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Introduction to Developing a Protocol for Observational 
Comparative Effectiveness Research: A User’s Guide

Scott R. Smith, Ph.D. 
Agency for Healthcare Research and Quality, Rockville, MD

Background

When making health care decisions, patients, health 
care providers, and policymakers routinely seek 
unbiased information about the effects of treatment 
on a variety of health outcomes. Nonetheless, it is 
estimated that more than half of medical treatments 
lack valid evidence of effectiveness,1-3 particularly 
for long-term and patient-centered outcomes. These 
outcomes include humanistic measures such as 
the effects of treatment on quality of life, which 
may be among the most important factors that 
affect patients’ decisions about whether to use a 
treatment. In addition, therapies that demonstrate 
efficacy in well-controlled experimental settings like 
randomized controlled trials may perform differently 
in general clinical practice, where there is a wider 
diversity of patients, providers, and health care 
delivery systems.4-5 The effects of these variations 
on treatment are sometimes unknown but can 
significantly influence the net benefits and risks of 
different therapy options in individual patients.

Moreover, efficacy studies designed to optimize 
internal validity often make tradeoffs with respect 
to external validity or the generalizability of the 
results to patients, providers, and settings that are 
different from those which were studied. The absence 
of patient-relevant and unbiased information about 
the effectiveness of treatments across the range of 
potential users can create uncertainty about what 
outcomes will occur in different patient populations 
who seek care in general practice. Unfortunately, 
the lack of relevant information is often highest for 
patient groups with the greatest need for health care, 
such as the elderly, people with disabilities, or people 
with complex health conditions. Uncertainty about 
the effects of treatment on patient outcomes may lead 
to the overuse of ineffective or potentially harmful 
therapies, the underuse of effective therapies, and 
empiric treatment or off-label use for conditions for 
which the therapies have not been rigorously studied; 

the latter situation may be a risky gamble, since the 
true balance of treatment harms and benefits may be 
unknown or poorly understood.

In addition, new drugs and other interventions 
often lack comparative efficacy data to quantify 
a therapy’s equivalence or superiority to existing 
treatments.6 This lack of information contributes to 
the uncertainty about whether a new therapy will 
be better, worse, or the same as existing treatment 
options. In some cases, it may also positively 
skew patient or provider demand in favor of newer 
therapies and technologies because of expectations 
that these therapies are inherently better than those 
that are already available. An artificially high demand 
for new technologies creates a conundrum for society, 
which seeks to foster innovation and the development 
of substantially better therapies—while avoiding the 
harms and inefficient use of resources that occurs 
when ineffective or harmful therapies are used in 
patients who receive little or no benefit.

In the United States and internationally, decisions 
based on the principles of evidence-based health 
care have guided health care practice, education, and 
policy for more than 25 years.7 The core principles of 
evidence-based health care are that decisions should 
be made using the best available scientific evidence 
in light of an individual patient and that patient’s 
values. At the policy level, these decisions are usually 
focused on specific populations, such as Medicare or 
Medicaid enrollees, and may include considerations 
about costs and the availability of resources. 
Evidence is usually derived from critical appraisal of 
all relevant research, as is done in a systematic review 
of the literature. Evidence is generally considered 
strong when appraised studies show consistent 
results, are well designed to minimize bias, and are 
from representative patient populations. Treatment 
decisions are generally guided by assessing the 
certainty that a course of therapy will lead to the 
outcomes of interest to the patient, and the likelihood 
that this conclusion will be affected by the results of 
future studies. 
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High-quality research can reduce uncertainty 
about the net benefits of treatment by providing 
scientific evidence and other objective information 
for informing health care decisions. As findings 
from well controlled studies are published in the 
health care literature, knowledge accumulates 
about the effects of treatment on health outcomes 
in different patient populations and settings of 
care. This knowledge can be used to inform patient 
decisionmaking so that the most appropriate 
treatment for an individual patient is provided. 
Yet it is rare that any one study addresses all 
dimensions of a health care issue, and there are 
often knowledge gaps in areas where no research 
has been conducted. Likewise, some published 
findings may be flawed or have biases that limit 
or invalidate its conclusions. In both cases, 
knowledge gaps and poor quality research restrict 
the conclusions that may be drawn based on the 
evidence base. This requires that patients, other 
stakeholders, systematic reviewers, and researchers 
work collaboratively to develop new studies and 
programs of research that can be used to inform 
the most important decisions facing patients about 
their health care.

Recognizing the need for outcomes research, 
Section 1013 of the Medicare Prescription Drug, 
Improvement, and Modernization Act (MMA) 
authorized AHRQ in 2003 to conduct studies 
designed to improve the quality, effectiveness, and 
efficiency of Medicare, Medicaid, and the State 
Children’s Health Insurance Program (SCHIP).8 
The essential goals of Section 1013 are to 
develop and disseminate valid scientific evidence 
about the comparative effectiveness of different 
treatments and appropriate clinical approaches 
to difficult health problems. To implement 
Section 1013, AHRQ established the Effective 
Health Care (EHC) Program, which supports 
a variety of activities aimed at synthesizing, 
generating, and disseminating scientific evidence 
to patients, providers, and policymakers.9 
Subsequent legislation, including the American 
Recovery and Reinvestment Act of 2009 and 
the Patient Protection and Affordable Care Act 
of 2010 (ACA), provided expanded legislative 
provisions for AHRQ to conduct comparative 
effectiveness and patient-centered outcomes 
research. In addition, the ACA established a new 
nongovernmental research institute, the Patient-

Centered Outcomes Research Institute (PCORI). 
The Institute is an independent organization 
created to sponsor research that can be used to 
inform health care decisions. The ACA includes 
statutory roles for AHRQ and the National 
Institutes of Health in PCORI, providing a unique 
relationship for collaboration between government 
and nongovernment entities.

A component of AHRQ’s EHC Program that 
is devoted to the generation of new scientific 
evidence is the DEcIDE Research Network. 
DEcIDE is an acronym for Developing Evidence 
to Inform Decisions about Effectiveness. It is 
a collaborative research program that currently 
involves 11 research centers.10 These centers 
primarily focus on conducting observational 
CER studies and methodological activities in 
collaborations with patients, other stakeholders, 
and AHRQ. Through the DEcIDE Network, 
new scientific evidence is developed to address 
knowledge gaps that are critical to improving the 
quality, effectiveness, and efficiency of health 
care delivered in the United States. Examples 
of research that has been produced through 
the DEcIDE Network include examinations 
of the health outcomes of drug-eluting stent 
implantation,11 antipsychotic medication use in 
the elderly,12 medication use in chronic obstructive 
pulmonary disease,13 carotid revascularization 
among Medicare beneficiaries,14 prescription 
drugs in pregnancy,15 ADHD treatment in 
children16 and adults,17 radiation therapy in 
the treatment of prostate cancer,18 and research 
methods.19-20

Aims of the User’s Guide 
Related to the Design of 
Observational CER Protocols

The goal of the AHRQ DEcIDE Program is 
to generate scientific evidence that improves 
knowledge and informs decisions about the 
outcomes and effectiveness of health care. 
Evidence is generated by supporting the 
development of scientifically rigorous research 
that is designed to produce new knowledge and 
reduce uncertainty about the effects on patient 
health outcomes of treatments, prevention, or 
other interventions. One of the most important 
components of research design is the creation of a 
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study protocol, which is the researchers’ blueprint 
to guide and govern all aspects of how a study 
will be conducted. A study protocol directs the 
execution of a study to help ensure the validity of 
the final study results. It also provides transparency 
as to how the research is conducted and improves 
the reproducibility and replicability of the research 
by others, thereby potentially increasing the 
credibility and validity of a study’s findings. 

For studies designed as randomized clinical trials, 
research protocols are common and standards 
have been developed for the content of these 
protocols. However, for other study designs, such 
as observational research, there are few standards 
specifically for what elements are recommended 
for inclusion in a study protocol. As a result, there 
is a wide range of practices among investigators.21 
Research financially supported through grant or 
contract funding is usually awarded based on a 
study proposal or grant application, which may 
contain many aspects of a protocol. However, 
funding proposals may also lack specificity 
in analysis plans, procedures, measurements, 
instrumentation, and other key design 
considerations needed to carry out the study and 
potentially replicate it for independent verification 
of the results. Furthermore, funding proposals are 
not usually publicly available because the proposals 
may contain proprietary information.

In addition, a core principle of comparative 
effectiveness research, patient-centered outcomes 
research, and other forms of translational research 
is that collaborations between researchers and 
stakeholders should be formed so the outputs of 
research are relevant, applicable, and potentially 
useable for informing stakeholder decisions or 
actions. A study with a protocol developed through 
the guidance of accepted scientific standards is 
better served in minimizing the risk of biases, 
and it holds potential to produce more valid 
research. In addition, written guidance for protocol 
development helps facilitate communication 
between researchers and stakeholders so that they 
can work collaboratively to design new research in 
a way that protects against biases being introduced 
into the study design. The absence of standards for 
developing protocols may open opportunities for 
biases being introduced into study design either 
inadvertently or, however subtly, intentionally if 
researchers, stakeholders, or others have specific 

interests in directing research to favor certain 
outcomes.

The overall aims of this Observational CER 
User’s Guide for the design of comparative 
effectiveness research protocols are to identify 
both minimal standards and best practices for 
designing observational comparative effectiveness 
research (CER) studies in the DEcIDE Network. 
In addition, other researchers who are not affiliated 
with the DEcIDE Network may also wish to use 
this User’s Guide and adapt or expand upon the 
principles described in the document. CER is 
still a relatively new field of inquiry that has its 
origins across multiple disciplines, including 
health technology assessment, clinical research, 
epidemiology, economics, and health services 
research. Although the definition of CER and the 
body of work it represents is likely to evolve and be 
refined over time, a central focus that has emerged 
is the development of better scientific evidence on 
the effects of treatment on patient-centered health 
outcomes. For this version of the User’s Guide, the 
definition of CER from the Institute of Medicine 
(IOM) report will be used.22 The IOM report 
states that CER is the “generation and synthesis of 
evidence that compares the benefits and harms of 
alternative methods to prevent, diagnose, treat, and 
monitor a clinical condition or to improve delivery 
of care. The purpose of CER is to assist consumers, 
clinicians, purchasers, and policymakers to make 
informed decisions that will improve care both at 
the individual and the population levels.”

The User’s Guide was created over a period of 
approximately 2 years by researchers affiliated 
with AHRQ’s EHC Program, particularly those in 
the DEcIDE Network. A goal was for investigators 
to articulate key considerations for observational 
CER study design within the DEcIDE Program to 
strengthen research in the program and improve 
the transparency of the methods that are applied. 
The User’s Guide was modeled on similar 
AHRQ initiatives to publish methods guides for 
conducting comparative effectiveness systematic 
reviews23 and patient registries.24 Investigators 
worked together to write each of the chapters, 
which were subject to multiple internal and 
external independent reviews. All investigators had 
the opportunity to discuss, review, and comment 
on the recommendations that are provided in 
this document. Undoubtedly, new approaches to 
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research will develop, and the minimal standards 
of practice will change or evolve over time, 
necessitating periodic update of the User’s Guide. 
Nonetheless, this document brings together the 
knowledge of the current DEcIDE Program 
researchers to begin laying the groundwork for 
writing better research protocols for observational 
CER studies. 

 To summarize, the goals for the Observational 
CER User’s Guide are to:

•	 Support	the	development	of	scientifically	
rigorous observational research that produces 
valid new knowledge and reduces uncertainty 
about the effects of interventions on patient 
health outcomes.

•	 Increase	the	collaboration	between	researchers,	
patients, and other decisionmakers in designing 
valid studies that generate new scientific 
evidence for informing health care decisions.

•	 Increase	the	transparency	of	methodologies	
and study designs that are used in comparative 
effectiveness and patient-centered outcomes 
research.

•	 Improve	the	quality	and	consistency	of	research	
by eliminating or reducing inappropriate 
variation in the design of studies.

•	 Stimulate	researchers	and	stakeholders	to	
consider important principles when designing 
a comparative effectiveness study and writing a 
study protocol.

Summary and Conclusion

The Observational CER User’s Guide serves as a 
resource for investigators and stakeholders when 
designing observational CER studies, particularly 
those with findings that are intended to translate 
into decisions or actions. The User’s Guide 
provides principles for designing research that will 
inform health care decisions of patients and other 
stakeholders. Furthermore, it serves as a reference 
for increasing the transparency of the methods 
used in a study and standardizing the review of 
protocols through checklists provided in every 
chapter.

The Observational CER User’s Guide draws from 
the literature and complements other guidance on 
conducting observational research.25 However, 

it is unique in that it is focused on developing 
study protocols that lead to valid research findings 
relevant to the important health care decisions 
facing patients, providers, and policymakers. 
In addition, the authors of the User’s Guide are 
researchers knowledgeable about the literature on 
methods for observational studies as well as about 
the technical and practical aspects of implementing 
observational CER studies. Nevertheless, as the 
first guidance for developing CER protocols, this 
document will need to be evaluated, tested, and 
revised over time before widespread adoption 
is recommended. Notwithstanding this caveat, 
researchers and their collaborators may wish to 
consider the principles discussed in the User’s 
Guide when designing new observational CER 
studies, and may wish to specify the final study 
design in a written protocol that is publicly 
available. 

Since the design of a new research study involves 
critical thinking, making important decisions, and 
accepting some limitations, the Observational CER 
User’s Guide is intended to serve as a reference for 
researchers and stakeholders in thinking through 
the tradeoffs of key issues when designing a new 
research study. The User’s Guide is not meant 
to be prescriptive and is one of many resources 
for designing CER and other observational 
studies that investigators and stakeholders 
should consult when designing an observational 
CER study. Examples of these other resources 
include the Good ReseArch for Comparative 
Effectiveness (GRACE) Principles,26 the ISPE 
(International Society for Pharmacoepidemiology) 
Guidelines for Good Pharmacoepidemiology 
Practices,27-28 the Strengthening the Reporting 
of Observational Studies in Epidemiology 
(STROBE) guidelines,29 the ISPOR (International 
Society for Pharmacoeconomics and Outcomes 
Research) Good Research Practices reports,30 
the Guide on Methodological Standards in 
Pharmacoepidemiology by the European 
Network of Centres for Pharmacoepidemiology 
and Pharmacovigilance (ENCePP),31 and 
Methodological Standards for Patient-Centered 
Outcomes Research by PCORI.32 Ultimately, the 
research team is responsible for the validity and 
integrity of its final study design. As a result, the 
research team should bring together a variety of 
resources and expertise to design and execute an 
observational CER study.
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Introduction to the User’s Guide

The User’s Guide was written with the intent of 
improving the overall quality of research in the 
DEcIDE Program and other similar observational 
research networks. The goal is to support the 
development of scientifically rigorous research 
that provides new knowledge for informing 
health care decisions and protects against bias 
being introduced into the research. As new 
research methods, standards, and statistical 
tools develop, this User’s Guide will need to be 
periodically updated. It is hoped that researchers 
and stakeholders will find the User’s Guide useful. 
Comments from investigators, stakeholders, and 
other users are welcome so they can be considered 
for incorporation into future versions of the User’s 
Guide.
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Abstract

The steps involved in the process of developing research questions and study objectives for conducting 
observational comparative effectiveness research (CER) are described in this chapter. It is important 
to begin with identifying decisions under consideration, determining who the decisionmakers and 
stakeholders in the specific area of research under study are, and understanding the context in which 
decisions are being made. Synthesizing the current knowledge base and identifying evidence gaps is the 
next important step in the process, followed by conceptualizing the research problem, which includes 
developing questions that address the gaps in existing evidence. Understanding the stage of knowledge 
that the study is designed to address will come from developing these initial questions. Identifying which 
questions are critical to reduce decisional uncertainty and minimize gaps in the current knowledge base is 
an important part of developing a successful framework. In particular, it is beneficial to look at what study 
populations, interventions, comparisons, outcomes, timeframe, and settings (PICOTS framework) are 
most important to decisionmakers in weighing the balance of harms and benefits of action. Some research 
questions are easier to operationalize than others, and study limitations should be recognized and accepted 
from an early stage. The level of new scientific evidence that is required by the decisionmaker to make a 
decision or to take action must be recognized.  Lastly, the magnitude of effect must be specified. This can 
mean defining what is a clinically meaningful difference in the study endpoints from the perspective of 
the decisionmaker and/or defining what is a meaningful difference from the patient’s perspective. 

Chapter 1. Study Objectives and Questions
Scott R. Smith, Ph.D. 

Agency for Healthcare Research and Quality, Rockville, MD

Overview 

The foundation for designing a new research protocol 
is the study’s objectives and the questions that will 
be investigated through its implementation. All 
aspects of study design and analysis are based on 
the objectives and questions articulated in a study’s 
protocol. Consequently, it is exceedingly important 
that a study’s objectives and questions be formulated 
meticulously and written precisely in order for 
the research to be successful in generating new 
knowledge that can be used to inform health care 
decisions and actions.

An important aspect of CER1 and other forms 
of translational research is the potential for early 
involvement and inclusion of patients and other 
stakeholders to collaborate with researchers in 
identifying study objectives, key questions, major 
study endpoints, and the evidentiary standards 
that are needed to inform decisionmaking. The 
involvement of stakeholders in formulating the 
research questions increases the applicability of the 

study to the end-users and facilitates appropriate 
translation of the results into health care practice 
and use by patient communities. While stakeholders 
may be defined in multiple ways, for the purposes 
of this User’s Guide, a broad definition will be 
used. Hence, stakeholders are defined as individuals 
or organizations that use scientific evidence for 
decisionmaking and therefore have an interest in the 
results of new research. Implicit in this definition 
of stakeholders is the importance for stakeholders 
to understand the scientific process, including 
considerations of bioethics and the limitations 
of research, particularly with regard to studies 
involving human subjects. Ideally, stakeholders 
also should express commitment to using objective 
scientific evidence to inform their decisionmaking 
and recognize that disregarding sound scientific 
methods often will undermine decisionmaking. For 
stakeholder organizations, it is also advantageous if 
the organization has well-established processes for 
transparently reviewing and incorporating research 
findings into decisions as well as organized channels 
for disseminating research results.
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There are at least seven essential steps in the 
conceptualization and development of a research 
question or set of questions for an observational 
CER protocol. These steps are presented as 
a general framework in Table 1.1 below and 
elaborated upon in the subsequent sections of 
this chapter. The framework is based on the 
principle that researchers and stakeholders will 
work together to objectively lay out the research 
problems, research questions, study objectives, 
and key parameters for which scientific evidence 
is needed to inform decisionmaking or health 
care actions. The intent of this framework is to 
facilitate communication between researchers 
and stakeholders in conceptualizing the research 

problem and the design of a study (or a program 
of research involving a series of studies) in order 
to maximize the potential that new knowledge 
will be created from the research with results that 
can inform decisionmaking. To do this, research 
results must be relevant, applicable, unbiased, 
and sufficient to meet the evidentiary threshold 
for decisionmaking or action by stakeholders. In 
order for the results to be valid and credible, all 
persons involved must be committed to protecting 
the integrity of the research from bias and conflicts 
of interest. Most importantly, the study must be 
designed to protect the rights, welfare, and well-
being of subjects involved in the research.

Table 1.1. Framework for developing and conceptualizing a CER protocol 

Domain Relevant Questions

Identify Decisions, 
Decisionmakers, Actions, and 
Context

What health care decision or set of decisions are being considered about the 
comparative effectiveness, risks, or benefits of medical treatment, management, 
diagnosis, or prevention of illness and injury?  Who are the decisionmakers and 
in what context is the decision being made?

Synthesize the Current 
Knowledge Base

What is known from the available scientific evidence and what is unknown 
because the evidence is insufficient or absent?

Conceptualize the Research 
Problem

What research questions or series of questions are critical to reduce decisional 
uncertainty and gaps in the current knowledge base? 

Determine the Stage of 
Knowledge Development

What stage of knowledge is the study designed to address?  

Apply PICOTS Framework For a particular question, what study populations, interventions, comparisons, 
outcomes, time frame, and settings are most important to the decisionmaker(s) 
in weighing the balance of harms and benefits of action? Are some research 
questions easier to operationalize than others? Are intervention effects expected 
to be homogeneous or heterogeneous between different population subgroups?

Discuss Evidentiary Need and 
Uncertainty

What level of new scientific evidence does the decisionmaker need to make a 
decision or to take action?

Specify the Magnitude of 
Effect

What is a clinically meaningful difference in the study endpoints from the 
perspective of the decisionmaker? What is a meaningful difference from the 
patient’s perspective (e.g., symptoms interfering with work or social life)?
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Identifying Decisions, 
Decisionmakers, Actions, and 
Context

In order for research findings to be useful for 
decisionmaking, the study protocol should clearly 
articulate the decisions or actions for which 
stakeholders seek new scientific evidence. While 
only some studies may be sufficiently robust for 
making decisions or taking action, statements that 
describe the stakeholders’ decisions will help those 
who read the protocol understand the rationale for 
the study and its potential for informing decisions 
or for translating the findings into changes in health 
care practices.  This information also improves 
the ability of protocol readers to understand the 
purpose of the study so they can critically review 
its design and provide recommendations for ways 
it may be potentially improved. If stakeholders 
have a need to make decisions within a critical time 
frame for regulatory, ethical, or other reasons, this 
interval should be expressed to researchers and 
described in the protocol. In some cases, the time 
frame for decisionmaking may influence the choice 
of outcomes that can be studied and the study 
designs that can be used. For some stakeholders’ 
questions, research and decisionmaking may need 
to be divided into stages, since it may take years 
for outcomes with long lag times to occur, and 
research findings will be delayed until they do.  

In writing this section of the protocol, investigators 
should ask stakeholders to describe the context in 
which the decision will be made or actions will be 
taken. This context includes the background and 
rationale for the decision, key areas of uncertainty 
and controversies surrounding the decision, ways 
scientific evidence will be used to inform the 
decision, the process stakeholders will use to 
reach decisions based on scientific evidence, and 
a description of the key stakeholders who will 
use or potentially be affected by the decision. By 
explaining these contextual factors that surround 
the decision, investigators will be able to work with 
stakeholders to determine the study objectives and 
other major parameters of the study. This work also 
provides the opportunity to discuss how the tools 
of science can be applied to generate new evidence 
for informing stakeholder decisions and what limits 
may exist in those tools. In addition, this initial step 
begins to clarify the number of analyses necessary 

to generate the evidence that stakeholders need 
to make a decision or take other actions with 
sufficient certainty about the outcomes of interest. 
Finally, the contextual information facilitates 
advance planning and discussions by researchers 
and stakeholders about approaches to translation 
and implementation of the study findings once the 
research is completed.

Synthesizing the Current 
Knowledge Base

In designing a new study, investigators should 
conduct a comprehensive review of the literature, 
critically appraise published studies, and synthesize 
what is known related to the research objectives.  
Specifically, investigators should summarize in 
the protocol what is known about the efficacy, 
effectiveness, and safety of the interventions and 
about the outcomes being studied. Furthermore, 
investigators should discuss measures used in 
prior research and whether these measures have 
changed over time. These descriptions will provide 
background on the knowledge base for the current 
protocol. It is equally important to identify which 
elements of the research problem are unknown 
because evidence is absent, insufficient, or 
conflicting.  

For some research problems, systematic reviews 
of the literature may be available and can be 
useful resources to guide the study design. The 
AHRQ Evidence-based Practice Centers2 and 
the Cochrane Collaboration3 are examples of 
established programs that conduct thorough 
systematic reviews, technology assessments, and 
specialized comparative effectiveness reviews using 
standardized methods. When available, systematic 
reviews and technology assessments should be 
consulted as resources for investigators to assess 
the current knowledge base when designing new 
studies and working with stakeholders.

When reviewing the literature, investigators and 
stakeholders should identify the most relevant 
studies and guidelines about the interventions 
that will be studied. This will allow readers to 
understand how new research will add to the 
existing knowledge base. If guidelines are a 
source of information, then investigators should 
examine whether these guidelines have been 
updated to incorporate recent literature. In 
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addition, investigators should assess the health 
sciences literature to determine what is known 
about expected effects of the interventions based 
on current understanding of the pathophysiology 
of the target condition. Furthermore, clinical 
experts should be consulted to help identify gaps 
in current knowledge based on their expertise and 
interactions with patients.  Relevant questions 
to ask to assess the current knowledge base for 
development of an observational CER study 
protocol are:

•	 What	are	the	most	relevant	studies	and	
guidelines about the interventions, and why 
are these studies relevant to the protocol (e.g., 
because of the study findings, time period 
conducted, populations studied, etc.)?

•	 Are	there	differences	in	recommendations	from	
clinical guidelines that would indicate clinical 
equipoise?

•	 What	else	is	known	about	the	expected	
effects of the interventions based on current 
understanding of the pathophysiology of the 
targeted condition?

•	 What	do	clinical	experts	say	about	gaps	in	
current knowledge?

Conceptualizing the Research 
Problem 

In designing studies for addressing stakeholder 
questions, investigators should engage multiple 
stakeholders in discussions about how the 
research problem is conceptualized from the 
stakeholders’ perspectives. These discussions 
will aid in designing a study that can be used to 
inform decisionmaking. Together, investigators 
and stakeholders should work collaboratively to 
determine the major objectives of the study based 
on the health care decisions facing stakeholders. 
As pointed out by Heckman,4 research objectives 
should be formalized outside considerations of 
available data and the inferences that can be made 
from various statistical estimation approaches. 
Doing so will allow the study objectives to be 
determined by stakeholder needs rather than the 
availability of existing data. A thorough discussion 
of these considerations is beyond the scope of this 
chapter, but some important considerations are 
summarized in supplement 1 of this User’s Guide. 

In order to conceptualize the problem, stakeholders 
and other experts should be asked to describe the 
potential relationships between the intervention 
and important health outcomes. This description 
will help researchers develop preliminary 
hypotheses about the stated relationships. 
Likewise, stakeholders, researchers, and other 
experts should be asked to enumerate all major 
assumptions that affect the conceptualization 
of the research problem, but will not be directly 
examined in the study. These assumptions 
should be described in the study protocol and in 
reporting final study results. By clearly stating the 
assumptions, protocol reviewers will be better able 
to assess how the assumptions may influence the 
study results.

Based on the conceptualization of the research 
problem, investigators and stakeholders should 
make use of applicable scientific theory in 
designing the study protocol and developing the 
analytic plan. Research that is designed using 
a validated theory has a higher potential to 
reach valid conclusions and improve the overall 
understanding of a phenomenon. In addition, 
theory will aid in the interpretation of the study 
findings, since these results can be put in context 
with the theory and with past research. Depending 
on the nature of the inquiry, theory from specific 
disciplines such as health behavior, sociology, 
or biology could be the basis for designing the 
study. In addition, the research team should work 
with stakeholders to develop a conceptual model 
or framework to guide the implementation of 
the study. The protocol should also contain one 
or more figures that summarize the conceptual 
model or framework as it applies to the study. 
These figures will allow readers to understand the 
theoretical or conceptual basis for the study and 
how the theory is operationalized for the specific 
study. The figures should diagram relationships 
between study variables and outcomes to help 
readers of the protocol visualize relationships that 
will be examined in the study.  

For research questions about causal associations 
between exposures and outcomes, causal models 
such as directed acyclic graphs (DAGs) may be 
useful tools in designing the conceptual framework 
for the study and developing the analytic plan. 
The value of DAGs in the context of refining study 
questions is that they make assumptions explicit 
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in ways that can clarify gaps in knowledge. Free 
software such as DAGitty is available for creating, 
editing, and analyzing causal models. A thorough 
discussion of DAGs is beyond the scope of this 
chapter, but more information about DAGs is 
available in supplement 2 of this User’s Guide. 

The following list of questions may be useful 
for defining and describing a study’s conceptual 
framework in a CER protocol:

•	 What	are	the	main	objectives	of	the	study,	as	
related to specific decisions to be made?

•	 What	are	the	major	assumptions	of	
decisionmakers, investigators, and other experts 
about the problem or phenomenon being 
studied?

•	 What	relationships,	if	any,	do	experts	
hypothesize exist between interventions and 
outcomes?

•	 What	conceptual	model	will	guide	the	study	
design and interpretation?

 – What is known about each element of the 
model?

 – Can relationships be expressed by causal 
diagrams?

Determining the Stage of 
Knowledge Development for 
the Study Design

The scientific method is a process of observation 
and experimentation in order for the evidence base 
to be expanded as new knowledge is developed. 
Therefore, stakeholders and investigators should 
consider whether a program of research comprising 
a sequential or concurrent series of studies, rather 
than a single study, is needed to adequately make a 
decision. Staging the research into multiple studies 
and making interim decisions may improve the 
final decision and make judicious use of scarce 
research resources. In some cases, the results of 
preliminary studies, descriptive epidemiology, 
or pilot work may be helpful in making interim 
decisions and designing further research. Overall, 
a planned series of related studies or a program 
of research may be needed to adequately address 
stakeholders’ decisions.  

An example of a structured program of research 
is the four phases of clinical studies used by the 
Food and Drug Administration (FDA) to reach a 
decision about whether or not a new drug is safe 
and efficacious for market approval in the United 
States. Using this analogy, the final decision 
about whether a drug is efficacious and safe to be 
marketed for specific medical indications is based 
upon the accumulation of scientific evidence from 
a series of studies (i.e., not from any individual 
study), which are conducted in multiple sequential 
phases. The evidence generated in each phase 
is reviewed to make interim decisions about the 
safety and efficacy of a new pharmaceutical until 
ultimately all the evidence is reviewed to make a 
final decision about drug approval.  

Under the FDA model for decisionmaking, 
initial research involves laboratory and animal 
tests. If the evidence generated in these studies 
indicates that the drug is active and not toxic, 
the sponsor submits an application to the FDA 
for an “investigational new drug.” If the FDA 
approves, human testing for safety and efficacy 
can begin. The first phase of human testing is 
usually conducted in a limited number of healthy 
volunteers (phase 1). If these trials show evidence 
that the product is safe in healthy volunteers, 
then the drug is further studied in a small number 
of volunteers who have the targeted condition 
(phase 2). If phase 2 studies show that the drug 
has a therapeutic effect and lacks significant 
adverse effects, trials with large numbers of 
people are conducted to determine the drug’s 
safety and efficacy (phase 3). Following these 
trials, all relevant scientific studies are submitted 
to the FDA for a decision about whether the drug 
should be approved for marketing. If there are 
additional considerations like special safety issues, 
observational studies may be required to assess the 
safety of the drug in routine clinical care after the 
drug is approved for marketing (phase 4). Overall, 
the decisionmaking and research are staged so that 
the cumulative findings from all studies are used by 
the FDA to make interim decisions until the final 
decision is made about whether a medical product 
will be approved for marketing.  

While most decisions about the comparative 
effectiveness of interventions will not need such 
extensive testing, it still may be prudent to stage 
research in a way that allows for interim decisions 
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and sequentially more rigorous studies. On 
the other hand, conditional approval or interim 
decisions may risk confusing patients and other 
stakeholders about the extent to which current 
evidence indicates that a treatment is effective and 
safe for all individuals with a health condition. 
For instance, under this staged approach new 
treatments could rapidly diffuse into a market 
even when there is limited evidence of long-term 
effectiveness and safety for all potential users. An 
illustrative example of this is the case of lung-
volume reduction surgery, which was increasingly 
being used to treat severe emphysema despite 
limited evidence supporting its safety and efficacy 
until new research raised questions about the 
safety of the procedure.6

Below is one potential categorization for the stages 
of knowledge development as related to informing 
decisions about questions of comparative 
effectiveness:

1. Descriptive analysis

2. Hypothesis generation

3. Feasibility studies/proof of concept

4. Hypothesis supporting

5. Hypothesis testing

The first stages (i.e., descriptive analysis, 
hypothesis generation, and feasibility studies) 
are not mutually exclusive and usually are 
not intended to provide conclusive results for 
most decisions. Instead, these stages provide 
preliminary evidence or feasibility testing 
before larger, more resource-intensive studies 
are launched. Results from these categories of 
studies may allow for interim decisionmaking 
(e.g., conditional approval for reimbursement of 
a treatment while further research is conducted). 
While a phased approach to research may 
postpone the time when a conclusive decision can 
be reached, it does help to conserve resources such 
as those that may be consumed in launching a 
large multicenter study when a smaller study may 
be sufficient. Investigators will need to engage 
stakeholders to prioritize what stage of research 
may be most useful for the practical range of 
decisions that will be made.  

Investigators should discuss in the protocol 
what stage of knowledge the current study will 
fulfill in light of the actions available to different 
stakeholders. This will allow reviewers of the 
protocol to assess the degree to which the evidence 
generated in the study holds the potential to fill 
specific knowledge gaps. For studies that are 
described in the protocol as preliminary, this may 
also help readers understand other tradeoffs that 
were made in the design of the study, in terms of 
methodological limitations that were accepted  
a priori in order to gather preliminary information 
about the research questions.  

Defining and Refining Study 
Questions Using PICOTS 
Framework

As recommended in other AHRQ methods 
guides,7 investigators should engage stakeholders 
in a dialogue in order to understand the objectives 
of the research in practical terms, particularly 
so that investigators know the types of decisions 
that the research may affect. In working with 
stakeholders to develop research questions 
that can be studied with scientific methods, 
investigators may ask stakeholders to identify 
six key components of the research questions 
that will form the basis for designing the study. 
These components are reflected in the PICOTS 
typology and are shown below in Table 1.2. These 
components represent the critical elements that 
will help investigators design a study that will be 
able to address the stakeholders’ needs. Additional 
references that expand upon how to frame research 
questions can be found in the literature.8-9 

The PICOTS typology outlines the key parts 
of the research questions that the study will be 
designed to address.10 As a new research protocol 
is developed, these questions can be presented in 
preliminary form and refined as other steps in the 
process are implemented. After the preliminary 
questions are refined, investigators should examine 
the questions to make sure that they will meet the 
needs of the stakeholders. In addition, they should 
assess whether the questions can be answered 
within the timeframe allotted and with the 
resources that are available for the study.
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Table 1.2 PICOTS typology for developing research questions

Component Relevant Questions

Population What is the patient population of interest? Are intervention effects expected to be 
homogeneous or heterogeneous between different subgroups of the population? What 
subgroups will be considered in terms of age, gender, ethnicity, etc.?  

Intervention What is the intervention of interest (e.g., a drug, device, procedure, or test)?

Comparator What are the alternatives?

Outcomes What are the outcomes and endpoints of interest?

Timing What is the time frame of interest for assessing outcomes? Are stakeholders interested 
in short-term or long-term outcomes?

Setting What is the clinical setting of interest (e.g., hospital, private practice, community health 
center, etc.)?

Endpoints

Since stakeholders ultimately determine 
effectiveness, it is important for investigators to 
ensure that the study endpoints and outcomes will 
meet their needs. Stakeholders need to articulate 
to investigators the health outcomes that are most 
important for a particular stakeholder to make 
decisions about treatment or take other health care 
actions. The endpoints that stakeholders will use 
to determine effectiveness may vary considerably. 
Unlike efficacy trials, in which clinical endpoints 
and surrogate measures are frequently used to 
determine efficacy, effectiveness may need to be 
determined based on several measures, many of 
which are not biological. These endpoints may be 
categorized as clinical endpoints, patient-reported 
outcomes and quality of life, health resource 
utilization, and utility measures. Types of measures 
that could be used are mortality, morbidity and 
adverse effects, quality of life, costs, or multiple 
outcomes. Chapter 6 gives a more extensive 
discussion of potential outcome measures of 
effectiveness.

The reliability, validity, and accuracy of study 
instruments to validly measure the concepts they 
purport to measure will also need to be acceptable 
to stakeholders. For instance, if stakeholders are 
interested in quality of life as an outcome, but do 
not believe there is an adequate measure of quality 
of life, then measurement development may need to 
be done prior to study initiation or other measures 
will need to be identified by stakeholders.

Discussing Evidentiary Need 
and Uncertainty

Investigators and stakeholders should discuss the 
tradeoffs of different study designs that may be 
used for addressing the research questions. This 
dialogue will help researchers design a study 
that will be relevant and useful to the needs of 
stakeholders. All study designs have strengths 
and weaknesses, the latter of which may limit the 
conclusiveness of the final study results. Likewise, 
some decisions may require evidence that cannot 
be obtained from certain designs. In addition to 
design weaknesses, there are also practical tradeoffs 
that need to be considered in terms of research 
resources, like the time needed to complete the 
study, the availability of data, investigator expertise, 
subject recruitment, human subjects protection, 
research budget, difference to be detected, and 
lost-opportunity costs of doing the research instead 
of other studies that have priority for stakeholders. 
An important decision that will need to be made 
is whether or not randomization is needed for 
the questions being studied. There are several 
reasons why randomization might be needed, such 
as determining whether an FDA-approved drug 
can be used for a new use or indication that was 
not studied as part of the original drug approval 
process. A paper by Concato includes a thorough 
discussion of issues to consider when deciding 
whether randomization is necessary.11
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In discussing the tradeoffs of different study 
designs, researchers and stakeholders may wish 
to discuss the principal goals of research and 
ensure that researchers and stakeholders are 
aligned in their understanding of what is meant 
by scientific evidence. Fundamentally, research 
is a systematic investigation that uses scientific 
methods to measure, collect, and analyze data for 
the advancement of knowledge. This advancement 
is through the independent peer review and 
publication of study results, which are collectively 
referred to as scientific evidence. One definition of 
scientific evidence has been proposed by Normand 
and McNeil12 as: 

 . . . the accumulation of information to support 
or refute a theory or hypothesis. . . . The idea 
is that assembling all the available information 
may reduce uncertainty about the effectiveness 
of the new technology compared to existing 
technologies in a setting where we believe 
particular relationships exist but are uncertain 
about their relevance . . .

While the primary aim of research is to produce 
new knowledge, the Normand and McNeil concept 
of evidence emphasizes that research helps 
create knowledge by reducing uncertainty about 
outcomes. However, rarely, if at all, does research 
eliminate all uncertainty around most decisions. 
In some cases, successful research will answer 
an important question and reduce uncertainty 
related to that question, but it may also increase 
uncertainty by leading to more, better informed 
questions regarding unknowns. As a result, nearly 
all decisions face some level of uncertainty 
even in a field where a body of research has 
been completed. This distinction is also critical 
because it helps to separate the research and 
subsequent actions that decisionmakers may take 
based on their assessment of the research results.  
Those subsequent actions may be informed by 
the research findings but will also be based on 
stakeholders’ values and resources. Hence, as 
the definition by Normand and McNeil implies, 
research generates evidence but stakeholders 
decide whether to act on the evidence. Scientific 
evidence informs decisions to the extent it can 
adequately reduce the uncertainty about the 
problem for the stakeholder. Ultimately, treatment 
decisions are only guided by an assessment of the 

certainty that a course of therapy will lead to the 
outcomes of interest and the likelihood that this 
conclusion will be affected by the results of future 
studies.  

In conceptualizing a study design, it is important 
for investigators to understand what constitutes 
sufficient and valid evidence from the stakeholder’s 
perspective. In other words, what is the type 
of evidence that will be required to inform the 
stakeholder’s decision to act or make a conscious 
decision not to take action? Evidence needed 
for action may vary by type of stakeholder and 
the scope of decisions that the stakeholder is 
making. For instance, a stakeholder who is 
making a population-based decision such as 
whether to provide insurance coverage for a new 
medical device with many alternatives may need 
substantially robust research findings in order to 
take action and provide that insurance coverage. 
In this example, the stakeholder may only accept 
as evidence a study with strong internal validity 
and generalizability (i.e., one conducted in a 
nationally representative sample of patients with 
the disease). On the other hand, a patient who has 
a health condition where there are few treatments 
may be willing to accept lower-quality evidence in 
order to make a decision about whether to proceed 
with treatment despite a higher level of uncertainty 
about the outcome.

In many cases, there may exist a gradient of 
actions that can be taken based on available 
evidence.  Quanstrum and Hayward13 have 
discussed this gradient and argued that health 
care decisionmaking is changing, partly because 
more information is available to patients and 
other stakeholders about treatment options. As 
shown in the upper panel (A) in Figure 1.1, many 
people may currently believe that health care 
treatment decisions are basically uniform for most 
people and under most circumstances.  Panel 
A represents a hypothetical treatment whereby 
there is an evidentiary threshold or a point at 
which treatment is always beneficial and should 
be recommended. On the other hand, below this 
threshold, care provides no benefits and treatment 
should be discouraged. Quanstrum and Hayward 
argue that increasingly health care decisions are 
more like the lower panel (B). This panel portrays 
health care treatments as providing a large zone of 
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discretion where benefits may be low or modest 
for most people. While above this zone treatment 
may always be recommended, individuals who 
fall within the zone may have questionable health 

benefits from treatment. As a result, different 
decisionmakers may take different actions based on 
their individual preferences.  

Figure 1.1. Conceptualization of clinical decisionmaking

See Quanstrum KH, Hayward RA (Reference #13). This figure is copyrighted by the Massachusetts Medical Society 
and reprinted with permission.

In light of this illustration, the following questions 
are suggested for discussion with stakeholders 
to help elicit the amount of uncertainty that is 
acceptable so that the study design can reach an 
appropriate level of evidence for the decision at 
hand:

•	 What	level	of	new	scientific	evidence	does	the	
decisionmaker need to make a decision or take 
action?

•	 What	quality	of	evidence	is	needed	for	the	
decisionmaker to act?

•	 What	level	of	certainty	of	the	outcome	is	
needed by the decisionmaker(s)?

•	 How	specific	does	the	evidence	need	to	be?

•	 Will	decisions	require	consensus	of	multiple	
parties?

Additional Considerations When 
Considering Evidentiary Needs 

As mentioned earlier, different stakeholders may 
disagree on the usefulness of different research 
designs, but it should be pointed out that this 
disagreement may be because stakeholders 

have different scopes of decisions to make. For 
example, high-quality research that is conclusive 
may be needed to make a decision that will affect 
the entire nation. On the other hand, results with 
more uncertainty as to the magnitude of the effect 
estimate(s) may be acceptable in making some 
decisions such as those affecting fewer people 
or where the risks to health are low. Often this 
disagreement occurs when different stakeholders 
debate whether evidence is needed from a new 
randomized controlled trial or whether evidence 
can be obtained from an analysis of an existing 
database. In this debate, both sides need to clarify 
whether they are facing the same decision or the 
decisions are different, particularly in terms of their 
scope.

Groups committed to evidence-based 
decisionmaking recognize that scientific evidence 
is only one component of the process of making 
decisions. Evidence generation is the goal of 
research, but evidence alone is not the only facet 
of evidence-based decisionmaking. In addition 
to scientific evidence, decisionmaking involves 
the consideration of (a) values, particularly the 
values placed on benefits and harms, and (b) 

A   Current Model

Net bene�t

Care recommended

Small or uncertain net bene�t

Discretionary careCare 
discouraged

Care 
discouraged

Net harm

Net harm

Substantial 
net bene�t

Care 
recommended

B  New Model
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resources.14 Stakeholder differences in values 
and resources may mean that different decisions 
are made based on the same scientific evidence. 
Moreover, differences in values may create conflict 
in the decisionmaking process. One stakeholder 
may believe a particular study outcome is most 
important from their perspective, while another 
stakeholder may believe a different outcome is the 
most important for determining effectiveness.  

Likewise, there may be inherent conflicts in values 
between individual decisionmaking and population 
decisionmaking, even though these decisions are 
often interrelated. For example, an individual may 
have a higher tolerance for treatment risk in light 
of the expected treatment benefits for him or her. 
On the other hand, a regulatory health authority 
may determine that the population risk is too 
great without sufficient evidence that treatment 

provides benefits to the population. An example 
of this difference in perspective can be seen 
with how different decisionmakers responded to 
evidence about the drug Avastin® (bevacizumab) 
for the treatment of metastatic breast cancer. 
In this case, the FDA revoked their approval of 
the breast cancer indication for Avastin after 
concluding that the drug had not been shown to 
be safe and effective for that use. Nonetheless, 
Medicare, the public insurance program for the 
elderly and disabled, continued to allow coverage 
when a physician prescribes the drug, even for 
breast cancer. Likewise, some patient groups were 
reported to be concerned by the decision since it 
presumably would deny some women access to 
Avastin treatment. For a more thorough discussion 
of these issues around differences in perspective, 
the reader is referred to an article by Atkins15 and 
the examples in Table 1.3 below.

Table 1.3 Examples of individual versus population decisions (Adapted from 
Atkins, 2007)15

Decision Types Decision Examples

Individual Decisions

Patient Should I take raloxifene, alendronate, or calcium and vitamin D to prevent 
osteoporosis?

Physician/health care professional Should I prescribe treatment X vs. Y?

Population Decisions

Approval Is slow-release sodium fluoride usually safe and effective for preventing 
fractures in comparison with other options?

Coverage Which bisphosphonate drugs should be included on a drug formulary? On 
what tier or what level of copayment? 

Practice guidelines What medications are recommended for initial treatment of women at 
high risk for osteoporosis?

Risk management What should a health plan do to minimize the risks associated with use of 
bisphosphonate drugs?

 Other health system policies Should a health system promote routine screening for osteoporosis using 
ultrasound or dual-energy x-ray absorptometry?

Specifying Magnitude of Effect 

In order for decisions to be objective, it is 
important for there to be an a priori discussion 
with stakeholders about the magnitude of 
effect that stakeholders believe represents a 
meaningful difference between treatment options. 
Researchers will be familiar with the basic tenet 
that statistically significant differences do not 

always represent clinically meaningful differences. 
Hence, researchers and stakeholders will need 
to have knowledge of the instruments that are 
used to measure differences and the accuracy, 
limitations, and properties of those instruments. 
Three key questions are recommended to use when 
eliciting from stakeholders the effect sizes that are 
important to them for making a decision or taking 
action:
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•	 How	do	patients	and	other	stakeholders	define	a	
meaningful difference between interventions?

•	 How	do	previous	studies	and	reviews	define	a	
meaningful difference?

•	 Are	patients	and	other	stakeholders	interested	
in superiority or noninferiority as it relates to 
decisionmaking?

Challenges to Developing 
Study Questions and Initial 
Solutions

In developing CER study objectives and questions, 
there are some potential challenges that face 
researchers and stakeholders. The involvement 
of patients and other stakeholders in determining 
study objectives and questions is a relatively 
new paradigm, but one that is consistent with 
established principles of translational research. 
A key principle of translational research is that 
users need to be involved in research at the 
earliest stages for the research to be adopted.16 
In addition, most research is currently initiated 
by an investigator, and traditionally there have 
been few incentives (and some disincentives) 
to involving others in designing a new research 
study. Although the research paradigm is rapidly 
shifting,17 there is little information about how to 
structure, process, and evaluate outcomes from 
initiatives that attempt to engage stakeholders in 
developing study questions and objectives with 
researchers. As different approaches are taken 
to involve stakeholders in the research process, 
researchers will learn how to optimize the process 
of stakeholder involvement and improve the 
applicability of research to the end-users.

The bringing together of stakeholders may create 
some general challenges to the research team. For 
instance, it may be difficult to identify, engage, 
or manage all stakeholders who are interested 
in developing and using scientific evidence for 
addressing a problem. A process that allows for 
public commenting on research protocols through 
Internet postings may be helpful in reaching 
the widest network of interested stakeholders. 
Nevertheless, finding stakeholders who can 
represent all perspectives may not always be 
practical or available to the study team. In addition, 

competing interests among stakeholders may make 
prioritization of research questions challenging. 
Different stakeholders have different needs and 
this may make prioritization of research difficult. 
Nonetheless, as the science of translational 
research evolves, the collaboration of researchers 
with stakeholders will likely become increasingly 
the standard of practice in designing new research. 

To assist researchers and stakeholders with working 
together, AHRQ has published several online 
resources to facilitate the involvement of stakeholders 
in the research process. These include a brief guide 
for stakeholders that highlights opportunities 
for taking part in AHRQ’s Effective Health Care 
Program, a facilitation primer with strategies 
for working with diverse stakeholder groups, a 
table of suggested tasks for researchers to involve 
stakeholders in the identification and prioritization 
of future research, and learning modules with 
slide presentations on engaging stakeholders in the 
Effective Health Care Program. 18-19 In addition, 
AHRQ supports the Evidence-based Practice 
Centers in working with various stakeholders to 
further develop and prioritize decisionmakers’ future 
research needs, which are published in a series of 
reports on AHRQ’s Web site and on the National 
Library of Medicine’s open-access Bookshelf.20 

Likewise, AHRQ supports the active involvement 
of patients and other stakeholders in the AHRQ 
DEcIDE program, in which different models of 
engagement have been used. These models include 
hosting in-person meetings with stakeholders to 
create research agendas;21-22 developing research 
based on questions posed by public payers such 
as Centers for Medicare and Medicaid Services; 
addressing knowledge gaps that have been 
identified in AHRQ systematic reviews through 
new research; and supporting five research 
consortia, each of which involves researchers, 
patients, and other stakeholders working together 
to develop, prioritize, and implement research 
studies. 

Summary and Conclusion

This chapter provides a framework for formulating 
study objectives and questions, for a research 
protocol on a CER topic. Implementation of 
the framework involves collaboration between 
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researchers and stakeholders in conceptualizing 
the research objectives and questions and the 
design of the study. In this process, there is a 
shared commitment to protect the integrity of 
the research results from bias and conflicts of 
interest, so that the results are valid for informing 
decisions and health care actions. Due to the 
complexity of some health care decisions, the 
evidence needed for decisionmaking or action 
may need to be developed from multiple studies, 
including preliminary research that becomes the 

underpinning for larger studies. The principles 
described in this chapter are intended to strengthen 
the writing of research protocols and enhance the 
results from the emanating studies, for informing 
the important decisions facing patients, providers, 
and other stakeholders about health care treatments 
and new technologies. Subsequent chapters in 
this User’s Guide provide specific principles for 
operationalizing the study objectives and research 
questions in writing a complete study protocol that 
can be executed as new research.

Checklist: Guidance and key considerations for developing study objectives and 
questions for observational CER protocols 

Guidance Key Considerations Check

Characterize the primary uses and users 
(stakeholders) of the scientific evidence that will 
be generated by the study, and explain how the 
evidence may be used.

 – Explain specific stakeholder decisions or 
actions that will potentially be informed by 
the study results.

 – Describe the evidentiary need of the 
stakeholders.

o

Articulate the main study objectives in terms of a 
highly specific research question or set of related 
questions that the study will answer.

 – Write research questions by identifying 
the population, intervention, comparator, 
outcomes, timing, and settings of interest to 
the decision makers (PICOTS).

 – Discuss with stakeholders operational 
definitions and measures to meet the study 
objectives.

o

Synthesize the literature and characterize the known 
effects of the exposures and interventions on patient 
outcomes.

o

Provide a conceptual framework.  – Describe hypothesized relationships between 
interventions and outcomes and key covariates

 – Include appropriate figures or diagrams as 
needed.

o

Delineate study limitations that stakeholders and 
investigators are willing to accept a priori. o

Describe the meaningful magnitude of change in 
the outcomes of interest as defined by stakeholders.

 – Provide a rationale for why a particular 
difference is hypothesized to be meaningful.

 – Discuss differences that may exist among 
stakeholders in terms of what is meaningful to 
different stakeholders.

o
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Abstract

The choice of study design often has profound consequences for the causal interpretation of study 
results. The objective of this chapter is to provide an overview of various study design options for 
nonexperimental comparative effectiveness research (CER), with their relative advantages and limitations, 
and to provide information to guide the selection of an appropriate study design for a research question 
of interest. We begin the chapter by reviewing the potential for bias in nonexperimental studies and the 
central assumption needed for nonexperimental CER—that treatment groups compared have the same 
underlying risk for the outcome within subgroups definable by measured covariates (i.e., that there is no 
unmeasured confounding). We then describe commonly used cohort and case-control study designs, along 
with other designs relevant to CER such as case-cohort designs (selecting a random sample of the cohort 
and all cases), case-crossover designs (using prior exposure history of cases as their own controls), case–
time controlled designs (dividing the case-crossover odds ratio by the equivalent odds ratio estimated in 
controls to account for calendar time trends), and self-controlled case series (estimating the immediate 
effect of treatment in those treated at least once). Selecting the appropriate data source, patient population, 
inclusion/exclusion criteria, and comparators are discussed as critical design considerations. We also 
describe the employment of a “new user” design, which allows adjustment for confounding at treatment 
initiation without the concern of mixing confounding with selection bias during followup, and discuss 
the means of recognizing and avoiding immortal-time bias, which is introduced by defining the exposure 
during the followup time versus the time prior to followup. The chapter concludes with a checklist for 
the development of the study design section of a CER protocol, emphasizing the provision of a rationale 
for study design selection and the need for clear definitions of inclusion/exclusion criteria, exposures 
(treatments), outcomes, confounders, and start of followup or risk period.
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Introduction

The objective of this chapter is to provide an 
overview of various study design options for 
nonexperimental comparative effectiveness research 
(CER), with their relative advantages and limitations. 
Of the multitude of epidemiologic design options, 
we will focus on observational designs that compare 
two or more treatment options with respect to an 
outcome of interest in which treatments are not 
assigned by the investigator but according to routine 
medical practice. We will not cover experimental or 
quasi-experimental designs, such as interrupted time 

series,1 designed delays,2 cluster randomized trials, 
individually randomized trials, pragmatic trials, or 
adaptive trials. These designs also have important 
roles in CER; however, the focus of this guide is on 
nonexperimental approaches that directly compare 
treatment options. 

