directly participate in the literature search, determination of study eligibility criteria, data analysis, interpretation of data, or preparation or drafting of this report.

AHRQ appreciates appropriate acknowledgment and citation of its work. Suggested language for acknowledgment: This work was based on an evidence report, Living Systematic Review on Cannabis and Other Plant-Based Treatments for Chronic Pain: 2023 Update, by the Evidence-based Practice Center Program at the Agency for Healthcare Research and Quality (AHRQ).

Preface

The Agency for Healthcare Research and Quality (AHRQ), through its Evidence-based Practice Centers (EPCs), sponsors the development of systematic reviews to assist public- and private-sector organizations in their efforts to improve the quality of healthcare in the United States. These reviews provide comprehensive, science-based information on common, costly medical conditions, and new healthcare technologies and strategies.

Systematic reviews are the building blocks underlying evidence-based practice; they focus attention on the strength and limits of evidence from research studies about the effectiveness and safety of a clinical intervention. In the context of developing recommendations for practice, systematic reviews can help clarify whether assertions about the value of the intervention are based on strong evidence from clinical studies. For more information about AHRQ EPC systematic reviews, see www.effectivehealthcare.ahrq.gov/about/epc/evidence-synthesis.

AHRQ expects that these systematic reviews will be helpful to health plans, providers, purchasers, government programs, and the healthcare system as a whole. Transparency and stakeholder input are essential to the Effective Health Care Program. Please visit the website (www.effectivehealthcare.ahrq.gov) to see draft research questions and reports or to join an email list to learn about new program products and opportunities for input.

If you have comments on this systematic review, they may be sent by mail to the Task Order Officer named below at: Agency for Healthcare Research and Quality, 5600 Fishers Lane, Rockville, MD 20857, or by email to epc@ahrq.hhs.gov.

Robert Otto Valdez, Ph.D., M.H.S.A.
Director
Agency for Healthcare Research and Quality

Therese Miller, Dr.P.H.
Director
Center for Evidence and Practice Improvement
Agency for Healthcare Research and Quality

Christine Chang, M.D., M.P.H.
Acting Director
Evidence-based Practice Center Program
Center for Evidence and Practice Improvement
Agency for Healthcare Research and Quality

Suchitra Iyer, Ph.D.
Task Order Officer
Evidence-based Practice Center Program
Center for Evidence and Practice Improvement
Agency for Healthcare Research and Quality
Acknowledgments

The authors gratefully acknowledge the following individuals for their contributions to this project: Pacific Northwest Evidence-based Practice Center Professor Emerita Marian McDonagh, Pharm.D.; informatician Connor Smith, M.S., for work on data visualization; research associate and librarian Andrew Hamilton, M.L.S.; and student worker Elizabeth Riutta, all from Oregon Health & Science University; and Task Order Officer Suchitra Iyer, Ph.D., at the Agency for Healthcare Research and Quality.

Technical Expert Panel

In designing the study questions and methodology at the outset of this report, the EPC consulted several technical and content experts. Broad expertise and perspectives were sought. Divergent and conflicted opinions are common and perceived as healthy scientific discourse that results in a thoughtful, relevant systematic review. Therefore, in the end, study questions, design, methodologic approaches, and/or conclusions do not necessarily represent the views of individual technical and content experts.

Technical Experts must disclose any financial conflicts of interest greater than $5,000 and any other relevant business or professional conflicts of interest. Because of their unique clinical or content expertise, individuals with potential conflicts may be retained. The TOO and the EPC work to balance, manage, or mitigate any potential conflicts of interest identified.

The list of Technical Experts who provided input to the report follows:

Julia H. Arnsten, M.D., M.P.H.
Chief of the Division of General Internal Medicine
Professor of Medicine, Psychiatry, & Behavioral Sciences, Epidemiology & Population, and Psychiatry and Behavioral Sciences
Director, Center for Comparative Effectiveness Reviews
Albert Einstein College of Medicine
Bronx, NY

Kevin F. Boehnke, Ph.D.
Research Assistant Professor, Chronic Pain and Fatigue Research Center
Anesthesiology Department
University of Michigan
Ann Arbor, MI

Wilson M. Compton, M.D., M.P.E. *
Deputy Director, National Institute on Drug Abuse
National Institutes of Health
Bethesda, MD

Inna Belfer, M.D., Ph.D.
Program Officer/Program Director, National Center for Complementary and Integrative Health
National Institutes of Health
Bethesda, MD

Emily Deng, M.D., M.P.H., M.S. *
Medical Officer, Controlled Substance Staff Office of Center Director
Center for Drug Evaluation and Research
Food and Drug Administration
Silver Spring, MD

Erin E. Krebs, M.D., M.P.H., FACP
Chief of General Internal Medicine,
Minneapolis Veterans Affairs Health Care System
Professor of Medicine, Department of Medicine, University of Minnesota
Minneapolis, MN

Adam Obley, M.D.*
Associate Professor of Medicine
Section of General Internal Medicine, VA Portland Health Care System (VAPORHCS)
Portland, OR

Mark Sullivan, M.D., Ph.D.*
Professor of Psychiatry and Behavioral Sciences, Adjunct Professor of Anesthesiology and Pain Medicine, Adjunct Professor of Bioethics and Humanities
University of Washington
Seattle, WA

*Provided input on Draft Report.

Peer Reviewers

Prior to publication of the final evidence report, EPCs sought input from independent Peer Reviewers without financial conflicts of interest. However, the conclusions and synthesis of the scientific literature presented in this report do not necessarily represent the views of individual reviewers. AHRQ may also seek comments from other Federal agencies when appropriate.

Peer Reviewers must disclose any financial conflicts of interest greater than $5,000 and any other relevant business or professional conflicts of interest. Because of their unique clinical or content expertise, individuals with potential nonfinancial conflicts may be retained. The TOO and the EPC work to balance, manage, or mitigate any potential nonfinancial conflicts of interest identified.

The list of Peer Reviewers follows:

Kurt Kroenke, M.D., MACP
Professor of Medicine, Indiana University Research Scientist, Regenstrief Institute
Indianapolis, IN

Deepika Slawek, M.D., M.S.
Assistant Professor of Medicine, Albert Einstein College of Medicine
Bronx, NY
Structured Abstract

Objectives. To update the evidence on benefits and harms of cannabinoids and other plant-based compounds to treat subacute and chronic pain in adults and adolescents using a living systematic review approach.

Data sources. Ovid® MEDLINE®, PsycINFO®, Embase®, the Cochrane Library, and SCOPUS® databases, and reference lists of included studies were searched to April 23, 2023.

Review methods. An updated protocol with expanded inclusion criteria (addition of sub-acute [4 to 12 weeks’ duration] pain and adolescents) was posted on the PROSPERO registry. We grouped studies based on their tetrahydrocannabinol (THC) to cannabidiol (CBD) ratio and by product type, i.e. whole-plant (extracted or purified) or synthetic. We conducted random effects meta-analyses and categorized magnitude of benefit (large, moderate, small, or no effect [less than small]).

Results. Two new randomized controlled trials (RCTs) (n=115 and 15) and two new observational studies (N=2,071) were added for this annual update; no study addressed subacute pain or adolescents. One new RCT compared high and low THC to CBD ratio products versus placebo; the other new RCT evaluated was very small and had methodological limitations. Since the inception of this living review, from 5,228 total abstracts identified, 23 RCTs (N=2,035) and 10 observational studies (N=15,840) assessing different cannabinoids were included; no study evaluated kratom. Studies were primarily short term, and 58 percent enrolled patients with neuropathic pain. Comparators were primarily placebo or usual care. Strength of evidence (SOE) was low unless indicated otherwise.

Compared with placebo, plant-extracted comparable ratio THC to CBD oral spray was associated with a small decrease in pain severity (7 RCTs, N=632, 0 to 10 scale, mean difference [MD] −0.54, 95% confidence interval [CI] −0.95 to −0.19, I²=39%; SOE: moderate) and a small decrease in overall function (6 RCTs, N=616, 0 to 10 scale, MD −0.42, 95% CI −0.73 to −0.16, I²=32%; SOE: moderate) versus placebo. There was no effect on study withdrawals due to adverse events. There was a large increased risk of dizziness and sedation, and a moderate increased risk of nausea (dizziness: 6 RCTs, N=866, 31.0% vs. 8.0%, relative risk [RR] 3.57, 95% CI 2.42 to 5.60, I²=0%; sedation: 6 RCTs, N=866, 8.0% vs. 1.2%, RR 5.04, 95% CI 2.10 to 11.89, I²=0%; and nausea: 6 RCTs, N=866, 13.9% vs. 7.5%, RR 1.79, 95% CI 1.19 to 2.77, I²=0%).

Synthetic high-THC to CBD ratio products were associated with a small improvement in pain severity, a moderate increase in sedation, and a large increase in risk of nausea following the addition of one new RCT (pain: 7 RCTs, N=448, 0 to 10 scale, MD −0.95, 95% CI −1.81 to −0.25, I²=60%; sedation: 4 RCTs, N=386, 19.5% vs. 11.5%, RR 1.60, 95% CI 1.01 to 2.95, I²=8%; nausea: 3 RCTs, N=353, 11.1% vs. 5.2%, RR 2.22, 95% CI 0.90 to 5.05; I²=0%). There was also moderate SOE for a large increased risk of dizziness (3 RCTs, N=353, 28.9% vs. 7.0%)}
11.0%, RR 2.52, 95% CI 1.20 to 4.82, I²=41%). Extracted whole-plant high-THC to CBD ratio products (oral) were associated with a large increased risk of study withdrawal due to adverse events (1 RCT, 13.9% vs. 5.7%, RR 3.12, 95% CI 1.54 to 6.33) and dizziness (1 RCT, 62.2% vs. 7.5%, RR 8.34, 95% CI 4.53 to 15.34); outcomes assessing benefit were not reported or insufficient.

Evidence (including observational studies) on whole-plant cannabis, topical or oral CBD, low-THC to CBD ratio products (2 new RCTs), other cannabinoids, comparisons with active non-cannabis treatments or between cannabis-related products, and impact on use of opioids also remained insufficient. Evidence was not available on important harms such as psychosis, cannabis use disorder, and cognitive effects.

Conclusions. Low to moderate strength evidence suggests small improvements in pain (mostly neuropathic), and moderate to large increases in common adverse events (dizziness, sedation, nausea) with high and comparable THC to CBD ratio extracted cannabinoids and synthetic products versus placebo during short-term treatment (1 to 6 months) in adults with chronic pain. Evidence for low-THC to CBD ratio products, whole-plant cannabis, and other comparisons, outcomes, and plant-based compounds was unavailable or insufficient to draw conclusions.
Contents

Executive Summary

ES-1

Introduction

1. Background ... 1
2. Purpose and Scope of the Systematic Review 2

Methods

3. Review Approach ... 3
4. Key Questions .. 3
5. Study Selection .. 3
6. Data Extraction and Risk of Bias Assessment 4
7. Data Synthesis and Analysis ... 5
8. Grading the Strength of the Body of Evidence 8
9. Living Systematic Review Methods 8

Results

9. Description of Included Evidence 9
10. KQ 1 and KQ 2. In adults or adolescents with chronic or subacute pain, what are the benefits (KQ 1) and harms (KQ 2) of cannabinoids for treatment of chronic or subacute pain? 15
11. Key Points for Comparable THC to CBD Ratio 15
12. Summary of Findings for Comparable THC to CBD Ratio 15
13. Key Points for High-THC to CBD Ratio 18
14. Summary of Findings for High-THC to CBD Ratio 19
15. Key Point for Low-THC to CBD Ratio 25
16. Summary of Findings for Low-THC to CBD Ratio 25
17. Key Points for Other or Mixed Cannabinoids 26
18. Summary of Findings for Other or Mixed Cannabinoids 27
19. Key Point for Whole-Plant Cannabis and Mixed (Patient-Choice) Cannabis Products 27
20. Summary of Findings for Whole-Plant Cannabis and Mixed (Patient-Choice) Cannabis Products ... 27
21. KQ 3 and KQ 4. In adults or adolescents with chronic or subacute pain, what are the benefits (KQ 3) and harms (KQ 4) of kratom or other plant-based substances for treatment of chronic or subacute pain? .. 29
22. Key Point .. 29
23. Summary of Findings ... 29

Discussion

30. Findings in Relation to the Decisional Dilemma(s) 30
31. Strengths and Limitations .. 33
32. Applicability .. 36
33. Implications for Clinical Practice, Education, Research, or Health Policy 37
34. Implications for Future Research 38

Conclusions

40

References

41

Abbreviations and Acronyms

48

Tables

2. Table A. Definitions of effect sizes
3. Table B. Characteristics of included randomized controlled trials of cannabinoids
Table C. Characteristics of included observational studies of cannabinoids

Table D. Key Question 1: Benefits of cannabinoids for chronic pain compared with placebo in the short term (4 weeks to <6 months)

Table E. Key Question 2: Harms of cannabinoids for chronic pain compared with placebo in the short term (4 weeks to <6 months)

Table 1. Inclusion and exclusion criteria

Table 2. Organizing principle of cannabis-related studies based on ratios of THC to CBD

Table 3. Definitions of effect sizes

Table 4. Characteristics of included randomized controlled trials of cannabinoids for chronic pain in adults

Table 5. Characteristics of included observational studies of cannabinoids for chronic pain in adults

Table 6. Key Question 1: Benefits of cannabinoids for chronic pain compared with placebo in the short term (4 weeks to <6 months)

Table 7. Key Question 2: Harms of cannabinoids for chronic pain compared with placebo in the short term (4 weeks to <6 months)

Table 8. Future research needs for cannabis and other plant-based treatments for chronic or subacute pain

Figures

Figure 1. Literature flow diagram

Figure 2. Change in pain severity with comparable THC to CBD ratio versus placebo (short term, 4 weeks to 6 months followup)

Figure 3. Overall function: comparable THC to CBD ratio versus placebo (short term, 4 weeks to 6 months followup)

Figure 4. Change in pain severity with high-THC ratio versus placebo (short term, 4 weeks to 6 months followup)

Appendixes

Appendix A. Literature Search Strategies
Appendix B. Methods
Appendix C. Included Studies List
Appendix D. Results - Study Level Summary Tables and Meta-Analyses
Appendix E. Evidence Tables
Appendix F. Risk of Bias Assessment
Appendix G. Details on Strength of Evidence
Appendix H. Excluded Studies List
Appendix I. Funnel Plot of High-THC Ratio Studies Included in Meta-Analysis for Pain Severity
Executive Summary

Main Points
Studies of cannabis-related products were grouped based on their tetrahydrocannabinol (THC) to cannabidiol (CBD) ratio using the following categories: comparable THC to CBD, high-THC to CBD, and low-THC to CBD (including CBD only). Since the first annual update of the systematic review published in September 2022, two new placebo-controlled randomized controlled trials (RCTs), one of oral THC, CBD, and combination THC/CBD and one of two low THC to CBD ratio products versus placebo, and two new observational studies, one of plant-based comparable THC to CBD versus long-acting opioids and one on inhaled dry flower, sublingual cannabis oils, or both, were added, for a total of 23 RCTs and 10 observational studies. In patients with chronic (mainly neuropathic) pain with short-term treatment (4 weeks to <6 months):

- Comparable plant-extracted THC to CBD ratio oral spray is probably associated with small improvements in pain severity and overall function versus placebo. There may be no increase in risk of serious adverse events (strength of evidence [SOE]: low) or withdrawal due to adverse events. There may be a large increased risk of dizziness and sedation and a moderate increased risk of nausea.
- Synthetic THC (high-THC to CBD) may be associated with small improvement in pain severity, but with increased risk of sedation, and potential increased risk of nausea versus placebo. Synthetic THC is probably associated with a large increased risk of dizziness.
- Other key adverse event outcomes (psychosis, cannabis use disorder, cognitive deficits) and outcomes on the impact on opioid use were not reported or evidence was insufficient to draw conclusions.
- No evidence on other plant-based compounds such as kratom met criteria for this review.

Background and Purpose
Cannabinoids are a group of compounds that are active in cannabis; the two main cannabinoid are THC and CBD. THC has demonstrated analgesic properties, although its psychoactive effects and abuse potential may limit its suitability as an analgesic. It may also be associated with serious harms, including those related to potential for use disorder or physiological withdrawal. The purpose of the systematic review is to evaluate the evidence on benefits and harms of cannabinoids and similar plant-based substances (e.g., kratom) to treat chronic or subacute pain on an ongoing basis. This report updates the original 2021 systematic review on cannabis and other plant-based treatments for chronic pain in adults. For this update, the scope was expanded to include subacute pain and adolescents. Using a living review approach, the literature continues to be monitored quarterly for new studies, and the systematic review may be updated annually.

Methods
We employed methods consistent with those outlined in the Agency for Healthcare Research and Quality Effective Health Care Program Methods Guide (https://effectivehealthcare.ahrq.gov/topics/cer-methods-guide/overview), as described in the full report. Searches for this update covered publication dates from database inception to April 23, 2023.
The original review focused on adults with chronic pain. With input from a Technical Expert Panel, the scope for this update was expanded to include adolescents and subacute pain. We included randomized controlled trials and comparative observational studies with a minimum of 4 weeks duration that assessed cannabinoids or kratom for noncancer chronic and subacute pain. Cannabinoids were categorized according to their THC to CBD ratio (comparable, high, low) and type (whole-plant [included extracted or purified products] or synthetic). Strength of evidence was assessed as low, moderate, high, or insufficient, and magnitude of effect was assessed according to Table A. Estimates that were below the threshold for a small effect were categorized as “no effect.”

Table A. Definitions of effect sizes

<table>
<thead>
<tr>
<th>Effect Size</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small effect</td>
<td>• MD 0.5 to 1.0 points on a 0 to 10-point scale, 5 to 10 points on a 0 to 100-point scale</td>
</tr>
<tr>
<td></td>
<td>• SMD 0.2 to 0.5</td>
</tr>
<tr>
<td></td>
<td>• RR/OR 1.2 to 1.4</td>
</tr>
<tr>
<td>Moderate effect</td>
<td>• MD >1 to 2 points on a 0 to 10-point scale, >10 to 20 points on a 0 to 100-point scale</td>
</tr>
<tr>
<td></td>
<td>• SMD >0.5 to 0.8</td>
</tr>
<tr>
<td></td>
<td>• RR/OR 1.5 to 1.9</td>
</tr>
<tr>
<td>Large effect</td>
<td>• MD >2 points on a 0 to 10-point scale, >20 points on a 0 to 100-point scale</td>
</tr>
<tr>
<td></td>
<td>• SMD >0.8</td>
</tr>
<tr>
<td></td>
<td>• RR/OR ≥2.0</td>
</tr>
</tbody>
</table>

Abbreviations: MD = mean difference; OR = odds ratio; RR = relative risk; SMD = standardized mean difference.

Results

The included RCTs are described in Table B and the included observational studies are described in Table C. There were a total of four new studies since the prior annual update. One new RCT (n=115) compared synthetic high-THC to CBD ratio and low-THC to CBD ratio cannabis products versus placebo for neuropathic pain and another new RCT (n=15) evaluated two extracted low THC to CBD ratio products versus placebo. One new observational study (n=1,310) compared an extracted comparable THC to CBD ratio product versus long-acting opioids for neuropathic back pain, and another new observational study compared various extracted cannabinoid products (comparable to low THC to CBD ratio) in patients with chronic pain (mixed conditions). The addition of one new RCT slightly reduced the pooled effect size for improvement in pain intensity with synthetic high-THC to CBD ratio products versus placebo, crossing the threshold from moderate (prior pooled estimate -1.15 on a 0 to 10 scale, 95% confidence interval [CI] -1.99 to -0.54) to small (updated pooled estimate -0.95, 95% CI -1.81 to -0.25) and changed the SOE for pain response from low to insufficient, due to inconsistent results from two RCTs (Tables D and E). Otherwise, the new studies did not change main findings.

Table B. Characteristics of included randomized controlled trials of cannabinoids

Characteristic	THC/CBD	THC	Synthetic THC	CBD	CBDV
THC to CBD Ratio	Comparablea	High	High	Low	NA - other cannabinoids
Source	Plant-extracted	Plant-extracted	Synthetic Nabilone Dronabinol Dronabinol/Namisol⁸⁶	Plant-extracted (2) Synthetic (1) Unclear (1)	Plant-extracted
N Studies	7	2	10	4² (1 topical, 1 sublingual, 2 oral)	1

Abbreviations: a, b, c, d, e, f, g, h, i.
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>THC/CBD</th>
<th>THC</th>
<th>Synthetic THC</th>
<th>CBD</th>
<th>CBDV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparator (Study Count)</td>
<td>Placebo (7)</td>
<td>Placebo (2)</td>
<td>Placebo (7); Ibuprofen (1); Dihydrocodeine (1); Low-THC to CBD ratio (CBD or Dronabinol/CBD) (1)</td>
<td>Placebo (4); Dronabinol® (1); Dronabinol/CBD® (1); ≥97% purified low-THC to CBD (1:6) sublingual oil (1)</td>
<td>Placebo</td>
</tr>
<tr>
<td>Route of Administration, Formulation (Study Count)</td>
<td>Sublingual oromucosal spray, 2.7 mg THC/2.5 mg CBD per 100 mcl</td>
<td>Sublingual oil drops, 24 mg/ml THC/0.51 mg/ml CBD (1) Oral capsule, 2.5 mg THC/0.8 – 1.8 mg CBD extract (1)</td>
<td>Nabilone oral 0.25 mg capsule (1); Nabilone oral 0.5 mg capsule (5); Dronabinol 2.5 mg oral capsule (2); Dronabinol 5 mg oral capsule (1); Namisol® tablet (1)</td>
<td>Topical oil, 83 mg CBD/fluid ounce (1), Oral capsule, 10 mg CBD (1) Oral capsule, 5 mg CBD (1) Oral capsule, 5 mg CBD/2.5 mg dronabinol (1) Sublingual oil, 24.5 mg/ml THC, 147 mg/mL CBD (1)</td>
<td>Oral oil, 50 mg/ml CBDV</td>
</tr>
<tr>
<td>Dosing Regimen</td>
<td>Final mean dose 23 mg THC/21 mg CBD daily.</td>
<td>Sublingual drops: 1.2 mg daily, titrated. Final dose 4.4 mg THC daily. Capsule: 2.5 - 12.5 mg THC twice daily, titrated. Final dose NR Oral oil: 1.2 mg daily</td>
<td>Nabilone 0.25 - 2 mg twice daily, titrated. Final mean dose 1.84 Dronabinol capsules: 2.5 -15 mg once or twice daily, titrated. Final dose range 15 - 25 mg/day Namisol® tablet: 3 - 8 mg 3 times daily, titrated. Final dose NR.</td>
<td>Topical oil: applied locally 1-4 times/day (volume/dose, final dose NR). Oral tablet: 10 mg daily, titrated (max 3 times daily) Final dose NR. Oral CBD capsule: 5 mg twice daily, titrated. Final median dose 50 mg CBD daily. Oral dronabinol/CBD capsule: 2.5 mg THC/5 mg CBD twice daily, titrated. Final median dose 15 mg THC/30 mg CBD daily. Sublingual oil, titrated to max daily dose of 6 drops 3 times daily (15 mg THC/90 mg CBD)</td>
<td>400 mg CBDV daily. Final dose NR.</td>
</tr>
<tr>
<td>Risk of Bias</td>
<td>29% high, 57% moderate, 14% low</td>
<td>50% moderate, 50% low</td>
<td>20% high, 40% moderate, 40% low</td>
<td>50% high, 25% moderate, 25% low</td>
<td>100% moderate</td>
</tr>
<tr>
<td>Total Randomized</td>
<td>882</td>
<td>297</td>
<td>592</td>
<td>267</td>
<td>34</td>
</tr>
<tr>
<td>Age, Mean Years</td>
<td>53</td>
<td>52</td>
<td>53</td>
<td>65</td>
<td>50</td>
</tr>
<tr>
<td>Female, %</td>
<td>66%</td>
<td>89%</td>
<td>61%</td>
<td>40%</td>
<td>3%</td>
</tr>
<tr>
<td>Non-White, %</td>
<td>1.6% (2)</td>
<td>1% (1)</td>
<td>5.4% (3)</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Characteristic</td>
<td>THC/CBD</td>
<td>THC</td>
<td>Synthetic THC</td>
<td>CBD</td>
<td>CBDV</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>-----</td>
<td>---------------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>Primary Pain Type (Study Count)</td>
<td>NPP (6); Inflammatory arthritis (1)</td>
<td>NPP (1); Fibromyalgia (1)</td>
<td>NPP (7); Fibromyalgia (1); Headache (1); Visceral pain (1)</td>
<td>NPP (2); OA (1); Unspecified (1)</td>
<td>NPP (1)</td>
</tr>
<tr>
<td>Baseline Pain Score, Mean (Range)</td>
<td>6.59 (5.3 to 7.3)</td>
<td>8.47 (8.25 to 8.67)</td>
<td>6.48 (4 to 8.1)</td>
<td>5.87 (4.67 to 7.4)</td>
<td>6.28 (6.12 to 6.44)</td>
</tr>
<tr>
<td>Study Duration</td>
<td>4 to 15 weeks</td>
<td>8 to 12 weeks</td>
<td>4 to 47 weeks</td>
<td>4 to 16 weeks</td>
<td>4 weeks</td>
</tr>
</tbody>
</table>

Abbreviations: CBD = cannabidiol; CBDV = cannabidivarin; NA = not applicable; NPP = neuropathic pain; NR= not reported; OA = osteoarthritis; RCT = randomized controlled trial; THC = tetrahydrocannabinol.

- All products were nabiximols.
- Namisol® is a purified, plant-based product, but grouped with synthetic dronabinol because they are chemically identical.
- One trial evaluated a plant-extracted low THC to CBD product and product that underwent further purification.
- One trial is included in both the synthetic THC and CBD columns, as it compared THC to CBD, CBD/THC, and placebo.
- Includes two new RCTs for this review.
- (n) = number of studies reporting this characteristic at baseline.
- Scores were standardized to a 0 to 10 scale.
- Weighted mean includes median scores for 1 study (6 vs. 6).
- Weighted mean includes median scores for 1 study (5.2 vs. 6.1).

Table C. Characteristics of included observational studies of cannabinoids

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>THC/CBD</th>
<th>THC</th>
<th>Synthetic THC</th>
<th>THC/CBD Versus Synthetic THC</th>
<th>THC/CBD Versus LAOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>THC to CBD Ratio</td>
<td>Unclear or mixed</td>
<td>High</td>
<td>High</td>
<td>Comparable vs. high</td>
<td>Comparable</td>
</tr>
<tr>
<td>Source</td>
<td>Any cannabis product (patient’s choice) or mixed cannabinoids</td>
<td>Plant-based</td>
<td>Synthetic (nabilone)</td>
<td>Plant-based vs. synthetic</td>
<td>Plant-based</td>
</tr>
<tr>
<td>N Studies</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Comparator (Study Count)</td>
<td>No cannabis use (3); usual care (1); no medical cannabis authorization (1); other cannabinoids (1)</td>
<td>Usual care (1)</td>
<td>Gabapentin only; gabapentin + nabilone (1)</td>
<td>Active comparator; oral mucosal spray vs. dronabinol</td>
<td>Long-acting opioids (MME 69.4 (SD 38.9) mg/day)</td>
</tr>
<tr>
<td>Route of Administration, Formulation</td>
<td>Unreported (any available allowed, patient’s choice) (5); inhaled or sublingual prescribed cannabis (1)</td>
<td>Whole-plant cannabis, “certified 12.5% THC” (CBD NR) route determined by patient: smoking 27%, oral 8%, vaporization 4%, combination 61%</td>
<td>Nabilone 0.5 mg oral capsule</td>
<td>Nabiximols sublingual oromucosal spray, 2.7 mg THC/2.5 mg CBD per 100 mcl Dronabinol oral capsule (strength NR)</td>
<td>Nabiximols sublingual oromucosal spray, 2.7 mg THC/2.5 mg CBD per 100 mcl Oral long-acting opioids (dose varied)</td>
</tr>
<tr>
<td>Dosing Regimen</td>
<td>None specified; final dose NR</td>
<td>None specified; titrated to max dose 5 g/day. Final median dose 2.5 g/day</td>
<td>None specified; final mean dose 16.6/15.4 mg THC/CBD/day vs. 17.2 mg THC/day</td>
<td>None specified; based on individual patient needs; final mean dose 16.7/15.5 mg THC/CBD/day vs. MME 69.4 mg/day</td>
<td></td>
</tr>
<tr>
<td>ROB</td>
<td>50% high, 50% moderate</td>
<td>100% high</td>
<td>100% moderate</td>
<td>100% moderate</td>
<td>100% moderate</td>
</tr>
<tr>
<td>N Total</td>
<td>13,269</td>
<td>431</td>
<td>156</td>
<td>674</td>
<td>1,310</td>
</tr>
<tr>
<td>Age, Mean Years</td>
<td>52</td>
<td>49</td>
<td>61</td>
<td>46</td>
<td>51</td>
</tr>
<tr>
<td>Female, %</td>
<td>55%</td>
<td>57%</td>
<td>59%</td>
<td>57%</td>
<td>57%</td>
</tr>
</tbody>
</table>
Characteristic | THC/CBD | THC | Synthetic THC | THC/CBD Versus Synthetic THC | THC/CBD Versus LAOs
--- | --- | --- | --- | --- | ---
% Non-White (Study Count) | 54% (1); NR (5) | NR | NR | NR | NR
Primary Pain Type(s) | Mixed musculoskeletal, chronic non-cancer pain | Chronic non-cancer pain | NPP | Peripheral NPP | Peripheral neuropathic back pain
Baseline Pain Score, Mean (Range) | 5.75 (4.56 to 7.00) | 6.35 (6.1 to 6.6) | 4.98 (4.58 to 5.31) | 4.4 (4.39 to 4.41) | 4.32 (4.31 to 4.33)
Study Duration, Weeks (Range) | 12 to 208 | 52 | 26 | 24 | 24

Abbreviations: CBD = cannabidiol; LAO = long acting opioid; MME = morphine milligram equivalents; NPP = neuropathic pain; NR = not reported; ROB = risk of bias; SD = standard deviation; THC = tetrahydrocannabinol.

a Patients could choose any medicinal product they preferred in these studies.
b Includes one new study for this review.
c Scores were standardized to a 0 to 10 scale.

Tables D and E summarize the findings of the review. Other prioritized adverse events (cannabis use disorder [CUD], psychosis, cognitive deficits) and the impact on the use of opioids for chronic pain, were not reported in the RCTs.

Table D. Key Question 1: Benefits of cannabinoids for chronic pain compared with placebo in the short term (4 weeks to <6 months)

<table>
<thead>
<tr>
<th>Product, THC to CBD Ratio</th>
<th>Pain Responsea Effect Size (N Studies) [SOE]</th>
<th>Pain Severity Effect Size (N Studies) [SOE]</th>
<th>Function Effect Size (N Studies) [SOE]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparable THC/CBD - Extracted From Whole Plant, Oromucosal Spray</td>
<td>Potential effect (4)b [✓]</td>
<td>Small effect (7) [✓ ✓]</td>
<td>Small effect (6) [✓ ✓]</td>
</tr>
<tr>
<td>High THC – Synthetic, Oral</td>
<td>Insufficient (2, 1 new)c</td>
<td>↓ Small effect (7, 1 new)c,d [✓]</td>
<td>No effect (4, 1 new) [✓]</td>
</tr>
<tr>
<td>High THC – Extracted From Whole Plant, Oral</td>
<td>No evidence</td>
<td>Insufficient (2)</td>
<td>Insufficient (1)</td>
</tr>
<tr>
<td>Low THC – Topical CBD, Extracted From Whole Plant</td>
<td>No evidence</td>
<td>Insufficient (1)</td>
<td>No evidence</td>
</tr>
<tr>
<td>Low THC – Oral CBD, Synthetic</td>
<td>No evidence</td>
<td>Insufficient (1)</td>
<td>Insufficient (1)</td>
</tr>
<tr>
<td>Low THC – Oral CBD or CBD/THC, Unclear Origin</td>
<td>Insufficient (1 new)e</td>
<td>Insufficient (1 new)e</td>
<td>Insufficient (1 new)e</td>
</tr>
<tr>
<td>Low THC – Sublingual CBD/THC, Extracted from Whole Plant</td>
<td>No evidence</td>
<td>Insufficient (1 new)e</td>
<td>No evidence</td>
</tr>
<tr>
<td>Other Cannabinoids – CBDV, Oral</td>
<td>Insufficient (1)</td>
<td>Insufficient (1)</td>
<td>No evidence</td>
</tr>
<tr>
<td>Whole-Plant Cannabis (12% THC)e</td>
<td>No evidence</td>
<td>Insufficient (1)</td>
<td>No evidence</td>
</tr>
</tbody>
</table>

Abbreviations: CBD = cannabidiol; CBDV = cannabidivarin; SOE = strength of evidence; THC = tetrahydrocannabinol.
a ≥30% improvement from baseline
b Potential effect: SOE of low or higher; findings indicate at least a small magnitude of effect but not statistically significant.
c Text is bolded to indicate that the strength of evidence has changed.
d Downwards arrow indicates that the pooled effect size decreased from moderate.
e Comparison was “usual care.”

Text that is red indicates that a new study has been added. Color is used for visual emphasis only.
Effect size: None (i.e., no effect/no statistically significant effect), small, moderate, or large increased benefit; SOE: [✓] = low, [✓✓] = moderate, [✓✓✓] = high.

Table E. Key Question 2: Harms of cannabinoids for chronic pain compared with placebo in the short term (4 weeks to <6 months)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparable THC/CBD – Extracted From Whole Plant, Oromucosal Spray</td>
<td>No effect (5) [✓]</td>
<td>No effect (3) [✓]</td>
<td>Large effect (6) [✓]</td>
<td>Moderate effect (6) [✓]</td>
<td>Large effect (6) [✓]</td>
</tr>
<tr>
<td>High THC – Synthetic, Oral</td>
<td>Potential effecta (5, 1 new) [✓]</td>
<td>Insufficient (1)</td>
<td>Large effect (3, 1 new) [✓✓]</td>
<td>Potential effecta (3, 1 new) [✓✓]</td>
<td>Moderate effect (4, 1 new) [✓✓]</td>
</tr>
<tr>
<td>High THC – Extracted From Whole Plant, Oral</td>
<td>Large effect (1) [✓]</td>
<td>Insufficient (1)</td>
<td>Large effect (1) [✓]</td>
<td>No evidence</td>
<td>No evidence</td>
</tr>
<tr>
<td>Low THC – Topical CBD, Extracted From Whole Plant</td>
<td>No evidence</td>
<td>No evidence</td>
<td>No evidence</td>
<td>No evidence</td>
<td>No evidence</td>
</tr>
<tr>
<td>Low THC – Oral CBD, Synthetic</td>
<td>Insufficient (1)</td>
<td>Insufficient (1)</td>
<td>No evidence</td>
<td>No evidence</td>
<td>No evidence</td>
</tr>
<tr>
<td>Low THC – Oral CBD or CBD/THC, Unclear Origin</td>
<td>Insufficient (1, 1 new)b</td>
</tr>
<tr>
<td>Low THC – Sublingual CBD/THC, Extracted from Whole Plant</td>
<td>Insufficient (1, 1 new)b</td>
<td>Insufficient (1, 1 new)b</td>
<td>No evidence</td>
<td>No evidence</td>
<td>No evidence</td>
</tr>
<tr>
<td>Other Cannabinoids – CBDV, Oral</td>
<td>Insufficient (1)</td>
<td>Insufficient (1)</td>
<td>No evidence</td>
<td>No evidence</td>
<td>No evidence</td>
</tr>
<tr>
<td>Whole-Plant Cannabis (12% THC)c</td>
<td>Insufficient (1)</td>
<td>Insufficient (1)</td>
<td>Insufficient (1)</td>
<td>Insufficient (1)</td>
<td>Insufficient (1)</td>
</tr>
</tbody>
</table>

Abbreviations: CBD = cannabidiol; CBDV = cannabidivarin; SAE = serious adverse event; SOE = strength of evidence; THC = tetrahydrocannabinol; WAE = withdrawal due to adverse event.

a Potential effect: SOE of low or higher; findings indicate at least a small magnitude of effect but not statistically significant.
b Text is bolded to indicate that the strength of evidence has changed.
c Comparison was “usual care.”