The choice of study design often has profound 
consequences for the causal interpretation of study 
results that are irreversible in many settings. Study 
design decisions must therefore be considered 
even more carefully than analytic decisions, which 
often can be changed and adapted at later stages 
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of the research project. Those unfamiliar with 
nonexperimental design options are thus strongly 
encouraged to involve experts in the design of 
nonexperimental treatment comparisons, such 
as epidemiologists, especially ones familiar 
with comparing medical treatments (e.g., 
pharmacoepidemiologists), during the planning 
stage of a CER study and throughout the project. 
In the planning stage of a CER study, researchers 
need to determine whether the research question 
should be studied using nonexperimental 
or experimental methods (or a combination 
thereof, e.g., two-stage RCTs).3-4 Feasibility 
may determine whether an experimental or a 
nonexperimental design is most suitable, and 
situations may arise where neither approach is 
feasible.

Issues of Bias in 
Observational CER

In observational CER, the exposures or treatments 
are not assigned by the investigator but rather by 
mechanisms of routine practice. Although the 
investigator can (and should) speculate on the 
treatment assignment process or mechanism, the 
actual process will be unknown to the investigator. 
The nonrandom nature of treatment assignment 
leads to the major challenge in nonexperimental 
CER studies, that of ensuring internal validity. 
Internal validity is defined as the absence of bias; 
biases may be broadly classified as selection 
bias, information bias, and confounding bias. 
Epidemiology has advanced our thinking about 
these biases for more than 100 years, and many 
papers have been published describing the 
underlying concepts and approaches to bias 
reduction. For a comprehensive description and 
definition of these biases, we suggest the book 
Modern Epidemiology.5 Ensuring a study’s internal 
validity is a prerequisite for its external validity 
or generalizability. The limited generalizability of 
findings from randomized controlled trials (RCTs), 
such as to older adults, patients with comorbidities 
or comedications, is one of the major drivers for 
the conduct of nonexperimental CER.

The central assumption needed for 
nonexperimental CER is that the treatment groups 
compared have the same underlying risk for the 
outcome within subgroups definable by measured 

covariates. Until recently, this “no unmeasured 
confounding” assumption was deemed plausible 
only for unintended (usually adverse) effects 
of medical interventions, that is, for safety 
studies. The assumption was considered to be 
less plausible for intended effects of medical 
interventions (effectiveness) because of intractable 
confounding by indication.6-7 Confounding by 
indication leads to higher propensity for treatment 
or more intensive treatment in those with the 
most severe disease. A typical example would be 
a study on the effects of beta-agonists on asthma 
mortality in patients with asthma. The association 
between treatment (intensity) with beta-agonists 
and asthma mortality would be confounded by 
asthma severity. The direction of the confounding 
by asthma severity would tend to make the drug 
look bad (as if it is “causing” mortality). The study 
design challenge in this example would not be the 
confounding itself, but the fact that it is hard to 
control for asthma severity because it is difficult 
to measure precisely. Confounding by frailty has 
been identified as another potential bias when 
assessing preventive treatments in population-
based studies, particularly those among older 
adults.8-11 Because frail persons (those close to 
death) are less likely to be treated with a multitude 
of preventive treatments,8 frailty would lead to 
confounding, which would bias the association 
between preventive treatments and outcomes 
associated with frailty (e.g., mortality). Since 
the bias would be that the untreated cohort has 
a higher mortality irrespective of the treatment, 
this would make the drug’s effectiveness look too 
good. Here again the crux of the problem is that 
frailty is hard to control for because it is difficult 
to measure.

Basic Epidemiologic Study 
Designs

The general principle of epidemiologic study 
designs is to compare the distribution of the 
outcome of interest in groups characterized by the 
exposure/treatment/intervention of interest. The 
association between the exposure and outcome 
is then assessed using measures of association. 
The causal interpretation of these associations 
is dependent on additional assumptions, most 
notably that the risk for the outcome is the same 
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in all treatment groups compared (before they 
receive the respective treatments), also called 
exchangeability.12-13 Additional assumptions 
for a causal interpretation, starting with the Hill 
criteria,14 are beyond the scope of this chapter, 
although most of these are relevant to many CER 
settings. For situations where treatment effects are 
heterogeneous, see chapter 3. 

The basic epidemiologic study designs are 
usually defined by whether study participants are 
sampled based on their exposure or outcome of 
interest. In a cross-sectional study, participants are 
sampled independent of exposure and outcome, 
and prevalence of exposure and outcome are 
assessed at the same point in time. In cohort 
studies, participants are sampled according to their 

exposures and followed over time for the incidence 
of outcomes. In case-control studies, cases and 
controls are sampled based on the outcome of 
interest, and the prevalence of exposure in these 
two groups is then compared. Because the cross-
sectional study design usually does not allow 
the investigator to define whether the exposure 
preceded the outcome, one of the prerequisites for 
a causal interpretation, we will focus on cohort 
and case-control studies as well as some more 
advanced designs with specific relevance to CER.

Definitions of some common epidemiologic 
terms are presented in Table 2.1. Given the space 
constraints and the intended audience, these 
definitions do not capture all nuances. 

Table 2.1. Definition of epidemiologic terms

Term Definition Comments

Incidence Occurrence of the disease outcome over a 
specified time period. Incidence is generally 
assessed as a risk/proportion over a fixed 
time period (e.g., risk for 1-year mortality) 
or as a rate defined by persons and time 
(e.g., mortality rate per person-year). 
Incidence is often defined as first occurrence 
of the outcome of interest, a definition that 
requires prior absence of the outcome.

Etiologic studies are based on incidence 
of the outcome of interest rather than 
prevalence, because prevalence is a function 
of disease incidence and duration of disease.

Prevalence Proportion of persons with the exposure/
outcome at a specific point in time. 

Because prevalence is a function of the 
incidence and the mean duration of the 
disease, incidence is generally used to study 
etiology.

Measures of 
association

Measures needed to compare outcomes 
across treatment groups. The main 
epidemiologic measures of association are 
ratio measures (risk ratio, incidence rate 
ratio, odds ratio, hazard ratio) and difference 
measures (risk difference, incidence rate 
difference).

Difference measures have some very 
specific advantages over ratio measures, 
including the possibility of calculating 
numbers needed to treat (or harm) and the 
fact that they provide a biologically more 
meaningful scale to assess heterogeneity.5 
Ratio measures nevertheless abound 
in medical research. All measures of 
association should be accompanied by a 
measure of precision, e.g., a confidence 
interval.

Confounding Mixing of effects. The effect of the 
treatments is mixed, with the effect of the 
underlying risk for the outcome being 
different in the treatment groups compared.

Confounding leads to biased treatment 
effect estimates unless controlled for 
by design (randomization, matching, 
restriction) or analysis (stratification, 
multivariable models).
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Table 2.1. Definition of epidemiologic terms (continued)

Term Definition Comments

Selection bias Distortion of treatment effect estimate as a 
result of procedures used to select subjects, 
and distortion of factors that influence study 
participation. 

While procedures to select subjects 
usually lead to confounding that can be 
controlled for, factors affecting study 
participation cannot be controlled for. 
Factors affecting study participation are 
referred to as selection bias throughout this 
chapter to differentiate selection bias from 
confounding.

Information bias Distortion of treatment effect estimate as a 
result of measurement error in any variable 
used in a study; i.e., exposure, confounder, 
outcome.

Often measurement error is used for 
continuous variables, and misclassification 
for categorical variables. It is important to 
separate nondifferential from differential 
measurement error. Nondifferential 
measurement error in exposures and 
outcomes tends to bias treatment effect 
estimates towards the null (no effect); 
nondifferential measurement error in 
confounders leads to residual confounding 
(in any direction); differential measurement 
error leads to bias in any direction.

Cohort Study Design 

Description

Cohorts are defined by their exposure at a certain 
point in time (baseline date) and are followed 
over time after baseline for the occurrence of the 
outcome. For the usual study of first occurrence 
of outcomes, cohort members with the outcome 
prevalent at baseline need to be excluded. Cohort 
entry (baseline) is ideally defined by a meaningful 
event (e.g., initiation of treatment; see the section 
on new user design) rather than convenience 
(prevalence of treatment), although this may not 
always be feasible or desirable.

Advantages

The main advantage of the cohort design is 
that it has a clear timeline separating potential 
confounders from the exposure and the exposure 
from the outcome. Cohorts allow the estimation 
of actual incidence (risk or rate) in all treatment 
groups and thus the estimation of risk or rate 
differences. Cohort studies allow investigators to 
assess multiple outcomes from given treatments. 
The cohort design is also easy to conceptualize and 
readily compared to the RCT, a design with which 
most medical researchers are very familiar.

Limitations

If participants need to be recruited and followed 
over time for the incidence of the outcome, the 
cohort design quickly becomes inefficient when the 
incidence of the outcome is low. This limitation has 
led to the widespread use of case-control designs 
(see below) in pharmacoepidemiologic studies 
using large automated databases. With the IT 
revolution over the past 10 years, lack of efficiency 
is rarely, if ever, a reason not to implement a cohort 
study even in the largest health care databases if all 
the data have already been collected.

Important Considerations

Patients can only be excluded from the cohort 
based on information available at start of followup 
(baseline). Any exclusion of cohort members based 
on information accruing during followup, including 
treatment changes, has a strong potential to 
introduce bias. The idea to have a “clean” treatment 
group usually introduces selection bias, such as 
by removing the sickest, those with treatment 
failure, or those with adverse events, from the 
cohort. The fundamental principle of the cohort 
is the enumeration of people at baseline (based 
on inclusion and exclusion criteria) and reporting 
losses to followup for everyone enrolled at baseline. 
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Clinical researchers may also be tempted to assess 
the treatments during the same time period the 
outcome is assessed (i.e., during followup) instead 
of prior to followup. Another fundamental of the 
cohort design is, however, that the exposure is 
assessed prior to the assessment of the outcome, 
thus limiting the potential for incorrect causal 
inference if the outcome also influences the 
likelihood of exposure. This general principle also 
applies to time-varying treatments for which the 
followup time needs to start anew after treatment 
changes rather than from baseline. 

Cadarette et al.15 employed a cohort design to 
investigate the comparative effectiveness of four 
alternative treatments to prevent osteoporotic 
fractures. The four cohorts were defined by the 
initiation of the four respective treatments (the 
baseline date). Cohorts were followed from 
baseline to the first occurrence of a fracture at 
various sites. To minimize bias, statistical analyses 
adjusted for risk factors for fractures assessed at 
baseline. As discussed, the cohort design provided 
a clear timeline, differentiating exposure from 
potential confounders and the outcomes. 

Case-Control Study Design

Description

Nested within an underlying cohort, the case-
control design identifies all incident cases that 
develop the outcome of interest and compares 
their exposure history with the exposure history of 
controls sampled at random from everyone within 
the cohort still at risk for developing the outcome 
of interest. Given proper sampling of controls 
from the risk set, the estimation of the odds ratio 
in a case-control study is a computationally more 
efficient way to estimate the otherwise identical 
incidence rate ratio in the underlying cohort.

Advantages

The oversampling of persons with the outcome 
increases efficiency compared with the full 
underlying cohort. As outlined above, this 
efficiency advantage is of minor importance 
in many CER settings. Efficiency is of major 
importance, however, if additional data (e.g., blood 
levels, biologic materials, validation data) need to 
be collected. It is straightforward to assess multiple 
exposures, although this will quickly become 
very complicated when implementing a new user 
design. 

Limitations

The case-control study is difficult to conceptualize. 
Some researchers do not understand, for example, 
that matching does not control for confounding in 
a case-control study, whereas it does in a cohort 
study.16 Unless additional information from 
the underlying cohort is available, risk or rate 
differences cannot be estimated from case-control 
studies. Because the timing between potential 
confounders and the treatments is often not taken 
into account, current implementations of the case-
control design assessing confounders at the index 
date rather than prior to treatment initiation will be 
biased when controlling for covariates that may be 
affected by prior treatment. Thus, implementing 
a new user design with proper definition of 
confounders will often be difficult, although not 
impossible. If information on treatments needs 
to be obtained retrospectively, such as from an 
interview with study participants identified as 
cases and controls, there is the potential that 
treatments will be assessed differently for cases 
and controls, which will lead to bias (often referred 
to as recall bias).

Important Considerations

Controls need to be sampled from the “risk set,” 
i.e., all patients from the underlying cohort who 
remain at risk for the outcome at the time a case 
occurs. Sampling of controls from all those who 
enter the cohort (i.e., at baseline) may lead to 
biased estimates of treatment effects if treatments 
are associated with loss to followup or mortality. 
Matching on confounders can improve the 
efficiency of estimation of treatment effects, but 
does not control for confounding in case-control 
studies. Matching should only be considered for 
strong risk factors for the outcome; however, the 
often small gain in efficiency must be weighed 
against the loss of the ability to estimate the effect 
of the matching variable on the outcome (which 
could, for example, be used as a positive control to 
show content validity of an outcome definition).17 
Matching on factors strongly associated with 
treatment often reduces efficiency of case-control 
studies (overmatching). Generally speaking, 
matching should not routinely be performed in 
case-control studies but be carefully considered, 
ideally after some study of the expected efficiency 
gains.16, 18
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Martinez et al.19 conducted a case-control study 
employing a new user design. The investigators 
compared venlafaxine and other antidepressants 
and risk of sudden cardiac death or near death. An 
existing cohort of new users of antidepressants 
was identified. (“New users” were defined as 
subjects without a prescription for the medication 
in the year prior to cohort entry). Nested 
within the underlying cohort, cases and up to 
30 randomly selected matched controls were 
identified. Potential controls were assigned an 
“index date” corresponding to the same followup 
time to event as the matched case. Controls were 
only sampled from the “risk set.” That is, controls 
had to be at risk for the outcome on their index 
date, thus ensuring that bias was not introduced 
via the sampling scheme.

Case-Cohort Study Design

In the case-cohort design, cohorts are defined 
as in a cohort study, and all cohort members 
are followed for the incidence of the outcomes. 
Additional information required for analysis 
(e.g., blood levels, biologic materials for genetic 
analyses) is collected for a random sample of the 
cohort and for all cases. (Note that the random 
sample may contain cases.) This sampling 
needs to be accounted for in the analysis,20 but 
otherwise this design offers all the advantages and 
possibilities of a cohort study. The case-cohort 
design is intended to increase efficiency compared 
with the nested case-control design when selecting 
participants for whom additional information 
needs to be collected or when studying more than 
one outcome. 

Other Epidemiological Study 
Designs Relevant to CER

Case-Crossover Design

Faced with the problem of selection of adequate 
controls in a case-control study of triggers of 
myocardial infarction, Maclure proposed to use 
prior exposure history of cases as their own 
controls.21 For this study design, only patients 
with the outcome (cases) who have discrepant 
exposures during the case and the control period 
contribute information. A feature of this design 
is that it is self-controlled, which removes the 

confounding effect of any characteristic of subjects 
that is stable over time (e.g., genetics). For CER, 
the latter property of the case-crossover design 
is a major advantage, because measures of stable 
confounding factors (to address confounding) 
are not needed. The former property or initial 
reason to develop the case-crossover design, that 
is, its ability to assess triggers of (or immediate, 
reversible effects of, e.g., treatments on) outcomes 
may also have specific advantages for CER. The 
case-crossover design is thought to be appropriate 
for studying acute effects of transient exposures.

While the case-crossover design has been 
developed to compare exposed with unexposed 
periods rather than compare two active treatment 
periods, it may still be valuable for certain CER 
settings. This would include situations in which 
patients switch between two similar treatments 
without stopping treatment. Often such switching 
would be triggered by health events, which could 
cause within-person confounding, but when the 
causes of switching are unrelated to health events 
(e.g., due to changes in health plan drug coverage), 
within-person estimates of effect from crossover 
designs could be unbiased. More work is needed 
to evaluate the potential to implement the case-
crossover design in the presence of treatment gaps 
(neither treatment) or of more than two treatments 
that need to be compared.

Description

Exactly as in a case-control study, the first step 
is to identify all cases with the outcome and 
assess the prevalence of exposure during a brief 
time window before the outcome occurred. 
Instead of sampling controls, we create a separate 
observation for each case that contains all the 
same variables except for the exposure, which is 
defined for a different time period. This “control” 
time period has the same length as the case period 
and needs to be carefully chosen to take, for 
example, seasonality of exposures into account. 
The dataset is then analyzed as an individually 
matched case-control study.

Advantages

The lack of need to select controls, the ability to 
assess short-term reversible effects, the ability 
to inform about the time window for this effect 
using various intervals to define treatment, and 
the control for all, even unmeasured, factors that 
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are stable over time are the major advantages of 
the case-crossover design. The design can also be 
easily added to any case-control study with little  
(if any) cost. 

Limitations

Because only cases with discrepant exposure 
histories contribute information to the analysis, the 
case-crossover design is often not very efficient. 
This may not be a major issue if the design is 
used in addition to the full case-control design. 
While the design avoids confounding by factors 
that are stable over time, it can still be confounded 
by factors that vary over time. The possibility of 
time-varying conditions leading to changes in 
treatment and increasing the risk for the outcome 
(i.e., confounding by indication) would need to be 
carefully considered in CER studies.

The causal interpretation changes from the effect 
of treatment versus no treatment on the outcome 
to the short-term effect of treatment in those 
treated. Thus, it can be used to assess the effects of 
adherence/persistence with treatment on outcomes 
in those who have initiated treatment.22

Case–Time Controlled Design

One of the assumptions behind the case-crossover 
design is that the prevalence of exposure stays 
constant over time in the population studied. 
While plausible in many settings, this assumption 
may be violated in dynamic phases of therapies 
(after market introduction or safety alerts). To 
overcome this problem, Suissa proposed the case–
time controlled design.23 This approach divides 
the case-crossover odds ratio by the equivalent 
odds ratio estimated in controls. Greenland has 
criticized this design because it can reintroduce 
confounding, thus detracting from one of the major 
advantages of the case-crossover design.24 

Description

This study design tries to adjust for calendar time 
trends in the prevalence of treatments that can 
introduce bias in the case-crossover design. To do 
so, the design uses controls as in a case-control 
design but estimates a case-crossover odds ratio 
(i.e., within individuals) in these controls. The 
case-crossover odds ratio (in cases) is then divided 
by the case-crossover odds ratio in controls.

Advantages

This design is the same as the case-crossover 
design (with the caveat outlined by Greenland) 
with the additional advantage of not being 
dependent on the assumption of no temporal 
changes in the prevalence of the treatment.

Limitations

The need for controls removes the initial 
motivation for the case-crossover design and adds 
complexity. The control for the time trend can 
introduce confounding, although the magnitude 
of this problem for various settings has not been 
quantified.

 Self-Controlled Case-Series Design 

Some of the concepts of the case-crossover design 
have also been adapted to cohort studies. This 
design, called self-controlled case-series,25 shares 
most of the advantages with the case-crossover 
design but requires additional assumptions.

Description

As with the case-crossover design, the self-
controlled case-series design estimates the 
immediate effect of treatment in those treated at 
least once. It is similarly dependent on cases that 
have changes in treatment during a defined period 
of observation time. This observation time is 
divided into treated person-time, a washout period 
of person-time, and untreated person-time. A 
conditional Poisson regression is used to estimate 
the incidence rate ratio within individuals. A 
SAS macro is available with software to arrange 
the data and to run the conditional Poisson 
regression.26-27

Advantages

The self-controlled design controls for factors 
that are stable over time. The cohort design, using 
all the available person-time information, has the 
potential to increase efficiency compared with the 
case-crossover design. The design was originally 
proposed for rare adverse events in vaccine safety 
studies for which it seems especially well suited.

Limitations

The need for repeated events or, alternatively, a 
rare outcome, and the apparent need to assign 
person-time for treatment even after the outcome 
of interest occurs, limits the applicability of the 
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design in many CER settings. The assumption that 
the outcome does not affect treatment will often 
be implausible. Furthermore, the design precludes 
the study of mortality as an outcome. The reason 
treatment information after the outcome is needed 
is not obvious to us, and this issue needs further 
study. More work is needed to understand the 
relationship of the self-controlled case-series with 
the case-crossover design and to delineate relative 
advantages and limitations of these designs for 
specific CER settings.

Study Design Features

Study Setting

One of the first decisions with respect to study 
design is consideration of the population and 
data source(s) from which the study subjects will 
be identified. Usually, the general population or 
a population-based approach is preferred, but 
selected populations (e.g., a drug/device or disease 
registry) may offer advantages such as availability 
of data on covariates in specific settings. 
Availability of existing data and their scope and 
quality will determine whether a study can be 
done using existing data or whether additional 
new data need to be collected. (See chapter 8 for 
a full discussion of data sources.) Researchers 
should start with a definition of the treatments 
and outcomes of interest, as well as the predictors 
of outcome risk potentially related to choice of 
treatments of interest (i.e., potential confounders). 
Once these have been defined, availability and 
validity of information on treatments, outcomes, 
and confounders in existing databases should be 
weighed against the time and cost involved in 
collecting additional or new data. This process 
is iterative insofar as availability and validity 
of information may inform the definition of 
treatments, outcomes, and potential confounders. 
We need to point out that we do not make the 
distinction between retrospective and prospective 
studies here because this distinction does not affect 
the validity of the study design. The only difference 
between these general options of how to implement 
a specific study design lies in the potential to 
influence what kind of data will be available for 
analysis.

Inclusion and Exclusion Criteria

Every CER study should have clearly defined 
inclusion and exclusion criteria. The definitions 
need to include details about the study time period 
and dates used to define these criteria. Great care 
should be taken to use uniform periods to define 
these criteria for all subjects. If this cannot be 
achieved, then differences in periods between 
treatment groups need to be carefully evaluated 
because such differences have the potential to 
introduce bias. Inclusion and exclusion criteria 
need to be defined based on information available 
at baseline, and cannot be updated based on 
accruing information during followup. (See the 
discussion of immortal time below.)

Inclusion and exclusion criteria can also be 
used to increase the internal validity of non-
experimental studies. Consider an example in 
which an investigator suspects that an underlying 
comorbidity is a confounder of the association 
under study. A diagnostic code with a low 
sensitivity but a high specificity for the underlying 
comorbidity exists (i.e., many subjects with the 
comorbidity aren’t coded; however, for patients 
who do have the code, nearly all have the 
comorbidity). In this example, the investigator’s 
ability to control for confounding by the underlying 
comorbidity would be hampered by the low 
sensitivity of the diagnostic code (as there are 
potentially many subjects with the comorbidity 
that are not coded). In contrast, restricting the 
study population to those with the diagnostic code 
removes confounding by the underlying condition 
due to the high specificity of the code. 

It should be noted that inclusion and exclusion 
criteria also affect the generalizability of 
results. If in doubt, potential benefits in internal 
validity will outweigh any potential reduction in 
generalizability. 

Choice of Comparators

Both confounding by indication and confounding 
by frailty may be strongest and most difficult to 
adjust for when comparing treated with untreated 
persons. One way to reduce the potential for 
confounding is to compare the treatment of interest 
with a different treatment for the same indication 
or an indication with a similar potential for 
confounding.28 A comparator treatment within the 
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same indication is likely to reduce the potential 
for bias from both confounding by indication and 
confounding by frailty. This opens the door to 
using nonexperimental methods to study intended 
effects of medical interventions (effectiveness). 
Comparing different treatment options for a given 
patient (i.e., the same indication) is at the very core 
of CER. Thus both methodological and clinical 
relevance considerations lead to the same principle 
for study design. 

 Another beneficial aspect of choosing an active 
comparator group comprised of a treatment 
alternative for the same indication is the 
identification of the point in time when the 
treatment decision is made, so that all subjects may 
start followup at the same time, “synchronizing” 
both the timeline and the point at which baseline 
characteristics are measured. This reduces the 
potential for various sources of confounding and 
selection bias, including by barriers to treatment 
(e.g., frailty).8, 29 A good source for active 
comparator treatments are current treatment 
guidelines for the condition of interest.

Other Study Design 
Considerations

New-User Design

It has long been realized that the biologic 
effects of treatments may change over time 
since initiation.30 Guess used the observed risk 
of angioedema after initiation of angiotensin-
converting enzyme inhibitors, which is orders of 
magnitude higher in the first week after initiation 
compared with subsequent weeks,31 to make the 
point. Nonbiologic changes of treatment effects 
over time since initiation may also be caused by 
selection bias.8, 29, 32 For example, Dormuth et al.32 
examined the relationship between adherence to 
statin therapy (more adherent vs. less adherent) 
and a variety of outcomes thought to be associated 
with and not associated with statin use. The 
investigators found that subjects classified as more 
adherent were less likely to experience negative 
health outcomes unlikely to be caused by statin 
treatment. 

Poor health, for example frailty, is also associated 
with nonadherence in RCTs33 and thus those 
adhering to randomized treatment will appear to 

have better outcomes, including those adhering to 
placebo.33 This selection bias is most pronounced 
for mortality,34 but extends to a wide variety of 
outcomes, including accidents.31 The conventional 
prevalent-user design is thus prone to suffer 
from both confounding and selection bias. While 
confounding by measured covariates can usually 
be addressed by standard epidemiologic methods, 
selection bias cannot. An additional problem of 
studying prevalent users is that covariates that act 
as confounders may also be influenced by prior 
treatment (e.g., blood pressure, asthma severity, 
CD4 count); in such a setting, necessary control 
for these covariates to address confounding will 
introduce bias because some of the treatment effect 
is removed.

The new-user design6, 30-31, 35-36 is the logical 
solution to the problems resulting from inclusion 
of persons who are persistent with a treatment over 
prolonged periods because researchers can adjust 
for confounding at initiation without the concern 
of selection bias during followup. Additionally, 
the new-user approach avoids the problem of 
confounders’ potentially being influenced by prior 
treatment, and provides approaches for structuring 
comparisons which are free of selection bias, such 
as first-treatment-carried-forward or intention-to-
treat approaches. These and other considerations 
are covered in further detail in chapter 5. In 
addition, the new user design offers a further 
advantage in anchoring the time scale for analysis 
at “time since initiation of treatment” for all 
subjects under study. Advantages and limitations 
of the new-user design are clearly outlined in the 
paper by Ray.36 Limitations include the reduction 
in sample size leading to reduced precision of 
treatment effect estimates and the potential to 
lead to a highly selected population for treatments 
often used intermittently (e.g., pain medications).37 
Given the conceptual advantages of the new-
user design to address confounding and selection 
bias, it should be the default design for CER 
studies; deviations should be argued for and their 
consequences discussed.

Immortal-Time Bias

While the term “immortal-time bias” was 
introduced by Suissa in 2003,38 the underlying 
bias introduced by defining the exposure during 
the followup time rather than before followup was 
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first outlined by Gail.39 Gail noted that the survival 
advantage attributed to getting a heart transplant 
in two studies enrolling cohorts of potential heart 
transplant recipients was a logical consequence of 
the study design. The studies compared survival 
in those who later got a heart transplant with those 
who did not, starting from enrollment (getting on 
the heart transplant list). As one of the conditions 
to get a heart transplant is survival until the time 
of surgery, this survival time prior to the exposure 
classification (heart transplant or not) should 
not be attributed to the heart transplant and is 
described as “immortal.” Any observed survival 
advantage in those who received transplants cannot 
be clearly ascribed to the intervention if time prior 
to the intervention is included because of the bias 
introduced by defining the exposure at a later point 
during followup. Suissa38 showed that a number 
of pharmacoepidemiologic studies assessing the 
effectiveness of inhaled corticosteroids in chronic 
obstructive pulmonary disease were also affected 
by immortal-time bias. While immortal person 
time and the corresponding bias is introduced 
whenever exposures (treatments) are defined 
during followup, immortal-time bias can also be 
introduced by exclusion of patients from cohorts 
based on information accrued after the start of 
followup, i.e., based on changes in treatment or 
exclusion criteria during followup.

It should be noted that both the new-user design 
and the use of comparator treatments reduce the 
potential for immortal-time bias. These design 
options are no guarantee against immortal-time 
bias, however, unless the corresponding definitions 
of cohort inclusion and exclusion criteria are based 
exclusively on data available at start of followup 
(i.e., at baseline).40 

Conclusion

This chapter provides an overview of advantages 
and limitations of various study designs relevant 
to CER. It is important to realize that many see the 
cohort design as more valid than the case-control 
design. Although the case-control design may be 
more prone to potential biases related to control 

selection and recall in ad hoc studies, if a case-
control study is nested within an existing cohort 
(e.g., based within a large health care database) 
its validity is equivalent to the one of the cohort 
study under the condition that the controls are 
sampled appropriately and the confounders are 
assessed during the relevant time period (i.e., 
before the treatments). Because the cohort design 
is generally easier to conceptualize, implement, 
and communicate, and because computational 
efficiency will not be a real limitation in most 
settings, the cohort design will be preferred when 
data have already been collected. The cohort 
design has the added advantage that absolute risks 
or incidence rates can be estimated and therefore 
risk or incidence rate differences can be estimated, 
which have specific advantages as outlined above. 
While we would always recommend including an 
epidemiologist in the early planning phase of a 
CER study, an experienced epidemiologist would 
be a prerequisite outside of these basic designs.

Some additional study designs have not been 
discussed. These include hybrid designs such 
as two-stage studies,41 validation studies,42 
ecologic designs arising from natural experiments, 
interrupted time series, adaptive designs, and 
pragmatic trials. Many of the issues that will be 
discussed in the following chapters about ways to 
deal with treatment changes (stopping, switching, 
and augmenting) also will need to be addressed 
in pragmatic trials because their potential to 
introduce selection bias will be the same in both 
experimental and nonexperimental studies.

Knowledge of study designs and design options is 
essential to increase internal and external validity 
of nonexperimental CER studies. An appropriate 
study design is a prerequisite to reduce the 
potential for bias. Biases introduced by suboptimal 
study design cannot usually be removed during 
the statistical analysis phase. Therefore, the 
choice of an appropriate study design is at least 
as important, if not more important, than the 
approach to statistical analysis. 



31

Chapter 2. Study Design Considerations

C
h
ec

k
lis

t:
 G

u
id

a
n
ce

 a
n
d
 k

ey
 c

o
n
si

d
er

a
ti
o
n
s 

fo
r 

st
u
d
y
 d

es
ig

n
 f

o
r 

a
n
 o

b
se

rv
a
ti
o
n
a
l C

ER
 p

ro
to

co
l 

G
u
id

a
n
ce

K
ey

 C
o
n
si

d
er

a
ti
o
n
s

C
h
ec

k

P
ro

vi
de

 a
 r

at
io

na
le

 f
or

 s
tu

dy
 

de
si

gn
 c

ho
ic

e 
an

d 
de

sc
ri

be
 k

ey
 

de
si

gn
 f

ea
tu

re
s.

- 
 C

oh
or

t s
tu

dy
 p

ro
po

sa
ls

 s
ho

ul
d 

cl
ea

rl
y 

de
fi

ne
 c

oh
or

t e
nt

ry
 d

at
e 

(b
as

el
in

e 
da

te
),

 e
m

pl
oy

 a
 n

ew
 u

se
r 

de
si

gn
 (

or
  

   
 p

ro
vi

de
 r

at
io

na
le

 f
or

 in
cl

ud
in

g 
pr

ev
al

en
t u

se
rs

),
 a

nd
 in

cl
ud

e 
pl

an
s 

fo
r 

re
po

rt
in

g 
lo

ss
es

 to
 f

ol
lo

w
up

. 
- 

 C
as

e-
co

nt
ro

l s
tu

dy
 p

ro
po

sa
ls

 s
ho

ul
d 

cl
ea

rl
y 

de
sc

ri
be

 th
e 

co
nt

ro
l s

am
pl

in
g 

m
et

ho
d,

 e
m

pl
oy

 a
 n

ew
 u

se
r 

de
si

gn
 (

or
  

   
 p

ro
vi

de
 a

 r
at

io
na

le
 f

or
 a

ss
es

si
ng

 c
on

fo
un

de
rs

 a
t i

nd
ex

 d
at

e)
, a

nd
 a

ss
es

s 
po

te
nt

ia
l f

or
 r

ec
al

l b
ia

s 
(i

f 
ap

pl
ic

ab
le

).
 

- 
 C

as
e-

co
ho

rt
 s

tu
dy

 p
ro

po
sa

ls
 s

ho
ul

d 
in

cl
ud

e 
ho

w
 th

e 
sa

m
pl

in
g 

sc
he

m
e 

w
il

l b
e 

ac
co

un
te

d 
fo

r 
du

ri
ng

 a
na

ly
si

s.
 

- 
 C

as
e-

cr
os

so
ve

r 
st

ud
y 

pr
op

os
al

s 
sh

ou
ld

 d
is

cu
ss

 th
e 

po
te

nt
ia

l f
or

 c
on

fo
un

di
ng

 b
y 

ti
m

e-
va

ry
in

g 
fa

ct
or

s 
an

d 
cl

ea
rl

y 
 

   
 s

ta
te

 h
ow

 th
e 

re
su

lt
in

g 
ef

fe
ct

 e
st

im
at

e 
ca

n 
be

 in
te

rp
re

te
d.

  
- 

 C
as

e–
ti

m
e 

co
nt

ro
ll

ed
 s

tu
dy

 p
ro

po
sa

ls
 s

ho
ul

d 
cl

ea
rl

y 
w

ei
gh

 th
e 

pr
os

 a
nd

 c
on

s 
of

 a
cc

ou
nt

in
g 

fo
r 

ca
le

nd
ar

 tr
en

ds
 in

  
   

 th
e 

pr
ev

al
en

ce
 o

f 
ex

po
su

re
.

o

D
efi

ne
 s

ta
rt

 o
f 

fo
ll

ow
up

 
(b

as
el

in
e)

.
- 

 T
he

 ti
m

e 
po

in
t f

or
 s

ta
rt

 o
f 

fo
ll

ow
up

 s
ho

ul
d 

be
 c

le
ar

ly
 d

efi
ne

d 
an

d 
m

ea
ni

ng
fu

l, 
id

ea
lly

 a
nc

ho
re

d 
to

 th
e 

ti
m

e 
of

 a
  

   
 m

ed
ic

al
 in

te
rv

en
ti

on
 (

e.
g.

, i
ni

ti
at

io
n 

of
 d

ru
g 

us
e)

. 
- 

 I
f 

al
te

rn
at

iv
e 

ap
pr

oa
ch

es
 a

re
 p

ro
po

se
d,

 th
e 

ra
ti

on
al

e 
sh

ou
ld

 b
e 

pr
ov

id
ed

 a
nd

 im
pl

ic
at

io
ns

 d
is

cu
ss

ed
.

o
D

efi
ne

 in
cl

us
io

n 
an

d 
ex

cl
us

io
n 

cr
it

er
ia

 a
t s

ta
rt

 o
f 

fo
ll

ow
up

. 
(b

as
el

in
e)

.

- 
 E

xc
lu

si
on

 a
nd

 in
cl

us
io

n 
cr

it
er

ia
 s

ho
ul

d 
be

 d
efi

ne
d 

at
 th

e 
st

ar
t o

f 
fo

ll
ow

up
 (

ba
se

li
ne

) 
an

d 
sh

ou
ld

 b
e 

ba
se

d 
so

le
ly

 o
n 

 
   

 in
fo

rm
at

io
n 

av
ai

la
bl

e 
at

 th
is

 p
oi

nt
 in

 ti
m

e 
(i

.e
., 

ig
no

ri
ng

 p
ot

en
ti

al
ly

 k
no

w
n 

ev
en

ts
 a

ft
er

 b
as

el
in

e)
. 

- 
 T

he
 d

efi
ni

ti
on

 s
ho

ul
d 

in
cl

ud
e 

th
e 

ti
m

e 
w

in
do

w
 f

or
 a

ss
es

sm
en

t (
us

ua
lly

 th
e 

sa
m

e 
fo

r 
al

l c
oh

or
t m

em
be

rs
).

o
D

efi
ne

 e
xp

os
ur

e 
(t

re
at

m
en

ts
) 

of
 

in
te

re
st

 a
t s

ta
rt

 o
f 

fo
ll

ow
up

.
o

D
efi

ne
 o

ut
co

m
e(

s)
 o

f 
in

te
re

st
. 

- 
 I

nf
or

m
at

io
n 

sh
ou

ld
 b

e 
pr

ov
id

ed
 o

n 
m

ea
su

re
s 

of
 a

cc
ur

ac
y 

if
 p

os
si

bl
e.

o
D

efi
ne

 p
ot

en
ti

al
 c

on
fo

un
de

rs
.

- 
 P

ot
en

ti
al

 c
on

fo
un

de
rs

 k
no

w
n 

to
 b

e 
as

so
ci

at
ed

 w
it

h 
tr

ea
tm

en
t a

nd
 o

ut
co

m
e 

sh
ou

ld
 b

e 
pr

es
pe

ci
fi

ed
 w

he
n 

po
ss

ib
le

. 
- 

 C
on

fo
un

de
rs

 s
ho

ul
d 

be
 a

ss
es

se
d 

pr
io

r 
to

 e
xp

os
ur

e 
or

 tr
ea

tm
en

t i
ni

ti
at

io
n 

to
 e

ns
ur

e 
th

ey
 a

re
 n

ot
 a

ff
ec

te
d 

by
 th

e 
 

   
 e

xp
os

ur
e.

 
- 

 A
pp

ro
ac

he
s 

to
 e

m
pi

ri
ca

l i
de

nt
ifi

ca
ti

on
 o

f 
co

nf
ou

nd
er

s 
sh

ou
ld

 b
e 

de
sc

ri
be

d 
if

 p
la

nn
ed

.

o
 

 

 



32

Developing an Observational CER Protocol: A User’s Guide

References
1. Schneeweiss S, Maclure M, Walker AM, et al. 

On the evaluation of drug benefits policy changes 
with longitudinal claims data: the policy maker’s 
versus the clinician’s perspective. Health Policy. 
2001 Feb;55(2):97-109. 

2. Maclure M, Carleton B, Schneeweiss S. Designed 
delays versus rigorous pragmatic trials: lower 
carat gold standards can produce relevant drug 
evaluations. Med Care. 2007 Oct;45 
(10 Supl 2):S44-9.

3. Rücker G. A two-stage trial design for testing 
treatment, self-selection and treatment preference 
effects. Stat Med. 1989 Apr;8(4):477-85.

4. Fava M, Rush AJ, Trivedi MH, et al. Background 
and rationale for the sequenced treatment 
alternatives to relieve depression (STAR*D) study. 
Psychiatr Clin North Am. Jun 2003;26(2): 
457-494.

5. Rothman KJ, Greenland S, Lash T. (Eds.). 
Modern Epidemiology. 3rd ed. Philadelphia, PA: 
Lippincott, Williams & Wilkins; 2008.

6. Miettinen OS, Caro JJ. Principles of 
nonexperimental assessment of excess risk, with 
special reference to adverse drug reactions. J Clin 
Epidemiol. 1989;42(4):325-31.

7. Yusuf, S., Collins, R. Peto, R. (1984). Why do 
we need some large, simple randomized trials? 
Statistics in Medicine. 1984;3:409–20.

8. Glynn RJ, Knight EL, Levin R, et al.. Paradoxical 
relations of drug treatment with mortality in older 
persons. Epidemiology. 2001 Nov;12(6):682-9.

9. Stürmer T, Schneeweiss S, Brookhart MA, et 
al.. Analytic strategies to adjust confounding 
using exposure propensity scores and disease 
risk scores: nonsteroidal antiinflammatory drugs 
and short-term mortality in the elderly. Am J 
Epidemiol. 2005;161:891-8.

10. Stürmer T, Rothman KJ, Avorn J, et al. 
Treatment effects in the presence of unmeasured 
confounding: Dealing with observations in the 
tails of the propensity score distribution – a 
simulation study. Am J Epidemiol. 2010;172: 
843-54.

11. Jackson LA, Jackson ML, Nelson JC, et al. 
Evidence of bias in estimates of influenza vaccine 
effectiveness in seniors. Int J Epidemiol. 2006 
Apr;35(2):337-44. Epub 2005 Dec 20.

12. Greenland S, Robins JM. Identifiability, 
exchangeability, and epidemiological 
confounding. Int J Epidemiol. 1986 
Sep;15(3):413-9.

13. Greenland S, Robins JM. Identifiability, 
exchangeability and confounding revisited. 
Epidemiol Perspect Innov. 2009 Sep 4;6:4.

14. Hill, Austin Bradford. “The environment and 
disease: association or causation?” Proceedings of 
the Royal Society of Medicine 1965;58:295–300.

15. Cadarette SM, Katz JN, Brookhart MA, et al. 
Relative effectiveness of osteoporosis drugs for 
nonvertebral fracture prevention: a cohort study. 
Ann Intern Med. 2008;148:637-46.

16. Stürmer T, Poole C. Matching in cohort studies: 
return of a long lost family member. [Symposium] 
Am J Epidemiol. 2009;169(Suppl):S128.

17. Stürmer T, Brenner H. Degree of matching and 
gain in power and efficiency in case-control 
studies. Epidemiology. 2001; 12: 101-8.

18. Stürmer T, Brenner H. Flexible matching 
strategies to increase power and efficiency to 
detect and estimate gene-environment interactions 
in case-control studies. Am J Epidemiol. 
2002;155: 593-602.

19. Martinez C, Assimes TL, Mines D, et al. Use of 
venlafaxine compared with other antidepressants 
and the risk of sudden cardiac death or near 
death: a nested case-control study. BMJ. 2010 Feb 
5;340:c249. doi: 10.1136/bmj.c249.

20. Prentice RL. A case-cohort design for 
epidemiologic cohort studies and disease 
prevention trials. Biometrika. 1986;73:1–11.

21. Maclure M. The case-crossover design: a method 
for studying transient effects on the risk of acute 
events. Am J Epidemiol. 1991 Jan 15;133(2): 
144-53.

22. Maclure M. ‘Why me?’ versus ‘why now?’-
-differences between operational hypotheses 
in case-control versus case-crossover 
studies. Pharmacoepidemiol Drug Saf. 2007 
Aug;16(8):850-3. 

23. Suissa S. The case-time-control design. 
Epidemiology. 1995 May;6(3):248-53.

24. Greenland S. Confounding and exposure trends 
in case-crossover and case-time-control designs. 
Epidemiology. 1996 May;7(3):231-9.



33

Chapter 2. Study Design Considerations

25. Farrington CP. Control without separate controls: 
evaluation of vaccine safety using case-only 
methods. Vaccine. 2004;22(15-16):2064-70.

26. Whitaker HJ, Farrington CP, Spiessens B, et 
al. Tutorial in biostatistics: the self-controlled 
case series method. Stat Med. 2006; May 
30;25(10):1768-97.

27. Gibson JE, Hubbard RB, Smith CJP, et al. The 
use of self-controlled analytical techniques to 
assess the temporal association between use of 
prescription medications and the risk of motor 
vehicle crashes. Am J Epidemiol. 2009;169(6): 
761-8.

28. Glynn RJ, Schneeweiss S, Stürmer T. Indications 
for propensity scores and review of their use 
in pharmacoepidemiology. Basic and Clinical 
Pharmacology and Toxicology. 2006;98:253-9.

29. Patrick AR, Shrank WH, Glynn RJ, et al. The 
association between statin use and outcomes 
potentially attributable to an unhealthy lifestyle in 
older adults. Value Health. 2011 Jun;14(4):513-20. 
Epub 2011 Apr 22.

30. Kramer MS, Lane DA, Hutchinson TA. 
Analgesic use, blood dyscrasias, and case-
control pharmacoepidemiology. A critique of the 
international agranulocytosis and aplastic anemia 
study. J Chron Dis. 1987;40:1073-81.

31. Guess HA. Behavior of the exposure odds ratio 
in a case-control study when the hazard function 
is not constant over time. J Clin Epidemiol. 
1989;42:1179-84.

32. Dormuth CR, Patrick AR, Shrank WH, et al. Statin 
adherence and risk of accidents: a cautionary tale. 
Circulation. 2009 Apr 21;119(15):2051-7. Epub 
2009 Apr 6.

33. Simpson SH, Eurich DT, Majumdar SR, et al. A 
meta-analysis of the association between adherence 
to drug therapy and mortality. BMJ. 2006;333:15.

34. Andersen M, Brookhart MA, Glynn RJ, et al. 
Practical issues in measuring cessation and 
re-initiation of drug use in databases. [abstract] 
Pharmacoepidemiol Drug Saf. 2008;17 
(suppl 1):S27.

35. Moride Y, Abenhaim L. Evidence of the depletion 
of susceptibles effect in non-experimental 
pharmacoepidemiologic research. J Clin 
Epidemiol. 1994 Jul;47(7):731-7. 

36. Ray WA. Evaluating medication effects outside of 
clinical trials: new-user designs. Am J Epidemiol. 
2003;158:915-20.

37. Valkhoff VE, Romio SA, Schade R, et al. Influence 
of run-in period on incidence of NSAID use 
in European population in the SOS project. 
Pharmacoepidemiol Drug Saf. 2011;20  
(supl 1):S250.

38. Suissa S. Effectiveness of inhaled corticosteroids 
in chronic obstructive pulmonary disease: 
immortal time bias in observational studies. Am J 
Respir Crit Care Med. 2003;168(1):49-53.

39. Gail MH. Does cardiac transplantation 
prolong life? A reassessment. Ann Intern Med. 
1972;76(5):815-7.

40. Pocock SJ, Smeeth L. Insulin glargine and 
malignancy: an unwarranted alarm. Lancet. 
2009;374(9689):511-3.

41. Collet JP, Schaubel D, Hanley J, et al. 
Controlling confounding when studying large 
pharmacoepidemiologic databases: a case study 
of the two-stage sampling design. Epidemiology. 
1998 May;9(3):309-15.

42. Stürmer T, Glynn RJ, Rothman KJ, et al. 
Adjustments for unmeasured confounders in 
pharmacoepidemiologic database studies using 
external information. Med Care. 2007;45 
(10 Supl 2):S158-65.





35

Abstract

Patient populations within a research study are heterogeneous. That is, they embody characteristics that 
vary between individuals, such as age, sex, disease etiology and severity, presence of comorbidities, 
concomitant exposures, and genetic variants. These varying patient characteristics can potentially 
modify the effect of a treatment on outcomes. Despite the presence of this heterogeneity, many studies 
estimate an average treatment effect (ATE) that implicitly assumes a similar treatment effect across 
heterogeneous patient characteristics. While this assumption may be warranted for some treatments, 
for others the treatment effect within subgroups may vary considerably from the ATE. This treatment 
effect heterogeneity may arise from an underlying causal mechanism or may be due to artifacts of 
measurements or methods (e.g., chance, bias, or confounding). Heterogeneity of treatment effect (HTE) is 
the nonrandom, explainable variability in the direction and magnitude of treatment effects for individuals 
within a population. The main goals of HTE analysis are to estimate treatment effects in clinically 
relevant subgroups and to predict whether an individual might benefit from a treatment. Subgroup 
analysis is the most common analytic approach for examining HTE. Selection of subgroups should be 
based on mechanism and plausibility (including clinical judgment), taking into account prior knowledge 
of treatment effect modifiers. This chapter focuses on defining and describing HTE and offers guidance 
on how to evaluate and report such heterogeneous effects using subgroup analysis. Understanding HTE 
is critical for decisions that are based on knowing how well a treatment is likely to work for an individual 
or group of similar individuals, and is relevant to most stakeholders, including patients, clinicians, and 
policymakers. The chapter concludes with a checklist of key considerations for discussion of HTE and 
for addressing planned subgroup analysis in an observational comparative effectiveness research (CER) 
protocol.

Chapter 3. Estimation and Reporting of Heterogeneity of 
Treatment Effects

Ravi Varadhan, Ph.D. 
Johns Hopkins University School of Medicine, Baltimore, MD

John D. Seeger, Pharm.D., Dr.P.H. 
Harvard Medical School and Brigham and Women’s Hospital, Boston, MA

“If it were not for the great variability between 
individuals, medicine might as well be a science, not 
an art” (William Osler, 1892). 

Introduction 

Randomized controlled trials (RCTs) and 
observational studies of comparative effectiveness 
usually report an average treatment effect (ATE), 
even though experience suggests that the same 
treatment can have varying impacts in different 
people. The clinical experience and expectation that 
differences in patient prognostic characteristics will 
lead to heterogeneous responses to therapy is mainly 

why medicine is as much an art as it is science. Yet, 
studies tend to emphasize a single measure of the 
impact of treatment, the ATE, which is a summary 
of individual treatment effects (which cannot be 
examined directly without making untestable 
assumptions). Variation is often undesirable in 
studies and is reduced by excluding people with 
characteristics that are thought to cause variations in 
responses to treatment. This intentional restriction 
in patient heterogeneity within RCTs contributes to 
their limited generalizability. Determining whether a 
treatment works for people in a target population that 
differs from the study population requires additional 
information and methods.1
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Heterogeneity of Treatment Effect

All studies have variability in the data. Random 
variability is generally not a concern because it 
is uncorrelated with explanatory variables and 
can be handled well with statistical approaches 
for quantifying uncertainty. We focus on the 
nonrandom variability in treatment effects that 
can be attributed to patient factors. We define 
HTE as nonrandom variability in the direction 
or magnitude of a treatment effect, in which the 
effect is measured using clinical outcomes (either 
a clinical event such as myocardial infarction or a 
change in a continuous clinical measure such as 
level of pain).2

Understanding HTE is critical for decisions 
that are based on knowing how well a treatment 
is likely to work for an individual or group of 
similar individuals, and is relevant to stakeholders 
including patients, clinicians, and policymakers. It 
also has implications for applicability to individual 
patients (personalized medicine) of findings from 
pragmatic trials and observational comparative 
effectiveness research (CER). Pragmatic trials are 
large and simple experiments on treatments, with 
broad eligibility criteria, from which evidence is 
expected to be generalizable. While these designs 
incorporate heterogeneity in the risk of outcome 
among the subjects, they may also lead to HTE 
for the treatments that are applied. These studies 
may be more likely to yield null ATE than efficacy 
trials, where stricter inclusion criteria produce 
relatively homogeneous study populations. 
Therefore, understanding major sources of 
variations in treatment response is essential. For a 
formal general definition of HTE, see Box 3.1.

There are numerous cases in which the 
effectiveness of specific therapies may be 
heterogeneous. For example, children may respond 
differently to therapy via different response to 
treatment or to aspects of dosing that are not 
realized. Older adults may have worse outcomes 
from surgeries and devices as well as more drug 
side effects or drug-drug interactions so that 
therapies may be less effective. Individuals with 
multiple conditions may be on several therapies 
that interfere with the new treatment (or each 
other), resulting in a different treatment effect in 
these patients. Genes may also influence response 

to therapy; since genetic differences (differences in 
allele frequencies) may cluster by race or ethnicity, 
these characteristics may represent proxies for 
genetic differences that are more difficult to 
measure directly. 

Treatment Effect Modification 

If two or more exposure variables act in concert 
to cause disease, we will observe that the effect 
of exposure on outcome (treatment effect) differs 
according to the level of the other factor(s). A 
number of terms have been used to describe 
this phenomenon, including “joint” effects, 
“synergism,” “antagonism,” “interaction,” “effect

Box 3.1. Formal definition of HTE

Let an individual or a targeted subgroup with 
specific levels of characteristics be denoted by 
i. Let z stand for treatment at two levels {1, 2}; 
for example, being given aspirin (z =1) or not  
(z =2). Let the potential outcomes 
corresponding to the two treatment levels 
be denoted as {Y

i
(1), Y

i
(2)}. The individual 

treatment effect can be defined as the contrast: 
θ

i
 = g(E[Y

i
(1)]) – g(E[Y

i
(0)]). The potential 

outcomes Y
i
 can be continuous, categorical, 

or binary. When Y
i
 is binary, E[Y

i
(z)] denotes 

prob(Y
i
 = 1) under treatment z. The function 

g(.) can be identity, log, or logit. For the 
absolute risk model, the individual treatment 
effect is θ

i
 = Prob(Y

i
(2)=1) – Prob 

( Y
i
(1)=1). For the relative risk model, u

i
 = 

log [prob(Y
i
(2)=1)] – log[prob(Y

i
(1)=1)]. 

Individual variability of treatment effect occurs 
if the variance (u

i
) > 0. Group variability (HTE) 

occurs if the variance of individual treatment 
effect is nonrandom (i.e. correlated with 
explanatory variables) so that u

subgroup1
 (average 

θ
i
 for a subgroup defined by level 1 of an 

explanatory variable) ≠ u
subgroup2

 (average u
i
 for 

a subgroup defined by level 2 of an explanatory 
variable). When this variability encompasses 
treatment effects of different directions, i.e., 
both benefit and harm, this is sometimes called 
a qualitative treatment interaction, whereas 
differences in the magnitude of treatment effect 
in the same direction are called quantitative 
interactions.
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modification,” and “effect measure modification.” 
Where effect modification exists, sound inferences 
will require accounting for factors that modify 
the effect of the exposure of primary interest. 
Accounting for this HTE may be required even 
when the variable that modifies treatment effect is 
not a risk factor for the outcome in the untreated 
group (e.g., a receptor that determines how a drug 
is metabolized). 

Four perspectives have been advanced on the 
concept of interaction and the relevance of the 
effect modification in terms of its implication:3

Biological perspective: This perspective is that 
the interaction elucidates how factors act at the 
biological (mechanistic) level. The implications 
of this perspective are that the interaction is a 
representation of an underlying causal structure. 
Example: The finding that hypertension and 
smoking have a greater than additive effect on 
heart attack risk is a representation of some 
underlying biological processes that may enhance 
our understanding of heart attack etiology.

Statistical perspective: This perspective is that the 
interactions represent nonrandom variability in 
data unaccounted for by a model that contains only 
first-order terms (main effects). The implication is 
that the model needs to be reformulated to more 
accurately reflect the data. Example: A differently 
structured model will appropriately account for the 
underlying variability in the data on hypertension, 
smoking, and heart attack risk.