Text that is red indicates that a new study has been added. Color is used for visual emphasis only.

Effect size: None (i.e., no effect/no statistically significant effect), small, moderate, or large increased risk; SOE: [✓] = low, [✓✓] = moderate, [✓✓✓] = high.

Limitations

Key limitations of the evidence base relate to the limited ability to provide strong, reliable, estimates of effect due to: 1) inadequate sample sizes or numbers of studies, 2) narrowness of enrolled populations (primarily chronic neuropathic pain, with mean age 54 years; see Tables B and C) with no evidence on subacute pain or adolescents, 3) lack of evidence or inadequate evidence on high-THC to CBD products extracted from whole-plant cannabis, whole-plant cannabis products, low-THC to CBD products (e.g., topical CBD); comparisons with other active interventions or different cannabis-related products; and other plant-based compounds including...
kratom, and 4) inconsistent reporting of important outcomes such as dosage, pain response, overall function or disability, effect on opioid use, and longer-term adverse events, such as CUD, psychosis, and cognitive deficits. In addition, generalizability of findings may be reduced in specific settings due to the unavailability or unclear availability of studied cannabis products. These limitations affect both the stability and applicability of the findings.

Implications and Conclusions

Select individuals with chronic neuropathic pain may experience small short-term improvements in pain with some cannabis products, but the impact on moderate or long-term outcomes is unknown. Improvement in pain intensity was small with high and comparable THC to CBD ratio products, though there was insufficient evidence to determine effects on likelihood of a pain response (e.g., $\geq 30\%$ improvement in pain). Compared with placebo, these interventions resulted in greater risk of common adverse events (dizziness, nausea, sedation); high-THC to CBD products were also associated with increased risk of study withdrawal due to adverse events. Evidence for other interventions, including kratom, was insufficient or not found. As the strength of this evidence is mostly low, more data are needed to confidently recommend cannabis as a treatment for various chronic pain-related conditions, for specific cannabis products (e.g., whole plant cannabis), and for patients with diverse demographic or clinical characteristics. Recommendations for future research include the need for studies evaluating appropriately representative and diverse populations (including adolescents), studies evaluating specific cannabis-based products available in the United States, studies on long-term outcomes, studies on non-neuropathic chronic pain, studies comparing effects of cannabis-based products versus other treatments for chronic pain, and studies on subacute pain.

References

Introduction

Background

Chronic pain, defined as pain lasting longer than 3 to 6 months or past normal time for tissue healing,1,2 is a serious public health issue in the United States, affecting approximately 100 million people3 and resulting in over $560 billion annually in costs.4 Chronic pain substantially impacts physical and mental functioning, reducing productivity and quality of life. It is the leading cause of disability and is often refractory to treatment.5,6 Opioids are often prescribed for chronic pain. In the United States, prescription of opioid medications for chronic pain more than tripled from 1999 to 2015.7 This increase was accompanied by marked increases in rates of opioid use disorder and drug overdose mortality7-9 involving prescription opioids. From 1999 to 2014, over 165,000 people died from overdoses related to prescription opioids in the United States,1 with an estimated 17,087 prescription opioid overdose deaths in 2016.7 In October 2017, the U.S. Department of Health and Human Services declared a nationwide public health emergency regarding the opioid crisis.10

While opioids are often prescribed for chronic pain, they are associated with small to moderate effects on pain and overall function with frequent adverse effects,11 and the 2022 Centers for Disease Control and Prevention Guideline for Prescribing Opioids for Chronic Pain recommends nonopioid therapy as the preferred treatment of chronic pain.12 Recent systematic reviews found that several nonopioid drugs,13 and some nonpharmacologic treatments14 also have small to moderate effects on chronic pain and overall function. Some nonopioid pharmacological treatments had frequent overall adverse events and some less frequent but serious adverse effects, while nonpharmacological treatments typically reported few adverse events.13

The challenges of treating chronic pain in light of the limited benefits of commonly prescribed prescription medications and the ongoing opioid crisis drive a search for alternative pain treatments, including cannabis. The goals of current research are to identify alternative treatments with equal or better benefits for pain while avoiding potential unintended consequences that could result in harms. Plants have historically been evaluated for medicinal properties, with some being developed into drug therapies (i.e., the field of pharmacognosy). Some preclinical data suggest that cannabinoids may have analgesic properties, though research in this area is mixed.15 Tetrahydrocannabinol (THC), one of over 140 cannabinoids in cannabis,16 has demonstrated analgesic properties,17,18 though its psychoactive effects and abuse potential may increase its risk and lessen its suitability as an analgesic. Other cannabinoids (e.g., cannabidiol [CBD], cannabigerol [CBG], and cannabichromene [CBC]) may also have some analgesic or anti-inflammatory properties and are not thought to be intoxicating or addictive,19,20 but may not be as potent as THC. Observational studies indicate that some patients use cannabis and related compounds as a substitute for opioids.21-24

Other plant-based compounds (PBCs) such as kratom, though pharmacologically distinct from cannabis, may be considered as analgesics, in part due to their community-use as substitutes for opioids.25,26 They may also have serious harms, such as dependence, addiction, and physiological withdrawal potential.27 Although some PBCs thought to reduce pain are currently classified as Schedule I by the Drug Enforcement Administration, there is disagreement on scheduling others, such as kratom.28 Recent legalization of cannabis by several states29 may
lead to more and higher quality research on PBCs with potential for treating chronic pain.30 Initiatives to develop and study alternative interventions for chronic pain are expected to contribute to this increase in research on PBCs, specifically for pain. This living review was initiated in response to a request from Congress on PBCs for chronic pain.30,31

Although the original review and prior surveillance reports and update focused on chronic pain in adults, subacute pain as well as the adolescent population are also relevant. Subacute pain, often defined as pain lasting for 4 to 12 weeks, represents a transitional state between acute (<4 weeks) pain, which often resolves, and chronic pain, which is more likely to persist.32 Effective treatments for reducing the likelihood of subacute pain becoming chronic are also needed. Adolescents also experience chronic pain and have a high prevalence of cannabis use (recreational or medical).33,34

The key decisional dilemmas for treating chronic pain with cannabis and other PBCs include the effectiveness in treating chronic pain and the effect of specific formulations, doses or potencies, routes of administration, types of pain, and other patient characteristics on outcomes. Similarly, it is important to identify harms and adverse effects of these interventions which may include risks of frequent or daily use, risk of developing dependence or addiction (e.g., cannabis use disorder), mental health effects, and impacts on harms of co-prescribed opioids. It is also unclear what the impact of using cannabis or other PBCs for pain has on opioid use, and, how their effectiveness compares to other interventions. The original review focused on cannabis for chronic pain in adults. For this update, the scope was expanded to also address subacute pain and adolescents.

Purpose and Scope of the Systematic Review

This is an update of a “living systematic review” originally addressing the effectiveness and harms of plant-based treatments for chronic pain in adults, now also addressing subacute pain and adolescents. The review is living, meaning that it uses methods to identify and synthesize recently published literature and adapt its scope on an ongoing basis. For the purposes of this review, included PBCs are those that have potential analgesic effects as well as the potential for addiction, misuse, and serious adverse effects; other PBCs, such as herbal treatments are not included. The intended audience includes policy and decision makers, funders and researchers of treatments for pain, and clinicians who treat pain.
Methods

Review Approach

This Systematic Review follows the methods suggested in the Agency for Healthcare Research and Quality (AHRQ) Methods Guide for Effectiveness and Comparative Effectiveness Reviews (hereafter “AHRQ Methods Guide”). All methods were determined a priori, and the original protocol was published on the AHRQ website and on the PROSPERO systematic reviews registry (registration no. CRD42021229579). The scope of the review was reviewed with a Technical Expert Panel (TEP) following the prior annual update, including considerations for expansion of scope. With TEP input, the protocol was amended to include adolescents and subacute pain. An updated protocol was submitted to PROSPERO, and the title, Key Questions, and inclusion and exclusion criteria were revised to reflect the changes. Below is a summary of the specific methods used in this review. Search strategies appear in Appendix A, and a complete description of methods is presented in Appendix B.

Key Questions

This review will address the following Key Questions (KQs):

1. In adults or adolescents with chronic or subacute pain, what are the benefits of cannabinoids for treatment of chronic or subacute pain?
2. In adults or adolescents with chronic or subacute pain, what are the harms of cannabinoids for treatment of chronic or subacute pain?
3. In adults or adolescents with chronic or subacute pain, what are the benefits of kratom or other plant-based substances for treatment of chronic or subacute pain?
4. In adults or adolescents with chronic or subacute pain, what are the harms of kratom or other plant-based substances for treatment of chronic or subacute pain?

Study Selection

Electronic searches for evidence were conducted in Ovid® MEDLINE®, PsycINFO®, Embase®, the Cochrane Library, and SCOPUS® databases through April 23, 2023, with ongoing, automated monthly searches to identify newly published studies. Search strategies were updated to include terms for adolescents and subacute pain and applied to databases from inception to identify studies on adolescent and subacute pain. Additionally, we re-assessed previously excluded studies for eligibility based on revised inclusion criteria. The search strategies are shown in Appendix A. Electronic searches were supplemented with review of reference lists of relevant studies and two prior AHRQ pain reports for studies that met the inclusion criteria for this review. For the original 2021 review, a Federal Register Notice was posted, and a Supplemental Evidence And Data for Systematic review (SEADS) portal was available for submission of unpublished studies.
Pre-established criteria were used to determine eligibility for inclusion and exclusion of abstracts in accordance with the AHRQ Methods Guide, based on the KQs and populations, interventions, comparators, outcomes, timing, and settings (PICOTS; Table 1). See Appendix B for more details on eligibility criteria and methods for study selection, including dual review of studies screened.

Table 1. Inclusion and exclusion criteria

<table>
<thead>
<tr>
<th>PICOTS Element</th>
<th>Inclusion Criteria</th>
<th>Exclusion Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>All KQs: Adults or adolescents (including pregnant or breastfeeding women) with noncancer chronic (>12 weeks or pain persisting past the time for normal tissue healing) or subacute pain (pain lasting 4 weeks to 3 months). See categorization of specifically included pain populations below.</td>
<td>All KQs: Children; adults with acute pain; patients at end of life or in palliative care (e.g., with late stage cancer-related pain)</td>
</tr>
</tbody>
</table>
| **Interventions** | KQs 1 and 2: Cannabinoids (including synthetics) using different delivery mechanisms such as oral, buccal, inhalational, topical, or other administration routes
 KQs 3 and 4: Kratom or other plant-based substances; co-use of kratom or other plant-based substances and opioids
 All KQs: Co-use of other drugs for pain | All KQs: Non-plant-based interventions, capsaicin, herbal supplements |
| **Comparators** | All KQs: Any comparator, or usual care | All KQs: No comparison |
| **Outcomes** | All KQs: Primary efficacy outcomes (i.e., pain, general function [e.g., Short-Form 36 Physical Functioning Scale] or pain-related [e.g., Oswestry Disability Index or Roland-Morris Disability Questionnaire, for low back pain] or disability, including pain interference*); harms and adverse effects (e.g., dizziness, nausea, sedation, development of cannabis use disorder, serious adverse events as defined by study); secondary outcomes (i.e., psychological distress including depression and anxiety, quality of life, opioid use, sleep quality, sleep disturbance, healthcare utilization) | All KQs: Other outcomes |
| **Time of followup** | All KQs: short term (4 weeks to <6 months), intermediate term (6 to <12 months), long term (≥1 year) | All KQs: studies with <1-month (4 weeks) of treatment or followup after treatment |
| **Setting** | All KQs: Any nonhospital setting or setting of self-directed care | All KQs: Hospital care, hospice care, emergency department care |
| **Study design** | All KQs: RCTs; observational studies with a concurrent control group for harms, and to fill gaps in the evidence for benefits | All KQs: Other study designs |

Abbreviations: KQ = Key Question; PICOTS = populations, interventions, comparators, outcomes, timing, and settings; RCT = randomized controlled trial.

* The degree to which pain directly interferes with patients’ ability to participate in their daily activities (challenges in performing daily, social, or work-related tasks due to pain).

Data Extraction and Risk of Bias Assessment

After studies were selected for inclusion, data were abstracted into evidence tables in categories that included but not limited to: study design, year, setting, country, sample size, eligibility criteria, population and clinical characteristics, intervention characteristics, and results. Information relevant for assessing applicability included the number of patients randomized relative to the number of patients enrolled, use of run-in or wash-out periods, and characteristics of the population, intervention (including regulatory status and availability in the United States),
and care settings. All study data were verified for accuracy and completeness by a second team member.

The risk of bias of individual studies was assessed using methods consistent with the AHRQ Methods Guide. Separate criteria were used for randomized controlled trials and observational studies. Two reviewers independently assessed risk of bias, resulting in final ratings of low, moderate, or high, with any disagreements resolved by consensus. For full details about data extraction, risk of bias assessment, and other methods, please see Appendix B.

Data Synthesis and Analysis

To assist with narrative synthesis, we constructed summary tables of the abstracted study characteristics, results, and risk of bias ratings for all included studies. Data were additionally summarized in in-text tables, using ranges and descriptive analysis and interpretation of the results. We assessed the persistence of benefits or harms by evaluating the three periods consistent with prior AHRQ pain reports (1 to <6 months, 6 to 12 months, and ≥12 months).

Based on input from a TEP, we organized cannabis interventions into three pre-specified categories based on their ratios of tetrahydrocannabinol (THC) to cannabidiol (CBD) (Table 2). The first category, high-THC, includes products with a ratio of THC to CBD of at least 2 to 1. This category was further stratified based on whether interventions consisted of synthetic THC or were derived from whole-plant cannabis. Whole plant-based products can be either extracted or purified, depending on the process used to isolate higher concentrations of THC or CBD. Extracted products may contain additional cannabinoids and other compounds (e.g., terpenes) present in whole-plant cannabis that may or may not affect the impact of the intervention. Purified products are pharmaceutical grade and considered free of contaminants (i.e., consist of only THC or THC and CBD combinations). Namisol® presented a challenge for categorization because it is a purified plant-based product, but chemically identical to synthetic dronabinol. Therefore, we grouped Namisol® (purified plant-based dronabinol) together with synthetic dronabinol, but also performed sensitivity analyses without Namisol®.

The second category, low-THC, contains a ratio of THC to CBD of less than one (i.e., lower THC than CBD, with ratio less than 1 to 2). These may be either extracted or purified products.

The third category, comparable THC to CBD ratios, consists of products with ratios that fall between the other two groups (generally, close to 1 to 1); these may also be extracted or purified products.

Interventions consisting of whole-plant cannabis products (not extracted, purified, or synthetic) were categorized according to any information provided about the THC to CBD ratio. Interventions using cannabinoids other than THC and CBD were categorized separately.

Within the same THC to CBD category, we analyzed oral and oromucosal (e.g., sublingual or oromucosal spray) products separately from topical products, unless the topical product was clearly designed to produce systemic (rather than local) effects. In such cases, the topical product with systemic effects were analyzed together with oral and oromucosal products.
Table 2. Organizing principle of cannabis-related studies based on ratios of THC to CBD

<table>
<thead>
<tr>
<th>Intervention Category (Definition)</th>
<th>Source</th>
<th>Possible Derivatives</th>
<th>Example Products</th>
<th>U.S. Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>High THC (THC to CBD ratio equals ≥2:1 ratio)</td>
<td>Synthetic</td>
<td>Synthetic THC (100% THC or analog)</td>
<td>Dronabinol (Marinol®) or nabilone (Cesamet®)</td>
<td>Available via prescription<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>Synthetic</td>
<td>Purified from whole-plant with close to 100% THC</td>
<td>Purified dronabinol (Namisol®)<sup>b,c</sup></td>
<td>Not available in the U.S.</td>
</tr>
<tr>
<td></td>
<td>Plant-based</td>
<td>Commercially marketed product extracted from whole-plant with known high ratio of THC/CBD</td>
<td>THC/CBD extracts with high THC/CBD ratio</td>
<td>Unknown – may be available at dispensaries where allowed</td>
</tr>
<tr>
<td></td>
<td>Plant-based</td>
<td>Whole-plant with known high concentration of THC</td>
<td>Whole-plant cannabis with known high THC concentration</td>
<td>Unknown – may be available at dispensaries where allowed</td>
</tr>
<tr>
<td>Comparable THC to CBD (THC to CBD ratio is <2:1 and >1:2)</td>
<td>Plant-based</td>
<td>Extracted from whole-plant with comparable ratio of THC/CBD</td>
<td>Nabiximols (Sativex®)<sup>d</sup></td>
<td>Not available in the U.S.</td>
</tr>
<tr>
<td></td>
<td>Plant-based</td>
<td>Extracted from whole-plant with comparable ratio of THC/CBD</td>
<td>Oral tinctures with similar ratio of THC/CBD</td>
<td>Unknown – may be available at dispensaries where allowed</td>
</tr>
<tr>
<td></td>
<td>Plant-based</td>
<td>Whole-plant with known comparable ratio of THC/CBD</td>
<td>Whole-plant with known comparable ratio of THC/CBD</td>
<td>Unknown – may be available at dispensaries where allowed</td>
</tr>
<tr>
<td>Low THC (THC to CBD ratio is ≤1:2)</td>
<td>Plant-based</td>
<td>Extracted from whole-plant with low ratio of THC/CBD; may undergo further purification</td>
<td>CBD topical or sublingual</td>
<td>Unknown – may be available at dispensaries where allowed</td>
</tr>
<tr>
<td>Low THC (THC to CBD ratio is ≤1:2)</td>
<td>Synthetic</td>
<td>Synthetic CBD</td>
<td>CBD oral tablets</td>
<td>Unknown</td>
</tr>
<tr>
<td>Whole-Plant Cannabis Products (THC to CBD ratio categorized based on information provided [potentially unknown])</td>
<td>Plant-based</td>
<td>Whole-plant products</td>
<td>Cannabis flowers, resins, buds, leaves, hashish</td>
<td>Unknown – may be available at dispensaries where allowed.</td>
</tr>
<tr>
<td>Other Cannabinoids (Cannabinoids other than THC or CBD)</td>
<td>Plant-based</td>
<td>Extracted from whole-plant</td>
<td>Cannabidivarin (CBDV) extracted oil (oral)</td>
<td>Unknown – may be available at dispensaries where allowed</td>
</tr>
</tbody>
</table>

Abbreviations: CBD = cannabidiol; THC = tetrahydrocannabinol.

^a These products are approved by the Food and Drug Administration for nonpain indications (anorexia related to HIV infection, nausea related to chemotherapy).

^b Namisol[®] is chemically identical to dronabinol, and is therefore grouped together with synthetic dronabinol.

^c Manufactured in The Netherlands, may be available in some European countries. Not currently FDA-approved.

^d Manufactured and available in Canada and some European countries; not FDA-approved.

Meta-analyses were conducted to summarize data and obtain more precise estimates on outcomes for which studies were similar enough to provide a meaningful combined estimate.⁴¹ The decision to conduct quantitative synthesis depended on the presence of at least two studies.
with similar cannabis-related products, methodology, completeness of reported outcomes, and a lack of statistical heterogeneity among the reported results. Statistical heterogeneity among the studies was assessed using Cochran’s χ^2 test and the I^2 statistic. Pain scales were converted to a standardized 0 to 10 scale and the mean difference was used as the effect measure for change in pain. A similar approach was used for other primary continuous outcomes (e.g. overall function). For primary binary outcomes (pain response and adverse events), relative risk was used as the effect measure. See Appendix B for more details.

We used a random effects model based on the profile likelihood method to combine interventions with comparable THC to CBD ratios and high-THC trials. The primary analysis for high-THC trials was stratified by the type of derivative used in the intervention (synthetic vs. whole-plant extracts). Sensitivity analysis was conducted by excluding studies rated as high risk of bias, excluding a trial of Namisol® (purified plant-based dronabinol) that was grouped with synthetic dronabinol, and by repeating analyses using a random effects model based on the profile likelihood method with the Bartlett’s correction to reduce potential deviation from the null distribution when the number of studies is small. All meta-analyses were conducted using command `metan` and `admetan` in Stata/SE 16.1 (StataCorp, College Station, TX). Publication bias (small study effect) was assessed using both funnel plots and the Egger test when there were eight or more studies included in a meta-analysis.

The magnitude of effects for primary outcomes were classified using the same system used in other recent AHRQ reviews conducted on chronic pain to provide a consistent benchmark for comparing results of pain interventions across reviews. The findings were categorized as small, moderate, and large magnitudes of effect based on the ranges of effect shown in Table 3. Additionally, results that were below the threshold for a small effect were considered to reflect “no effect.” Results with a small, medium, or large effect that were not statistically significant were considered to have “potential effects.”

Table 3. Definitions of effect sizes

<table>
<thead>
<tr>
<th>Effect Size</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small effect</td>
<td>• MD 0.5 to 1.0 points on a 0 to 10-point scale, 5 to 10 points on a 0 to 100-point scale</td>
</tr>
<tr>
<td></td>
<td>• SMD 0.2 to 0.5</td>
</tr>
<tr>
<td></td>
<td>• RR/OR 1.2 to 1.4</td>
</tr>
<tr>
<td>Moderate effect</td>
<td>• MD >1 to 2 points on a 0 to 10-point scale, >10 to 20 points on a 0 to 100-point scale</td>
</tr>
<tr>
<td></td>
<td>• SMD >0.5 to 0.8</td>
</tr>
<tr>
<td></td>
<td>• RR/OR 1.5 to 1.9</td>
</tr>
<tr>
<td>Large effect</td>
<td>• MD >2 points on a 0 to 10-point scale, >20 points on a 0 to 100-point scale</td>
</tr>
<tr>
<td></td>
<td>• SMD >0.8</td>
</tr>
<tr>
<td></td>
<td>• RR/OR ≥2.0</td>
</tr>
</tbody>
</table>

Abbreviations: MD = mean difference; OR = odds ratio; RR = relative risk; SMD = standardized mean difference.

Small effects using this system may be below published thresholds for clinically meaningful effects; however, there is variability across individual patients regarding what constitutes a clinically meaningful effect, which is influenced by a number of factors such as preferences, duration and type of chronic pain, baseline symptom severity, harms, and costs. For some patients a small improvement in pain or overall function using a treatment with low cost or no serious harms may be important.

When data were available, we conducted subgroup analysis based on type of product (synthetic vs. extracted from whole-plant), duration (short-, medium-, long-term followup), and type of pain (e.g. neuropathic, visceral, joint).
Grading the Strength of the Body of Evidence

We assessed the strength of evidence for all primary comparisons and outcomes listed above. The strength of evidence was based on the cumulative evidence (evidence identified for the original report plus new evidence added for the update). Regardless of whether evidence was synthesized quantitatively or qualitatively, the strength of evidence for each KQ/body of evidence is initially assessed by one researcher for each clinical outcome (see PICOTS) by using the approach described in the AHRQ Methods Guide. To ensure consistency and validity of the evaluation, the strength of evidence is reviewed by the entire team of investigators prior to assigning a final grade on the following factors:

- Study limitations (low, medium, or high level of study limitations)
- Consistency (consistent, inconsistent, or unknown/not applicable)
- Directness (direct or indirect)
- Precision (precise or imprecise)
- Reporting/publication bias (suspected or undetected)

For description of overall grade, please see Appendix B.

In narratively describing the findings on the strength of the evidence, we followed the principles outlined in recent guidance to improve clarity. Using these principles, evidence that is low-strength is described as “may” have an effect, moderate strength evidence is described as “probably” has an effect, and high-strength evidence is simply described as having an effect.

Living Systematic Review Methods

This is an annual update of a systematic review originally published in 2021 and updated in 2022. Quarterly surveillance of the literature conducted prior to this full update and describing new evidence as it became available can be found at: https://effective.healthcare.ahrq.gov/products/plant-based-chronic-pain-treatment/living-review. Future quarterly surveillance reports and systematic review updates will also be posted at this location.
Results

Description of Included Evidence

The results of this systematic review are organized first by Key Questions (KQs), with evidence on KQs 1 and 2 (benefits and harms of cannabinoids) reported together. The evidence is then organized according to the categories described in the Methods, comparable tetrahydrocannabinol (THC) to cannabidiol (CBD) ratio interventions, high-THC to CBD ratio interventions (stratified into synthetic, extracted from whole-plant, and whole-plant cannabis products), low-THC to CBD ratio interventions (topical CBD), and other cannabinoids. No studies meeting inclusion criteria were identified for the KQs examining kratom (KQs 3 and 4). No studies addressed subacute pain or adolescents.

After screening a cumulative total of 5,228 abstracts, 390 full-text publications of studies were dually reviewed, resulting in 23 randomized controlled trials (RCTs) and 10 observational studies being included in this review. Two new placebo-controlled RCTs, one on synthetic oral THC (dronabinol), CBD (unclear if synthetic or plant-based), and combined THC/CBD (low-THC to CBD ratio) and another two extracted, low THC to CBD ratio products versus placebo were added since the prior annual update. Additionally, two new observational studies, one comparing a plant-based comparable THC to CBD ratio product versus long-acting opioids (LAOs) and another evaluating various plant-based cannabinoid products (THC/CBD ratio ranged from comparable to low) in patients with mixed chronic pain conditions were added.

The search results and selection of studies are summarized in the literature flow diagram (Figure 1). Appendix C provides a list of all included studies. In total, seven RCTs evaluated products that contain a combination of THC and CBD. Two RCTs evaluated the effects of high-THC to CBD ratio, whole-plant derived extracts. Ten RCTs evaluated synthetic forms of THC (high-THC to CBD ratio). Four trials evaluated CBD (low-THC to CBD ratio): one prior RCT assessed topical extracted CBD, one RCT assessed oral extracted CBD, and one new RCT assessed oral CBD and THC/CBD (unknown if CBD is synthetic or plant-extracted). One new RCT assessed whole-plant extracted sublingual THC/CBD oil [1:6 ratio]. One trial evaluated the phytocannabinoid, cannabidivarin (CBDV).

Appendix D contains individual study-level data and additional results for pooled data from studies where data were available. Detailed evidence tables for included studies and risk of bias assessments are available in Appendices E and F. Appendix G contains details on the strength of evidence, and Appendix H lists excluded studies at the full-text level and their reasons for exclusion.
Table 4 summarizes the characteristics of the included trials, and Table 5 provides details on included observational studies.

Table 4. Characteristics of included randomized controlled trials of cannabinoids for chronic pain in adults

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>THC/CBD</th>
<th>THC</th>
<th>Synthetic THC</th>
<th>CBD</th>
<th>CBDV</th>
</tr>
</thead>
<tbody>
<tr>
<td>THC to CBD Ratio</td>
<td>Comparable(^a)</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>NA - other cannabinoids</td>
</tr>
<tr>
<td>Source</td>
<td>Plant-extracted</td>
<td>Plant-extracted</td>
<td>Synthetic Nabilone Dronabinol Dronabinol/Namisol(^b)</td>
<td>Plant-extracted (2(^c) Synthetic (1) Unclear (1)</td>
<td></td>
</tr>
<tr>
<td>N Studies</td>
<td>7</td>
<td>2</td>
<td>10</td>
<td>4(^d) (1 topical, 1 sublingual, 2 oral)</td>
<td>1</td>
</tr>
<tr>
<td>Comparator (Study Count)</td>
<td>Placebo (7)</td>
<td>Placebo (2)</td>
<td>Placebo (7); ibuprofen (1); Diphenhydramine (1); Dihydrocodeine (1); Low-THC to CBD ratio (CBD or Dronabinol/CBD(^e)) (1)</td>
<td>Placebo (4); Dronabinol(^f) (1); Dronabinol/CBD(^g) (1); ≥97% purified low-THC to CBD (1:6) sublingual oil (1)</td>
<td>Placebo</td>
</tr>
<tr>
<td>Characteristic</td>
<td>THC/CBD</td>
<td>THC</td>
<td>Synthetic THC</td>
<td>CBD</td>
<td>CBDV</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>-----</td>
<td>---------------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>Route of Administration, Formulation (Study Count)</td>
<td>Sublingual oromucosal spray, 2.7 mg THC/2.5 mg CBD per 100 mcl</td>
<td>Sublingual oil drops, 24 mg/ml THC/0.51 mg/ml CBD (1)</td>
<td>Nabilone oral 0.25 mg capsule (1); Nabilone oral 0.5 mg capsule (5); Dronabinol 2.5 mg oral capsule (2); Dronabinol 5 mg oral capsule (1); Namisol® tablet (1)</td>
<td>Topical oil, 83 mg CBD/fluid ounce (1),</td>
<td>Oral oil, 50 mg/ml CBDV</td>
</tr>
<tr>
<td></td>
<td>Oral capsule, 2.5 mg THC/0.8 – 1.8 mg CBD extract (1)</td>
<td></td>
<td>Dronabinol capsules: 2.5 -15 mg once or twice daily, titrated. Final dose range 15 - 25 mg/day Namisol® tablet: 3 - 8 mg 3 times daily, titrated. Final dose NR.</td>
<td>Oral tablet, 10 mg CBD (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sublingual oil, 24.5 mg/mL THC, 147 mg/mL CBD (1)</td>
<td></td>
<td>Oral CBD capsule: 5 mg twice daily, titrated. Final median dose 50 mg CBD daily.</td>
<td>Oral tablet: 10 mg daily, titrated (max 3 times daily) Final dose NR.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Topical oil, applied locally 1-4 times/day (volume/dose, final dose NR).</td>
<td></td>
<td>Oral dronabinol/CBD capsule: 2.5 mg THC/5 mg CBD twice daily, titrated. Final median dose 15 mg THC/30 mg CBD daily.</td>
<td>Oral tablet: 10 mg daily, titrated (max 3 times daily) Final dose NR.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sublingual oil, titrated to max daily dose of 6 drops 3 times daily (15 mg THC/90 mg CBD)</td>
<td></td>
<td>Sublingual oil, 24.5 mg/mL THC, 147 mg/mL CBD (1)</td>
<td>400 mg CBDV daily. Final dose NR.</td>
<td></td>
</tr>
<tr>
<td>Dosing Regimen</td>
<td>Final mean dose 23 mg THC/21 mg CBD daily.</td>
<td>Sublingual drops: 1.2 mg daily, titrated. Final dose 4.4 mg THC daily. Capsule: 2.5 -12.5 mg THC twice daily, titrated. Final dose NR Oral oil: 1.2 mg daily</td>
<td>Nabilone 0.25 - 2 mg twice daily, titrated. Final mean dose 1.84 Dronabinol capsules: 2.5 -15 mg once or twice daily, titrated. Final dose range 15 - 25 mg/day Namisol® tablet: 3 - 8 mg 3 times daily, titrated. Final dose NR.</td>
<td>Topical oil: applied locally 1-4 times/day (volume/dose, final dose NR).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oral tablet: 10 mg daily, titrated (max 3 times daily) Final dose NR.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oral CBD capsule: 5 mg twice daily, titrated. Final median dose 50 mg CBD daily.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oral dronabinol/CBD capsule: 2.5 mg THC/5 mg CBD twice daily, titrated. Final median dose 15 mg THC/30 mg CBD daily.</td>
<td></td>
</tr>
<tr>
<td>Risk of Bias</td>
<td>29% high, 57% moderate, 14% low</td>
<td>50% moderate, 50% low</td>
<td>20% high, 40% moderate, 40% low</td>
<td>50% high, 25% moderate, 25% low</td>
<td>100% moderate</td>
</tr>
<tr>
<td>Total Randomized</td>
<td>882</td>
<td>297</td>
<td>592</td>
<td>267</td>
<td>34</td>
</tr>
<tr>
<td>Age, Mean Years</td>
<td>53</td>
<td>52</td>
<td>53</td>
<td>65</td>
<td>50</td>
</tr>
<tr>
<td>Characteristic</td>
<td>THC/CBD</td>
<td>THC</td>
<td>Synthetic THC</td>
<td>CBD</td>
<td>CBDV</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------</td>
<td>-----------</td>
<td>---------------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Female, %</td>
<td>66%</td>
<td>89%</td>
<td>61%</td>
<td>40%</td>
<td>3%</td>
</tr>
<tr>
<td>Non-White, %</td>
<td>1% (1)</td>
<td>1.6% (2)</td>
<td>5.4% (3)</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Primary Pain</td>
<td>NPP (6); Inflammatory arthritis (1)</td>
<td>NPP (1); Fibromyalgia (1)</td>
<td>NPP (7); Fibromyalgia (1); Headache (1); Visceral pain (1)</td>
<td>NPP (2); OA (1); Unspecified (1)</td>
<td>NPP (1)</td>
</tr>
<tr>
<td>Type (Study Count)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline Pain Score, Mean (Range)</td>
<td>6.59 (5.3 to 7.3)</td>
<td>8.47 (8.25 to 8.67)</td>
<td>6.48 (4 to 8.1)</td>
<td>5.87 (4.67 to 7.4)</td>
<td>6.28 (6.12 to 6.44)</td>
</tr>
<tr>
<td>Study Duration</td>
<td>4 to 15 weeks</td>
<td>8 to 12 weeks</td>
<td>4 to 47 weeks</td>
<td>4 to 16 weeks</td>
<td>4 weeks</td>
</tr>
</tbody>
</table>

Abbreviations: CBD = cannabidiol; CBDV = cannabidivarin; NA = not applicable; NPP = neuropathic pain; NR = not reported; OA = osteoarthritis; RCT = randomized controlled trial; THC = tetrahydrocannabinol.

a All products were nabiximols.
b Namisol® is a purified, plant-based product, but grouped with synthetic dronabinol because they are chemically identical.
c One trial evaluated a plant-extracted low THC to CBD product and product that underwent further purification.
d One trial is included in both the synthetic THC and CBD columns, as it compared THC to CBD, CBD/THC, and placebo.
e Includes two new RCTs for this review.
f(n) = number of studies reporting this characteristic at baseline.
g Scores were standardized to a 0 to 10 scale.