Public health perspective: This perspective is 
that the interactions represent a departure from 
additivity and highlight populations (subgroups) 
in which an intervention can be expected to have 
particularly beneficial effects. Example: The 
finding that hypertension and smoking have a 
greater than additive effect on heart attack risk 
suggests that limited public health resources might 
be most efficiently directed at patients who have 
hypertension and are smokers.

The individual decisionmaking perspective: 
This perspective is that the interactions represent 
a departure from additivity so that combined 
effects in an individual are greater than their sum. 
Example: Someone with hypertension can reduce 
heart attack risk even more by quitting smoking 
than someone with normal blood pressure.

Since an effect modifier changes the magnitude 
or direction of the association under study, 
different study populations may yield different 
results concerning the association of interest. 
Therefore, HTE is often suggested as a reason 
for differences in findings across studies. If two 
studies include people with different characteristics 
and the effect of the treatment is different in the 
portion of the population that differs between 
the studies, then HTE is a plausible explanation 
of the difference. Furthermore, HTE can be an 
explanation of differences in treatment effect 
between interventional and observational studies, 
since observational studies often include patients 
with different characteristics than interventional 
studies. Such a hypothesis might be addressed 
through reweighting subgroup effects according to 
prevalence (standardization) across studies.

Unlike potential confounders, modifying variables 
cannot create the appearance of an association 
(for exposed vs. unexposed) where none exists. 
But the proportion of the study population that 
has a greater susceptibility will influence the 
strength of the association. Therefore, to achieve 
comparability across studies, it is necessary to 
control for the effect of the modifying variables, 
generally by carrying out a separate analysis at 
each level of the modifier.

Additionally, the different strength of association 
between the exposure and outcome within strata of 
the effect modifier may lead to a need to be more 
precise in the measurement and specification of 
the exposure variable (such as more clearly within 
strata of the effect modifier).

Goals of HTE Analysis

There are two main goals of HTE analyses: (1) 
to estimate treatment effects in clinically relevant 
subgroups (subgroup analysis) and (2) to predict 
whether an individual might benefit from a 
treatment (predictive learning).2 The first goal 
of HTE is highlighted in the definition of CER) 
proposed by the Congressional Budget Office:  
“An analysis of comparative effectiveness is simply 
a rigorous evaluation of the impact of different 
treatment options that are available for treating 
a given medical condition for a particular set of 
patients.”1 The second goal of HTE analysis is 
individual-level prediction. Predicting beneficial 
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and adverse responses of individuals to different 
treatments in terms of multiple endpoints is 
essential for informing individualized treatment 
decisions. One version of this goal has been 
described as answering the question: “Who will 
benefit most from Treatment A and who will 
benefit most from Treatment B?”4 Creating such 
a narrowly defined subgroup (the individual 
patient) leads to an extremely challenging problem, 
which has not been adequately studied and for 
which there are few reliable methods that provide 
protection against spurious findings.5 Subgroup 
analysis, on the other hand, has been extensively 
studied.6 Hence, we will focus on subgroup 
analysis.

Subgroup Analysis

Subgroup analysis is the most commonly used 
analytic approach for examining HTE. This 
method usually evaluates the treatment effect for 
a number of subgroups, one variable at a time, 
usually a baseline or pretreatment variable. A 
test for interaction is conducted to evaluate if a 
subgroup variable has a statistically significant 
interaction with the treatment indicator. If the 
interaction is significant, then the treatment 
effect is estimated separately at each level of 
the categorical variable used to define mutually 
exclusive subgroups (e.g., men and women). 

It should be cautioned, however, that the 
interaction test generally has low power to detect 
differences in subgroup effects.7 For example, 
when compared with the sample size required 
for detecting ATE of a particular size, a sample 
size roughly four times as large is required for 
detecting a difference in subgroup effects of the 
same magnitude as ATE for a 50:50 subgroup split; 
a sample size approximately 16 times as large is 
required for detecting a difference that is half of 
ATE (at significance level 0.05). 

Even though the interaction test has low power to 
detect a true difference in subgroup effects, there 
is a danger of falsely detecting a difference in 
subgroup effects if we perform separate interaction 
tests for multiple subgrouping variables. That is, 
suppose we perform separate interaction tests 
for 100 subgroup variables. The interaction test 
will be statistically significant (at a significance 
level of 0.05), on average, for about five subgroup 

variables, when in truth the treatment effect is 
homogeneous. If we make a Bonferroni correction 
for multiple testing in order to maintain the correct 
Type-I error probability, we would be further 
increasing the Type-II error probability, which 
increases the likelihood of not identifying true 
heterogeneity in subgroup effects.

It should also be noted that a statistical test of 
interaction does not correspond to an assessment 
of biological interaction. The presence or absence 
of statistical interaction depends on various 
mathematical aspects of the regression model  
(e.g., scale of dependent variable, covariates 
present in the model, distributional assumptions). 
These considerations are largely irrelevant for 
biological interactions.3 

A useful illustration of the potential for subgroup 
analyses (and implied HTE) to lead to erroneous 
inferences came from a large randomized trial 
of therapies for myocardial infarction. In 1988, 
the results of the Second International Study of 
Infarct Survival (ISIS-2) study, a randomized 2x2 
factorial study of the effect of streptokinase and 
aspirin for treatment of myocardial infarction, 
were published.8 This study provided evidence 
indicating that either streptokinase or aspirin 
reduced mortality following myocardial infarction, 
and that the combination of streptokinase and 
aspirin improved survival over either treatment 
alone. In the aspirin-treated subjects, there was a 
reduction in mortality (804 deaths among 8,587 
people, 9.4%) relative to subjects not treated 
with aspirin (1,016 deaths among 8,600 people, 
11.8%, p<0.05). Numerous subgroup analyses 
were conducted, most of which indicated relatively 
consistent effects of aspirin. However, one 
particular subgroup analysis, astrological birth 
sign, suggested heterogeneity of effect. In the 
subgroup of patients born under the astrological 
sign Gemini or Libra, there were more deaths 
(150 of 1,357, 11.1%) among the aspirin-treated 
patients than there were among the non–aspirin-
treated patients (147 of 1,442, 10.2%) (p not 
significant). 

This apparent heterogeneity in the effect of aspirin 
served as a caution about the causal interpretation 
of findings from unfocused, exploratory 
subgroup analyses. Rather than inferring that 
aspirin should not be used in the treatment of 
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myocardial infarction if the patient is a Gemini 
or a Libra, the authors pointed to the potential 
for overinterpreting results of subgroup analyses. 
When the ATE is clearly positive (both aspirin 
and streptokinase reduce mortality in patients 
with myocardial infarction) and many subgroup 
analyses are conducted, false positive or negative 
findings are to be expected. Findings from such 
unfocused, exploratory subgroup analyses should 
be interpreted with caution even if a plausible 
biologic mechanism exists, and with greater 
caution if the apparent heterogeneity of treatment 
is not supported by a plausible mechanism (as with 
the astrological sign subgroup).

The ISIS-2 study conducted additional subgroup 
analyses to assess the consistency of the subgroup 
findings from an earlier randomized trial of 
streptokinase (GISSI) that found no benefit of 
streptokinase among persons older than 65, those 
with a previous infarct, and those presenting more 
than 6 hours after the onset of pain. In contrast to 
GISSI, the ISIS-2 study found a mortality benefit 
for streptokinase among these subgroups, a finding 
that further underscores the need for caution when 
drawing inferences from subgroup results.When 
there are plausible a priori reasons that a treatment 
may not be effective (such as in patients with 
contraindications to the therapy) and subgroup 
analyses find no benefit in that subgroup, stronger 
inferences might be drawn. 

Types of Subgroup Analysis

Three different types of subgroup analyses may be 
distinguished: (a) confirmatory, (b) descriptive, and 
(c) exploratory.2 See Table 3.1 for a summary of 
the essential characteristics of these three types of 
subgroup analyses.

Confirmatory Subgroup Analysis 

The main goal is to test and confirm hypotheses 
about subgroup effects. The essential elements 
of this type of analysis are: clear definition and 
prespecification of subgroups; clear definition and 
prespecification of endpoints related to outcomes; 
prespecification of a small number of hypotheses 
about subgroup effects, including the direction 
in which the effects are expected to vary in 
subgroups; availability of strong a priori biological 

and epidemiological evidence; detailed description 
of a statistical analysis plan for how testing will 
be done; and adequate power to test subgroup 
hypotheses. Essentially, the study intent, design, 
and analysis are all focused on the subgroup 
hypotheses to be tested. Due to these stringent 
requirements, the findings from a confirmatory 
analysis are potentially actionable.

Descriptive Subgroup Analysis 

The main goal of descriptive subgroup analysis 
is to describe the subgroup effects for future 
evaluation and synthesis. The essential elements 
of this type of analysis are: clear definition and 
prespecification of subgroups, clear definition 
and prespecification of endpoints related to 
outcomes, prespecification of hypotheses relating 
to subgroup effects, and detailed description of 
a statistical analysis plan for how testing will be 
done. The results of these subgroup analyses may 
be presented as a table in the main report and 
as a forest plot, with a vertical line representing 
the overall treatment effect (ATE). See Antman 
et al. for a good example of such a forest plot.9 
Alternatively, the results may be made available 
as an appendix or as electronic supplemental 
material in order to facilitate future evaluation 
and for synthesis and meta-analysis by systematic 
reviewers. A detailed discussion of descriptive 
subgroup analysis is presented in Varadhan et al.2

Exploratory Subgroup Analysis

Exploratory subgroup analyses are done mainly 
to identify subgroup hypotheses for future 
evaluation. Typically, exploratory subgroups are 
not prespecified. Compared to confirmatory and 
descriptive HTE analyses, exploratory analyses 
enjoy more flexibility for identifying baseline 
characteristics that interact with treatment. 
Definition of subgroups, endpoints, hypotheses, 
and modeling parameters are usually derived in 
response to the data. An example of this would be 
the use of a stepwise model selection approach 
to identify treatment by covariate interactions. 
A major problem with these analyses is that 
it is extremely difficult to obtain the sampling 
properties of subgroup effect estimators (e.g., 
standard errors). Often, it is not clear how many 
hypotheses were tested (e.g., using stepwise model
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selection to identify HTE). Post hoc exploratory 
subgroup analyses may sometimes identify 
promising hypotheses that could be subject to more 
rigorous future examination. The results of these 
subgroup analyses, while potentially important, 
should be clearly labeled as exploratory. 

Potentially Important Subgroup 
Variables

Important subgroups are ones for which limited 
data are typically available, such as the AHRQ 
priority populations (e.g., women, men, children, 
minorities, elderly, rural populations, individuals 
with disabilities, etc.).10

Subgroup variables must be true covariates, that 
is, variables that are defined before an individual 
is exposed to the treatment or variables that are 
known to be unaffected by the treatment. Variables 
that change in response to treatment and post-
randomization variables are not covariates. Some 
additional important types of subgroup variables 
are: (1) demographic variables (e.g., age); (2) 
pathophysiologic variables (e.g., timing after 
stroke, stable or unstable angina); (3) comorbidities 

(e.g., presence of renal disease when treating 
hypertension); (4) concomitant exposures (e.g., 
beta-blockers, aspirin); and (5) genetic markers 
(e.g., interaction between K-ras gene mutation 
and cetuximab for colorectal cancer). Sex and 
age should always be evaluated for interaction 
with treatment, although it is not obvious how to 
define the age categories. Notwithstanding, the 
definition of age categories should be prespecified. 
The other subgroup variables should be considered 
when there is prior epidemiological or mechanistic 
evidence suggesting some potential for interaction 
with the treatment.

Subgroup Analyses: 
Special Considerations for 
Observational Studies

General Considerations

Randomized trials generally have broad exclusion 
criteria that serve several purposes. These criteria 
reduce the heterogeneity of the study population 
so that there is less variability with respect to 

Table 3.1. Essential characteristics of three types of subgroup analyses2

Properties Confirmatory Descriptive Exploratory

Goal To test hypotheses related 
to subgroup effects

To report treatment effects 
for future synthesis

To generate hypotheses for 
further study

Number of hypotheses 
examined

A small number, typically 
one or two

Moderate and prespecified Not made explicit, but 
may be large, and not 
prespecified

Prior epidemiological or 
mechanistic evidence for 
hypothesis

Strong Weak or none Weak or none

Prespecification of data 
analytic strategy

Prespecified in complete 
detail

Prespecified Not prespecified

Control of familywise type 
I error probability

Necessary Possible, but not essential 
since the goal is not to test 
hypotheses

Not essential

Characterization of 
sampling error of the 
statistical estimator

Easy to achieve Possible Difficult to characterize 
sampling properties (e.g., 
confidence intervals)

Power of testing hypothesis Study may be explicitly 
designed to have adequate 
power 

Likely to be inadequately 
powered

Inadequate power 
to examine several 
hypotheses
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outcome measures, thereby improving statistical 
power for a given sample size. Exclusion criteria 
also serve to protect patients who might be 
harmed by a treatment (such as those with a 
contraindication to the treatment). Since the aim of 
many observational studies is to describe the effect 
of treatment as actually used, fewer exclusions are 
typically applied, and those that are often applied 
are for the purpose of improved confounder 
control. As a result, observational studies often 
include patients for whom no randomized data of 
treatment effect exists. For example, a patient with 
a relative contraindication for a treatment might 
be excluded from a randomized trial, but a treating 
clinician may decide that the benefits outweigh the 
risks for this patient and apply the therapy. 

The study of treatment effects can be challenging 
in observational studies. Observational studies 
are susceptible to confounding by indication, 
ascertainment biases in exposure to treatment, 
measurement error in assessment of health 
outcomes, and lack of information on important 
prognostic variables (in studies using existing 
data). These biases and measurement errors can 
introduce apparent HTE when in fact none is 
present, or conversely, obscure true HTE. Because 
heterogeneity in observational studies can be due 
to chance or bias, investigators must evaluate the 
observed HTE to determine whether a finding 
is indicative of true heterogeneity. To do this, 
chance findings should be evaluated by testing for 
interaction; biases should be avoided by adhering 
to sound study design principles and by evaluating 
balance on covariates within subgroups to assess 
the potential for confounding. 

There are several potential sources of 
heterogeneity in observational studies, and these 
tend to mirror the potential explanations for a 
finding of an overall effect (ATE). As such, many 
of the approaches for reducing the potential for 
an incorrect inference are the same. Careful 
attention to study design principles is an important 
starting point for avoiding incorrect inferences 
with respect to overall findings and also benefits 
the identification of potential HTE. The use of the 
incident (new) user design reduces the potential 
for inclusion of immortal person-time (i.e., 
person-time during which a study outcome cannot 
occur; see chapter 4 for a detailed discussion).11 
Contemporaneous followup of exposed and 

unexposed subjects (parallel group design) 
avoids calendar time differences in exposure/
covariate/outcome identification. Measures of 
exposure, outcome, and covariates should address 
misclassification and seek to limit potential for 
information bias. 

Despite the challenges in using observational 
data for HTE analysis, randomized experiments 
cannot be performed to answer all clinically 
important questions regarding HTE attributable 
to patient characteristics. Therefore, a huge 
demand will be placed on observational studies 
to produce evidence to inform decisions. Hence, 
procedures must be put in place to ensure 
that the results from observational studies are 
trustworthy. A key principle here is that the 
observational studies should be designed and 
analyzed in the same manner as randomized 
controlled experiments. Some potential steps 
include registering observational CER studies 
prospectively, publishing the study protocol 
(including clear definitions of subgroups and 
outcomes, prespecified hypotheses, and power 
calculations), and developing a detailed analytic 
plan (including how confounding, missing data, 
and loss to followup will be handled). Sox has 
called for registration of observational studies, 
along the lines of the National Institutes of 
Health’s clinical trials registry.12 Rubin has 
put forth an interesting proposal for “objective 
causal inference,” in which greater emphasis is 
placed on understanding treatment selection. The 
modeler is blinded to outcomes until the treatment 
assignment modeling is completed and made 
available to scrutiny.13 This places the emphasis 
on study design and treatment assignment, and the 
investigator only observes outcomes at the end, 
as in randomized experiments. This ensures some 
degree of objectivity in the outcome modeling. 
These proposals are worth serious consideration. 

Prediction of Individual Treatment 
Effects

This chapter has focused on analytic approaches 
to subgroups within a population, but variations 
of effect can also occur within individuals. The 
individual causal effects (Box 3.1), θ

i
 = g(E[Y

i
(1)]) 

– g(E[Y
i
(0)]), are not identifiable from the data 

without untestable assumptions. For acute or 
transient outcomes, methods such as crossover 
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designs or N-of-1 trials may be appropriate 
for estimating individual effects. For nonacute 
outcomes, prediction models may be developed for 
predicting the response of individuals to different 
treatments. Prediction of individual responses can 
also be viewed as an extreme version of subgroup 
analysis, where individuals are cross-classified 
by a large number of covariates. It is quite likely 
that most covariate profiles viewed as cells in a 
high-dimensional contingency table would be 
either empty or sparsely populated. Consequently, 
individual-level predictions can be highly variable 
and sensitive to modeling assumptions. An 
example of a prediction model is by Dorresteijn 
et al., who predicted the effect of rosuvastatin on 
cardiovascular events for individual patients using 
data from an RCT.14 They evaluated the net benefit 
of treatment decisions for individuals based on 
predicted risk difference (absolute risk reduction) 
due to the treatment. They used existing risk 
models (Framingham and Reynolds risk scores), as 
well as a prediction model developed using the trial 
data to calculate baseline risk of cardiovascular 
outcomes for all individuals without treatment. 
The average treatment effect (ATE) (relative risk) 
was applied to calculate individual treatment 
effects (ITE) (ITE = baseline risk * (1-ATE)). It 
is important to note that prediction models must 
be appropriately validated in order for them to be 
acceptable. 

Value of Stratification on the 
Propensity Score

A study by Kurth and colleagues illustrates the 
use of summary score stratification as a means 
to assess HTE in observational studies.15 Since 
many strokes are the result of thrombosis in 
cerebral or precerebral arteries, a highly specific 
thrombolytic therapy became available in the form 
of recombinant tissue plasminogen activator (TPA). 
Three randomized studies showed that TPA neither 
decreased nor increased mortality substantially 
in people who had recently experienced a stroke. 
However, observational studies of the same 
question consistently indicated that TPA therapy 
increased mortality, and the reasons for the 
discrepancy in results between observational and 
interventional studies were not readily apparent. 
With data sourced from a German stroke registry, 
Kurth and colleagues were able to reproduce the 

observational effect of an increase in mortality 
with TPA with careful attention to study design and 
regardless of adjustment for measured covariates. 
However, different analytic approaches (particularly 
matching on the propensity score) provided 
results more comparable to the randomized trials 
than was obtainable from adjusted analyses. By 
stratifying patients according to propensity to 
receive TPA and conducting analyses of TPA 
effect within strata, this study found that much 
of the observational result was being driven by 
a few subjects with low propensity to receive 
TPA who were highly influential in analyses that 
included them (the covariate–adjusted, propensity 
score–adjusted, propensity score–stratified, and the 
inverse probability–weighted analyses). However, 
the propensity score–matched analyses excluded 
these influential subjects, and the standardized 
mortality ratio results downweighted their influence 
so that these results were similar to the RCTs. As a 
summary of propensity to receive a medication or 
strength of indication, propensity score identifies 
clinically relevant subgroups. If heterogeneity 
is observed in the propensity score, further 
investigation is warranted. Stratification of results 
by summary variables such as propensity scores 
or disease risk scores, or other clinically relevant 
profiles may inform the analysis. 

Conclusion

RCTs often exclude individuals with characteristics 
that may cause variation in response to treatment, 
limiting the generalizability of findings from 
these studies. Observational studies often have 
broad inclusion/exclusion criteria, allowing for 
the assessment of comparative effectiveness in 
large, diverse populations in “real-world” settings. 
With the increase in generalizability comes the 
potential for HTE. Investigators should understand 
the potential for HTE prior to conducting an 
observational CER study, and clearly state if and 
how subgroups will be defined and analyzed. If 
subgroup analysis is intended to be confirmatory, 
investigators should ensure adequate statistical 
power to detect proposed subgroup effects, 
and adjust for multiple testing as appropriate. 
When an interaction test is significant, subgroup 
effects should be reported, and a discussion of 
the potential clinical importance of the findings 
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should be included. When an interaction test is 
not significant, the investigator should report 
the ATE and discuss plausible reasons for null 
findings in relation to other studies. Exploratory 
analyses should be clearly labeled as such, 

and the corresponding results should not be 
emphasized in the abstract of the study report. 
Reporting of results from descriptive analysis of 
subgroups defined by priority populations using an 
informative forest plot is encouraged.  

Checklist: Guidance and key considerations for the development of the HTE/
subgroup analysis section of an observational CER protocol

Guidance Key Considerations Check

Summarize prior knowledge of 
treatment effect modifiers and 
reference sources

o

Prespecify subgroups to be 
evaluated.

-  Note if priority populations with limited effectiveness data  
    will be included in the study and evaluated as subgroups. 
-  Subgroups should be defined by variables measured at  
    baseline or variables known to be unaffected by exposure

o

Specify the hypothesized direction 
of effect within subgroups and the 
significance levels that will be used 
to assess statistical significance.

-  If confirmatory analyses, do power calculations. 
-  Describe methods to adjust for multiple testing, if  
    applicable. o

Describe how confounding will be 
addressed.

-  Assess covariate balance between the treatment groups  
   within each stratum of the subgrouping variable. o

Describe statistical approaches that 
will be used to test for interactions 
for prespecified covariates.

If the interaction test is not significant: 
-  Report ATE. 
-  Discuss plausible reasons for null findings in relation to  
   other studies and plausible biological mechanism.

o

Describe how overall (ATE) and 
subgroup effects will be reported 
if interaction test is or is not 
significant.

-  Clearly distinguish subgroup results as confirmatory,  
   descriptive, or exploratory analyses.  
-  Report subgroup effects in a table and/or a forest  
    plot with a vertical line representing the overall  
    treatment effect (ATE).

o
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Abstract

Characterization of exposure is a central issue in the analysis of observational data; however, no “one 
size fits all” solution exists for exposure measurement. In this chapter, we discuss potential exposure 
measurement approaches for observational comparative effectiveness research (CER). First, it is helpful 
to lay out a theoretical link between the exposure and the event/outcome of interest that draws from the 
study’s conceptual framework. For interventions that target health and well-being, the physiological 
or psychological basis for the mechanism of action, whether known or hypothesized, should guide the 
development of the exposure definition. When possible, an operational definition of exposure that has 
evidence of validity with estimates of sensitivity, specificity, and positive predictive value should be 
used. Other important factors to consider when defining exposure are the timeframe (induction and 
latent periods), changes in exposure status or exposure to other therapies, and consistency and accuracy 
of exposure measurement. The frequency, format, and intensity of the exposure is another important 
consideration for the measurement of exposure in CER studies, which is applicable to medications (e.g. 
dose) as well as health service interventions that may require multiple sessions, visits, or interactions. This 
chapter also discusses methods for avoiding nondifferential and differential measurement error, which can 
introduce bias, and describes the importance of determining the likelihood of bias and effects on study 
results. We conclude with a checklist of key considerations for the characterization and operationalization 
of exposure in CER protocols.

Chapter 4. Exposure Definition and Measurement
Todd A. Lee, Pharm.D., Ph.D. 

University of Illinois at Chicago, Chicago, IL 

A. Simon Pickard, Ph.D. 
University of Illinois at Chicago, Chicago, IL

Introduction

In epidemiology, the term “exposure” can be broadly 
applied to any factor that may be associated with 
an outcome of interest. When using observational 
data sources, researchers often rely on readily 
available (existing) data elements to identify whether 
individuals have been exposed to a factor of interest. 
One of the key considerations in study design is 
how to determine and then characterize exposure 
to a factor, given knowledge of the strengths and 
limitations of the data elements available in existing 
observational data. 

The term “exposure” can be applied to the primary 
explanatory variable of interest and to other variables 
that may be associated with the outcome, such 
as confounders or effect modifiers, which also 
must be addressed in the analysis of the primary 
outcome. For example, in a study of the comparative 
effectiveness of proton pump inhibitors and 

antibiotic treatment of H. pylori for the prevention 
of recurrent gastrointestinal (GI) bleeding, the 
primary exposures of interest are proton pump 
inhibitors and the antibiotics for H. pylori. However, 
it would also be important to measure exposure to 
aspirin and nonsteroidal anti-inflammatory drugs 
(NSAIDs), which would increase the risk of GI 
bleeding independent of treatment status. Similarly, 
in a comparative evaluation of cognitive behavioral 
therapy (CBT) for treatment of depression compared 
with no CBT, it would be important to measure 
not only the exposure to CBT (e.g., number and/or 
type of therapy sessions), but also exposure to other 
factors such as antidepressant medication. 

Each intervention (e.g., medication, surgery, 
patient education program) requires a unique and 
thoughtful approach to exposure ascertainment. 
While it may only be necessary to identify if and 
when an intervention occurred to assign individuals 
to the appropriate comparison group for one-
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time interventions such as surgery or vaccine 
administration, for pharmacologic and other 
more sustained interventions such as educational 
interventions, it will often be important to consider 
the intensity of the exposure by incorporating 
the dose, frequency, and duration. In addition, 
for pharmacologic and behavioral interventions 
the mode of delivery or the context in which the 
intervention takes place may also be important 
factors for determining exposure. For example, 
to evaluate the comparative effectiveness of a 
multivisit behavioral intervention for weight 
loss compared with a single-visit program, it is 
important to consider the total number of visits to 
ascertain exposure. 

The data elements available in a dataset may 
dictate how exposure is measured. Unlike 
randomized clinical trials, in which mechanisms 
exist to ensure exposure and to capture relevant 
characteristics of exposure, observational 
comparative effectiveness studies often have 
to rely on proxy indicators for the intervention 
of interest. In clinical trials of medications, 
drug levels may be monitored, pill counts 
may be performed, and medications may be 
dispensed in limited days’ supply around 
routine study visits to facilitate medication use. 
When relying on observational data, however, 
exposure ascertainment is often based on 
medication dispensing records, and only under 
rare exceptions will drug levels be available 
to corroborate medication exposure (e.g., 
international normalized ratio [INR] rates might 
be available from medical records for studies of 
anticoagulants). 

No “one size fits all” solution exists for exposure 
measurement. Researchers who seek to address 
similar clinical questions for the same chronic 
condition may use different approaches to 
measuring exposure to the treatments of interest.1-5 
For example, in evaluating the association between 
use of inhaled corticosteroids (ICS) and fracture 
risk in patients with chronic obstructive pulmonary 
disease (COPD), the period used to define 
exposure to ICS ranged from ever having used ICS 
to use during the entire study period to use in the 
last 365 days to use in the last 30 days. In addition, 
exposure was characterized dichotomously (e.g., 
ever/never) or categorically, based on the amount 
of exposure during the measurement time periods. 

These examples show that methods for measuring 
exposure, even for addressing the same clinical 
question, can vary. Thus, the intent of this chapter 
is to identify important issues to consider in 
the determination of exposure and describe the 
strengths and limitations of different options that 
are available given the nature of the research 
question. 

Conceptual Considerations for 
Exposure Measurement

Linking Exposure Measurement to 
Study Question

A study’s conceptual basis should serve as 
the foundation for developing an operational 
definition of exposure. That is, if the objective 
of the study is to examine the impact of chronic 
use of a new medication on patient outcomes, 
then the measurement of exposure should match 
this goal. Specifically, the definition of exposure 
should capture the long-term use of the medication 
and not simply focus on a single-use event. The 
exposure measurement could include alternative 
measures that capture single-use events; however, 
the exposure measurement should be able to 
distinguish short-term use from long-term use so 
that the primary study question can be adequately 
addressed.

Examining the Exposure/Outcome 
Relationship

The known properties of the intervention of 
interest also should guide the development 
of exposure measures. It is helpful to lay out 
a theoretical and biological link between the 
exposure and the event/outcome of interest that 
draws from the study’s conceptual framework. 
The biological mechanism of action, whether 
known or hypothesized, should guide the 
development of the exposure definition. If the 
primary exposure of interest in the analysis is a 
medication, it may be relevant to briefly describe 
how the pharmacology, the pharmacodynamics 
(the effects of medication on the body), and the 
pharmacokinetics (the process of drug absorption, 
distribution, metabolism, and excretion from 
the body) informed the exposure definition. For 
example, in a comparison of bisphosphonates 
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for the prevention of osteoporotic fractures, the 
exposure definition would need to be tailored to 
the specific bisphosphonate due to differences in 
the pharmacokinetics of the various medications. 
The definition of exposure for ibandronate, which 
is a bisphosphonate indicated for osteoporosis 
administered once per month and has a very 
long half-life, would likely need to be different 
than the definition of exposure for alendronate, 
a treatment alternative that is administered 
orally daily or weekly. When operationalizing 
exposure to these two medications, it would 
be insufficient to examine medication use 
in the last week for identifying current use 
of ibandronate, but sufficient for current use 
of alendronate. Analogous scenarios can be 
envisioned for nonpharmacological interventions. 
For example, in a study examining a multivisit 

educational intervention for weight loss, the 
effect of the intervention would not be expected 
until individuals participated in at least one (or 
some) of the sessions. Therefore, it would not be 
appropriate to create an exposure definition based 
on registration in the program unless subject 
participation could be verified. 

Examples of Exposure/Outcome Relationships 

As noted above, it is helpful to lay out a theoretical 
and biological link between the exposure and 
the event/outcome of interest that draws from 
a conceptual framework. Several examples of 
exposure and event relationships are displayed in 
Figure 4.1. These panels show how an exposure 
might be associated with an increased likelihood of 
a benefit or harm.

Figure 4.1. Examples of exposure(s) and risk/benefit associations 
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 The first column (A–C) shows multiple exposures 
over time where the timing of the exposure is 
not consistent and stops midway through the 
observation period. Panel A shows a scenario in 
which there is a “threshold effect”—where the 
benefit (or risk) associated with the exposure 
increases after a specific amount of exposure 
and the level of benefit/risk is maintained from 
that point forward. In defining exposure under 
this scenario, it would be important to define the 
cumulative amount of exposure. For example, 
if evaluating the comparative effectiveness of 
antibiotics for the treatment of acute infection, 
there may be a threshold of exposure above 
which the medication is considered effective 
treatment. In this case, the exposure measurement 
should measure the cumulative exposure to 
the medication over the observation timeframe 
and define individuals as exposed when the 
threshold is surpassed (if the exposure variable is 
dichotomized).This situation contrasts with that 
in Panel B, in which the association between the 
exposure and the effect decreases rapidly after 
the exposure is removed. This type of association 
could be encountered when evaluating the 
comparative effectiveness of antihypertensive 
medications for blood pressure control. In this 
case, there may be (a) some minimum amount of 
exposure necessary for the medication to begin 
to have an effect and (b) an association between 
the frequency of administration and effectiveness. 
When the exposure is removed, however, blood 
pressure may no longer be controlled and 
effectiveness decreases rapidly. In operationalizing 
this exposure-event association it would be 
necessary to measure the amount of exposure, 
the frequency with which it occurred, and when 
exposure ended. In panel C, there is an increase in 
the likelihood of the outcome with each exposure 
that diminishes after the exposure is removed. 
This may represent an educational weight loss 
intervention. In this example, continued exposure 
improves the effectiveness of the intervention, 
but when the intervention is removed, there 
is a slow regain of weight. Similarly to Panel 
B, it is important to consider both the timing 
and the amount of exposure for the weight loss 
intervention. Because the effectiveness diminishes 
slowly only after the exposure is removed, it is 
important to consider a longer exposure window 
than when effectiveness diminishes rapidly.

The second column shows scenarios where the 
exposure of interest occurs at a single point in 
time, such as a surgical procedure or vaccination. 
The relationship in panel D shows an immediate 
and sustained effect following exposure. This 
could represent a surgical procedure and is a 
situation in which the measurement of exposure 
is straightforward as long as the event can be 
accurately identified, as exposure status would not 
vary across the observation period. Measurement 
of exposure in panels E and F is more complex. In 
panel E, the exposure is a single event in time with 
an immediate effect that diminishes over time. An 
example of this could be a percutaneous coronary 
intervention (PCI) where the time scale on the 
x-axis is measured in years. There is an immediate 
effect from the exposure (intervention) of opening 
the coronary arteries that contributes to a reduced 
risk of acute myocardial infarction (AMI). 
However, the effectiveness of the PCI decreases 
over time, with the risk of AMI returning to what 
it was prior to the intervention. In this example, 
it is clearly important to identify and measure 
the intervals at which the risk is modified by 
PCI. After a sufficient amount of time has passed 
from the initial PCI, it may not be appropriate to 
consider the individual exposed. At the very least, 
the amount of time that has passed postexposure 
should be considered when creating the operational 
definition of exposure. Panel F represents a 
scenario where the effect from a single exposure 
is not immediate but happens relatively rapidly 
and then is sustained. Such a situation could be 
imagined in a comparative effectiveness study of 
a vaccination. The benefits of the vaccination may 
not be realized until there has been an appropriate 
immunological response from the individual, and 
the exposure definition should be created based 
on the expected timing of the response, consistent 
with clinical pharmacological studies of the 
vaccine. 

The final column of Figure 4.1 represents scenarios 
in which there are multiple exposures over time 
with different exposure-risk/benefit relationships. 
In each of these examples, it is important to 
consider the cumulative amount of exposure 
when developing the exposure definition. In 
panel G, the depicted relationship shows a dose-
response in which the risk or benefit increases 
at a slower rate after a threshold of exposure is 
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reached. An example of this could be a behavioral 
intervention that includes personal counseling for 
lifestyle modifications to improve hypertension 
management. There may be a minimum number 
of sessions needed before the intervention has 
any effect and, after a threshold is reached, the 
incremental effectiveness of a single session 
(exposure) is diminished. In measuring exposure in 
this example, it would be important to determine 
the number of sessions that an individual 
participated in, especially if multiple exposure 
categories are being created. Panel H shows a 
linear increase in the risk/benefit associated with 
exposure. This example may be best illustrated 
by a comparative safety evaluation of the impact 
of oral corticosteroids on fracture risk. Continued 
exposure to oral corticosteroids may continue to 
increase the risk of fracture associated with their 
use. In this example, it would be necessary to 
characterize cumulative exposure when creating 
exposure definitions, as there will be a difference 
in the risk of those exposed to “a little” in 
comparison to those exposed to “a lot.” The final 
scenario is panel I, which shows a large change 
in risk/benefit upon initial exposure and then an 
increase in the risk/benefit at a slower rate with 
each subsequent exposure. For panel I, it would 
be most important to determine if the exposure 
occurred (as this is associated with the largest 
change in risk/benefit), and then quantify the 
amount of exposure. 

Induction and Latent Periods

In creating exposure definitions, it is also 
important to consider the induction and latent 
periods associated with the exposure and outcome 
of interest.6 The induction period is the time from 
when the causal effects of the exposure have been 
completed to the start of the event or outcome. 
During the induction period, additional exposures 
will not influence the likelihood of an event or 
outcome because all of the exposure necessary to 
cause the event or outcome has been completed. 
For example, additional exposure to the vaccine 
for mumps during childhood will not increase or 
decrease the likelihood of getting mumps once the 
initial exposure to the vaccine has occurred. 

The latent period is the time from when the 
outcome starts to when the outcome is identified. 

In other words, it is the period between when the 
disease or outcome begins and when the outcome 
is identified or diagnosed. Similar to the induction 
period, exposures during the latent period will not 
influence the outcome. Practically, it may be very 
difficult to distinguish between latent and induction 
periods, and it may be particularly difficult 
to identify the beginning of the latent period. 
However, both periods should be considered and 
ultimately not included in the measurement of 
exposure. In practical terms, it is sufficient to 
consider the induction and latent period as a single 
time period over which exposures will not have 
an effect on the outcome. A timeline depicting 
multiple exposures, the induction period, the latent 
period, and the outcome of interest is shown in 
Figure 4.2. 

As an example of the incorporation of both 
the induction and latent periods in exposure 
measurement, consider the evaluation of the 
comparative effectiveness of a cholesterol-lowering 
medication for the prevention of myocardial 
infarction. First, the induction period for the 
medication could be lengthy if the effectiveness is 
achieved through lowering cholesterol to prevent 
atherosclerosis. Second, there is likely a very small 
latent period from disease onset to identification/
diagnosis. That is, the time from when the 
myocardial infarction starts to when it is identified 
will be relatively short. Any medication use that 
occurs during the induction and latent periods 
should not be included in the operational definition 
of exposure. For this example, it would be 
inappropriate to consider an individual exposed to 
the medication of interest if they had a single dose 
of the medication the day prior to the event, as this 
would not have contributed to any risk reduction 
for the event. Because of the short latent period, it 
would be unlikely that exposures occurred during 
that timeframe. Exposure should be measured 
during a time period when the use of lipid-lowering 
medications is expected to have an effect on the 
outcome. Therefore, the exposure definition should 
encompass a timeframe where the benefit of lipid-
lowering medications is expected, and this should 
be justified based on what is known about the link 
between atherosclerosis and myocardial infarction 
and the known biological action of lipid lowering 
medications. 
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Each ‘x’ represents exposure to 
treatment/intervention of interest

Induction Period

Latent Period

x    x    x  xx   x xxx     xxx          xxxxxx      x                   xxxx       xx      xx        O

Start of outcome

Outcome 
Identi�ed/Diagnosed

E�ects of exposure in 
causing outcome of 

interest complete

Figure 4.2. Timeline of exposure, induction period, latent period, and outcome

Adapted with permission from White E, Armstrong BK, Saracci R. Principles of exposure measurement in 
epidemiology. 2nd edition, New York: Oxford University Press Inc.; 2008. 

Changes in Exposure Status 
Another relevant consideration when developing 
exposure measurement relates to changes in 
exposure status, particularly if patients switch 
between active exposures when two or more are 
being investigated. While medication or exposure 
switching may be more relevant for design and/
or analysis chapters in this guidance, it is also 
important to consider how it might relate to 
exposure measurement. One of the important 
factors associated with medication switching 
when creating exposure definitions is to determine 
if “spillover” effects might persist from the 
medication that was discontinued. If this is true, 
it would be necessary to extend the measurement 
of exposure beyond the point when the switch 
occurred. Similarly, depending upon the effects of 
the intervention that was started, it is important to 
consider its biological effects when developing the 
exposure definition following a switch. Importantly, 
these issues do not apply only to medications; 
“spillover” effects can also be observed with 
behavioral or other interventions where the effect 
extends beyond the last observed contact.

Data Sources

Exposure Measurement Using Existing 
Electronic Data

The ability to measure exposures based on 
available data is also an important consideration 
when creating an operational definition of 
exposure. Is there a consistent and accurate way 
to identify the exposure in the dataset? If the 
exposure of interest is a surgical procedure, for 
example, is there a single code that is used to 
identify that procedure or is it necessary to expand 
the identification beyond a single code? If using 
more than one code, do the codes only identify the 
procedure of interest or is there variability in the 
procedures identified? For medications, the data 
likely reflect prescriptions or medication orders 
(EHR) or pharmacy dispensings (PBM or health 
insurer administrative claims) but not actual use. Is 
it necessary to know whether a given medication 
was taken by the patient on a particular day or time 
of day?

To illustrate these issues, consider the case in 
which the primary intervention of interest is 
colonoscopy. Depending on the source of the 
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data, colonoscopies may be identified with a 
CPT code (e.g., CPT 45355 Colonoscopy, rigid 
or flexible, transabdominal via colostomy, single 
or multiple), an HCPCS code (e.g., G0105 
Colorectal cancer screening; colonoscopy on 
individual at high risk), or an ICD-9 procedure 
code (e.g., 45.23 Colonoscopy). To accurately 
identify this procedure, it is necessary to consider 
more than one type of procedure code when 
classifying exposure. All of these may reliably 
identify exposure to the procedure, but use of 
only one may be insufficient to identify the event. 
This may be influenced by the source of the data 
and the purpose of the data. For example, one 
set of codes from the list may be useful if using 
hospital billing data, while another may be useful 
for physician claims data. When making this 
decision, it is important for the investigators to 
balance the selection of the codes and the accurate 
identification of the exposure or intervention; 
creating a code list that is too broad will introduce 
exposure misclassification. Overall, it will be 
important to provide evidence on the most accurate 
and valid mechanism for the identification of the 
exposure or intervention across the datasets being 
used in the analysis. Researchers should therefore 
cite any previous validation studies or perhaps 
conduct a small validation study on the algorithm 
proposed for the exposure measurement to justify 
decisions regarding exposure identification. Issues 
in selection of a data source are covered in detail in 
chapter 8 (Data Sources).

Exposure Measurement via Prospective Data 
Collection

In addition to using existing data sources, it may 
be feasible or necessary to prospectively collect 
exposure information, in some circumstances from 
patients or physicians, for use in an observational 
comparative effectiveness study. Abstraction of 
(paper) medical records is a type of prospective 
data collection that draws on existing medical 
records that have not been compiled in a research-
ready format. 

The validity and accuracy of self-reported 
exposure information may depend on the type 
of exposure information being collected (i.e., 
medication use versus history of a surgical 
procedure), or on whether the information is 
focused on past exposures or is prospectively 

collected contemporary exposure information. 
The characteristics of the exposure and the patient 
population are likely to influence the validity 
of the information that is collected. The recall 
of information on a surgical procedure may be 
much more accurate than the recall of the use of 
medications. For example, women may be able 
to accurately recall having had a hysterectomy 
or tubal sterilization,7 while their ability to recall 
prior use of NSAIDs may be quite inaccurate.8 
In these examples, the accuracy of recall for 
hysterectomy was 96 percent while only 57 
percent of those who had a dispensing record 
for an NSAID reported use of an NSAID—a 
disparity that shows the potential for exposure 
misclassification when using self-reported recall 
for medication use. In the medication example, 
factors associated with better recall were more 
recent use of a medication and repeated use of a 
medication. Similar to the use of other sources of 
data for exposure measurement, use of this type 
of data should be supported by evidence of its 
validity.

Creating an Exposure 
Definition

Time Window

A key component in defining exposure is the time 
period during which exposure is defined, often 
referred to as the time window of exposure. The 
exposure time window should reflect the period 
during which the exposure is having its effects 
relevant to the outcome of interest.6 In defining 
the exposure time window, it is necessary to 
consider the induction and latent periods. As noted 
in the statin example above, the exposure time 
window to evaluate the effectiveness of statins for 
preventing AMIs should be over the time period 
that statins can have their impact on cardiovascular 
events, which would be over the preceding several 
years rather than, for instance, over the 2 weeks 
immediately preceding an event. 

There is no gold standard for defining the 
exposure time window, but the period selected 
should be justified based on the biologic and 
clinical pathways between the intervention/
exposure and the outcome. At the same time, 
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practical limitations of the study data should 
be acknowledged when defining the exposure 
time window. For example, lifetime exposure to 
a medication may be the ideal definition for an 
exposure in some circumstances but most existing 
datasets will not contain this information. It then 
becomes necessary to justify a more pragmatic 
approach to defining exposure given the length of 
followup on individuals available in the dataset. 
A variety of approaches to defining exposure time 
windows have been used in both cohort and case-
control studies. As highlighted in the introductory 
section of this chapter, investigators have selected 
different exposure time windows even when 
examining the same clinical question. In most of 
these examples, the choice of the exposure time 
window is not clearly justified. Ideally, this choice 
should be related back to the conceptual framework 
and biological plausibility of the question being 
addressed. However, as noted above, there are 
pragmatic limitations to the ability to measure 
exposure, and in the case where selection of the 
exposure time window is arbitrary or limited by 
data, sensitivity analyses should be performed in 
order to evaluate the robustness of the results to the 
time window.

Unit of Analysis

When creating a definition for an exposure 
measurement, it is necessary to consider the unit 
of analysis for the study and the measurement 
precision possible within the constraints of the 
data. The nature of the intervention largely dictates 
the appropriate unit of analysis. If the intervention 
of interest does not vary with time, the unit of 
measurement can be defined at the patient level 
because exposure status can be accurately classified 
for the duration of the analysis. This may be the 
case for surgical procedures or other interventions 
that occur at a single point in time and that have a 
persistent effect (panel D in Figure 4.1). For other 
interventions or exposures, units of analysis may 
be more appropriately defined in terms of person-
time, as the exposure status of individuals may 
vary over the course of the study period. This is a 
common approach for defining exposure in studies 
of medication treatment outcomes, as medication 
regimens often involve addition or discontinuation 
of medications, suboptimal adherence, dosage 
changes, or other factors that may cause changes in 
exposure to the intervention of interest. 

Measurement Scale 

The scale of the exposure measure should be 
operationalized in a manner that makes the 
most use of the information available. The 
more precisely an exposure is measured, the 
less measurement error. In many observational 
CER studies, the intervention of interest can be 
measured as a dichotomous variable (i.e., exposed 
or not exposed). For example, an individual either 
had or did not have a surgical procedure. 

For other types of exposures/interventions in 
observational CER, it may be desirable to measure 
exposure as a continuous covariate, particularly 
when there is a dose-response relationship (e.g., 
panel H of Figure 4.1). However, the ability to 
operationalize exposure as a continuous variable 
may be limited by the availability of the exposure 
data and uncertainty surrounding its accuracy. 
Under cases of nondifferential misclassification 
in a continuous exposure variable, the degree of 
bias toward the null hypothesis is impacted by the 
precision of the exposure measurement, not by 
the bias in the exposure measure.9 Therefore, if 
the accuracy of the classification can be improved 
by using an alternative approach to scaling (e.g., 
measuring exposure as a categorical variable), it 
is possible to introduce less bias towards the null 
than is associated with the continuous measure. 
For example, if an individual was dispensed 
three separate prescriptions, each with a 30-day 
medication supply, she may not have taken the 
entire 90-day supply, but it is likely that she took 
more than a 60-day supply. In this case, an ordinal 
scaling of exposure measure for the number of 
doses of a medication may be preferable when 
it may not be possible to accurately identify the 
actual number of doses taken. 

Dosage and Dose-Response 

The concept of dose is an important consideration 
for the measurement of exposure in observational 
comparative effectiveness studies. Indeed, as shown 
in each of the event and exposure relationships 
depicted in the first column of Figure 4.1, the 
cumulative dose, or total amount of exposure 
over a specified time period, is often optimal 
for adequately defining exposure. To calculate 
cumulative dose, three elements of exposure are 
necessary: (1) the frequency of exposure, (2) the 
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amount/dose of each exposure occurrence, and (3) 
the duration of exposure. Importantly, the concept 
of dose is applicable not only to medications but 
also to health services interventions that require 
multiple sessions, visits, or interactions. With 
respect to medications, it may be possible to 
obtain all the information necessary to calculate 
cumulative exposure to a specific prescribed 
medication from pharmacy claims data, where 
such data are typically collected for billing 
purposes. Information on the dose of each 
dispensed medication in the United States is 
available through the National Drug Code (NDC) 
for the product. Upon extracting information on 
the strength of each dose from the NDC code, dose 
strength can be combined with quantity dispensed 
and days’ supply to determine the amount of each 
exposure event and the frequency of the exposure. 
When using data outside of the United States, 
the World Health Organization’s Anatomical 
Therapeutic Chemical (ATC) Classification System 
may be used to measure exposure based on defined 
daily doses (DDDs), which are the assumed 
average maintenance doses per day for a drug used 
based on its main indication in adults (http://www.
whocc.no/ddd/definition_and_general_considera/). 
Cumulative dose exposure definitions can be used 
to explore a dose-response relationship between 
the exposure and the event. Cumulative dose can 
also be used to determine if there is a threshold 
effect. 

While cumulative exposure may be an important 
concept in many comparative effectiveness studies 
of medications, it may not be as relevant in other 
studies. There may be medications where use is 
so intermittent that it is not possible or relevant 
to capture cumulative exposure. This is also the 
case with one-time interventions like surgical 
procedures, where the concept of dose has less 
meaning.

Modes of administration and different dosage 
forms can present complexities in operationalizing 
a definition of exposure when using administrative 
data. For example, a study using observational data 
to examine the effectiveness of hydrocortisone 
as a treatment for irritable bowel disease (IBD) 
would seek to identify only those prescriptions for 
hydrocortisone that were used for IBD treatment. 
This could be accomplished by focusing only 
on specific dosage forms that would be used in 

the treatment of IBD, to avoid misclassification 
of exposure to other forms of hydrocortisone. 
Therefore, the definition of exposure needs 
to be specific to the exposure of interest and 
avoid misclassification due the availability of 
other dosage forms or routes of administration. 
Conversely, it may be necessary to create a wider 
definition that looks across multiple dosage forms 
if the question of interest is focused on a systemic 
effect of a medication that could be delivered in 
multiple forms.

Similarly, behavioral factors might modify the 
effect of the observed association. These can 
include factors such as medication adherence, 
which may be considered in the definition of 
exposure. Several examples of observational 
studies of medications exist that required a 
specific level of adherence prior to categorizing 
an individual as exposed. For example, a study 
may require that an individual use at least 75 
percent of their prescribed medication on a regular 
basis before they are considered exposed. This is 
most frequently operationalized by calculating 
the medication possession ratio and determining 
if it crosses a threshold before categorizing an 
individual as exposed; again, the approach should 
be linked to the hypothesized mechanism of 
effect. More detailed descriptions of approaches to 
analyzing medication compliance and persistence 
using retrospective databases are available.10 
Currently, there is no gold standard that indicates 
what amount of a given medication needs to be 
used prior to its having its effect. The choice of 
a threshold should be supported by a rationale 
for the level that is selected. In addition, while a 
measure of adherence can be used as a measure 
of amount of exposure or the dose, it is also 
important to consider differences in adherent 
versus nonadherent patients. That is, patients 
who are adherent to their treatment regimens may 
be systematically different from those who are 
nonadherent to treatment. These differences impact 
the outcomes being measured, independent of 
the exposure measurement. These factors should 
be considered when deciding whether or not to 
incorporate adherence as part of the exposure 
measure.
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Precision of Exposure Measure

The source of the data being used for the analysis 
can limit the ability to precisely characterize 
exposure. For instance, EMR data may provide 
only information on medication orders or active 
drug lists, which would not allow for accurate 
classification of exposure on a daily basis. 
Attempting to do so would likely introduce 
high levels of exposure misclassification. The 
use of administrative claims data that provide 
information on medication dispensing may 
provide a more accurate estimate of the use of 
medications on a more routine basis. However, 
this data source will only reflect the dispensing 
of medications and not actual medication use. 
Multiple dispensings may provide greater 
assurance that the individual is being routinely 
exposed to the medication but cannot guarantee 
the patient has taken the medication. A more 
accurate measure of medication use would be 
information on medication assays. However, only 
a select number of medications have routine labs 
drawn to ascertain levels, and this does not present 
a practical solution in most observational CER 
projects. Thus, while dispensing data may provide 
a more accurate measurement on a more routine 
basis than other sources of data, assumptions about 
actual use are still inherent in the use of these data 
to determine exposure status. Investigators should 
understand the benefits and limitations associated 
with the data source being used, and should ensure 
that the exposure can be measured with sufficient 
precision to answer the research question of 
interest.

Exposure to Multiple Therapies 

A complexity in observational CER is the 
lack of control over other medications used by 
individuals in the study, and the fact that exposure 
to other medications is unlikely to be randomly 
distributed among the exposed and unexposed 
groups. Therefore, when characterizing the 
primary exposure of interest, it is also important 
to consider the influence of other exposures 
on the outcome. Multiplicative or additive 
effects may be possible. For example, it may be 
important to consider the joint antihypertensive 
effects of various classes of antihypertensive 
medications in a comparative effectiveness study, 
as these medications will frequently be used in 
combination. 

Issues of Bias

Measurement Error

In observational CER studies, both nondifferential 
and differential measurement error can introduce 
bias. Differential misclassification occurs when the 
error in the exposure measurement is dependent 
on the event of interest. This measurement error 
can result in biased estimates either away from or 
towards the null, making the observed association 
look stronger or weaker than the true underlying 
association. Differential measurement error 
can even lead to observed associations that are 
in the opposite direction of the true underlying 
association. Nondifferential measurement error 
occurs when errors in the measurement of 
exposure are proportionally the same in both 
the group that does and the group that does not 
experience the outcome of interest. For the most 
part, this type of measurement error will bias the 
results toward the null hypothesis, causing an 
underestimate of the true effect of the association. 

The goal of any measurement of exposure is 
to minimize the amount of misclassification 
that occurs as part of the study design. For 
dichotomous measures, investigators should 
attempt to maximize the sensitivity and specificity 
of the measure to minimize the amount of 
misclassification. One source of misclassification 
in observational studies results from the failure 
to account for changes in exposure to medication 
during the observational period. Such a situation 
would support a person-time unit of analysis. In 
cohort studies, exposure status may be determined 
at a single point in time; this may not be reflective 
of use of the medication over the study period. 
There may be frequent changes to medication 
regimens during followup; simply classifying 
patients as exposed or not exposed at the onset 
of the study period can lead to a high degree of 
misclassification that is nondifferential.11 This may 
be true for exposures that occur intermittently and 
those that occur on a more frequent basis but are 
associated with high rates of nonadherence.