Table 5. Characteristics of included observational studies of cannabinoids for chronic pain in adults

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>THC/CBD</th>
<th>THC</th>
<th>Synthetic THC</th>
<th>THC/CBD Versus Synthetic THC</th>
<th>THC/CBD Versus LAOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>THC to CBD Ratio</td>
<td>Unclear</td>
<td>High</td>
<td>High</td>
<td>Comparable vs. high</td>
<td>Comparable</td>
</tr>
<tr>
<td>Source</td>
<td>Any cannabis product (patient’s choice) or mixed cannabinoids</td>
<td>Plant-based</td>
<td>Synthetic (nabilone)</td>
<td>Plant-based vs. synthetic</td>
<td>Plant-based</td>
</tr>
<tr>
<td>N Studies</td>
<td>6b</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Comparator (Study Count)</td>
<td>No cannabis use (3); usual care (1); no medical cannabis authorization (1); other cannabinoids (1)</td>
<td>Usual care (1); Cannabis based oils; cannabis based oils + dried flower (1)</td>
<td>Gabapentin only; gabapentin + nabilone (1)</td>
<td>Active comparator; oral mucosal spray vs. dronabinol</td>
<td>Long-acting opioids (MME 69.4 (SD 38.9) mg/day)</td>
</tr>
<tr>
<td>Characteristic</td>
<td>THC/CBD⁴</td>
<td>THC</td>
<td>Synthetic THC</td>
<td>THC/CBD Versus Synthetic THC</td>
<td>THC/CBD Versus LAOs</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>--</td>
<td>---------------</td>
<td>-------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Route of Administration, Formulation</td>
<td>Unreported (any available allowed, patient’s choice) (5); inhaled or sublingual prescribed cannabis (1)</td>
<td>Whole-plant cannabis, “certified 12.5% THC” (CBD NR) route determined by patient: smoking 27%, oral 8%, vaporization 4%, combination 61% (1)</td>
<td>Nabilone 0.5 mg oral capsule</td>
<td>Nabilimols sublingual oromucosal spray, 2.7 mg THC/2.5 mg CBD per 100 mcl Dronabinol oral capsule (strength NR)</td>
<td>Nabiximols sublingual oromucosal spray, 2.7 mg THC/2.5 mg CBD per 100 mcl Oral long-acting opioids (dose varied)</td>
</tr>
<tr>
<td>Dosing Regimen</td>
<td>None specified; Final dose NR</td>
<td>None specified; titrated to max dose 5 g/day. Final median dose 2.5 g/day (1)</td>
<td>None specified; final mean dose 3 mg/day</td>
<td>None specified; final mean dose 16.6/15.4 mg THC/CBD/day vs. 17.2 mg THC/day</td>
<td>None specified; based on individual patient needs; final mean dose 16.7/15.5 mg THC/CBD/day vs. MME 69.4 mg/day</td>
</tr>
<tr>
<td>ROB</td>
<td>50% high, 50% moderate</td>
<td>50% high, 50% moderate</td>
<td>100% moderate</td>
<td>100% moderate</td>
<td>100% moderate</td>
</tr>
<tr>
<td>N Total</td>
<td>13,269</td>
<td>1,192</td>
<td>156</td>
<td>674</td>
<td>1,310</td>
</tr>
<tr>
<td>Age, Mean Years</td>
<td>52</td>
<td>48</td>
<td>61</td>
<td>46</td>
<td>51</td>
</tr>
<tr>
<td>Female, %</td>
<td>55%</td>
<td>55%</td>
<td>59%</td>
<td>57%</td>
<td>57%</td>
</tr>
<tr>
<td>% Non-White (Study Count)</td>
<td>54% (1); NR (5)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Primary Pain Type(s)</td>
<td>Mixed musculoskeletal, chronic non-cancer pain</td>
<td>Chronic non-cancer pain</td>
<td>NPP</td>
<td>Peripheral NPP</td>
<td>Peripheral neuropathic back pain</td>
</tr>
<tr>
<td>Baseline Pain Score, Mean (Range)⁶</td>
<td>5.75 (4.56 to 7.00)</td>
<td>6.68 (6.35 to 7.0)</td>
<td>4.98 (4.58 to 5.31)</td>
<td>4.4 (4.39 to 4.41)</td>
<td>4.32 (4.31 to 4.33)</td>
</tr>
<tr>
<td>Characteristic</td>
<td>THC/CBD<sup>a</sup></td>
<td>THC</td>
<td>Synthetic THC</td>
<td>THC/CBD Versus Synthetic THC</td>
<td>THC/CBD Versus LAOs</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------</td>
<td>-----</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Study Duration, Weeks (Range)</td>
<td>12 to 208</td>
<td>24 to 52</td>
<td>26</td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>

Abbreviations: CBD = cannabidiol; LAO = long acting opioid; MME = morphine milligram equivalents; NPP = neuropathic pain; NR = not reported; ROB = risk of bias; SD = standard deviation; THC = tetrahydrocannabinol.

^aPatients could choose any medicinal product they preferred in these studies.

^bIncludes one new study for this review.

^cScores were standardized to a 0 to 10 scale.
KQ 1 and KQ 2. In adults or adolescents with chronic or subacute pain, what are the benefits (KQ 1) and harms (KQ 2) of cannabinoids for treatment of chronic or subacute pain?

Key Points for Comparable THC to CBD Ratio

- All results are short-term (4 weeks to <6 months) in duration.
- Comparable plant-extracted THC to CBD ratio oromucosal spray was associated with small improvements in pain severity (7 RCTs, N=702, 0 to 10 scale, mean difference [MD] −0.54, 95% confidence interval [CI], −0.95 to −0.19, I²=39%) and overall function (6 RCTs, N=616, 0 to 10 scale, MD −0.42, 95% CI −0.73 to −0.16, I²=32%) versus placebo (strength of evidence [SOE]: moderate). While more patients experienced a pain response (≥30% improvement from baseline), the difference was small and did not reach statistical significance (4 RCTs, N=733, 38% vs. 31%, relative risk [RR] 1.18, 95% CI 0.93 to 1.71, I²=36%) (SOE: low).
- Compared with placebo, comparable THC to CBD oromucosal spray was associated with a large increase in risk of dizziness (6 RCTs, N=866, 31.0% vs. 8.0%, RR 3.57, 95% CI 2.42 to 5.60, I²=0%) (SOE: low) and sedation (6 RCTs, N=866, 8.0% vs. 1.2%, RR 5.04, 95% CI 2.10 to 11.89, I²=0%) (SOE: low), and a moderate increased risk of nausea (6 RCTs, N=866, 13% vs. 7.5%, RR 1.79, 95% CI 1.19 to 2.77, I²=0%) (SOE: low). There was no effect on study withdrawal due to adverse events (SOE: low).
- One new observational study with methodological limitations provide insufficient evidence to determine outcomes of comparable THC to CBD versus long-acting opioids.

Summary of Findings for Comparable THC to CBD Ratio

No new RCT evaluated a comparable THC to CBD ratio product. Seven RCTs (N=882, range 18 to 339)\(^{56-62}\) compared a combination of extracted THC and CBD (THC/CBD; comparable THC to CBD ratio) versus placebo in patients experiencing chronic pain. All used nabiximols, which are extracted from whole-plant cannabis with 2.7 mg of THC and 2.5 mg of CBD per 100 mcl oromucosal spray (specified as the product Sativex\(^\text{®}\) in 7 studies). Overall availability of nabiximols is unknown. Sativex\(^\text{®}\) is manufactured and available in Canada and some European countries. Other comparable THC to CBD products are available in the United States, where allowed, though the availability of specific products is unknown. Six trials enrolled patients with neuropathic pain\(^{56-60,62}\) and one trial included patients with rheumatoid arthritis. Studies ranged from 4 to 16 weeks in duration of active treatment; all were short-term followup (1 to <6 months). Across trials, the weighted mean daily dose was 8.4 sprays (23 mg THC/21 mg CBD) for patients assigned to THC/CBD and 12.7 sprays for those assigned to placebo. One study did not specify the product name, strength or dosing in milligrams, but the number of sprays per day (8 vs. 11 for intervention vs. placebo), were similar to other trials.\(^{58}\) Two trials were high risk of bias: one was a small (n=16), 4-week, crossover trial, and the other was a small (n=29), 12-week, parallel design trial.\(^{58,61}\) The rest were parallel design trials; four were rated moderate risk of bias\(^{56,59,60,62}\) and one low risk of bias.\(^{57}\) One trial used an enriched enrollment randomized withdrawal design.\(^{57}\) The mean age of participants in the trials was 53 years, and 66 percent were female. Race was poorly reported, with two trials reporting 1.2 percent of participants being non-white, and the others not reporting it at all. Four trials allowed patients using opioids and other analgesics to enroll and to continue using them during the study.
period. The proportion of patients taking opioids was low in two studies (11% to 24%) and much greater in the third study (63% in the cannabis group vs. 74% in the placebo group). The other three trials did not report opioid use. All of the RCTs of comparable THC to CBD ratio products allowed prior cannabis use; the proportion of patients that used cannabis previously ranged from 5 to 64 percent. No study analyzed results according to prior cannabis use.

Study details and results can be found in Appendix E, Tables E-1 to E-5, and risk of bias assessments in Appendix F, Tables F-1 and F-2.

Four RCTs found comparable THC/CBD oromucosal spray associated with a nonstatistically significant increased likelihood of pain response (≥30% reduction in pain) versus placebo, (38% vs. 31%, RR 1.18, 95% CI 0.93 to 1.47, I^2=36%; Appendix D, Figure D-1). Based on pooled analysis of all seven RCTs, comparable THC/CBD was associated with a small, statistically significant reduction in pain severity versus placebo (7 RCTs, 0 to 10 scale, MD -0.54, 95% CI -0.95 to -0.19, I^2=39%; Figure 2). Figure 2 shows that, except for the small, high risk of bias, crossover study, the effect size was larger and statistically significant in shorter studies (4 to 5 weeks) compared with longer studies (12 to 15 weeks); however, all studies met the definition for short duration (1 to <6 months). Sensitivity analysis excluding two high risk of bias studies did not alter the findings (0 to 10 scale, MD -0.63, 95% CI -1.15 to -0.24, I^2=52%). One trial that used an enriched enrollment randomized withdrawal design reported worse results for comparable THC/CBD compared to the pooled estimate (MD -0.19, 95% CI -0.67 to 0.29).

Six studies (N=616) with 5 to 15 weeks followup reported overall function or disability (including measures of pain interference). Pooled analysis showed a small benefit for nabiximols versus placebo (6 RCTs, 0 to 10 scale, MD -0.42, 95% CI -0.73 to -0.16, I^2=32%; Figure 3).

For secondary outcomes, all of the trials reported quality of life. Overall, there were no statistically significant differences in quality of life between groups. Three used the EQ-5D scale (0 to 100), with none finding a significant difference between groups. One used the Short General Health Questionnaire (GHQ-12; 0 to 36 scale), and found a small, but nonstatistically significant, difference between groups. Three studies reported on the Short Form-36 (SF-36) Physical and Mental scales (0 to 100) and did not find statistically significant between-group differences. The third study, a high risk of bias crossover trial (n=16), reported that the SF-36 Physical scale scores improved with placebo, with little change in the THC/CBD group, while the SF-36 Mental scale scores remained similar in the THC/CBD group and decreased (worsened) in the placebo group. Five RCTs assessed sleep quality or sleep disturbance using a 0 to 10 scale; four reported statistically significantly better sleep outcomes in the THC/CBD groups versus placebo groups. The studies did not report on other secondary outcomes (e.g., depression or anxiety).

The four RCTs that allowed opioid use during the study period did not report on changes in opioid used during the study period.
Figure 2. Change in pain severity with comparable THC to CBD ratio versus placebo (short term, 4 weeks to 6 months followup)

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Pain Population</th>
<th>Treatment Duration (weeks)</th>
<th>Intervention Dose</th>
<th>Risk of Bias</th>
<th>N. Mean (SD), Intervention</th>
<th>N. Mean (SD), Control</th>
<th>Mean difference (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lynch, 2014</td>
<td>NPP</td>
<td>4</td>
<td>8 sprays/day</td>
<td>High</td>
<td>8, 6.31 (0.87)</td>
<td>8, 6.38 (0.85)</td>
<td>-0.07 (-0.91, 0.77)</td>
</tr>
<tr>
<td>Blake, 2006</td>
<td>IA</td>
<td>5</td>
<td>5.4 sprays/day</td>
<td>Moderate</td>
<td>31, 3.10 (NR)</td>
<td>27, 4.10 (NR)</td>
<td>-1.04 (-1.90, -0.18)</td>
</tr>
<tr>
<td>Rog, 2005</td>
<td>NPP</td>
<td>5</td>
<td>9.6 sprays/day</td>
<td>Moderate</td>
<td>33, 3.85 (2.04)</td>
<td>32, 4.96 (2.12)</td>
<td>-1.25 (-2.11, -0.39)</td>
</tr>
<tr>
<td>Nurmiikko, 2007</td>
<td>NPP</td>
<td>5</td>
<td>10.9 sprays/day</td>
<td>Moderate</td>
<td>63, 5.82 (NR)</td>
<td>62, 6.68 (NR)</td>
<td>-0.86 (-1.59, -0.13)</td>
</tr>
<tr>
<td>Selvarajah, 2010</td>
<td>NPP</td>
<td>12</td>
<td>7 sprays/day</td>
<td>High</td>
<td>15, 5.16 (2.19)</td>
<td>14, 5.19 (2.41)</td>
<td>-0.10 (-1.78, 1.72)</td>
</tr>
<tr>
<td>Langford, 2013</td>
<td>NPP</td>
<td>15</td>
<td>8.8 sprays/day</td>
<td>Low</td>
<td>167, 4.54 (2.24)</td>
<td>172, 4.73 (2.26)</td>
<td>-0.19 (-0.67, 0.29)</td>
</tr>
<tr>
<td>Serpell, 2014</td>
<td>NPP</td>
<td>15</td>
<td>8.9 sprays/day</td>
<td>Moderate</td>
<td>NR</td>
<td>NR</td>
<td>-0.34 (-0.79, 0.11)</td>
</tr>
<tr>
<td>Overall, PL (p = 0.133, I² = 38.9%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.54 (-0.95, -0.19)</td>
</tr>
</tbody>
</table>

Abbreviations: CBD = cannabidiol; CI = confidence interval; IA = inflammatory arthritis; NPP = neuropathic pain; NR = not reported; PL = profile likelihood; SD = standard deviation; THC = tetrahydrocannabinol.

Figure 3. Overall function: comparable THC to CBD ratio versus placebo (short term, 4 weeks to 6 months followup)

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Pain Population</th>
<th>Treatment Duration (weeks)</th>
<th>Intervention Dose</th>
<th>Risk of Bias</th>
<th>N. Mean (SD), Intervention</th>
<th>N. Mean (SD), Control</th>
<th>Mean difference (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blake, 2006</td>
<td>IA</td>
<td>5</td>
<td>5.4 sprays/day</td>
<td>Moderate</td>
<td>31, 5.00 (NR)</td>
<td>27, 5.90 (NR)</td>
<td>-0.76 (-1.23, -0.29)</td>
</tr>
<tr>
<td>Rog, 2005</td>
<td>NPP</td>
<td>5</td>
<td>9.6 sprays/day</td>
<td>Moderate</td>
<td>33, -0.27 (0.75)</td>
<td>32, -0.08 (0.73)</td>
<td>-0.26 (-0.62, 0.10)</td>
</tr>
<tr>
<td>Nurmiikko, 2007</td>
<td>NPP</td>
<td>5</td>
<td>10.9 sprays/day</td>
<td>Moderate</td>
<td>63, -0.80 (NR)</td>
<td>62, 0.03 (NR)</td>
<td>-0.84 (-1.37, -0.31)</td>
</tr>
<tr>
<td>Selvarajah, 2010</td>
<td>NPP</td>
<td>12</td>
<td>7 sprays/day</td>
<td>High</td>
<td>15, 6.95 (1.66)</td>
<td>14, 6.35 (2.79)</td>
<td>-0.60 (-2.33, 1.13)</td>
</tr>
<tr>
<td>Langford, 2013</td>
<td>NPP</td>
<td>15</td>
<td>8.8 sprays/day</td>
<td>Low</td>
<td>167, -1.47 (NR)</td>
<td>172, -1.35 (NR)</td>
<td>-0.12 (-0.52, 0.28)</td>
</tr>
<tr>
<td>Serpell, 2014</td>
<td>NPP</td>
<td>15</td>
<td>8.9 sprays/day</td>
<td>Moderate</td>
<td>NR</td>
<td>NR</td>
<td>-0.32 (-0.79, 0.15)</td>
</tr>
<tr>
<td>Overall, PL (p = 0.193, I² = 32.4%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.42 (-0.73, -0.16)</td>
</tr>
</tbody>
</table>

Abbreviations: CBD = cannabidiol; CI = confidence interval; IA = inflammatory arthritis; NPP = neuropathic pain; NR = not reported; PL = profile likelihood; SD = standard deviation; THC = tetrahydrocannabinol.

Adverse events were reported in all the trials. Based on two RCTs, rates of any adverse event were significantly higher in the THC/CBD groups than placebo (2 RCTs, 75% vs. 63%, RR 1.19, 95% CI 1.02 to 1.44, I²=0%, Appendix D, Figure D-2).57,60

Serious adverse events (SAEs) were reported in five studies, with two reporting that none occurred.58,60 Pooling results from the other three studies found no effect on SAEs with comparable THC/CBD products (3 RCTs, 5.0% vs. 4.3%, RR 1.18, 95% CI 0.26 to 3.4, I²=0%, Appendix D, Figure D-3).56,59,62

Five RCTs reported on study withdrawals due to adverse events (WAEs). Pooled analysis found no difference between comparable THC to CBD ratio products versus placebo in risk of WAEs, though the estimate was imprecise (5 RCTs, 12.3% vs. 9.5%, RR 1.14, 95% CI 0.65 to 3.02, I²=51%, Appendix D, Figure D-4).56,57,59,60,62

Statistically significant differences in specific adverse events of interest occurred more often in the THC/CBD groups than placebo across six RCTs (one did not report specific adverse events).61 Dizziness occurred significantly more in the THC/CBD groups than placebo groups (6 RCTs, 31.0% vs. 8.0%, RR 3.57, 95% CI 2.42 to 5.60, I²=0%, Appendix D, Figure D-5).56-60,62

Nausea was reported in 13 percent of THC/CBD patients compared with 7.5 percent of placebo.
patients (6 RCTs, RR 1.79, 95% CI 1.19 to 2.77, I²=0%, Appendix D, Figure D-6).56-60,62

Sedation was reported in 8 percent of THC/CBD patients compared with 1.2 percent of placebo patients (6 RCTS, RR 5.04, 95% CI 2.10 to 11.89, I²=0%, Appendix D, Figure D-7).56-60,62

One new retrospective cohort study (n=1,310) compared nabiximols oromucosal spray (plant-based extracted comparable THC to CBD ratio product) versus LAOs as add-on therapy for neuropathic back pain with inadequate pain relief on first or second line treatments.54 Mean age was 51 years, 57 percent of patients were female, and mean pain intensity at baseline was 43.2 on a pain intensity index (PIX, 0 to 100 scale). Mean daily doses were 16.7mg THC/15.5mg CBD for nabiximols and 69.4 mg morphine milligram equivalents for LAOs. At 24 weeks there was a small improvement in pain intensity in the nabiximols group compared with the LAO group (PIX, MD -9.90, 95% CI -11.75 to -8.05). The nabiximols group also showed statistically significant improvements compared with LAOs in function (Modified Pain Disability Index, 0 to 100 scale, least squares mean difference -22.55, 95% CI -25.22 to -19.88), quality of life (Marburg Questionnaire on Habitual Well-being, least squares mean difference 51.99%, 95% CI 49.00 to 54.98) and depression/anxiety outcomes. There was little change between groups in opioid use at 24 weeks. Fewer patients withdrew from the study due to treatment-related adverse events in the nabiximols group than the LAO group (7.9% vs. 29.3%; relative risk 0.27, 95% CI 0.20 to 0.36). The study was rated moderate risk of bias; methodological limitations included unclear enrollment procedures and unclear blinding of data analysts to interventions.

Key Points for High-THC to CBD Ratio

- All RCT results are short-term (4 weeks to <6 months) in duration.
- Synthetic high-THC to CBD ratio (100% THC) products were associated with a small improvement in pain severity (7 RCTs, N=448, 0 to 10 scale, MD -0.95, 95% CI -1.81 to -0.25, I²=60%) (SOE: low) and no effect on overall function or disability (3 RCTs, N=unclear, 0 to 10 scale, MD -0.18, 95% CI -1.25 to 0.77, I²=51%) (SOE: low). The addition of one new RCT reduced the effect size for pain intensity from moderate to small.
- Synthetic high-THC to CBD ratio (100% THC) products were associated with a moderate increase in risk of sedation (4 RCTs, N=393, 19% vs. 12%, RR 1.60, 95% CI 1.01 to 2.95, I²=8%) (SOE: low), and a large increase in risk of dizziness (3 RCTs, N=190, 29% vs. 11%, RR 2.52, 95% CI 1.20 to 4.82, I²=41%) (SOE: moderate).
- Synthetic high-THC to CBD ratio (100% THC) products were associated with inconsistent effects on likelihood of experiencing a pain response (≥30% improvement) (2 RCTs) (SOE: insufficient).
- Synthetic high-THC to CBD ratio (100% THC) products were associated with a moderate increased risk of study withdrawal due to adverse events (5 RCTs, N=415, 14% vs. 7%, RR 1.75, 95% CI 0.95 to 3.11, I²=0%) (SOE: low) and a large increased risk of nausea (3 RCTs, N=360, 11% vs. 5%, RR 2.22, 95% CI 1.90 to 5.05; I²=0%), but the differences did not reach statistical significance (SOE: low).
- Plant-based, extracted high-THC to CBD ratio products were associated with a large increased risk of study withdrawal due to adverse events (1 RCT, N=277, 13.9% vs. 5.7%, RR 3.12, 95% CI 1.54 to 6.33) (SOE: low) and dizziness (1 RCT, N=277, 62.2% vs. 7.5%, RR 8.34, 95% CI 4.53 to 15.34) (SOE: low). Outcomes assessing benefit were not reported or evidence was insufficient.
The combined evidence for extracted and synthetic high-THC to CBD ratio products found a moderate improvement in pain severity (9 RCTs, N=742, −1.12, 95% CI −1.97 to −0.48, I²=65%) (SOE: moderate).

Summary of Findings for High-THC to CBD Ratio

One new, low risk of bias RCT (n=115) evaluated a high-THC to CBD ratio product. It was conducted in Denmark and compared oral THC (dronabinol) versus CBD, combined THC/CBD (low-THC to CBD ratio), or placebo for neuropathic pain. Median daily doses were 25 mg for dronabinol, 50 mg for CBD, and 15 mg/30 mg for combined THC/CBD. Median age was 65, 64 percent were female, and the median duration of pain was 60 months. Race was not reported. The duration of followup was 8 weeks.

With the new trial, a total of 12 RCTs evaluated high-THC to CBD ratio products, with 10 evaluating synthetic THC (100% THC: 4 dronabinol, 100% THC analog: 6 nabilone) and 2 RCTs evaluating products extracted from whole-plant cannabis (one with a 48:1 and the other with a 2:1 THC to CBD ratio). Synthetic dronabinol and nabilone are available by prescription and are approved by the Food and Drug Administration for nonpain indications. The availability of Namisol® (a dronabinol product) is unclear though it is manufactured in the Netherlands and may be available in some European countries. Other extracted and high-THC whole-plant products are available in the United States, where allowed, though the availability of specific products is unclear.

Six of the previously included synthetic THC RCTs were placebo-controlled, and three were active-controlled crossover trials. The new trial of synthetic THC included both a placebo comparison as well as active comparisons. Both trials of THC extracted from whole-plant were placebo-controlled. All of the RCTs were short duration (4 weeks to 6 months followup). Additionally, two short duration observational studies, one being a study comparing a synthetic THC versus plant-based comparable THC to CBD ratio product, were included. The evidence for synthetic and plant-derived products are presented below separately. Where meta-analyses could be conducted for placebo-controlled trials, the data for both types of products are presented on one plot, stratified by type, with subgroup analyses conducted when possible.

Synthetic THC

Ten RCTs (N=525; 4 dronabinol, 6 nabilone) evaluated synthetic THC for treating chronic pain. Seven trials enrolled patients with neuropathic pain (3 multiple sclerosis [MS], 2 mixed neuropathic pain conditions, and 1 each painful diabetic neuropathy and spinal cord injury), and one trial each enrolled patients with chronic abdominal pain, medication overuse headache, and fibromyalgia. All studies had short duration of treatment, ranging from 4 to 14 weeks. All medications were titrated upward, with a maximum dose of 15 to 25 mg per day of dronabinol, and 0.5 to 2 mg per day of nabilone; mean dose received at endpoint was inconsistently reported.

One trial of nabilone used an enriched enrollment randomized withdrawal design, with a 4-week, single-blind, flexible dose run-in nabilone period prior to randomization. Only patients who achieved a 30 percent improvement in pain severity, completed 75 percent of diary entries, and did not withdraw from the study due to adverse events were randomized to continue treatment or placebo (discontinuation of nabilone). Thirty percent of patients (11/37) withdrew during the run-in period.
Six trials were parallel design and placebo-controlled, with one adding nabilone or placebo to gabapentin treatment in patients who had not achieved pain relief (visual analog scale [VAS] score for pain >50).71 Three RCTs were crossover trials with different active controls: diphenhydramine,67 ibuprofen,66 and dihydrocodeine.65 As described above, the new RCT was placebo-controlled, and also included two other low-THC to CBD ratio cannabis arms (CBD and CBD/THC).52 Risk of bias was high in two trials,67,72 moderate in four,44,65,69,71 and low in four51,66,68,70 (including the new RCT).52 The mean age of participants was 53 years, and 61 percent were female. Race was poorly reported, with only three trials reporting 5.4 percent of participants being non-White. Three studies allowed patients to continue taking their current medication for pain, not specifically excluding opioids or requiring their discontinuation,44,68,69 with one specifically allowing tramadol as rescue medication for acute pain during the trial.68 The other studies required patients to discontinue opioid use52,65,67 or did not report opioid use at baseline or during the study.66,70-72 Five parallel design placebo-controlled trials (2 dronabinol, 3 nabilone) excluded patients with prior cannabis use.44,68-71 One crossover designed trial (nabilone vs. dihydrocodeine) excluded patients with prior cannabis use.65

A small (n=156), moderate risk of bias cohort study evaluated nabilone and gabapentin in patients with neuropathic pain of various types for six months.76 Patients were prospectively allowed to initiate nabilone or gabapentin, or to add one of them to pre-existing treatment with the other. The mean dose at 6 months was 3 mg per day for nabilone and 2,296 mg per day for gabapentin.

Study details and results can be found in Appendix E, Tables E-1 to E-5, and risk of bias assessments can be found in Appendix F, Tables F-1 and F-2.

Placebo-Controlled Trials of Synthetic THC

Based on an updated pooled analysis of seven RCTs (1 new RCT added),52 synthetic high-THC to CBD ratio products were associated with a small improvement in pain severity (7 RCTs, N=448, 0 to 10 scale, MD −0.95, 95% CI −1.81 to −0.25, I²=60%; Figure 4).44,52,68-72 The estimate was slightly reduced from the prior pooled pooled estimate (MD −1.15, 95% CI −1.99 to −0.54, I²=48%) and crossed the threshold from moderate to small. Results were similar when the trial of Namisol® was excluded (6 RCTs, MD −0.96, 95% CI −1.96 to −0.12, I²=66%) and when the high risk of bias trial72 was excluded (6 RCTs, MD −0.86, 95% CI −1.75 to −0.10, I²=63%). The pooled estimate was also similar when the analysis was restricted to trials of patients with neuropathic pain (6 RCTs, MD −0.95, 95% CI −1.92 to −0.18, I²=67%). Excluding the small (n=26), enriched enrollment randomized withdrawal trial70 also resulted in a similar pooled estimate. Stratified analysis indicated that the pooled effect estimate for nabilone (MD −1.59, 95% CI −2.49 to −0.82, I²=0%) was somewhat larger than with dronabinol (MD −0.35, 95% CI −1.08 to 0.44, I²=45%; Appendix D, Figure D-8, Table D-6), but the difference was not statistically significant (p=0.053).44,52,68-72

Two trials (including the new RCT) reported likelihood of pain response (≥30% improvement from baseline) for synthetic high-THC to CBD ratio products, but reported inconsistent findings.52,70 The new RCT (n=58) found dronabinol for neuropathic pain associated with decreased likelihood of pain response versus placebo that was not statistically significant (43% vs. 57%, RR 0.76, 95% CI 0.45 to 1.28). However, a previously included, low risk of bias RCT (n=26) of patients with diabetic neuropathy reported on pain response (≥30% improvement from baseline), finding a large effect with nabilone (85% vs. 38%, RR 2.20, 95% CI 1.06 to
Due to marked inconsistency with the addition of the new RCT, the SOE was downgraded from low (based on a single prior trial) to insufficient.

Four RCTs reported on overall function (including pain interference) or disability. An updated pooled analysis of three RCTs (n=26 from one trial, other two sample sizes for function were unclear), including the new RCT, found little difference between synthetic high-THC versus placebo for function, though the estimate was imprecise (0 to 10 scale, MD −0.18, 95% CI −1.25 to 0.77, $I^2=51\%$; Appendix D, Figure D-9). Two trials evaluated nabilone and one trial dronabinol. A fourth, small (n=13) RCT reported that neither high-THC nor placebo was associated with change in disability, measured with the Bartell Index (no data reported).

Few synthetic THC studies reported secondary outcomes, and results were mixed. A small (n=26), low risk of bias RCT of patients with diabetic neuropathy reported no difference between nabilone versus placebo in depression using the Hospital Anxiety and Depression-D [HADS-D] scale at 5 weeks (0 to 10, MD −0.4, 95% CI −1.26 to 1.46), although there was a statistically significant improvement in anxiety (HADS-A, 0 to 10 scale, MD −2.9, 95% CI −3.80 to −2.0). Quality of life findings were mixed, with a statistically nonsignificant difference in EQ-5D Utility scores (endpoint scores 72.6 vs. 61.4) and a statistically significant difference using the EQ-5D Index scores (endpoint scores 0.74 vs. 0.60, p<0.05 using analysis of covariance [ANCOVA]). A small, moderate risk of bias study (n=40) of patients with fibromyalgia evaluated secondary outcomes using the Fibromyalgia Impact Questionnaire (FIQ). The overall FIQ score improved more at four weeks with nabilone than with placebo (MD −12.07, p<0.02). Using the anxiety questions on the FIQ, anxiety was significantly improved in the nabilone group after 4 weeks (FIQ anxiety questions, 0 to 10 scale, MD −2.2, p<0.01). Depression was not significantly improved using the FIQ. The three RCTs that allowed opioid use during the study period did not report on the effect of the study medications on opioid use. The new, low risk of bias RCT (n=58) found no differences between dronabinol versus placebo in sleep (0 to 10 scale, MD 0.36, 95% CI −0.13 to 0.20 scale, mean difference −0.35, 95% CI −1.66 to 0.97), quality of life (0 to 10 scale, mean difference −0.35, 95% CI −1.66 to 0.97), Patient-Reported Outcomes Measurement Information System (PROMIS) anxiety scores (MD 0.23, 95% CI −0.32 to 2.50), or PROMIS depression scores (MD 1.64, 95% CI −0.24 to 3.52).

For adverse events, findings were similar with the addition of the new RCT. The most commonly reported was WAEs. Updated pooled analysis of WAEs in five trials showed a statistically nonsignificant increase with synthetic THC versus placebo (14% vs. 7%, RR 1.75, 95% CI 0.95 to 3.11, $I^2=0\%$, Appendix D, Figure D-10). Of these five studies, two evaluated nabilone (7% vs. 4%, RR 1.54, 95% CI 0.14 to 17.71, $I^2=0\%$) and three evaluated dronabinol (15% vs. 8%, RR 1.77, 95% CI 0.90 to 5.44, $I^2=0\%$, Appendix D, Figure D-11), with no statistically significant differences between subgroups (p=0.89). Pooled analysis of two RCTs reporting any adverse event (1 nabilone, 1 dronabinol) found a small, non-statistically significant increase with synthetic THC (2 RCTs, 86% vs. 71%, RR 1.20, 95% CI 0.96 to 1.48, $I^2=0\%$, Appendix D, Figure D-12). A single study reported SAEs and found a non-statistically significant increased risk with dronabinol (n=240, 10% vs. 6%, RR 1.60, 95% CI 0.65 to 3.93).

As in prior reports, THC was associated with statistically significant increased risk of dizziness (3 dronabinol RCTs, 29% vs. 11%, RR 2.52, 95% CI 1.20 to 4.82, $I^2=41\%$, Appendix D, Figure D-13) and sedation (4 RCTs, 1 nabilone, 3 dronabinol, 19% vs. 12%, RR 1.60, 95% CI 1.01 to 2.95, $I^2=7.7\%$, Appendix D, Figure D-14). A sensitivity analysis using the Bartlett’s correction resulted in a more imprecise pooled estimate for sedation that was no
longer statistically significant and imprecise (4 RCTs, RR 1.60, 95% CI 0.74 to 5.09, $I^2=7.7\%$, Figure D-15; Table D-7). In stratified analyses for sedation, the study of nabilone (n=33) reported a greater magnitude of effect (RR 8.40, 95% CI, 1.16 to 60.84, Figure D-14) than the trials of dronabinol (N=360, RR 1.46, 95% CI 0.88 to 2.42, $I^2=0\%$, Figure D-14) with no statistically significant subgroup differences (p=0.09). Synthetic THC (dronabinol) was also associated with increased risk of nausea, but the estimate was imprecise, and the difference was not statistically significant (3 RCTs, 11% vs. 5%, RR 2.22, 95% CI 0.90 to 5.05, $I^2=0\%$, Appendix D, Figure D-16).

Active-Control Studies of Synthetic THC

Three previously included crossover trials compared synthetic THC versus other medications. One high risk of bias trial used diphenhydramine as the control (47 weeks), a low risk of bias trial used ibuprofen (8 weeks), and a moderate risk of bias trial used dihydrocodeine (6 weeks). None of the trials reported pain response (≥30% reduction in pain from baseline). In a 6-week RCT of patients with neuropathic pain (n=96 randomized, 73 analyzed) comparing nabilone versus dihydrocodeine (30 to 240 mg per day), dihydrocodeine resulted in greater reduction in pain severity (VAS 0 to 100 scale; MD −5.7, 95% CI −10.9 to −0.5, p=0.03). There were no statistically significant differences in secondary outcomes (depression, anxiety, quality of life, or sleep). While the study indicated patients could continue to use other drugs for pain, it was not clear what those were or if new drugs (including other opioids) were started outside of the protocol.

A low risk of bias RCT of nabilone and ibuprofen (400 mg per day) in patients with medication overuse headache (n=60) found that after 8 weeks of treatment, there was no significant difference between treatments in pain severity. There were also no statistically significant differences in secondary outcomes (depression, anxiety, and quality of life), risk of adverse events, or risk of WAEs (SAEs were not reported). Analgesic intake and dependence for headache control were measured at baseline and 2 weeks after the end of study, but specific medications were not reported, except that the most common form of analgesic consisted of “combination medications.” At two weeks post-study, treatment with nabilone resulted in lower daily analgesic intake than after ibuprofen (0.89 analgesics/d vs. 1.34 analgesics/d; p=0.03). Although overall rates were low, dizziness (7.7% vs. 0%) and cognitive deficits (3.8% vs. 0%) occurred slightly more frequently when taking nabilone, while nausea (3.8% vs. 7.7%) and sedation (0% vs. 3.8%) occurred more frequently with ibuprofen.

In a very small (n=7), high risk of bias RCT of dronabinol versus diphenhydramine for spinal cord injury, pain intensity did not differ between treatments. No other efficacy outcomes were reported. More patients withdrew from the study when assigned to nabilone (2/7 vs. 0/5 patients), and dry mouth, constipation, fatigue, and drowsiness were reported in similar numbers of patients for both groups.

A moderate risk of bias, prospective observational study of nabilone and gabapentin (or the combination, not reported here) among patients with mixed neuropathic pain found no difference in pain severity between groups at 3 months (n=101 for nabilone and gabapentin arms). At 6 months nabilone was associated with a greater reduction in pain intensity (0 to 100 VAS, MD −5.8, 95% CI −10.18 to −1.42), and better sleep scores on the Medical Outcomes Study Sleep Scale (scale 0 to 60, MD −3.1, 95% CI −7.57 to 1.37 vs. gabapentin) than gabapentin. There were no differences in pain interference, quality of life, depression, or anxiety at 6 months. Overall adverse events were lower in the nabilone group (35% vs. 47%),
and no SAEs were reported. WAEs were also lower in the nabilone group (10% vs. 23%). More patients in the gabapentin group reported sedation (60%) than in the nabilone group (35%). Dizziness was reported in similar proportions of patients in the groups (33% vs. 39%).

Head-to-Head Comparisons of Cannabis-Based Products

The new, low risk of bias RCT (n=85) compared dronabinol versus two low-THC products (CBD alone or THC/CBD in 1:2 ratio). The trial did not report whether CBD was synthetic or plant-based. Median daily dose was 25 mg per day for THC, 50 mg per day for CBD, and 15 mg THC/30 mg CBD for the combination THC/CBD capsule. Results were reported for each cannabis product versus placebo; estimates for pain intensity, function, and secondary outcomes (sleep, quality of life, anxiety, and depression) were imprecise and had overlapping confidence intervals, indicating no statistically significant differences between cannabis arms. There were also no statistically significant differences between dronabinol versus CBD or combined THC/CBD in likelihood of ≥30% improvement in pain score (RR 1.29, 95% CI 0.65 to 2.55 for dronabinol versus CBD and 0.71, 95% CI 0.43 to 1.20 for dronabinol versus THC/CBD), though estimates were imprecise. Estimates for adverse events were also imprecise.

A retrospective cohort study (n=774) compared nabiximols oromucosal spray (plant-based comparable THC to CBD ratio) versus oral dronabinol (synthetic high-THC to CBD ratio) in patients with neuropathic pain and inadequate pain relief with recommended first- and second-line treatments (e.g., non-opioid analgesics, opioid analgesics, antiseizure medications, or antidepressants), using a propensity matched analysis. Mean age was 46 years, 57 percent of patients were female, and mean pain intensity at baseline was 4.4 (SD 1.46) on a 0 to 10 scale. Mean daily doses were 16.6 mg THC/15.4 mg CBD for nabiximols, and 17.2 mg THC for dronabinol. At 24 weeks, pain intensity improved more in the nabiximols group than the dronabinol group, though the difference was below the threshold for a small effect (MD 3.5, 95% CI 1.6 to 5.4 on the Pain Intensity Index [0 to 100 scale]). Nabiximols were also associated with greater percent improvement in function versus dronabinol (76.0% vs. 68.3% on the modified Pain Disability Index, p<0.001), though the difference was small. Nabiximols were also associated with greater percent improvements in quality of life, anxiety, and depression, and higher likelihood of discontinuing all rescue analgesics (75.6% vs. 45.9%, RR 1.7, p<0.001). Nabiximols were associated with decreased likelihood of nervous system adverse events (9.5% vs. 19.9%, RR 0.48, 95% CI 0.32 to 0.71) and psychiatric adverse events (4.2% vs. 14.8%, RR 0.28, 95% CI 0.16 to 0.50) than dronabinol. The study was rated moderate risk of bias; methodological limitations included failure to report attrition or missing data and unclear blinding of data analysts to interventions.

Plant-Based Extracted THC

Two placebo-controlled RCTs (N=294) included in the original report studied THC extracted from whole-plant cannabis, with different ratios of THC to CBD. A 12-week, moderate risk of bias RCT of 277 patients with pain due to MS studied a product described as an extract from *Cannabis sativa* L. using an extraction medium of ethanol 96 percent. The product contained 2.5 mg of THC and CBD in the range of 0.8 to 1.8 mg per soft gelatine capsule. Dosing was THC 2.5 mg twice daily titrated to a maximum daily dose of 25 mg/day or placebo (mean not reported). More than half of patients enrolled were using an analgesic at baseline, but the type or whether they could continue use during the trial was not reported; patients using cannabis within 30 days of study enrollment were excluded. An 8-week, low risk of bias RCT of 17 patients...
with fibromyalgia studied low-dose, sublingual THC oil. The product contained 24.44 mg/mL of THC and 0.51 mg/mL of CBD; a 48 to 1 THC to CBD ratio, and small quantities of other cannabinoids, but the extraction process was not described. Dosing was described as starting with THC 1.2mg/CBD 0.02 mg oil per dropper-full (a 60 to 1 ratio) given as a single daily dose. The mean daily dose was 4.4 mg THC/0.08 mg CBD in the active treatment group. The dose of CBD in this preparation was described as so low as to not contribute meaningfully to outcomes. Twenty five percent of patients had used an opioid prior to the study, but did not report on opioid use during the trial.

In pooled analysis, pain severity was improved with the extracted THC products, but the difference was not statistically significant (2 RCTs, 0 to 10 scale, MD −1.97, 95% CI −5.91 to 1.21, I²=85%; Figure 4). There was a high degree of heterogeneity in this combined estimate, likely due to multiple differences between the studies, including sample size, dose, duration, and specific pain condition (fibromyalgia vs. multiple sclerosis), resulting in a large difference in the magnitude of effect across the two studies. Individually, each study found a statistically significant reduction in pain severity. The 8-week, low-dose THC oil study of 17 women with fibromyalgia reported a larger effect (MD −3.92, 95% CI −5.98 to −1.86) on pain than the larger (n=277) 12-week study of a much higher dose of extracted cannabis (MD −0.90, 95% CI −1.49 to −0.31). Pain response was not reported.

In patients with fibromyalgia, physical functioning was not improved (1 RCT, FIQ subscale 0 to 10, MD 1.75, 95% CI −0.46 to 3.98) compared with placebo. Quality of life was improved with extracted THC (1 RCT, FIQ scale 0 to 100 scale, MD 36.0, p=0.005). These analyses did not adjust for potentially important differences in baseline scores between groups. Differences in depression and anxiety were not found between groups.

In patients with MS there was a higher risk of WAEs, (1 RCT, 13.9% vs. 5.7%, RR 3.12, 95% CI 1.54 to 6.33), and dizziness (1 RCT, 62.2% vs. 7.5%, RR 8.34, 95% CI 4.53 to 15.34) with extracted THC compared with placebo. An increased risk of SAEs was also found, but the difference did not reach statistical significance (1 RCT, 4.9% vs. 2.2%, RR 2.19, 95% CI 0.58 to 8.28). In patients with fibromyalgia, there was a large increased risk of somnolence with extracted THC (1 RCT, 88% vs 11%, RR 7.9, 95% CI 1.2 to 50.9). No other adverse events of interest were reported by either study.

Combined Analysis of Synthetic THC and Plant-Based Extracted THC Products

To evaluate whether there was an effect for any form of high-THC product (synthetic or extracted), we combined results from all studies of high-THC to CBD ratio interventions (Figure 4). The updated (1 new RCT) overall combined mean difference was −1.12 (95% CI −1.97 to −0.48, I²=65%), or similar to the prior pooled estimate (-1.25, 95% CI -2.09 to -0.71). Although substantial statistical heterogeneity was present, a subgroup analysis of synthetic versus plant-extracted forms of high-THC (Appendix D, Table D-8) did not find a statistically significant subgroup difference (p=0.27). This analysis allowed evaluation of publication (small-study size) bias (≥8 studies). Both the funnel plot and the Egger test (p=0.07) indicated potential publication bias, with smaller studies with small effect sizes missing, though the Egger test was slightly above the threshold for statistical significance (Appendix I, Figure I-1).
Figure 4. Change in pain severity with high-THC ratio versus placebo (short term, 4 weeks to 6 months followup)

| Abbreviations: CBD = cannabidiol; CI = confidence interval; EP = end point; FM = fibromyalgia; NPP = neuropathic pain; PL = profile likelihood; SD = standard deviation; T/C = THC/CBD; TD = total dose; THC = tetrahydrocannabinol; VP = visceral pain; WP = whole plant.
| a Namisol® is a purified, plant-based product, but grouped with synthetic dronabinol because they are chemically identical.

Key Point for Low-THC to CBD Ratio

- Four short-term RCTs (n=15 to 129, total N=260) of low-THC to CBD ratio products, including two new RCTs, could not be combined because they evaluated different formulations (oral, sublingual, or topical; CBD alone or THC/CBD) and types (synthetic, plant-based [including extracted or purified], or unclear) of products; the evidence from single trials was insufficient to draw conclusions regarding specific low-THC to CBD ratio products.

Summary of Findings for Low-THC to CBD Ratio

Two new RCTs27,53 and two previously included RCTs73,74 evaluated low-THC to CBD ratio products versus placebo. There were several differences between the low-THC to CBD ratio products, including mode of administration (topical versus oral), type (synthetic, plant-based, or unclear), and whether the product consisted only of CBD or CBD combined with THC (THC to CBD ratio <1:2). Therefore, the trials could not be combined.

One new, low risk of bias RCT (n=87 for this comparison; median age 65, 64% female) evaluated oral CBD (median 50 mg/day) or THC (dronabinol)/CBD in a 1:2 ratio (median 15/30 mg/day) versus placebo. The trial did not report whether CBD was synthetic or plant-based; the THC component of the combined product was synthetic (dronabinol). At 8 weeks, CBD was associated with increased pain intensity versus placebo (average weekly pain on 0 to 10 scale, MD 1.14, 95% CI 0.11 to 2.19), with no difference between THC/CBD versus placebo (MD 0.89, 95% CI -0.64 to 2.42). Estimates for adverse events were also imprecise.
Another new, high risk of bias crossover RCT (n=15) evaluated two low THC to CBD ratio products versus placebo. The intervention was whole-plant extracted sublingual THC:CBD oil [1:6 ratio] versus the same product with further purification (≥97% pure CBD and THC). Maximum daily doses were 18 drops per day (15 mg THC/90 mg CBD). The study used a crossover design consisting of two 16-week treatment periods with a two-week washout in between. The trial was rated high risk of bias due to unclear randomization and allocation concealment methods, unclear blinding of outcomes assessors, and high overall and differential attrition; results were not reported for the initial (prior to crossover) period. Estimates for pain severity at the end of treatment were imprecise with no statistically significant between-group differences; the proportion of patients experiencing 30% or more improvement in pain and function were not evaluated. There were too few cases of serious adverse events or withdrawals due to adverse events to evaluate these outcomes; specific harms were not reported.

Two previously included trials (N=158) also evaluated CBD (low-THC to CBD) products versus placebo. One previously included RCT assessed a synthetic oral CBD and one previously included RCT assessed extracted topical CBD oil.

One trial was moderate risk of bias (n=129) and assessed synthetic oral CBD versus placebo in patients with hand osteoarthritis and psoriatic arthritis over a period of 12 weeks (median age 62, 44% female). Patients received 10 mg CBD tablets twice daily; if a 20 percent reduction in pain was not achieved in the first 4 weeks, patients increased their dose to 30 mg day. There were no differences between CBD and placebo in likelihood of pain improvement (≥30%; RR 1.01, 95% CI 0.66 to 1.55), pain severity (VAS, 0 to 100 scale, MD 0.23, 95% CI −0.41 to 9.90), or physical function (Health Assessment Questionnaire-Disability Index, 0 to 3 scale; MD 0.03, 95% CI −0.11 to 0.18). There were also no differences in depression, anxiety, or sleep quality. More patients receiving CBD reported any adverse event (56.9% vs. 42.6%; RR 1.33, 95% CI 0.92 to 1.93), though the difference was not statistically significant. The proportion of patients with serious adverse events was similar (3.4% vs. 3.3%, RR 1.05, 95% CI 0.15 to 7.22) and there were few withdrawals due to adverse events (0% vs. 3%, RR 0.19, 95% CI 0.01 to 3.86).

The other previously included trial was a small (n=29), high risk of bias RCT of topical CBD oil in patients with neuropathic pain (mean age 68 years, 38% female). Patients were randomized to four weeks of CBD cream (250 mg/3 oz) applied to symptomatic areas up to 4 times daily or placebo; the total daily dose received was not reported. Improvement in pain intensity was statistically significantly greater in the CBD group versus the placebo group (−1.34 vs. −0.59, p=0.009 by ANCOVA). It was not clear if the analysis also included a crossover extension phase wherein patients initially randomized to placebo were given CBD. A planned analysis taking baseline score into account was not reported. This study did not report pain response, pain interference, overall function/disability, or secondary outcomes. No adverse events were reported. In addition, this study was not registered in an online repository, and there were serious ethical concerns, as the study authors reported that they were unable to obtain institutional review board approval yet proceeded with conducting the trial.

Key Points for Other or Mixed Cannabinoids

- One new prospective cohort study (n=761) of cannabinoids that varied in composition provided insufficient evidence to draw conclusions.
- One short-term RCT (n=31) of cannabinoids other than THC and CBD provided insufficient evidence to draw conclusions.
Summary of Findings for Other or Mixed Cannabinoids

One new moderate risk of bias prospective cohort study (n=761) evaluated different cannabis products for patients with chronic pain (mixed conditions) in the UK Medical Cannabis Registry.55 It compared an inhaled dry flower, sublingual cannabis oils, or both. The oils varied in composition, with some only containing THC or CBD, and some with THC:CBD ratios that ranged from 1:1 to 1:20. The mean age was 47, and 47 percent of participants were female. Race was not reported. In multivariate analysis, there were no differences between arms in likelihood of experiencing improvement in Brief Pain Inventory [BPI] pain severity (adjusted odds ratio [OR] 1.36, 95% CI 0.51 to 3.65 for combination versus oils and 2.12, 95% CI 0.28 to 16.11 for dried flower versus oils) or interference (adjusted OR 1.90, 95% CI 0.68 to 5.29 for combination versus oils and 1.61, 95% CI 0.21 to 12.18 for dried flower versus oils), though estimates were imprecise and favored the combination and dried flower over oils alone. There was no difference between the combination versus oils alone in likelihood of experiencing an adverse event, though this estimate was also imprecise (adjusted OR 1.00, 95% CI 0.64 to 1.58).

A previously included small (n=31), moderate risk of bias trial evaluated oral CBDV (described as “a novel phytocannabinoid derived from the Cannabis sativa L. plant”).75 Patients with HIV-related chronic pain (mean age 50 years, 3% female) were randomized to oral CBDV oil (50 mg/ml) dosed at 8 ml daily (400 mg CBDV) or placebo oil for 4 weeks, then crossed over after a 21-day washout.

Using the numerical rating scale (NRS) pain scale (10-point scale), statistically significantly fewer patients achieved response (≥30% pain reduction) with CBDV compared with placebo (38% vs. 81%, RR 0.46, 95% CI 0.24 to 0.91). There was no difference between CBDV and placebo in the change in pain severity from baseline (MD 0.62, 95% CI –0.05 to 1.32). Secondary outcomes of anxiety, depression, and insomnia also did not differ statistically between the groups. Although more patients reported any adverse event while using CBDV than placebo (91% vs. 79%), the difference was not statistically significant (p=0.28). Other adverse event outcomes occurred slightly more often in the CBDV groups than placebo (WAEs, 1 vs. 0; SAEs, 1 vs. 0; diarrhea, 3 vs. 0; dry mouth, 3 vs. 0).

Key Point for Whole-Plant Cannabis and Mixed (Patient-Choice) Cannabis Products

- There is insufficient evidence to draw conclusions about the effectiveness and harms of whole-plant cannabis products or patient-choice cannabis products in treating chronic pain.

Summary of Findings for Whole-Plant Cannabis and Mixed (Patient-Choice) Cannabis Products

No new studies evaluated whole-plant cannabis or mixed (patient-choice) cannabis products. Six previously included observational studies (N=12,939) reported on the effects of cannabis, with five (3 high, 2 moderate risk of bias) studies evaluating medical cannabis programs,78-80 or self-reported use of cannabis,81,82 and one moderate risk of bias study evaluating a specific whole-plant cannabis product.83 Patient characteristics are summarized across studies in Table 5. The type of pain was not well reported. Mean age was 53 years, and 55 percent were female. Baseline pain was 5.35 (95% CI 4.56 to 8.00) on a 0 to 10 scale. One study evaluated outcomes
at 3 months (short duration),80 and the other five were long duration (1 to 4 years observation).78,79,81-83 The three studies of medical cannabis programs allowed patients to self-select the cannabis products they used and compared them with patients who chose not to enroll in the programs (assumed to be no cannabis use).78,79,83 Two of the studies are retrospective analyses of larger prospective cohort studies of patients with chronic pain taking opioids,81,82 based on patient self-report of cannabis use, but specific products used were not reported. In the study of a whole-plant cannabis product, the cannabis group received herbal cannabis containing 12.5 percent (+/- 1.5\%) THC.83 Total daily doses received were reported in two studies with one reporting 93 mg of THC per week (mean) in a medical cannabis program,80 and the other reporting 2.5 grams per day of a whole-pant cannabis product (dose confirmed with study authors).83

Two studies reported on primary pain or function outcomes. A high risk of bias study assessing a medical cannabis program study (n=46) found nonstatistically significant differences between groups on measures of pain severity, pain-related disability, quality of life, depression, anxiety, and sleep.80 A moderate risk of bias study of persons using opioids also reported no statistically significant differences on pain or pain interference outcomes between frequent cannabis users (daily or near-daily)81 and non-users over 4 years of followup. Because the number of patients enrolled changed from year to year along with their cannabis use status, these analyses were conducted based on use in the prior 12 months.

A high risk of bias cohort study (n=431) of a whole-plant cannabis product with 12.5 percent THC (amount of CBD not reported) with 52 weeks of followup reported on adverse events.83 Patients for whom standard treatments were not effective were enrolled, with patients already using cannabis for pain preferentially enrolled in the treatment group. The median dose was 2.5 gm of herbal cannabis per day (confirmed with study authors as amount dispensed). While the overall percentage of patients reporting any adverse event or serious adverse events was greater than in other studies, differences were not statistically different between groups. Dizziness was also not reported more often in the cannabis group. Both nausea (16.7\% vs. 9.7\%, RR 1.72, 95\% CI 1.04 to 2.85) and sedation (13.5\% vs. 4.6\%, RR 2.91, 95\% CI 1.46 to 5.83) were reported significantly more frequently in the cannabis group. Study withdrawal due to adverse events was poorly reported for the usual care group and occurred in 4.7 percent of those using cannabis.

Four observational studies reported on the association between cannabis use and opioid use for chronic pain.78,79,81,82 The studies used different methods and reported outcomes differently, with no consistent direction of effect across the studies. A large, moderate risk of bias, retrospective cohort study (n=10,746) with propensity matching found a nonstatistically significant decrease in weekly oral morphine equivalent (OME) doses in the cannabis group (−183.2 OME, 95\% CI −449.8 to 83.3). Preplanned subgroup analyses found that patients taking lower initial doses of opioids (<50 OME/week) increased opioid use after medical cannabis authorization, while those using higher doses at baseline (>100 OME/week) had a decrease (−435.5, 95\% CI −596.8 to −274.2). Discontinuation of prescription opioids was found to be less likely in the cannabis group versus the control group (49.3\% vs. 72.3\%, adjusted OR 0.38, 95\% CI 0.34 to 0.41).

In a moderate risk of bias study (n=1,514 at baseline, 1,217 at year 4) of persons with chronic pain using opioids, a statistically nonsignificant difference in OME use at one year was found between patients reporting daily or near daily cannabis use (type and dose reported) and those reporting no use.81 The analysis used a lagged mixed-effects linear regression model, identifying cannabis use in the prior year and opioid use in the current year across four possible years of
study enrollment. The adjusted mean daily OMEs were 97.1 in frequent cannabis users and 85.5 in non-users (difference 32.76 mg/day, 95% CI, −25.04 to 90.57).

A high risk of bias, 52-week, prospective cohort study of patients with HIV-related chronic pain (n=433) evaluated the effect of cannabis use. At baseline 47 percent were using an opioid for chronic pain. Among daily or near daily cannabis users also using opioids, the adjusted OR for discontinuing opioids was 1.67 (95% CI 0.52 to 5.37). Among daily or near daily cannabis users not using opioids at baseline, the adjusted OR for initiating an opioid was 2.29 (95% CI 0.86 to 6.16). Impact on morphine equivalents were not reported.

In a small (n=66), high risk of bias, retrospective cohort of patients in a medical cannabis program for low back pain, compared with a group who declined to participate, those in the cannabis program were more likely to reduce their daily opioid dose than the control group (83.8% vs. 44.8%, OR 5.12, 95% CI 1.56 to 16.88). The reduction in dose was small, but statistically significant (MD −0.64 mg intravenous morphine equivalent, 95% CI −1.10 to −0.18 from starting mean doses in the two groups of 24.4 mg vs. 16.2 mg).

KQ 3 and KQ 4. In adults or adolescents with chronic or subacute pain, what are the benefits (KQ 3) and harms (KQ 4) of kratom or other plant-based substances for treatment of chronic or subacute pain?

Key Point

- No studies of kratom or other plant-based substances with properties similar to cannabis were found.

Summary of Findings

No evidence was found for kratom or other plant-based substances.
Discussion

Findings in Relation to the Decisional Dilemma(s)

The key decisional dilemmas for treating chronic and subacute pain with plant-based compounds include their effectiveness and safety and the effect of route of administration, formulation, dose or potency of products, types of pain, and other patient characteristics on outcomes, including harms. Important harms include typical adverse effects such as dizziness, sedation and nausea, but may also include more serious risks, such as cannabis use disorder (CUD), psychosis, and cognitive impairment. Potential benefits and harms must be considered in the context of frequent, possibly daily, long-term use. As in the first annual update, this update did not identify studies of plant-based compounds other than cannabis. Four new studies were added for this update (1 placebo-controlled randomized controlled trial [RCT] of oral tetrahydrocannabinol [THC;dronabinol], cannabidiol [CBD], and THC/CBD [low-THC to CBD ratio],52 1 placebo-controlled RCT of whole-plant extracted sublingual THC:CBD oil [1:6 ratio] versus the same product with further purification,53 1 observational study of inhaled dry flower, sublingual cannabis oils, or both,55 and 1 observational study of nabiximols versus long-acting opioids).54 For synthetic high-THC to CBD products, the new RCT resulted in an slightly reduced updated pooled estimate for pain intensity that crossed the threshold from a moderate to a small effect size and changed the strength of evidence (SOE) for likelihood of a pain response (≥30% improvement in pain intensity) from low to insufficient, due to inconsistent results with one prior RCT (Table 4). Otherwise, the new studies did not change prior findings, including SOE ratings.

Overall, our findings are applicable to short-term treatment (1 to <6 months), in adults with chronic pain (mainly neuropathic pain) compared with placebo. Although the scope of this update was expanded to include subacute pain and adolescents, no studies addressing these populations were identified. Change in pain severity was reported across all studies, but other pain-related and overall functional outcomes (including pain interference) were reported sporadically.

Based on previously reviewed evidence, comparable THC to CBD ratio plant-extracted oromucosal spray is probably associated with small improvements in pain severity (SOE: moderate) and overall functioning (SOE: moderate) versus placebo in the short-term. Comparable THC/CBD ratio oromucosal spray may also be associated with a moderate to large increased risk of dizziness (SOE: low), sedation (SOE: low), and nausea (SOE: low) versus placebo, with no effect on serious adverse events or study withdrawals due to adverse events. There was a small increase in the proportion of patients with at least 30 percent improvement in pain (pain response) versus placebo; while the SOE was low, the finding was not statistically significant due to imprecision.

As noted above, updated findings with one new RCT indicated that synthetic oral THC (high-THC to CBD ratios) products may be associated with small improvement in pain severity and no effect on overall function (SOE: low); there were inconsistent findings from two RCTs for likelihood of pain response, resulting in insufficient evidence to determine effects. As in the prior update, synthetic oral THC products are probably associated with a large increase in risk of dizziness (SOE: moderate) and may be associated with large increased risk of nausea and moderate increased risk of sedation (SOE: low). There was a moderate increase in the proportion of patients that withdrew from studies due to adverse events; the SOE was low, but the finding was not statistically significant due to inadequate sample size (imprecision). For secondary
outcomes, evidence with the addition of the new RCT remained very limited with no clear effect on quality of life, sleep, depression, or anxiety.

Based on previously reviewed evidence, extracted whole-plant high-THC to CBD ratio products may be associated with large increases in risk of study withdrawal due to adverse events and dizziness (SOE: low). There was insufficient evidence to determine effects on pain. Combining the evidence for all high-THC to CBD ratio products resulted in a moderate improvement in pain severity, with a low SOE.

Evidence on whole-plant cannabis, mixed forms of cannabis (patient-choice), low-THC to CBD ratio products (topical or synthetic oral CBD), other cannabinoids (cannabidivarin [CBDV]), and comparisons with other active interventions or between cannabis-based products remained insufficient to draw conclusions. The evidence for low-THC to CBD ratio products is heterogeneous. Two prior RCTs evaluated different low-THC to CBD products (plant-extracted topical oil or synthetic oral tablet). One small new RCT evaluated two low-THC to CBD ratio plant-extracted sublingual products, one of which underwent further purification. Another new RCT evaluated two different low-THC to CBD ratio oral products (CBD alone or THC/CBD), but it was unclear whether the CBD was synthetic or plant-extracted from the journal article and clinical trials registry entry. We contacted the study authors for additional information but did not receive a response. Evidence for other outcomes reported for comparable THC to CBD and high-THC to CBD ratio products was also insufficient. See Appendix G for details.

Other adverse events (psychosis, CUD, cognitive deficits) and secondary outcomes were not reported for any product.

The 2022 updated Centers for Disease Control and Prevention guideline on opioids for pain does not make recommendations on cannabis for pain. However, the 2019 U.K. National Institute for Health Care and Excellence clinical practice guideline included a strong recommendation against use of cannabis for pain outside of clinical trials, though the guideline has been challenged as overly restrictive. More recently, an international guideline funded by a cannabis research center issued a weak recommendation for use of non-inhaled medical cannabis for chronic pain when standard care is not sufficient. Additionally, there have been multiple systematic reviews conducted on the use of cannabinoids to treat chronic pain, including a 2015 publication in the Journal of the American Medical Association, a 2018 Cochrane review, and a 2017 Veteran’s Affairs Evidence Synthesis Program review. These high-quality reviews found generally similar results as this review indicating some benefit in pain outcomes, primarily for short-term treatment in patients with neuropathic pain. These prior reviews combined all forms of cannabinoids in meta-analyses. Our review has more stratified results based on the pre-specified THC to CBD ratio categories, leading to a higher strength of evidence rating in some cases. Although these were high-quality reviews, they are not current and may be missing newer evidence. An additional four unrelated systematic reviews examining utility of cannabis for chronic pain were published in 2020; overall, these findings are also consistent with our findings. One of the reviews conducted meta-regression, finding that the impact on pain was similar between neuropathic and non-neuropathic pain populations and that pain reduction was of a small magnitude and similar across formulations (inhaled, oral, oromucosal spray).

Our review did not identify eligible evidence on kratom to treat chronic pain. Two recent reviews of kratom provided limited information, and are based on noncomparative data or pharmacological data. One evaluated surveys, cross-sectional studies, and poison-control center studies on the use of kratom; the other is a nonsystematic review covering pharmacology,
pharmacokinetics, prevalence and type of usage, and harms evidence.25,26 Both found that patients report using kratom as a substitute for opioids apparently as a treatment for self-diagnosed opioid addiction or dependence in Thailand and Malaysia. They reported growing use in the United States for chronic pain and for recreational purposes. They also suggested that kratom may have addictive properties itself with symptoms of physiological withdrawal being common. Nonserious adverse effects include hyperpigmentation of the skin, constipation, weight loss, insomnia, xerostomia, and loss of libido. Poison control center data indicated an increase in calls involving kratom over the past five years with multi-substance exposures involving kratom associated with a statistically significant increase in a serious medical event. In cases where kratom was the only substance involved (N=1,174), symptoms included agitation or irritability (23%), tachycardia (21%), nausea (15%), drowsiness/lethargy (14%), vomiting (13.2%), confusion (11%), hypertension (10%), and seizures (10%).26

Tables 6 and 7 provide a summary of the evidence for primary outcomes and harms related to cannabis interventions. Additional details on the SOE for these outcomes are located in Appendix G.

| Table 6. Key Question 1: Benefits of cannabinoids for chronic pain compared with placebo in the short term (4 weeks to <6 months) |
|---|---|---|
| Product, THC to CBD Ratio | Pain Responsea [Effect Size (N Studies) [SOE]] | Pain Severity [Effect Size (N Studies) [SOE]] | Function Effect Size (N Studies) [SOE] |
| Comparable THC/CBD - Extracted From Whole Plant, Oromucosal Spray | Potential effect (4)b [✓] | Small effect (7) [✓✓] | Small effect (6) [✓✓] |
| High THC – Synthetic, Oral | Insufficient (2, 1 new)c | Small effect (7, 1 new)c,d [✓] | No effect (4, 1 new) [✓] |
| High THC – Extracted From Whole Plant, Oral | No evidence | Insufficient (2) | Insufficient (1) |
| Low THC – Topical CBD, Extracted From Whole Plant | No evidence | Insufficient (1) | No evidence |
| Low THC – Oral CBD, Synthetic | No evidence | Insufficient (1) | Insufficient (1) |
| Low THC – Oral CBD or CBD/THC, Unclear Origin | Insufficient (1 new)c | Insufficient (1 new)c | Insufficient (1 new)c |
| Low THC – Sublingual CBD/THC, Extracted from Whole Plant | No evidence | Insufficient (1 new)c | No evidence |
| Other Cannabinoids – CBDV, Oral | Insufficient (1) | Insufficient (1) | No evidence |
| Whole-Plant Cannabis (12% THC)e | No evidence | Insufficient (1) | No evidence |

Abbreviations: CBD = cannabidiol; CBDV = cannabidivarin; SOE = strength of evidence; THC = tetrahydrocannabinol.

a ≥30% improvement from baseline.

b Potential effect: SOE of low or higher; findings indicate at least a small magnitude of effect but not statistically significant.

c Text is bolded to indicate that the strength of evidence has changed.

d Downwards arrow indicates that the effect size has decreased from moderate.

e Comparison was “usual care.”

Text that is red indicates that a new study has been added. Color is used for visual emphasis only.

Effect size: None (i.e., no effect/no statistically significant effect), small, moderate, or large increased benefit; SOE: [✓] = low, [✓✓] = moderate, [✓✓✓] = high.
Table 7. Key Question 2: Harms of cannabinoids for chronic pain compared with placebo in the short term (4 weeks to <6 months)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparable THC/CBD – Extracted From Whole Plant, Oromucosal Spray</td>
<td>No effect (5) [✓]</td>
<td>No effect (3) [✓]</td>
<td>Large effect (6) [✓]</td>
<td>Moderate effect (6) [✓]</td>
<td>Large effect (6) [✓]</td>
</tr>
<tr>
<td>High THC – Synthetic, Oral</td>
<td>Potential effect<sup>a</sup> (5, 1 new) [✓]</td>
<td>Insufficient (1)</td>
<td>Large effect (3, 1 new) [✓✓]</td>
<td>Potential effect<sup>a</sup> (3, 1 new) [✓✓]</td>
<td>Moderate effect (4, 1 new) [✓]</td>
</tr>
<tr>
<td>High THC – Extracted From Whole Plant, Oral</td>
<td>Large effect (1) [+], Insufficient (1)</td>
<td>Large effect (1) [+], Insufficient (1)</td>
<td>No evidence</td>
<td>No evidence</td>
<td>No evidence</td>
</tr>
<tr>
<td>Low THC – Topical CBD, Extracted From Whole Plant</td>
<td>No evidence</td>
<td>No evidence</td>
<td>No evidence</td>
<td>No evidence</td>
<td>No evidence</td>
</tr>
<tr>
<td>Low THC – Oral CBD, Synthetic</td>
<td>Insufficient (1)</td>
<td>Insufficient (1)</td>
<td>No evidence</td>
<td>No evidence</td>
<td>No evidence</td>
</tr>
<tr>
<td>Low THC – Oral CBD or CBD/THC, Unclear Origin</td>
<td>Insufficient (1, 1 new)<sup>b</sup></td>
</tr>
<tr>
<td>Low THC – Sublingual CBD/THC, Extracted from Whole Plant</td>
<td>Insufficient (1, 1 new)<sup>b</sup></td>
<td>Insufficient (1, 1 new)<sup>b</sup></td>
<td>No evidence</td>
<td>No evidence</td>
<td>No evidence</td>
</tr>
<tr>
<td>Other Cannabinoids – CBDV, Oral</td>
<td>Insufficient (1)</td>
<td>Insufficient (1)</td>
<td>No evidence</td>
<td>No evidence</td>
<td>No evidence</td>
</tr>
<tr>
<td>Whole-Plant Cannabis (12% THC)<sup>c</sup></td>
<td>Insufficient (1)</td>
<td>Insufficient (1)</td>
<td>Insufficient (1)</td>
<td>Insufficient (1)</td>
<td>Insufficient (1)</td>
</tr>
</tbody>
</table>

Abbreviations: CBD = cannabidiol; CBDV = cannabidivarin; SAE = serious adverse event; SOE = strength of evidence; THC = tetrahydrocannabinol; WAE = withdrawal due to adverse event.

^a Potential effect: SOE of low or higher; findings indicate at least a small magnitude of effect but not statistically significant.

^b Text is bolded to indicate that the strength of evidence has changed.

^c Comparison was “usual care.”

Text that is red indicates that a new study has been added. Color is used for visual emphasis only.

Effect size: None (i.e., no effect/no statistically significant effect), small, moderate, or large increased risk; SOE: [✓] = low, [✓✓] = moderate, [✓✓✓] = high.

Strengths and Limitations

The evidence base on cannabis and other plant-based treatments for chronic and subacute pain has multiple important limitations. Fifty-eight percent of trials enrolled patients with chronic pain due to a neuropathic cause (6 in patients with multiple sclerosis, 6 with a mix of conditions or not specified, 2 with diabetic neuropathy, and 1 each with chemotherapy, HIV, or spinal cord injury). There is little or no evidence on other types of chronic pain, including low back pain, osteoarthritis, fibromyalgia, and inflammatory arthritis. Although inclusion criteria were revised to also address subacute pain, no eligible studies were identified. In terms of age, there is limited evidence on younger and older populations, with most patients being middle-aged (mean age 54 years). Although we revised inclusion criteria for this update to include adolescents, no eligible studies were identified. Studies generally excluded patients with a
history of psychiatric disorders other than prior history of depression or anxiety. Importantly, there was either no evidence or inadequate evidence to evaluate important patient populations based on sex/gender, race/ethnicity, age, or pregnancy/lactating status.

Another limitation is the lack of consistent nomenclature detailing the interventions and products studied. For example, products are described as extracted in some studies, but without a consistent way of describing the process or the resulting purity of the products. Other studies used words such as “standardized” to describe the amount of THC in a whole-plant cannabis product, again with lack of description of how this was defined or determined. The new RCT added for this update did not specify whether oral CBD was synthetic or plant-extracted, a critical limitation because of heterogeneity in the low-THC to CBD ratio products evaluated in previously included RCTs. Studies did not consistently report the ratio of THC to CBD in the products, particularly outside of the products that are close to a 1 to 1 ratio (oromucosal spray, Sativex). Other limitations include the complete lack of evidence on other plant-based compounds like kratom, no RCT evidence on whole-plant cannabis products, and only a single, small study each for topical CBD or cannabinoids other than THC or CBD.

Change in pain severity was the most commonly reported outcome. Other important outcomes were mainly not reported or inconsistently reported or defined. Pain response, defined as a 30 percent or greater improvement in pain, was reported in 10 of 33 studies (30%); 21 of 33 studies (64%) reported on overall function (including pain interference) or disability. The studies poorly reported baseline use of opioids for pain, and only observational studies (7 studies) reported the impact of cannabis interventions on changes to prescription opioid use. While almost all studies reported the number of patients who withdrew from studies due to adverse events, 45 percent did not report serious adverse events, and 58 percent did not report the overall adverse events, particularly by group. When serious adverse events were reported, studies either used a unique definition, or did not provide one. In reporting on specific adverse events, not all studies were clear about whether the events were the number of individuals with at least one event, or if a single patient could contribute to an event more than once. Other adverse events that have been reported in noncomparative observational studies and were prioritized for this review (development or exacerbation of psychosis, CUD, and cognitive deficits) were not reported.