The potential influence on misclassification 
of choices made in operationalizing the 
exposure definition should be considered by 
the investigators when designing the study. For 
example, what is the potential for misclassification 
of exposure with a given choice of the exposure 
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time window? Will selecting a relatively short 
exposure time window produce a high degree of 
misclassification of exposure that would potentially 
lead to a biased effect estimate? Investigators 
should consider the practical limitations of the 
data and the influence that these limitations might 
have on the measurement error. There are many 
other potential sources of misclassification when 
measuring exposure, including: (1) measurement 
of exposure during induction or latent periods, (2) 
failure to incorporate the sustained effects of the 
medication or other intervention when creating 
an exposure definition, and (3) use of health care 
services not captured in the data source. To expand 
upon the latter issue, data from health systems 
like insurance companies often lack the ability to 
capture out-of-system health care utilization. Many 
administrative claims databases also do not capture 
in-hospital medication use. Such exposures will 
not be recorded in the data source and may lead 
to misclassification known as immeasurable time 
bias, which occurs when exposure during a period 
such as hospitalization cannot be measured, and is 
not accounted for in the analysis of study data.12

Over-the-counter (OTC) medications present 
a scenario in which misclassification is 
particularly problematic. Measurements based on 
administrative or EMR data will underestimate the 
use of OTC products and lead to misclassification 
of exposure to those medications. The inability 
to measure exposure during the observation 
period can also be problematic if the available 
data do not fully capture all sources of exposure. 
The use of OTC medication as an exposure is 
but one example of not being able to accurately 
capture all exposures, but this can occur in other 
circumstances. For example, hospital billing data 
will usually not include detailed information on 
the medications used during the inpatient stay, 
which can lead to misclassification of exposure 
during a hospitalization. So while the individual 
is using health care that is captured by the data 
source, there is insufficient detail to accurately 
capture exposure. Therefore, investigators should 
determine if there are periods of time in which 

the exposure status of individuals cannot be 
ascertained in the data being used in the analysis, 
and should evaluate the potential impact on 
exposure measurement.

A specific type of measurement bias for 
exposures that has received a lot of attention in 
recent literature is immortal time bias.13 This 
bias occurs when person-time is inappropriately 
assigned to an exposure category. A common 
example of immortal time bias occurs when 
exposure is defined based on the requirement of 
two dispensings of a medication. The time period 
between those two dispensings represents an 
immortal period, in which events among exposed 
individuals (e.g., death) would not be attributed 
to exposure because the individuals exposed 
to only one dispensing have not qualified as 
exposed according to the definition. Clearly, this 
introduces a bias into the observed association and 
is remedied by correctly classifying person-time 
from the beginning of the exposure period (i.e., 
the first dispensing in this example). For time-
based, event-based, and exposure-based cohort 
definitions, the bias in the rate ratio that arises 
from the immortal time increases with duration of 
immortal time.13 

Conclusion

In this chapter, we have introduced many issues to 
consider in creating definitions for exposure when 
conducting CER using observational data. The 
operationalization of exposure should be guided 
by the clinical pathways/conceptual framework 
that motivate a CER question, knowledge of the 
characteristics of the exposure/intervention and 
outcome of interest, awareness of the level of 
detail on exposure in a dataset and of options 
for characterizing exposure, and deliberation 
over approaches to limit the potential for bias 
and measurement error. Below, we have created 
recommendations in the form of a checklist that 
encompasses many of the key considerations raised 
in this chapter to guide the operationalization of 
exposure. 
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Checklist: Guidance and key considerations for exposure determination and 
characterization in CER protocols

Guidance Key Considerations Check

Propose a definition of exposure that is 
consistent with the clinical/conceptual basis for 
the research question.

Consider the physiological effects of the exposure/
intervention when creating an operational definition 
of exposure. 
Determine the most suitable scale for the 
measurement of exposure.

o

Provide a rationale for exposure time window 
choice. 

For medications, consider factors such as dose, 
duration of treatment, pharmacodynamic/
pharmacokinetic properties such as half-life, and 
known or hypothesized biological mechanisms 
associated with the medication of interest.

o

Describe the proposed data source(s) and 
explain how they are adequate and appropriate 
for defining exposure.

o

Provide evidence of the validity of the 
operational definition of exposure with 
estimates of sensitivity, specificity, and positive 
predictive value, when possible.

If there are no validation studies to define 
the exposure of interest, utilize measures and 
definitions that have been most commonly reported 
in the literature to facilitate comparison of results.  
Alternative definitions could be developed and used 
in addition to a “commonly used” definition for 
exposure, particularly if there are reasons to suspect 
there may be more accurate definitions available.

o

Support choice for unit of analysis for exposure 
measurement, e.g., person-months of exposure, 
and discuss the tradeoffs for alternative units of 
measurement.

o

Address issues of differential and 
nondifferential bias related to exposure 
measurement  and propose strategies for 
reducing error and bias, where possible.

o
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Abstract

This chapter discusses considerations for comparator selection in observational comparative effectiveness 
research (CER). Comparison groups should reflect clinically meaningful choices in real world practice 
and be chosen based on the study question being addressed. Recognizing the implications and potential 
biases associated with comparator selection is necessary to ensure validity of study results; confounding 
by indication or severity and selection bias (e.g., healthy user bias) is particularly challenging, especially 
with comparators of different treatment modalities. Confounding by indication can be minimized by 
choosing a comparator that has the same indication, similar contraindications, and a similar treatment 
modality (when possible). In fact, comparing a treatment with a clinically meaningful alternative 
treatment within the same or a similar indication is the most common scenario in CER, and also typically 
the least biased possible comparison.When carefully planned, comparisons of different treatment types 
are possible with adequate study design, execution, and appropriate analytic methods. However, we note 
that certain comparisons or study questions may not be feasible or valid to be answered in observational 
CER studies due to potentially uncontrollable bias. Other aspects to consider when choosing a comparator 
include clearly defining the indication, initiation period, and exposure window for each group. The 
appropriate dose/intensity of each exposure should be as comparable as possible and nonadherence should 
be considered (although not necessarily adjusted for). This chapter concludes with guidance and key 
considerations for choosing a comparison group for an observational CER protocol or proposal.

Chapter 5. Comparator Selection
Soko Setoguchi, M.D., Dr.P.H. 

Duke Clinical Research Institute, Durham, NC

Tobias Gerhard, Ph.D. 
Rutgers University, New Brunswick, NJ

Introduction

In comparative effectiveness research (CER), the 
choice of comparator directly affects the validity 
of study results, clinical interpretations, and 
implications. When formulating a research question, 
therefore, careful attention to proper comparator 
selection is necessary. 

Treatment decisions are based on numerous factors 
associated with the underlying disease and its 
severity, general health status or frailty, quality of life, 
and patient preferences—a situation that leads to the 
potential for confounding by indication or severity 
and selection bias. Recognizing the implications 
and potential biases associated with comparator 
selection is critical for ensuring the internal validity 
of observational CER studies. The first section of this 
chapter, “Choosing the Comparison Group in CER,” 
begins by describing these biases, and discusses 
the potential for bias associated with different 

comparison groups (e.g., no intervention, usual care, 
historical controls, and comparison groups from other 
data sources). 

Defining the appropriate dose, intensity of treatment, 
and exposure window for each comparator group is 
also critical for ensuring the validity of observational 
CER.The second section of this chapter, 
“Operationalizing the Comparison Group in CER,” 
discusses these considerations for operationalizing 
comparison groups, and concludes with special 
considerations that apply to CER studies comparing 
different treatment modalities.

Choosing the Comparison 
Group in CER

Link to Study Question  

In CER, comparison groups should reflect clinically 
meaningful choices in real world practice. The 
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selection of comparison group(s) is thus directly 
linked to the study question being addressed. 
Importantly, some comparisons or study questions 
may not be feasible or valid to be answered 
in observational CER studies due to expected 
intractable bias or confounding.

Consequences of Comparator 
Choice

Confounding 

Confounding arises when a risk factor for the 
study outcome of interest (benefit or harm) 
directly or indirectly affects exposure (e.g., 
treatment assignment). Because clinicians 
routinely make treatment decisions based on 
numerous factors associated with the underlying 
disease and its severity, confounding by indication 
or severity poses a significant threat to the 
validity of observational CER (see chapter 2 
for a detailed discussion). It is therefore vital to 
appreciate the relationship between confounding 
and comparator choice. The existence and 
magnitude of confounding for any given pair of 
treatments and outcome is directly affected by 
the choice of the comparator. For example, when 
comparing the adverse metabolic consequences of 
individual antipsychotic medications in patients 
with schizophrenia or bipolar disorder, body mass 
index (BMI) is an important potential confounder 
because it is a strong and established risk factor 
for adverse metabolic outcomes such as type 2 
diabetes and plausibly affects the choice of agent. 
However, the expected magnitude of confounding 
by BMI strongly depends on the specific drugs 
under study. A comparison between aripiprazole, 
an antipsychotic agent with a relatively favorable 
metabolic safety profile, and olanzapine, an agent 
that exhibits substantial metabolic adverse effects, 
may be strongly confounded by BMI, as most 
clinicians will try to avoid olanzapine in patients 
with increased BMI. In contrast, a comparison 
between aripiprazole and another antipsychotic 
agent with less metabolic concerns than 
olanzapine, such as ziprasidone, may be subject to 
confounding by BMI but to a much lesser degree. 

The magnitude of potential confounding generally 
is expected to be smaller when the comparator 
(1) has the same indication, (2) has similar 
contraindications, (3) shares the same treatment 
modality (e.g., tablet or capsule), and (4) has 

similar adverse effects. Therefore, selection of a 
comparator of the same treatment modality (e.g., 
drug vs. drug) and same class within the modality 
(e.g., b-blocker) may result in less confounding 
than comparison across different treatment 
modalities or drug classes in general. However, 
many exceptions exist (e.g., the antipsychotic 
example above), and assessments should be made 
individually for each treatment comparison of 
interest. To understand the potential consequences 
of comparator choices on confounding, a 
thorough understanding of clinical practice, data 
sources, and methods is necessary. If suspected 
confounders are available in the data, investigators 
can empirically evaluate the extent that the 
distribution of these confounders differs between 
the exposure of interest and the comparator(s). 

Propensity score distribution plots by exposure 
status are particularly useful in this context 
because they allow simple evaluation of the 
joint differences of many potential confounders 
between treatments. Areas of nonoverlap between 
the propensity score distribution in the treatment 
and comparator group identify individuals who, 
based on their baseline characteristics, would 
either always or never be exposed to the treatment 
under study, and thus cannot be compared 
without potential for significant bias.1 If potential 
confounders are not available in the data, practical 
clinical insight and qualitative health services 
research should be used to form an impression of 
the expected magnitude of confounding for a given 
treatment comparator pair. Sensitivity analyses 
should then be used to quantify the effects of 
such unmeasured confounding under different 
sets of assumptions. (See chapter 11 for further 
discussion).2

While a thorough understanding of the impact 
of comparator choice on the expected magnitude 
of confounding is critical, the comparator choice 
should be primarily driven by a comparative 
effectiveness question that has been prioritized 
by the informational need of the stakeholder 
community. We do not advocate for minimizing 
confounding through a comparator choice that 
might change the original study question. A 
critical assessment of the expected magnitude of 
confounding for the comparison group of choice, 
however, should guide decisions of study design, 
particularly (1) the need to obtain additional 
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covariate information if confounding  is judged to 
be uncontrollable in the available data (despite use 
of advanced analytic methods, such as propensity 
scores and other approaches described further in 
chapter 10); and (2) the need for randomization 
if confounding is judged uncontrollable in any 
observational study design even with additional 
data collection (despite use of advanced analytic 
methods).

Misclassification

Misclassification is one of the major threats to 
validity in observational CER studies and is 
discussed in more detail in chapter 4 and chapter 
6. In the context of selecting comparison groups 
for CER, it is important to appreciate that exposure 
misclassification is often not binary but rather 
more complex, as each group (exposure and 
comparison group) typically represents an active 
treatment, and as nonuse of the exposure treatment 
does not imply use of the comparator treatment. 
For example, consider an epidemiologic study of 
the effect of treatment A (exposed) on outcome Y. 
If nonexposure to A is the comparison of interest, 
this category of exposure is directly dependent on 
exposure to A, as each subject is either exposed 
or unexposed to A. Therefore, misclassification 
of exposure A would affect the number of those 
identified as having A (exposure group) and 
those without A (comparison group). However, 
in a CER comparing the effects of drug A versus 
drug B, misclassification of exposure A would 
not necessarily affect the number of patients with 
drug B (comparison), as exposure to A is largely 
independent of exposure to B.  

In observational CER, the assessment of exposure 
misclassification has to be made for the exposure 
and comparison group independently, and it 
is important to recognize that the degree of 
misclassification can be different in the two groups, 
especially when the comparison groups come 
from different treatment modalities (e.g., drug vs. 
device). Generally, the more similar the treatment 
under study and the comparator are in terms of 
treatment modality and dosage form, the less likely 
it is that exposure or comparator misclassification 
is different. For example, there is little reason to 
expect that the degree of exposure misclassification 
would substantially differ between the comparison 
groups in a claims-based study comparing two 
oral pharmacologic treatments, as information on 

drug exposure is equally retrieved from pharmacy 
billing claims for both groups. However, in a 
comparison between an oral medication for chronic 
diseases and a long-term injectable, the degree of 
misclassification may be significantly larger for 
patients treated with the oral dosage form mainly 
due to the different way of administering the drugs 
(patient vs. physician) and sources of information 
(drug dispensing records vs. office visit records). 

Spectrum of Possible Comparisons 

Comparison interventions may include 
medications, procedures, medical and assistive 
devices and technologies, behavioral change 
strategies, and delivery systems. Under certain 
circumstances, no intervention, usual care, 
historical controls, or comparison groups from 
other data sources may be appropriate and justified 
for comparative effectiveness questions. It is again 
important to recognize that comparator choice is 
directly linked to the comparative effectiveness 
question under study. In this section, we will 
discuss methodological considerations for the 
choice of different comparison groups. 

Alternative Treatments 

Comparison of a treatment with a clinically 
meaningful alternative treatment within the 
same or a similar indication is the most common 
scenario in CER and also typically the least biased 
comparison. Multiple modalities and options 
are often available to treat or diagnose the same 
condition or indication. Therefore, in many clinical 
circumstances, “no treatment” or “no testing” may 
not meet usual standards of care, and comparisons 
with alternative treatment options may be more 
clinically meaningful and methodologically valid. 
Comparison with alternative treatment or testing 
within the same or similar indication is usually a 
better choice from a methodologic standpoint than 
comparison with an untreated/not tested group, as 
confounding by indication may be nonexistent or at 
least reduced in the former comparison. However, 
when different treatments or testing modalities are 
recommended for patients with varying levels of 
severity of the underlying condition, comparisons 
within the same indication may still result in 
confounding by severity when not adequately 
controlled through design or analysis.
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No Treatment

Comparison with no treatment or no testing may 
be appropriate in certain clinical situations. When 
a comparison with no treatment is a clinically 
appropriate question, researchers may define the 
no-treatment group as the absence of exposure 
or, alternatively, as the absence of exposure 
and use of an unrelated treatment (an active 
comparator) within the same source population. 
Active comparators are users of treatments 
that are not associated with indications for the 
exposure treatment and, importantly, have no 
effect on the outcome of interest (supported by 
available evidence).3 The goal of employing 
active comparators who are likely to have similar 
characteristics with the exposure treatment users 
is to remove or minimize bias due to unobserved 
or incompletely observed differences between 
treated and untreated patients. For example, 
in a study assessing the risk of cancer in statin 
use,4 users of glaucoma drugs (like statins, a 
preventive medication class less likely to be used 
in frail elderly patients5), were employed as an 
active comparison group with an aim to control 
for potential bias due to statin users’ being more 
health-seeking and more adherent to screening 
procedures and other recommendations than 
nonusers.3 While this approach is likely to have 
greater applicability to questions of safety than 
CER, it may warrant consideration in addressing 
some CER questions.

Another important consideration, when “no 
treatment” is appropriate as a comparison group, is 
how to select time zero for the no-treatment group. 
When an active comparison group is employed, 
the choice of time zero is naturally determined 
as the start of the active treatment. When a no-
treatment comparison group is selected, one way 
to choose time zero is to identify the day a health 
care professional made a no-treatment decision. 
This way, both cohorts will have a meaningful 
inception date for the start of exposure status 
and outcome identification. However, in many 
clinical scenarios, such a date may not exist, as no 
treatment is often considered for patients in early 
stage of disease progression. Additionally, even if 
such a date exists, it may be difficult to identify 
in the available data. A second way to handle this 
is to allow a different time zero for the treatment 
and no-treatment groups (time-varying exposure 

status), and to carefully consider allocation of 
person-time to avoid immortal person-time bias.6 
In a third design strategy, it is possible to align the 
person-time and events appropriately by a choice of 
time scale in a Cox proportional hazard regression.7 
Researchers should realize that the choice of time 
zero in a no-treatment comparison group can 
induce bias, and careful considerations are needed 
to select clinically appropriate time zero and/or 
to avoid immortal person-time bias, as choice for 
no treatment is often related to disease stage and 
progression and therefore outcomes.

Usual or Standard Care

When a new treatment or testing modality becomes 
available, patients and health care providers 
may ask a question about the effectiveness of 
the new treatment when added to the usual or 
standard care. While this question is legitimate 
and important, operationalizing the question into 
an answerable research question requires a clear 
definition of “usual or standard care,” including a 
valid operational definition of when usual care was 
initiated. The standard care could be no treatment 
or no testing, a single treatment or testing, or a set 
of existing treatment or testing modalities. In the 
real world, patients are self-selected or selected by 
their physicians into various treatments for reasons 
(disease severity, contraindications, socioeconomic 
status, overall prognosis, comorbidities, anticipation 
of adverse events, quality of life issues, coverage 
design, and provider preference) that are often 
associated with the outcomes. As the first step, 
researchers may have to describe and recognize 
the diversity in the existing treatment regimens or 
testing modalities in usual care. Then, a thorough 
understanding of how treatment selection is made 
in the real world is necessary for accurate definition 
and operationalization of “usual or standard 
care.” Note that standards of care may vary across 
geographic regions and treatment settings, or may 
change over time. It is important to recognize that 
a “waste basket definition” of “usual or standard 
care” (any users of any existing treatments) 
should be avoided for the reasons mentioned 
above. Lastly, it is important to recognize that 
comparisons may be impossible when suspected 
or observed differences between the exposure and 
comparison groups are associated with the outcome 
of interest and cannot be adequately adjusted for 
and controlled through study design or analytic 
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approaches (i.e., in situations with intractable 
confounding). 

Historical Comparison

A historical comparison group may seem to be a 
natural choice when there is a dramatic shift from 
one treatment to another (e.g., rapid diffusion of 
a new treatment in practice, or sudden change in 
treatment utilization due to evidence or practice 
changes). It may also be the only choice when 
there is such strong selection for the new treatment 
that it is uncontrollable even with rigorous methods 
and randomization, is unethical, or is not realistic 
for other reasons. However, in any situation, the 
use of a historical control needs to be justified after 
considering associated methodological issues. 

Historical comparison groups will still be 
vulnerable to confounding by indication or severity 
when information on indication or severity is 
unmeasured. To overcome this limitation, an 
instrumental variable (IV) analysis using calendar 
time as an instrument has been applied.8-11 
Even in analyses using calendar time as an IV, 
confounding by indication may still arise if time is 
associated with severity and outcomes of interest. 
When historical comparison groups are used, any 
changes in the severity or operational definitions 
of the target condition as well as changes in 
outcome rates or outcome definitions over time 
could introduce bias into the analyses and must 
be adequately controlled. If these time-varying 
factors are not controllable, the use of a historical 
comparison group cannot be justified. 

Comparison Groups From Different Data Sources

Situations may arise when the desired comparison 
groups are not available within the same data 
sources as the exposure groups. Multiple data 
sources can be linked to enhance the validity 
of observational comparative effectiveness and 
safety studies.12-14 Registries have been linked 
to other data sources (e.g., Medicare data, HMO 
administrative data) to identify long-term clinical 
outcomes.12-13 Although device or drug registries 
may provide detailed data on the use of drugs, 
biologics, and devices and on the severity of 
underlying disease and related comorbidities, 
registries are often limited to one product or a 
class of product, and therefore may not contain 
information on the comparison group of interest. 

In this situation, other existing disease, drug, or 
device registries have been considered to identify 
comparison groups.13-14 Suppose, for example, 
that researchers linked a registry for a device and 
a separate clinical registry for the target condition 
to Medicare data to identify the exposure and 
comparison group within Medicare-linked patients. 
In this study, both exposure and comparison groups 
are obtained from the same source population 
(Medicare); however, sampling of each group may 
be different, as each registry may have collected 
data through a different mechanism. 

At least two potential issues need to be considered 
when using comparison groups from different 
databases: (1) residual confounding and (2) 
generalizability (a concept related to target 
populations). Residual confounding could arise 
in comparisons across different data sources for 
two reasons. First, residual confounding might 
occur due to incomparability of information in 
exposure and comparison groups. It is common 
that information about the patient, exposure or 
comparison treatment, and/or outcome is collected 
differently across different databases, and therefore 
is not comparable between the exposed group 
and comparison group. This noncomparability of 
available information for confounder adjustment 
may lead to increased residual confounding 
when common variables available across the 
databases are limited. Second, increased residual 
confounding is also possible because exposed 
patients and comparison patients may be different 
in observed and unobserved domains because 
they are sampled differently or because they 
may come from a different source population.15 
In the previous example of a study using two 
registries linked to Medicare, it is possible that two 
groups are different with respect to demographic 
characteristics and/or geographic regions even 
though they are all Medicare patients. Because 
many factors associated with socioeconomic status 
that might be associated with treatment choice and 
outcomes are unmeasured, comparisons across 
different databases could cause increased residual 
confounding. The problem may be minimized 
by adequate consideration of hospital clusters 
and with attempts to control for surrogates for 
socioeconomic status.
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A separate issue of generalizability could arise 
as estimation of a causal effect in observational 
studies or trials necessitates a target population16,17 
and many methods of adjusting for confounding 
such as standardization and inverse-probability-
of-treatment-weighting are based on the idea of 
estimating average treatment effect in a target 
population.18-19 Describing a finite population 
that the effect estimates would be computed for 
and apply to may be challenging when exposure 
groups and comparison groups come from 
different databases. In the previous example 
study of device and clinical registries linked to 
Medicare, the finite target population could be 
defined as Medicare patients. However, when 
each registry is not a random sample of Medicare 
patients but selects a very different sample, the 
generalizability of the findings from the study 
(assuming that residual confounding is taken care 
of) could be complex to understand. When using 
comparison groups from multiple databases, 
researchers need to clearly describe the methods 
and consider and discuss the issues outlined here 
to increase the validity and interpretability of their 
findings. 

Operationalizing the 
Comparison Group in CER 

A number of important considerations 
regarding the definition, measurement, and 
operationalization of exposure are discussed 
in chapter 4, and apply equally to the 
operationalization of comparator group(s). Below, 
we discuss issues that specifically affect the 
operationalization of the comparator(s). 

Indication 

As discussed, the overriding consideration that 
should guide comparator choice is the generation 
of evidence that directly informs decisions on 
treatments, testing, or health care delivery systems 
as defined in the study question. Thus, another 
treatment used for the same indication as the 
exposure treatment will typically be used as the 
comparison group for assessing comparative 
effectiveness. When a treatment and a comparison 
treatment have a single and specific indication, 
such as insulin and glitazones for diabetes, and are 
not commonly used off-label for other conditions, 

the indication may simply be inferred by the 
initiation of the treatment. However, because many 
treatments, particularly drugs, are approved for 
and/or clinically used to treat multiple indications, 
the appropriate indication will often have to be 
ensured by defining the indication and restricting 
the study population. Defining the indication 
typically involves requirement for the presence 
of certain diagnoses, the absence of diagnoses 
for alternative indications, or a combination of 
both,20 but also depends on how the comparative 
effectiveness question was formulated, that 
is, what the target population is and whether 
the population is defined by indications and 
contraindications. It is important to recognize that 
restriction of the study population to patients with 
the same indication does not necessarily remove 
confounding by severity.21

For clinical effectiveness or safety questions, 
nonusers or users of other treatments (active 
comparators) with different indications may be 
considered as comparison groups. For nonuser 
comparisons, restriction of nonusers to those with 
similar indications is advisable. However, such 
restriction is unlikely to fully address healthy user 
bias, and randomization may be necessary to study 
such clinical effectiveness questions.22 Active 
comparators, as explained in the previous section, 
are generally more appropriate, particularly for 
safety questions, and their use may reduce or 
eliminate healthy user bias. 

Initiation

There are well-recognized advantages in studying 
new initiators of treatments, which is why the 
new user design is considered the gold standard 
in pharmacoepidemiology.23 Specifically, a new 
user design prevents under-ascertainment of 
early events and avoids problems arising from 
confounders that may be affected by treatment 
in prevalent users.23 It also prevents bias arising 
from prevalent users being long-term adherers 
who may also follow other healthy behaviors.4, 24 
See chapter 2 for a complete discussion of the new 
user design.

Inclusion of prevalent users may be justified, 
however, when outcomes of interest are extremely 
rare or occur after long periods of use, so that a 
new user design may not be feasible. The benefits 
and potential bias arising from the inclusion 
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of prevalent users should be carefully weighed, 
and the evidence generated by the design may 
be considered hypothesis generating rather than 
hypothesis testing. Comparisons between incident 
and prevalent users should be avoided. As for the 
exposure of interest, introduction of immortal 
time through incorrect classification of person-
time has to be avoided for both the exposure and 
comparison group.6

Exposure Time Window 

As discussed in chapter 4, each exposure group 
requires the definition of an exposure-time 
window that corresponds to the period where 
therapeutic benefit and/or risk would plausibly 
occur, and that could substantially differ from the 
actual exposure to the treatment.25 Importantly, 
this exposure window can differ between the 
exposure of interest and the comparator(s), and 
the determination of the appropriate time window 
should be made individually for each group based 
on the pharmacologic or therapeutic profile of the 
intervention. Time-to-event analyses including Cox 
proportional hazard regression may be appropriate 
when comparing two treatments with expected 
differences in the timing of beneficial or safety 
outcomes. 

In situations where there is uncertainty regarding 
the appropriate duration of the exposure 
window(s), sensitivity analyses should be 
performed to assess whether results are sensitive to 
different specifications of the exposure window(s). 
In addition, performing both an as-treated analysis 
(where patients are censored at the end of the 
exposure-time window) as well as an intention-
to-treat (ITT, i.e., first-exposure-carried-forward 
analysis) may help understand the impact of 
nonadherence, misclassification, and censoring 
on the observed results. However, it is important 
to recognize that the utility of ITT analyses are 
generally limited when assessing long-term effects. 
Conversely, as-treated analyses could cause bias 
due to informative censoring (when stopping 
is associated with the outcome of interest), 
so methods to model and address informative 
censoring should be considered.26 Comparisons 
between implantable devices and drug treatments 
present a special case of ITT analysis, as the “as 
treated” and ITT specifications will result in very 
similar exposure durations for devices (because 

of the inability to discontinue an implantable 
device other than in cases of device failure/
removal), but may result in dramatically different 
exposure durations for drug treatments with high 
discontinuation rates; this must be taken into 
account when determining the followup periods 
that should be included in study analyses for both 
comparators. 

Nonadherence

Nonadherence to prescribed medications is 
common and a recognized problem for the health 
care system. Nonadherence may be different 
between treatment and comparator(s) due to 
differences in complexity of dosing regimens, side 
effect profiles, and patient preferences. Because 
CER aims to compare benefits and harms of 
different interventions in real-world conditions, 
treatment effects should be compared at adherence 
levels observed in clinical practice rather than 
adjusting for the difference in adherence. When 
adherence to a comparator is lower than adherence 
to the exposure treatment of interest and both 
treatments have similar benefits when used as 
prescribed, the benefit of the exposure treatment 
will be superior due to better adherence. Since the 
aim of the study is estimation of drug effects in 
real world situation and patients, the results are 
valid. However, it is important to report adherence 
measures for each of the treatments as part of the 
study results so that findings can be interpreted 
under appropriate consideration of the observed 
adherence patterns. Requiring run-in periods to 
assure that adherence is satisfactory and more 
equal across groups27 may be problematic because 
such practice could introduce immortal time bias 
(if the run-in period is included in the analysis) or 
be unable to estimate effects in the early phase of 
treatment (if the run-in period is excluded from 
analysis).  

Dose/Intensity of Drug Comparison  

After the study population has been defined 
and exposure and comparison groups have been 
chosen, it is important to appreciate the effects of 
dose on outcomes. When there is a dose effect on 
the outcome of interest, the dose of the exposure 
and comparison drug(s) will drive the direction and 
the magnitude of effects. A lower-dose comparison 
drug may make the study drug look more effective, 
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while a higher-dose comparison drug may make the 
study drug look safer. Therefore, researchers first 
should assess and report the dose in each group. 
When appropriate and possible, comparisons 
should be made for exposure and comparison 
group at various clinically equivalent dose levels. It 
is important to recognize that comparisons between 
different dose levels may potentially result in 
confounding by severity, as higher doses are likely 
to be given to patients with more severe disease.

Considerations for Comparisons 
Across Different Treatment 
Modalities

Many principles in the previous sections are 
discussed primarily in the context of medications. 
In this section we focus specifically on the  
important methodological issues for comparisons 
across different treatment modalities. 

Confounding by Indication or Severity

For some conditions, drugs may be used for 
patients with a milder disease, and surgery may 
be reserved for those with more severe disease. In 
many circumstances, a step-wise approach to treat 
a condition may be recommended or practiced 
(e.g., consider a surgery if a drug treatment failed). 
For other diseases like cancer, early-stage disease 
may be treated with surgical procedures, whereas 
more advanced disease may be treated with 
chemotherapy and/or radiation or combinations 
of multiple modalities. Although not different 
from within-drug or within-procedure/surgery 
comparisons, understanding the recommendations 
from guidelines and standards of practice is 
necessary to assess the direction and magnitude 
of potential confounding by indication or severity 
when comparing across different treatment 
modalities. 

Selection of Healthier Patients into More Invasive 
Treatments 

While invasiveness of surgeries and procedures 
varies, they typically pose short-term risks in 
exchange for long-term benefits. Therefore, 
patients who are not in good general condition due 
to severe target disease or comorbidities are less 
likely to be considered for invasive procedures. 
This potential bias due to selection of healthier 
patients into more invasive treatment is more 
problematic in comparisons across different 

treatment modalities, especially when indications 
and severity are not adequately accounted for in 
the selection of exposure and comparison groups. 
Being selected for surgeries or procedures may be 
a surrogate for better general conditions, including 
having less severe disease and comorbid conditions 
as well as better functional and psychological well-
being. Furthermore, surgery/procedures are more 
expensive and typically offered through specialists’ 
care. Therefore, selection of wealthier and more 
health-seeking patients into surgery/procedures 
may be expected.

The direction of bias may be unpredictable 
when both confounding by indication/severity 
and healthy user bias come into play. In general, 
controlling for healthy user bias  is challenging 
and may only be achieved in observational 
studies when information on health behaviors or 
their surrogates are available in all or a subset of 
patients, or a good instrument exists to allow a 
valid instrumental variable analysis. Sensitivity 
analyses assessing the impact of healthy user 
bias is necessary and more research is needed to 
understand factors associated with the selection 
of patients into surgery/procedures to understand 
the magnitude of potential healthy user bias in the 
device-drug comparison settings. 

Time from Disease Onset to a Treatment

If not appropriately accounted for, lag times 
between date of initial diagnosis and date of 
treatment may create bias in studies assessing 
comparative or clinical effectiveness. For example, 
when assessing comparative survival after heart 
transplantation, there is a waiting time between 
referral to surgery and receipt of transplantation.28 
Currently, most patients are treated with (or 
bridged by) left ventricular assist devices (LVAD). 
Comparing the survival after LVAD to that after 
transplantation will be biased (i.e., immortal 
time bias) if researchers fail to take the sequence 
of these treatments into account and adequately 
allocate person-time on the first treatment (LVAD). 

Another pertinent example of immortal person-
time bias in clinical effectiveness research is 
the comparison of survival for responders and 
nonresponders to chemotherapy.29 As responders to 
chemotherapy have to survive through the period 
of responding to chemotherapy to be identified 
as responders, this comparison will suffer from 
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“time-to-response” or immortal person-time 
bias if not adequately controlled.29 This problem 
has recently been described by Suissa using 
pharmacoepidemiological examples.The same 
problem arises with even greater magnitude when 
a medical treatment is compared to a surgical 
treatment and patients are treated with the medical 
treatment prior to being referred to the surgery if 
surgery is considered for more advanced disease 
(or vice versa). Careful attention to the time from 
initial diagnosis and general sequence of different 
treatment modalities is needed to prevent immortal 
person-time bias. 

Different Magnitude of Misclassification in Drug 
Exposure Versus Procedure Comparison

Assessment of drug exposure in existing 
data sources always requires assumptions, as 
longitudinal records that measure patients’ 
actual intake of medications are not available 
in large databases. Pharmacy records in many 
administrative databases for government or 
commercial insurance agencies are considered 
the “gold standard” in pharmacoepidemiology as 
they capture longitudinal pharmacy dispensing in 
a large number of subjects. However, pharmacy 
dispensing does not provide information on 
the actual intake of medications by patients, 
and most drug exposure is chronic rather than 
acute. Therefore, defining drug exposure using 
dispensing data requires certain assumptions 
and some degree of exposure misclassification is 
always expected. On the other hand, assessment 
of exposure to surgery or procedure (especially 
major procedures that are well reimbursed or 
clinically important) is more straightforward, and 
their identification is likely to be less affected by 
misclassification as these one-time or acute major 
clinical events are usually accurately recorded 
in administrative databases or registries. When 
comparing drug exposures with surgeries or 
procedures, researchers need to recognize that 
misclassification is likely not comparable in both 
groups, and they need to assess how this potential 
misclassification affects their results.

Provider Effects in Devices or Surgeries

Characteristics of the operating physician and 
institution where the device implantation or 
surgery was carried out are important factors 
to consider when evaluating the comparative 

effectiveness of medical devices or surgeries. 
Certain physician and institutional characteristics 
such as experience and specialty are known 
to affect outcomes, particularly during the 
periprocedural period. A direct relationship 
between level of physician experience and 
better patient outcomes has been documented 
for technically complex procedures and 
implantations like angioplasty, stenting, and 
various surgeries.30-33 A relationship between 
larger hospital volume and favorable patient 
outcomes for a variety of procedures is also well 
documented.31-32, 34-38 While these factors are 
more likely to behave as confounders than as effect 
measure modifiers, stratification must first be 
carried out to inform decisions on how to handle 
these factors.Therefore, it is necessary to be able 
to identify physicians and institutes for a device 
implantation or surgery and characteristics such 
as volume of procedures that are known to affect 
outcomes. In addition, exploring physician effects 
in the study population to account for provider 
effects is necessary to conduct valid comparisons 
including devices or surgeries.

Adherence to Drugs and Device Failure or 
Removal

Patients who are on medications could have 
various degrees of adherence, from completely 
stopping, skipping doses, to taking medications as 
prescribed. Measuring adherence is not impossible 
but requires assumptions in most data sources. 
On the other hand, implantable devices or surgical 
procedures do not generally have adherence issues 
unless there is a device failure or a complication 
that requires device removal. For most implantable 
devices, removal is a major procedure and 
therefore likely to be captured accurately. However, 
a unique problem could arise for devices with a 
function to be turned off (without being removed). 
How to take adherence and device failure or 
removal into account depends on the goal of each 
study and how the researchers define effectiveness. 
If the goal is to assess effectiveness in real-
world patients and practice where nonadherence 
is common and some degree of device failure 
or removal is expected, simply comparing 
two different modalities without adjusting for 
adherence or device failure should be appropriate. 
It is recommended that both adherence and device 
failure rates are assessed and reported. However, if 
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the goal is to compare the conditional effectiveness 
assuming perfect adherence or no device failure, 
the question should be clearly stated and the 
appropriate design and/or method for adjustment 
needs to be employed. 

Conclusion

Understanding the impact of comparator choice 
on study design is important when conducting 
observational CER. While this choice affects the 
potential for and magnitude of confounding and 
other types of bias, the selection of a comparator 

group should be primarily driven by a comparative 
effectiveness question that has been prioritized 
by the informational need of the stakeholder 
community. The overriding consideration that 
should guide comparator choice is the generation 
of evidence that directly informs decisions on 
treatments, testing, or health care delivery systems 
as defined by the study question. Researchers 
engaged in observational CER need to keep in 
mind that there may be questions (comparisons) 
not validly answered due to intractable bias in 
observational CER. 

Checklist: Guidance and key considerations for comparator selection for an 
observational CER protocol 

Guidance Key Considerations Check

Choose concurrent, active comparators 
from the same source population (or justify 
use of no-treatment comparisons/historical 
comparators/ different data sources).

-  Comparator choice should be primarily driven by  
   a comparative effectiveness question prioritized by  
   informational needs of the stakeholder community  
   and secondarily as a strategy to minimize bias.

o

Discuss potential bias associated with 
comparator choice and methods to minimize 
such bias, when possible.

-  Be sure to also describe how study design/analytic  
   methods will be used to minimize bias. o

Define time zero for all comparator groups 
in describing planned analyses.

-  Choice of time zero, particularly in no-treatment  
   or usual care, should be carefully considered in  
   light of potential immortal person-time bias and  
   prevalent user bias. 
-  Employ a new user design as a default, if possible. 

o
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Abstract

This chapter provides an overview of considerations for the development of outcome measures 
for observational comparative effectiveness research (CER) studies, describes implications of the 
proposed outcomes for study design, and enumerates issues of bias that may arise in incorporating the 
ascertainment of outcomes into observational research, and means of evaluating, preventing and/or 
reducing these biases. Development of clear and objective outcome definitions that correspond to the 
nature of the hypothesized treatment effect and address the research questions of interest, along with 
validation of outcomes or use of standardized patient reported outcome (PRO) instruments validated 
for the population of interest, contribute to the internal validity of observational CER studies. Attention 
to collection of outcome data in an equivalent manner across treatment comparison groups is also 
required. Use of appropriate analytic methods suitable to the outcome measure and sensitivity analysis to 
address varying definitions of at least the primary study outcomes are needed to draw robust and reliable 
inferences. The chapter concludes with a checklist of guidance and key considerations for outcome 
determination and definitions for observational CER protocols.
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Introduction

The selection of outcomes to include in observational 
comparative effectiveness research (CER) studies 
involves the consideration of multiple stakeholder 
viewpoints (provider, patient, payer, regulatory, 
industry, academic and societal) and the intended 
use for decisionmaking of resulting evidence. It is 
also dependent on the level of funding and scope 
of the study. These studies may focus on clinical 
outcomes, such as recurrence-free survival from 
cancer or coronary heart disease mortality; general 
health-related quality of life measures, such as the 
EQ-5D and the SF-36; or disease-specific scales, 
like the uterine fibroid symptom and quality of 
life questionnaire (UFS-QOL); and/or health 
resource utilization or cost measures. As with other 
experimental and observational research studies, 
the hypotheses or study questions of interest must 
be translated to one or more specific outcomes with 
clear definitions.

The choice of outcomes to include in a CER 
study will in turn drive other important design 
considerations such as the data source(s) from which 
the required information can be obtained (see chapter 
8), the frequency and length of followup assessments 
to be included in the study following initial treatment, 
and the sample size, which is influenced by the 
expected frequency of the outcome in addition to the 
magnitude of relative treatment effects and scale of 
measurement.

In this chapter, we provide an overview of types of 
outcomes (with emphasis on those most relevant 
to observational CER studies); considerations 
in defining outcomes; the process of outcome 
ascertainment, measurement and validation; design 
and analysis considerations; and means to evaluate 
and address bias that may arise.
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Conceptual Models of Health 
Outcomes

In considering the range of health outcomes 
that may be of interest to patients, health care 
providers, and other decisionmakers, key areas of 
focus are medical conditions, impact on health-
related or general quality of life, and resource 
utilization. To address the interrelationships of 
these outcomes, some conceptual models have 
been put forth by researchers with a particular 
focus on health outcomes studies. Two such 
models are described here. 

Wilson and Cleary proposed a conceptual model 
or taxonomy integrating concepts of biomedical 
patient outcomes and measures of health-related 
quality of life. The taxonomy is divided into 
five levels: biological and physiological factors, 
symptoms, functioning, general health perceptions, 
and overall quality of life.1 The authors discuss 
causal relationships between traditional clinical 
variables and measures of quality of life that 
address the complex interactions of biological and 
societal factors on health status, as summarized in 
Table 6.1.  

Table 6.1. Wilson and Cleary’s taxonomy of biomedical and health-related 
quality of life outcomes

Level
Health Concepts 
Represented Relationship With Preceding Level(s)

Biological and 
physiological factors

Genetic and molecular 
factors

Symptoms Physical, psychosocial, 
emotional, and psychological 
symptoms

Relationships are complex. Symptoms may or may not 
be associated with biological or physiological factors 
(and vice versa).

Functional status Physical, social, role, 
psychological, and other 
domains of functioning

Symptoms and biological and physiological factors 
are correlated with functional status, but may not 
completely explain variations. Other patient-specific 
factors (e.g., personality, social environment) are also 
important determinants.

General health 
perceptions

Subjective rating of general 
health

Integrates all health concepts in the preceding levels; 
one of the best predictors of use of general medical and 
mental health services. 

Overall quality of life Summary measure of quality 
of life

Although all preceding levels contribute to overall 
quality of life, general measures may not be strongly 
correlated with objective life circumstances, as 
individuals may adjust expectations/goals with 
changing circumstances.

An alternative model, the ECHO (Economic, 
Clinical, Humanistic Outcomes) Model, was 
developed for planning health outcomes and 
pharmacoeconomic studies, and goes a step 
further than the Wilson and Cleary model in 
incorporating costs and economic outcomes and 

their interrelationships with clinical and humanistic 
outcomes (Figure 6.1).2 The ECHO model does 
not explicitly incorporate characteristics of the 
patient as an individual or psychosocial factors to 
the extent that the Wilson and Cleary model does, 
however.
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Figure 6.1. The ECHO model
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Humanistic 
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See Kozma CM, Reeder CE, Schultz RM. Economic, clinical, and humanistic outcomes: a planning model for 
pharmacoeconomic research. Clin Ther. 1993;15(6):1121-32. This figure is copyrighted by Elsevier Inc. and reprinted 
with permission.

As suggested by the complex interrelationships 
between different levels and types of health 
outcomes, different terminology and classifications 
may be used, and there are areas of overlap between 
the major categories of outcomes important to 
patients.  In this chapter, we will discuss outcomes 
according to the broad categories of clinical, 
humanistic, and economic and utilization outcome 
measures.

Outcome Measurement 
Properties

The properties of outcome measures that are an 
integral part of an investigator’s evaluation and 
selection of appropriate measures include reliability, 
validity, and variability. Reliability is the degree to 
which a score or other measure remains unchanged 
upon test and retest (when no change is expected), 
or across different interviewers or assessors. It is 
measured by statistics including kappa, and the 
inter- or intra-class correlation coefficient. Validity, 

broadly speaking, is the degree to which a measure 
assesses what it is intended to measure, and types 
of validity include face validity (the degree to 
which  users or experts perceive that a measure 
is assessing what it is intended to measure), 
content validity (the extent to which a measure 
accurately and comprehensively measures what 
it is intended to measure), and construct validity 
(the degree to which an instrument accurately 
measures a nonphysical attribute or construct such 
as depression or anxiety, which is itself a means of 
summarizing or explaining different aspects of the 
entity being measured).3 Variability usually refers 
to the distribution of values associated with an 
outcome measure in the population of interest, with 
a broader distribution or range of values said to 
show more variability.

Responsiveness is another property usually 
discussed in the context of patient-reported 
outcomes (PROs) but extendable to other measures, 
representing the ability of a measure to detect 
change in an individual over time.
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These measurement properties may affect the 
degree of measurement error or misclassification 
that an outcome measure is subject to, with the 
consideration that the properties themselves are 
specific to the population and setting in which the 
measures are used. Issues of misclassification and 
considerations in reducing this type of error are 
discussed further in the section on “avoidance of 
bias in study design.”

Clinical Outcomes

Clinical outcomes are perhaps the most common 
category of outcome to be considered in CER 
studies. Medical treatments are developed and 
must demonstrate efficacy in preapproval clinical 
trials to prevent the occurrence of undesirable 
outcomes such as coronary events, osteoporosis, 
or death; to delay disease progression such as in 
rheumatoid arthritis; to hasten recovery or improve 
survival from disease, such as in cancer or H5N1 
influenza; or to manage or reduce the burden of 
chronic diseases including diabetes, psoriasis, 
Parkinson’s disease, and depression. Postapproval 
observational CER studies are often needed to 
compare newer treatments against the standard 
of care; to obtain real-world data on effectiveness 
as treatments are used in different medical care 
settings and broader patient populations than 
those studied in clinical trials; and to increase 
understanding of the relative benefits and risks of 
treatments by weighing quality of life, cost, and 
safety outcomes alongside clinical benefits. For 
observational studies, this category of outcome 
generally focuses on clinically meaningful 
outcomes such as time between disease flares; 
number of swollen, inflamed joints; or myocardial 
infarction. Feasibility considerations sometimes 
dictate the use of intermediate endpoints, which 
are discussed in further detail later in the chapter.

Definitions of Clinical Outcomes

Temporal Aspects

The nature of the disease state to be treated, 
the mechanism, and the intended effect of the 
treatment under study determine whether the 
clinical outcomes to be identified are incident (a 
first or new diagnosis of the condition of interest), 
prevalent (existing disease), or recurrent (new 
occurrence or exacerbation of disease in a patient 

who has a previous diagnosis of that condition). 
The disease of interest may be chronic (a long-
term or permanent condition), acute (a condition 
with a clearly identifiable and rapid onset), 
transient (a condition that comes and goes), or 
episodic (a condition that comes and goes in 
episodes), or have more than one of these aspects.

Subjective Versus Objective Assessments

Most clinical outcomes involve a diagnosis or 
assessment by a health care provider. These may 
be recorded in a patient’s medical record as part of 
routine care, coded as part of an electronic health 
record (EHR) or administrative billing system 
using coding systems such as ICD-9 or ICD-10, or 
collected specifically for a given study.

While there are varying degrees of subjectivity 
involved in most assessments by health care 
providers, objective measures are those that 
are not subject to a large degree of individual 
interpretation, and are likely to be reliably 
measured across patients in a study, by different 
health care providers, and over time. Laboratory 
tests may be considered objective measures in 
most cases and can be incorporated as part of a 
standard outcome definition to be used for a study 
when appropriate. Some clinical outcomes, such 
as all-cause mortality, can be ascertained directly 
and may be more reliable than measures that are 
subject to interpretation by individual health care 
providers, such as angina or depression.

Instruments have been developed to help 
standardize the assessment of some conditions 
for which a subjective clinical assessment might 
introduce unwanted variability. Consider the 
example of a study of a new psoriasis treatment. 
Psoriasis is a chronic skin condition that causes 
lesions affecting varying amounts of body surface 
area, with varying degrees of severity. While a 
physician may be able to assess improvement 
within an individual patient, a quantifiable 
measure that would be reproducible across patients 
and raters improves the information value of 
comparative trials and observational studies of 
psoriasis treatment effectiveness. An outcome 
assessment that relies on purely subjective 
assessments of improvement such as, “Has the 
patient’s condition improved a lot, a little, or not at 
all?” is vulnerable to measurement error that arises 
from subjective judgments or disagreement among 
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clinicians about what comprises the individual 
categories and how to rate them, often resulting in 
low reproducibility or inter-rater reliability of the 
measure. In the psoriasis example, an improved 
measure of the outcome would be a standardized 
assessment of the severity and extent of disease 
expressed as percentage of affected body surface 
area, such as the Psoriasis Area Severity Index 
or PASI Score.4 The PASI score requires rating 
the severity of target symptoms [erythema (E), 
infiltration (I), and desquamation (D)] and area of 
psoriatic involvement (A) for each of four main 
body areas [head (h), trunk (t), upper extremities 
(e), lower extremities (l)]. Target symptom 
severity is rated on a 0–4 scale; area of psoriatic 
involvement is rated on a 0–6 scale, with each 
numerical value representing a percentage of area 
involvement.4 The final calculated score ranges 
from 0 (no disease) to 72 (severe disease), with 
the score contribution of each body area weighted 
by its percentage of total body area (10, 20, 30, 
and 40% of body area for head, upper extremities, 
trunk, and lower extremities, respectively).4 
Compared with subjective clinician assessment of 
overall performance, using changes in the PASI 
score increases reproducibility and comparability 
across studies that use the score.  

Relatedly, the U.S. Food and Drug Administration 
(FDA) has provided input on types of Clinical 
Outcome Assessments (COAs) that may be 
considered for qualification for use in clinical 
trials, with the goals of increasing the reliability 
of such assessments within a specific context 
of use in drug development and regulatory 
decisionmaking to measure a specific concept with 
a specific interpretation. Contextual considerations 
include the specific disease of interest, target 
population, clinical trial design and objectives, 
regionality, and mode of administration. The types 
of COAs described are:5

Patient-reported outcome (PRO) assessment: 
A measurement based on a report that 
comes directly from the patient (i.e., the 
study subject) about the status of particular 
aspects of or events related to a patient’s 
health condition. PROs are recorded without 
amendment or interpretation of the patient’s 
response by a clinician or other observer. A 
PRO measurement can be recorded by the 
patient directly, or recorded by an interviewer, 

provided that the interviewer records the 
patient’s response exactly.

Observer-reported outcome (ObsRO) 
assessment: An assessment that is determined 
by an observer who does not have a 
background of professional training that is 
relevant to the measurement being made, i.e., 
a nonclinician observer such as a teacher or 
caregiver. This type of assessment is often 
used when the patient is unable to self-report 
(e.g., infants, young children). An ObsRO 
assessment should only be used in the 
reporting of observable concepts (e.g., signs or 
behaviors); ObsROs cannot be validly used to 
directly assess symptoms (e.g., pain) or other 
unobservable concepts.

Clinician-reported outcome (ClinRO) 
assessment: An assessment that is determined 
by an observer with some recognized 
professional training that is relevant to the 
measurement being made.

Other considerations related to use of PROs for 
measurement of health-related quality of life 
and other concepts are addressed later on in this 
chapter.

Composite Endpoints

Some clinical outcomes are composed of a 
series of items, and are referred to as composite 
endpoints. A composite endpoint is often used 
when the individual events included in the 
score are rare, and/or when it makes biological 
and clinical sense to group them. The study 
power for a given sample size may be increased 
when such composite measures are used as 
compared with individual outcomes, since by 
grouping numerous types of events into a larger 
category, the composite endpoint will occur more 
frequently than any of the individual components. 
As desirable as this can be from a statistical 
point of view, challenges include interpretation 
of composite outcomes that incorporate both 
safety and effectiveness, and broader adoption 
of reproducible definitions that will enhance 
cross-study comparisons. For example, Kip and 
colleagues6 point out that there is no standard 
definition for MACE (major adverse cardiac 
events), a commonly used outcome in clinical 
cardiology research. They conducted analyses 
to demonstrate that varying definitions of 
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composite endpoints, such as MACE, can lead 
to substantially different results and conclusions. 
The investigators utilized the DEScover registry 
patient population, a prospective observational 
registry of drug-eluting stent (DES) users, to 
evaluate differences in 1-year risk for three 
definitions of MACE in comparisons of patients 
with and without myocardial infarction (MI), and 
patients with multi-lesion stenting versus single-
lesion stenting (also referred to as percutaneous 
coronary intervention or PCI). The varying 
definitions of MACE included one related to 
safety only [composite of death, MI, and stent 
thrombosis (ST)], and two relating to both safety 
and effectiveness [composite of death, MI, ST, 
and either (1) target vessel revascularization 
(TVR) or (2) any repeat vascularization].  When 
comparing patients with and without acute MI, the 
three definitions of MACE yielded very different 
hazard ratios. The safety-only definition of MACE 
yielded a hazard ratio of 1.75 (p<0.05), indicating 
that patients with acute MI were at greater risk 
of 1-year MACE. However, for the composite 
of safety and effectiveness endpoints, the risk 
of 1-year MACE was greatly attenuated and no 
longer statistically significant. Additionally, when 
comparing patients with single versus multiple 
lesions treated with PCI, the three definitions 
also yielded different results; while the safety-
only composite endpoint demonstrated that 
there was no difference in 1-year MACE, adding 
TVR to the composite endpoint definition led to 
a hazard ratio of 1.4 (p<0.05) for multi-lesion 
PCI versus single-lesion PCI. This research 
serves as a cautionary tale for the creation 
and use of composite endpoints. Not only can 
varying definitions of composite endpoints such 
as MACE lead to substantially different results 
and conclusions; results must also be carefully 
interpreted, especially in the case where safety and 
effectiveness endpoints are combined. 