Trials were limited by study design and small sample sizes (range 5 to 339; mean 86), particularly for assessing harms. The SOE of the findings was very commonly downgraded due to imprecise estimates (see Appendix G). There were also differences in some key baseline characteristics, including baseline pain scores, which were frequently not adjusted for in study analyses. Another methodologic concern is that many conclusions in the included studies were drawn from post-hoc analyses. Study durations of included RCTs were primarily short-term and included less than 6 months followup (1 RCT reported intermediate followup durations of 47 weeks); 39 percent of trials were 4 to 6 weeks long. This is a key limitation, as pain severity in patients with chronic pain may vary substantially in the short-term and may be influenced temporarly by an intervention or treatment; it is most useful to understand the enduring impact of a treatment on pain severity. Similarly, adverse events such as CUD, cognitive deficits, and serious adverse events may take time to develop and longer studies are required to capture such events. Two RCTs utilized an enriched enrollment randomized withdrawal design in which all patients receive cannabis in a run-in phase; only patients who respond to cannabis and tolerate it are randomized, to continuation or withdrawal. Such trials are intentionally designed to select for patients who respond to and tolerate cannabis, potentially exaggerating treatment effects and
underestimating harms compared to patients not selected based on these features. However, our findings were similar when the enriched enrollment randomized withdrawal trials were excluded from analyses. Well-designed head-to-head studies comparing a plant-based product with a standard of care treatment for chronic pain are lacking. The current evidence consists only of small, poorly designed, crossover or observational studies.

Despite limitations in the evidence base, our review has several strengths. First, the living systematic review approach allows us to add new studies soon after they are published, thereby providing an opportunity to update conclusions in a timely fashion. This may be important as cannabis and other plant-based treatments become more readily available to patients, providers and researchers. For this update, new evidence on high-THC to CBD ratio products resulted in reduced effect size for improvement in pain intensity and downgrading of the SOE from low to insufficient for pain response SOE, underscoring the importance of incorporating new evidence.

Another strength of our approach is using an organizational framework that categorizes cannabis-related products by both their THC and CBD ratios and their origin (plant-based versus synthetic), providing a way to conceptualize the evidence on these two prominent cannabinoids that is consistent with how they are available to consumers. These categories were determined a priori, with the input of a Technical Expert Panel convened for this review. A final strength that separates this review from others is the exclusion of very short-term studies (e.g., a small number of dosing sessions), improving the applicability of the findings to chronic pain.

There are also some limitations to our review process. We excluded non-English language publications and study results published only as abstracts. For almost all analyses, there were too few trials to apply graphical or statistical methods to detect small sample effects, a potential marker of publication bias. Although there were sufficient trials when combining synthetic and plant-extracted high-THC to CBD ratio products versus placebo to apply such methods, which indicated potential small sample effects, results are difficult to interpret because a statistical test for small sample effects was just above the threshold for statistical significance, and there was potential heterogeneity introduced by combining synthetic and plant-extracted products. We did not identify unpublished trials of high-THC to CBD products; one unpublished trial of patients with diabetic neuropathy (n=294) found no difference between nabiximols (comparable THC to CBD ratio oromucosal spray) for diabetic neuropathy (0 to 10 scale, mean difference -0.12, 95% confidence interval -0.60 to 0.36), suggesting that additional unpublished trials could attenuate estimates of effect. Another potential limitation is that we categorized nabilone as a synthetic high-THC product, although it is more accurately described as a synthetic cannabinoid—a chemical analog to THC, and could have differing effects to THC. To address this possibility, we performed stratified analyses among outcomes that were pooled for synthetic high-THC interventions. The effect size for change in pain severity was larger with nabilone than with dronabinol, but the difference between the effect sizes was not statistically significant. We also grouped Namisol® with synthetic dronabinol, even though Namisol® is a purified plant product, because they are chemically identical (delta-9-THC). However, results for synthetic high-THC to CBD ratio products were similar when the Namisol® trial was excluded. Meta-analyses were based on small numbers of trials, which can result in overly narrow estimates using frequentist random effects approaches, including the profile likelihood model. Therefore, we conducted sensitivity analyses using the Bartlett’s correction. Although the Bartlett’s correction resulted in wider confidence intervals for pooled estimates, it did not change overall conclusions regarding the statistical significance of findings. The exception was high-THC products and increased risk of sedation, which was imprecise and no longer statistically significant using the Bartlett’s
correction. However, the Bartlett’s correction may result in overly conservative (wide) confidence intervals when the number of studies is small; additional studies examining sedation would help increase precision. Our inclusion criteria required that the study population have chronic or subacute pain, or have subgroup analyses for this group, which may be why we did not find evidence related to kratom. As in other recent systematic reviews of interventions to treat chronic pain, we grouped the magnitude of effects into small, moderate and large effects, rather than according to published minimal clinically important difference (MCID) thresholds. Defining clinical significance in chronic pain is difficult because it is subjective and difficult to correlate with real-life experiences of patients. For example, the MCID for improvement in pain is 15 points on a 0 to 100 scale. However, interventions commonly used for chronic pain, including opioids and nonsteroidal anti-inflammatory drugs do not achieve this level of reduction. The typical reduction with opioids, nonopioid medications, nonpharmacological interventions, and cannabinoids is small, 5 to 10 points and may be considered a clinically important effect by patients and clinicians. In addition, when the pooled estimate is close to a pre-defined effect size threshold, a relatively small change in pooled estimates can result in re-categorization. In this update, for synthetic high-THC to CBD ratio products versus placebo, the effect size for pain intensity was re-classified from moderate to small, based on the addition of one new trial that decreased the pooled estimate from -1.10 to -0.95, which could suggest a more substantial change in the estimate than actually observed. On the other hand, using pre-defined thresholds increases objectivity in classifying effect size. With more evidence, pooled estimates should become more stable and less likely to require re-categorization. Since this is a living systematic review, new evidence will be incorporated into the review and findings updated on a regular basis.

Applicability

A number of factors could impact the applicability of our findings. The evidence currently is most applicable to patients with neuropathic pain with mostly moderate to severe pain (mean baseline score in RCTs was 6.6 on a 0 to 10 scale, with a range of 4.0 to 8.67). There is also considerable variability within the included studies among the types of neuropathic pain patients experience, and treatment effects might be different depending on the specific neuropathic pain condition. As described above, two RCTs utilized an enriched enrollment randomized trial design, which is purposefully designed to selectively randomized patients who respond to cannabis and tolerate it.

The evidence applies to adults with chronic pain. The evidence base addressed similar proportion of men and women, with around 57 percent of enrolled participants across all studies being female. While the age range across studies was broad, with mean study ranges of 45 to 68 years, the evidence is mainly applicable to middle-aged patients (overall mean age 54 years). Therefore, the applicability of findings to older patients, in whom the balance of benefits to harms may be very different, with potentially more harms, is uncertain. No study evaluated adolescents and no study enrolled persons with subacute pain. Non-White patients were poorly represented in the studies. It is also unclear how the evidence applies to patients currently taking prescription opioids to treat chronic pain or patients with serious mental illness or other comorbidities who are often excluded from trials. In terms of interventions, this evidence is applicable to comparable THC to CBD ratio oromucosal spray and to high-THC synthetic medications. The evidence for comparable THC to CBD oral spray is applicable to mean dosing of 8.4 sprays per day (23 mg THC/21 mg CBD). The evidence for high-THC to CBD ratio
synthetic drugs applies to dosing that was titrated upward, with a maximum dose of 15 to 25 mg per day of dronabinol and 0.25 to 2 mg per day of nabilone (mean doses not reported). For high-THC to CBD products extracted from whole-plants, the evidence was too heterogeneous and limited (2 RCTs) to describe an applicable dose. For low-THC to CBD products, available RCTs had too much variability in products (mode of administration, synthetic or plant-based origin, CBD alone or combined THC/CBD) to inform effects of this category. The applicability of evidence to other products including whole plant cannabis is very low or non-existent.

Another factor impacting applicability is that availability of the studied cannabis products varies depending on regulatory and other factors. For example, Namisol® is manufactured in the Netherlands and may be available in some European countries, but is not approved by the Food and Drug Administration (FDA) at this time. Nabiximols are manufactured and available in Canada and some European countries, but are not FDA approved. In the United States, multiple whole-plant CBD products are available, but their composition varies, none are FDA approved, and availability varies from state to state depending on laws regarding cannabis use. Although our intervention categories were based on THC to CBD ratio and intended to group together interventions more likely to have similar effect, the generalizability of one cannabis product within a particular category to others is uncertain.

This evidence applies to short-term treatment and mainly informs the impact on mean changes in pain severity and common adverse events. The outcomes after longer term treatment may be different and could influence other outcomes not considered in short-term studies included here (e.g. psychosis, CUD, cognitive deficits). Other information for assessing applicability, such as settings for recruiting participants or the number randomized relative to the number eligible, was lacking.

Only 15 percent of studies were conducted in the United States, with the majority being from Europe (55%), and we were unable to assess the impact of country of study or other geographic location characteristics (e.g., rural, metropolitan) on the applicability of specific results.

A number of evidence gaps or limitations in the evidence potentially impacted the applicability of our findings including lack of evidence on extracted whole-plant or purified products, whole-plant cannabis, low-THC to CBD ratio products, and kratom.

Implications for Clinical Practice, Education, Research, or Health Policy

The implications of the present findings for clinical practice and policy are mixed. Our results suggest that select individuals with chronic neuropathic pain may experience small short-term improvements in pain when using cannabis products (synthetic or extracted from whole-plant) that have a high-THC to CBD ratio. The impact of this intervention on moderate or long-term outcomes is unknown. Cannabis products with a comparable THC to CBD ratio may also result in small improvements in pain severity. Those who take products containing comparable or high ratios of THC are also at increased risk for adverse events, including dizziness, sedation and nausea. The expected benefit of this treatment appears comparable to those observed with prescription opioids, several nonopioid medications, and nonpharmacological interventions.11,13,14 The evidence on adverse events with cannabis-related products is much less robust than the evidence on similar outcomes with opioids or nonopioid medications. The risk of sedation and dizziness appears similar with cannabis-related products, opioids, and the anticonvulsants Pregabalin and gabapentin, while the risk for nausea appears to be larger with opioids and the antidepressant duloxetine than with cannabis-related products. However, these
comparisons are qualitative and indirect and based on very limited evidence on cannabis products relative to the other drugs and require confirmation. Evidence is too limited to compare effects on serious and long-term harms, even indirectly, though respiratory depressant effects of opioids potentially resulting in death are well-known. Understanding how cannabis products’ adverse event profiles compare with other available treatments for chronic pain, particularly opioid and non-opioid medications, is essential to determining the benefit to harm ratio. However, the strength of this evidence is mostly low, and more data are needed to confidently recommend this as a treatment for various chronic pain-related conditions or for patients with diverse demographic or clinical characteristics. No studies are available to inform decisions regarding use of cannabis for subacute pain or in adolescents.

As noted in the limitations above, baseline use of opioids for pain and the impact of cannabinoids on the use of opioids for pain were very poorly reported. In an effort to more effectively and safely manage chronic pain, a prominent goal of current research is to identify alternative treatments with equal or better benefits for pain while avoiding potential unintended consequences that could result in harms. Unfortunately, much of the findings to date are low SOE or insufficient evidence, and more high-quality studies are needed. Furthermore, the unavailability or unclear availability of studied cannabis products in specific settings may reduce the generalizability of findings.

Our synthesis of the evidence also suggests several important additional questions that might be suitable to be addressed in a clinical practice guideline, based on an assessment of potential benefits and harms, as well as uncertainties in the evidence. Examples of questions that could be addressed through a guideline process include: At what point in the treatment decision tree should cannabis-based medicines be considered? How should patient preferences be taken into account? What are pragmatic dosing guidelines? To further inform guidelines additional studies on the comparative effects on costs of care would be useful.

Implications for Future Research
The gaps in the research evidence that are outlined above lead to specific recommendations for conducting future studies that will improve the strength of the conclusions that can be drawn, and provide better guidance for policymakers, clinicians and patients alike. These are summarized in Table 8.

<table>
<thead>
<tr>
<th>PICOTS Element</th>
<th>Gap in Evidence</th>
<th>Suggested Future Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Populations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Non-White populations, older adults</td>
<td>• Studies to specifically recruit non-White participants to ensure appropriate representation and diversity in studied populations</td>
<td></td>
</tr>
<tr>
<td>• Pain conditions other than neuropathic pain</td>
<td>• Stratified analyses according to sex, including effects in pregnant and lactating persons</td>
<td></td>
</tr>
<tr>
<td>• Subacute pain</td>
<td>• Studies of persons with subacute pain</td>
<td></td>
</tr>
<tr>
<td>• Adolescents</td>
<td>• Studies of adolescents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Studies to assess effects based on age differences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pain populations expanded to include persons with non-neuropathic chronic pain, specifically back pain, other musculoskeletal pain, and fibromyalgia</td>
<td></td>
</tr>
<tr>
<td>PICOTS Element</td>
<td>Gap in Evidence</td>
<td>Suggested Future Research</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>--------------------------</td>
</tr>
</tbody>
</table>
| Interventions | • High THC to CBD ratio from plant origin (not synthetic)
• Comparable THC to CBD ratio formulations other than oromucosal spray
• Low-THC to CBD ratio, whole-plant cannabis, and other cannabinoids
• Kratom | • Studies of high-THC to CBD ratio products derived from whole-plant cannabis, with clear description of extraction or purification process and consistent nomenclature regarding the final product
• Studies of low-THC to CBD ratio products, with clear and consistent description of synthetic or plant-extracted origin
• Studies to compare different routes of administration (e.g., oromucosal spray, oral oil, oral capsule, smoked, etc.)
• Studies should include and compare standardized treatment plans
• Exploration of effects of different cannabinoids
• Studies to assess kratom and/or other plant-based treatments |
| Comparators | • Head-to-head comparisons | • Studies comparing plant-based interventions with other plant-based treatments (including head-to-head comparisons of different cannabis-related products), opioids, non-opioid medications, or nonpharmacological interventions to evaluate active-control comparisons to provide direct evidence on comparative effectiveness |
| Outcomes | • Pain response (≥30% improvement in pain severity)
• Overall function, quality of life
• Depression, anxiety, sleep, opioid use
• Adverse event outcomes | • Outcomes should be consistently defined and reported across studies; ideally utilizing core outcome sets developed for studies of treatments for chronic pain.
• Future studies should include pain response, measures of overall function, and adverse events (overall, serious, and withdrawals due to adverse events at a minimum), in addition to changes in pain severity.
• Patient-centered and patient-reported outcomes (e.g., quality of life, depression, anxiety, and sleep) should be measured using validated tools for diagnosis and measurement of change.
• In addition to reporting on opioid use prior to study enrollment, future studies should report on use of opioids, and other pain medications, during the trial. In particular, there is a need for more information on possible opioid sparing effects of plant-based treatments.
• Studies need to assess serious harms such as development of cannabis use disorder, psychosis, and cognitive deficits. Other adverse events (e.g., sexual dysfunction) may need to be studied as new data emerge. |
| Timing | • Limited evidence on studies >6 weeks in duration | • Considering the chronic nature of the conditions, studies should provide followup assessments at longer timepoints, e.g., ≥3, 6 or 12 months |
Study Design

- RCTs and cohort studies with adequate sample sizes to evaluate all important outcomes
- Cohort studies with adequate control for confounding, ascertainment of exposures and outcomes
- RCT and cohort studies with low risk of bias

Suggested Future Research

- All Designs:
 - Studies with larger sample sizes to adequately power statistical analyses for key outcomes are needed across all interventions except the synthetic medications
 - Should be designed and powered *a priori* to conduct subgroup analyses on important factors such as race, age, sex, and type of product or dose where these are variable
- Cohort studies:
 - Should be conducted prospectively where possible, and conduct and report on ascertainment and validation of exposure and outcomes following best-practice guidance\(^{102}\)
 - Should use appropriate methods to control for confounding on prognostic factors (e.g., baseline pain, prior and continued use of other interventions for pain, psychiatric illnesses)
- RCTs:
 - Should not use run-in periods, or enriched enrollment randomized withdrawal designs that may overestimate effects and limit the generalizability of the findings\(^{103}\)
 - Should be conducted using the parallel design (not crossover)
- Systematic Reviews
 - As more evidence emerges, analyses should stratify and conduct subgroup analyses based on product specifics, pain conditions, and population characteristics.

Abbreviations: CBD = cannabidiol; PICOTS = populations, interventions, comparators, outcomes, timing, and settings; RCT = randomized controlled trial; THC = tetrahydrocannabinol.

Conclusions

Low to moderate strength evidence suggests small improvements in pain (mostly neuropathic), and moderate to large increases in common adverse events (dizziness, sedation, nausea) with high- and comparable THC to CBD ratio extracted cannabinoids and synthetic products versus placebo during short-term treatment (1 to 6 months); extracted high-THC to CBD ratio products were also associated with increased risk of study withdrawal due to adverse events. Evidence for low-THC to CBD ratio products, whole-plant cannabis, and other comparisons, outcomes, and plant-based compounds was unavailable or insufficient to draw conclusions. No studies evaluated adolescents or cannabis for subacute pain. Small sample sizes, lack of evidence for moderate and long-term use and other key outcomes, such as other adverse events and impact on opioid use during treatment, indicate that more research is needed.
References

15. Stockings E, Campbell G, Hall WD, et al. Cannabis and Cannabinoids for the treatment of people with chronic noncancer pain conditions: a systematic review and

Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHRQ</td>
<td>Agency for Healthcare Research and Quality</td>
</tr>
<tr>
<td>ANCOVA</td>
<td>analysis of covariance</td>
</tr>
<tr>
<td>BPI-SF</td>
<td>Brief Pain Inventory – Short Form</td>
</tr>
<tr>
<td>CBC</td>
<td>cannabichromene</td>
</tr>
<tr>
<td>CBD</td>
<td>cannabidiol</td>
</tr>
<tr>
<td>CBDV</td>
<td>cannabidivarin</td>
</tr>
<tr>
<td>CBG</td>
<td>cannabigerol</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>CUD</td>
<td>cannabis use disorder</td>
</tr>
<tr>
<td>DAS28</td>
<td>28-Joint Disease Activity Scale</td>
</tr>
<tr>
<td>EPC</td>
<td>Evidence-based Practice Center</td>
</tr>
<tr>
<td>FIQ</td>
<td>Fibromyalgia Impact Questionnaire</td>
</tr>
<tr>
<td>FM</td>
<td>fibromyalgia</td>
</tr>
<tr>
<td>GHQ-12</td>
<td>Short General Health Questionnaire</td>
</tr>
<tr>
<td>GNDS</td>
<td>Guy’s Neurological Disability Scale</td>
</tr>
<tr>
<td>HADS-D</td>
<td>Hospital Anxiety and Depression Scale</td>
</tr>
<tr>
<td>IA</td>
<td>inflammatory arthritis</td>
</tr>
<tr>
<td>KQ</td>
<td>Key Question</td>
</tr>
<tr>
<td>LAO</td>
<td>long acting opioid</td>
</tr>
<tr>
<td>MCID</td>
<td>minimal clinically important difference</td>
</tr>
<tr>
<td>MCP</td>
<td>New Mexico Medical Cannabis Program</td>
</tr>
<tr>
<td>MD</td>
<td>mean difference</td>
</tr>
<tr>
<td>MME</td>
<td>morphine milligram equivalents</td>
</tr>
<tr>
<td>MS</td>
<td>multiple sclerosis</td>
</tr>
<tr>
<td>NA</td>
<td>not applicable</td>
</tr>
<tr>
<td>NPP</td>
<td>neuropathic pain</td>
</tr>
<tr>
<td>NR</td>
<td>not reported</td>
</tr>
<tr>
<td>NRS</td>
<td>numerical rating scale</td>
</tr>
<tr>
<td>ODI</td>
<td>Oswestry Disability Index</td>
</tr>
<tr>
<td>OME</td>
<td>oral morphine equivalent</td>
</tr>
<tr>
<td>OR</td>
<td>odds ratio</td>
</tr>
<tr>
<td>PBC</td>
<td>plant-based compound</td>
</tr>
<tr>
<td>PDI</td>
<td>Pain Disability Index</td>
</tr>
<tr>
<td>PICOTS</td>
<td>populations, interventions, comparators, outcomes, timing, and settings</td>
</tr>
<tr>
<td>PL</td>
<td>profile likelihood</td>
</tr>
<tr>
<td>RA</td>
<td>rheumatoid arthritis</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>RCT</td>
<td>randomized controlled trial</td>
</tr>
<tr>
<td>RDQ</td>
<td>Roland-Morris Disability Questionnaire</td>
</tr>
<tr>
<td>ROB</td>
<td>risk of bias</td>
</tr>
<tr>
<td>RR</td>
<td>relative risk</td>
</tr>
<tr>
<td>SAE</td>
<td>serious adverse event</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SEADS</td>
<td>Supplemental Evidence and Data for Systematic review</td>
</tr>
<tr>
<td>SF-36</td>
<td>Short Form-36</td>
</tr>
<tr>
<td>SMD</td>
<td>standardized mean difference</td>
</tr>
<tr>
<td>SOE</td>
<td>strength of evidence</td>
</tr>
<tr>
<td>SRDR+</td>
<td>Systematic Review Data Repository Plus</td>
</tr>
<tr>
<td>THC</td>
<td>tetrahydrocannabinol</td>
</tr>
<tr>
<td>TOO</td>
<td>Task Order Officer</td>
</tr>
<tr>
<td>VAS</td>
<td>visual analogue scale</td>
</tr>
<tr>
<td>VP</td>
<td>visceral pain</td>
</tr>
<tr>
<td>WAE</td>
<td>withdrawal due to adverse events</td>
</tr>
<tr>
<td>WP</td>
<td>whole plant</td>
</tr>
</tbody>
</table>
Appendix A. Literature Search Strategies

Note: The search strategies were edited for this update of the report due to an expansion of the scope. Subacute pain was added. No edits were needed to add adolescents, as there were previously no age restrictions in the strategies.

Database: Ovid MEDLINE(R) ALL
1 Chronic Pain/
2 exp arthralgia/ or exp back pain/ or exp headache/ or exp musculoskeletal pain/ or neck pain/ or exp neuralgia/ or exp nociceptive pain/ or pain, intractable/ or fibromyalgia/ or myalgia/
3 Pain/
4 chronic or subacute* or sub-acute*).ti,ab,kw.
5 3 and 4
6 ((chronic or persistent or intractable or refractory or subacute* or sub-acute) adj3 pain).ti,ab,kw.
7 (((back or spine or spinal or leg or musculoskeletal or neuropathic or nociceptive or radicular) adj1 pain) or headache or arthritis or fibromyalgia or osteoarthritis).ti,ab,kw.
8 1 or 2 or 5 or 6 or 7
9 Cannabis/
10 exp Cannabinoids/
11 Medical Marijuana/
12 Mitragyna/
13 (cannabis or cannabinoid* or cannabinol or marijuana or cannabidiol or phytocannabinoid* or tetrahydrocannabinol or dronabinol or nabilone or sativex or "CBD" or "THC" or kratom or khat or qat or psilocybin or hemp or hydroxymitragynine).ti,ab,kf.
14 or/9-13
15 8 and 14
16 limit 15 to english language
17 (Animals/ or Models, Animal/ or Disease Models, Animal/) not Humans/
18 ((animal or animals or avian or bird or birds or bovine or canine or cow* or dog or dogs or cat or cats or feline or hamster* or horse* or lamb or lamb* or mouse or mice or monkey or monkeys or murine or pig or piglet* or pigs or porcine or primate* or rabbit* or rat or rats or rodent* or songbird* or veterinarian*) not (human* or patient*)).ti,kf,jw.
19 or/17-18
20 16 not 19

Database: EBM Reviews - Cochrane Central Register of Controlled Trials
1 Chronic Pain/
2 exp arthralgia/ or exp back pain/ or exp headache/ or exp musculoskeletal pain/ or neck pain/ or exp neuralgia/ or exp nociceptive pain/ or pain, intractable/ or fibromyalgia/ or myalgia/
3 Pain/
4 chronic or subacute* or sub-acute*).ti,ab,kw.
5 3 and 4
6 ((chronic or persistent or intractable or refractory or subacute* or sub-acute) adj3 pain).ti,ab,hw.
7 (((back or spine or spinal or leg or musculoskeletal or neuropathic or nociceptive or radicular) adj1 pain) or headache or arthritis or fibromyalgia or osteoarthritis).ti,ab,hw.
8 1 or 2 or 5 or 6 or 7
9 (cannabis or cannabinoid* or cannabinol or marijuana or cannabidiol or phytocannabinoid* or
tetrahydrocannabinol or dronabinol or nabilone or sativex or "CBD" or "THC" or kratom or khat
or qat or psilocybin or hemp or hydroxymitragynine).ti,ab(hw.
10 8 and 9
11 conference abstract.pt.
12 "journal: conference abstract".pt.
13 "journal: conference review".pt.
14 "http://.www.who.int/trialsearch*".so.
15 "https://clinicaltrials.gov*".so.
16 11 or 12 or 13 or 14 or 15
17 10 not 16

Database: APA PsycInfo
1 Chronic Pain/
2 exp arthralgia/ or exp back pain/ or exp headache/ or exp musculoskeletal pain/ or neck pain/
 or exp neuralgia/ or exp nociceptive pain/ or pain, intractable/ or fibromyalgia/ or myalgia/
3 Pain/
4 (chronic or subacute* or sub-acute*).ti,ab.
5 3 and 4
6 ((chronic or persistent or intractable or refractory or subacute* or sub-acute*) adj3 pain).ti,ab.
7 (((back or spine or spinal or leg or musculoskeletal or neuropathic or nociceptive or radicular)
 adj1 pain) or headache or arthritis or fibromyalgia or osteoarthritis).ti,ab.
8 1 or 2 or 5 or 6 or 7
9 Cannabis/
10 exp Cannabinoids/
11 (cannabis or cannabinoid* or cannabinol or marijuana or cannabidiol or phytocannabinoid*
or tetrahydrocannabinol or dronabinol or nabilone or sativex or "CBD" or "THC" or kratom or
 khat or qat or psilocybin or hemp or hydroxymitragynine).ti,ab.
12 or/9-11
13 8 and 12
14 limit 13 to english language

Database: Elsevier Embase
('cannabis'/exp OR cannabis OR cannabinoid* OR 'cannabinol'/exp OR cannabidiol
 'marijuana'/exp OR 'cannabidiol'/exp OR cannabidiol OR phytocannabinoid* OR 'tetrahydrocannabinol'/exp OR tetrahydrocannabinol OR 'dronabinol'/exp OR dronabinol OR
 'nabilone'/exp OR nabilone OR 'sativex'/exp OR sativex OR 'cbd' OR 'the' OR 'kratom'/exp OR
 kratom OR 'khat'/exp OR khat OR 'qat'/exp OR qat OR 'psilocybin'/exp OR psilocybin OR
 'hemp'/exp OR hemp OR hydroxymitragynine) AND ('chronic pain'/exp OR 'subacute pain'/exp
 OR 'subacute pain' OR arthralgia OR 'back pain' OR headache OR 'musculoskeletal pain' OR
 'neck pain' OR neuralgia OR 'nociceptive pain' OR 'intractable pain' OR fibromyalgia OR
 myalgia OR arthritis OR osteoarthritis) NOT ((animal OR animals OR avian OR bird OR birds
 OR bovine OR canine OR cow* OR dog OR dogs OR cat OR cats OR feline OR hamster* OR
 horse* OR lamb OR lamb* OR mouse OR mice OR monkey OR monkeys OR murine OR pig
 OR piglet* OR pigs OR porcine OR primate* OR rabbit* OR rat OR rats OR rodent* OR

A-2
songbird* OR veterinar*) NOT (human* OR patient*)) AND ('article'/it OR 'article in press'/it OR 'conference paper'/it OR 'preprint'/it OR 'review'/it) AND [english]/lim AND [embase]/lim NOT ([embase]/lim AND [medline]/lim)

Database: Elsevier Scopus

((TITLE (cannabis OR cannabinoid* OR cannabinol OR marijuana OR cannabidiol OR phytocannabinoid* OR tetrahydrocannabinol OR dronabinol OR nabilone OR sativex OR "CBD" OR "THC" OR kratom OR khat OR qat OR psilocybin OR hemp OR hydroxymitragynine)) AND (TITLE ("chronic pain" OR "subacute pain" OR arthralgia OR "back pain" OR headache OR "musculoskeletal pain" OR "neck pain" OR neuralgia OR "nociceptive pain" OR "intractable pain" OR fibromyalgia OR myalgia OR arthritis OR osteoarthritis OR "neuropathic pain"))) AND NOT (TITLE-ABS-KEY (animal OR animals OR avian OR bird OR birds OR bovine OR canine OR cow* OR dog OR dogs OR cat OR cats OR feline OR hamster* OR horse* OR lamb OR lamb* OR mouse OR mice OR monkey OR monkeys OR murine OR pig OR piglet* OR pigs OR porcine OR primate* OR rabbit* OR rat OR rats OR rodent* OR songbird* OR veterinar*)) AND (LIMIT-TO (LANGUAGE , "English"))
Appendix B. Methods

Inclusion and Exclusion Criteria

Table B-1 outlines the inclusion and exclusion criteria related to populations, interventions, comparators, outcomes, timing, and settings (PICOTS), and study designs of interest for each Key Question (KQ). In the winter of 2022, the protocol was amended to include adolescents and subacute pain. These changes were documented on in a revised protocol submitted to PROSPERO, the AHRQ Protocol, and the title, Key Questions, and inclusion and exclusion criteria were edited to reflect said changes. The changes expanded inclusion criteria to include subacute pain and adolescents.

KQ1. In adults or adolescents with chronic or subacute pain, what are the benefits of cannabinoids for treatment of chronic or subacute pain?

KQ2. In adults or adolescents with chronic or subacute pain, what are the harms of cannabinoids for treatment of chronic or subacute pain?

KQ3. In adults or adolescents with chronic or subacute pain, what are the benefits of kratom or other plant-based substances for treatment of chronic or subacute pain?

KQ4. In adults or adolescents with chronic or subacute pain, what are the harms of kratom or other plant-based substances for treatment of chronic or subacute pain?

Table B-1. PICOTS

<table>
<thead>
<tr>
<th>PICOTS Element</th>
<th>Inclusion Criteria</th>
<th>Exclusion Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>All KQs: Adults or adolescents (including pregnant or breastfeeding women) with noncancer chronic (>12 weeks or pain persisting past the time for normal tissue healing) or subacute pain (pain lasting 4 weeks to 3 months). See categorization of specifically included pain populations below.</td>
<td>All KQs: Children; adults with acute pain; patients at end of life or in palliative care (e.g., with late stage cancer-related pain)</td>
</tr>
<tr>
<td>Interventions</td>
<td>KQs 1 and 2: Cannabinoids (including synthetics) using different delivery mechanisms such as oral, buccal, inhalational, topical, or other administration routes KQs 3 and 4: Kratom or other plant-based substances; co-use of kratom or other plant-based substances and opioids All KQs: Co-use of other drugs for pain</td>
<td>All KQs: Non-plant-based interventions, capsaicin, herbal supplements</td>
</tr>
<tr>
<td>Comparators</td>
<td>All KQs: Any comparator, or usual care</td>
<td>All KQs: No comparison</td>
</tr>
<tr>
<td>PICOTS Element</td>
<td>Inclusion Criteria</td>
<td>Exclusion Criteria</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Outcomes</td>
<td>All KQs: Primary efficacy outcomes (i.e., pain, general function [e.g., Short-Form 36 Physical Functioning Scale] or pain-related [e.g., Oswestry Disability Index or Roland-Morris Disability Questionnaire, for low back pain] or disability, including pain interference); harms and adverse effects (e.g., dizziness, nausea, sedation, development of cannabis use disorder, serious adverse events as defined by study); secondary outcomes (i.e., psychological distress including depression and anxiety, quality of life, opioid use, sleep quality, sleep disturbance, healthcare utilization)</td>
<td>All KQs: Other outcomes</td>
</tr>
<tr>
<td>Time of followup</td>
<td>All KQs: short term (4 weeks to <6 months), intermediate term (6 to <12 months), long term (≥1 year)</td>
<td>All KQs: studies with <1-month (4 weeks) of treatment or followup after treatment</td>
</tr>
<tr>
<td>Setting</td>
<td>All KQs: Any nonhospital setting or setting of self-directed care</td>
<td>All KQs: Hospital care, hospice care, emergency department care</td>
</tr>
<tr>
<td>Study design</td>
<td>All KQs: RCTs; observational studies with a concurrent control group for harms, and to fill gaps in the evidence for benefits</td>
<td>All KQs: Other study designs</td>
</tr>
</tbody>
</table>

Abbreviations: KQ = Key Question; PICOTS = populations, interventions, comparators, outcomes, timing, and settings; RCT = randomized controlled trial.

*aThe degree to which pain directly interferes with patients’ ability to participate in their daily activities (challenges in performing daily, social, or work-related tasks due to pain).

Important subgroups to consider in evaluating this evidence are:

- Specific types of pain: neuropathic pain (including nociceptive and centralized; patients with multiple sclerosis and painful skin disorders are included in this category), musculoskeletal pain (including low-back pain), visceral pain, fibromyalgia, inflammatory arthritis, headache disorders, sickle cell disease, and cancer pain (non-end of life)
- Degree of nociciplasticity/central sensitization
- Patient demographics (e.g., age, race, ethnicity, sex, socioeconomic status)
- Comorbidities, including past or current substance use disorders, mental health disorders, medical comorbidities, and high risk for opioid use disorder
- Plant-based compound characteristics: route of administration, frequency of administration, potency of product, dose or estimated dose, specific compounds (e.g. tetrahydrocannabinol, cannabidiol, terpenes, flavonoids), and specific formulations used
- Co-use of other interventions for pain: opioids, nonopioids (e.g., nonsteroidal anti-inflammatory drugs, acetaminophen, gabapentin, pregabalin)

Below are additional details on the scope of this project:

Study Design: For all Key Questions, we included randomized controlled trials (RCTs) of at least 4 weeks duration. Initially, in the base-year of this living systematic review, we included observational studies for both benefits (to address gaps in evidence where RCTs are not available) and harms. Eligible observational studies must have assessed a mean duration of treatment of at least 4 weeks, and have concurrent controls (e.g., cohort and case-control studies). Those controlling for potential confounders were prioritized. As the evidence grows, and more RCTs become available throughout the project, we will reassess the need to include observational studies, specifically to address benefits. A decision to discontinue including them...
will be made based on the strength of the RCT evidence. When the RCT evidence on a given Key Question and outcome is insufficient, we will include observational studies that meet inclusion criteria. When the strength of evidence is low, moderate, or high based on RCTs, we will update our protocol to exclude observational studies. We do not anticipate excluding observational studies assessing harms. For all Key Questions, we excluded uncontrolled observational studies, case series, and case reports. Systematic reviews were used to supplement searches and identify primary studies.

Non-English Language Studies: We restricted to English-language articles, but reviewed English-language abstracts of non-English language articles to identify studies that would otherwise meet inclusion criteria in order to help assess for the likelihood of language bias.

Study Selection

Electronic searches for evidence were conducted in Ovid® MEDLINE®, PsycINFO®, Embase®, the Cochrane Library, and SCOPUS® databases through April 23, 2023. Searches were initially run in September 2020 with ongoing, automated monthly searches to identify newly published studies. For this update, search strategies were updated to include terms for subacute pain and applied to databases from inception to identify studies on subacute pain. No edits were needed to add adolescents, as there were previously no age restrictions in the strategies; however, a separate search was conducted from inception focused on adolescents and reviewed. Additionally, we re-assessed previously excluded studies for eligibility based on revised inclusion criteria. Search strategies are shown in Appendix A. Electronic searches were supplemented with review of reference lists of relevant studies and reviewing the two prior AHRQ pain reports3,4 for studies that met our inclusion criteria. A Federal Register Notice was posted, and a Supplemental Evidence And Data for Systematic review (SEADS) portal was available for submission of unpublished studies for last year’s version of this report. As part of living systematic review methods, the electronic searches were automated to be run on a biweekly basis, with results emailed directly to the EPC librarian and the research team for processing. Citations were uploaded into DistillerSR® software for study selection management.

The updated criteria listed above were used to determine eligibility for inclusion and exclusion of abstracts. Using Distiller® SR, the review team conducted manual online assessment of study citations. All citations deemed potentially relevant by at least one of the reviewers were retrieved for full-text review. To ensure accuracy, any citation deemed not relevant for full-text review were reviewed by a second researcher. We initially planned to explore using the Distiller® AI feature to automate exclusion of abstracts that are clearly not relevant. Briefly, Distiller®SR AI is training in the background, learning from the human decisions on abstract eligibility. We planned to utilize the Distiller® AI decisions to assist with dual review when it reached a level of 95 percent accuracy (this typically takes 2000 citations, but varies by topic).5 However, the biweekly citation counts have been low, so the AI feature has not been required.

Data Extraction

After studies were selected for inclusion, data were abstracted into categories that included but are not limited to: study design, year, setting, country, sample size, eligibility criteria, population and clinical characteristics, intervention characteristics, and results relevant to each Key Question as outlined in the previous inclusion and exclusion criteria section. Information
that was abstracted that was relevant for assessing applicability included the number of patients randomized relative to the number of patients enrolled, use of run-in or wash-out periods, and characteristics of the population, intervention, and care settings. All study data were verified for accuracy and completeness by a second team member. On a quarterly basis, any newly identified studies were abstracted and evidence tables updated. Quarterly reports were published to the Agency for Healthcare Research and Quality (AHRQ) website, and evidence tables are updated in AHRQ’s Systematic Review Data Repository Plus (SRDR+).

Risk of Bias Assessment of Individual Studies
Predefined criteria were used to assess the risk of bias of individual controlled trials, systematic reviews, and observational studies. RCTs were evaluated using criteria and methods developed by the Cochrane Back Review Group,6 and cohort and case-control studies were evaluated using criteria developed by the U.S. Preventive Services Task Force.7 These criteria and methods were used in accordance with the approach recommended in the chapter, Assessing the Risk of Bias of Individual Studies When Comparing Medical Interventions in the Methods Guide for Effectiveness and Comparative Effectiveness Reviews developed by AHRQ.8 Studies were given an overall rating of “low,” “medium,” or “high” risk of bias. We used DistillerSR® software to conduct these assessments, using dual review by two independent reviewers. Disagreements identified by DistillerSR® were resolved through consensus. Assessments and final ratings were converted to evidence tables, and will be uploaded on a quarterly basis to SRDR+.

Data Synthesis and Analysis
We constructed evidence tables showing study characteristics (as discussed above), results, and risk of bias ratings for all included studies, and summary tables to highlight the main findings. Data were qualitatively summarized in tables, using ranges and descriptive analysis and interpretation of the results. Studies identified in prior AHRQ chronic pain reports3,4 that meet inclusion criteria are included in this review. We evaluated the persistence of benefits or harms by evaluating the three periods identified in prior AHRQ pain reports (3 to <6 months, 6 to 12 months, and ≥12 months).3,4,9-11

Meta-analyses were conducted to summarize data and obtain more precise estimates on outcomes for which studies were homogeneous enough to provide a meaningful combined estimate.12 The decision to conduct quantitative synthesis depends on presence of at least two studies, completeness of reported outcomes and a lack of heterogeneity among the reported results. To determine whether meta-analyses were indicated, we considered the risk of bias of the studies and the heterogeneity among studies in design, patient population, interventions, and outcomes. Meta-analyses were conducted using a random effects model based on the profile likelihood method,13 and statistical heterogeneity was assessed using the I² method. Publication bias (small sample size bias) was assessed using funnel plots when there are eight or more studies in meta-analyses. To evaluate subgroup effects, we summarized within-study analyses of subgroup differences and performed study-level analyses on key demographic and clinical factors. Sensitivity analyses were conducted on study risk of bias.

The magnitude of effects for pain and function is classified using the same system used in other recent AHRQ Evidence-based Practice Center (EPC) reviews conducted on chronic pain3,4,9-11 to provide a consistent benchmark for comparing results of pain interventions across reviews. Table B-2 provides thresholds for determining the magnitude of effect. A small effect is
defined for pain as a mean between-group difference following treatment of 5 to 10 points on a 0- to 100-point visual analog scale (VAS), 0.5 to 1.0 points on a 0- to 10-point numeric rating scale, or equivalent; for function as a mean difference of 5 to 10 points on the 0- to 100-point Oswestry Disability Index (ODI) or 1 to 2 points on the 0- to 24-point Roland-Morris Disability Questionnaire (RDQ), or equivalent; and for any outcome as a standardized mean difference (SMD) of 0.2 to 0.5. A moderate effect is defined for pain as a mean difference of 10 to 20 points on a 0- to 100-point VAS, for function as a mean difference of 10 to 20 points on the ODI or 2 to 5 points on the RDQ, and for any outcome as an SMD of 0.5 to 0.8. Large effects are defined as greater than moderate. We apply similar thresholds to other outcomes measures. Small effects using this system may be below published thresholds for clinically meaningful effects; however, there is variability across individual patients regarding what constitutes a clinically meaningful effect, which is influenced by a number of factors such as preferences, duration and type of chronic pain, baseline symptom severity, harms, and costs. For some patients a small improvement in pain or function using a treatment with low cost or no serious harms may be important.

Table B-2. Definitions of effect sizes

<table>
<thead>
<tr>
<th>Effect Size</th>
<th>Definition</th>
</tr>
</thead>
</table>
| Small effect | • MD 0.5 to 1.0 points on a 0 to 10-point scale, 5 to 10 points on a 0 to 100-point scale
| | • SMD 0.2 to 0.5
| | • RR/OR 1.2 to 1.4 |
| Moderate effect | • MD >1 to 2 points on a 0 to 10-point scale, >10 to 20 points on a 0 to 100-point scale
| | • SMD >0.5 to 0.8
| | • RR/OR 1.5 to 1.9 |
| Large effect | • MD >2 points on a 0 to 10-point scale, >20 points on a 0 to 100-point scale
| | • SMD >0.8
| | • RR/OR ≥2.0 |

Abbreviations: MD = mean difference; OR = odds ratio; RR = relative risk; SMD = standardized mean difference.

Findings that were not statistically significant were interpreted as follows:
- In determining the strength of evidence (SOE), the precision of evidence was downgraded two levels if inadequate sample size (optimal information size) and the 95% confidence interval includes both potentially meaningful benefit and harm (e.g. for a relative effect, the lower bound is ≤ 0.75 and the upper bound is ≥ 1.25)\(^4\)
- If the magnitude of effect is below the threshold for a small effect, the finding is considered to have “No effect”\(^3\)
- If the magnitude of effect is small or greater, and SOE is at least Low, the finding is considered to have a “Potential effect, not statistically significant”
- If the magnitude of effect is small or greater, and SOE is insufficient, the finding is considered to have “failed to demonstrate or exclude a beneficial/detrimental effect.”\(^15\)

Grading the Strength of the Body of Evidence

We assessed the SOE for all primary comparisons and outcomes listed in Table B-1. Regardless of whether evidence is synthesized quantitatively or qualitatively, the strength of evidence for each Key Question/body of evidence is initially assessed by one researcher for each clinical outcome by using the approach described in the AHRQ Methods Guide.\(^8\) To ensure consistency and validity of the evaluation, the strength of evidence is reviewed by the entire team of investigators prior to assigning a final grade on the following factors:
• Study limitations (low, medium, or high level of study limitations)
• Consistency (consistent, inconsistent, or unknown/not applicable)
• Directness (direct or indirect)
• Precision (precise or imprecise)
• Reporting/publication bias (suspected or undetected)

The SOE was assigned an overall grade of high, moderate, low, or insufficient according to a four-level scale by evaluating and weighing the combined results of the above domains:

• High—We are very confident that the estimate of effect lies close to the true effect for this outcome. The body of evidence has few or no deficiencies. We believe that the findings are stable, i.e., another study would not change the conclusions.
• Moderate—We are moderately confident that the estimate of effect lies close to the true effect for this outcome. The body of evidence has some deficiencies. We believe that the findings are likely to be stable, but some doubt remains.
• Low—We have limited confidence that the estimate of effect lies close to the true effect for this outcome. The body of evidence has major or numerous deficiencies (or both). We believe that additional evidence is needed before concluding either that the findings are stable or that the estimate of effect is close to the true effect.
• Insufficient—We have no evidence, we are unable to estimate an effect, or we have no confidence in the estimate of effect for this outcome. No evidence is available or the body of evidence has unacceptable deficiencies, precluding reaching a conclusion.

Plain-language statements are used in the Main Points, the Evidence Summary and the Discussion to convey the SOE. High SOE is described as "is associated with" or simply "reduces/increases;" moderate SOE is described as "probably;" and low SOE is described as "may be."16

Peer Review and Public Commentary

Peer reviewers are invited to provide written comments on the draft report based on their clinical, content, or methodological expertise. The EPC considers all peer review comments on the draft report in preparation of the final report. Peer reviewers do not participate in writing or editing of the final report or other products. The final report does not necessarily represent the views of individual reviewers. The EPC will complete a disposition of all peer review comments. The disposition of comments for systematic reviews and technical briefs will be published 3 months after the publication of the evidence report.

Potential Peer Reviewers must disclose any financial conflicts of interest greater than $5,000 and any other relevant business or professional conflicts of interest. Invited Peer Reviewers may not have any financial conflict of interest greater than $5,000. Peer reviewers who disclose potential business or professional conflicts of interest may submit comments on draft reports through the public comment mechanism.

Assessing Applicability

Applicability is assessed in accordance with the AHRQ Methods Guide,17 which is based on the PICOTS framework. Applicability addresses the extent to which outcomes associated with an intervention are likely to be similar across different patients and settings in clinical practice.
based on the populations, interventions, comparisons, and outcomes evaluated in the studies. For example, exclusion of chronic pain patients with psychiatric comorbidities reduces applicability to clinical practice since many patients with chronic pain have such comorbidities and may respond more poorly to treatment. Similarly, trials that use active run-in periods evaluate highly selected populations who tolerated and responded well to the study intervention, rather than the general population of chronic pain patients being considered for the intervention. Factors that may affect applicability which we have identified a priori include eligibility criteria and patient factors (e.g., demographic characteristics, duration or severity of pain, underlying pain condition, presence of medical and psychiatric comorbidities, event rates and symptom severity in treatment and control groups), intervention factors (e.g., dose and duration of therapy, intensity and frequency of monitoring, level of adherence, use of co-interventions), comparisons (e.g., type and dosing of comparison), outcomes (e.g., use of unvalidated or nonstandardized outcomes, measurement of short-term or surrogate outcomes), settings (e.g., primary care vs. specialty setting, country), and study design features (e.g., use of run-in periods) relevant to applicability. We use this information to assess the situations in which the evidence is most relevant and to evaluate applicability to real-world clinical practice in typical U.S. settings, summarizing applicability assessments qualitatively.
Appendix B References

Appendix C. Included Studies List

10.1016/j.jpain.2015.07.014. PMID: 26385201.

Appendix D. Results – Study Level Summary Tables and Meta-Analyses

Appendix D-1. Individual Study Summary Tables

Tables D-1 through D-5 present details and results for primary outcomes, serious adverse events and withdrawals due to adverse events for each included study. Tables D-1 through D-3 provide information for randomized controlled trials and are organized by their respective ratio of tetrahydrocannabinol to cannabidiol. Table D-4 includes details for studies of other cannabinoids, and Table D-5 presents details of observational studies.

Table D-1. Comparable THC to CBD ratio study primary outcomes

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Risk of Bias</th>
<th>Study Design</th>
<th>Pain Condition</th>
<th>Comparison (n)</th>
<th>Followup Duration</th>
<th>Primary Pain Outcomes (Response, Severity)</th>
<th>Overall Function/Disability (Including Pain Interference)</th>
<th>Serious Adverse Events and Withdrawals Due to Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blake, 2006</td>
<td>Moderate</td>
<td>RCT</td>
<td>Inflammatory arthritis-rheumatoid arthritis</td>
<td>A: THC/CBD oromucosal spray, mean dose 5.4 sprays/day (31) B: Placebo (27)</td>
<td>5 weeks Whole plant extracted</td>
<td>Pain severity (mean [SD NR] 0 to 10 NRS scale): 3.1 vs. 4.1, MD −1.04 (95% CI −1.9 to −0.18)</td>
<td>Function (mean [SD NR] 0 to 10 28–Joint Disease Activity Score scale): 5 vs. 5.9, MD −0.76 (95% CI −1.23 to −0.28)</td>
<td>SAE: 0/31 (0%) vs. 2/27 (7.41%), RR 0.18 (95% CI 0.01 to 3.49) WAE: 0/31 (0%) vs. 3/27 (11.11%), RR 0.13 (95% CI 0.01 to 2.32)</td>
</tr>
<tr>
<td>Langford, 2013</td>
<td>Low</td>
<td>RCT</td>
<td>Neuropathic pain-multiple sclerosis</td>
<td>A: THC/CBD oromucosal spray, mean dose 8.8 sprays/day (167) B: Placebo (172)</td>
<td>15 weeks Whole plant extracted</td>
<td>Pain response ≥30% (NRS scale): 83/167 (49.75%) vs. 77/172 (44.77%), RR 1.11 (95% CI 0.89 to 1.39)</td>
<td>Pain interference (0 to 10 BPI–SF scale): Treatment difference −0.12, p=0.56</td>
<td>WAE: 15/167 (8.98%) vs. 12/172 (6.98%), RR 1.29 (95% CI 0.62 to 2.67)</td>
</tr>
<tr>
<td>Lynch, 2014</td>
<td>High</td>
<td>RCT (crossover)</td>
<td>Neuropathic pain-chemotherapy induced</td>
<td>A: THC/CBD oromucosal spray (dose NR), mean dose 8 sprays/day (8) B: Placebo (8)</td>
<td>4 weeks Whole plant extracted</td>
<td>Pain severity (mean, 0 to 10 NRS–PI scale): 6 (95% CI 6.98 to 5.02) vs. 6.38 (95% CI 5.67 to 7.09)</td>
<td>Function (mean [SD] 0 to 100 SF–36 Physical Functioning scale): Treatment difference −0.45, p=0.785</td>
<td>SAE: 0/8 (0%) vs. 0/8 (0%), RR 1.00 (95% CI 0.02 to 45.13) WAE: 0/8 (0%) vs. 0/8 (0%), RR 1.00 (95% CI 0.02 to 45.13)</td>
</tr>
<tr>
<td>Author, Year</td>
<td>Risk of Bias</td>
<td>Study Design</td>
<td>Pain Condition</td>
<td>Comparison (n)</td>
<td>Followup Duration Derivative</td>
<td>Primary Pain Outcomes (Response, Severity)</td>
<td>Overall Function/Disability (Including Pain Interference)</td>
<td>Serious Adverse Events and Withdrawals Due to Adverse Events</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------------------------</td>
<td>---------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Nurmikko, 2007</td>
<td>Moderate RCT</td>
<td>Neuropathic pain-mixed</td>
<td>A: 2.7 mg THC/2.5 mg CBD/100 mcl oromucosal spray, mean dose 10.9 sprays/day (63) B: Placebo (62) 5 weeks Whole plant extracted</td>
<td>Pain response ≥30% (NRS scale): 16/73 (25.4%) vs. 9/62 (14.52%), RR 1.75 (95% CI 0.84 to 3.66) Pain severity (mean [SD NR] 0 to 10 NRS scale): 5.82 vs. 6.68, treatment difference −0.96 (95% CI −1.59 to −0.32)</td>
<td>Function (0 to 70 Pain Disability Index scale): MD −5.85 (95% CI −9.62 to −2.09)</td>
<td>SAE: 1/63 (1.6%) vs. 0/62 (0%), RR 2.95 (95% CI 0.12 to 71.13) WAE: 11/63 (17.46%) vs. 2/62 (3.23%), RR 5.41 (95% CI 1.25 to 23.43)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rog, 2005</td>
<td>Moderate RCT</td>
<td>Neuropathic pain-multiple sclerosis</td>
<td>A: 2.7 mg THC/2.5 mg CBD/100 mcl oromucosal spray, mean dose 9.6 sprays/day (34) B: Placebo (32) 5 weeks Whole plant extracted</td>
<td>Pain severity (mean [95% CI] 0 to 10 NRS scale): 3.85 (3.13 to 4.58) vs. 4.96 (4.19 to 5.72), treatment difference −1.25 (95% CI −2.11 to −0.39)</td>
<td>NR</td>
<td>SAE: 0/34 (0%) vs. 0/32 (0%), RR 0.94 (95% CI 0.02 to 46.16) WAE: 2/34 (5.88%) vs. 0/32 (0%), RR 4.71 (95% CI 0.23 to 94.58)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selvarajah, 2010</td>
<td>High RCT</td>
<td>Neuropathic pain-diabetic neuropathy</td>
<td>A: 2.7 mg THC/2.5 mg CBD/100 mcl oromucosal spray, mean dose 7 sprays/day (15) B: Placebo (14) 12 weeks Whole plant extracted</td>
<td>Pain severity (mean [SD] 0 to 100 NPS scale): 51.6 (21.9) vs. 51.9 (24.1), MD −0.3 (SE 8.54) (95% CI −17.83 to 17.23)</td>
<td>Function (mean [SD] 0 to 100 SF−36 Physical Functioning scale): 30.5 (16.6) vs. 36.5 (27.9), MD 6 (SE 8.5) (95% CI −11.35 to 23.35)</td>
<td>NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serpell, 2014</td>
<td>Moderate RCT</td>
<td>Neuropathic pain-mixed</td>
<td>A: 2.7 mg THC/2.5 mg CBD/100 mcl oromucosal spray, mean dose 8.9 sprays/day (128) B: Placebo (118) 15 weeks Whole plant extracted</td>
<td>Pain response ≥30% (NRS scale): 34/123 (27.64%) vs. 19/117 (16.24%), RR 1.7 (95% CI 1.03 to 2.91) Pain severity (mean [SE NR] 0 to 10 NRS scale): Mean reduction −0.34 (0.23) (95% CI −0.79 to 0.11)</td>
<td>Pain interference (0 to 10 BPI−SF scale): Treatment difference −0.32 (SE 0.241) (95% CI −0.8 to 0.15)</td>
<td>SAE: 10/128 (7.81%) vs. 6% (7/118), RR 1.32 (95% CI 0.52 to 3.35) WAE: 25/128 (19.53%) vs. 25/118 (21.19%), RR 0.92 (95% CI 0.56 to 1.51)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: BPI−SF = brief pain inventory−short form; CBD = cannabidiol; CI = confidence interval; MD = mean difference; NPS = neuropathic pain scale; NR = not reported; NRS = numeric rating scale; NRS−PI = numeric rating scale for pain intensity; SAE = serious adverse events; SD = standard deviation; SE = standard error; SF−36= short form−36; THC = tetrahydrocannabinol; RCT = randomized controlled trial; RR = relative risk; WAE = withdrawal due to due adverse events

a Other serious adverse events (i.e., psychosis and cannabis use disorder) not reported in any study.

b Difference in median differences.

c Difference in mean differences.

d Mean sprays calculated by systematic review team.
Table D-2. High-THC to CBD ratio study primary outcomes

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Risk of Bias</th>
<th>Study Design</th>
<th>Pain Condition</th>
<th>Comparison (n)</th>
<th>Primary Pain Outcomes (Response, Severity)</th>
<th>Overall Function/Disability (Including Pain Interference)</th>
<th>Serious Adverse Events and Withdrawals Due to Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaves, 2020</td>
<td>Low</td>
<td>RCT</td>
<td>Fibromyalgia</td>
<td>A: 1.2 mg THC/0.02 mg CBD sublingual drops, mean 3.6 drops/day (8) B: Placebo (9) 8 weeks Whole plant extracted</td>
<td>Pain severity (mean [SD] 0 to 10 FIQ scale): 3.75 (2.49) vs. 7.67 (1.84), MD −3.92 (1.05) (95% CI −6.17 to −1.68)</td>
<td>Function (mean [SD] 0 to 10 FIQ scale): 5.83 (2.02) vs. 4.07 (2.25), MD 1.76 (1.04) (95% CI −0.46 to 3.98)</td>
<td>WAE: 0/8 (0%) vs. 0/9 (0%), RR 1.11 (95% CI 0.02 to 50.43)</td>
</tr>
<tr>
<td>de Vries, 2017</td>
<td>Moderate</td>
<td>RCT</td>
<td>Visceral pain- chronic pancreatitis and postsurgical abdominal pain</td>
<td>A: THC oral tablet (Dronabinol), range 15 to 24 mg/day (30) B: Placebo (32) 7 weeks Synthetic</td>
<td>Pain severity (mean [SD] 0 to 10 VAS scale): 2.4 (2.28) vs. 3.5 (2.42), MD −1.1 (SE 0.68) (95% CI −2.46 to 0.26)</td>
<td>NR</td>
<td>WAE: 7/30 (23.33%) vs. 2/32 (6.25%), RR 3.73 (95% CI 0.84 to 16.57)</td>
</tr>
<tr>
<td>Frank, 2008</td>
<td>Moderate</td>
<td>RCT (crossover)</td>
<td>Neuropathic pain</td>
<td>A: THC oral capsule (Nabilone), max dose 2 mg/day (48) B: Dihydrocodeine 30 mg, max dose 240 mg/day (48) 6 weeks Synthetic</td>
<td>Pain severity (mean [SD NR] 0 to 10 VAS scale): Treatment effect 5.7 (95% CI 0.5 to 10.9)</td>
<td>Function (mean [SD NR] 0 to 100 SF−36 Physical Functioning scale): Treatment effect 10.8 (95% CI 2.3 to 19.2)</td>
<td>SAE: 0/48 (0%) vs. 0/48 (0%), RR 1.00 (95% CI 0.02 to 49.40) WAE: 2/48 (4%) vs. 6/48 (12.5%), RR 0.34 (95% CI 0.07 to 1.57)</td>
</tr>
<tr>
<td>Author, Year</td>
<td>Risk of Bias</td>
<td>Study Design</td>
<td>Pain Condition</td>
<td>Comparison (n)</td>
<td>Primary Pain Outcomes (Response, Severity)</td>
<td>Overall Function/Disability (Including Pain Interference)</td>
<td>Serious Adverse Events and Withdrawals Due to Adverse Events</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------------</td>
<td>---------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Pini, 2012</td>
<td>Low</td>
<td>RCT (crossover)</td>
<td>Headache- medication overuse headache</td>
<td>A: THC 0.5 mg oral capsule (Nabilone) daily (26) B: Ibuprofen 400 mg/day (26) 8 weeks</td>
<td>Pain severity (mean [SD] 0 to 10 VAS scale): 5.55 (2.5) vs. 6.75 (2.4), MD −1.2 (0.68) (95% CI −2.57 to 0.17)</td>
<td>NR</td>
<td>WAE: 1/30 (3.33%) vs. 1/30 (3.33%), RR 1.00 (95% CI 0.66 to 15.26)</td>
</tr>
<tr>
<td>Rintala, 2010</td>
<td>High</td>
<td>RCT (crossover)</td>
<td>Neuropathic pain- spinal cord injury</td>
<td>A: THC 5 mg oral capsule (Dronabinol), max dose 20 mg/day (7) B: Diphenhydramine 25 mg, max dose 75 mg/day (5) 47 weeks</td>
<td>Pain severity (mean [SD NR] 0 to 10 BPI scale): 5.8 vs. 5.8</td>
<td>NR</td>
<td>SAE: 1/7 (14.29%) vs. 1/5 (20%), RR 0.71 (95% CI 0.57 to 8.91) WAE: 1/7 (14.29%) vs. 0/5 (0%), RR 2.25 (95% CI 0.11 to 46.13)</td>
</tr>
<tr>
<td>Schimrigk, 2017</td>
<td>Low</td>
<td>RCT</td>
<td>Neuropathic pain- multiple sclerosis</td>
<td>A: THC 2.5 mg oral capsule (Dronabinol), mean dose 13 mg/day (124) B: Placebo (116) 16 weeks</td>
<td>Pain severity (mean [SD] 0 to 10 NRS scale): 4.48 (2.04) vs. 4.92 (2.04), MD NR, p=0.676</td>
<td>NR</td>
<td>SAE: 12/124 (9.68%) vs. 7/116 (6.03%), RR 1.53 (95% CI 0.63 to 3.76) WAE: 19/124 (15.32%) vs. 12/116 (10.34%), RR 1.48 (95% CI 0.75 to 2.91)</td>
</tr>
<tr>
<td>Skrabek, 2008</td>
<td>Moderate</td>
<td>RCT</td>
<td>Fibromyalgia</td>
<td>A: THC 0.5 mg oral capsule (Nabilone), endpoint dose 2 mg/day (15) B: Placebo (18) 4 weeks</td>
<td>Pain response ≥30% (NRS scale): 11/13 (84.62%) vs. 5/13 (38.46%), RR 2.2 (95% CI 1.06 to 4.55) Pain severity (mean [SD] 0 to 10 NRS scale): 3.5 (1.3) vs. 5.4 (1.7), MD −1.9 (0.59) (95% CI −3.13 to −0.68)</td>
<td>NR</td>
<td>SAE: 0/15 (0%) vs. 0/18 (0%), RR 1.19 (95% CI 0.02 to 56.54) WAE: 1/20 (5%) vs. 1/20 (5%), RR 1.00 (95% CI 0.07 to 14.90)</td>
</tr>
<tr>
<td>Toth, 2012</td>
<td>Low</td>
<td>RCT</td>
<td>Neuropathic pain- diabetic neuropathy</td>
<td>A: THC 0.5 mg oral capsule (Nabilone), max dose 4 mg/day (13) B: Placebo (13) 5 weeks</td>
<td>Pain response ≥30% (NRS scale): 11/13 (84.62%) vs. 5/13 (38.46%), RR 2.2 (95% CI 1.06 to 4.55)</td>
<td>Pain interference (mean [SD] 0 to 10 MBPI scale): 2.5 (1.6) vs. 3.6 (0.9), MD −1.1 (0.51) (95% CI −2.15 to −0.05)</td>
<td>NR</td>
</tr>
<tr>
<td>Author, Year</td>
<td>Risk of Bias</td>
<td>Study Design</td>
<td>Pain Condition</td>
<td>Comparison (n)</td>
<td>Primary Pain Outcomes (Response, Severity)</td>
<td>Overall Function/Disability (Including Pain Interference)</td>
<td>Serious Adverse Events and Withdrawals Due to Adverse Events</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Turcotte, 2015</td>
<td>Moderate RCT</td>
<td>Neuropathic pain- multiple sclerosis</td>
<td>A: THC 0.5 mg oral capsule (Nabilone), max dose 2 mg/day (8) B: Placebo (7)</td>
<td>9 weeks Synthetic</td>
<td>Pain severity (mean [SD NR] 0 to 100 VAS scale): 35 vs. 57<sup>a</sup> Pain interference (mean [SD NR] 0 to 100 VAS impact scale): 41 vs. 40<sup>b</sup></td>
<td>SAE: 0/8 (0%) vs. 0/7 (0%), RR 0.89 (95% CI 0.02 to 39.84) WAE: 1/8 (12.5%) vs. 0/7 (0%), RR 2.87 (95% CI 0.13 to 56.63)</td>
<td></td>
</tr>
<tr>
<td>Wissel, 2006</td>
<td>High RCT (crossover)</td>
<td>Neuropathic pain- multiple sclerosis</td>
<td>A: THC 0.5 mg oral capsule (Nabilone), endpoint dose 1 mg/day (13) B: Placebo (13)</td>
<td>4 weeks Synthetic</td>
<td>Pain severity (median [SD NR] 11 Point Box Test): 4 vs. 6, p<0.05</td>
<td>NR</td>
<td>WAE: 2/13 (15.38%) vs. 0/13 (0%), RR 5.00 (95% CI 0.26 to 95.02)</td>
</tr>
<tr>
<td>Zajicek, 2012</td>
<td>Moderate RCT</td>
<td>Neuropathic pain- multiple sclerosis</td>
<td>A: THC 2.5 mg capsule, max dose 25 mg/day (143) B: Placebo (134)</td>
<td>12 weeks Whole plant extracted</td>
<td>Pain severity (mean [SD] 0 to 10 CRS scale): 4.1 (2.9) vs. 4.7 (3.0), MD −0.6 (95% CI −1.3 to 0.1)</td>
<td>NR</td>
<td>SAE: 7/143 (4.9%) vs. 3/134 (2.24%), RR 2.19 (95% CI 0.58 to 8.28) WAE: 30/143 (20.98%) vs. 9/134 (6.72%), RR 3.12 (95% CI 1.54 to 6.33)</td>
</tr>
<tr>
<td>Zubcevic, 2022</td>
<td>Low RCT</td>
<td>Peripheral neuropathic pain</td>
<td>A: THC 2.5 mg capsule (dronabinol), max dose 25 mg/day (28) B: CBD 5 mg capsule (unknown if synthetic or plant-derived), max dose 50 mg/day (27) C: CBD/THC capsule, max dose 50 mg CBD (unknown of synthetic or plant-derived)/25 mg THC (dronabinol)/day (30) D: Placebo (30)</td>
<td>Pain response ≥30% (NRS scale): 12/28 (42.86%) vs. 9/27 (33.34%) vs. 18/30 (60.00%) vs. 17/30 (56/67%), RR (95% CI) A vs. B: 1.29 (0.65 to 2.55) A vs. C: 0.71 (0.43 to 1.20) A vs. D: 0.76 (0.45 to 1.28) B vs. C: 0.56 (0.30 to 1.02) B vs. D: 0.59 (0.32 to 1.09) C vs. D: 1.06 (0.69 to 1.62) Pain severity change from baseline (mean [95% CI] 0 to 10 NRS scale): −1.4 (-2.2 to -0.7) vs. −0.6 (-1.2 to 0.1) vs. −1.9 (-2.7 to -1.2) vs. −1.9 (-2.7 to -1.0) Pain interference (mean [SD] 0 to 10 Pain Impact on Daily Activities Scale): MD (95% CI) A vs. D: 0.36 (-1.19 to 1.91) B vs. D: 1.24 (-0.32 to 2.81) C vs. D: 0.89 (-0.64 to 2.42) SAE: 0/28 (0%) vs. 0/27 (0%) vs. 1/30 (3.3%) vs. 0/30 (0%), RR (95% CI) A vs. B: 0.96 (0.02 to 47.01) A vs. C: 0.36 (0.02 to 8.40) A vs. D: 1.07 (0.02 to 52.14) B vs. C: 0.37 (0.02 to 8.70) B vs. D: 1.11 (0.02 to 53.97) C vs. D: 3.00 (0.13 to 70.83) WAE: 1/28 (3.57%) vs. 2/27 (7.41%) vs. 4/30 (13.33%) vs. 0/30 (0%), RR (95% CI) A vs. B: 0.48 (0.05 to 5.01) A vs. C: 0.27 (0.03 to 2.25) A vs. D: 3.21 (0.14 to 75.62) B vs. C: 0.56 (0.11 to 2.80) B vs. D: 5.54 (0.28 to 110.42) C vs. D: 9.00 (0.51 to 160.18)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Abbreviations: BPI = brief pain inventory; CBD = cannabidiol; CI = confidence interval; CRS = category rating scale; FIQ = fibromyalgia impact questionnaire; MBPI = modified brief pain inventory; MD = mean difference; NR = not reported; NRS = numeric rating scale; RCT = randomized controlled trial; SAE = serious adverse events; SD = standard deviation; SE = standard error; THC = tetrahydrocannabinol; RR = relative risk; VAS = visual analog scale; WAE = withdrawal due to adverse events.

a Other serious adverse events (i.e., psychosis and cannabis use disorder) not reported in any study.

b Estimated from graph.
Table D-3. Low-THC to CBD ratio study primary outcomes

<table>
<thead>
<tr>
<th>Author, Year Risk of Bias Study Design Pain Condition</th>
<th>Comparison (n) Followup Duration Derivative</th>
<th>Primary Pain Outcomes (Response, Severity)</th>
<th>Overall Function/Disability (Including Pain Interference)</th>
<th>Serious Adverse Events and Withdrawals Due to Adverse Eventsa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bassat, 2023 High RCT (crossover) Chronic pain-mixed</td>
<td>A: 3 drops (2.5 mg THC/15 mg CBD) sublingual oil, max dose 18 drops per day (15 mg THC/90 mg CBD) (7) B: 3 drops (2.5 mg THC/15 mg CBD) ≥97% purified sublingual oil, max dose 18 drops per day (15 mg THC/90 mg CBD) (5) C: Placebo (9) 16 weeks Whole plant extracted</td>
<td>NR</td>
<td>NR</td>
<td>SAE: 6/9 (67%) vs. 4/6 (67%) vs. 3/10 (30%) WAE: 1/4 (25%) vs. 1/5 (20%) vs. 1/6 (16.7%)</td>
</tr>
<tr>
<td>Vela, 2021 Moderate RCT Musculoskeletal - hand osteoarthritis and psoriatic arthritis</td>
<td>A: CBD oral tablet (20 to 30 mg/day) (68) B: Placebo (61) 12 weeks Synthetic CBD</td>
<td>Pain response ≥30% (VAS 0 to 100 scale): 27/68 (39.7%) vs. 24/61 (39.3%), RR 1.01 (95% CI 0.66 to 1.55) Pain severity (0 to 100 VAS scale): mean NR, MD 0.23 (95% CI −9.41 to 9.9)</td>
<td>Function/disability (0 to 3 HAQ-DI scale): mean NR, MD 0.03 (95% CI −0.11 to 0.18)</td>
<td>SAE: 2/58 (3.4%) vs. 2/61 (3.3%), RR 1.05 (95% CI 0.15 to 7.22) WAE: 0/70 (0%) vs. 2/66 (3%), RR 0.19 (95% CI 0.01 to 3.86)</td>
</tr>
<tr>
<td>Xu, 2020 High RCT (crossover) Neuropathic pain-mixed</td>
<td>A: CBD cream (250 mg/3 oz) up to 4 times daily (15) B: Placebo (14) 4 weeks Whole plant extracted</td>
<td>Pain severity (mean [SD] 0 to 10 NPS scale): 3.33 (2.02) vs. 5.55 (2.81), MD −2.22 (95% CI −4.07 to −0.37)</td>
<td>NR</td>
<td>SAE: 0/15 (0%) vs. 0/14 (0%), RR 0.94 (95% CI 0.02 to 44.33)</td>
</tr>
</tbody>
</table>

Abbreviations: CBD = cannabidiol; HAQ-DI = Health Assessment Questionnaire – Disability Index; MD = mean difference; NPS = neuropathic pain scale; NR = not reported; RCT = randomized controlled trial; RR = relative risk; SAE = serious adverse event; SD = standard deviation; THC = tetrahydrocannabinol; VAS = visual analog scale; WAE = withdrawal due to adverse event.
Other serious adverse events (i.e., psychosis and cannabis use disorder) not reported in any study.

Table D-4. Other cannabinoids study primary outcomes

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Risk of Bias</th>
<th>Study Design</th>
<th>Pain Condition</th>
<th>Comparison (n)</th>
<th>Primary Pain Outcomes (Response, Severity)</th>
<th>Overall Function/Disability (Including Pain Interference)</th>
<th>Serious Adverse Events and Withdrawals Due to Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eibach, 2020</td>
<td>Moderate RCT (crossover)</td>
<td>Neuropathic pain- HIV associated</td>
<td>A: CBDV oral solution (50 mg/mL) 400 mg/day (16) B: Placebo (16)</td>
<td>4 weeks Whole plant extracted</td>
<td>Pain response ≥30% (NRS scale): 6/16 (37.5%) vs. 13/16 (81.25%), RR NR</td>
<td>Pain interference (0 to 10 BPI–SF scale): MD −0.35 (95% CI −1.36 to 0.43)</td>
<td>SAE: 1/16 (6.25%) vs. 0/16 (0%), RR 3.00 (95% CI 0.13 to 68.57) WAE: 1/16 (6.25%) vs. 0/16 (0%), RR 3.00 (95% CI 0.13 to 68.57)</td>
</tr>
</tbody>
</table>

Abbreviations: CBDV = cannabidiol; HIV = human immunodeficiency virus; MD = mean difference; NR = not reported; RCT = randomized controlled trial; RR = relative risk; SAE = serious adverse event; SD = standard deviation.