Intermediate Endpoints 

The use of an intermediate or surrogate endpoint 
is more common in clinical trials than in 
observational studies. This type of endpoint is 
often a biological marker for the condition of 
interest, and may be used to reduce the followup 
period required to obtain results from a study of 

treatment effectiveness. An example would be the 
use of measures of serum lipids as endpoints in 
randomized trials of the effectiveness of statins, 
for which the major disease outcomes of interest 
to patients and physicians are a reduction in 
coronary heart disease incidence and mortality. 
The main advantages of intermediate endpoints 
are that the followup time required to observe 
possible effects of treatment on these outcomes 
may be substantially shorter than for the clinical 
outcome(s) of primary interest, and if they 
are measured on all patients, the number of 
outcomes for analysis may be larger. Much as with 
composite endpoints, using intermediate endpoints 
will increase study power for a given sample size 
as compared with outcomes that may be relatively 
rare, such as primary myocardial infarction. 
Surrogate or intermediate outcomes, however, may 
provide an incomplete picture of the benefits or 
risk. Treatment comparisons based on intermediate 
endpoints may differ in magnitude or direction 
from those based on major disease endpoints, as 
evidenced in a clinical trial of nifedipine versus 
placebo7- 8 as well as other clinical trials of 
antihypertensive therapy.9 On one hand, nifedipine, 
a calcium channel blocker, was superior to placebo 
in reduction of onset of new coronary lesions; 
on the other hand, mortality was sixfold greater 
among patients who received nifedipine versus 
placebo.7 

Freedman and colleagues have provided 
recommendations regarding the use of 
intermediate endpoints.10 Investigators should 
consider the degree to which the intermediate 
endpoint is reflective of the main outcome, as well 
as the degree to which effects of the intervention 
may be mediated through the intermediate 
endpoint. Psaty and colleagues have cautioned that 
because drugs have multiple effects, to the extent 
that a surrogate endpoint is likely to measure 
only a subset of those effects, results of studies 
based on surrogate endpoints may be a misleading 
substitute for major disease outcomes as a basis 
for choosing one therapy over another.9 
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Table 6.2. Clinical outcome definitions and objective measures

Conceptual Temporal Aspects Objective Measure

Incident invasive breast cancer Incident SEER or state cancer registry data

Myocardial infarction Acute, transient (in regard to 
elevated Troponin-I)

Review of laboratory test results for 
troponin and other cardiac enzymes 
for correspondence with a standard 
clinical definition

Psoriasis Chronic, prevalent Psoriasis Area Severity Index (PASI 
score) or percent body surface area 
assessment

Systematic lupus erythematosus 
(SLE)

Chronic condition with recurrent 
flares (Episodes may have acute 
onset) 

Systemic Lupus Erythematosus 
Disease Activity Index (SLEDAI)

Selection of Clinical Outcome Measures

Identification of a suitable measure of a clinical 
outcome for an observational CER study is a 
process in which various aspects of the nature of 
the disease or condition under study should be 
considered along with sources of information by 
which the required information may be feasibly and 
reliably obtained.  

The choice of outcome measure may follow 
directly from the expected biological mechanism 
of action of the intervention(s) under study and 
its impact on specific medical conditions. For 
example, the medications tamoxifen and raloxifene 
are selective estrogen receptor modulators that 
act through binding to estrogen receptors to block 
the proliferative effect of estrogen on mammary 
tissue and reduce the long-term risk of primary 
and recurrent invasive and non-invasive breast 
cancer.11 Broader or narrower outcome definitions 
may be appropriate to specific research questions or 
designs. In some situations, however, the putative 
biologic mechanism may not be well understood. 
Nonetheless, studies addressing the clinical 
question of comparative effectiveness of treatment 
alternatives may still inform decisionmaking, 
and advances in understanding of the biological 
mechanism may follow discovery of an association 
through an observational CER study.

The selection of clinical outcome measures may be 
challenging when there are many clinical aspects 
that may be of interest, and a single measure or 
scale may not adequately capture the perspective 

of the clinician and patient. For example, in 
evaluating treatments or other interventions that 
may prolong the time between flares of systematic 
lupus erythematosus (SLE), researchers may use an 
index such as the Systemic Lupus Erythematosus 
Disease Activity Index (SLEDAI) which measures 
changes in disease activity. Or they may use 
the SLICC/ACR damage index, an instrument 
designed to assess accumulated damage since the 
onset of the disease.12-14 This measure of disease 
activity has been tested in different populations 
and has demonstrated high reliability, evidence 
for validity, and responsiveness to change.15 Yet, 
multiple clinical outcomes in addition to disease 
activity may be of interest in studying treatment 
effectiveness in SLE, such as reduction or increase 
in time to flare, reduction in corticosteroid use, 
or occurrence of serious acute manifestations 
(e.g., acute confusional state or acute transverse 
myelitis).16 

Interactions With the Health Care 
System

For any medical condition, one should first 
determine the source of reporting or detection 
that may lead to initial contact with the medical 
system. The manner in which the patient presents 
for medical attention may provide insights as 
to data source(s) that may be useful in studying 
the condition. The decision whether to collect 
information directly from the physician, through 
medical record abstraction, directly from patients, 
and/or through use of electronic health records 
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(EHRs) and/or administrative claims data will 
follow from this. For example, general hospital 
medical records are unlikely to provide the key 
components of an outcome such as respiratory 
failure, which requires information about use 
of mechanical ventilation. In contrast, hospital 
medical records are useful for the study of 
myocardial infarction, which must be assessed and 
treated in a hospital setting and are nearly always 
accompanied by an overnight stay. General practice 
physician office records and emergency department 
records may be useful in studying the incidence 
of influenza A or urticaria, with selection of 
which of these sources  depending on the severity 
of the condition. A prospective study may be 
required to collect clinical assessments of disease 
severity using a standard instrument, as these 
are not consistently recorded in medical practice 
and are not coded in administrative data sources. 
The chapter on data sources (chapter 8) provides 
additional information on selection of appropriate 
sources of data for an observational CER study.

Humanistic Outcomes

While outcomes of interest to patients generally 
include those of interest to physicians, payers, 
regulators, and others, they are often differentiated 
by two characteristics: (1) they are clinically 
meaningful with practical implications for disease 
recognition and management (i.e., patients 
generally have less interest in intermediate 
pathways with no clear clinical impact); and 
(2) they include reporting of outcomes based 
on a patient’s unique perspective, e.g., patient-
reported scales that indicate pain level, degree of 
functioning, etc. This section deals with measures 
of health-related quality of life (HRQoL) and the 
range of measures collectively described as patient-
reported outcomes (PROs), which include measures 
of HRQoL. Other humanistic perspectives relevant 
to patients (e.g., economics, utilization of health 
services, etc.) are covered elsewhere.

Health-Related Quality of Life

Health-related quality of life (HRQoL) measures 
the impact of disease and treatment on the lives 
of patients and is defined as “the capacity to 
perform the usual daily activities for a person’s 
age and major social role.”17 HRQoL commonly 

includes physical functioning, psychological well-
being, and social role functioning. This construct 
comprises outcomes from the patient perspective 
and are measured by asking the patient or surrogate 
reporters about them.

HRQoL is an outcome increasingly used in 
randomized and non-randomized studies of 
health interventions, and as such FDA has 
provided clarifying definitions of HRQoL and 
of improvements in HRQoL. The FDA defines 
HRQoL as follows: 

HRQL is a multidomain concept that represents 
the patient’s general perception of the effect of 
illness and treatment on physical, psychological, 
and social aspects of life. Claiming a statistical 
and meaningful improvement in HRQL implies: 
(1) that all HRQL domains that are important 
to interpreting change in how the clinical trial’s 
population feels or functions as a result of the 
targeted disease and its treatment were measured; 
(2) that a general improvement was demonstrated; 
and (3) that no decrement was demonstrated in any 
domain.18

Patient-Reported Outcomes

Patient-reported outcomes (PROs) include any 
outcomes that are based on data provided by 
patients or by people who can report on their behalf 
(proxies), as opposed to data from other sources.19 
PROs refer to patient ratings and reports about 
any of several outcomes, including health status, 
health-related quality of life, quality of life defined 
more broadly, symptoms, functioning, satisfaction 
with care, and satisfaction with treatment. Patients 
can also report about their health behaviors, 
including adherence and health habits. Patients 
may be asked to directly report information about 
clinical outcomes or health care utilization and out-
of-pocket costs when these are difficult to measure 
through other sources. The FDA defines a PRO 
as “a measurement based on a report that comes 
directly from the patient (i.e., study subject) about 
the status of a patient’s health condition without 
amendment or interpretation of the patient’s 
response by a clinician or anyone else. A PRO 
can be measured by self-report or by interview 
provided that the interviewer records only the 
patient’s response.”18
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In this section we focus mainly on the use of 
standard instruments for measurement of PROs, in 
domains including specific disease areas, health-
related quality of life, and functioning. PRO 
measures may be designed to measure the current 
state of health of an individual or to measure a 
change in health state. PROs have similarities to 
other outcome variables measured in observational 
studies. They are measured with components 
of both random and systematic error (bias). To 
be most useful, it is important to have evidence 
about the reliability, validity, responsiveness, and 
interpretation of PRO measures, discussed further 
later in this section. 

Types of Humanistic Outcome 
Measures

Generic Measures

Generic PRO questionnaires are measurement 
instruments designed to be used across different 
subgroups of individuals, and contain common 
domains that are relevant to almost all populations. 
They can be used to compare one population 
with another, or to compare scores in a specific 
population with normative scores. Many have been 
used for years, and have well established and well 
understood measurement properties.  

Generic PRO questionnaires can focus on a 
comprehensive set of domains, or on a narrow 
range of domains such as symptoms or aspects 
of physical, mental, or social functioning. 
An example of a generic PRO measure is the 
Sickness Impact Profile (SIP), one of the oldest 
and most rigorously developed questionnaires, 
which measures 12 domains that are affected by 
illness.20 The SIP produces two subscale scores, 
one for physical and one for mental health, and 
an overall score. Another questionnaire, the SF-
36, measures eight domains including general 
health perceptions, pain, physical functioning, 
role functioning (as limited by physical health), 
social functioning, mental health, and vitality.21 
The SF-36 produces a Physical Component Score 
and a Mental Component Score.22 The EQ-5D is 
another generic measure of health-related quality 
of life, intended for self-completion, that generates 
a single index score. This scale defines health in 
terms of 5 dimensions: mobility, self-care, usual 
activities, pain/discomfort, and anxiety/depression. 

Each dimension has three response categories 
corresponding to no problem/some problem/
extreme problem. Taken as a whole, the EQ-5D 
defines a total of 243 possible states, to which 
two further states (dead and unconscious) have 
been added.23 Another broadly used indicator of 
quality of life relates to the ability to work. The 
Work Productivity Index (WPAI) was created 
as a patient-reported quantitative assessment of 
the amount of absenteeism, presenteeism, and 
daily activity impairment attributable to general 
health (WPAI:GH) or to a specific health problem 
(WPAI:SHP) (see below), in an effort to develop 
a quantitative approach to measuring the ability to 
work.24

Examples of generic measures that assess a more 
restricted set of domains include the SCL-90 
to measure symptoms,25 the Index of Activities 
of Daily Living to measure independence in 
performing basic functioning,26 the Psychological 
General Well-Being Index to measure 
psychological well-being (PGWBI),27 and the Beck 
Depression Inventory.28 

Disease- or Population-Specific Measures

Specific PRO questionnaires are sometimes 
referred to as “disease-specific.” While a 
questionnaire can be disease- or condition-specific 
(e.g., chronic heart failure), it can also be designed 
for use in a specific population (e.g., pediatric, 
geriatric), or for use to evaluate a specific treatment 
(e.g., renal dialysis). Specific questionnaires may 
be more sensitive to symptoms that are experienced 
by a particular group of patients. Thus, they are 
thought to detect differences and changes in scores 
when they occur in response to interventions.

Some specific measurement instruments assess 
multiple domains that are affected by a condition.  
For example, the Arthritis Impact Measurement 
Scales (AIMS) includes nine subscales that assess 
problems specific to the health-related quality 
of life of patients with rheumatoid arthritis and 
its treatments.29 The MOS-HIV Health Survey 
includes 10 domains that are salient for people with 
HIV and its treatments.30

Some of these measures take a modular 
approach, including a core measure that is used 
for assessment of a broader set of conditions, 
accompanied by modules that are specific to 
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disease subtypes. For example, the FACIT and 
EORTC families of measures for evaluating cancer 
therapies each include a core module that is used 
for all cancer patients, and specific modules for 
each type of cancer, such as a module pertaining 
specifically to breast cancer.31-33

Other measures focus more narrowly on a few 
domains most likely to be affected by a disease, 
or most likely to improve with treatment. For 
example, the Headache Impact Test includes only 
six items.34 In contrast, other popular measures 
focus on symptoms that are affected by many 
diseases, such as the Brief Pain Inventory and the 
M.D. Anderson Symptom Inventory (MDASI), 
which measure the severity of pain and other 
symptoms and the impact of symptoms on 
function, and have been developed, refined, and 
validated in many languages and patient subgroups 
over three decades.35-36

It is possible, though not always advisable, to 
design a new PRO instrument for use in a specific 
study. The process of developing and testing a new 
PRO measure can be lengthy—generally requiring 
at least a year in time–and there is no guarantee 
that a new measure will work as well as more 
generic but better tested instruments. Nonetheless, 
it may be necessary to do so in the case of an 
uncommon condition for which there are no 
existing PRO measures, for a specific cultural 
context that differs from the ones that have been 
studied before, and/or to capture effects of new 
treatments that may require a different approach 
to measurement. However, when possible, in these 
cases it is still prudent to include a PRO measure 
with evidence for reliability and validity, ideally 
in the target patient population, in case the newly 
designed instruments fail to work as intended. This 
approach will allow comparisons with the new 
measure to assess content validity if there is some 
overlap of the concepts being measured.

Item Response Theory (IRT) and Computer 
Adaptive Testing (CAT)

Item Response Theory (IRT) is a framework 
for the development of tests and measurement 
tools, and for the assessment of how well the 
tools work. Computer Adaptive Testing (CAT) 
represents an area of innovation in measuring 
PROs. CAT allows items to be selected to be 
administered so that questions are relevant to the 

respondent and targeted to the specific level of 
the individual, with the last response determining 
the next question that is asked. Behind the scenes, 
items are selected from “item banks,” comprising 
collections of dozens to hundreds of questions 
that represent the universe of potential levels of 
the dimension of interest, along with an indication 
of the relative difficulty or dysfunction that they 
represent. For example, the Patient-Reported 
Outcomes Measurement Information System 
(PROMIS) item bank for physical functioning 
includes 124 items that range in difficulty from 
getting out of bed to running several miles.37 This 
individualized administration can both enhance 
measurement precision and reduce respondent 
burden.38 Computer adaptive testing is based 
on IRT methods of scaling items and drawing 
subsets of items from a larger item bank.39 
Considerations around adaptive testing involve 
balancing the benefit of tailoring the set of items 
and measurements to the specific individual with 
the risk of inappropriate targeting or classification 
if items answered incorrectly early on determine 
the later set of items to which a subject is able to 
respond. PROMIS40 is a major NIH initiative that 
leverages these desirable properties for PROs in 
clinical research and practice applications. 

Descriptive Versus Preference Format  

Descriptive questionnaires ask about general or 
common domains and complaints, and usually 
provide multiple scores. Preference-based 
measures, generally referred to as utility measures, 
provide a single score, usually on a 0–1 scale, that 
represents the aggregate of multiple domains for 
an overall estimate of burden. 

Most of the questionnaires familiar to clinical 
researchers fall into the category of descriptive 
measures, including all of those mentioned 
in the preceding paragraphs. Patients or other 
respondents are asked to indicate the extent to 
which descriptions of specific feelings, abilities, 
or behaviors apply to them. Utility measures are 
discussed further in the following section.

Other Attributes of PROs

Within each of the above options, there are several 
attributes of PRO instruments to consider.  These 
include response format (numeric scales vs. verbal 
descriptors or visual analogue scales), the focus 
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of what is being assessed (frequency, severity, 
impairment, all of the above), and recall period. 
Shorter, more recent recall periods more accurately 
capture the individual’s actual experience, but 
may not provide as good an estimate of their 
typical activities or experiences. (For example, not 
everyone vacuums or has a headache every day.)

Content Validity

Content validity is the extent to which a PRO 
instrument covers the breadth and depth of salient 
issues for the intended group of patients. If a 
PRO instrument is not valid with respect to its 
content, then there is an increased chance that it 
may fail to capture adequately the impact of an 
intervention. For example, in a study to compare 
the impact of different regimens for rheumatoid 
arthritis, a PRO that does not assess hand function 
could be judged to have poor content validity, 
and might fail to capture differences among 
therapies. FDA addresses content validity as being 
of primary interest in assessing a PRO, with other 
measurement properties being secondary. and 
defines content validity as follows:

Evidence from qualitative research 
demonstrating that the instrument measures 
the concept of interest including evidence that 
the items and domains of an instrument are 
appropriate and comprehensive relative to its 
intended measurement concept, population, 
and use. Testing other measurement properties 
will not replace or rectify problems with 
content validity.18

Content validity is generally assessed qualitatively 
rather than statistically. It is important to 
understand and consider the population being 
studied, including their usual activities and 
problems, the condition (especially its impact on 
the patient’s functioning), and the interventions 
being evaluated (including both their positive and 
adverse effects).

Responsiveness and Minimally Important 
Difference

Responsiveness is a measure of a PRO 
instrument’s sensitivity to changes in health status 
or other outcome being measured. If a PRO is 
not sufficiently responsive, it may not provide 

adequate evidence of effectiveness in observational 
studies or clinical trials. Related to responsiveness 
is the minimally important difference that a PRO 
measure may detect. Both the patient’s and the 
health  care provider’s perspectives are needed to 
determine if the minimally important difference 
detectable by an instrument is in fact of relevance 
to the patient’s overall health status.41

Floor and Ceiling Effects

Poor content validity can also lead to a mismatch 
between the distribution of responses and the 
true distribution of the concept of interest in the 
population. For example, if questions in a PRO 
to assess ability to perform physical activities 
are too “easy” relative to the level of ability in 
the population, then the PRO will not reflect the 
true distribution. This problem can present as a 
“ceiling” effect, where a larger proportion of the 
sample reports no disability. Similarly, “floor” 
effects are seen when questions regarding a level of 
ability are skewed too difficult for the population 
and the responses reflect this lack of variability.

Interpretation of PRO Scores

Clinicians and clinical researchers may be 
unfamiliar with how to interpret PRO scores. 
They may not understand or have reference to 
the usual distribution of scores of a particular 
PRO in a clinical or general population. Without 
knowledge of normal ranges, physicians may 
not know what cutpoints of scoring indicate that 
action is warranted. Without reference values 
from a comparable population, researchers will 
not know whether an observed difference between 
two groups is meaningful, and whether a given 
change within or between groups is important. 
The task of understanding the meaning of scores is 
made more difficult by the fact that different PRO 
measurement tools tend to use different scoring 
systems. For most questionnaires, higher scores 
imply better health, but for some, a higher score is 
worse. Some scales are scored from 0 to 1, where 
0=dead and 1=perfect health. Others are scores 
on a 0–100 scale, where 0 is simply the lowest 
attainable score (i.e., the respondent indicates 
the “worst” health state in response to all of the 
questions) and 100 is the highest. Still others are 
“normalized,” so that, for example, a score of 
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50 represents the mean score for the healthy or 
nondiseased population, with a standard deviation 
of 10 points. It is therefore crucial for researchers 
and users of PRO data to understand the scoring 
system being used for an instrument and the 
expected distribution, including the distributional 
properties.

For some PRO instruments, particularly generic 
questionnaires that have been applied to large 
groups of patients over many years, population 
norms have been collected and established. These 
can be used as reference points. Scoring also can 
be recalculated and “normalized” to a “T-score” so 
that a specific score (often 50 or 100) corresponds 
to the mean score for the population, and a specific 
number of points (often 5 or 10) corresponds to 1 
standard deviation unit in that population.

Selection of a PRO Measure

There are a number of practical considerations to 
take into account when selecting PRO measures 
for use in a CER study. The measurement 
properties discussed in the preceding sections also 
require evaluation in all instances for the specific 
instrument selected, within a given population, 
setting, and intended purpose.

Population

It is important to understand the target population 
that will be completing the PRO assessment. These 
may range from individuals who can self-report, 
to individuals requiring the assistance of a proxy 
or medical professional (e.g., children, mentally or 
cognitively limited individuals, visually impaired 
individuals). Some respondents may be ambulatory 
individuals living in the community, whereas others 
may be inpatients or institutionalized individuals.

If a PRO questionnaire is to be used in non–
English-speaking populations or in multiple 
languages, it is necessary to have versions 
appropriately adapted to language and culture. One 
should have evidence for the reliability and validity 
of the translated and culturally adapted version, 
as applied to the concerned population. One also 
should have data showing the comparability of 
performance across different language and cultural 
groups. This is of special importance when pooling 
data across language versions, as in a multinational 
clinical trial or registry study.

Burden

It is important to match the respondent burden 
created by a PRO instrument to the requirements 
of the population being studied. Patients with 
greater levels of illness or disability are less able 
to complete lengthy questionnaires. In some cases, 
the content or specific questions posed in a PRO 
may be upsetting or otherwise unacceptable to 
respondents. In other cases, a PRO questionnaire 
may be too cognitively demanding or written at 
a reading level that is above that of the intended 
population. The total burden of study-related data 
collection on patients and providers must also be 
considered, as an excessive number of forms that 
must be completed are likely to reduce compliance.

Cost and Copyright  

Another practical consideration is the copyright 
status of a PRO being considered for use. Some 
PRO questionnaires are entirely in the public 
domain and are free for use. Others are copyrighted 
and require permission and/or the payment of fees 
for use. Some scales, such as the SF-12 and SF-36, 
require payment of fees for scoring.

Mode and Format of Administration

As noted above, there are various options for 
how a questionnaire should be administered and 
how the data should be captured, each method 
having both advantages and disadvantages. A PRO 
questionnaire can be (1) self-administered at the 
time of a clinical encounter, (2) administered by an 
interviewer at the time of a clinical encounter, (3) 
administered with computer assistance at the time 
of a clinical encounter, (4) self-administered by 
mail, (5) self-administered on-line, (6) interviewer-
administered by telephone, or (7) computer-
administered by telephone. Self-administration 
at the time of a clinical encounter requires little 
technology or up-front cost, but requires staff for 
supervision and data entry and can be difficult for 
respondents with limited literacy or sophistication. 
Face-to-face administration engages respondents 
and reduces their burden but requires trained 
interviewers. Computer-assisted administration 
provides an intermediate solution but also requires 
capital investment. Mailed surveys afford more 
privacy to respondents, but they generate mailing 
expenses and do not eliminate problems with 
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literacy. Paper-based formats require data entry, 
scoring, and archiving and are prone to calculation 
errors. Online administration is relatively 
inexpensive, especially for large surveys, and 
surveys can be completed any time, but not all 
individuals have Internet access. Administration 
by live telephone interview is engaging and allows 
interviewer flexibility but is also expensive. “Cold 
calls” to potential study participants may result in 
low response rates, given the increased prevalence 
of caller ID screening systems and widespread 
skepticism about “telemarketing.”

Interactive voice response systems (or IVRS) can 
also be used to conduct telephone interviews, but it 
can be tedious to respond using the telephone key 
pad, and this format strikes some as impersonal.  

Static Versus Dynamic Questionnaires 

Static forms are the type of questionnaire that 
employs a fixed-format set of questions and 
response options. They can be administered 
on paper, by interview, or through the Internet.  
Dynamic questionnaires select followup questions 
to administer based on the responses already 
obtained for previous questions. Since they are 
more efficient, more domains can be assessed.

Economic and Utilization Outcomes

While clinical outcomes represent the provider 
and professional perspective, and humanistic 
outcomes represent the patient perspective, 
economic outcomes, including measures of 
health resource utilization, represent the payer 
and societal perspective. In the United States, 
measures of cost and cost-effectiveness are often 
excluded from government-funded CER studies. 
However, these measures are important to a variety 
of important stakeholders such as payers and 
product manufacturers, and are routinely included 
in cost-effectiveness research in countries such as 
Australia, the United Kingdom, Canada, France, 
and Germany.42 

Research questions addressing issues of cost-
effectiveness and resource utilization may be 
formulated in a number of ways. Cost identification 
studies measure the cost of applying a specified 
treatment to a population under a certain set of 
conditions. These studies describe the cost incurred 
without comparison to alternative interventions. 

Some cost identification studies describe the total 
costs of care for a particular population, whereas 
others isolate costs of care related to a specific 
condition; this latter approach requires that each 
episode of care be ascribed as having been related 
or unrelated to the illness of interest and involves 
substantial review.43 Cost-benefit studies are 
typically measured in dollars or other currency. 
These studies compare the monetary costs of an 
intervention against the standard of care with 
the cost savings that result from the benefits of 
that treatment. In these studies, mortality is also 
assigned a dollar value, although techniques for 
assigning value to a human life are controversial. 
Cost-effectiveness is a relative concept, and its 
analysis compares the costs of treatments and 
benefits of treatments in terms of a specified 
outcome, such as reduced mortality or morbidity, 
years of life saved, or infections averted.  

Types of Health Resource Utilization 
and Cost Measures

Monetary Costs

Studies most often examine direct costs (i.e., 
the monetary costs of the medical treatments 
themselves, potentially including associated costs 
of administering treatment or conditions associated 
with treatment), but may also include measures of 
indirect costs (e.g., the costs of disability or loss 
of livelihood, both actual and potential). Multiple 
measures of costs are commonly included in any 
given study.  

Health Resource Utilization

Measures of health resource utilization, such as 
number of inpatient or outpatient visits, total days 
of hospitalization in a given year, or number of 
days treated with IV antibiotics, are often used 
as efficient and easily interpretable proxies for 
measuring cost, since actual costs are dependent 
on numerous factors (e.g., institutional overhead, 
volume discounts) and can be difficult to obtain, 
since they often may be confidential, since, in part, 
they reflect business acumen in price negotiation. 
Costs may also vary by institution or location, such 
as the cost of a day in the hospital or a medical 
procedure. Resource utilization measures may be 
preferred when a study is intended to yield results 
that may be generalizable to health systems or 
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reimbursement systems other than those under 
study, as they are not dependent on a particular 
reimbursement structure such as Medicare. 
Alternatively, a specific cost or reimbursement 
structure, such as the amount reimbursed by the 
Centers for Medicare and Medicaid Services 
(CMS) for specific treatment items, or average 
wholesale drug costs, may be applied to units of 
health resource use when conducting studies that 
pool data from different health systems.

Utility and Preference-Based Measures

PROs and cost analyses intersect around the 
calculation of cost-utility. Utility measures are 
derived from economic and decision theory. 
The term utility refers to the value placed by the 
individual on a particular health state. Utility 
is summarized as a score ranging from 0.0 
representing death to 1.0 representing perfect 
health. 

In health economic analyses, utilities are used to 
justify devoting resources to a treatment. There are 
several widely used preference-based instruments 
that are used to estimate utility.  

Preference measures are based on the fundamental 
concept that individuals or groups have reliable 
preferences about different health states. To 
evaluate those preferences, individuals rate a series 
of health states: for example, a person with specific 
levels of physical functioning (able to walk one 
block but not climb stairs), mental health (happy 
most of the time), and social role functioning 
(not able to work due to health). The task for 
the individual is to directly assign a degree of 
preference to that state. These include the Standard 
Gamble and Time Tradeoff methods, 44-45 the EQ-
5D, also referred to as the Euroqol,23 the Health 
Utilities Index,46-47 and the Quality of Well-Being 
Scale.48 

Quality-Adjusted Life Years (QALYs)

Utility scores associated with treatment can be 
used to weight the duration of life according to its 
quality, and are thereby used to generate QALYs. 
Utility scores are generally first ascertained 
directly in a sample of people with the condition 
in question, either cross-sectionally or over time 
with a clinical trial. Utility values are sometimes 

estimated indirectly using other sources of 
information about the health status of people in a 
population. The output produced by an intervention 
can be calculated as the area under the cost-utility 
curve.

For example, if the mean utility score for patients 
receiving antiretroviral treatment for HIV disease is 
0.80, then the outcome for a treated group would be 
survival time multiplied by 0.80.

Disability-Adjusted Life Years (DALYs) 

DALYs are another measure of overall disease 
burden expressed as the number of years lost 
to poor health, disability, or premature death.49 
As with QALYs, mortality and morbidity are 
combined in a single metric. Potential years of 
life lost to premature death are supplemented with 
years of health life lost due to less than optimal 
health. Whereas 1 QALY corresponds to one year 
of life in optimal health, 1 DALY corresponds to 
one year of healthy life lost.  

An important aspect of the calculation of DALYs 
is that the value assigned to each year of life 
depends on age. Years lived as a young adult are 
valued more highly than those spent as a young 
child or older adult, reflecting the different capacity 
for work productivity during different phases of 
life. DALYs are therefore estimated for different 
chronic illnesses by first calculating the age- and 
sex-adjusted incidence of disease. A DALY is 
calculated as the sum of the average years of life 
lost, and the average years lived with a disability. 
For example, to estimate the years of healthy life 
lost in a region due to HIV/AIDS, one would first 
estimate the prevalence of the disease by age. The 
DALY value is calculated by summing the average 
of years of life lost and the average number of years 
lived with AIDS, discounted based on a universal 
set of standard weights based on expert valuations. 

Selection of Resource Utilization and 
Cost Measures

The selection of measures of resource utilization or 
costs should correspond to the primary hypothesis 
in terms of the impact of an intervention. For 
example, will treatment reduce the need for 
hospitalization or result in a shorter length of stay?  
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Or, will treatment or other intervention reduce 
complications that require hospitalization? Or, will 
a screening method reduce the total number of 
diagnostic procedures required per diagnosis?

It is useful to consider what types of costs are 
of interest to the investigators and to various 
stakeholders. Are total costs of interest, or costs 
associated with specific resources (e.g., prescription 
drug costs)? Are only direct costs being measured, 
or are you also interested in indirect costs such as 
those related to days lost from work?

When it is determined that results will be presented 
in terms of dollars rather than units of resources, 
several different methods can be applied. In 
the unusual case that an institution has a cost-
accounting system, cost can be measured directly. 
In most cases, resource units are collected, and 
costs are assigned based on local or national 
average prices for the specific resources being 
considered, for example, reimbursement from CMS 
for a CT scan, or a hospital day. Application of an 
external standard cost system reduces variability 
in costs due to region, payer source, and other 
variables that might obscure the impact of the 
intervention in question.

Study Design and Analysis 
Considerations

Study Period and Length of Followup

In designing a study, the required study period and 
length of followup are determined by the expected 
time frame within which an intervention may be 
expected to impact the outcome of interest. A study 
comparing traditional with minimally invasive knee 
replacement surgery will need to follow subjects at 
least for the duration of the expected recovery time 
of 3 to 6 months or longer. The optimal duration of 
a study can be problematic when studying effects 
that may become manifest over a long time period, 
such as treatments to prevent or delay the onset 
of chronic disease. In these cases, data sources 
with a high degree of turnover of patients, such as 
administrative claims databases from managed care 
organizations, may not be suitable. For example, in 
the case of Alzheimer’s disease, a record of health 
care is likely to be present in health insurance 

claims. However, with the decline in cognitive 
function, patients may lose ability to work and may 
enter assisted care facilities, where utilization is not 
typically captured in large health insurance claims 
systems. Some studies may be undertaken for the 
purpose of determining how long an intervention 
can be expected to impact the outcome of interest. 
For example, various measures are used to aid in 
reducing obesity and in smoking cessation, and 
patients, health care providers, and payers are 
interested in knowing how long these interventions 
work (if at all), for whom, and in what situations.

Notwithstanding the limitations of intermediate 
endpoints (discussed in a preceding section), one 
of the main advantages of their use is the potential 
truncation of the required study followup period. 
Consider, for example, a study of the efficacy of 
the human papilloma virus vaccine, for which the 
major medical endpoint of interest is prevention of 
cervical cancer. The long latency period (more than 
2 years, depending on the study population) and 
the relative infrequency of cervical cancer raise the 
possibility that intermediate endpoints should be 
used. Candidates might include new diagnoses of 
genital warts, or new diagnoses of the precancerous 
conditions cervical intraepithelial neoplasia (CIN) 
or vaginal intraepithelial neoplasia (VIN), which 
have shorter latency periods of less than 1 year 
or 2 years (minimum), respectively. Use of these 
endpoints would allow such a study to provide 
meaningful evidence informing the use of the HPV 
vaccine in a shorter timeframe, during which more 
patients might benefit from its use.  Alternatively, 
if the vaccine is shown to be ineffective, this 
information could avoid years of unnecessary 
treatment and the associated costs as well as the 
costs of running a longer trial.

Avoidance of Bias in Study Design

Misclassification

The role of the researcher is to understand the 
extent and sources of misclassification in outcome 
measurement, and to try to reduce these as much 
as possible. To ensure comparability between 
treatment groups with as little misclassification 
(also referred to as measurement error) of 
outcomes as possible, a clear and objective 
(i.e., verifiable and not subject to individual 
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interpretation insofar as possible) definition of the 
outcome of interest is needed. An unclear outcome 
definition can lead to misclassification and bias in 
the measure of treatment effectiveness. When the 
misclassification is nondifferential, or equivalent 
across treatment groups, the estimate of treatment 
effectiveness will be biased toward the null, 
reducing the apparent effectiveness of treatment, 
which may result in an erroneous conclusion 
that no effect (or one smaller than the true effect 
size) exists. When the misclassification differs 
systematically between treatment groups, it may 
distort the estimate of treatment effectiveness in 
either direction.

For clinical outcomes, incorporation of an 
objective measure such as a validated tool that 
has been developed for use in clinical practice 
settings, or an adjudication panel for review of 
outcomes with regard to whether they meet the 
predetermined definition of an event, would 
both be approaches that increase the likelihood 
that outcomes will be measured and classified 
accurately and in a manner unlikely to vary 
according to who is doing the assessment. For 
PROs, measurement error can stem from several 
sources, including the way in which a question is 
worded and hence understood by a respondent, 
how the question is presented, the population 
being assessed, the literacy level of respondents, 
the language in which the questions are written, 
and elements of culture that it represents.  

To avoid differential misclassification of 
outcomes, care must also be taken to use the same 
methods of ascertainment and definitions of study 
outcomes whenever possible. For prospective 
or retrospective studies with contemporaneous 
comparators, this is usually not an issue, since it 
is most straightforward to utilize the same data 
sources and methods of outcome ascertainment 
for each comparison group. A threat to validity 
may arise in use of a historical comparison group, 
which may be used in certain circumstances. For 
example, this occurs when a new treatment largely 
displaces use of an older treatment within a given 
indication, but further evidence is needed for 
the comparative effectiveness of the newer and 
older treatments, such as enzyme replacement for 
lysosomal storage disorders. In such instances, use 

of the same or similar data sources and equivalent 
outcome definitions to the extent possible will 
reduce the likelihood of bias due to differential 
outcome ascertainment.  

Other situations that may give rise to issues 
of differential misclassification of outcomes 
include: when investigators are not blinded to the 
hypothesis of the study, and “rule-out” diagnoses 
are more common in those with a particular 
exposure of interest; when screening or detection 
of outcomes is more common or more aggressive 
in those with one treatment than another (i.e., 
surveillance bias, e.g., when liver function testing 
are preferentially performed in patients using a 
new drug compared to other treatments for that 
condition); and when loss to followup occurs 
that is related to the risk of experiencing the 
outcome. For example, once a safety signal has 
been identified and publicized, physicians have 
been alerted and then look more proactively for 
clinical signs and symptoms in treated patients. 
This situation is even greater for products that 
are subject to controlled distribution or Risk 
Evaluation and Mitigation Strategies (REMS).  
Consider clozapine, an anti-schizophrenia drug 
that is subject to controlled distribution through 
a “no blood, no drug” monitoring program. The 
blood testing program was implemented to detect 
early development of agranulocytemia. When 
comparing patients treated with clozapine with 
those treated with other antischizophrenics, those 
using clozapine may appear to have a worse safety 
profile with respect to this outcome.

Sensitivity analyses may be conducted in order 
to estimate the impact of different levels of 
differential or nondifferential misclassification on 
effect estimates from observational CER studies. 
These approaches are covered in detail in chapter 
11. 

Validation and Adjudication

In some instances, additional information must 
be collected (usually from medical records) 
to validate the occurrence of the outcome of 
interest, including to exclude erroneous or “rule-
out” diagnoses. This is particularly important 
for medical events identified in administrative 
claims databases, for which a diagnosis code 
associated with a medical encounter may represent 
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a “rule out” diagnosis or a condition that does 
not map to a specific diagnosis code. For some 
complex diagnoses, such as unstable angina, a 
standard clinical definition must be applied by 
an adjudication panel that has access to detailed 
records inclusive of subjects’ relevant medical 
history, symptomatic presentation, diagnostic 
work-up, and treatment. Methods of validation 
and adjudication of outcomes strengthen the 
internal validity and therefore the evidence that 
can be drawn from a CER study. However, they are 
resource-intensive.

Issues Specific to PROs

PROs are prone to several specific sources of 
bias. Self-reports of health status are likely to 
differ systematically from reports by surrogates, 
who, for example, are likely to report less pain 
than the individuals themselves.50 Some biases 
may be population-dependent. For example, there 
may be a greater tendency of some populations to 
succumb to acquiescence bias (agreeing with the 
statements in a questionnaire) or social desirability 
bias (answering in a way that would cast the 
respondent in the best light).51 In some situations, 
however, a PRO may be the most useful marker of 
disease activity, such as with episodic conditions 
that cause short-duration disease flares such as low 
back pain and gout, where patients may not present 
for health care immediately, if at all.  

The goal of the researcher is to understand and 
reduce sources of bias, considering those most 
likely to apply in the specific population and 
topics under study. In the case of well understood 
systematic biases, adjustments can be made so 
that distributions of responses are more consistent. 
In other cases, redesigning items and scales, 
for example, by including both positively and 
negatively worded items, can reduce specific kinds 
of bias.

Missing data, an issue covered in more detail in 
chapter 10, pose a particular problem with PROs, 
since PRO data are usually not missing at random. 
Instead, respondents whose health is poorer are 
more likely to fail to complete an assessment. 
Another special case of missing data occurs 
when a patient dies and is unable to complete an 
assessment. If this issue is not taken into account 

in the data analysis, and scores are only recorded 
for living patients, incorrect conclusions may be 
drawn. Strategies for handling this type of missing 
data include selection of an instrument that 
incorporates a score for death, such as the Sickness 
Impact Profile 20, 52  or the Quality of Well-Being 
Scale,48 or through an analytic strategy that allows 
for some missing values.  

Failure to account for missing PRO data that are 
related to poor health or death will lead to an 
overestimate of the health of the population based 
on responses from subjects who do complete 
PRO forms. Therefore, in research using PROs, 
it is very important to understand the extent and 
pattern of missing data, both at the level of the 
individual as well as for specific items or scales on 
an instrument.53 

A strategy should be put in place to handle missing 
data when developing the study protocol and 
analysis plans. Such strategies that pertain to use 
of PROs in research are discussed in further detail 
in publications such as the book by Fairclough and 
colleagues. 

Analytic Considerations

Form of Outcome Measure and Analysis 
Approach

To a large extent, the form of the primary outcome 
of interest—that is, whether the outcome is 
measured and expressed as a dichotomous or 
polytomous categorical variable or a continuous 
variable, and whether it is to be measured at a 
single time point, measured repeatedly at fixed 
intervals, or measured repeatedly at varying time 
intervals—determines the appropriate statistical 
methods that may be applied in analysis. These 
topics are covered in detail in chapter 10.  

Sensitivity Analysis

One of the key factors to address in planned 
sensitivity analyses for an observational CER study 
is how varying definitions of the study outcome 
or related outcomes will affect the measures of 
association from the study. These investigations 
include assessing multiple related outcomes within 
a disease area; for example, assessing multiple 
measures of respiratory function such as FEV1, 
FEV1% predicted, and FVC in studies of asthma 
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treatment effectiveness in children; assessing 
the effect of different cutoffs for dichotomized 
continuous outcome measures; for example, the 
use of Systemic Lupus Erythematosus Disease 
Activity Index-2000 scores to define active 
disease in lupus treatment studies,54 or the use 
of different sets of diagnosis codes to capture a 
condition such as influenza and related respiratory 
conditions, in administrative data.  These and other 
considerations for sensitivity analyses are covered 
in detail in chapter 11.

Conclusion

Future Directions

Increased use of EHRs as a source of data for 
observational research, including registries, other 
types of observational studies, and specifically 
for CER, has prompted initiatives to develop 
standardized definitions of key outcomes and 
other data elements that would be used across 
health systems and different EHR platforms to 
facilitate comparisons between studies and pooling 
of data. The National Cardiovascular Research 
Infrastructure partnership between the American 
College of Cardiology and Duke Clinical Research 
Institute, which received American Recovery 
and Reinvestment Act funding to establish intra-
operable data standards based on the National 

Cardiovascular Data Registry, is an example of 
such a current activity.55 

Summary

This chapter has provided an overview of 
considerations in development of outcome 
definitions for observational CER studies; has 
described implications of the nature of the 
proposed outcomes for the study design; and 
has enumerated issues of bias that may arise in 
incorporating the ascertainment of outcomes 
into observational research. It has also suggested 
means of preventing or reducing these biases.

Development of clear and objective outcome 
definitions that correspond to the nature of 
the hypothesized treatment effect and address 
the research questions of interest, along with 
validation of outcomes where warranted or use of 
standardized PRO instruments validated for the 
population of interest, contribute to the internal 
validity of observational CER studies.  Attention 
to collection of outcome data in an equivalent 
manner across treatment comparison groups is 
also required. Use of appropriate analytic methods 
suitable to the outcome measure, and sensitivity 
analysis to address varying definitions of at least 
the primary study outcomes, are needed to make 
inferences drawn from such studies more robust 
and reliable.
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Checklist: Guidance and key considerations for outcome selection and 
measurement for an observational CER protocol

Guidance Key Considerations Check

Propose primary and 
secondary outcomes that 
directly correspond to 
research questions.

 – Followup period should be sufficient to observe hypothesized effects 
of treatment on primary and secondary outcomes. o

Provide clear and objective 
definitions of clinical 
outcomes.

 – Outcomes should reflect the hypothesized mechanism of effect of 
treatment, if known.

 – Provide justification that the outcome is reliably ascertained without 
additional validation, when applicable and feasible, or propose 
validation and/or adjudication of endpoints.

 – If an intermediate (surrogate) endpoint is proposed, provide 
justification why the main disease outcome of interest is not being 
used, and that the intermediate endpoint reflects the expected 
pathway of the effect of treatment on the main outcome of interest.

o

Provide clear and relevant 
definitions of cost or 
health resource utilization 
outcomes.

 – Outcomes chosen should reflect the hypothesized effect of treatment 
on specific components of medical cost and/or resource utilization, 
if known.

 – Outcomes should be able to be measured directly or via proxy from 
data sources proposed for study.

 – For costs, consider proposing standard benchmark costs to be 
applied to units of resource utilization; especially when multiple 
health systems, payment systems, and/or geographic regions are 
included in study population or data source.

o

Describe a plan for use 
of a validated, standard 
instrument for measurement 
of patient-reported 
outcomes.

 – The instrument chosen should reflect the hypothesized effect of 
treatment on specific aspects of disease symptoms or treatment, or 
quality of life, if known.

 – Propose use of a standard instrument that has been validated for use 
in population representative of the study population, when possible.

 – Have the instrument validated for use in translation to other specific 
languages if it is intended to be used in those languages for study, 
when possible.

 – Have the instrument validated for the intended mode of 
administration, when possible.

o

Address issues of bias 
expected to arise, and 
propose means of bias 
minimization.

 – Describe potential issues of bias, misclassification, and missing 
data that may be expected to occur with the proposed outcomes, 
including those specific to PRO data.

 – Provide a plan for minimization of potential bias, misclassification, 
and missing data issues identified.

o

Analysis  – Proposed analytic methods should correspond to the nature of the 
outcome measure (e.g., continuous, categorical [dichotomous, 
polychotomous, or ordinal], repeated measures, time-to-event).

 – Plan sensitivity analyses relating to expected questions that arise 
around the study outcomes.

 – Propose sensitivity analyses that address different relevant 
definitions of the study outcome(s) or multiple related outcomes 
(e.g., different measures of subclinical and clinical cardiovascular 
disease).

o
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Abstract

This chapter addresses strategies for selecting variables for adjustment in nonexperimental comparative 
effectiveness research (CER), and uses causal graphs to illustrate the causal network relating treatment 
to outcome. While selection approaches should be based on an understanding of the causal network 
representing the common cause pathways between treatment and outcome, the true causal network is 
rarely known. Therefore, more practical variable selection approaches are described, which are based 
on background knowledge when the causal structure is only partially known. These approaches include 
adjustment for all observed pretreatment variables thought to have some connection to the outcome, 
all known risk factors for the outcome, and all direct causes of the treatment or the outcome. Empirical 
approaches, such as forward and backward selection and automatic high-dimensional proxy adjustment, 
are also discussed. As there is a continuum between knowing and not knowing the causal, structural 
relations of variables, a practical approach to variable selection is recommended, which involves a 
combination of background knowledge and empirical selection using the high-dimensional approach. The 
empirical approach could be used to select from a set of a priori variables on the basis of the researcher’s 
knowledge, and to ultimately select those to be included in the analysis. This more limited use of 
empirically derived variables may reduce confounding while simultaneously reducing the risk of including 
variables that could increase bias. 
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Introduction

Nonexperimental studies that compare the 
effectiveness of treatments are often strongly 
affected by confounding. Confounding occurs 
when patients with a higher risk of experiencing the 
outcome are more likely to receive one treatment 
over another. For example, consider two drugs used 
to treat hypertension—calcium channel blockers 
(CCB) and diuretics. Since many clinicians perceive 
CCBs as particularly useful in treating high-risk 
patients with hypertension, patients with a higher 
risk for experiencing cardiovascular events are more 
likely to be channeled into the CCB group, thus 
confounding the relation between antihypertensive 
treatment and the clinical outcomes of 

cardiovascular events.1 The difference in treatment 
groups is a result of the differing baseline risk for 
the outcome and the treatment effects (if any). Any 
attempt to compare the causal effects of CCBs and 
diuretics on cardiovascular events would require 
taking patients’ underlying risk for cardiovascular 
events into account through some form of covariate 
adjustment. The use of statistical methods to make 
the two treatment groups similar with respect to 
measured confounders is sometimes called statistical 
adjustment, control, or conditioning. 

The purpose of this chapter is to address the complex 
issue of selecting variables for adjustment in order 
to compare the causative effects of treatments. 
The reader should note that the recommended 
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variable selection strategies discussed are for 
nonexperimental causal models and not prediction 
or classification models, for which approaches 
may differ. Recommendations for variable 
selection in this chapter focus primarily on fixed 
treatment comparisons when employing the so-
called “incident user design,” which is detailed in 
chapter 2.

This chapter contains three sections. In the 
first section, we explain causal graphs and the 
structural relations of variables. In the second 
section, we discuss proxy, mismeasured, and 
unmeasured variables. The third section presents 
variable selection approaches based on full 
and partial knowledge of the data generating 
process as represented in causal graphs. We also 
discuss approaches to selecting covariates from 
a high-dimensional set of variables on the basis 
of statistical association, and suggest how these 
approaches may be used to complement variable 
selection based on background knowledge. 
Ideally, when information is available, causal 
graph theory would be used to complement any 
variable selection technique. We provide a separate 
supplement (supplement 2) on directed acyclic 
graphs for the more advanced reader. 

Causal Models and the 
Structural Relationship of 
Variables

This section introduces notation to illustrate basic 
concepts. Causal graphs are used to represent 
relationships among variables and to illustrate 
situations that generate bias and confounding.

Treatment Effects

The goal of comparative effectiveness research 
(CER) is to determine if a treatment is more 
effective or safer than another. Treatments should 
be “well defined,” as described in chapter 4, 
and should represent manipulable units; e.g., 
drug treatments, guidelines, and devices. Causal 
graphs are often used to illustrate relationships 
among variables that lead to confounding and 
other types of bias. The simple causal graph in 
Figure 7.1 indicates a randomized trial in which 
no unmeasured or measured variables influence 

treatment assignment where A
0
 is the assigned 

treatment at baseline (time zero) and Y
1
 is the 

outcome after followup (time 1). The arrow 
connecting treatment assignment (A

0
 ) to the 

outcome (Y
1
) indicates that treatment has a causal 

effect on the outcome. Causal graphs are used 
to represent the investigator’s beliefs about the 
mechanisms that generated the data. Knowledge 
of the causal structure that generates the data 
allows the investigator to better interpret statistical 
associations observed in the data. 

Figure 7.1. Causal graph illustrating a randomized trial 
where assigned treatment (A

0
) has a causal effect on the 

outcome (Y
1
).

Risk Factors

We now let C
0
 be one or more baseline covariates 

measured at time zero. Covariates that are 
predictive of the outcome but have no influence on 
treatment status are often referred to as pure risk 
factors, depicted in Figure 7.2. Conditioning on 
such risk factors is unnecessary to remove bias but 
can result in efficiency gains in estimation2-3 and 
does not induce bias in regression or propensity 
score models.4 Researchers need to be careful not 
to include variables affected by the outcome, as 
adjustment for such variables can increase bias.2 
We recommend including risk factors in statistical 
models to increase the efficiency/precision of 
an estimated treatment effect without increasing 
bias.4

Figure 7.2. Causal graph illustrating a baseline risk 
factor (C

0
) for the outcome (Y

1
).

Confounding

The central threat to the validity of 
nonexperimental CER is confounding. Due 
to the ways in which providers and patients 
choose treatments, the treatment groups may not 
have similar underlying risk for the outcome. 
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Confounding is often illustrated as a common 
cause pathway between the treatment and outcome. 
Measured variables that influence treatment 
assignment, are predictive of the outcome, and 
remove confounding when adjusted for are often 
called confounders. Unmeasured variables on 
a common cause pathway between treatment 
and outcome are referred to as unmeasured 
confounders. For example, in Figure 7.3, 
unmeasured variables U1 and U2 are causes of 
treatment assignment and outcome. In general, 
sources of confounding in observational 
comparative effectiveness studies include 
provider actions, patient actions, and social and 
environmental factors. Unmeasured variable U1 
has a measured confounder C

0
 that is a proxy 

for U1, such that conditioning on C
0
 removes 

confounding by U1, while the unmeasured variable 
U2 does not. 

Figure 7.3. A causal graph illustrating confounding 
from the unmeasured variable U2. Conditioning on the 
measured variable (C

0
), as indicated by the box around 

the variable, removes confounding from U1. Measured 
confounders are often proxies for unmeasurable 
constructs. For example, family history of heart disease 
is a measured variable indicating someone’s risk for 
cardiovascular disease (U1).

Provider Actions

Confounding by indication: Confounding by 
indication, also referred to as “channeling bias,” 
is common and often difficult to control in 
comparative effectiveness studies.5-9 Prescribers 
choose treatments for patients who they believe are 
most likely to benefit or least likely to be harmed. 
In a now historic example, Huse et al. surveyed 
United States physicians about their use of various 
classes of antihypertensive medications and found 
that physicians were more likely to prescribe 
CCBs to high-risk patients than for uncomplicated 
hypertension.1 Any attempt to compare the safety 
or effectiveness between CCBs and other classes 
of antihypertensive medication would need to 

adequately account for the selective use of CCBs 
for higher risk patients. If underlying disease 
severity and prognosis are not precisely measured 
and correctly modeled, CCBs would appear more 
harmful or less effective simply because higher risk 
patients are more likely to receive CCBs. Variables 
measuring risk for the outcome being investigated 
need to be adequately measured and modeled to 
address confounding by indication.

Selective treatment and treatment discontinuation 
of preventive therapy in frail and very sick patients: 
Patients who are perceived by a physician to 
be close to death or who face serious medical 
problems may be less likely to receive preventative 
therapies. Similarly, preventative treatment may 
be discontinued when health deteriorates. This 
may explain the substantially decreased mortality 
observed among elderly users of statins and other 
preventive medications compared with apparently 
similar nonusers.10-11 Even though concerns with 
discontinuation of therapy may be addressed using 
time-varying measures of treatment, this type of 
selective discontinuation presents problems when 
analyzing fixed treatments. For example, when 
conducting database studies, data are extracted and 
analyzed on the basis of the specified study period. 
The more frail elderly who discontinued treatment 
prior to the study window would appear to have 
never received treatment.

Patients with certain chronic diseases or patients 
who take many medications may also have a 
lower probability of being prescribed a potentially 
beneficial medication due to concerns regarding 
drug-drug interactions or metabolic problems.8 
For example, patients with end-stage renal 
disease are less likely to receive medications 
for secondary prevention after myocardial 
infarction.12 Additionally, in a study assessing 
the potential for bias in observational studies 
evaluating use of lipid-lowering agents and 
mortality risk, the authors found evidence of bias 
due to an association between noncardiovascular 
comorbidities and the likelihood of treatment.11 
Due to these findings, researchers have 
recommended statin use and other chronic 
therapies as markers for health status in their 
causal models.11, 13



96

Developing an Observational CER Protocol: A User’s Guide

Patient Actions

Healthy user/adherer bias: Patients who initiate a 
preventive therapy may be more likely than other 
patients to engage in other healthy, prevention-
oriented behaviors. Patients who start a preventive 
medication may have a disposition that makes 
them more likely to seek out preventive health care 
services, exercise regularly, moderate their alcohol 
consumption, and avoid unsafe and unhealthy 
activities.14 Incomplete adjustment for such 
behaviors representative of specific personality 
traits can make preventative medications 
spuriously or more strongly associated with 
reduced risk of a wide range of adverse health 
outcomes. 

Similar to patients who initiate preventive 
medications, patients who adhere to treatment 
may also engage in more healthful behaviors.14-15 
Strong evidence of this “healthy adherer” effect 
comes from a meta-analysis of randomized 
controlled trials where good adherence to placebo 
was found to be associated with mortality benefits 
and other positive health outcomes.16 The benefit 
can be explained by the healthy behaviors of the 
patients who use the medication as prescribed 
rather than placebo effects. Treatment adherence 
is an intermediate variable between treatment 
assignment and health outcomes. Any attempt to 
evaluate the effectiveness of treatment rather than 
the effect of assigned treatment would require 
time-varying treatment analysis where subjects 
are censored when treatment is discontinued. 
Proper adjustment for predictors of treatment 
discontinuation is required to resolve the selection 
bias that occurs when conditioning on patients who 
adhered to assigned treatment.17-18

Physician assessment that patients are functionally 
impaired (defined as having difficulty performing 
activities of daily living) may also influence 
their treatment assignment and health outcomes. 
Functionally impaired patients may be less able 
to visit a physician or pharmacy; therefore, such 
patients may be less likely to collect prescriptions 
and receive preventive health care services.8 This 
phenomenon could exaggerate the benefit of 
prescription medications, vaccines, and screening 
tests.8 

Environmental and Social Factors

Access to health care: Within large populations 
analyzed in multi-use health care databases, 
patients may vary substantially in their ability to 
access health care. Patients living in rural areas, 
for example, may have to drive long distances 
to receive specialized care.8 Other patients face 
different obstacles to accessing health care, such 
as cultural factors (e.g., trust in the medical 
system), economic factors (e.g., ability to pay), 
and institutional factors (e.g., prior authorization 
programs, restrictive formularies), all of which 
may have some direct or indirect relation to 
treatment and study outcomes.8

Intermediate Variables

An intermediate variable is generally thought 
of as a post-treatment variable influenced by 
treatment that may or may not lie on the causal 
pathway between the treatment and the outcome. 
Figures 7.4 and 7.5 illustrate variables affected 
by treatment. In Figure 7.4, C

0
 is a baseline 

confounder and must be adjusted for, but a 
subsequent measurement of the variable at a 
later time (C

1
) is on the causal pathway between 

treatment and outcome. For example, consider the 
study previously described comparing classes of 
antihypertensive medications (A

0
 ) on the risk for 

cardiovascular events (Y
1
). The baseline measure 

of blood pressure is represented by C
0
. Blood 

pressure measured after treatment is initiated, 
with adequate time for the treatment to reach 
therapeutic effectiveness and before the outcome 
assessment, is considered an intermediate variable 
and is represented by C

1
 in Figure 7.4. When the 

goal of CER is to estimate the total causal effect 
of the treatment on the outcome, adjustment 
for variables on the causal pathway between 
treatment and outcome, such as blood pressure 
after treatment is initiated (C

1
), is unnecessary 

and is likely to induce bias2 toward a relative risk 
of 1.0, though the direction can sometimes be in 
the opposite direction. The magnitude of bias is 
greatest if the primary mechanism of action is 
through the intermediate pathway. Thus, it would 
be incorrect to adjust for blood pressure measured 
after the treatment was initiated (C

1
), because 

most of the medication’s effects on cardiovascular 
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disease are mediated through improvements in 
blood pressure. This kind of overadjustment would 
mask the antihypertensive effect of the treatment 
A

0
. 

Pharmacoepidemiological studies that do not 
restrict analyses to incident episodes of treatments 
are subject to this type of overadjustment. 
Measurement of clinical covariates such as blood 
pressure at the time of registry enrollment rather 
than at the time of treatment initiation in an 
established medication user is such an example. 
For such patients, a true baseline measurement is 
unobtainable. The clinical variables for established 
users at the time of enrollment have already 
been influenced by investigational treatments 
and are considered intermediate variables 
rather than baseline confounders. The ability to 
adequately adjust for baseline confounders and not 
intermediate variables is one reason the new user 
design described in chapter 2 is so highly valued.

Figure 7.4. A causal graph representing an intermediate 
causal pathway. Blood pressure after treatment initiation 
(C

1
) is on the causal pathway between antihypertensive 

treatment (A
0
) and cardiovascular events (Y

1
). Baseline 

blood pressure (C
0
) is a measured confounder of disease 

severity (U1) and the box around the variable represents 
adjustment.

Investigators are sometimes interested in separating 
total causal effects into direct and indirect effects. 
In mediation analysis, the investigator intentionally 
measures and adjusts intermediate variables to 
estimate direct and indirect effects. Mediation 
analysis requires a stronger set of identifiability 
assumptions and is discussed in several 
articles.19-33

When conditioning on an intermediate, biases can 
also arise for “direct effects” if the intermediate 
is a common effect of the exposure and an 
unmeasured variable that influences the outcome 
as in Figure 7.5. The “birth-weight paradox” is 

one of the better known clinical examples of this 
phenomenon.27, 32, 34 Maternal smoking seems 
to have a protective effect on infant mortality in 
infants with the lowest birth weight. The seemingly 
protective effect of maternal smoking is a 
predictable association produced from conditioning 
on an intermediate without adequate control 
for confounding between the low birth weight 
(intermediate) and infant mortality (outcome). 
This is illustrated in Figure 7.5. The problem of 
conditioning on a common effect of two variables 
will be further discussed below in the section on 
colliders.

Figure 7.5. A causal diagram illustrating the problem 
of adjustment for the intermediate variable, low birth 
weight (M

1
), when evaluating the causal effect of 

maternal smoking (A
0
) on infant mortality (Y

1
) after 

adjustment for measured baseline confounders (C
0
) 

between exposure and outcome. Confounding at the 
intermediate and outcome, birth defects (U1), remains 
unmeasured.

Time-Varying Confounding

The intention-to-treat analogue of a randomized 
trial, where subjects are assigned to the 
treatment they are first exposed to regardless of 
discontinuation or switching treatments, may not 
be the optimal design for all nonexperimental 
CER. Researchers interested in comparing adverse 
effects of medications that are thought to occur 
only in proximity to using the medication may, for 
example, want to censor subjects who discontinue 
treatment. This type of design is described as a 
“per protocol” analysis. An “as treated” analysis 
allows subjects to switch treatment groups on 
the basis of their use of treatment. Both the “as 
treated” and “per protocol” analysis can be used to 
evaluate time-varying treatment. 
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In a nonexperimental setting, time-varying 
treatments are expected to have time-varying 
confounders. For example, if we are interested in 
comparing cardiovascular events between subjects 
who are completely adherent to CCBs versus 
completely adherent to diuretics, then we may 
consider a time-varying treatment design where 
subjects are censored when they discontinue the 
treatment to which they were first assigned (as 
illustrated in Figure 7.6). If joint predictors of 
compliance and the outcome are present, then 
some sort of adjustment for the time-varying 
predictors must be made. Standard adjustment 
methods may not produce unbiased effects when 
the predictors of adherence and the outcome are 
affected by prior adherence, and a newer class 
of causal effect estimators, such as inverse-
probability-of-treatment weights or g-estimation, 
may be warranted.18, 35

Figure 7.6. A simplified causal graph illustrating 
adherence to initial antihypertensive therapy as a time-
varying treatment (A

0
, A

1
), joint predictors of treatment 

adherence and the outcome (C
0
, C

1
). The unmeasured 

variable (U1) indicates this is a nonexperimental study.

Collider Variables

Colliders are the result of two independent causes 
having a common effect. When we include a 
common effect of two independent causes in 
our statistical model, the previously independent 
causes become associated, thus opening a 
backdoor path between the treatment and outcome. 
This phenomenon can be explained intuitively if 
we think of two causes (sprinklers being on or it is 
raining) of a lawn being wet. If we know the lawn 
is wet, and we know the value of one of the other 
variables (it is not raining), then we can predict the 
value of the other variable (the sprinkler must be 
on). Therefore, conditioning on a common effect 
induces an association between two previously 
independent causes, that is, sprinklers being on 
and rain. 

Bias resulting from conditioning on a collider 
when attempting to remove confounding by 
covariate adjustment is referred to as M-collider 
bias.36 Pure pretreatment M-type structures that 
statistically behave like confounders may be rare; 
nevertheless, any time we condition on a variable 
that is not a direct cause of either the treatment or 
outcome but merely associated with the two, we 
have the potential to introduce M-bias.37 

A hypothetical example of how two independent 
variables can become conditionally associated and 
increase bias follows. Consider a highly simplified 
hypothetical study to compare rates of acute liver 
failure between new users of CCB and diuretics 
using administrative data from a distributed 
network of managed care organizations. As 
illustrated in Figure 7.7, if some of the managed 
care organizations had a formulary policy (U1) 
that caused a lower proportion of patients to be 
initiated on a CCB (A

0
 ), and that same policy 

reduced the chance of receiving medical treatment 
for erectile dysfunction (F

0
), and patients with a 

long history of unmeasured alcohol abuse (U2) 
are more likely to receive treatment for erectile 
dysfunction (F

0
), then adjustment for erectile 

dysfunction treatment may introduce bias by 
generating an association and opening a backdoor 
path that did not previously exist between 
formulary policy (U1) and alcohol abuse (U2). 

Figure 7.7. Hypothetical causal diagram illustrating 
M-type collider stratification bias. Formulary policy 
(U1) influences treatment with CCB (A

0
) and treatment 

for erectile dysfunction (F
0
). Unmeasured alcohol use 

(U2) influences impotence and erectile dysfunction 
treatment (F

0
) and acute liver disease (Y

1
). In this 

example there is no effect of antihypertensive treatment 
on liver disease, but antihypertensive treatment and 
liver disease would be associated when adjusting for 
medical treatment of erectile dysfunction. The box 
around F

0
, represents adjustment and the conditional 

relationship is represented by the dotted arrow 
connecting U1 and U2.
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Although conditioning on a common effect of 
two variables can induce an association between 
two otherwise independent variables, we currently 
lack many compelling examples of pure M-bias 
for pretreatment covariates. Such structures do, 
however, arise more commonly in the analysis of 
social network data.38 Compelling examples of 
collider stratification bias (i.e., selection bias) do 
exist when conditioning on variables affected by 
treatment (as illustrated in Figure 7.5). Collider 
stratification bias can give rise to other biases in 
case-control studies and studies with time-varying 
treatments and confounding.39

Instrumental Variables

An instrumental variable is a pretreatment 
variable that is a cause of treatment but has 
no causal association with the outcome other 
than through its effect on treatment such as Z

0
 

in Figure 7.8. When treatment has an effect on 
the outcome, an instrumental variable will be 
associated with treatment and the outcome, and 
can thus statistically appear to be a confounder. 
An instrumental variable will also be associated 
with the outcome even when conditioning on 
the treatment variable whenever there is an 
unmeasured common cause of the treatment on the 
outcome. It has been established that inclusion in 
statistical models of variables strongly associated 
with treatment (A

0
 ) but not independently 

associated with the outcome (Y
1
) will increase 

the standard error and decrease the precision of 
the treatment effect.2, 4, 40-41 It is less well known, 
however, that the inclusion of such instrumental 
variables into statistical models intended to 
remove confounding can increase the bias of an 
estimated treatment effect. The bias produced 
by the inclusion of such variables has been 
termed “Z-bias,” as Z is often used to denote an 
instrumental variable.8

Z-bias arises when the variable set is insufficient 
to remove all confounding, and for this reason 
Z-bias has been described as bias-amplification.42-43 
Figure 7.8 illustrates a data-generating process 
where unmeasured confounding exists along with 
an instrumental variable. In this situation, the 
variation in treatment (A

0
 ) can be partitioned into 

three components: the variation explained by the 
instrument (Z

0
), the variation explained by U1, 

and the unexplained variation. The magnitude of 

unmeasured confounding is determined by the 
proportion of variation explained by U1, along 
with the association between U1 and Y

1
. When Z

0
 

is statistically adjusted, one source of variation in 
A

0
  is removed making the variation explained by 

U1 a larger proportion of the remaining variation. 
This is what amplifies the residual confounding 
bias.44 

Figure 7.8. Bias is amplified (Z-bias) when an 
instrumental variable (Z

0
) is added to a model with 

unmeasured confounders (U1).

Any plausible instrumental variable can potentially 
introduce Z-bias in the presence of uncontrolled 
confounding. Indication for treatment was found to 
be a strong instrument45 and provider and ecologic 
causes of variation in treatment choice have been 
proposed as potential instrumental variables that 
may amplify bias in nonexperimental CER.8

A simulation study evaluating the impact of 
adjusting instruments of varying strength when 
in the presence of uncontrolled confounding 
demonstrated that the impact of adjusting 
instrumental variables was small in certain 
situations, a result which led the authors to 
suggest that over-adjustment is less of a concern 
than under-adjustment. Analytic formulae, 
on the other hand, indicate that this bias may 
be quite large, especially when dealing with 
multiple instruments.42 We have discussed bias 
amplification due to adjusting for instrumental 
variables. The use of instrumental variables, 
however, can be employed as an alternative 
strategy to deal with unmeasured confounding.46 
This strategy is discussed in detail in chapter 10. 

We have presented multiple types of variable 
structures, with a focus on variables that either 
remove or increase bias when adjusted. The 
dilemma is that many of these variable types 
statistically behave like confounders, which are the 
only structural type needing adjustment to estimate 
the average causal effect of treatment.47-48 For this 
reason, researchers should be hesitant to rely on 
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statistical associations alone to select variables 
for adjustment. The variable structure must be 
considered when attempting to remove bias 
through statistical adjustment. 

Proxy, Mismeasured, and 
Unmeasured Confounders

It is not uncommon for a researcher to be aware of 
an important confounding variable and to lack data 
on that variable. A measured proxy can sometimes 
stand in for an unmeasured confounder. For 
example, use of oxygen canisters could be a proxy 
for failing health and functional impairment; 
use of preventive services, such as flu shot, is 
sometime thought to serve as a proxy for healthy 
behavior and treatment adherence. Likewise, 
important confounders sometimes are measured 
with error. For example, self-reported body mass 
index will often be subject to underreporting. 

Researchers routinely adjust analyses using proxy 
confounders and mismeasured confounders. 
Adjusting for a proxy or mismeasured confounder 
will reduce bias relative to the unadjusted 
estimate, provided the effect of the confounder on 
the treatment and the outcome are “monotonic.”48 
In other words, any increase in the confounder 
should on average always affect treatment in 
the same direction, and should always affect 
the outcome in the same direction for both the 
treated and untreated groups. If an increase in 
the confounder increased the outcome for the 
treated group and decreased the outcome for the 
untreated group, then adjustment for the proxy or 
mismeasured confounder can potentially increase 
bias. Unfortunately, there are cases, even when 
the measurement error of the confounder is 
nondifferential (i.e., does not depend on treatment 
or outcome), where adjustment for proxy or 
mismeasured confounders can increase, rather than 
decrease, bias.49

Another common problem in trying to 
estimate causal effects is that of unmeasured 
confounding. Sensitivity analysis techniques 
have been developed to address misclassified and 
unmeasured confounding. The reader is referred 
to chapter 11 for further discussion of sensitivity 
analyses.

Selection of Variables To 
Control Confounding 

We present two general approaches to selecting 
variables in order to control confounding in 
nonexperimental CER. The first approach 
selects variables on the basis of background 
knowledge about the relationship of the variable 
to treatment and outcome. The second approach 
relies primarily on statistical associations to 
select variables for control of confounding, 
using what can be described as high-dimensional 
automatic variable selection techniques. The use 
of background knowledge and causal graph theory 
is strongly recommended when there is sufficient 
knowledge of the causal structure of the variables. 
Sufficient knowledge, however, is likely rare when 
conducting studies across a wide geography and 
many providers and institutions. For this reason, 
we also present practical approaches to variable 
selection that empirically select variables on the 
basis of statistical associations.

Variable Selection Based on 
Background Knowledge

Causal Graph Theory

Assuming that a well-defined fixed treatment 
employing an intention-to-treat paradigm and no 
set of covariates predicts treatment assignment 
with 100 percent accuracy, control of confounding 
is all that is needed to estimate causal effects 
with nonexperimental data.47-48 The problem, as 
described above, is that colliders, intermediate 
variables, and instruments can all statistically 
behave like confounders. For this reason, an 
understanding of the causal structure of variables 
is required to separate confounders from other 
potential bias-inducing variables. This dilemma 
has led many influential epidemiologists to 
take a strong position for selecting variables for 
control on the basis of background knowledge 
of the causal structure connecting treatment to 
outcome.50-54

When sufficient knowledge is available to 
construct a causal graph, a graphical analysis of 
the structural basis for evaluating confounding is 
the most robust approach to selecting variables 
for adjustment. The goal is to use the graph to 
identify a sufficient set of variables to achieve 
unconfoundedness, sometimes also called 
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conditional exchangeability.24, 55 The researchers 
specify background causal assumptions using 
causal graph criteria (see supplement 2 of this 
User’s Guide). If the graph is correct, it can be 
used to identify a sufficient set of covariates (C) 
for estimating an effect of treatment (A

0
 ) on 

the outcome (Y
1
). A sufficient set C is observed 

when no variable in C is a descendant of A
0
 and 

C blocks every open path between A
0
 and Y

1
 that 

contains an arrow into A
0
. Control of confounding 

using graphical criteria is usually described as 
control through the “back-door” criteria, the 
idea being that variables that influence treatment 
assignment—that is, variables that have arrows 
pointing to treatment assignment—provide back-
door paths between the A

0
 and Y

1
. It is the open 

back-door pathways that generate dependencies 
between A

0
 and Y

1
 and can produce spurious 

associations when no causal effect of A
0
 on Y

1
 

is present, and that alter the magnitude of the 
association when A

0
 causally affects Y

1
.

Although it is quite technical, causal graph 
theory has formalized the theoretical justification 
for variable selection, added precision to 
our understanding of bias due to under- and 
over-adjustment, and unveiled problems with 
historical notions of statistical confounding. The 
main limitation of causal graph theory is that 
it presumes that the causal network is known 
and that the only unknown is the magnitude 
of the causal contrast between A

0
 and Y

1
 being 

examined. In practice, where observational studies 
include large multi-use databases spanning vast 
geographic regions, such complete knowledge of 
causal networks is unlikely.56-57

Since we rarely know the true causal network 
that represents all common-cause pathways 
between treatment and outcome, investigators 
have proposed more practical variable selection 
approaches based on background knowledge 
when the causal structure is only partially known. 
These strategies include adjusting for all observed 
pretreatment variables thought to have some 
connection to the outcome,58 all known risk 
factors for the outcome,4, 44, 59 and all direct causes 
of the treatment or the outcome.57 The benefits 
and limitations to each approach to removing 
confounding are briefly discussed.

Adjustment for All Observed Pretreatment 
Covariates

Emphasis is often placed on the treatment 
assignment mechanism and on trying to 
reconstruct the hypothetical broken randomized 
experiment that led to the observational data.58 
Propensity score methods are often employed 
for this purpose and are discussed in chapter 10; 
they can be used in health care epidemiology to 
statistically control large numbers of variables 
when outcomes are infrequent.60, 61 Propensity 
scores are the probability of receiving treatment 
given the set of observed covariates. The 
probability of treatment is estimated conditional 
on a set of covariates and the predicted probability 
is then used as a balancing score or matching 
variable across treatment groups to estimate the 
treatment effect. 

The greatest importance is often placed 
on balancing all pretreatment covariates. 
However, when attempts are made to balance 
all pretreatment covariates, regardless of their 
structural form, biases, for example from 
including strong instruments and colliders, can 
result,37, 57, 62 though, as noted above, in practice, 
pretreatment colliders are likely rarer than 
ordinary confounding variables.

Adjustment for All Possible Risk Factors for the 
Outcome

Confounding pathways require common cause 
structures between the outcome and treatment. 
A common strategy for removing confounding 
without incidentally including strong instruments 
and colliders is to include in propensity score 
models only variables thought to be direct causes 
of the outcome, that is, risk factors.4, 59, 63 This 
approach requires only background knowledge 
of causes of the outcome, and it does not require 
an understanding of the treatment assignment 
mechanism or how variables that influence 
treatment are related to risk factors for the 
outcome. This strategy, however, may fail to 
include measured variables that predict treatment 
assignment but have an unmeasured ancestor that 
is an outcome risk factor (A

0
←C

0
←U1→Y

1
) as 

illustrated in Figure 3.57
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Disjunctive Cause Criterion

The main practical use of causal graphs is to 
ensure adjustment for confounders and avoid 
adjusting for known colliders.51 In practice, one 
only needs to partly know the causal structure of 
variables relating treatment to the outcome. The 
disjunctive cause criterion is a formal statement of 
the conditions in which variable selection based 
on partial knowledge of the causal structure can 
remove confounding.57 It states that all observed 
variables that are a cause of treatment, a cause of 
outcome, or a cause of both should be included for 
statistical adjustment. It can be shown that when 
any subset of observed variables is sufficient to 
control confounding, the set obtained by applying 
the disjunctive cause criteria will also constitute 
a sufficient set.57 This approach requires more 
knowledge of the variables’ relationship to the 
treatment and outcome using all pretreatment 
covariates, or all risk factors, but less knowledge 
than the back-door path criterion.

Whenever there exists some set of observed 
variables that block all back-door paths (even if 
the researcher does not know which subset this 
is), the disjunctive cause criterion when applied 
correctly by the investigators will identify a set 
of variables that also blocks all back-door paths. 
The other variable selection criteria based on 
all pretreatment covariates and risk factors do 
not have this property.57 The approach performs 
well when the measured variables include some 
sufficient set, but presents problems when 
unmeasured confounding remains. In this case, 
conditioning on an instrument can amplify the 
bias due to unmeasured confounding. Thus, in 
practice, known instruments should be excluded 
before applying the criterion. The best approach to 
variable selection is less clear when unmeasured 
confounding may remain after statistical 
adjustment for measured variables, which is often 
expected in nonexperimental CER. In this case, 
every variable selection approach will result in 
bias. The focus would then be on minimizing 
bias, which requires thoughtful consideration of 
the tradeoff between over- and underadjustment. 
Strong arguments exist for error on the side of 
overadjustment (adjusting for instruments and 
colliders) rather than failing to adjust for measured 
confounders (underadjustment).36, 44 Nevertheless, 

adjustments for instrumental variables have been 
found to amplify bias in practice.45

Empirical Variable Selection 
Approaches 

Historically, data for nonexperimental studies was 
primarily collected prospectively, and thoughtful 
planning was needed to ensure complete 
measurement of all important study variables. 
We now live in an era where every interaction 
between the patient and the health care system 
produces hundreds, if not thousands, of data points 
that are recorded for clinical and administrative 
purposes.64 These large multi-use data sources 
are highly dimensional in that every disease, 
medication, laboratory result, and procedure code, 
along with any electronically accessible narrative 
statements, can be treated as variables. 

The new challenge to the researcher is to select 
a set of variables from this high-dimensional 
space that characterizes the patient’s baseline 
status at the time of treatment selection to enable 
identification of causal effects, or that at least 
produces the least biased estimates. Advances in 
computer performance and the availability of high-
dimensional data have provided unprecedented 
opportunities to use data empirically to “learn” 
associational relationships. Empiric variable 
selection techniques include identifying a subset 
of variables of statistical associations with the 
treatment and/or outcome from the original set 
on the basis of background knowledge of the 
relationship with treatment and/or outcome, 
as well as methods that are considered fully 
automated, where all variables are initially selected 
on the basis of statistical associations. 

Forward and Backward Selection Procedures

When using traditional regression it is not 
uncommon to use, for the purposes of covariate 
selection, what are sometimes called forward and 
backward selection procedures. Forward selection 
procedures begin with an empty set of covariates 
and then consider whether for each covariate, 
the covariate is associated with the outcome 
conditional on treatment (usually using a p-value 
cutoff in a regression model of 0.05 or 0.10). 
The variable that is most strongly associated with 
outcome (based on having the smallest p-value 
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below the cutoff) is then added to the collection of 
variables for which control will be made. Then the 
process begins again, and one considers whether 
each covariate is associated with the outcome 
conditional on the treatment and the covariate 
already selected; the next covariate that is most 
strongly associated is again added to the list. The 
process repeats until all remaining covariates 
are independent of the outcome conditional on 
the treatment and the covariates that have been 
previously selected for control. 

Backward selection begins with all covariates in 
the model; then the investigator considers whether, 
for each covariate, that covariate is independent 
of the outcome conditional on the treatment and 
all other covariates (generally using a p-value 
cutoff in a regression model of 0.05 or 0.10). 
The covariate with the largest p-value above the 
cutoff is then discarded from the list of covariates 
for which control is made. The process begins 
again, and the investigator considers whether, 
for each covariate, that covariate is independent 
of the outcome, conditional on the treatment and 
the other covariates not yet discarded; the next 
covariate with the weakest association with the 
outcome based on p-value is again discarded. The 
process repeats itself until all variables still in the 
list are associated with the outcome conditional on 
the treatment and the other covariates that have not 
been discarded.

Provided that the original set of covariates with 
which one begins suffices for unconfoundedness 
of treatment effects estimates, then if the backward 
selection process correctly discards variables that 
are independent of the outcome conditional on 
the treatment and other covariates, the final set 
of covariates selected by the backwards selection 
procedure will also yield a set of covariates 
that suffices for conditional exchangeability.57 
Likewise, under an additional assumption of 
“faithfulness,”57 the forward selection procedure 
will identify a set of covariates that suffices for 
unconfoundedness provided that the original set 
of covariates with which one begins suffices to 
achieve unconfoundedness and that the forward 
selection process correctly identifies the variables 
that are and are not independent of the outcome 
conditional on the treatment and other covariates. 
The forward and backward procedures can thus 

be useful for covariate reduction, but both of them 
suffer from the need to specify a set of covariates 
to begin with that suffice for unconfoundedness. 
Thus, even if an investigator intends to employ 
forward or backward selection procedures for 
covariate reduction, other approaches will be 
needed to decide on what set of covariates these 
forward and backward procedures should begin 
with. Moreover, when the initial set of covariates 
does not suffice for unconfoundedness, it is 
not clear how forward and backward selection 
procedures will perform. Variable selection 
procedures also suffer from the fact that estimates 
about treatment effects are made after having 
already used the data to decide on covariates.

Similar but more sophisticated approaches using 
machine learning algorithms such as boosting, 
random forest, and other ensemble methods have 
become increasingly common, as have sparsity-
based methods such as LASSO, in dealing with 
high-dimensional data.65 All of these empirically 
driven methods are limited, however, in that they 
are in general unable to distinguish between 
instruments, colliders, and intermediates on the 
one hand and genuine confounders on the other. 
Such differentiation needs to be made a priori on 
substantive grounds.

Automatic High-Dimensional “Proxy” 
Adjustment

In an attempt to capture important proxies for 
unmeasured confounders, Schneeweiss and 
colleagues proposed an algorithm that creates a 
very large set of empirically defined variables 
from health care utilization data.56 The created 
variables capture the frequency of codes for 
procedures, diagnoses, and medication fills during 
a pre-exposure period. The variables created by 
the algorithm are required to have a minimum 
prevalence in the source population and to have 
some marginal association with both treatment 
and outcome. After they are defined, the variables 
can be entered into a propensity score model. 
In several example studies where the true effect 
of a treatment was approximately known from 
randomized controlled trials, the algorithm 
appeared to perform as well as or better than 
approaches based on simply adjusting for an a 
priori set of variables.45, 66 By defining variables 
prior to treatment, propensity score methods will 
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not “over-adjust” by including causal intermediates. 
Using statistical associations to select potential 
confounders can result in selection and adjustment 
of colliders and instruments. Therefore, the analyst 
should attempt to remove such variables from the 
set of identified variables. For example, variables 
that are strong predictors of treatment but have 
no obvious relation to the outcome should be 
considered potential sources of Z-bias.

A Practical Approach Combining Causal 
Analysis With Empirical Selection

There is a continuum between knowing and not 
knowing the causal, structural relations of variables. 
We suggest that a practical approach to variable 
selection may involve a combination of (1) a 
priori variable selection based on the researcher’s 
knowledge of causal relationships together with 
(2) empirical selection using the high-dimensional 
approach described above.8  The empirical 
approach could be used to select from a set of a 
priori variables on the basis of the researcher’s 
knowledge, and to ultimately select those to be 
included in the analysis. This more limited use 
of empirically derived variables may reduce 
confounding while simultaneously reducing the risk 
of including variables that could increase bias.

Conclusion

In practice, the particular approach that one adopts 
for observational research will depend on the 
researcher’s knowledge, the data quality, and the 
number of covariates. A deep understanding of 
the specific clinical and public health risks and 
opportunities that lie behind the research question 
often drives these decisions.

Regardless of the strategy employed, researchers 
should clearly describe how variables are measured 
and provide a rationale for a priori selection of 
potential confounders, ideally in the form of a 
causal graph. If the researchers decide to further 
eliminate variables using an empiric variable 
selection technique, then they should present both 
models and describe what criteria were used to 
determine inclusion and exclusion. Researchers 
should consider whether or not they believe 
adequate measurement is available in the dataset 
when employing a specific variable selection 
strategy. In addition, all variables included for 
adjustment should be listed in the manuscript or 
final report. When empirical selection procedures 
are newly developed or modified, researchers 
are encouraged to make the protocol and code 
publicly available to improve transparency and 
reproducibility.

Even when researchers use the methods we describe 
in this chapter, confounding can persist. Sensitivity 
analysis techniques are useful for assessing residual 
confounding resulting from unmeasured and 
imperfectly measured variables.67-75 Sensitivity 
analysis techniques assess the extent to which an 
unmeasured variable would have to be related to 
the treatment and outcome of interest in order to 
substantially change the conclusions drawn about 
causal effects. We refer the reader to chapter 11 for 
discussion of sensitivity analysis techniques. 
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Checklist: Guidance and key considerations for covariate selection in CER 
protocols 

Guidance Key Considerations Check

Describe the data source(s) 
that will be used to identify 
important covariates.

 – Provide information about the source(s) of data for key 
covariates, acknowledging the strengths and weaknesses of the 
data source (e.g., administrative claims, EMRs, chart review, 
patient self-report) for measuring each type of covariate. 

o

Discuss the potential for 
unmeasured confounding and 
misclassification.

 – Discuss the potential impact of unmeasured confounders and 
misclassification or measurement error.

 – Propose specific formal sensitivity analysis of the impact of 
unmeasured confounders or misclassified variables.

o

Describe the approach to be 
used to select covariates for 
statistical models.

 – Discuss approaches based on background knowledge (e.g., 
selection of all hypothesized common causes, disjunctive cause 
criterion, directed acyclic graphs, or selection of all variables 
thought to be risk factors for the outcome.

 – Describe model reduction techniques to be used (e.g., forward or 
backward selection).

 – Describe empirical variable selection techniques and how 
variables were removed from consideration when they were 
thought to be bias-inducing rather than bias-reducing variables.

o
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Abstract

The research question dictates the type of data required, and the researcher must best match the data to the 
question or decide whether primary data collection is warranted.  This chapter discusses considerations 
for data source selection for comparative effectiveness research (CER). Important considerations for 
choosing data include whether or not the key variables are available to appropriately define an analytic 
cohort and identify exposures, outcomes, covariates, and confounders. Data should be sufficiently 
granular, contain historical information to determine baseline covariates, and represent an adequate 
duration of followup.  The widespread availability of existing data from electronic health records, 
personal health records, and drug surveillance programs provides an opportunity for answering CER 
questions without the high expense often associated with primary data collection. If key data elements 
are unobtainable in an otherwise ideal dataset, methods such as predicting absent variables with available 
data or interpolating for missing time points may be used.  Alternatively, the researcher may link 
datasets. The process of data linking, which combines information about one individual from multiple 
sources, increases the richness of information available in a study. This is in contrast to data pooling and 
networking, which are normally used to increase the size of an observational study. Each data source has 
advantages and disadvantages, which should be considered thoroughly in light of the research question of 
interest, as the validity of the study will be dictated by the quality of the data. This chapter concludes with 
a checklist of key considerations for selecting a data source for a CER protocol.

Chapter 8. Selection of Data Sources
Cynthia Kornegay, Ph.D.* 

U.S. Food and Drug Administration, Silver Spring, MD

Jodi B. Segal, M.D., MPH 
Johns Hopkins University, Baltimore, MD

Introduction  

Identifying appropriate data sources to answer 
comparative effectiveness research (CER) questions 
is challenging. While the widespread availability of 
existing data provides an opportunity for answering 
CER questions without the high expense associated 
with primary data collection, the data source must 
be chosen carefully to ensure that it can address the 
study question, that it has a sufficient number of 
observations, that key variables are available, that 
there is adequate confounder control, and that there 
is a sufficient length of followup.

This chapter describes data that may be useful for 
observational CER studies and the sources of these 
data, including data collected for both research and 

nonresearch purposes. The chapter also explains 
how the research question should dictate the type of 
data required and how to best match data to the issue 
at hand. Considerations for evaluating data quality 
(e.g., demonstrating data integrity) and privacy 
protection provisions are discussed. The chapter 
concludes by describing new sources of data that 
may expand the options available to CER researchers 
to address questions. Recommendations for “best 
practices” regarding data selection are included, 
along with a checklist that researchers may use when 
developing and writing a CER protocol. To start, 
however, it is important to consider primary data 
collection for observational research, since the use of 
secondary data may be impossible or unwise in some 
situations.

*Disclaimer: The views expressed are the authors’ and not necessarily those of the Food and Drug Administration.
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Data Options

Primary data are data collected expressly for 
research. Observational studies, meaning 
studies with no dictated intervention, require the 
collection of new data if there are no adequate 
existing data for testing hypotheses. In contrast, 
secondary data refer to data that were collected 
for other purposes and are being used secondarily 
to answer a research question. There are other 
ways to categorize data, but this classification is 
useful because the types of information collected 
for research differ markedly from the types of 
information collected for nonresearch purposes. 

Primary Data 

Primary data are collected by the investigator 
directly from study participants to address a 
specific question or hypothesis. Data can be 
collected by in-person or telephone interviews, 
mail surveys, or computerized questionnaires. 
While primary data collection has the advantage 
of being able to address a specific study question, 
it is often time consuming and expensive. The 
observational research designs that often require 
primary data collection are described here. While 
these designs may also incorporate existing data, 
we describe them here in the context of primary 
data collection. The need to use these designs 
is determined by the research question; if the 
research question clearly must be answered with 
these designs below, primary data collection may 
be required. Additional detail about the selection 
of suitable study design for observational CER is 
presented in chapter 2. 

Prospective Observational Studies

Observational studies are those in which 
individuals are selected on the basis of specific 
characteristics and their progress is monitored. A 
key concept is that the investigator does not assign 
the exposure(s) of interest. There are two basic 
observational designs: (1) cohort studies, in which 
selection is based on exposure and participants 
are followed for the occurrence of a particular 
outcome, and (2) case-control studies, where 
selection is based on a disease or condition and 
participants are contacted to determine a particular 
exposure. 

Within this framework, there is a wide variety of 
possible designs. Participants can be individuals 
or groups (e.g., schools or hospitals); they 
can be followed into the future (prospective 
data collection) or asked to recall past events 
(retrospective data collection); and, depending on 
the specific study questions, elements of the two 
basic designs can be combined into a single study 
(e.g., case-cohort or nested case-control studies). 
If information is also collected on those who are 
either not exposed or do not have the outcome 
of interest, observational studies can be used for 
hypothesis testing.

An example of a prospective observational study 
is a recent investigation comparing medication 
adherence and viral suppression between once-
daily and more-than-once daily pill regimens 
in a homeless and near-homeless HIV-positive 
population.1 Adherence was measured using 
unscheduled pill-count visits over the six-
month study period while viral suppression 
was determined at the end of the study. The 
investigators found that both adherence and viral 
suppression levels were higher in the once-daily 
groups compared to the more-than-once-daily 
groups. The results of this study are notable as 
they indicate an effective method to treat HIV in a 
particularly hard-to-reach population. 

Registries 

In the most general sense, a registry is a systematic 
collection of data. Registries that are used for 
research have clearly stated purposes and targeted 
data collection.  

Registries use an observational study design that 
does not specify treatments or require therapies 
intended to change patient outcomes. There are 
generally few inclusion and exclusion criteria to 
make the results broadly generalizable. Patients 
are typically identified when they present for care, 
and the data collected generally include clinical 
and laboratory tests and measurements. Registries 
can be defined by specific diseases or conditions 
(e.g., cancer, birth defects, or rheumatoid arthritis), 
exposures (e.g., to drug products, medical devices, 
environmental conditions, or radiation), time 
periods, or populations. Depending on their 
purpose and the information collected, registry 
data can potentially be used for public health 



111

Chapter 8. Selection of Data Sources

surveillance, to determine incidence rates, to 
perform risk assessment, to monitor progress, 
and to improve clinical practice. Registries can 
also provide a unique perspective into specialized 
subpopulations. However, like any long-term 
study, they can be very expensive to maintain due 
to the effort required to remain in contact with the 
participants over extended periods of time.  

Registries have been used extensively for CER. 
As an example, the United States Renal Data 
System (USRDS) is a registry of individuals 
receiving dialysis that includes clinical data as 
well as medical claims. This registry has been 
used to answer questions about the comparative 
effectiveness and safety of erythropoiesis-
stimulating agents and iron in this patient 
population,2 the comparative effectiveness of 
dialysis chain facilities,3 and the effectiveness 
of nocturnal versus daytime dialysis.4 Another 
registry is the Surveillance, Epidemiology, and 
End Results (SEER) registry, which gathers data 
on Americans with cancer. Much of the SEER 
registry’s value for CER comes from its linkage 
to Medicare data. Examples of CER studies that 
make use of this linked data include an evaluation 
of the effectiveness of radiofrequency ablation for 
hepatocellular carcinoma compared to resection 
or no treatment5 and a comparison of the safety 
of open versus radical nephrectomy in individuals 
with kidney cancer.6 A third example is a study 
that used SEER data to evaluate survival among 
individuals with bladder cancer who underwent 
early radical cystectomy compared to those patients 
who did not.7

Secondary Data

Much secondary data that are used for CER can 
be considered byproducts of clinical care. The 
framework developed by Schneeweiss and Avorn 
is a useful structure with which to consider the 
secondary sources of data generated within this 
context.8 They described the “record generation 
process,” which is the information generated 
during patient care. Within this framework, data 
are generated in the creation of the paper-based 
or electronic medical (health) record, claims are 

generated so that providers are paid for their 
services, and claims and dispensing records are 
generated at the pharmacy at the time of payment. 
As data are not collected specifically for the 
research question of interest, particular attention 
must be paid to ensure that data quality is sufficient 
for the study purpose.    

A thorough understanding of the health 
system in which patients receive care and the 
insurance products they use is needed for a clear 
understanding of whether the data are likely to 
be complete or unavailable for the population of 
interest. Integrated health delivery systems such as 
Kaiser Permanente, in which patients receive the 
majority of their care from providers and facilities 
within the system, provide the most complete 
picture of patient medical care.

Electronic Health Record (EHR) Data

Electronic health records (EHRs) are used by 
health care providers to capture the details of 
the clinical encounter. They are chiefly clinical 
documentation systems. They are populated with 
some combination of free text describing findings 
from the history and the physical examination; 
results inputted with check-boxes to indicate 
positive responses; patient-reported responses to 
questions for recording symptoms or for screening; 
prefilled templates that describe normal and 
abnormal findings; imported text from earlier notes 
on the patient; and linkages to laboratory results, 
radiology reports and images; and specialized 
testing results (such as electrocardiograms, 
echocardiograms, or pulmonary function test 
results). Some EHRs include other features, such 
as flow sheets of clinical results, particularly 
those results used in inpatient settings (e.g., 
blood pressure measurements); problem and 
habits lists, electronic medication administration 
records; medication reconciliation features; 
decision support systems and/or clinical pathways 
and protocols; and specialty features for the 
documentation needs of specialty practices. The 
variables that might be accessible from EHR data 
are shown in Table 8.1. 
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Table 8.1. Data elements available in electronic health records and/or in 
administrative claims data

Information EHRs
Administrative 

Claims

Prescriptions ordered Yes No

Pharmacy data (drugs dispensed) Sometimes Yes

Medication list Often No

Inpatient medications ordered or administered Sometimes No

Clinical data: vital signs or point of care testing results Yes* No

Clinical data: inpatient Sometimes* No

Clinical data: outpatient Yes* No

Age/sex Yes Yes

Race/ethnicity Sometimes Sometimes

Socioeconomic data Sometimes Inferred (from zip code)

Insurance information Yes Yes

Spontaneously reported adverse events Yes Yes 

Diagnoses or procedures coded for payment No Yes

Behavioral risk factors Yes* No

Diet Sometimes* No

Indicators of procedures having being done (laboratory, 
radiologic, therapeutic)

Yes Yes

Results from diagnostic procedures (echocardiography, 
radiology)

Yes No

Laboratory results Yes No

Problem list or summary Yes No

*It should be noted that clinical data available in EHRs are often missing informatively in high proportions. For 
example, a study examining data quality issues in an EHR-based survival analysis of patients with pancreatic cancer 
found that patients with late-stage ductal adenocarcinomas were more likely to have missing biochemistry lab data 
compared to early-stage patients (6-9% incomplete in early-stage patients versus 13-23% incomplete in late-stage 
patients).9 The authors conclude that this was likely due to terminally ill patients receiving care outside of the EHR 
system in dedicated cancer treatment centers. 
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As can be seen from the variable list, the details 
about an individual patient may be extensive. The 
method of data collection is not standardized and 
the intervals between visits vary for every patient 
in accordance with usual medical practice. Of 
note, medication information captured in EHRs 
differs from data captured by pharmacy claims. 
While pharmacy claims contain information on 
medications dispensed (including the national drug 
code [NDC] to identify the medication, dispensing 
date, days’ supply, and amount dispensed), EHRs 
more typically contain information on medications 
prescribed by a clinician. Medication data from 
EHRs are often captured as part of the patient’s 
medication list, which may include the medication 
name, order date, strength, units, quantity, and 
frequency. Again depending on the specific EHR 
system, inpatient medication orders may or may 
not be available but are not typically. As EHRs 
differ substantially, it is important to understand 
what fields are captured in the EHR under 
consideration, and to realize that completeness 
of specific fields may vary depending on how 
individual health care providers use the EHR. 

An additional challenge with EHR data is that 
patients may receive care at different facilities, and 
information regarding their health may be entered 
separately into multiple systems that are not 
integrated and are inconsistent across practices. If 
a patient has an emergency room visit at a hospital 
that is not his usual site of care, it is unlikely to 
be recorded in the electronic medical record that 
houses the majority of his clinical information. 
Additionally, for a patient who resides in two or 
more cities during the year, the electronic medical 
record at each institution may be incomplete if the 
institutions do not share a common data system.  

Paper-Based Records

Although time-intensive to access, the use of 
paper-based records is sometimes required. Many 
practices still do not have EHRs; in 2009, it was 
estimated that only half of outpatient practices 
in the U.S. were using EHRs.10 Exclusion of 
sites without electronic records may bias study 
results because these sites may have different 
patient populations or because there may be 
regional differences in practice. These data 
may be particularly valuable if patient-reported 
information is needed (such as severity of pain, 

quality of symptoms, mental health concerns, and 
habits). The richness of information in paper-based 
records may exceed that in EHR data particularly if 
the electronic data is template driven. Additionally, 
paper-based records are valuable as a source of 
primary data for validating data that is available 
elsewhere such as in administrative claims. With 
a paper medical record, the researcher can test 
the sensitivity and specificity of the information 
contained in claims data by reviewing the paper 
record to see if the diagnosis or procedure was 
described. In that situation, the paper-based record 
would be considered the reference standard for 
diagnoses and procedures. 

Administrative Data

Administrative health insurance data are 
typically generated as part of the process of 
obtaining insurance reimbursement. Presently, 
medical claims are most often coded using the 
International Classification of Disease (ICD) 
and the Common Procedural Terminology (CPT) 
systems. The ICD, Ninth Revision, Clinical 
Modification (ICD-9-CM) is the official system 
of assigning codes to diagnoses and procedures 
associated with hospital utilization in the United 
States. Much of Europe is using ICD-10 already, 
while the United States currently uses ICD-9 for 
everything except mortality data; the United States 
will start using ICD-10 in October 2013.11 The 
ICD coding terminology includes a numerical 
list of codes identifying diseases, as well as a 
classification system for surgical, diagnostic, and 
therapeutic procedures. The National Center for 
Health Statistics and the Centers for Medicare 
and Medicaid Services (CMS) are responsible for 
overseeing modifications to the ICD. For outpatient 
encounters, the CPT is used for submitting claims 
for services. This terminology was initially 
developed by the American Medical Association 
in 1966 to encourage the use of standard terms and 
descriptors to document procedures in the medical 
record, to communicate accurate information on 
procedures and services to agencies concerned 
with insurance claims, to provide the basis for a 
computer-oriented system to evaluate operative 
procedures, and for actuarial and statistical 
purposes. Presently, this system of terminology 
is the required nomenclature to report outpatient 
medical procedures and services to U.S. public 
and private health insurance programs, as the 
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ICD is the required system for diagnosis codes 
and inpatient hospital services.12 The diagnosis-
related group (DRG) classification is a system to 
classify hospital cases by their ICD codes into one 
of approximately 500 groups expected to have 
similar hospital resource use; it was developed 
for Medicare as part of the prospective payment 
system. The DRG system can be used for research 
as well, but with the recognition that there may be 
clinical heterogeneity within a DRG. There is no 
correlate of the DRG for outpatient care.

When using these claims for research purposes, 
the validity of the coding is of the highest 
importance. This is described in more detail 
below. The validity of codes for procedures 
exceeds the validity of diagnostic codes, as 
procedural billing is more closely tied to 
reimbursement.  Understandably, the motivation 
for coding procedures correctly is high. For 
diagnosis codes, however, a diagnosis that is under 
evaluation (e.g., a medical visit or a test to “rule 
out” a particular condition) is indistinguishable 
from a diagnosis that has been confirmed.  
Consequently, researchers tend to look for 
sequences of diagnoses, or diagnoses followed 
by treatments appropriate for those diagnoses, 
in order to identify conditions of interest. 
Although Medicare requires an appropriate 
diagnosis code to accompany the procedure code 
to authorize payment, other insurers have looser 
requirements. There are few external motivators 
to code diagnoses with high precision, so the 
validity of these codes requires an understanding 
of the health insurance system’s approach to 
documentation.13-20 Investigators using claims 
data for CER should validate the key diagnostic 
and procedure codes in the study. There are many 
examples of validation studies in the literature 
upon which to pattern such a study.18, 21-22 

Additional codes are available in some datasets—
for example, the “present on admission” code 
that has been required for Medicare and Medicaid 
billing since October 2007—which may help in 
further refinement of algorithms for identifying 
key exposures and outcomes. 

Pharmacy Data

Outpatient pharmacy data include claims 
submitted to insurance companies for payment 
as well as the records on drug dispensing kept 

by the pharmacy or by the pharmacy benefits 
manager (PBM). Claims submitted to the 
insurance company use the NDC as the identifier 
of the product.  The NDC is a unique, 10-digit, 
3-segment number that is a standard product 
identifier for human drugs in the United States. 
Included in this number are the active ingredient, 
the dosage form and route of administration, the 
strength of the product, and the package size and 
type. The U.S. Food and Drug Administration 
(FDA) has authority over the NDC codes. Claims 
submitted to insurance companies for payment for 
drugs are submitted with the NDC code as well 
as information about the supply dispensed (e.g., 
how many days the prescription is expected to 
cover), and the amount of medication dispensed. 
This information can be used to provide a detailed 
picture of the medications dispensed to the patient. 
Medications for which a claim is not submitted or 
is not covered by the insurance plan (e.g., over-the-
counter medications) are not available. It should 
be noted that claims data are generally weak for 
medical devices, due to a lack of uniform coding, 
and claims often do not include drugs that are not 
dispensed through the pharmacy (e.g., injections 
administered in a clinic).  

Large national PBMs, such as Medco Health 
Solutions or Caremark, administer prescription 
drug programs and are responsible for processing 
and paying prescription drug claims. They are 
the interface between the pharmacies and the 
payers, though some larger health insurers manage 
their own pharmacy data. PBM models differ 
substantially, but most maintain formularies, 
contract with pharmacies, and negotiate prices 
with drug manufacturers. The differences in 
formularies across PBMs may offer researchers 
the advantage of natural experiments, as some 
patients will not be dispensed a particular 
medication even when indicated, while other 
patients will be dispensed the medication, 
solely due to the formulary differences of their 
PBMs. Some PBMs own their own mail-order 
pharmacies, eliminating the local pharmacies’ role 
in distributing medications. PBMs more recently 
have taken on roles of disease management and 
outcomes reporting, which generates additional 
data that may be accessible for research purposes. 
Figure 8.1 illustrates the flow of information 
into PBMs from health plans, pharmaceutical 
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manufacturers, and pharmacies. PBMs contain a 
potentially rich source of data for CER, provided 
that these data can be linked with outcomes. 
Examples of CERs that have been done using 
PBM data include two studies that evaluate patient 
adherence to medications as their outcome. One 
compared adherence to different antihypertensive 
medications using data from Medco Health 
Solutions. The researchers identified differential 

adherence to antihypertensive drugs, which has 
implications for their effectiveness in practice.23 
Another study compared costs associated with a 
step-therapy intervention that controlled access 
to angiotensin-receptor blockers with the costs 
associated with open access to these drugs.24 Data 
came from three health plans that contracted with 
one PBM and one health plan that contracted with 
a different PBM.  

Figure 8.1. How pharmacy benefits managers fit within the payment system 
for prescription drugs

From the Congressional Budget Office, based in part on General Accounting Office, Pharmacy Benefit Managers: 
Early Results on Ventures with Drug Manufacturers. GAO/HEHS-96-45. November 1995.

Frequently, PBM data are accessible through 
health insurers along with related medical claims, 
thus enabling single-source access to data on 
both treatment and outcomes. Data from the U.S. 
Department of Veterans Affairs (VA) Pharmacy 
Benefits Manager, combined with other VA data or 
linked to Medicare claims, are a valuable resource 
that has generated comparative effectiveness and 
safety information.25-26

Regulatory Data

FDA has a vast store of data from submissions 
for regulatory approval from manufacturers.  
While the majority of the submissions are not in 
a format that is usable for research (e.g., paper-

based submissions or PDFs), increasingly the 
submissions are in formats where the data may be 
used for purposes beyond that for which they were 
collected, including CER. Additionally, FDA is 
committed to converting many of its older datasets 
into research-appropriate data. FDA presently 
has a contractor working on conversion of 101 
trials into useable data that will be stored in their 
clinical trial repository.27 It also has pilot projects 
underway that are exploring the benefits and risks 
of providing external researchers access to their 
data for CER. It is recognized that issues of using 
proprietary data or trade-secret data will arise, 
and that there may be regulatory and data-security 
challenges to address. A limitation of using these 
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trials for CER is that they are typically efficacy 
trials rather than effectiveness trials. However, 
when combined using techniques of meta-analysis, 
they may provide a comprehensive picture of a 
drug’s efficacy and short-term safety.  

Repurposed Trial Data or Data From Completed 
Observational Studies

A vast amount of data is collected for clinical 
research in studies funded by the Federal 
government. By law, these data must be made 
available upon request to other researchers, as 
this was information collected with taxpayer 
dollars. This is an exceptional source of existing 
data.  To illustrate, the Cardiovascular Health 
Study is a large cohort study that was designed 
to identify risk factors for coronary heart disease 
and stroke by means of a population-based 
longitudinal cohort study.28 The study investigators 
collected diverse outcomes including information 
on hospitalization, specifically heart failure 
associated hospitalizations. Thus, the data from 
this study can be used to answer comparative 
effectiveness questions about interventions and 
their effectiveness on preventing heart failure 
complications, even though this was not a primary 
aim of the original cohort study. A limitation is 
that the researcher is limited to only the data that 
were collected—an important consideration when 
selecting a dataset. Some of the datasets have 
associated biospecimen repositories from which 
specimens can be requested for additional testing.

Completed studies with publicly available datasets 
often can be identified through the National 
Institutes of Health institute that funded the study. 
For example, the National Heart Lung and Blood 
Institute has a searchable site (at https://biolincc.
nhlbi.nih.gov/home/) where datasets can be 
identified and requested. Similarly, the National 
Institute of Diabetes and Digestive and Kidney 
Diseases has a repository of datasets as well as 
instructions for requesting data (at https://www.
niddkrepository.org/niddk/jsp/public/resource.jsp).  

Considerations for Selecting 
Data

Required Data Elements

The research question must drive the choice of 
data.  Frequently, however, as the question is 

developed, it becomes clear that a particular piece 
of information is critical to answering the question. 
For example, a question about interventions that 
reduce the amount of albuminuria will almost 
certainly require access to laboratory data that 
include measurement of this outcome.  Reliance 
on ICD-9 codes or use of a statement in the 
medical record that “albuminuria decreased” will 
be insufficiently specific for research purposes. 
Similarly, a study question about racial differences 
in outcomes from coronary interventions requires 
data that include documentation of race; this 
requirement precludes use of most administrative 
data from private insurers that do not collect this 
information. If the relevant data are not available in 
an existing data source, this may be an indication 
that primary data collection or linking of datasets 
is in order. It is recommended that the investigator 
specify a priori what the minimum requirements 
of the data are before the data are identified, as this 
will help avoid the effort of making suboptimal 
data work for a given study question. 

If some key data elements seem to be unobtainable 
in an otherwise suitable dataset, one might 
consider ways to supplement the available data. 
These strategies may be methodological, such 
as predicting absent data variables with data that 
are available, or interpolating for missing time 
points. The authors recently completed a study in 
which the presence of obesity was predicted for 
individuals in the dataset based on ICD-9 codes.29 
In such instances, it is desirable to provide a 
reference to support the quality of data obtained by 
such an approach.

Alternatively, there may be a need to link datasets 
or to use already linked datasets. SEER-Medicare 
is an example of an already linked dataset that 
combines the richness of the SEER cancer 
diagnosis data with claims data from Medicare.30 
Unique patient identifiers that can be linked across 
datasets (such as Social Security numbers) provide 
opportunities for powerful linkages with other 
datasets.31 Other methods have been developed that 
do not rely on the existence of unique identifiers.32 
As described above, linking medical data with 
environmental data, population-level data, or 
census data provides rich datasets for addressing 
research questions. Privacy concerns raised by 
individual contributors can greatly increase the 
complexity and time needed for a study with linked 
data. 
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Data linking combines information on the same 
person from multiple sources to increase the 
richness of information available in a study. This 
is in contrast to data pooling and networking, 
tools primarily used to increase the size of an 
observational study.  