Other serious adverse events (i.e., psychosis and cannabis use disorder) not reported in any study.

Table D-5. Observational study primary outcomes

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Risk of Bias</th>
<th>Study Design</th>
<th>Pain Condition</th>
<th>Comparison (n)</th>
<th>Primary Pain Outcomes (Response, Severity)</th>
<th>Overall Function/Disability (Including Pain Interference)</th>
<th>Serious Adverse Events and Withdrawals Due to Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestard, 2011</td>
<td>Moderate Prospective cohort</td>
<td>Neuropathic pain-mixed</td>
<td>A: THC oral capsule (Nabilone), mean dose 3.05 mg/day (49) B: Gabapentin, mean dose 2,295.5 mg/day (52) C: Gabapentin + THC capsule, mean dose NR + 3.02 mg/day (55)</td>
<td>6 months Synthetic</td>
<td>Pain intensity (mean [SD] 0 to 100 VAS scale): 28.0 (10.5) vs. 33.8 (11.6) vs. 33.1 (20.2), MD −5.8 (95% CI −10.18 to −1.42) for A vs. B, −5.1 (95% CI −11.48 to 1.28) for A vs. C</td>
<td>Pain interference (mean [SD] 0 to 10 BPI scale): 4.5 (2.3) vs. 4.6 (2.2) vs. 4.5 (2.2), MD −0.1 (95% CI −0.99 to 0.79) for A vs. B, 0.00 (95% CI −0.88 to 0.88) for A vs. C</td>
<td>SAE: 0/49 (0%) vs. 0/52 (0%) vs. 0/55 (0%) A vs. B RR 1.06 (95% CI 0.21 to 52.41) B vs. C RR 1.06 (95% CI 0.02 to 52.30) A vs. C RR 1.12 (95% CI 0.02 to 55.41)</td>
</tr>
</tbody>
</table>

Abbreviations: THC = tetrahydrocannabinol; VAS = visual analog scale; MD = mean difference; NR = not reported; BPI =Brief Pain Inventory; SF = Short Form; CI = confidence interval; RR = relative risk; SAE = serious adverse event; WAE = withdraws due to adverse event.
<table>
<thead>
<tr>
<th>Author, Year Risk of Bias Study Design Pain Condition</th>
<th>Comparison (n) Followup Duration Derivative</th>
<th>Primary Pain Outcomes (Response, Severity)</th>
<th>Overall Function/Disability (Including Pain Interference)</th>
<th>Serious Adverse Events and Withdrawals Due to Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campbell, 2018 Moderate</td>
<td>A: Self-reported frequent cannabis use of ≥20 days/mo B: No cannabis use Overall N Baseline: 1,514 4-year followup: 1,217 Groups unclear 4 years Unclear THC concentration; patient-driven choice</td>
<td>A vs. B (reference) Pain intensity (Adjusted mean [SE]; BPI, 0-10 scale): 5.2 (0.14) vs. 4.9 (0.03); Beta: 0.37 (95% CI, −0.23 to 1.10), p=0.20</td>
<td>A vs. B Pain Interference (Adjusted mean [SE]; BPI pain interference, 0-10 scale): 5.2 (0.19) vs. 5.4 (0.04); Beta: −0.63 (95% CI, −1.46 to 0.19), p=0.13</td>
<td>NR</td>
</tr>
<tr>
<td>Gruber, 2021 High Prospective cohort Mixed (primarily musculoskeletal)</td>
<td>A: THC/CBD: Medicinal cannabis program, mean dose THC 13.3 mg/day, CBD 28.9 mg/day (37) B: Usual care, dose NA (9) 12 weeks Mixed cannabis products</td>
<td>Pain intensity (mean [SD] 0 to 100 VAS scale): 34.07 (22.36) vs. 48.78 (30.42); MD −14.71 (95% CI, −32.71 to 3.29)</td>
<td>A vs. B Function (mean [SD], 0 to 10 PDI scale): 18.13 (12.26) vs. 19.22 (12.73); MD −1.09 (95% CI −10.33 to 8.16) SF-36 Function (mean [SD], 0 to 100 scale): 70.00 (22.87) vs. 69.44 (26.98); MD 0.56 (95% CI −17.17 to 18.29)</td>
<td>NR</td>
</tr>
<tr>
<td>Author, Year</td>
<td>Risk of Bias</td>
<td>Study Design</td>
<td>Pain Condition</td>
<td>Comparison (n)</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Lee, 2021b</td>
<td>Moderate</td>
<td>Matched cohort</td>
<td>NR</td>
<td>A: Chronic opioid users authorized to use medical cannabis in Canada (5,373) B: Controls who did not receive authorization for medical cannabis in Canada (5,373) 20 months Unknown THC concentration; patient-driven choice</td>
</tr>
<tr>
<td>Merlin, 2019b</td>
<td>High</td>
<td>Prospective cohort Chronic non-cancer pain (HIV)</td>
<td>NR</td>
<td>A: Daily or weekly use of marijuana (55) B: Monthly or 1-2 times a month use of marijuana (65) C: No use (313) 52 weeks Unknown THC concentration; patient-driven choice</td>
</tr>
<tr>
<td>Author, Year</td>
<td>Risk of Bias</td>
<td>Study Design</td>
<td>Pain Condition</td>
<td>Comparison (n)</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Tait, 2023</td>
<td>Moderate</td>
<td>Prospective cohort</td>
<td>Chronic non-cancer pain</td>
<td>A: Cannabis-based sublingual/oral medium-chain triglyceride-based oil containing CBD and THC (348) B. Inhaled dried cannabis flower containing trace CBD and THC (36) C. A + B (377) Dried flower concentration: 20% THC, 0% (trace) CBD Cannabis-based oils ranged from all THC, all CBD, and ratios ranging from 1:1 to 1:20</td>
</tr>
<tr>
<td>Ueberall, 2022a</td>
<td>Moderate</td>
<td>Retrospective cohort</td>
<td>Peripheral neuropathic pain- mixed</td>
<td>A: Nabiximols as an add-on treatment; 16.6 (SD 6.5) mg THC/15.4 (SD 4.1) mg CBD/day (337) B: Dronabinol as an add-on treatment; 17.2 (SD 7.6) mg THC/day (337) 24 weeks Whole plant extracted and synthetic</td>
</tr>
<tr>
<td>Author, Year</td>
<td>Risk of Bias</td>
<td>Study Design</td>
<td>Pain Condition</td>
<td>Comparison (n) Followup Duration Derivative</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Ueberall, 2022b | Moderate | Retrospective cohort | Peripheral neuropathic back pain- mixed | A: 2.7 mg THC/2.5 mg CBD/100 mcl oromucosal spray, mean dose 16.7 mg THC/15.5 mg CBD/day (655)
B: Long-acting opioid, MME 69.4 mg/day 24 weeks
Whole plant extracted and long-acting opioid | A vs. B
Pain intensity index (mean relative change from baseline at week 24, 0 to 100 VAS scale): −72.3% (SD 30.5) vs. −49.2% (SD 39.9)
Pain intensity index (VAS 0-100 scale, converted to 0-10) mean difference: 9.90 (95% CI 8.05 to 11.75) | A vs. B
Pain-related disabilities (mean relative change [improvement] rates at week 24, 0 to 100 VAS scale): −66.1 (28.7) vs. −42.9 (34.5), p<0.001 | WAE: 7.9% vs. 29.3%, RR 0.27 (95% CI 0.20 to 0.36) |
| Vigil, 2017b | High | Preliminary historical cohort | Mixed musculoskeletal pain | A: THC/CBD: Participation in New Mexico Medical Cannabis Program (37)
B: Not participating in medical marijuana program and not using cannabis (29)
21 months
Unknown THC concentration | NR | NR | NR |
| Ware, 2015 | High | Prospective cohort | Chronic non-cancer pain | A: THC 12.5 +/- 1.5% herbal cannabis, median dose 2.5 g/day (215)
B: Usual care (216)
13 months
Whole plant non-extracted | NR | NR | SAE: 28/215 (13%) vs. 42/216 (19.4%), RR 0.67 (95% CI 0.43 to 1.04)
WAE: 10/215 (4.65%) vs. NR (assumed 0), RR 21.10 95% CI 1.24 to 357.80 |

Abbreviations: BPI = brief pain inventory; CI = confidence interval; CBD = cannabidiol; IQR = interquartile range; MD = mean difference; NR = not reported; OR = odds ratio; SAE = serious adverse events; SD = standard deviation; SF−36= short form−36; THC = tetrahydrocannabinol; VAS = visual analog scale; WAE = withdrawal due to adverse events.

a Higher scores indicate better outcomes.
b Only included outcome reported was opioid-use.
Appendix D-2. Meta-Analyses

Comparable THC to CBD Ratio Studies

Figure D-1. Proportion of patients with pain response (>30% improvement) with comparable THC to CBD ratio versus placebo (short term, 1 to 6 months followup)

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Pain Population</th>
<th>Treatment Duration (weeks)</th>
<th>Intervention Dose</th>
<th>Risk of Bias</th>
<th>Treatment n/N</th>
<th>Control n/N</th>
<th>Risk Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nurmkkko, 2007</td>
<td>NPP</td>
<td>5</td>
<td>10.9 sprays/day</td>
<td>Moderate</td>
<td>16/63</td>
<td>9/62</td>
<td>1.75 (0.84, 3.66)</td>
</tr>
<tr>
<td>Selvarajah, 2010</td>
<td>NPP</td>
<td>12</td>
<td>7 sprays/day</td>
<td>High</td>
<td>8/15</td>
<td>9/14</td>
<td>0.83 (0.45, 1.53)</td>
</tr>
<tr>
<td>Langford, 2013</td>
<td>NPP</td>
<td>15</td>
<td>8.8 sprays/day</td>
<td>Low</td>
<td>83/167</td>
<td>77/172</td>
<td>1.11 (0.89, 1.39)</td>
</tr>
<tr>
<td>Serpell, 2014</td>
<td>NPP</td>
<td>15</td>
<td>8.9 sprays/day</td>
<td>Moderate</td>
<td>34/123</td>
<td>19/117</td>
<td>1.70 (1.03, 2.81)</td>
</tr>
<tr>
<td>Overall, PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>141/368</td>
<td>114/365</td>
<td>1.18 (0.93, 1.71)</td>
</tr>
</tbody>
</table>

(p = 0.195, $I^2 = 36.1\%$)

Abbreviations: CI = confidence interval; NPP = neuropathic pain; PL = profile likelihood.

Figure D-2. Adverse events for comparable THC to CBD ratio versus placebo (short term, 1 to 6 months followup)

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Pain Population</th>
<th>Treatment Duration (weeks)</th>
<th>Dose (sprays/day)</th>
<th>Risk of Bias</th>
<th>Treatment n/N</th>
<th>Control n/N</th>
<th>Risk Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rog, 2005</td>
<td>NPP</td>
<td>5</td>
<td>9.6</td>
<td>Moderate</td>
<td>30/34</td>
<td>22/32</td>
<td>1.29 (0.99, 1.67)</td>
</tr>
<tr>
<td>Langford, 2013</td>
<td>NPP</td>
<td>15</td>
<td>8.8</td>
<td>Low</td>
<td>120/167</td>
<td>106/172</td>
<td>1.17 (1.00, 1.36)</td>
</tr>
<tr>
<td>Overall, PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150/201</td>
<td>126/204</td>
<td>1.19 (1.02, 1.44)</td>
</tr>
</tbody>
</table>

(p = 0.538, $I^2 = 0.0\%$)

Abbreviations: CI = confidence interval; NPP = neuropathic pain; PL = profile likelihood.
Figure D-3. Serious adverse events for comparable THC to CBD ratio versus placebo (short term, 1 to 6 months followup)

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Pain Population</th>
<th>Treatment Duration (weeks)</th>
<th>Dose (sprays/day)</th>
<th>Risk of Bias</th>
<th>Treatment n/N</th>
<th>Control n/N</th>
<th>Risk Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blake, 2005</td>
<td>IA</td>
<td>5</td>
<td>5.4</td>
<td>Moderate</td>
<td>0/31</td>
<td>2/27</td>
<td>0.16 (0.01, 3.49)</td>
</tr>
<tr>
<td>Nurmikko, 2007</td>
<td>NPP</td>
<td>5</td>
<td>10.9</td>
<td>Moderate</td>
<td>1/63</td>
<td>0/62</td>
<td>2.95 (0.12, 71.13)</td>
</tr>
<tr>
<td>Serpell, 2014</td>
<td>NPP</td>
<td>15</td>
<td>8.9</td>
<td>Moderate</td>
<td>10/128</td>
<td>7/118</td>
<td>1.32 (0.52, 3.35)</td>
</tr>
<tr>
<td>Overall, PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11/222</td>
<td>9/207</td>
<td>1.16 (0.28, 3.43)</td>
</tr>
</tbody>
</table>

Abbreviations: CI = confidence interval; IA = inflammatory arthritis; NPP = neuropathic pain; PL = profile likelihood.

Figure D-4. Study withdrawal due to adverse events for comparable THC to CBD ratio versus placebo (short term, 1 to 6 months followup)

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Pain Population</th>
<th>Treatment Duration (weeks)</th>
<th>Intervention Dose</th>
<th>Risk of Bias</th>
<th>Treatment n/N</th>
<th>Control n/N</th>
<th>Risk Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blake, 2006</td>
<td>IA</td>
<td>5</td>
<td>5.4 sprays/day</td>
<td>Moderate</td>
<td>0/31</td>
<td>3/27</td>
<td>0.13 (0.01, 2.32)</td>
</tr>
<tr>
<td>Rog, 2005</td>
<td>NPP</td>
<td>5</td>
<td>9.6 sprays/day</td>
<td>Moderate</td>
<td>2/34</td>
<td>0/32</td>
<td>4.71 (0.23, 94.58)</td>
</tr>
<tr>
<td>Nurmikko, 2007</td>
<td>NPP</td>
<td>5</td>
<td>10.9 sprays/day</td>
<td>Moderate</td>
<td>11/63</td>
<td>2/62</td>
<td>5.41 (1.25, 23.43)</td>
</tr>
<tr>
<td>Langford, 2013</td>
<td>NPP</td>
<td>15</td>
<td>8.8 sprays/day</td>
<td>Low</td>
<td>15/167</td>
<td>12/172</td>
<td>1.29 (0.62, 2.67)</td>
</tr>
<tr>
<td>Serpell, 2014</td>
<td>NPP</td>
<td>15</td>
<td>8.9 sprays/day</td>
<td>Moderate</td>
<td>25/128</td>
<td>25/118</td>
<td>0.92 (0.56, 1.51)</td>
</tr>
<tr>
<td>Overall, PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53/423</td>
<td>42/411</td>
<td>1.14 (0.65, 3.02)</td>
</tr>
</tbody>
</table>

Abbreviations: CI = confidence interval; IA = inflammatory arthritis; NPP = neuropathic pain; PL = profile likelihood.
Figure D-5. Dizziness for comparable THC to CBD ratio versus placebo (short term, 1 to 6 months followup)

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Pain Population</th>
<th>Treatment Duration (weeks)</th>
<th>Dose (sprays/day)</th>
<th>Risk of Bias</th>
<th>Treatment n/N</th>
<th>Control n/N</th>
<th>Risk Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lynch, 2014</td>
<td>NPP</td>
<td>4</td>
<td>8</td>
<td>High</td>
<td>6/16</td>
<td>0/16</td>
<td>13.00 (0.79, 213.09)</td>
</tr>
<tr>
<td>Blake, 2006</td>
<td>IA</td>
<td>5</td>
<td>5.4</td>
<td>Moderate</td>
<td>8/31</td>
<td>1/27</td>
<td>6.97 (0.93, 52.20)</td>
</tr>
<tr>
<td>Rog, 2005</td>
<td>NPP</td>
<td>5</td>
<td>9.6</td>
<td>Moderate</td>
<td>18/34</td>
<td>5/32</td>
<td>3.39 (1.43, 8.05)</td>
</tr>
<tr>
<td>Nurmiikko, 2007</td>
<td>NPP</td>
<td>5</td>
<td>10.9</td>
<td>Moderate</td>
<td>18/83</td>
<td>9/62</td>
<td>1.97 (0.96, 4.04)</td>
</tr>
<tr>
<td>Langford, 2013</td>
<td>NPP</td>
<td>15</td>
<td>8.8</td>
<td>Low</td>
<td>34/167</td>
<td>7/172</td>
<td>5.00 (2.28, 10.97)</td>
</tr>
<tr>
<td>Serpell, 2014</td>
<td>NPP</td>
<td>15</td>
<td>9.9</td>
<td>Moderate</td>
<td>52/128</td>
<td>12/118</td>
<td>3.99 (2.25, 7.10)</td>
</tr>
<tr>
<td>Overall, PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>136/459</td>
<td>34/427</td>
<td>3.57 (2.42, 5.60)</td>
</tr>
</tbody>
</table>

\(p = 0.446, I^2 = 0.0\%\)

Abbreviations: CI = confidence interval; IA = inflammatory arthritis; NPP = neuropathic pain; PL = profile likelihood.

Figure D-6. Nausea for comparable THC to CBD ratio versus placebo (short term, 1 to 6 months followup)

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Pain Population</th>
<th>Treatment Duration (weeks)</th>
<th>Dose (sprays/day)</th>
<th>Risk of Bias</th>
<th>Treatment n/N</th>
<th>Control n/N</th>
<th>Risk Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lynch, 2014</td>
<td>NPP</td>
<td>4</td>
<td>8</td>
<td>High</td>
<td>6/16</td>
<td>1/16</td>
<td>6.09 (0.81, 44.35)</td>
</tr>
<tr>
<td>Blake, 2006</td>
<td>IA</td>
<td>5</td>
<td>5.4</td>
<td>Moderate</td>
<td>2/31</td>
<td>1/27</td>
<td>1.74 (0.17, 18.16)</td>
</tr>
<tr>
<td>Rog, 2005</td>
<td>NPP</td>
<td>5</td>
<td>9.6</td>
<td>Moderate</td>
<td>3/34</td>
<td>2/32</td>
<td>1.41 (0.25, 7.91)</td>
</tr>
<tr>
<td>Nurmiikko, 2007</td>
<td>NPP</td>
<td>5</td>
<td>10.9</td>
<td>Moderate</td>
<td>14/63</td>
<td>7/62</td>
<td>1.97 (0.85, 4.54)</td>
</tr>
<tr>
<td>Langford, 2013</td>
<td>NPP</td>
<td>15</td>
<td>8.8</td>
<td>Low</td>
<td>12/167</td>
<td>7/172</td>
<td>1.91 (0.78, 4.68)</td>
</tr>
<tr>
<td>Serpell, 2014</td>
<td>NPP</td>
<td>15</td>
<td>8.9</td>
<td>Moderate</td>
<td>23/128</td>
<td>14/118</td>
<td>1.51 (0.82, 2.80)</td>
</tr>
<tr>
<td>Overall, PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>61/439</td>
<td>32/427</td>
<td>1.79 (1.19, 2.77)</td>
</tr>
</tbody>
</table>

\(p = 0.872, I^2 = 0.0\%\)

Abbreviations: CI = confidence interval; IA = inflammatory arthritis; NPP = neuropathic pain; PL = profile likelihood.
Figure D-7. Sedation for comparable THC to CBD ratio versus placebo (short term, 1 to 6 months followup)

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Pain Population</th>
<th>Treatment Duration (weeks)</th>
<th>Dose (sprays/day)</th>
<th>Risk of Bias</th>
<th>Treatment n/N</th>
<th>Control n/N</th>
<th>Risk Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lynch, 2014</td>
<td>NPP</td>
<td>4</td>
<td>8</td>
<td>High</td>
<td>7/16</td>
<td>0/16</td>
<td>15.00 (0.93, 242.43)</td>
</tr>
<tr>
<td>Blake, 2006</td>
<td>IA</td>
<td>5</td>
<td>5.4</td>
<td>Moderate</td>
<td>1/31</td>
<td>1/27</td>
<td>0.87 (0.06, 13.27)</td>
</tr>
<tr>
<td>Rog, 2005</td>
<td>NPP</td>
<td>5</td>
<td>9.6</td>
<td>Moderate</td>
<td>3/34</td>
<td>0/32</td>
<td>6.60 (0.35, 122.96)</td>
</tr>
<tr>
<td>Nurminsko, 2007</td>
<td>NPP</td>
<td>5</td>
<td>10.9</td>
<td>Moderate</td>
<td>4/63</td>
<td>1/62</td>
<td>3.94 (0.45, 34.24)</td>
</tr>
<tr>
<td>Langford, 2013</td>
<td>NPP</td>
<td>15</td>
<td>8.8</td>
<td>Low</td>
<td>16/167</td>
<td>3/172</td>
<td>5.49 (1.63, 18.51)</td>
</tr>
<tr>
<td>Serpell, 2014</td>
<td>NPP</td>
<td>15</td>
<td>8.9</td>
<td>Moderate</td>
<td>4/128</td>
<td>0/118</td>
<td>8.30 (0.45, 152.57)</td>
</tr>
<tr>
<td>Overall, PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35/439</td>
<td>5/427</td>
<td>5.04 (2.10, 11.89)</td>
</tr>
</tbody>
</table>

(p = 0.791, I^2 = 0.0%)

Abbreviations: CI = confidence interval; IA = inflammatory arthritis; NPP = neuropathic pain; PL = profile likelihood.

High-THC to CBD Ratio Studies

Figure D-8. Stratified results on pain severity of RCTs using dronabinol and nabilone (short term, 1 to 6 months followup)

<table>
<thead>
<tr>
<th>Intervention Type and Author, Year</th>
<th>Pain Population</th>
<th>THC/CBD Ratio</th>
<th>Treatment Duration (weeks)</th>
<th>Intervention</th>
<th>Risk of Bias</th>
<th>N, Mean(SD, Intervention)</th>
<th>N, Mean(SD, Control)</th>
<th>Mean difference (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dronabinol de Vries, 2017†</td>
<td>All THC</td>
<td>7</td>
<td>15 to 24 mg/day/Moderate</td>
<td>21, 2.40(2.28)</td>
<td>29, 3.50(2.42)</td>
<td>-1.10 (-2.46, 0.26)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zubcevic, 2022</td>
<td>All THC</td>
<td>8</td>
<td>Up to 25 mg/day/Low</td>
<td>28, -1.40(1.93)</td>
<td>30, -1.90(2.28)</td>
<td>0.50 (0.58, 0.58)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schirnigk, 2017</td>
<td>All THC</td>
<td>16</td>
<td>13 mg/day Low</td>
<td>124, 4.48(2.04)</td>
<td>116, 4.92(2.04)</td>
<td>-0.44 (-0.96, 0.08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subgroup, PL (p = 0.162, I^2 = 45.1%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.35 (-1.08, 0.44)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nabilone</td>
<td>All THC</td>
<td>4</td>
<td>EP 2 mg/day/Moderate</td>
<td>15, 4.80(1.76)</td>
<td>16, 5.60(1.62)</td>
<td>-0.80 (-1.96, 0.36)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wissel, 2006</td>
<td>All THC</td>
<td>4</td>
<td>EP 1 mg per day/High</td>
<td>13, 4.00(NR)</td>
<td>13, 6.00(NR)</td>
<td>-2.00 (-4.00, 0.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toth, 2012</td>
<td>All THC</td>
<td>5</td>
<td>1 to 4 mg/day Low</td>
<td>13, 3.50(1.30)</td>
<td>13, 5.40(1.70)</td>
<td>-1.90 (-3.12, -0.88)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turco, 2015</td>
<td>All THC</td>
<td>9</td>
<td>TD 2 mg/day Moderate</td>
<td>8, 3.50(1.28)</td>
<td>7, 5.70(1.65)</td>
<td>-2.20 (-3.71, -0.69)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subgroup, PL (p = 0.422, I^2 = 0.0%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.92 (-2.92, -0.92)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity between groups: p = 0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.95 (-1.81, -0.25)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CBD = cannabidiol; CI = confidence interval; EP = end point; FM = fibromyalgia; NPP = neuropathic pain; PL = profile likelihood; SD = standard deviation; TD = total dose; THC = tetrahydrocannabinol; VP = visceral pain.

* Namisol® is a purified, plant-based product, but grouped with synthetic dronabinol because they are chemically identical.
Table D-6. Interaction effect of randomized controlled trials assessing synthetic cannabinoids: nabilone versus dronabinol

<table>
<thead>
<tr>
<th>Group Difference</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>t-Test</th>
<th>p-Value</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result</td>
<td>-1.29</td>
<td>0.510</td>
<td>-2.53</td>
<td>0.053</td>
<td>-2.60 to 0.022</td>
</tr>
</tbody>
</table>

Table D-7. Meta-analysis results and sensitivity analysis using the Bartlett's correction

<table>
<thead>
<tr>
<th>THC to CBD Ratio</th>
<th>Outcome</th>
<th>N; k Studies</th>
<th>Point Estimate</th>
<th>PL 95% CI</th>
<th>BC 95% CI</th>
<th>I-Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparable</td>
<td>Pain severity</td>
<td>N=702; k=7</td>
<td>MD -0.54</td>
<td>-0.95 to -0.19</td>
<td>-1.03 to -0.11</td>
<td>39%</td>
</tr>
<tr>
<td>Comparable</td>
<td>Pain response (≥30% improvement)</td>
<td>N=733; k=4</td>
<td>RR 1.18</td>
<td>0.93 to 1.71</td>
<td>0.67 to 2.43</td>
<td>36%</td>
</tr>
<tr>
<td>Comparable</td>
<td>Function</td>
<td>N=616; k=6</td>
<td>MD -0.42</td>
<td>-0.73 to -0.16</td>
<td>-0.80 to -0.10</td>
<td>32%</td>
</tr>
<tr>
<td>Comparable</td>
<td>Adverse events</td>
<td>N=405; k=2</td>
<td>RR 1.19</td>
<td>1.02 to 1.44</td>
<td>0.74 to 2.03</td>
<td>0%</td>
</tr>
<tr>
<td>Comparable</td>
<td>SAEs</td>
<td>N=427; k=3</td>
<td>RR 1.18</td>
<td>0.26 to 3.43</td>
<td>0.02 to 35.25</td>
<td>0%</td>
</tr>
<tr>
<td>Comparable</td>
<td>WAEs</td>
<td>N=834; k=5</td>
<td>RR 1.14</td>
<td>0.65 to 3.02</td>
<td>0.31 to 6.16</td>
<td>51%</td>
</tr>
<tr>
<td>Comparable</td>
<td>Dizziness</td>
<td>N=866; k=6</td>
<td>RR 3.57</td>
<td>2.42 to 5.60</td>
<td>2.15 to 6.62</td>
<td>0%</td>
</tr>
<tr>
<td>Comparable</td>
<td>Nausea</td>
<td>N=866; k=6</td>
<td>RR 1.79</td>
<td>1.19 to 2.77</td>
<td>1.06 to 3.32</td>
<td>0%</td>
</tr>
<tr>
<td>Comparable</td>
<td>Sedation</td>
<td>N=866; k=6</td>
<td>RR 5.04</td>
<td>2.10 to 11.89</td>
<td>1.41 to 17.29</td>
<td>0%</td>
</tr>
<tr>
<td>High</td>
<td>Pain severity</td>
<td>N=742; k=9</td>
<td>MD -1.12</td>
<td>-1.97 to -0.48</td>
<td>-2.08 to -0.40</td>
<td>65%</td>
</tr>
<tr>
<td>High (synthetic)</td>
<td>Pain severity</td>
<td>N=448; k=7</td>
<td>MD -0.95</td>
<td>-1.81 to -0.25</td>
<td>-1.95 to -0.13</td>
<td>60%</td>
</tr>
<tr>
<td>High (synthetic - dronabinol)</td>
<td>Pain severity</td>
<td>N=348; k=3</td>
<td>MD -0.35</td>
<td>-1.08 to 0.44</td>
<td>-2.21 to 1.54</td>
<td>45%</td>
</tr>
<tr>
<td>High (synthetic - nabilone)</td>
<td>Pain severity</td>
<td>N=100; k=4</td>
<td>MD -1.59</td>
<td>-2.49 to -0.82</td>
<td>-2.21 to -0.39</td>
<td>0%</td>
</tr>
<tr>
<td>High (plant-derived)</td>
<td>Pain severity</td>
<td>N=294; k=2</td>
<td>MD -1.97</td>
<td>-5.91 to 1.21</td>
<td>-11.33 to 6.53</td>
<td>85%</td>
</tr>
<tr>
<td>High</td>
<td>Function</td>
<td>N=unclear; k=3</td>
<td>MD -0.18</td>
<td>-1.25 to 0.77</td>
<td>-2.23 to 1.78</td>
<td>51%</td>
</tr>
<tr>
<td>High</td>
<td>WAEs</td>
<td>N=692; k=6</td>
<td>RR 2.21</td>
<td>1.27 to 4.14</td>
<td>0.96 to 5.58</td>
<td>0%</td>
</tr>
<tr>
<td>High (synthetic)</td>
<td>WAEs</td>
<td>N=415; k=5</td>
<td>RR 1.75</td>
<td>0.95 to 4.11</td>
<td>0.50 to 8.88</td>
<td>0%</td>
</tr>
<tr>
<td>High (synthetic - dronabinol)</td>
<td>WAEs</td>
<td>N=360; k=3</td>
<td>RR 1.77</td>
<td>0.90 to 5.44</td>
<td>0.25 to 24.91</td>
<td>0%</td>
</tr>
<tr>
<td>High (synthetic - nabilone)</td>
<td>WAEs</td>
<td>N=55; k=2</td>
<td>RR 1.54</td>
<td>0.14 to 17.71</td>
<td>0.01 to 280.12</td>
<td>0%</td>
</tr>
<tr>
<td>High</td>
<td>Any adverse event</td>
<td>N=266; k=2</td>
<td>RR 1.20</td>
<td>0.96 to 1.48</td>
<td>0.42 to 3.36</td>
<td>0%</td>
</tr>
<tr>
<td>High</td>
<td>Dizziness</td>
<td>N=637; k=4</td>
<td>RR 3.57</td>
<td>1.30 to 8.32</td>
<td>0.90 to 11.47</td>
<td>78%</td>
</tr>
<tr>
<td>High (synthetic)</td>
<td>Dizziness</td>
<td>N=360; k=3</td>
<td>RR 2.52</td>
<td>1.20 to 4.82</td>
<td>0.42 to 12.00</td>
<td>41%</td>
</tr>
<tr>
<td>High</td>
<td>Sedation</td>
<td>N=386; k=4</td>
<td>RR 1.60</td>
<td>1.01 to 2.95</td>
<td>0.74 to 5.09</td>
<td>0%</td>
</tr>
<tr>
<td>High (synthetic - dronabinol)</td>
<td>Sedation</td>
<td>N=353; k=3</td>
<td>RR 1.46</td>
<td>0.88 to 2.42</td>
<td>0.59 to 3.66</td>
<td>0%</td>
</tr>
<tr>
<td>High</td>
<td>Nausea</td>
<td>N=353; k=3</td>
<td>RR 2.22</td>
<td>0.90 to 5.05</td>
<td>0.40 to 11.80</td>
<td>0%</td>
</tr>
</tbody>
</table>
Abbreviations: BC = Bartlett’s correction; CBD = cannabidiol; CI = confidence interval; MD = mean difference; PL = profile likelihood; RR = relative risk; SAEs = serious adverse events; THC = tetrahydrocannabinol; WAEs = study withdrawals due to adverse events.

Table D-8. Interaction effect of randomized controlled trials: synthetic versus plant-based interventions

<table>
<thead>
<tr>
<th>Group Difference</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>t-Test</th>
<th>p-Value</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result</td>
<td>−0.986</td>
<td>0.85</td>
<td>−1.16</td>
<td>0.272</td>
<td>−2.87 to 0.90</td>
</tr>
</tbody>
</table>

Figure D-9. Overall function for high-THC versus placebo (short term, 1-6 months followup)

Abbreviations: CBD = cannabidiol; CI = confidence interval; NR = not reported; SD = standard deviation; THC = tetrahydrocannabinol.
Figure D-10. Study withdrawal due to adverse events for high-THC versus placebo (short term, 1 to 6 months followup)

Abbreviations: CBD = cannabidiol; CI = confidence interval; EP = end point; FM = fibromyalgia; NA = not applicable; NPP = neuropathic pain; PD = plant-derived; PL = profile likelihood; TD = total dose; THC = tetrahydrocannabinol; VP = visceral pain.

*a Namisol® is a purified, plant-based product, but grouped with synthetic dronabinol because they are chemically identical.
Figure D-11. Study withdrawal due to adverse events for dronabinol or nabilone versus placebo (short term, 1 to 6 months followup)

Abbreviations: CBD = cannabidiol; CI = confidence interval; EP = end point; FM = fibromyalgia; NPP = neuropathic pain; PL = profile likelihood; TD = total does; THC = tetrahydrocannabinol; VP = visceral pain.

aNamisol® is a purified, plant-based product, but grouped with synthetic dronabinol because they are chemically identical.

Figure D-12. Any adverse event for high-THC versus placebo (short term, 1 to 6 months followup)
Abbreviations: CI = confidence interval; NPP = neuropathic pain; THC = tetrahydrocannabinol.

Figure D-13. Dizziness for high-THC versus placebo (short term, 1 to 6 months followup)

<table>
<thead>
<tr>
<th>Derivative Type and Author, Year</th>
<th>Pain Population</th>
<th>Treatment Duration (weeks)</th>
<th>THC/CBD Intervention Type</th>
<th>Intervention Dose</th>
<th>Risk of Bias</th>
<th>Treatment n/N</th>
<th>Control n/N</th>
<th>Risk Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthetic de Vries, 2017*</td>
<td>VP</td>
<td>7</td>
<td>All THC Dronabinol</td>
<td>15 to 24 mg/day</td>
<td>Moderate</td>
<td>24/30</td>
<td>11/32</td>
<td>2.33 (1.40, 3.88)</td>
</tr>
<tr>
<td>Zubcevic, 2022 NPP</td>
<td>All THC</td>
<td>Dronabinol</td>
<td>15 to 24 mg/day</td>
<td>Low</td>
<td>3/26</td>
<td>3/25</td>
<td></td>
<td>0.96 (0.21, 3.32)</td>
</tr>
<tr>
<td>Schirringk, 2017 NPP</td>
<td>All THC</td>
<td>Dronabinol</td>
<td>15 to 24 mg/day</td>
<td>Low</td>
<td>25/124</td>
<td>5/116</td>
<td></td>
<td>4.68 (1.85, 11.81)</td>
</tr>
<tr>
<td>Subgroup, PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant-derived</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zajicek, 2012 NPP</td>
<td>12</td>
<td>2:1</td>
<td>PD extracted</td>
<td>Max 25 mg/day</td>
<td>Moderate</td>
<td>89/143</td>
<td>10/134</td>
<td>8.34 (4.53, 15.34)</td>
</tr>
<tr>
<td>Subgroup, PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.34 (4.53, 15.34)</td>
</tr>
<tr>
<td>(p = 0.004, I² = 0.0%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity between groups: p = 0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall, PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>141/323</td>
<td>29/307</td>
<td>3.57 (1.30, 8.32)</td>
</tr>
</tbody>
</table>

Abbreviations: CBD = cannabidiol; CI = confidence interval; NA = not applicable; NPP = neuropathic pain; PD = plant-derived; PL = profile likelihood; THC = tetrahydrocannabinol; VP = visceral pain.

*a Namisol® is a purified, plant-based product, but grouped with synthetic dronabinol because they are chemically identical.

Figure D-14. Sedation for high-THC versus placebo (short term, 1 to 6 months followup)

<table>
<thead>
<tr>
<th>Intervention Type and Author, Year</th>
<th>Pain Population</th>
<th>Treatment Duration (weeks)</th>
<th>Intervention Dose</th>
<th>Risk of Bias</th>
<th>Treatment n/N</th>
<th>Control n/N</th>
<th>Risk Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dronabinol de Vries, 2017*</td>
<td>VP</td>
<td>7</td>
<td>15 to 24 mg/day</td>
<td>Moderate</td>
<td>15/30</td>
<td>11/32</td>
<td>1.45 (0.80, 2.64)</td>
</tr>
<tr>
<td>Zubcevic, 2022 NPP</td>
<td>All THC</td>
<td>Up to 25 mg/day</td>
<td>Low</td>
<td>6/26</td>
<td>5/25</td>
<td></td>
<td>1.15 (0.40, 3.30)</td>
</tr>
<tr>
<td>Schirringk, 2017 NPP</td>
<td>All THC</td>
<td>13 mg/day</td>
<td>Low</td>
<td>10/124</td>
<td>5/116</td>
<td></td>
<td>1.87 (0.66, 5.31)</td>
</tr>
<tr>
<td>Subgroup, PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31/180</td>
<td>21/173</td>
<td>1.46 (0.88, 2.42)</td>
</tr>
<tr>
<td>(p = 0.815, I² = 0.0%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nabilone Skrabek, 2008 FM</td>
<td></td>
<td></td>
<td>EP 2 mg/day</td>
<td>Moderate</td>
<td>7/15</td>
<td>1/18</td>
<td>8.40 (1.16, 60.84)</td>
</tr>
<tr>
<td>Subgroup, PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7/15</td>
<td>1/18</td>
<td>8.40 (1.16, 60.84)</td>
</tr>
<tr>
<td>(p = 0.355, I² = 7.7%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity between groups: p = 0.092</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall, PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38/195</td>
<td>22/191</td>
<td>1.60 (1.01, 2.95)</td>
</tr>
</tbody>
</table>

Abbreviations: CI = confidence interval; EP = end point; FM = fibromyalgia; NA = not applicable; NPP = neuropathic pain; PL = profile likelihood; VP = visceral pain.
Namisol® is a purified, plant-based product, but grouped with synthetic dronabinol because they are chemically identical.

Figure D-15. Sensitivity analysis of sedation for high-THC versus placebo (short term, 1 to 6 months followup)

<table>
<thead>
<tr>
<th>Intervention Type and Author, Year</th>
<th>Pain Population</th>
<th>Treatment Duration (weeks)</th>
<th>Intervention Type</th>
<th>Intervention Dose</th>
<th>Risk of Bias</th>
<th>Treatment n/N</th>
<th>Control n/N</th>
<th>Risk Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dronabinol de Vries, 2017<sup>a</sup></td>
<td>VP</td>
<td>7</td>
<td>Up to 25 mg/day</td>
<td>Moderate</td>
<td>15/30</td>
<td>11/32</td>
<td>1.45 (0.80, 2.64)</td>
<td></td>
</tr>
<tr>
<td>Schimming, 2017</td>
<td>NPP</td>
<td>8</td>
<td>Low</td>
<td>6/26</td>
<td>5/25</td>
<td>1.15 (0.40, 3.30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nabilone FM, Skrabek, 2008</td>
<td>FM</td>
<td>4</td>
<td>EP 2 mg/day</td>
<td>Moderate</td>
<td>7/15</td>
<td>1/18</td>
<td>8.40 (1.16, 60.84)</td>
<td></td>
</tr>
<tr>
<td>Subgroup, PL+ Bart. (p = 0.015, ή = 0.0%)</td>
<td>FM</td>
<td>16</td>
<td>13 mg/day</td>
<td>Low</td>
<td>10/124</td>
<td>5/116</td>
<td>1.87 (0.66, 5.31)</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity between groups: p = 0.092</td>
<td>Overall, PL + Bart. (p = 0.355, ή = 7.7%)</td>
<td>38/195</td>
<td>22/191</td>
<td>1.60 (0.74, 5.09)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: Bart = Bartlett’s correction; CI = confidence interval; EP = end point; FM = fibromyalgia; NA = not applicable; NPP = neuropathic pain; PL = profile likelihood; THC = tetrahydrocannabinol; VP = visceral pain.

^a Namisol® is a purified, plant-based product, but grouped with synthetic dronabinol because they are chemically identical.

Figure D-16. Nausea for high-THC versus placebo (short term, 1 to 6 months followup)

<table>
<thead>
<tr>
<th>Derivative Type and Author, Year</th>
<th>Pain Population</th>
<th>Treatment Duration (weeks)</th>
<th>Intervention Type</th>
<th>Intervention Dose</th>
<th>Risk of Bias</th>
<th>Treatment n/N</th>
<th>Control n/N</th>
<th>Risk Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthetic de Vries, 2017<sup>a</sup></td>
<td>VP</td>
<td>7</td>
<td>Dronabinol</td>
<td>15 to 24 mg/day</td>
<td>Moderate</td>
<td>13/30</td>
<td>5/32</td>
<td>2.77 (1.12, 6.84)</td>
</tr>
<tr>
<td>Zubcevic, 2022</td>
<td>NPP</td>
<td>8</td>
<td>Dronabinol</td>
<td>Up to 25 mg/day</td>
<td>Low</td>
<td>1/26</td>
<td>0/25</td>
<td>2.89 (0.12, 67.75)</td>
</tr>
<tr>
<td>Schimming, 2017</td>
<td>NPP</td>
<td>16</td>
<td>Dronabinol</td>
<td>13 mg/day</td>
<td>Low</td>
<td>6/124</td>
<td>4/116</td>
<td>1.40 (0.41, 4.85)</td>
</tr>
<tr>
<td>Subgroup (I² = 0.0%, p = 0.674)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.22 (0.90, 5.05)</td>
</tr>
</tbody>
</table>

Abbreviations: CI = confidence interval; NPP = neuropathic pain; THC = tetrahydrocannabinol; VP = visceral pain.

^a Namisol® is a purified, plant-based product, but grouped with synthetic dronabinol because they are chemically identical.
Appendix E. Evidence Tables

Appendix F. Risk of Bias Assessment

Appendix G. Details on Strength of Evidence

Table G-1. KQ1 and 2: Cannabinoids to treat chronic pain – comparable THC to CBD ratio

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Outcome</th>
<th>Number of Studies (N) and Total Participants</th>
<th>Study Limitations</th>
<th>Directness</th>
<th>Consistency</th>
<th>Precision</th>
<th>Publication Bias</th>
<th>Main Findings Effect Size (95% CI)</th>
<th>SOE Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparable THC to CBD Ratio vs. Placebo</td>
<td>Pain response (≥30% improvement from baseline)</td>
<td>4 RCTs (N=733)(^1)(^-)(^4)</td>
<td>Moderate</td>
<td>Direct</td>
<td>Consistent</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>Potential small effect, not statistically significant, with THC:CBD 38% versus 31%, RR 1.18 (0.93 to 1.71); I(^2)=36%</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Pain severity (change)</td>
<td>7 RCTs (N=878)(^1)(^-)(^7)</td>
<td>Moderate</td>
<td>Direct</td>
<td>Consistent</td>
<td>Precise</td>
<td>Unknown</td>
<td>Small benefit with THC:CBD 0 to 10 scale, MD -0.54 (-0.95 to -0.19; I(^2)=39%) Subgroup analysis removing high risk of bias studies: Moderate benefit MD -0.63 (-1.15 to -0.24; I(^2)=52%)</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>Function or Disability</td>
<td>6 RCTs (N=616)(^1)(^-)(^3)(^,)(^7)</td>
<td>Moderate</td>
<td>Direct</td>
<td>Consistent</td>
<td>Precise</td>
<td>Unknown</td>
<td>Small benefit with THC:CBD, MD -0.42, 95% CI -0.73 to -0.16, I(^2)=32% (scale 0 to 10)</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>WAEs</td>
<td>5 RCTs (N=834)(^1)(^-)(^2)(^,)(^4)(^,)(^5)(^,)(^7)</td>
<td>Moderate</td>
<td>Direct</td>
<td>Consistent</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>No effect 12.5% vs. 10.2%, RR 1.14 (0.65 to 3.02); I(^2)=51%</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>SAEs</td>
<td>3 RCTs (N=866)(^1)(^-)(^5)</td>
<td>Moderate</td>
<td>Direct</td>
<td>Consistent</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>No effect 5.0% vs. 4.3%, RR 1.18 (0.26 to 3.4; I(^2)=0%)</td>
<td>Low</td>
</tr>
<tr>
<td>Comparison</td>
<td>Outcome</td>
<td>Number of Studies (N) and Total Participants</td>
<td>Study Limitations</td>
<td>Directness</td>
<td>Consistency</td>
<td>Precision</td>
<td>Publication Bias</td>
<td>Main Findings Effect Size (95% CI)</td>
<td>SOE Grade</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-------------</td>
<td>---</td>
<td>-------------------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>------------------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>Comparable THC to CBD Ratio vs. Placebo</td>
<td>Dizziness</td>
<td>6 RCTs (N=866)<sup>1,2,4-7</sup></td>
<td>Moderate</td>
<td>Direct</td>
<td>Consistent</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>Large effect with THC:CBD 30% vs. 8%, RR 3.57 (2.42 to 5.60; I² = 0%)</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Nausea</td>
<td>6 RCTs (N=866)<sup>1,2,4-7</sup></td>
<td>Moderate</td>
<td>Direct</td>
<td>Consistent</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>Moderate effect with THC:CBD 14% vs. 7.5% RR 1.79 (1.19 to 2.77; I² = 0%)</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Sedation</td>
<td>6 RCTs (N=866)<sup>1,2,4-7</sup></td>
<td>Moderate</td>
<td>Direct</td>
<td>Consistent</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>Large effect with THC:CBD RR 5.04 (2.10 to 11.89; I² = 0%)</td>
<td>Low</td>
</tr>
</tbody>
</table>

Abbreviations: BPI-SF = Brief Pain Inventory (Short Form); CBD = cannabidiol; CI = confidence interval; KQ = Key Question; MD = mean difference; RCT = randomized controlled trial; RR = relative risk; SAE = serious adverse event; SOE = strength of evidence; THC = tetrahydrocannabinol; WAE = withdrawal due to adverse event.
<table>
<thead>
<tr>
<th>Comparison</th>
<th>Outcome</th>
<th>Number of Studies and Total Participants (N)</th>
<th>Study Limitations</th>
<th>Directness</th>
<th>Consistency</th>
<th>Precision</th>
<th>Publication Bias</th>
<th>Main Findings Effect Size (95% CI)</th>
<th>SOE Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthetic THC vs. Placebo</td>
<td>Pain response (≥30% improvement from baseline)</td>
<td>2 RCTs (N=84)<sup>6,9</sup></td>
<td>Low</td>
<td>Direct</td>
<td>Very serious inconsistency</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>Unable to assess, due to inconsistency from two trials (one trial of nabilone, 85% vs. 38%, RR 2.20 [1.06 to 4.55] and one trial of dronabinol, 43% vs. 57%, RR 0.76 [0.45 to 1.28])</td>
<td>Insufficient (previously low)</td>
</tr>
<tr>
<td>Synthetic THC vs. Placebo</td>
<td>Pain severity</td>
<td>7 RCTs (N=448)<sup>6,14</sup></td>
<td>Moderate</td>
<td>Direct</td>
<td>Consistent</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>Small effect with synthetic THC 0 to 10 scale, MD −0.95 (−1.81 to −0.25; I²=60%)</td>
<td>Low</td>
</tr>
<tr>
<td>Synthetic THC vs. Placebo</td>
<td>Function/disability</td>
<td>3 RCTs (N=unclear)<sup>6,10,13</sup></td>
<td>Moderate</td>
<td>Direct</td>
<td>Consistent</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>No effect (scale 0 to 10) MD: −0.18, −1.25 to 0.77, I²=51%</td>
<td>Low</td>
</tr>
<tr>
<td>Synthetic THC vs. Placebo</td>
<td>WAEs</td>
<td>5 RCTs (N=415)<sup>6,13</sup></td>
<td>Moderate</td>
<td>Direct</td>
<td>Consistent</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>Potential moderate effect, not statistically significant 14% vs. 7%, RR 1.75 (0.95 to 4.11; I²=0%)</td>
<td>Low</td>
</tr>
<tr>
<td>Synthetic THC vs. Placebo</td>
<td>SAEs</td>
<td>1 RCT (N=240)<sup>11</sup></td>
<td>Low</td>
<td>Direct</td>
<td>Unknown</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>Failed to demonstrate or exclude a detrimental effect 10% vs. 6%, RR 1.60 (0.65 to 3.93)</td>
<td>Insufficient</td>
</tr>
<tr>
<td>Synthetic THC vs. Placebo</td>
<td>Dizziness</td>
<td>3 RCTs (N=360)<sup>6,11</sup></td>
<td>Low</td>
<td>Direct</td>
<td>Consistent</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>Large effect with dronabinol 29% vs. 11%, RR 2.52 (1.20 to 4.82; I²=41%)</td>
<td>Moderate</td>
</tr>
<tr>
<td>Comparison</td>
<td>Outcome</td>
<td>Number of Studies and Total Participants (N)</td>
<td>Study Limitations</td>
<td>Directness</td>
<td>Consistency</td>
<td>Precision</td>
<td>Publication Bias</td>
<td>Main Findings</td>
<td>Effect Size (95% CI)</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>---</td>
<td>-------------------</td>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------------</td>
<td>--------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Synthetic THC vs. Placebo</td>
<td>Nausea</td>
<td>3 RCTs (N=302)<sup>a</sup></td>
<td>Low</td>
<td>Direct</td>
<td>Consistent</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>Potential large effect with dronabinol, not statistically significant 11% vs. 5%, RR 2.22 (0.90 to 5.05; I²=0%)</td>
<td>Low</td>
</tr>
<tr>
<td>Synthetic THC vs. Placebo</td>
<td>Sedation</td>
<td>4 RCTs (N=386)<sup>a</sup></td>
<td>Moderate</td>
<td>Direct</td>
<td>Consistent</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>Moderate effect with dronabinol 19% vs. 12%, RR 1.60 (1.01 to 2.95; I²=7.7%)</td>
<td>Low</td>
</tr>
</tbody>
</table>

Abbreviations: CBD = cannabidiol; CI = confidence interval; KQ = Key Question; MD = mean difference; RCT = randomized controlled trial; RR = relative risk; SAE = serious adverse event; SOE = strength of evidence; THC = tetrahydrocannabinol; WAE = withdrawal due to adverse event.
Table G-3. KQ1 and 2: Cannabinoids to treat chronic pain – high THC to CBD ratio, extracted from whole plant

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Outcome</th>
<th>Number of Studies and Total Participants (N)</th>
<th>Study Limitations</th>
<th>Directness</th>
<th>Consistency</th>
<th>Precision</th>
<th>Publication Bias</th>
<th>Main Findings Effect Size (95% CI)</th>
<th>SOE Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extracted THC vs. Placebo</td>
<td>Pain severity</td>
<td>2 RCTs (N=294)<sup>15,16</sup></td>
<td>Moderate</td>
<td>Direct</td>
<td>Inconsistent</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>Failed to demonstrate or exclude a detrimental effect MD −1.97 (−5.91 to 1.21; I²=72%)</td>
<td>Insufficient</td>
</tr>
<tr>
<td>Function/disability</td>
<td></td>
<td>1 RCT (N=18)<sup>16</sup></td>
<td>High</td>
<td>Direct</td>
<td>Unknown</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>Failed to demonstrate or exclude a detrimental effect MD 1.75 (−0.46 to 3.98)</td>
<td>Insufficient</td>
</tr>
<tr>
<td>WAEs</td>
<td></td>
<td>1 RCT (N=277)<sup>15</sup></td>
<td>Moderate</td>
<td>Direct</td>
<td>Unknown</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>Large increased risk 13.9% vs. 5.7%, RR 3.12 (1.54 to 6.33)</td>
<td>Low</td>
</tr>
<tr>
<td>SAEs</td>
<td></td>
<td>1 RCT (N=277)<sup>15</sup></td>
<td>Moderate</td>
<td>Direct</td>
<td>Unknown</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>Failed to demonstrate or exclude a detrimental effect 4.9% vs. 2.2%, RR 2.19 (0.58 to 8.28)</td>
<td>Insufficient</td>
</tr>
<tr>
<td>Dizziness</td>
<td></td>
<td>1 RCT (N=277)<sup>15</sup></td>
<td>Moderate</td>
<td>Direct</td>
<td>Unknown</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>Large effect 62.2% vs. 7.5%, RR 8.34 (4.53 to 15.34)</td>
<td>Low</td>
</tr>
</tbody>
</table>

Abbreviations: CBD = cannabidiol; CI = confidence interval; KQ = Key Question; MD = mean difference; RCT = randomized controlled trial; RR = relative risk; SAE = serious adverse event; SOE = strength of evidence; THC = tetrahydrocannabinol; WAE = withdrawal due to adverse event.
Table G-4. KQ1 and 2: Cannabinoids to treat chronic pain – high THC to CBD ratio, combined synthetic and whole-plant extracted studies

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Outcome</th>
<th>Number of Studies and Total Participants (N)</th>
<th>Study Limitations</th>
<th>Directness</th>
<th>Consistency</th>
<th>Precision</th>
<th>Publication Bias</th>
<th>Main Findings Effect Size (95% CI)</th>
<th>SOE Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined High THC Ratio Studies (Synthetic and Whole-plant extracted)</td>
<td>Pain severity</td>
<td>9 RCTs (N=742)</td>
<td>Moderate</td>
<td>Direct</td>
<td>Consistent</td>
<td>Precise</td>
<td>Unknown</td>
<td>Moderate effect MD −1.12 (−1.97 to −0.48; I²=65%)</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

Abbreviations: CBD = cannabidiol; CI = confidence interval; KQ = Key Question; MD = mean difference; RCT = randomized controlled trial; SOE = strength of evidence; THC = tetrahydrocannabinol.
Table G-5. KQ1 and 2: Cannabinoids to treat chronic pain – whole plant cannabis

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Outcome</th>
<th>Number of Studies and Total Participants (N)</th>
<th>Study Limitations</th>
<th>Directness</th>
<th>Consistency</th>
<th>Precision</th>
<th>Publication Bias</th>
<th>Main Findings</th>
<th>SOE Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole plant cannabis (standardized to 12% THC) vs. Usual Care</td>
<td>Pain Severity change</td>
<td>1 (N=431, 302 contribute to pain outcome)<sup>17</sup></td>
<td>High</td>
<td>Direct</td>
<td>Unknown</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>Moderate effect 0 to 10 scale, Adjusted MD at 12 months: −1.10 (−1.56 to −0.72)</td>
<td>Insufficient</td>
</tr>
<tr>
<td></td>
<td>WAE</td>
<td>1 (N=431)<sup>17</sup></td>
<td>High</td>
<td>Direct</td>
<td>Unknown</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>Large effect with cannabis 4.7% vs. 0%, RR 21.10 (1.24 to 357.80)</td>
<td>Insufficient</td>
</tr>
<tr>
<td></td>
<td>SAE</td>
<td>1 (N=431)<sup>17</sup></td>
<td>High</td>
<td>Direct</td>
<td>Unknown</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>No effect 13% vs. 19%, OR 0.64 (0.38 to 1.04)</td>
<td>Insufficient</td>
</tr>
<tr>
<td></td>
<td>Dizziness</td>
<td>1 (N=431)<sup>17</sup></td>
<td>High</td>
<td>Direct</td>
<td>Unknown</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>Failed to demonstrate or exclude a detrimental effect 12.6% vs. 9.7%, RR 1.29 (0.75 to 2.21)</td>
<td>Insufficient</td>
</tr>
<tr>
<td></td>
<td>Nausea</td>
<td>1 (N=431)<sup>17</sup></td>
<td>High</td>
<td>Direct</td>
<td>Unknown</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>Moderate effect 16.7% vs. 9.7%, RR 1.72 (1.04 to 2.85)</td>
<td>Insufficient</td>
</tr>
<tr>
<td></td>
<td>Sedation</td>
<td>1 (N=431)<sup>17</sup></td>
<td>High</td>
<td>Direct</td>
<td>Unknown</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>Large effect 13.5% vs. 4.63%, RR 2.91 (1.46 to 5.83)</td>
<td>Insufficient</td>
</tr>
<tr>
<td></td>
<td>Cognitive Disorder</td>
<td>1 (N=431)<sup>17</sup></td>
<td>High</td>
<td>Direct</td>
<td>Unknown</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>Large effect 13.9% vs. 5.7%, RR 3.12 (1.54 to 6.33)</td>
<td>Insufficient</td>
</tr>
</tbody>
</table>

Abbreviations: CI = confidence interval; KQ = Key Question; MD = mean difference; OR = odds ratio; RCT = randomized controlled trial; RR = relative risk; SAE = serious adverse event; SOE = strength of evidence; THC = tetrahydrocannabinol; WAE = withdrawal due to adverse event.
<table>
<thead>
<tr>
<th>Comparison</th>
<th>Outcome</th>
<th>Number of Studies (N) and Total Participants</th>
<th>Study Limitations</th>
<th>Directness</th>
<th>Consistency</th>
<th>Precision</th>
<th>Publication Bias</th>
<th>Main Findings Effect Size (95% CI)</th>
<th>SOE Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topical, Plant-Extracted CBD vs. Placebo</td>
<td>Pain severity (change)</td>
<td>1 RCT (N=29)</td>
<td>High</td>
<td>Direct</td>
<td>Unknown</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>Small effect with CBD cream MD −0.75, P=0.009 by ANCOVA (0 to 10 scale)</td>
<td>Insufficient</td>
</tr>
<tr>
<td>Oral Synthetic CBD vs. Placebo</td>
<td>Pain response (≥30% improvement)</td>
<td>1 RCT (N=136)</td>
<td>Moderate</td>
<td>Direct</td>
<td>Unknown</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>No effect with oral synthetic CBD RR 1.01 (0.66 to 1.55)</td>
<td>Insufficient</td>
</tr>
<tr>
<td>Oral CBD or THC/CBD (Unknown If Synthetic or Plant-extracted vs. Placebo)</td>
<td>Pain severity (change)</td>
<td>1 RCT (N=87)</td>
<td>Low</td>
<td>Unclear</td>
<td>Unknown</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>Potential increase in pain for CBD (MD 1.14 [0.11 to 2.19]) and no difference but imprecise for THC/CBD (MD -0.12 [-1.13 to 0.89])</td>
<td>Insufficient</td>
</tr>
<tr>
<td></td>
<td>Pain response (≥30% improvement)</td>
<td>1 RCT (N=87)</td>
<td>Low</td>
<td>Unclear</td>
<td>Unknown</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>Imprecise estimates for CBD (RR 0.59 [0.32 to 1.09]) and THC/CBD (RR 1.06 [0.69 to 1.62])</td>
<td>Insufficient</td>
</tr>
<tr>
<td></td>
<td>Function/disability</td>
<td>1 RCT (N=87)</td>
<td>Low</td>
<td>Unclear</td>
<td>Unknown</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>Imprecise estimates for CBD (MD 1.24 [-0.32 to 2.81]) and THC CBD (MD 0.89 [-0.64 to 2.42])</td>
<td>Insufficient</td>
</tr>
</tbody>
</table>

Abbreviations: ANCOVA = analysis of covariance; CBD = cannabidiol; CI = confidence interval; KQ = Key Question; MD = mean difference; RCT = randomized controlled trial; RR = relative risk; SOE = strength of evidence; THC = tetrahydrocannabinol.

*Study did not report whether CBD was synthetic or plant-extracted, and did not provide any details about the product composition.
Table G-7. KQ1 and 2: Cannabinoids to treat chronic pain – low THC to CBD ratio

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Outcome</th>
<th>Number of Studies (N) and Total Participants</th>
<th>Study Limitations</th>
<th>Directness</th>
<th>Consistency</th>
<th>Precision</th>
<th>Publication Bias</th>
<th>Main Findings Effect Size (95% CI)</th>
<th>SOE Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBDV vs. Placebo</td>
<td>Pain Response (≥30% improvement from baseline)</td>
<td>1 RCT (N=31)<sup>(b)</sup></td>
<td>Moderate</td>
<td>Direct</td>
<td>Unknown</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>Large effect, favors placebo 38% vs. 81%, RR 0.46 (95% CI 0.24 to 0.91)</td>
<td>Insufficient</td>
</tr>
<tr>
<td>CBDV vs. Placebo</td>
<td>Pain severity (change)</td>
<td>1 RCT (N=31)<sup>(b)</sup></td>
<td>Moderate</td>
<td>Direct</td>
<td>Unknown</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>Failed to demonstrate or exclude a detrimental effect MD 0.62 (−0.05 to 1.32)</td>
<td>Insufficient</td>
</tr>
</tbody>
</table>

Abbreviations: CBDV = cannabidivarin; CI = confidence interval; KQ = Key Question; MD = mean difference; RCT = randomized controlled trial; RR = relative risk; SOE = strength of evidence.

Table G-8. KQ1 and 2: Observational studies of cannabinoids to treat chronic pain – unknown THC to CBD ratio (patient-choice)

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Outcome</th>
<th>Number of Studies (N) and Total Participants</th>
<th>Study Limitations</th>
<th>Directness</th>
<th>Consistency</th>
<th>Precision</th>
<th>Publication Bias</th>
<th>Main Findings Effect Size (95% CI)</th>
<th>SOE Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown THC to CBD Ratio vs. Usual Care</td>
<td>Pain response (≥30% improvement from baseline)</td>
<td>No studies</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>No evidence</td>
<td></td>
</tr>
<tr>
<td>Unknown THC to CBD Ratio vs. Usual Care</td>
<td>Pain severity (change) Short-term (3 months)</td>
<td>2 cohort studies: short- to intermediate-term (N=202)<sup>1,2</sup></td>
<td>High</td>
<td>Direct</td>
<td>Inconsistent</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>VAS (0-100): 41.5 vs 43.6 at 3 months<sup>1</sup> 34.1 vs 48.8; mean difference −14.71 (95% CI −32.71 to 3.29)<sup>2</sup></td>
<td>Insufficient</td>
</tr>
<tr>
<td>Unknown THC to CBD Ratio vs. Usual Care</td>
<td>Long-term (12 months)</td>
<td>1 cohort (N=1,514)<sup>3</sup></td>
<td>High</td>
<td>Direct</td>
<td>Unknown</td>
<td>Precise</td>
<td>Unknown</td>
<td>Adjusted mean; BPI, 0-10 scale 5.2 vs. 4.9; Beta: 0.37 (95% CI −0.23 to 1.10), p=0.20<sup>3</sup></td>
<td>Insufficient</td>
</tr>
<tr>
<td>Comparison</td>
<td>Outcome</td>
<td>Number of Studies (N) and Total Participants</td>
<td>Study Limitations</td>
<td>Directness</td>
<td>Consistency</td>
<td>Precision</td>
<td>Publication Bias</td>
<td>Main Findings Effect Size (95% CI)</td>
<td>SOE Grade</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>---</td>
<td>-------------------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------</td>
<td>-----------------------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| Unknown THC to CBD Ratio vs. Usual Care | Function or Disability (SF-36 Physical Function) | 2 cohorts = short to medium-term (N=202)
[N=202]1,22 | High | Direct | Consistent | Imprecise | Unknown | SF-36 Physical Functioning (mean, 0 to 100 scale) 46.5 vs. 43.7 at 6 months21 70.0 vs. 69.4; MD 0.56 (95% CI −17.2 to 18.3) at 3 months22 | Insufficient |
<p>| Unknown THC to CBD Ratio vs. Usual Care (Nabilone + Gabapentin vs. Gabapentin Alone) | WAEs | 1 cohort study, short- and intermediate-term (N=156)11 | Moderate | Direct | Unknown | Imprecise | Unknown | 6 months: 23% (12/52) vs. 9% (5/55), RR 2.54 (95% CI 0.95 to 6.71) | Insufficient |
| Unknown THC to CBD Ratio vs. Usual Care (Nabilone + Gabapentin vs. Gabapentin Alone) | SAEs | 1 cohort study, short- and intermediate-term (N=156)11 | Moderate | Direct | Unknown | Imprecise | Unknown | None in any group | Insufficient |
| Unknown THC to CBD Ratio vs. Usual Care (Nabilone + Gabapentin vs. Gabapentin Alone) | Dizziness | 1 cohort study, short- and intermediate-term (N=156)11 | Moderate | Direct | Unknown | Imprecise | Unknown | 3 months: 33% (17/52) vs. 29% (16/55), RR 1.12 (95% CI 0.64 to 1.98) 6 months: 39% (20/52) vs. 33% (18/55), RR 1.17 (95% CI 0.70 to 0.91) | Insufficient |
| Unknown THC to CBD Ratio vs. Usual Care (Nabilone + Gabapentin vs. Gabapentin Alone) | Nausea | No studies | NA | NA | NA | NA | NA | No evidence | Insufficient |</p>
<table>
<thead>
<tr>
<th>Comparison</th>
<th>Outcome</th>
<th>Number of Studies (N) and Total Participants</th>
<th>Study Limitations</th>
<th>Directness</th>
<th>Consistency</th>
<th>Precision</th>
<th>Publication Bias</th>
<th>Main Findings Effect Size (95% CI)</th>
<th>SOE Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown THC to CBD Ratio vs. Usual Care (Nabilone + Gabapentin vs. Gabapentin Alone)</td>
<td>Sedation</td>
<td>1 cohort study, short- and intermediate-term (N=156)</td>
<td>Moderate</td>
<td>Direct</td>
<td>Unknown</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>3 months: 54% (28/52) vs. 33% (18/55) RR 1.65 (95% CI 1.04 to 2.59) 6 months: 60% (31/52) vs. 36% (20/55) RR 1.64 (95% CI 1.08 to 2.48)</td>
<td>Insufficient</td>
</tr>
</tbody>
</table>

Abbreviations: BPI-SF = Brief Pain Inventory (Short Form); CBD = cannabidiol; CI = confidence interval; KQ = Key Question; MD = mean difference; NA = not applicable; RCT = randomized controlled trial; RR = relative risk; SAE = serious adverse event; SOE = strength of evidence; THC = tetrahydrocannabinol; WAE = withdrawal due to adverse event.
Appendix G References

Appendix H. Excluded Studies List

1. Vaporized Cannabis for chronic pain associated with Sickle Cell Disease. Cannabinoid-based therapy and approaches to quantify pain in Sickle Cell disease. 2013. **Exclusion reason:** Ineligible publication type

2. Cannabis-opioid interaction in the treatment of Fibromyalgia pain. “An open label proof of concept study with randomization between treatment groups: Cannabis, Oxycodone or Cannabis/Oxycodon combination.” 2019. **Exclusion reason:** Ineligible study design

4. Topical CBD for musculoskeletal pain. Immediate effect of topical CBD for Musculoskeletal pain. 2022. **Exclusion reason:** Ineligible population

5. Cannabinoids for the Reduction of Inflammation and Sickle Cell Related Pain. Dronabinol for the Reduction of Chronic Pain and Inflammation in People With Sickle Cell Disease. 2022. **Exclusion reason:** Ineligible publication type

6. A Phase III study to investigate the effect of EMD-RX5 on symptoms of psychological distress in adults with chronic pain. A multi-site, parallel-arm, randomised, double blind, placebo-controlled study to investigate the effect of EMD-RX5 on symptoms of psychological distress in adults with chronic pain. 2022. **Exclusion reason:** Ineligible publication type

7. Comparison of VER-01 to Opioids in Patients With Chronic Non-specific Low Back Pain. Multicentre, Randomized, Open-label Study to Prove an Additional Benefit of the Full-spectrum Cannabis Extract VER-01 Over Opioids in the Treatment of Patients With Chronic Non-specific Low Back Pain. 2022. **Exclusion reason:** Ineligible publication type

8. Effects of Cannabidiol (CBD) on Resting-state Electroencephalography (EEG) and Neuropathic Pain Severity in People With Spinal Cord Injury (SCI). 2022. **Exclusion reason:** Ineligible publication type

9. Diabetic Neuropathic Pain Relief, 6 Weeks Dosage Sublingual Water-soluble CBD/PEA. A Randomized, Double-Blind, Placebo-Controlled Trial Using Cannabidiol and Palmitoylethanolamide for the Treatment of Painful Diabetic Peripheral Neuropathy of the Feet. 2023. **Exclusion reason:** Ineligible publication type

10.1212/01.wnl.0000253187.66183.9c. PMID: 17296917. Exclusion reason: Inadequate duration

29. Aviram J, Lewitus GM, Pud D, et al. Specific Phytocannabinoid compositions are

Exclusion reason: Ineligible publication type

85. Eichorn NL, Shult HT, Kracht KD, et al. Making a joint decision: Cannabis as a potential substitute for opioids in Obstetrics

34800285. **Exclusion reason:** Ineligible publication type

105. Garmon EH, Olson K. Narrative review of Kratom, an emerging psychoactive substance with perianesthetic implications. Anesthesia and analgesia. 2022;XXX;doi: 10.1213/ANE.0000000000006177. PMID: 35986675. **Exclusion reason:** Ineligible publication type

110264. PMID: 26490847. **Exclusion reason:** Ineligible publication type

147. Horsted T, Lichon Hesthaven K, Leutscher PDC. Safety and Effectiveness of Cannabinoids to Danish Patients with Treatment Refractory Chronic Pain - A Retrospective Observational Real-world Study. Eur J Pain. 2022;doi: https://dx.doi.org/10.1002/ejp.2054. **Exclusion reason:** Ineligible study design

27159993. **Exclusion reason:** Ineligible population

35711271. **Exclusion reason:** Used as source document

276. Schindler E. Sustained reductions in headache burden after the limited administration of low dose psilocybin in migraine and cluster headache: results from two preliminary studies. Neuropsychopharmacology. 2020;45:57-8. doi: 10.1038/s41386-020-00889-0. **Exclusion reason:** Ineligible publication type

in the suppression of cluster headache: Results from a randomized, double-blind, placebo-controlled trial. Headache. 2022;doi: https://dx.doi.org/10.1111/head.14420. **Exclusion reason:** Ineligible intervention

279. Schrader NHB, Duipmans JC, Renken RJ, et al. The C4EB study-Transvamix (10% THC / 5% CBD) to treat chronic pain in epidermolysis bullosa: A protocol for an explorative randomized, placebo controlled, and double blind intervention crossover study. PLoS ONE. 2022;17(12):e0277512. doi: https://dx.doi.org/10.1371/journal.pone.0277512. **Exclusion reason:** Ineligible publication type

301. Svendsen KB, Jensen TS, Bach FW. Does the Cannabinoid Dronabinol reduce central pain in Multiple Sclerosis? Randomised double blind placebo controlled crossover trial. BMJ. 2004 Jul 31;329(7460):253. doi: 10.1136/bmj.38149.566979.AE. PMID: 15258006. **Exclusion reason:** Inadequate duration

308. Takakuwa KM, Sulak D. A Survey on the effect that Medical Cannabis has on prescription opioid medication usage for the treatment of chronic pain at three medical Cannabis practice sites. Cureus. 2020;12(12):e11848. doi: 10.7759/cureus.11848. PMID: 33409086. **Exclusion reason:** Ineligible study design

310. Terrie YC. Medical Cannabis for chronic pain. US Pharm. 2020;45(3):24-8. **Exclusion reason:** Ineligible publication type

PMID: 35679523. **Exclusion reason:** Used as source document

Appendix I. Funnel Plot of High-THC Ratio Studies Included in Meta-Analysis for Pain Severity

Figure I-1. Funnel plot of nine trials of pain severity for high-THC ratio products versus placebo

Abbreviations: Groupdiff = group difference; SE = standard error; THC = tetrahydrocannabinol.