Time Period and Duration of Followup

In an ideal situation, researchers have easy access 
to low-cost, clinically rich data about patients 
who have been continuously observed for long 
periods of time. This is seldom the case. Often, 
the question being addressed is sensitive to the 
time the data were collected. If the question is 
about a newly available drug or device, it will be 
essential that the data capture the time period of 
relevance. Other questions are less sensitive to 
secular changes; in these cases, older data may be 
acceptable.

Inadequate length of followup for individuals 
is often the key time element that makes data 
unusable. How long is necessary depends on the 
research question; in most cases, information 
about outcomes associated with specific exposures 
requires a period of followup that takes the natural 
history of the outcomes into account. Data from 

registries or from clinical care may be ideal for 
studies requiring long followup. Commercial 
insurers see large amounts of turnover in their 
covered patient populations, which often makes 
the length of time that data are available on a 
given individual relatively short. This is also the 
case with Medicaid data. The populations in data 
from commercial insurers or Medicaid, however, 
are so large that reasonable numbers of relevant 
individuals with long followup can often be 
identified. It should be noted that when a study 
population is restricted to patients with longer 
than typical periods of followup within a database, 
the representativeness of those patients should 
be assessed. Individuals insured by Medicare 
are typically insured by Medicare for the rest of 
their lives, so these data are often appropriate for 
longitudinal research, especially when they can be 
coupled with data on drug use.  Similarly, the VA 
health system is often a source of data for CER 
because of the relatively stable population that is 
served and the detail of the clinical information 
captured in the system’s electronic records. 

Table 8.2 provides the types of questions, with an 
example for each, that an investigator should ask 
when choosing data.  

Table 8.2. Questions to consider when choosing data

Question To Ask Example

Are the key variables available to define an analytic 
cohort (the study inclusion and exclusion criteria)? 

Do the data contain height and weight or BMI to 
define a cohort of overweight or obese subjects?

Are the key variables available for identifying 
important subpopulations for the study?

Do the data contain a variable describing race for a 
study of racial differences in outcomes of coronary 
stenting?

Are the key variables available for identifying 
the relevant exposures, outcomes, and important 
covariates and confounders?

Do the data contain information on disease 
severity to assess the comparative effectiveness 
of conservative versus intensive management 
of prostate cancer? (Disease severity is a likely 
confounder.)

Are the data sufficiently granular for the purpose 
of the study?

Is it adequate to know whether the individual 
has hypertension or not, or is it important to 
know that the individual has Stage I or Stage III 
hypertension?

Are there a sufficient number of exposed 
individuals in the dataset?

Are there enough individuals who filled 
prescriptions for exenatide to study the outcomes 
from this medication?
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Table 8.2. Questions to consider when choosing data (continued)

Question To Ask Example

Do the data contain a sufficiently long duration of 
followup after exposures?

Are there data on weight for at least three years 
after bariatric surgery?

Are there sufficient historical data to determine 
baseline covariates?

Is there information on hospitalizations in the year 
prior to cardiac resynchronization therapy for an 
observational study of outcomes from the device?

Is there a complete dataset from all appropriate 
settings of care to comprehensively identify 
exposures and outcomes?

Is there a record of emergency department visits in 
addition to a record of outpatient and hospitalized 
care in a study of children with asthma?

Are data available on other exposures outside of 
the healthcare setting? 

Are there data on aspirin exposure when purchased 
over the counter in a study of outcomes after 
myocardial infarction?

Are there a sufficient number of observations in 
the dataset if restricting the patient population is 
necessary for internal validity (e.g., restriction to 
new users)?

Are there a sufficient number of new users (based 
on a “washout period” of at least 6 months) of 
each selective and non-selective nonsteroidal anti-
inflammatory drug (NSAID) to study outcomes in 
users of each of these medications?

What is the difference between the study and 
target population demographics and distributions 
of comorbid illnesses? Will these differences 
affect the interpretation and generalizability of the 
results?

Is the age range of the data source appropriate to 
address the study question? Can any differences 
in demographics between data source and target 
population be addressed through appropriate 
design or analysis approaches?

Ensuring Quality Data

When considering potential data resources for a 
study, an important element is the quality of the 
information in the resource. Using databases with 
large amounts of missing information, or that do 
not have rigorous and standardized data editing, 
cleaning, and processing procedures increases the 
risk of inconclusive and potentially invalid study 
results.

Missing Data

One of the biggest concerns in any investigation 
is missing data. Depending on the elements and if 
there is a pattern in the type and extent of missing-
ness, missing data can compromise the validity of 
the resource and any studies that are done using 
that information. It is important to understand what 
variables are more or less likely to be missing, to 
define a priori an acceptable percent of missing 
data for key data elements required for analysis, 
and to be aware of the efforts an organization takes 

to minimize the amount of missing information. 
For example, data resources that obtain data from 
medical or insurance claims will generally have 
higher completion rates for data elements used 
in reimbursement, while optional items will be 
completed less frequently. A data resource may 
also have different standards for individual versus 
group-level examination. For example, while 
ethnicity might be the only missing variable in 
an individual record, it could be absent for a 
significant percentage of the study population.

Some investigators impute missing data elements 
under certain circumstances. For example, in a 
longitudinal resource, data that were previously 
present may be carried forward if the latest 
update of a patient’s information is missing. 
Statistical imputation techniques may be used 
to estimate or approximate missing data by 
modeling the characteristics of cases with missing 
data to those who have such data.33-35 Data that 
have been generated in this manner should be 
clearly identified so that they can be removed 
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for sensitivity analyses, as may be appropriate.  
Additional information about methods for handling 
missing data in analysis is covered in chapter 10. 

Changes That May Alter Data 
Availability and Consistency Over Time

Any data resource that collects information over 
time is likely to eventually encounter changes 
in the data that will affect longitudinal analyses. 
These changes could be either a singular event 
or a gradual shift in the data and can be triggered 
by the organization that maintains the database or 
by events beyond the control of that organization 
including adjustments in diagnostic practices, 
coding and reimbursement modifications, or 
increased disease awareness. Investigators should 
be aware of these changes as they may have a 
substantial effect on the study design, time period, 
and execution of the project.

Sudden changes in the database may be dealt 
with by using trend breaks. These are points in 
time where the database is discontinuous, and 
analyses that cross over these points will need to 
be interpreted with care. Examples of trend break 
events might be major database upgrades and/or 
redesigns or changes in data suppliers. Other trend 
break events that are outside the influence of the 
maintenance organization might be medical coding 
upgrades (e.g., ICD-9 to ICD-10), announcements 
or presentations at conferences (e.g., Women’s 
Health Initiative findings) that may lead to changes 
in medical practice, or high profile drug approvals 
or withdrawals.

More gradual events can also affect the data 
availability. Software upgrades and changes 
might result in more data being available for 
recently added participants versus individuals 
who were captured in prior versions. Changes in 
reimbursement and recommended practice could 
lead to shifts in use of ICD-9 codes, or to more or 
less information being entered for individuals.

Validity of Key Data Definitions 

Validity assessment of key data in an investigation 
is an important but sometimes overlooked issue in 
health care research using secondary data. There is 
a need to assess not only the general definition of 
key variables, but also their reliability and validity 

in the particular database chosen for the analysis. 
In some cases, particularly for data resources 
commonly used for research, other researchers or 
the organization may have validated outcomes of 
health events (e.g., heart attack, hospitalization, 
or mortality).36 Creating the best definitions for 
key variables may require the involvement of 
knowledgeable clinicians who might suggest 
that the occurrence of a specific procedure or a 
prescription would strengthen the specificity of 
a diagnosis. Knowing the validity of other key 
variables, such as race/ethnicity, within a specific 
dataset is essential, particularly if results will be 
described in these subgroups. 

Ideally, validity is examined by comparing 
study data to additional or alternative records 
that represent a “gold standard,” such as paper-
based medical records. We described in the 
Administrative Data section above how validity of 
diagnoses associated with administrative claims 
might be assessed relative to paper-based records. 
EHRs and non–claims-based resources do not 
always allow for this type of assessment, but a 
more accommodating validation process has not 
yet been developed. When a patient’s primary 
health care record is electronic, there may not be 
a paper trail to follow. Commonly, all activity is 
integrated into one record, so there is no additional 
documentation. On the other hand, if the data 
resource pulls information from a switch company 
(an organization that specializes in routing claims 
between the point of service and an insurance 
company), there may be no mechanism to find 
additional medical information for patients. 
In those cases, the information included in the 
database is all that is available to researchers. 

Data Privacy Issues

Data privacy is an ongoing concern in the field 
of health care research. Most researchers are 
familiar with the Health Insurance Portability and 
Accountability Act (HIPAA), enacted in 1996 
in part to standardize the security and privacy of 
health care information. HIPAA coined the term 
“protected health information” (PHI), defined as 
any individually identifiable health information (45 
CFR 160.103). HIPAA requires that patients be 
informed of the use of their PHI and that covered 
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entities (generally, health care clearinghouses, 
employer-sponsored health plans, health insurers, 
and medical service providers) track the use 
of PHI. HIPAA also provides a mechanism for 
patients to report when they feel these regulations 
have been violated.37 

In practical terms, this has resulted in an increase 
in the amount and complexity of documentation 
and permissions required to conduct healthcare 
research and a decrease in patient recruitment and 
participation levels.38-39 While many data resources 
have established procedures that allow for access 
to data without personal identifiers, obtaining 
permission to use identifiable information from 
existing data sources (e.g., from chart review) or 
for primary data collection can be time consuming. 
Additionally, some organizations will not permit 
research to proceed beyond a certain point (e.g., 
beginning or completing statistical analyses, 
dissemination, or publication of results) without 
proper institutional review board approvals in 
place. If a non-U.S. data resource is being used, 
researchers will need to be aware of differences 
between U.S. privacy regulations and those in the 
country where the data resource resides.

Adherence to HIPAA regulations can also affect 
study design considerations. For example, since 
birth, admission, and discharge dates are all 
considered to be PHI, researchers may need to use 
a patient’s age at admission and length of stay as 
unique identifiers. Alternatively, a limited data set 
that includes PHI but no direct patient identifiers 
such as name, address, or medical record numbers 
may be defined and transferred with appropriate 
data use agreements in place. Organizations may 
have their own unique limits on data sharing 
and pooling. For example, in the VA system, the 
general records and records for condition-specific 
treatment, such as HIV treatment, may not be 
pooled. Additional information regarding HIPAA 
regulations as they apply to data used for research 
may be found on the National Institutes of Health 
Web site.40 

Emerging Issues and 
Opportunities

Data From Outside of the United States

Where appropriate, non-U.S. databases may be 
considered to address CER questions, particularly 
for longitudinal studies. One of the main reasons 
is that, unlike the majority of U.S. health care 
systems, several countries with single-payer 
systems, such as Canada, the United Kingdom, 
and the Netherlands, have regional or national 
EMR systems. This makes it much easier to obtain 
complete, long-term medical records and to follow 
individuals in longitudinal studies.41 

The Clinical Practice Research Datalink (CPRD) is 
a collection of anonymized primary care medical 
records from selected general practices across the 
United Kingdom. These data have been linked 
to many other datasets to address comparative 
effectiveness questions. An example is a study 
that linked the CPRD to the Myocardial Ischaemia 
National Audit Project registry in England and 
Wales. The researchers answered questions about 
the risks associated with discontinuing clopidogrel 
therapy after a myocardial infarction (performed 
when the database was called General Practice 
Research Database).42

While the selection of a non-U.S. data source may 
be the right choice for a given study, there are a 
number of things to consider when designing a 
study using one of these resources.

One of the main considerations is if the study 
question can be appropriately addressed using 
a non-U.S. resource. Questions that should be 
addressed during the study design process include:

•	  Is the exposure of interest similar between the 
study and target population? For example, if the 
exposure is a drug product, is it available in the 
same dose and form in the data resource? Is it 
used in the same manner and frequency as in 
the United States?  
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•	  Are there any differences in availability, cost, 
practice, or prescribing guidelines between the 
study and target populations? Has the product 
been available in the study population and the 
United States for similar periods of time?

•	  What is the difference between the health care 
systems of the study and target populations? 
Are there differences in diagnosis methods and 
treatment patterns for the outcome of interest? 
Does the outcome of interest occur with the 
same frequency and severity in the study and 
target populations?

•	  Are the comparator treatments similar to those 
that would be available and used in the United 
States?

An additional consideration is data access. Access 
to some resources, such as the United Kingdom’s 
CPRD, can be purchased by interested researchers. 
Others, such as Canada’s regional health care 
resources, may require the personal interest of 
and an official association with investigators in 
that country who are authorized to use the system. 
If a non-U.S. data resource is appropriate for a 
proposed study, the researcher will need to become 
familiar with the process for accessing the data 
and allow for any extra time and effort required to 
obtain permission to use it. 

A sound justification for selecting a non-U.S. data 
resource, a solid understanding of the similarities 
and differences of the non-U.S. versus the U.S. 
systems, as well as careful discussion of whether 
the results of the study can be generalized to U.S. 
populations will help other researchers and health 
care practitioners interpret and apply the results 
of non-U.S.-based research to their particular 
situations.

Point of Care Data Collection and 
Interactive Voice Response/Other 
Technologies

Traditionally, the data used in epidemiologic 
studies have been gathered at one point in time, 
cleaned, edited, and formatted for research use 
at a later point. As technology has developed, 
however, data collected close to the point of care 
increasingly have been available for analysis.  
Prescription claims can be available for research in 
as little as one week.

In conjunction with a shortened turnaround time 
for data availability, the point at which data are 
coded and edited for research is also occurring 
closer to when the patient received care. Many 
people are familiar with health care encounters 
where the physician takes notes, which are then 
transcribed and coded for use. With the advent 
of EHRs, health information is now coded and 
transcribed into a searchable format at the time of 
the visit; that is, the information is directly coded 
as it is collected, rather than being transcribed 
later.

Another innovation is using computers to collect 
data. Computer-aided data collection has been 
used in national surveys since the 1990s43 and 
also in types of research (such as risky behaviors, 
addiction, and mental health) where respondents 
might not be comfortable responding to a personal 
interviewer.44-46

The advantages of these new and timely data 
streams are more detailed data, sometimes 
available in real or near-real time that can be 
used to spot trends or patterns. Since data can be 
recorded at the time of care by the health care 
provider, this may help minimize miscoding and 
misinterpretation. Computerized data collection 
and Interactive Voice Response are becoming 
easier and less expensive to use, enabling 
investigators to reach more participants more 
easily.  Some disadvantages are that these data 
streams are often specialized (e.g., bedside 
prescribing), and, without linkage to other 
patient characteristics, it can be difficult to track 
unique patients.  Also, depending on the survey 
population, it can be challenging to maintain 
current telephone numbers.47-48

Data Pooling and Networking

A major challenge in health research is studying 
rare outcomes, particularly in association with 
common exposures. Two methods that can be used 
to address this challenge are data pooling and 
networking. Data pooling is combining data, at 
the level of the unit of analysis (i.e., individual), 
from several sources into a single cohort for 
analysis. Pooled data may also include data from 
unanalyzed and unpublished investigations, 
helping to minimize the potential for publication 
bias. However, pooled analyses require close 
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coordination and can be very difficult to complete 
due to differences in study methodology and 
collection practices. An example is an analysis that 
pooled primary data from four cohorts of breast 
cancer survivors to ask a new question about the 
effectiveness of physical activity. The researchers 
had to ensure the comparability of the definitions 
of physical activity and its intensity in each 
cohort.49 Another example is a study that pooled 
data from four different data systems including 
from Medicare, Medicaid, and a private insurer 
to assess the comparative safety of biological 
products in rheumatologic diseases. The authors 
describe their assessment of the comparability of 
covariates across the data systems.50 Researchers 
must be sensitive to whether additional informed 
consent of individuals is needed for using their 
data in combination with other data. Furthermore, 
privacy concerns sometimes do not allow for the 
actual combination of raw study data.51

An alternative to data pooling is data networking, 
sometimes referred to as virtual data networks 
or distributed research networks. These networks 
have become possible as technology has developed 
to allow more sophisticated linkages. In this 
situation, common protocols, data definitions, 
and programming are developed for several 
data resources. The results of these analyses are 
combined in a central location, but individual 
study data do not leave the original data resource 
site. The advantage of this is that data security 
concerns may be fewer. As with data pooling, the 
differences in definitions and use of terminology 
requires that there be careful adjudication before 
the data is combined for analyses. Examples of 
data networking are the HMO Research Network 
and FDA’s Sentinel Initiative.52-54

The advantage of these methods is the ability 
to create large datasets to study rare exposures 
and outcomes. Data pooling can be preferable 
to meta-analyses that combine the results of 
published studies because unified guidelines can 
be developed for inclusion criteria, exposures, and 
outcomes, and analyses using individual patient 
level data allow for adjustment for differences 
across datasets. Often, creation and maintenance 
of these datasets can be time consuming and 
expensive, and they generally require extensive 

administrative and scientific negotiation, but they 
can be a rich resource for CER.

Personal Health Records

Although they are not presently used for research 
to a significant extent, personal health records 
(PHRs) an alternative to electronic medical 
records. Typically, PHRs are electronically stored 
health records that are initiated by the patient. The 
patient enters data about his or her health care 
encounters, test results, and, potentially, responses 
to surveys or documentation of medication use. 
Many of these electronic formats are Web-based 
and therefore easily accessible by the patient 
when receiving health care in diverse settings. 
The application that is used by the patient may be 
one for which he or she has purchased access, or 
it may be sponsored by the health care setting or 
insurer with which the patient has contact. Other 
PHRs, such as HealthVault and NoMoreClipboard, 
can be accessed freely. One example of a widely 
used PHR is MyHealtheVet, which is the personal 
health record provided by the VA to the veterans 
who use its health care system.55 MyHealtheVet is 
an integrated system in which the patient-entered 
data are combined with the EHR and with health 
management tools.  

While there is ongoing research about how to best 
improve patient outcomes through the creative use 
of personal health records, there is also interest in 
how to best use the rich data contained within the 
personal health records for research. Outstanding 
issues remain regarding data ownership, but there 
is consensus that the data entered in the personal 
health record belongs to the patient and cannot 
be accessed without patient consent, which may 
include explicit documentation of the level of 
data-sharing that the patient would permit, at the 
time of entering data into the record. Many PHRs 
request that the patient state to whom he or she 
grants permission to access portions of the data. 

Work is underway to standardize data collection 
across PHRs through the use of common 
terminologies such as the SNOMED CT 
(Systematized Nomenclature of Medicine—
Clinical Terms) system. Presently, the National 
Library of Medicine (NLM) PHR project is 
validating and improving the NLM’s clinical 



123

Chapter 8. Selection of Data Sources

vocabularies and studying consumers’ use of 
PHR systems.  In 2010, the NLM researchers 
reviewed and enhanced the controlled vocabulary 
for more than 2,000 condition names and 
synonyms and more than 300 surgery procedure 
names by enriching the synonymy, providing the 
consumer-friendly name when feasible, and adding 
SNOMED codes, when available, to these items.56

Patient-Reported Outcomes

Patient-reported outcomes (PROs) may 
occasionally be available in paper-based records 
and EHRs, but they are not presently found in 
administrative data. Wu et al. described several 
strategies that could be employed to increase the 
availability of PROs in administrative data.57 The 
first is to encourage routine collection of PROs in 
clinical care by requiring it for compliance with 
data quality assurance guidelines. The Hospital 
Consumer Assessment of Healthcare Providers and 
Systems (HCAHPS) survey administered by CMS 
assesses patient’s perspectives on their hospital 
care and could be a required activity. Another 
strategy, as described by Wu et al., is the required 
participation of all Medicare managed care 
plans with Medicare Advantage contracts in the 
Medicare Health Outcomes Survey, which collects 
data similar to that in the SF-12 Short-Form 
Health Survey. A third example may be provider 
reimbursement for collecting symptom-related 
outcome data, and thus its required reporting in 

administrative data. None of these approaches are 
currently widely used. Creative interventions to 
increase the availability of PROs in administrative 
data, ideally collected with validated tools and 
instruments, would be valuable to CER. Primary 
data collection of PRO information remains the 
most common means of ensuring that required 
PRO data are available on the patient population of 
interest at the required time points and of adequate 
completeness in order to conduct CER.

Conclusion

The choice of study data needs to be driven by 
the research question. Not all research questions 
can be answered with existing data, and some 
questions will thus require primary data collection. 
For questions amenable to the use of secondary 
data, observational research with existing data 
can be efficient and powerful. Investigators have a 
growing number of options from which to choose 
when looking for appropriate data, from clinical 
data to claims data to existing trial or cohort data.  
Each option has strengths and limitations, and the 
researcher is urged to make a careful match.  In the 
end, the validity of the study is only as good as the 
quality of the data.
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Checklist: Guidance and key considerations for data source selection for a CER 
protocol 

Guidance Key Considerations Check

Propose data source(s) that include data 
required to address the primary and 
secondary research questions.

 – Ensure that the data resource is appropriate for 
addressing the study question.

 – Ensure that the key variables needed to conduct the 
study are available in the data source.

o

Describe details of the data source(s) 
selected for the study.

 – Nature of the data (claims, paper, or electronic 
medical records; if prospective, how the information 
is/was collected and from whom).

 – Coding system(s) that may be used (e.g., ICD9 or 
ICD10; HCPCS; etc.)

 – Population included in the data source (ages, 
geography, etc.).

 – Other features (e.g., health  plan membership; 
retention rate [i.e., average duration of followup for 
members in the database, proportion of patients with 
followup sufficiently long for the study purpose]).

 – Time period covered by the data source(s). 
If non-U.S., describe relevant differences in health 
care and how this will affect the results.

o

Describe validation or other quality 
assessments that have been conducted 
on the data source that are relevant to the 
data elements required for the study.

 – If validation/quality assessments have not previously 
been performed, propose a method to assess data 
quality. o

Describe what patient identifiers are 
necessary for the research purpose, 
how they will be protected, and what 
permissions/waivers will be required.

o

Provide details on any data linkage 
approach, and the quality/accuracy of the 
linkage, if applicable.

 – Provide enough detail to clarify the quality of the 
linkage approach. o

HCPCS = Healthcare Common Procedure Coding System, ICD = International Classification of Disease
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Abstract

The feasibility of a study often rests on whether the projected number of accrued patients is adequate 
to address the scientific aims of the study. Accordingly, a rationale for the planned study size should 
be provided in observational comparative effectiveness research (CER) study protocols. This chapter 
provides an overview of study size and power calculations in randomized controlled trials (RCTs), 
specifies considerations for observational comparative effectiveness research (CER) study size 
planning, and highlights study size considerations that differ between RCTs and observational studies of 
comparative effectiveness. The chapter concludes with a checklist of key considerations for study size 
planning for a CER protocol.
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Introduction

An important aspect of the assessment of study 
feasibility is whether the projected number of 
accrued patients is adequate to reasonably address 
the scientific aims of the study. Many journals have 
endorsed reporting standards that ask investigators to 
report the rationale for the study size. For example, 
the Strengthening the Reporting of Observational 
Studies in Epidemiology (STROBE) checklist asks 
investigators to report their rationale, which may 
include a statistical power calculation. However, such 
a rationale is often missing from study protocols. 
This is problematic when investigators interpret 
study findings in terms of the statistical significance 
in relation to the null hypothesis, which implies both 
a prespecified hypothesis and adequate statistical 
power (e.g., ≥80% for detecting a clinically important 
increase in harm). Without the context of a numeric 
rationale for the study size, readers may misinterpret 
the lack of a statistically significant difference in 
effect as false reassurance of lack of harm, or falsely 
conclude that there is no benefit when comparing two 
interventions.

Study Size and Power 
Calculations in RCTs

The study planning needed to achieve various study 
sizes and an understanding of statistical power 
that a given study size can yield are important 
aspects in the design of randomized controlled 
trials (RCTs). Reporting on the rationale underlying 
the size of treatment arms is clearly specified in 
the Consolidated Standards of Reporting Trials 
(CONSORT) and STrengthening the Reporting of 
OBservational studies in Epidemiology (STROBE) 
reporting guidelines, and institutional review boards 
(IRBs) often require such statements in a study 
protocol before data collection can begin.1 The 
rationale for study size in an RCT usually depends 
on calculations of the study size needed to achieve 
a specified level of statistical power for the primary 
hypothesis under study, defined as the probability 
of rejecting the null hypothesis when a specific 
alternative hypothesis (the primary hypothesis 
under study) is true. In the case of a trial comparing 
treatments, this is the probability of finding a 
statistically significant difference between treatments 
in the primary outcome if the treatments do indeed 
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differ by the amount specified. Several software 
packages and online tools exist for performing 
these calculations, such as Stata and Power 
Analysis and Sample Size (PASS).2-3 Textbooks 
give more detail on the calculations for a wide 
variety of data structures and statistical models.4

Calculating statistical power requires specification 
of several investigator choices and assumptions, 
each of which has important implications and must 
be specified with sufficient scientific rationale. 
Most importantly, investigators must specify a 
primary study outcome and a minimum treatment 
effect of interest for that outcome. This quantity, 
often referred to as the clinically meaningful or 
minimum detectable difference, identifies the 
size of the smallest potential treatment effect 
that would be of clinical relevance. Study size is 
calculated assuming that this value represents the 
true treatment effect. If the true treatment effect 
is larger than this quantity, then the power for a 
given study size will be even higher than originally 
calculated. 

In addition to the minimum treatment effect 
of interest, calculating the needed study size 
requires specifying a measure of data variability. 
In trials with a continuous outcome (e.g., 
LDL cholesterol), investigators must make 
assumptions about the standard deviation of the 
outcome in each trial arm; when the outcome 
is the occurrence of an event (e.g., death), then 
an assumed event rate in the control group is 
necessary. If the assumed event rate in the control 
group is combined with the specified treatment 
effect of interest, then one can calculate the 
expected event rate in each group if the minimum 

clinically important treatment effect is achieved. 
The CONSORT statement recommends reporting 
these quantities (the expected results in each group 
under the minimum detectable difference) rather 
than the minimum detectable difference. It is 
recommended that estimates of standard deviations 
and event rates used in study size calculations be 
taken from existing literature or pilot studies when 
available. 

Finally, needed study size depends on the 
chosen Type I error rate (a) and the required 
statistical power. For the majority of studies, the 
conventional cutoff for statistical significance,  
a = 0.05, is used, but this quantity should be 
clearly specified nonetheless. Many studies also 
use a standard required power of 80 percent, 
although other values are often considered. In 
RCTs that have study size constraints, due to 
budget or the pool of available patients, the power 
obtained from the achievable study size should be 
described. Potential reductions in the number of 
recruited patients available for analysis (e.g., due 
to loss to followup) should also be discussed. 

Table 9.1 shows an example of an adequate 
consideration of study size under several potential 
scenarios that clearly specify assumptions about 
the baseline risk of the primary outcome under 
study, the minimum clinically relevant treatment 
effect, and the required power. In this table, 
all of the necessary quantities are reported for 
determining the adequacy of the chosen study size; 
and investigators, funding agencies, and ethics 
review boards can make informed decisions about 
the potential utility of the planned study.

Table 9.1. Example study size table for an RCT comparing the risk of death for 
two alternative therapies* 

Scenario
Effect of 
Interest

Therapy 1 
Risk

Therapy 2 
Risk

Desired 
Power

Needed 
Study Size

Needed 
Recruitment

1 0.75 0.020 0.015 80% 10,795 13,494

2 0.75 0.100 0.075 80% 2,005 2,507

3 0.50 0.100 0.050 80% 435 544

4 0.50 0.100 0.050 90% 592 728*

All calculations assume a Type I error rate of 0.05. The effect of interest is specified as a risk ratio. Study size is 
reported per treatment arm, and a 20% dropout rate is assumed for calculating the needed recruitment.
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These considerations in sample size and power 
in the context of RCTs are also relevant for 
nonrandomized studies, but their application in 
nonrandomized studies may differ. The following 
section is for additional consideration, particularly 
for nonrandomized studies.

Considerations for 
Observational CER Study Size 
Planning

Bland has commented that funding agencies 
and journals put investigators in an inconsistent 
position: Funding agencies ask for statistical power 
calculations to test one hypothesis for the primary 
outcome, yet journals ask for confidence intervals.5 
In his commentary, Bland proposed that we 
resolve that inconsistency by asking investigators 
to base their study size on the expected precision 
of all relevant comparisons. Goodman and Berlin 
recommended a similar idea in 1994 (page 204 of 
their article):6

 In our experience, expressing the implications 
of sample size calculations in the same 
language as is used in a published paper, 
instead of the language of power and detectable 
differences, helps researchers to understand the 
implications more clearly and take them more 
seriously. This in turn can produce meaningful 
discussions about the aims of the study, which 
power considerations rarely seem to inspire. 

Basing the study size on the expected width of 
confidence intervals offers another advantage: 
Investigators no longer need to commit to a 
primary outcome and a primary comparison (e.g., 
among alternative interventions).

Many funding agencies, however, rely on the 
conventional power calculations advocated by 
most trialists. Therefore, this section primarily 
focuses on power calculations and adapts 
trialists’ conventional advice to nonrandomized 
or observational studies because they introduce 
complexities that randomized trials do not need 
to consider. For example, investigators may 
not be able to estimate the power or precision 
of their proposed comparisons until they have 
generated the propensity score and constructed 
matched cohorts, which may exclude patients 
and interventions that appeared eligible when the 
cohort was assembled. 

Case Studies

Schneeweiss and colleagues published one of the 
first Developing Evidence to Inform Decisions 
about Effectiveness (DEcIDE) Program studies 
on comparative effectiveness; they compared the 
short-term risk of mortality in elderly patients 
who started a conventional versus an atypical 
antipsychotic medication regimen,7 reproducing an 
earlier study by Wang and colleagues.8 Consistent 
with most nonexperimental studies, especially in 
the pre-STROBE era, their methods section does 
not offer a rationale for the cohort study’s size. 
Based on their patient counts for each class of 
antipsychotic medication and the number of deaths 
observed during the first 180 days after starting 
medication, we calculated the statistical power for 
their study question: Do conventional antipsychotic 
medications pose a higher risk than atypical 
antipsychotic medications as measured by all-cause 
mortality?

We considered an inferiority hypothesis by using 
the crude mortality risk observed in the control 
cohort of atypical medication patients (9.58 
percent), and then assigning the conventional 
medication cohort a 10-percent higher risk (10.54 
percent), a clinically important excess risk. Based 
on the numbers of patients and deaths noted above, 
Stata’s sample size command, sampsi, reported 
statistical power of 0.83. Their subgroup analyses 
would have had lower power, but the main study 
was appropriately powered for its primary outcome 
and comparison.

Considerations That Differ for 
Nonrandomized Studies

Power calculations may require additional 
considerations for application to nonrandomized 
studies. For a well planned and conducted 
RCT, the Type I and Type II errors (i.e., false 
positive or false negative) rank higher as possible 
explanations for a finding of “no statistically 
significant difference” because randomization has 
overcome the potential confounding, the protocol 
has reduced measurement error, et cetera. But for 
nonrandomized studies, Type I and Type II errors 
rank lower on the list of possible explanations 
for such a negative result. Confounding bias, 
measurement error, and other biases should 
concern investigators more than the expected 
precision when they consider the feasibility of a 
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comparative effectiveness study. For example, the 
new user design trades precision for a reduction 
in confounding bias by restricting the study to 
incident users of the interventions under study. 
(See chapter 2 for a discussion of new user 
design.)9 As retrospective database studies become 
larger through distributed networks, insufficient 
statistical power of comparative effectiveness 
estimates will diminish in importance as a 
competing explanation for negative results—at 
least for the primary comparison of common 
interventions—and readers will need to consider 
whether small observed clinical differences matter 
for decisionmaking. For example, database studies 
may identify small excess risks of about 5 percent 
that would fall below the minimum clinically 
important difference specified in a prospective 
study. 

In some cases, controlling for confounding can 
also reduce the precision of estimated effects. The 
reduction in precision is perhaps most clearly seen 
in studies that use propensity score matching. With 
propensity score matching and strong preferential 
prescribing in relation to patient characteristics 
(i.e., less overlap in propensity score distributions 
across cohorts), many patients will drop out of the 
analysis.10 For example, Solomon and colleagues 
identified a cohort of 23,647 patients who were 
eligible for a comparative effectiveness study, but 
only 12,840 (54 percent) contributed to the final 
analysis after matching on the propensity score.11 
Inconveniently, the development of the propensity 
score occurs after the study protocol has been 
written, and the investigators have invested 
considerable time and effort toward completion of 
the comparative effectiveness study. Consequently, 
investigators should consider incorporating 
sensitivity analyses when calculating the expected 

precision of effects and study size estimates. 
For example, they might ask, “If 25 percent of 
the cohort were to drop out of the analysis after 
incorporating the propensity score, how would that 
reduced study size impact the expected precision?”

Because retrospective studies lack a protocol 
for data collection, they often suffer a higher 
frequency of missing data, especially for clinical 
examination values (e.g., blood pressure, body 
mass index, and laboratory results). Investigators 
who undertake a completed-cases analysis, which 
excludes patients with any missing data for 
key variables, may suffer from a smaller study 
size than they anticipated when they wrote the 
study protocol.12 Depending on the nature of the 
missingness, it may be possible for investigators 
to impute certain values and retain patients in the 
final analysis. But as with the development of 
propensity scores, multiple imputation is labor 
intensive, and its success in retaining patients will 
only be known after the protocol has been written.

Conclusion

In order to ensure adequate study size, 
investigators should provide a rationale for study 
size during the planning stages of an observational 
CER study. All definitions and assumptions 
should be specified, including the primary study 
outcome, clinically important minimum effect 
size, variability measure, and Type I and Type 
II error rates. Investigators should also consider 
other factors that may reduce the effective sample 
size, such as loss to followup, reductions due to 
statistical methods to control confounding, and 
missing data, when making their initial assessment 
as to whether the sample size necessary to detect a 
clinically meaningful difference can be achieved.
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Checklist: Guidance and key considerations for study size planning in 
observational CER protocols 

Guidance Key Considerations Check

Describe all relevant assumptions and 
decisions.

Describe: 
-  The primary outcome on which the study size  
   or power estimate is based. 
-  The clinically important minimum effect size  
   (e.g., hazard ratio ≥1.20). 
-  The Type I error level. 
-  The statistical power or Type II error level (for  
   study size calculations) or the assumed sample  
   size (for power calculations). 
-  The details of the sample size formulas and  
   calculations, including correction for loss to  
   followup, treatment discontinuation, and other  
   forms of censoring, and the expected absolute  
   risk or rate for the reference or control cohort,  
   including the expected number of events.

o

Specify the type of hypothesis, the 
minimum clinically important excess/
difference, and the level of confidence 
for the interval (e.g., 95%).

-  Types of hypotheses include equivalence,  
   noninferiority, inferiority. o

Specify the statistical software and 
command, or the formula to calculate 
the expected confidence interval.

-  Examples include Stata, Confidence Interval  
   Analysis, Power Analysis and Sample Size  
   (PASS).

o
Specify the expected precision (or 
statistical power) for any planned 
subgroup analyses.

o
Specify the expected precision (or 
statistical power) in alternative special 
situations, as in sensitivity analyses.

Special situations include: 
-  The investigators anticipate that strong  
   confounding that will eliminate many patients  
   from the analysis (e.g., when matching or  
   trimming on propensity scores). 
-  The investigators anticipate a high frequency of  
   missing data that cannot (or will not) be  
   imputed, which would eliminate many patients  
   from the analysis.

o
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Abstract

This chapter provides a high-level overview of statistical analysis considerations for observational 
comparative effectiveness research (CER). Descriptive and univariate analyses can be used to assess 
imbalances between treatment groups and to identify covariates associated with exposure and/or the study 
outcome. Traditional strategies to adjust for confounding during the analysis include linear and logistic 
multivariable regression models. The appropriate analytic technique is dictated by the characteristics of 
the study outcome, exposure of interest, study covariates, and the underlying assumptions underlying 
the statistical model. Increasingly common in CER is the use of propensity scores, which assign a 
probability of receiving treatment, conditional on observed covariates. Propensity scores are appropriate 
when adjusting for large numbers of covariates and are particularly favorable in studies having a common 
exposure and rare outcome(s). Disease risk scores estimate the probability or rate of disease occurrence 
as a function of the covariates and are preferred in studies with a common outcome and rare exposure(s). 
Instrumental variables, which are measures that are causally related to exposure but only affect the 
outcome through the treatment, offer an alternative to analytic strategies that have incomplete information 
on potential unmeasured confounders. Missing data in CER studies is not uncommon, and it is important 
to characterize the patterns of missingness in order to account for the missing data in the analysis. In 
addition, time-varying exposures and covariates should be accounted for to avoid bias. The chapter 
concludes with a checklist including guidance and key considerations for developing a statistical analysis 
section of an observational CER protocol.

Chapter 10. Considerations for Statistical Analysis
Patrick G. Arbogast, Ph.D. (deceased) 

Kaiser Permanente Northwest, Portland, OR

Tyler J. VanderWeele, Ph.D. 
Harvard School of Public Health, Boston, MA

Introduction

Comparative effectiveness research utilizing 
observational data requires careful and often 
complex analytic strategies to adjust for 
confounding. These can include standard analytic 
strategies, such as traditional multivariable 
regression techniques, as well as newer, more 
sophisticated methodologies, such as propensity 
score matching and instrumental variable analysis. 
This chapter covers data analysis strategies from 
simple descriptive statistics to more complex 
methodologies. Also covered are important 
considerations such as handling missing data and 
analyzing time-varying exposures and covariates.  

While this chapter provides a high-level summary 
of considerations and issues for statistical analysis 
in observational CER, it is not intended to be a 
comprehensive treatment of considerations and 
approaches. We encourage the reader to explore 

topics more fully by referring to the references 
provided.

Descriptive Statistics/
Unadjusted Analyses

Appropriate descriptive statistics and graphical 
displays for different types of data have been 
presented in numerous textbooks.1 These include 
measures of range, dispersion, and central tendency 
for continuous variables, number and percent for 
categorical variables, and plots for evaluating 
data distributions. For comparative effectiveness 
research (CER), it is important to consider useful 
and informative applications of these descriptive 
statistics. For instance, for a cohort study, describing 
study covariates stratified by exposure levels 
provides a useful means to assess imbalances in 
these measures. For a propensity–matched-pairs 
dataset, summarizing study covariates by exposure 
group aids in detecting residual imbalances.  
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Univariate or unadjusted hypothesis testing, 
such as two-sample t-tests, can be conducted to 
identify covariates associated with the exposure 
and/or the study outcome. Since CER studies will 
need to consider potential confounding from a 
large number of study covariates, the descriptive 
statistics should provide a broad picture of the 
characteristics of the study subjects.  

Adjusted Analyses

Traditional Multivariable Regression

Regression analysis is often used in the estimation 
of treatment effects to control for potential 
confounding variables.2 In general, control is 
made for pretreatment variables that are related 
to both the treatment of interest and the outcome 
of interest. Variables that are potentially on the 
pathway from treatment to outcome are not 
controlled for, as control for such intermediate 
variables could block some of the effect of 
the treatment on the outcome. See chapter 7 
(Covariate Selection) for further discussion. 
Traditional multiple regression, in which one uses 
regression models to directly adjust for potential 
confounders and effect modification, has long been 
used in observational studies and can be applied 
in CER. When applying regression modeling, 
careful attention must be paid to ensure that 
corresponding model assumptions are met.3 For 
example, for linear regression, the assumption that 
the mean of the outcome is a linear function of the 
covariates should be assessed. Whether regression 
techniques or other approaches are preferred also 
depends in part on the characteristics of the data. 
For logistic regression, as long as the number 
of outcome events per covariate included in the 
regression model is sufficient (e.g., a rule of 
thumb is 10 or more) and the exposure of interest 
is not infrequent, traditional multiple regression is 
a reasonable strategy and could be considered for 
the primary analysis.4-5 However, when this is not 
the situation, other options should be considered. 
Regression methods also have the disadvantage 
that they may extrapolate to regions where data are 
not available; other techniques such as propensity 
scores (discussed below) more easily diagnose this 
issue.  

When there are many covariates, one approach has 
been to develop more parsimonious models using 
methods such as stepwise regression. However, 
this may involve subjective decisions such as 
the type of variable selection procedure to use, 
whether to base selection upon p-values or change 
in exposure parameter estimates, and where to 
set numeric cutoffs (e.g., p=0.05, 0.10, 0.20) for 
variable inclusion and retention in the model. For 
covariates that confer relatively modest increases 
in disease risk, some variable selection procedures, 
such as stepwise regression, may exclude 
important covariates from the final model.  

Furthermore, stepwise regression has limitations 
that can lead to underestimation of standard 
errors for exposure estimates.6 Other analytical 
strategies which have become more common in 
recent years include using summary variables, 
such as propensity scores and disease risk scores, 
which are described below. Propensity scores 
often perform better than logistic regression when 
the outcome is relatively rare (e.g., fewer than 
10 events per covariate as noted above), whereas 
logistic regression tends to perform better than 
propensity score analysis when the outcome is 
common but the exposure is rare.7

Choice of Regression Modeling 
Approach

The forms of the study outcome, exposure of 
interest, and study covariates will determine the 
regression model to be used. For independent, 
non–time-varying exposures and study covariates, 
generalized linear models (GLMs) such as linear 
or logistic regression can be used. If the study 
outcome is binary with fixed followup and is rare, 
Poisson regression with robust standard errors can 
be used to estimate relative risks and get correct 
confidence intervals.8-9 For count data, Poisson 
regression can also be used but is susceptible to 
problems of overdispersion, wherein the variance 
of the outcomes is larger than what is given by the 
Poisson model. Failure to account for this can lead 
to underestimation of standard errors. A negative 
binomial regression model can help address the 
issue of overdispersion.10 If the value 0 occurs 
more frequently than is predicted by the Poisson or 
negative binomial model, the zero-inflated Poisson 
and zero-inflated negative binomial models can be 
used.11 
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In CER studies in which data are correlated, 
regression models should be specified that take this 
correlation into account. Examples of correlated 
data include repeated measures on study subjects 
over time, patients selected within hospitals across 
many hospitals, and matched study designs. There 
are a number of analysis options that can be 
considered, which depend on the study question 
and particulars of the study design. Repeated 
measures per study subject can be collapsed to a 
single summary measure per subject. Generalized 
estimating equations (GEE) are a frequently 
used approach to account for correlated data. 
Random effects models such as generalized linear 
mixed models (GLMM) are another suitable 
analytical approach to handle repeated measures 
data. Approaches for such longitudinal data are 
described in detail in a number of textbooks.12-13 
For matched study designs (e.g., case-controlled 

designs), models such as conditional logistic 
regression may be considered.

Time-to-event data with variable followup and 
censoring of study outcomes are commonly 
investigated in CER studies. Cox proportional 
hazards regression is a common methodology 
for such studies. In particular, this approach can 
easily handle exposures and study covariates whose 
values vary over time as described in detail below. 
When time-varying covariates are affected by 
time-varying treatment, marginal structural models 
(described below) may be required. A number of 
excellent textbooks describe the analysis of time-
to-event data.14-15 

A high-level overview of modeling approaches in 
relation to the nature of the outcome measure and 
followup assessments is shown in Table 10.1.  

Table 10.1. Summary of modeling approaches as a function of structure of 
outcome measure and followup assessments

Number of Followup Measures and Time Intervals

Outcome Measure

Single Measure

Repeated Measure, 
Fixed Intervals

Repeated Measure, 
Variable IntervalsNo clustering

Clustering (e.g., multi-
site study)

Dichotomous Logistic regression Multilevel (mixed) 
logistic regression, 
GLMM, GEE, 
conditional logistic 
regression

Repeated measures 
ANOVA (MANOVA), 
GLMM, GEE

GLMM, GEE

Continuous Linear regression Multilevel (mixed) 
linear regression, 
GLMM, GEE

Repeated measures 
ANOVA (MANOVA), 
GLMM, GEE

GLMM, GEE

Time to event Cox proportional 
hazards regression

Variance-adjusted Cox 
model or shared frailty 
model

Time to event 
(aggregate or count 
data)

Poisson regression Multilevel (mixed) 
Poisson regression

ANOVA = analysis of variance; GEE = generalized estimating equation; GLMM = generalized linear mixed models; 
MANOVA = multivariate analysis of variance

Note: This high-level summary provides suggestions for selection of a regression modeling approach based on 
consideration of the outcome measure and nature of the followup measures or assessments. Many of these methods 
allow time-varying exposures and covariates to be incorporated into the model. Time-varying confounding may 
require use of inverse-probability-of-treatment-weighted (IPTW)/marginal structural model techniques.
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Model Assumptions

All analytic techniques, including regression, 
have underlying assumptions. It is important 
to be aware of those assumptions and to assess 
them. Otherwise, there are risks with regards 
to interpretation of study findings. These 
assumptions and diagnostics are specific to the 
regression technique being used and will not 
be listed here. They are covered in numerous 
textbooks, depending on the methods being 
used. For example, if Cox proportional hazards 
regression is used, then the proportional hazards 
assumption should be assessed. If the validity of 
this assumption is questionable, then alternatives 
such as time-dependent covariates may need to be 
considered.

Time-Varying Exposures/Covariates

In most CER studies, it is unrealistic to assume 
that exposures and covariates remain fixed 
throughout followup. Consider, for example, HIV 
patients who may be treated with antiretroviral 
therapy. The use of antiretroviral therapy may 
change over time and decisions about therapy may 
in part be based on CD4 count levels, which also 
vary over time. As another illustration, consider 
a study of whether proton pump inhibitors (PPIs) 
prevent clopidogrel-related gastroduodenal 
bleeding. In this situation,warfarin may be started 
during followup. Should one adjust for this 
important potential confounder? Failure to account 
for the time-varying status of such exposures and 
confounders (i.e., by fixing everyone’s exposure 
status at baseline) may severely bias study 
findings.  

As noted above, for time-to-event study outcomes, 
time-dependent Cox regression models can be 
used to account for time-varying exposures 
and covariates. However, difficult issues arise 
when both treatment and confounding variables 
vary over time. In the HIV example, CD4 count 
may be affected by prior therapy decisions, but 
CD4 count levels may themselves go on to alter 
subsequent therapy decisions and the final survival 
outcome. In examining the effects of time-varying 
treatment, a decision must be made as to whether 
to control for CD4 count. A difficulty arises in 
that CD4 count is both a confounding variable 

(for subsequent therapy and final survival) and 
also an intermediate variable (for the effect of 
prior treatment). Thus, control for CD4 count in 
a time-varying Cox model could potentially lead 
to bias because it is an intermediate variable and 
could thus block some of the effect of treatment; 
but failure to control for CD4 count in the model 
will result in confounding and thus bias for the 
effect of subsequent treatment. Both analyses 
are biased. Such problems arise whenever a 
variable is simultaneously on the pathway from 
prior treatment and also affects both subsequent 
treatment and the final outcome.

These difficulties can be addressed by using 
inverse-probability-of-treatment weighting 
(IPTW),16 rather than regression adjustment, for 
confounding control. These IPTW techniques 
are used to estimate the parameters of what is 
often called a marginal structural model, which 
is a model for expected counterfactual outcomes. 
The marginal-structural-model/IPTW approach 
is essentially a generalization of propensity-
score weighting to the time-varying treatment 
context.  The IPTW technique assumes that at each 
treatment decision, the effect of treatment on the 
outcome is unconfounded given the past covariate 
and treatment history. A similar weighting 
approach can also be used to account for censoring 
as well.16 This marginal-structural-model/IPTW 
approach has been developed for binary and 
continuous outcomes,16 time-to-event outcomes,17 
and repeated measures data.18 

Another consideration for time-varying exposures 
is accounting for exposure effect (e.g., the effect of 
medication use) after the subject stopped receiving 
that exposure. One approach is to create another 
exposure level that is a carryover of a biologically 
plausible number of days after exposure use 
has ended and incorporate it as a time-varying 
exposure level in the analysis. Another approach is 
an intent-to-treat analysis in which exposure status 
(e.g., treatment initiation) is assumed throughout 
followup. Cadarette and colleagues (2008) used 
this approach in a study of fracture risk.19 The 
motivation was that treatment adherence may be 
low and accounting for on-treatment status may 
result in information bias.  
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Propensity Scores

Propensity scores are an increasingly common 
analytic strategy for adjusting for large numbers 
of covariates in CER. The use of the propensity 
score for confounding control was proposed by 
Rosenbaum and Rubin.20 The propensity score is 
defined as the probability of receiving treatment (or 
exposure) conditional on observed covariates, and 
it is typically estimated from regression models, 
such as a logistic regression of the treatment 
conditional on the covariates. Rosenbaum and 
Rubin showed that if adjustment for the original set 
of covariates suffices to control for confounding, 
then adjustment for just the propensity score also 
would suffice as well. This strategy is particularly 
favorable in studies having a common exposure 
and rare outcome or possibly multiple outcomes.7 
Propensity scores can be used in subclassification 
or stratification,21 matching,22 and weighting,23 and 
further adjustment can be done using regression 
adjustment.24 Stürmer and colleagues provide a 
review of the application of propensity scores.25  

If adjustment using the propensity score is used, 
balance in study covariates between exposure 
groups should be carefully assessed. This can 
include, but is not limited to, testing for differences 
in study covariates by exposure group after 
adjusting for propensity score. Another common 
assessment of the propensity score is to visually 
examine the propensity score distributions across 
exposure groups. It has been demonstrated that if 
there is poor overlap in these distributions, there is 
a risk of biased exposure estimates when adjusting 
for the propensity score in a regression model.26 
One remedy for this is to restrict the cohort to 
subjects whose propensity score overlaps across all 
exposure groups.27-28 

When feasible, matching on the propensity score 
offers several advantages. Matching subjects 
across exposure groups on propensity score 
ensures, through restriction, that there will be 
good overlap in the propensity score distributions. 
In addition, the presentation of a summary of 
subject characteristics by exposure groups in a 
propensity-matched design allows a reader to 
assess the balance in study covariates achieved by 
matchingin a similar manner to the comparison of 
randomized treatment groups from a randomzed 
clinical trial. This can be done graphically or 

by comparing standardized differences across 
groups. However, in a propensity-matched design, 
one can only ensure that measured covariates are 
being balanced. The consequences of unmeasured 
confounding will need to be assessed using 
sensitivity analysis. See chapter 11 for further 
details. Matching techniques for causal effects are 
described in detail in Rubin29 and best practices for 
constructing a matched control group are provided 
by Stuart and Rubin.30 Care must be taken when 
estimating standard errors for causal effects when 
using matching,31-32 though software is now 
available that makes this task easier.33

A tradeoff between using regression adjustment on 
the full cohort and a propensity-matched design is 
that in the former there may still be imbalances in 
study covariates, and in the latter sample size may 
be reduced to the extent that some of the subjects 
cannot be matched. Connors and colleagues34 
used both analytic strategies in a cohort study of 
the effectiveness of right heart catheterization 
and reported similar findings from both analyses. 
Use of multiple analytic strategies as a form of 
sensitivity analysis may serve as a useful approach, 
drawing from the strengths of both strategies.

Brookhart and colleagues35 investigated variable 
selection approaches and recommend that the 
covariates to be included in the propensity score 
model either be true confounders or at least related 
to the outcome; including covariates related only 
to the exposure has been shown to increase the 
variance of the exposure estimate.

Disease Risk Scores

The disease risk score (DRS) is an alternative 
to the propensity score.36-37 Like the propensity 
score, it is a summary measure derived from the 
observed values of the covariates. However, the 
DRS estimates the probability or rate of disease 
occurrence as a function of the covariates. The 
DRS may be estimated in two ways. First, it can 
be calculated as a “full-cohort” DRS, which 
is the multivariate confounder score originally 
proposed by Miettinen in 1976.38 This score was 
constructed from a regression model relating the 
study outcome to the exposure of interest and the 
covariates for the entire study population. The 
score was then computed as the fitted value from 
that regression model for each study subject, 
setting the exposure status to nonexposure. The 
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subjects were then grouped into strata according to 
the score and a stratified estimate of the exposure 
effect was calculated. The DRS may also be 
estimated as an “unexposed-only” DRS, from 
a regression model fit only for the unexposed 
population, with the fitted values then computed 
for the entire cohort.

The DRS is particularly favorable in studies having 
a common outcome and rare exposure or possibly 
multiple exposures. It is useful for summarizing 
disease risk and assessing effect modification 
by disease risk. Ray and colleagues39 reported 
effect modification by cardiovascular disease risk, 
derived and summarized using DRS, in a study 
of antipsychotics and sudden cardiac death. Also, 
in the presence of a multilevel exposure in which 
some of the levels are infrequent, the DRS may be 
a good alternative to propensity scores.

Instrumental Variables

A limitation of study designs and analytic 
strategies in CER studies, including the use of 
traditional multiple regression, propensity scores, 
and disease risk scores, is incomplete information 
on potential unmeasured confounders. An 
alternative approach to estimate causal effects, 
other than confounding/covariate control, is the 
use of instrumental variables.40 An “instrument” 
is a measure that is causally related to exposure 
but only affects the outcome through the 
treatment and is also unrelated to the confounders 
of the treatment-outcome relationship. With 
an instrument, even if there is unmeasured 
confounding of the treatment-outcome 
relationship, the effect of the instrument on the 
treatment, and the effect of the instrument on the 
outcome can together be used to essentially back 
out the effect of the treatment on the outcome. A 
difficulty of this approach is identifying a high-
quality instrument.

An instrument must be unrelated to the 
confounders of the treatment and the outcome; 
otherwise, instrumental variable analyses can 
result in biases. An instrument also must not 
affect the outcome except through the treatment. 
This assumption is generally referred to as the 
“exclusion restriction.” Violations of this exclusion 
restriction can likewise result in biases. Finally, 

the instrument must be related to the treatment of 
interest. If the association between the instrument 
and the treatment is weak, the instrument is 
referred to as a “weak instrument.” Finite-sample 
properties of estimators using weak instruments 
are often poor, and weak instruments moreover 
tend to amplify any other biases that may be 
present.41-44 If a variable is found that satisfies 
these properties, then it may be used to estimate 
the causal effect of treatment on the outcome. 
However, such a variable may be difficult or 
impossible to identify in some settings. Moreover, 
the assumptions required for a variable to be an 
instrument cannot be fully verified empirically. 

Two-stage least squares techniques are often 
employed when using instrumental variables, 
though with a binary treatment, ratio estimators 
are also common.40 For estimates to be causally 
interpretable, often a monotonicity assumption 
must also be imposed; that is, that the effect 
of instrument on the treatment only operates 
in one direction (e.g., that it is causative or 
neutral for all individuals). Assumptions of 
homogeneous treatment effects across individuals 
also are commonly employed to obtain causally 
interpretable estimates. When homogeneity 
assumptions are not employed, the resulting 
causal effect estimate is generally only applicable 
for certain subpopulations consisting of those 
individuals for whom the instrument is able to 
change the treatment status.40 Such effects are 
sometimes referred to as “local average treatment 
effects.” When the treatment is not binary, 
interpretation of the relevant subpopulation 
becomes more complex.45 Moreover, when 
two-stage least squares procedures are applied 
to binary rather than continuous outcomes, other 
statistical biases can arise.46

Brookhart and colleagues47 applied this approach 
in a study of COX-2 inhibitors with nonselective, 
nonsteroidal anti-inflammatory drugs (NSAIDs) 
on gastrointestinal complications.  Their 
instrument was the prescribing physician’s 
preference for a COX-2 inhibitor relative to an 
NSAID. The results of the instrumental variable 
analysis were statistically similar to results from 
two clinical trials, and contrary to the traditional 
multiple regression analysis that was also 
conducted.
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Schneeweiss and colleagues48 examined the use of 
aprotinin during coronary-artery bypass grafting 
and risk of death. Their primary analysis was a 
traditional multiple regression.  In addition to the 
primary analysis, they also conducted a propensity 
score matched-pairs analysis as well as an 
instrumental variable analysis. All three analyses 
had similar findings.  This methodology of 
employing more than one analytical approach may 
be worth consideration, since the propensity score 
matching does not rely on the exclusion restriction 
and other instrumental variable assumptions, 
whereas instrumental variable analysis circumvents 
the biases introduced by unmeasured confounders, 
provided a good instrument is identified. When 
results differ, careful attention needs to be given to 
what set of assumptions is more plausible.

Missing Data Considerations

It is not uncommon in CER to have missing 
data. The extent of missingness and its potential 
impact on the analysis needs to be considered. 
Before proceeding with the primary analyses, 
it is important to characterize the patterns of 
missingness using exploratory data analyses. This 
step  can provide insights into how to handle the 
missing data in the primary analysis.

For the primary analysis, a common analytical 
approach is to analyze just those subjects who have 
no missing data—called a complete-case analysis. 
However, an initial limitation of this approach 
is that sample size is reduced, which affects 

efficiency even if data are missing completely 
at random. If subjects with missing data differ 
from subjects with complete data, then exposure 
estimates may be biased. For example, suppose 
blood pressure is a potential confounder, and it is 
missing in very ill subjects. Then, excluding these 
subjects can bias the exposure estimate.

Little and Rubin’s textbook describes several 
analytic approaches for handling missing data.49 
One common approach to filling in missing data 
when they are “missing completely at random” 
or “missing at random” is imputation, which the 
book describes in detail. In chapter 3 of Harrell’s 
textbook, he describes missing data and imputation 
and also provides some guidelines for handling 
such data.50 Inverse-probability-weighting 
techniques, described below, can also be employed 
to address issues of missing data.

Conclusion

This chapter has provided a brief overview 
of statistical methods, as well as suggestions 
and recommendations to address the complex 
challenges of analyzing data from observational 
CER studies. Both traditional approaches 
such as multivariable regression and novel but 
established methods such as propensity scores 
and instrumental variable approaches may be 
suitable to address specific data structures, under 
certain assumptions. Thoughtful application of 
these approaches can help the investigator improve 
causal inference.   
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Checklist: Guidance and key considerations for developing a statistical analysis 
section of an observational CER protocol

Guidance Key Considerations Check

Describe the key variables of interest 
with regard to factors that determine 
appropriate statistical analysis.

 – Should discuss independent variables (when they are 
measured, whether they are fixed or time-varying; e.g., 
exposures, confounders, effect modifiers).

 – Should discuss dependent variables or outcomes 
(continuous or categorical, single or repeated measure, 
time to event).

 – Should state if there will be a “multilevel” analysis 
(e.g., an analysis of effects of both practice-level and 
patient-level characteristics on outcome).

o

Propose descriptive analysis or 
graph according to treatment group.

 – Should include the available numbers per group, 
number missing for all key covariates, distributions or 
graphs that are needed to decide if transformation of 
data is needed or to determine an accurate functional 
form of the final model.

 – Should include all potential confounders and effect 
modifiers to assess initial covariate balance by study 
group.

o

Propose the model that will be used 
for primary and secondary analysis 
objectives.

 – Should take into account the design (independent 
vs. dependent observations, matched, repeated 
measurement, clustered), objectives, functional form of 
model, fixed/time-varying followup period, fixed and 
time-varying exposure and other covariates, assessment 
of effect modification/heterogeneity, type of outcome 
variables (categorical, ordinal, or continuous), censored 
data, and the degree of rarity of outcome and exposure.

 – Should propose a suitable approach for adjusting 
for confounding (e.g., multiple regression model, 
propensity scores, instrumental variable [as secondary 
or main analysis]).

o
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Abstract

This chapter provides an overview of study design and analytic assumptions made in observational 
comparative effectiveness research (CER), discusses assumptions that can be varied in a sensitivity 
analysis, and describes ways to implement a sensitivity analysis. All statistical models (and study results) 
are based on assumptions, and the validity of the inferences that can be drawn will often depend on the 
extent to which these assumptions are met. The recognized assumptions on which a study or model rests 
can be modified in order to assess the sensitivity, or consistency in terms of direction and magnitude, of 
an observed result to particular assumptions. In observational research, including much of comparative 
effectiveness research, the assumption that there are no unmeasured confounders is routinely made, and 
violation of this assumption may have the potential to invalidate an observed result. The analyst can also 
verify that study results are not particularly affected by reasonable variations in the definitions of the 
outcome/exposure. Even studies that are not sensitive to unmeasured confounding (such as randomized 
trials) may be sensitive to the proper specification of the statistical model. Analyses are available that 
can be used to estimate a study result in the presence of an hypothesized unmeasured confounder, which 
then can be compared to the original analysis to provide quantitative assessment of the robustness (i.e., 
“how much does the estimate change if we posit the existence of a confounder?”) of the original analysis 
to violations of the assumption of no unmeasured confounders. Finally, an analyst can examine whether 
specific subpopulations should be addressed in the results since the primary results may not generalize 
to all subpopulations if the biologic response or exposure may differ in these subgroups. The chapter 
concludes with a checklist of key considerations for including sensitivity analyses in a CER protocol or 
proposal.

Chapter 11. Sensitivity Analysis
Joseph A.C. Delaney, Ph.D. 

University of Washington, Seattle, WA

John D. Seeger, Pharm.D., Dr.P.H. 
Harvard Medical School and Brigham and  
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Introduction

Observational studies and statistical models rely on 
assumptions, which can range from how a variable is 
defined or summarized to how a statistical model is 
chosen and parameterized. Often these assumptions 
are reasonable and, even when violated, may result 
in unchanged effect estimates. When the results 
of analyses are consistent or unchanged by testing 
variations in underlying assumptions, they are said 
to be “robust.” However, violations in assumptions 
that result in meaningful effect estimate changes 
provide insight into the validity of the inferences that 

might be drawn from a study. A study’s underlying 
assumptions can be altered along a number of 
dimensions, including study definitions (modifying 
exposure/outcome/confounder definitions), study 
design (changing or augmenting the data source or 
population under study), and modeling (modifying 
a variable’s functional form or testing normality 
assumptions), to evaluate robustness of results.  

This chapter considers the forms of sensitivity 
analysis that can be included in the analysis of an 
observational comparative effectiveness study, 
provides examples, and offers recommendations 
about the use of sensitivity analyses.  
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Unmeasured Confounding and 
Study Definition Assumptions

Unmeasured Confounding

An underlying assumption of all epidemiological 
studies is that there is no unmeasured 
confounding, as unmeasured confounders cannot 
be accounted for in the analysis and including 
all confounders is a necessary condition for 
an unbiased estimate. Thus, inferences drawn 
from an epidemiologic study depend on this 
assumption. However, it is widely recognized that 
some potential confounding variables may not 
have been measured or available for analysis: the 
unmeasured confounding variable could either 
be a known confounder that is not present in the 
type of data being used (e.g., obesity is commonly 
not available in prescription claims databases) or 
an unknown confounder where the confounding 
relation is unsuspected.  Quantifying the effect 
that an unmeasured confounding variable would 
have on study results provides an assessment of 
the sensitivity of the result to violations of the 
assumption of no unmeasured confounding. The 
robustness of an association to the presence of a 
confounder,1-2 can alter inferences that might be 
drawn from a study, which then might change how 
the study results are used to  influence translation  
into clinical or policy decisionmaking. Methods 
for assessing the potential impact of unmeasured 
confounding on study results, as well as quasi-
experimental methods to account for unmeasured 
confounding, are discussed later in the chapter.

Comparison Groups  

An important choice in study design is the 
selection of suitable treatment and comparison 
groups. This step can serve to address many 
potential limitations of a study, such as how new 
user cohorts eliminate the survivor bias that 
may be present if current (prevalent) users are 
studied. (Current users would reflect only people 
who could tolerate the treatment and, most likely, 
for whom treatment appeared to be effective).3 

However, this “new user” approach can limit 
the questions that can be asked in a study, as 
excluding prevalent users might omit long-term 

users (which could overlook risks that arise over 
long periods of use). For example, when Rietbrock 
et al. considered the comparative effectiveness of 
warfarin and aspirin in atrial fibrillation4 in the 
General Practice Research Database, they looked 
at current use and past use instead of new use. This 
is a sensible strategy in a general practice setting 
as these medications may be started long before 
the patient is diagnosed with atrial fibrillation. Yet, 
as these medications may be used for decades, 
long-term users are of great interest. In this study, 
the authors used past use to address indication, 
by comparing current users to past users (an 
important step in a “prevalent users” study). 

One approach is to include several different 
comparison groups and use the observed 
differences in potential biases with the different 
comparison groups as a way to assess the 
robustness of the results. For example, when 
studying the association between thiazide diuretics 
and diabetes, one could create reference groups 
including “nonusers,” “recent past users,” “distant 
past users,” and “users of other antihypertensive 
medications.” One would presume that the risk 
of incident diabetes among the “distant past 
users” should resemble that of the “nonusers”; 
if not, there is a possibility that confounding by 
indication is the reason for the difference in risk. 

Exposure Definitions  

Establishing a time window that appropriately 
captures exposure during etiologically relevant 
time periods can present a challenge in study 
design when decisions need to be made in the 
presence of uncertainty.5 Uncertainty about the 
most appropriate way to define drug exposure can 
lead to questions about what would have happened 
if the exposure had been defined a different way. 
A substantially different exposure-outcome 
association observed under different definitions of 
exposure (such as different time windows or dose 
[e.g., either daily or cumulative]) might provide 
insight into the biological mechanisms underlying 
the association or provide clues about potential 
confounding or unaddressed bias. As such, varying 
the exposure definition and re-analyzing under 
different definitions serves as a form of sensitivity 
analysis. 
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Outcome Definitions  

The association between exposure and outcome 
can also be assessed under different definitions of 
the outcome. Often a clinically relevant outcome 
in a data source can be ascertained in several ways 
(e.g., a single diagnosis code, multiple diagnosis 
codes, a combination of diagnosis and procedure 
codes). The analysis can be repeated using these 
different definitions of the outcome, which may 
shed light on the how well the original outcome 
definition truly reflects the condition of interest. 

Beyond varying a single outcome definition, it is 
also possible to evaluate the association between 
the exposure and clinically different outcomes. 
If the association between the exposure and one 
clinical outcome is known from a study with strong 
validity (such as from a clinical trial) and can be 
reproduced in the study, the observed association 
between the exposure of interest and an outcome 
about which external data are not available 
becomes more credible. Since some outcomes 
might not be expected to occur immediately after 
exposure (e.g., cancer), the study could employ 
different lag (induction) periods between exposure 
and the first outcomes to be analyzed in order to 
assess the sensitivity of the result to the definition. 
This result can lead either to insight into potential 
unaddressed bias or confounding, or it could be 
used as a basis for discussion about etiology (e.g., 
does the outcome have a long onset period?). 

Covariate Definitions

Covariate definitions can also be modified to assess 
how well they address confounding in the analysis. 
Although a minimum set of covariates may be used 
to address confounding, there may be an advantage 
to using a staged approach where groups of 
covariates are introduced, leading to progressively 
greater adjustment. If done transparently, 
this approach may provide insight into which 
covariates have relatively greater influences on 
effect estimates, permitting comparison with 
known or expected associations or permitting the 
identification of possible intermediate variables. 

Finally, some covariates are known to be 
misclassified under some approaches. A classic 
example is an “intention to treat” analysis that 
assumes that each participant continues to 

be exposed once they have received an initial 
treatment. Originally used in the analysis of 
randomized trials, this approach has been used in 
observational studies as well.6 It can be worthwhile 
to do a sensitivity analysis on studies that use an 
“intention to treat” approach to see how different 
an “as treated” analysis would be even if intention 
to treat is the main estimate of interest, mostly in 
cases where there is differential adherence in the 
data source between two therapeutic approaches.7  

Summary Variables

Study results can also be affected by the 
summarization of variables. For example, time 
can be summarized, and differences in the time 
window during which exposure is determined 
can lead to changes in study effect estimates. For 
example, the risk of venous thromboembolism 
rises with duration of use for oral contraceptives;8 
an exposure definition that did not consider the 
cumulative exposure to the medication might 
underestimate the difference in risk between 
two different formulations of oral contraceptive. 
Alternately, effect estimates may vary with changes 
in the outcome definition. For example, an outcome 
definition of all cardiovascular events including 
angina could lead to a different effect estimate than 
an outcome definition including only myocardial 
infarction. Sensitivity analyses of the outcome 
definition can allow for a richer understanding of 
the data, even for models based on data from a 
randomized controlled trial.  

Selection Bias

The assessment of selection bias through 
sensitivity analysis involves assumptions regarding 
inclusion or participation by potential subjects, 
and results can be highly sensitive to assumptions. 
For example, the oversampling of cases exposed 
to one of the drugs under study (or, similarly, an 
undersampling) can lead to substantial changes in 
effect measures over ranges that might plausibly 
be evaluated. Even with external validation data, 
which may work for unmeasured confounders,9 it is 
difficult to account for more than a trivial amount 
of selection bias. Generally, if there is strong 
evidence of selection bias in a particular data set it 
is best to seek out alternative data sources.
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One limited exception may be when the magnitude 
of bias is known to be small.10 This may be true 
for nonrandom loss to followup in a patient cohort. 
Since the baseline characteristics of the cohort 
are known, it is possible to make reasonable 
assumptions about how influential this bias can 
be. But, in the absence of such information, it 
is generally better to focus on identifying and 
eliminating selection bias at the data acquisition or 
study design stage. 

Data Source, Subpopulations, 
and Analytic Methods

The first section of this chapter covered traditional 
sensitivity analysis to test basic assumptions such 
as variable definitions and to consider the impact 
of an unmeasured confounder. These issues should 
be considered in every observational study of 
comparative effectiveness research. However, there 
are some additional sensitivity analyses that should 
be considered, depending on the nature of the 
epidemiological question and the data available. 
Not every analysis can (or should) consider these 
factors, but they can be as important as the more 
traditional sensitivity analysis approaches. 

Data Source  

For many comparative effectiveness studies, the 
data used for the analysis were not specifically 
collected for the purpose of the research question. 
Instead, the data may have been obtained as part of 
routine care or for administrative purposes such as 
medical billing. In such cases, it may be possible to 
acquire multiple data sources for a single analysis 
(and use the additional data sources as a sensitivity 
analysis). Where this is not feasible, it may be 
possible to consider differences between study 
results and results obtained from other papers that 
use different data sources. 

While all data sources have inherent limitations 
in terms of the data that are captured by the 
database, these limitations can be accentuated 
when the data were not prospectively collected 
for the specific research purpose.11 For example, 
secondary use of data increases the chances 
that a known but unmeasured confounder may 
explain part or all of an observed association. 
A straightforward example of the differences in 
data capture can be seen by comparing data from 

Medicare (i.e., U.S. medical claims data) and the 
General Practice Research Database (i.e., British 
electronic medical records collected as part of 
routine care).11 Historically, Medicare data have 
lacked the results of routine laboratory testing 
and measurement (quantities like height, weight, 
blood pressure, and glucose measures), but include 
detailed reporting on hospitalizations (which are 
billed and thus well recorded in a claims database). 
In a similar sense, historically, the General Practice 
Research Database has had weaker reporting on 
hospitalizations (since this information is captured 
only as reports given back to the General Practice, 
that usually are less detailed), but better recording 
than Medicare data for routine measurements 
(such as blood pressure) that are done as part of a 
standard medical visit. 

Issues with measurement error can also emerge 
because of the process by which data are collected. 
For example, “myocardial infarction” coded 
for the purposes of billing may vary slightly or 
substantially from a clinically verified outcome 
of myocardial infarction. As such, there will be 
an inevitable introduction of misclassification 
into the associations. Replicating associations in 
different data sources (e.g., comparing a report to 
a general practitioner [GP] with a hospital ICD-9 
code) can provide an idea of how changes to the 
operational definition of an outcome can alter the 
estimates. Replication of a study using different 
data sources is more important for less objectively 
clear outcomes (such as depression) than it is for 
more objectively clear outcomes (such as all-cause 
mortality). 

An analysis conducted in a single data source 
may be vulnerable to bias due to systematic 
measurement error or the omission of a key 
confounding variable. Associations that can be 
replicated in a variety of data sources, each of 
which may have used different definitions for 
recording information and which have different 
covariates available, provide reassurance that the 
results are not simply due to the unavailability of 
an important confounding variable in a specific 
data set. Furthermore, when estimating the 
possible effect of an unmeasured confounder on 
study results, data sets that measure the confounder 
may provide good estimates of the confounder’s 
association with exposure and outcome (and 
provide context for results in data sources without 
the same confounder information).  
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An alternative to looking at completely separate 
datasets is to consider supplementing the available 
data with additional information from external 
data sources. An example of a study that took the 
approach of supplementing data was conducted by 
Huybrechts et al.12 They looked at the comparative 
safety of typical and atypical antipsychotics among 
nursing home residents. The main analysis used 
prescription claims (Medicare and Medicaid data) 
and found, using high-dimensional propensity 
score adjustment, that conventional antipsychotics 
were associated with an increase in 180-day 
mortality risk  (a risk difference of 7.0 per 100 
persons [95% CI: 5.8, 8.2]). The authors then 
included data from MDS (Minimum Data Set) 
and OSCAR (Online Survey, Certification and 
Reporting), which contains clinical covariates 
and nursing home characteristics.12 The result 
of including these variables was an essentially 
identical estimate of 7.1 per 100 people (95% CI: 
5.9, 8.2).12 This showed that these differences 
were robust to the addition of these additional 
covariates. It did not rule out other potential biases, 
but it did demonstrate that simply adding MDS 
and OSCAR data would not change statistical 
inference. 

While replicating results across data sources 
provides numerous benefits in terms of 
understanding the robustness of the association 
and reducing the likelihood of a chance finding, it 
is often a luxury that is not available for a research 
question, and inferences may need to be drawn 
from the data source at hand. 

Key Subpopulations

Therapies are often tested on an ideal population 
(e.g., uncomplicated patients thought to be likely 
to adhere to medication) in clinical trials. Once 
the benefit is clearly established in trials, the 
therapy is approved for use and becomes available 
to all patients. However, there are several cases 
where it is possible that the effectiveness of 
specific therapies can be subject to effect measure 
modification. While a key subpopulation may 
be independently specified as a population of 
interest, showing that results are homogeneous 
across important subpopulations can build 
confidence in applying the results uniformly to 
all subpopulations. Alternatively, it may highlight 
the presence of effect measure modification and 

the need to comment on population heterogeneity 
in the interpretation of results. As part of the 
analysis plan, it is important to state whether 
measures of effect will be estimated within these 
or other subpopulations present in the research 
sample in order to assess possible effect measure 
modification:

Pediatric populations. Children may respond 
differently to therapy from adults, and dosing may 
be more complicated. Looking at children as a 
separate and important sub-group may make sense 
if a therapy is likely to be used in children. 

Genetic variability. The issue of genetic variability 
is often handled only by looking at different 
ethnic or racial groups (who are presumed to have 
different allele frequencies). Some medications 
may be less effective in some populations due 
to the different polymorphisms that are present 
in these persons, though indicators of race and 
ethnicity are only surrogates for genetic variation. 

Complex patients. These are patients who suffer 
from multiple disease states at once. These 
disease states (or the treatment[s] for these disease 
states) may interfere with each other, resulting 
in a different optimal treatment strategy in these 
patients. A classic example is the treatment of 
cardiovascular disease in HIV-infected patients. 
The drug therapy used to treat the HIV infection 
may interfere with medication intended to treat 
cardiovascular disease. Treatment of these complex 
patients is of great concern to clinicians, and these 
patients should be considered separately where 
sample size considerations allow for this.

Older adults. Older adults are another population 
that may have more drug side effects and worse 
outcomes from surgeries and devices. Furthermore, 
older adults are inherently more likely to be subject 
to polypharmacy and thus have a much higher risk 
of drug-drug interactions.  

Most studies lack the power to look at all of these 
different populations, nor are they all likely to be 
present in a single data source. However, when 
it is feasible to do so, it can be useful to explore 
these subpopulations to determine if the overall 
associations persist or if the best choice of therapy 
is population dependent. These can be important 
clues in determining how stable associations 
are likely to be across key subpopulations. 
In particular, the researcher should identify 
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segments of the population for which there are 
concerns about generalizing results. For example, 
randomized trials of heart failure often exclude 
large portions of the patient population due to 
the complexity of the underlying disease state.13 

It is critical to try to include inferences to these 
complex subpopulations when doing comparative 
effectiveness research with heart failure as the 
study outcome, as that is precisely where the 
evidence gap is the greatest. 

Cohort Definition and Statistical 
Approaches

If it is possible to do so, it can also be extremely 
useful to consider the use of more than one cohort 
definition or statistical approach to ensure that the 
effect estimate is robust to the assumptions behind 
these approaches. There are several options to 
consider as alternative analysis approaches. 

Samy Suissa illustrated how the choice of cohort 
definition can affect effect estimates in his 
paper on immortal time bias.14 He considered 
five different approaches to defining a cohort, 
with person time incorrectly allocated (causing 
immortal time bias) and then repeated these 
analyses with person time correctly allocated 
(giving correct estimates). Even in this 
straightforward example, the corrected hazard 
ratios varied from 0.91 to 1.13 depending 
on the cohort definition. There were five 
cohort definitions used to analyze the use of 
antithrombotic medication and the time to death 
from lung cancer: time-based cohort, event-based 
cohort, exposure-based cohort, multiple-event–
based cohort, and event-exposure–based cohort. 
These cohorts produce hazard ratios of 1.13, 
1.02, 1.05, 0.91, and 0.95, respectively. While 
this may not seem like an extreme difference in 
results, it does illustrate the value of using varying 
assumptions to hone in on an understanding of 
the stability of the associations under study with 
different analytical approaches, as in this example 
where point estimates varied by about +/- 10% 
depending in how the cohort was defined. 

One can also consider the method of covariate 
adjustment to see if it might result in changes in 
the effect estimates. One option to consider as an 
adjunct analysis is the use of a high-dimensional 
propensity score,15 as this approach is typically 
applicable to the same data upon which a 

conventional regression analysis is performed. The 
high-dimensional propensity score is well suited 
to handling situations in which there are multiple 
weak confounding variables. This is a common 
situation in many claims database contexts, 
where numerous variables can be found that are 
associated (perhaps weakly) with drug exposure, 
and these same variables may be markers for 
(i.e., associated with) unmeasured confounders. 
Each variable may represent a weak marker for 
an unmeasured confounder, but collectively (such 
as through the high-dimensional propensity score 
approach) their inclusion can reduce confounding 
from this source. This kind of propensity score 
approach is a good method for validating the 
results of conventional regression models. 

Another option that can be used, when the data 
permit it, is an instrumental variable (IV) analysis 
to assess the extent of bias due to unmeasured 
confounding (see chapter 10 for a detailed 
discussion of IV analysis).16 While there have 
been criticisms that use of instruments such as 
physician or institutional preference may have 
assumptions that are difficult to verify and may 
increase the variance of the estimates,17 an 
instrumental variable analysis has the potential 
to account for unmeasured confounding factors 
(which is a key advantage), and traditional 
approaches also have unverifiable assumptions. 
Also, estimators resulting from the IV analysis 
may differ from main analysis estimators (see 
Supplement, “Improving Characterization of Study 
Populations: The Identification Problem”), and 
investigators should ensure correct interpretation 
of results using this approach. 

Examples of Sensitivity Analysis of Analytic 
Methods

Sensitivity analysis approaches to varying analytic 
methods have been used to build confidence in 
results. One example is a study by Schneeweiss 
et al.18 of the effectiveness of aminocaproic 
acid compared with aprotinin for the reduction 
of surgical mortality during coronary-artery 
bypass grafting (CABG). In this study, the 
authors demonstrated that three separate analytic 
approaches (traditional regression, propensity 
score, and physician preference instrumental 
variable analyses) all showed an excess risk of 
death among the patients treated with aprotinin 
(estimates ranged from a relative risk of 1.32 
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[propensity score] to a relative risk of 1.64 
[traditional regression analysis]). Showing that 
different approaches, each of which used different 
assumptions, all demonstrated concordant results 
was further evidence that this association was 
robust. 

Sometimes a sensitivity analysis can reveal 
a key weakness in a particular approach to a 
statistical problem. Delaney et al.19 looked at 
the use of case-crossover designs to estimate the 
association between warfarin use and bleeding 
in the General Practice Research Database. 
They compared the case-crossover results to the 
case-time-control design, the nested case control 
design, and to the results of a meta-analysis 
of randomized controlled trials. The case-
crossover approach, where individuals serve as 
their own controls, showed results that differed 
from other analytic approaches. For example, 
the case-crossover design with a lagged control 
window (a control window that is placed back 
one year) estimated a rate ratio of 1.3 (95% CI: 
1.0, 1.7) compared with a rate ratios of 1.9 for 
the nested case-control design, 1.7 for the case-
time-control design and 2.2 for a meta-analysis 
of clinical trials.18 Furthermore, the results 
showed a strong dependence on the length of the 
exposure window (ranging from a rate ratio of 1.0 
to 3.6), regardless of overall time on treatment. 
These results provided evidence that results 
from a case-crossover approach in this particular 

situation needed a cautious interpretation, as 
different approaches were estimating incompatible 
magnitudes of association, were not compatible 
with the estimates from trials, and likely violated 
an assumption of the case-crossover approach 
(transient exposure). Unlike the Schneeweiss et al. 
example,18 for which the results were consistent 
across analytic approaches, divergent results 
require careful consideration of which approach is 
the most appropriate (given the assumptions made) 
for drawing inferences, and investigators should 
provide a justification for the determination in the 
discussion. 

Sometimes the reasons for differential findings 
with differences in approach can be obvious (e.g., 
concerns over the appropriateness of the case-
crossover approach, in the Delaney et al. example 
above).19  In other cases, differences can be small 
and the focus can be on the overall direction 
of the inference (like in the Suissa example 
above).14 Finally, there can be cases where two 
different approaches (e.g., an IV approach and a 
conventional analysis) yield different inferences 
and it can be unclear which one is correct. In 
such a case, it is important to highlight these 
differences, and to try to determine which set of 
assumptions makes sense in the structure of the 
specific problem.  
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Table 11.1. Study aspects that can be evaluated through sensitivity analysis

Aspect
Evaluable Through 
Sensitivity Analysis Further Requirements

Confounding I: Unmeasured Maybe Assumptions involving prevalence, 
strength, and direction of 
unmeasured confounder

Confounding II: Residual Maybe Knowledge/assumption of which 
variables are not fully measured

Selection Bias Not Present No. (Maybe; Generally not testable 
for most forms of selection bias, but 
some exceptions [e.g., nonrandom 
loss to followup] may be testable 
with assumptions)

Assumption or external information 
on source of selection bias

Missing Data No Assumption or external information 
on mechanism for missing data

Data Source Yes Access to additional data sources

Sub-populations Yes Identifier of subpopulation

Statistical Method Yes None

Misclassification I: Covariate 
Definitions

Yes None

Misclassification II: Differential 
misclassification

Maybe Assumption or external 
information about mechanism of 
misclassification

Functional Form Yes None

Statistical Assumptions
The guidance in this section focuses primarily 
on studies with a continuous outcome, 
exposure, or confounding factor variable. Many 
pharmacoepidemiological studies are conducted 
within a claims database environment where the 
number of continuous variables is limited (often 
only age is available), and these assumptions do 
not apply in these settings. However, studies set in 
electronic medical records or in prospective cohort 
studies may have a wider range of continuous 
variables, and it is important to ensure that they are 
modeled correctly. 

Covariate and Outcome Distributions

It is common to enter continuous parameters as 
linear covariates in a final model (whether that 
model is linear, logistic, or survival). However, 
there are many variables where the association 
with the outcome may be better represented as a 
transformation of the original variable.   

A good example of such a variable is net personal 
income, a variable that is bounded at zero but for 
which there may be a large number of plausible 
values. The marginal effect of a dollar of income 
may not be linear across the entire range of 
observed incomes (an increase of $5,000 may mean 
more to individuals with a base income of $10,000 
than those with a base income of $100,000). As a 
result, it can make sense to look at transformations 
of the data into a more meaningful scale. 

The most common option for transforming a 
continuous variable is to create categories (e.g., 
quintiles derived from the data set or specific 
cut points). This approach has the advantages 
of simplicity and transparency, as well as being 
relatively nonparametric. However, unless the 
cut points have clinical meaning, they can make 
studies difficult to compare with one another 
(as each study may have different cut points). 
Furthermore, transforming a continuous variable 
into a discrete form always results in loss of 
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information that is better to avoid if possible. 
Another option is to consider transforming the 
variable to see if this influences the final results. 
The precise choice of transformation requires 
knowledge of the distribution of the covariate. 
For confounding factors, it can be helpful to test 
several transformations and to see the impact of 
the reduction in skewness, and to decide whether a 
linear approximation remains appropriate.

Functional Form

The “functional form” is the assumed 
mathematical association between variables in a 
statistical model. There are numerous potential 
variations in functional form that can be the 
subject of a sensitivity analysis. Examples include 
the degree of polynomial expressions, splines, or 
additive rather than multiplicative joint effects of 
covariates in the prediction of both exposures and 
outcomes. In all of these cases, the “functional 
form” is the assumed mathematical association 
between variables, and sensitivity analyses can 
be employed to evaluate the effect of different 
assumptions. In cases where nonlinearity is 
suspected (i.e., a nonlinear relationship between a 
dependent and independent variable in a model), 
it can be useful to test the addition of a square 
term to the model (i.e., the pair of covariates age 
+ age2 as the functional form of the independent 
variable age). If this check does not influence the 
estimate of the association, then it is unlikely that 
there is any important degree of nonlinearity. If 
there is an impact on the estimates for this sort of 
transformation, it can make sense to try a more 
appropriate model for the nonlinear variable (such 
as a spline or a generalized additive model). 

Transformations should be used with caution when 
looking at the primary exposure, as they can be 
susceptible to overfit. Overfit occurs when you are 
fitting a model to random variations in the data 
(i.e., noise) rather than to the underlying relation; 
polynomial-based models are susceptible to this 
sort of problem. However, if one is assessing the 
association between a drug and an outcome, this 
can be a useful way to handle parameters (like 
age) that will not be directly used for inference but 
that one wishes to balance between two exposure 
groups. These transformations should also be 
considered as possibilities in the creation of a 
probability of treatment model (for a propensity 

score analysis). If overfit of a key parameter that is 
to be used for inference is of serious concern, then 
there are analytic approaches (like dividing the 
data into a training and validation data set) that can 
be used to reduce the amount of overfit. However, 
these data mining techniques are beyond the scope 
of this chapter.  

Special Cases

Another modeling challenge for epidemiologic 
analysis and interpretation is when there is a 
mixture of informative null values (zeroes) and 
a distribution. This occurs with variables like 
coronary artery calcium (CAC), which can have 
values of zero or a number of Agatston units.20   
These distributions are best modeled as two parts: 
(1) as a dichotomous variable to determine the 
presence or absence of CAC; and (2) using a 
model to determine the severity of CAC among 
those with CAC>0. In the specific case of CAC, 
the severity model is typically log-transformed due 
to extreme skew.20 These sorts of distributions are 
rare, but one should still consider the distribution 
and functional form of key continuous variables 
when they are available. 

Implementation Approaches

There are a number of approaches to conducting 
sensitivity analyses. This section describes two 
widely used approaches, spreadsheet-based and 
code-based analyses. It is not intended to be a 
comprehensive guide to implementing sensitivity 
analyses. Other approaches to conducting 
sensitivity analysis exist and may be more useful 
for specific problems.2  

Spreadsheet-Based Analysis

The robustness of a study result to an unmeasured 
confounding variable can be assessed 
quantitatively using a standard spreadsheet.21 
The observed result and ranges of assumptions 
about an unmeasured confounder (prevalence, 
strength of association with exposure, and strength 
of association with outcome) are entered into 
the spreadsheet, and are used to provide the 
departure from the observed result to be expected 
if the unmeasured confounding variable could 
be accounted for using standard formulae for 
confounding.22 Two approaches are available 
within the spreadsheet: (1) an “array” approach; 
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and (2) a “rule-out” approach. In the array 
approach, an array of values (representing the 
ranges of assumed values for the unmeasured 
variable) is the input for the spreadsheet. The 
resulting output is a three-dimensional plot that 
illustrates, through a graphed response surface, the 
observed result for a constellation of assumptions 
(within the input ranges) about the unmeasured 
confounder. 

In the rule-out approach, the observed association 
and characteristics of the unmeasured confounder 
(prevalence and strength of association with 
both exposure and outcome) are entered into 
the spreadsheet. The resulting output is a two-
dimensional graph that plots, given the observed 
association, the ranges of unmeasured confounder 
characteristics that would result in a null finding. 
In simpler terms, the rule-out approach quantifies, 
given assumptions, how strong a measured 
confounder would need to be to result in a finding 
of no association and “rules out” whether an 
unmeasured confounder can explain the observed 
association.

Statistical Software–Based Analysis

For some of the approaches discussed, the 
software is available online. For example, 
the high-dimensional propensity score and 
related documentation is available at http://
www.hdpharmacoepi.org/download/. For other 
approaches, like the case-crossover design,18 the 
technique is well known and widely available. 
Finally, many of the most important forms of 
sensitivity analysis require data management tasks 
(such as recoding the length of an exposure time 
window) that are straightforward though time 
consuming. 

This section provides a few examples of how 
slightly more complex functional forms of 
covariates (where the association is not well 
described by a line or by the log transformation 
of a line) can be handled. The first example 
introduces a spline into a model where the 
analyst suspects that there might be a nonlinear 
association with age (and where there is a broad 
age range in the cohort that makes a linearity 
assumption suspect). The second example looks at 
how to model CAC, which is an outcome variable 
with a complex form. 

Example of Functional Form Analysis 

This SAS code is an example of a mixed model 
that is being used to model the trajectory of a 
biomarker over time (variable=years), conditional 
on a number of covariates. The example 
estimates the association between different 
statin medications with this biomarker. Like in 
many prescription claims databases, most of the 
covariates are dichotomous. However, there is a 
concern that age may not be linearly associated 
with outcome, so a version of the analysis is tried 
in which a spline is used in place of a standard age 
variable. 

Original Analysis (SAS 9.2):

proc glimmix data=MY_DATA_SET;

class patientid;

model biomarker_value =age female years statinA 
statinB diabetes hypertension / s cl;

random intercept years/subject=patientid;

run;

Sensitivity Analysis:

proc glimmix data=MY_DATA_SET;

class patientid;

effect spl = spline(age);

model biomarker_value =spl female years statinA 
statinB diabetes hypertension / s cl;

random intercept years/subject=patientid;

run;

While the spline version of the age variable needs 
to be graphically interpreted, it should handle 
any nonlinear association between age and the 
biomarker of interest. 

Example of Two-Stage Models for Coronary 
Artery Calcium (CAC) 

CAC is an example of a continuous variable with 
an extremely complex form. The examples of two-
stage CAC modeling (below) use variables from 
the Multi-Ethnic Study of Atherosclerosis. Here, 
the example is testing whether different forms of 
nonsteroidal anti-inflammatory drugs (below as 
asa1c, nsaid1c, cox21c) are associated with more 
or less calcification of the arteries. The model 
needs to be done in two stages, as it is thought 
that the covariates that predict the initiation of 
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calcification may differ from those that predict how 
quickly calcification progresses once the process 
has begun.20 

First, a model is developed for the relative risk of 
having a CAC score greater than zero (i.e., that 
there is at least some evidence of plaques in a CT 
scan of the participant’s coronary arteries). The 
variable for CAC is cac (1=CAC present, 0=CAC 
not present). The repeated statement is used to 
invoke robust confidence intervals (as there is only 
one subject for each unique participant ID number, 
designated as the variable idno). 

SAS 9.2 code example:

proc genmod data = b descending;

 class idno race1;

 model cac=age1c male bmi1c race1

     male  diabetes smoker ex_smoker  sbp1c dbp1c

   hdl1 ldl1 TRIG1STTN1C  asa1c nsaid1c cox21c

   / dist = poisson link = log; 

 repeated subject = idno/ type =ind;

estimate ‘asa1c’ asa1c 1 -1/ exp;

estimate ‘nsaid1c’ nsaid1c 1 -1/ exp;

estimate ‘cox21c’ cox21c 1 -1/ exp;;

run;

Among those participants with CAC (as measured 
by an Agatston score, agatpm1c), greater than 
zero, the amount present is then modeled. As this 
variable is highly skewed, the amount of CAC 
present is transformed using a log transformation. 

SAS 9.2 code example:

proc genmod data = b descending;

class idno race1;

where  agatpm1c ne 0; 

model  log_transformed_CAC=age1c male bmi1c 
race1

     male  diabetes smoker ex_smoker  sbp1c dbp1c

   hdl1 ldl1 TRIG1STTN1C asa1c nsaid1c cox21c;

 repeated subject = idno/ type = unstr;

run; 

The modeling of CAC is a good example of one 
of the more complicated continuous variables that 
can be encountered in CER.20 To properly model 
this association, two models were needed (and 
the second model required transformation of the 
exposure). Most comparative effectiveness projects 
will involve much simpler outcome variables, 
and the analyst should be careful to include more 
complex models only where there is an important 
scientific rationale. 

Presentation

Often sensitivity analyses conducted for a specific 
CER study can simply be summarized in the text 
of the paper, especially if the number of scenarios 
is small.17 In other cases, where a broad range of 
scenarios are tested,2 it may be more informative to 
display analyses in tabular or graphical form. 

Tabular Presentation

The classic approach to presenting sensitivity 
analysis results is a table. There, the author can 
look at the results of different assumptions and/or 
population subgroups. Tables are usually preferred 
in cases where there is minimal information 
being presented, as they allow the reader to very 
precisely determine the influence of changes in 
assumptions on the reported associations. This is 
the approach used by Suissa14 to show differences 
in results based on different approaches to 
analyzing a cohort of lung cancer patients. 

Graphical Presentation

One reason to use graphical methods is that the 
variable being modeled is itself a continuous 
variable, and presenting the full plot is more 
informative than forcing a categorization scheme 
on the data. One example, from Robyn McClelland 
and colleagues (Figure 11.1),23  is a sensitivity 
analysis to see if the form in which alcohol is 
consumed changes its association with levels of 
CAC. The analyst, therefore, plots the association 
with total alcohol consumed overall and by type 
of alcohol (beer, wine, hard alcohol). Here, both 
the exposure and the outcome are continuous 
variables, and so it is much easier to present the 
results of the sensitivity analysis as a series of 
plots. 
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Figure 11.1. Smoothed plot of alcohol consumption versus annualized 
progression of CAC with 95% CIs

 See McClelland RL, Bild DE, Burke GL, et al. Alcohol and coronary artery calcium prevalence, incidence, and 
progression: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr 2008 Dec;88(6):1593-
601. This figure is copyrighted by the American Society for Nutrition and reprinted with permission.

Another reason for a graphical display is to present 
the conditions that a confounder would need to 
meet in order to be able to explain an association. 
As discussed, the strength of a confounder depends 
on its association with the exposure, the outcome, 
and its prevalence in the population. Using the 
standard spreadsheet discussed earlier,20 these 
conditions can be represented as a plot. For 
example, Figure 11.2 presents a plot based on data 
from Psaty et al.1, 24 

Figure 11.2 plots the combination of the odds ratio 
between the exposure and the confounder (OREC) 
and the relative risk between the confounder and 
the outcome (RRCD) that would be required 
to explain an observed association between the 
exposure and the outcome by confounding alone. 
There are two levels of association considered 

(ARR=1.57 and ARR=1.3) and a separate line 
plotted for each. These sorts of displays can help 
illustrate the strength of unmeasured confounding 
that is required to explain observed associations, 
which can make the process of identifying 
possible candidate confounders easier (as one can 
reference other studies from other populations 
in order to assess the plausibility of the assumed 
strength of association). Spreadsheets that 
facilitate the conduct of these sensitivity analyses 
are available. (http://www.drugepi.org/dope-
downloads/#Sensitivity Analysis)

Other tools for sensitivity analysis are available, 
such as the one from Lash et al. (http://sites.google.
com/site/biasanalysis/).10
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Figure 11.2. Plot to assess the strength of unmeasured confounding 
necessary to explain an observed association

Conclusion

While sensitivity analyses are important, it is 
necessary to balance the concise reporting of study 
results with the benefits of including of the results 
of numerous sensitivity analyses. In general, one 
should highlight sensitivity analyses that result in 
important changes or that show that an analysis is 
robust to changes in assumptions. Furthermore, 
one should ensure that the number of analyses 
presented is appropriate for illustrating how the 
model responds to these changes. For example, if 
looking at the sensitivity of results to changes in 
the exposure time window, consider looking at 30, 
60, and 90 days instead of 15, 30, 45, 60, 75, 90, 
105, and 120 days, unless the latter list directly 
illustrates an important property of the statistical 
model. The decision as to what are the most 
important sensitivity analyses to run will always 
be inherently specific to the problem under study. 

For example, a comparative effectiveness study of 
two devices might not be amenable to variations 
in exposure window definitions, but might be a 
perfect case for a physician preference instrumental 
variable. This chapter highlights the most common 
elements for consideration in sensitivity analysis, 
but some degree of judgment as to the prioritization 
of these analyses for presentation is required. Still 
as a general guideline, the analyst should be able to 
answer three questions:

•	 Is	the	association	robust	to	changes	in	exposure	
definition, outcome definition, and the 
functional form of these variables? 

•	 How	strong	would	an	unmeasured	confounder	
have to be to explain the magnitude of the 
difference between two treatments?

•	 Does	the	choice	of	statistical	method	influence	
the directionality or strength of the association?  
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A plan for including some key sensitivity analysis 
in developing study protocols and analysis plans 
should be formed with a clear awareness of 
the limitations of the data and the nature of the 
problem. The plan should be able to answer these 
three basic questions and should be a key feature 
of any comparative effectiveness analysis. The use 

of sensitivity analysis to examine the underlying 
assumptions in the analysis process will build 
confidence as to the robustness of associations 
to assumptions and be a crucial component of 
grading the strength of evidence provided by a 
study. 

 

Checklist: Guidance and key considerations for sensitivity analyses in an  
observational CER protocol

Guidance Key Considerations Check

Propose and describe planned 
sensitivity analyses.

-  Consider the effect of changing exposure, outcome,  
   confounder, or covariate definitions or  
   classifications. 
-  Assess expected impact of unmeasured confounders  
   on key measures of association.

o

Describe important 
subpopulations in which measures 
of effect will be assessed for 
homogeneity.

-  Consider pediatric, racial/ethnic subgroups, patients  
   with complex disease states. 
-  Consider inclusion of AHRQ Priority Populations  
   (http://www.ahrq.gov/populations/).

o

State modeling assumptions and 
how they will be tested. o

Indicate whether the study will be 
replicated in other databases, if 
available and feasible.

o
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Abstract

The identification process is an a priori assessment of the treatment effect estimates that can be produced 
by a given research design, and of the assumptions required for these estimates to yield accurate 
assessments of a given CER objective. This supplement describes the factors that a researcher should 
consider when proposing a research design to address (or “identify”) a given CER research objective. 
Investigators should assess the characteristics of the patient sample relative to the study objective, identify 
the subset(s) of patients whose treatment variation is exploited by the research design, and identify the 
assumptions that are required to ensure that (1) the research design produces unbiased treatment effect 
estimates for the patient subsets, and that (2) the treatment effect estimates produced provide a valid 
assessment of the study objective. In short, investigators must ensure that the effect estimates produced 
by a given research design and analysis answer the research question of interest and are interpreted 
appropriately. This supplement concludes with a checklist of guidance and key considerations for 
identifying research objectives for observational CER protocols. 

Supplement 1. Improving Characterization of Study 
Populations: The Identification Problem

John M. Brooks, Ph.D. 
University of Iowa College of Pharmacy, Iowa City, IA

Introduction

Comparative effectiveness research (CER) is defined 
by the Federal Coordinating Council for Comparative 
Effectiveness Research as “the conduct and synthesis 
of research comparing the benefits and harms of 
different interventions and strategies to prevent, 
diagnose, treat and monitor health conditions in ‘real 
world’ settings.” As such, in its most basic sense, 
CER requires treatment variation across patients in 
the real world in order to estimate the comparative 
effects of alternative treatments. The identification 
process is an a priori assessment of the treatment 
effect estimates that can be produced by a given 
research design, and of the assumptions required 
for these estimates to yield accurate assessments 
of a given CER objective.  Identification has been 
a key component in econometrics since being 
introduced by Koopmans in 1949,1 and a formal 
definition can be found in the textbook by Cameron 
and Trivedi.2 Economist Charles Manski states that 
“studies of identification seek to characterize the 
conclusions that could be drawn if one could use a 
sampling process to obtain an unlimited number of 

observations.”3 Or, as described by Peter Kennedy, 
“identification is knowing that something is what you 
say it is.”4

CER researchers should provide a thorough 
discussion of the circumstances in which treatment 
variation isolated within their research designs 
is sufficient to make inferences relative to their 
specific CER objective. Part of this discussion 
will necessarily deal with sample size issues and 
statistical inference for the parameters estimated.  
However, at a more basic level, researchers should 
describe circumstances under which the parameters 
estimated can actually identify their CER research 
objective. The next section provides background 
on the importance of identification in CER relative 
to various possible CER research objectives and 
introduces the issues that a researcher should 
consider when assessing whether a proposed research 
design identifies a given CER research objective. The 
background section is followed by sections that focus 
on each issue. 
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Background

In the traditional CER model in which 
investigators compare the effectiveness of a 
treatment (T) versus an alternative (A) for a set of 
clinically similar patients in the real world, specific 
CER objectives can include assessments of any of 
the following:

1. The effect of removing access to T (currently 
used universally) and switching all patients to 
A.

2. The effect of T relative to A for those patients 
that used T; for example, T is currently used by 
a subset of patients and a policy is considered 
to remove patients’ access to T.

3. The effect of T relative to A for those patients 
that used A; for example, T is currently used by 
a subset of patients and a policy is considered 
to switch all users of A to T.

4. The effect of a change in the T utilization 
rate (which thereby changes the A rate); for 
example, T is currently used by a subset of 
patients and the effects of a general change in T 
utilization rates are considered. 

5. The effect of a change in the T utilization rate 
(which thereby changes the A rate) that results 
from a given behavioral or policy intervention; 
for example, T is currently used by a subset 
of patients and the effects of a T rate change 
resulting from a copayment change are 
considered. 

6. The effect of any of the above for specific 
subpopulations of the set of clinically similar 
patients; for example, T is currently used by a 
subset of patients over age 75, and the effects 
of a T utilization rate change that could result 
from a copayment change for these patients are 
considered.

Objective 1 involves finding the average treatment 
effect estimate across the entire population of 
clinically similar patients. For example, T could 
be a treatment used currently by all patients and a 
more expensive alternative has become available. 
A CER objective could be to evaluate a policy to 
switch all patients from T to the new alternative. 

Objective 2 requires finding the average effect of 
T relative to A for the subset of patients who were 
treated with T. For example, if T is currently used 
by a subset of patients, a CER objective could be 
to evaluate a policy to remove patient access to T, 
which only will affect the subset of patients using 
T. 

Alternatively, objective 3 requires finding the 
average effect of T relative to A for the subset of 
patients who were treated with A. For example, 
if T is not used currently by a subset of patients, 
a CER objective could be to estimate a policy of 
expanding T usage to all patients.

Objective 4 relates to evaluating the effects of 
treatment rate changes. Often the relevant question 
for policymakers is not whether a treatment 
should be used at all, but whether a treatment is 
over- or underused in practice. Many years ago, 
John Wennberg correctly posed objective 4 with 
the question “Which rate is right?”5 For example, 
if 80 percent of patients use a beta blocker after 
acute myocardial infarction, a CER objective 
may be to assess the effect of increasing the beta 
blocker treatment rate to 85 percent. Objective 4 
is equivalent to objectives 2 and 3 if the specified 
T rate change means moving from the existing 
T utilization to either zero or 100 percent, 
respectively. Note that objective 4 is defined 
purposely without describing how the T treatment 
rates would be changed and can perhaps be best 
conceptualized as the effect of rate changes over 
time as a new treatment diffuses across a clinically 
similar population. The patient subset within a 
clinically similar population that only receives 
T when it is fully diffused may differ from the 
patient subset that is apt to receive T when it is 
newly introduced.  

In contrast, objective 5 is defined with respect 
to the patient subset whose choice of T relative 
to A can be modified with a specific behavioral 
or policy intervention. At a specific T utilization 
rate, the patients defined in objective 5 can be 
thought of as a subset of the patients defined in 
objective 4, except that distinct patients may be 
affected by distinct interventions.6 For example, 
an information-based intervention may affect 
a different patient subset from an intervention 
focused on increasing access to treatment or an 
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intervention to change copayment rates. Objective 
6 applies to any of the first four objectives with 
respect to defined subsets of the original clinically 
similar group (e.g., males vs. females, young vs. 
old, insured vs. uninsured). 

The importance of identification with respect 
to these various CER objectives is highlighted 
when one reviews a seminal instrumental variable 
(IV) study in health care.7 In an examination of 
the mortality risk associated with more intensive 
treatment for acute myocardial infarction (AMI) in 
the elderly, McClellan and colleagues focused on 
the ability of IV estimators to reduce confounding 
bias in observational health care studies. While 
their study produced IV estimates that suggested 
that surgical interventions for AMI did not lessen 
patient mortality risk, the authors provided the 
qualification that their IV estimates should be 
used as evidence of mortality changes only if 
population surgery rates were modified (objective 
4).7 Their estimates did not provide evidence 
of the average benefit of surgery for those that 
received surgery (objective 2), the average benefit 
of surgery over all AMI patients (objective 1), or 
the average benefit of surgery for all those patients 
not receiving surgery (objective 3). Without a 
discussion of the patient subset whose surgery 
effects were identified by these IV estimates, their 
results could have misled decisionmakers. Other 
authors who have compared treatment effect 
estimates across estimators using observational 
data have demonstrated comparisons that lack 
context without a discussion of the treatment effect 
concepts identified by each estimator.8-10

The concept of identification is closely akin to 
the ideas of external validity or applicability, in 
that it asks researchers to address the question 
“For whom can the treatment effect estimates 
be generalized?”3, 11-13 However, the classic 
discussions of these concepts mainly focus on the 
extent to which estimates from randomized studies 
can be appropriately applied to patients dissimilar 
to study populations.11-13 Alternatively, assessment 
of real-world treatment effectiveness in CER will 
often rely on treatment variation generated by the 
real-world treatment choices found in observational 
databases. Identification takes a broader view and 
relates to the extent of inferences that can be made 
using estimates from various estimators in the 
context of real-world treatment decisionmaking. 

To make a case that a research design has the 
ability to identify a parameter sufficient to assess 
a specific CER objective, researchers should 
describe: (1) the characteristics of the patient 
sample used in the research relative to the 
objective; (2) the subset of patients within the 
sample whose treatment variation was exploited by 
the research design; (3) the assumptions required to 
ensure that the research design produces unbiased 
average treatment effect estimates for this patient 
subset; and (4) the assumptions required so that the 
treatment effect estimates produced will provide a 
valid assessment of the researcher’s CER objective. 
Each of these issues is discussed further in separate 
sections below.  

To support the reader, Table S1.1 provides a 
summary of key concepts and acronyms used 
throughout the sections below.
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Table S1.1. Definitions of key concepts relevant to the identification process

Concept Definition

Identification process An a priori assessment of the treatment effect estimates that can 
be produced by a given research design. This process involves 
understanding the assumptions required for estimates to yield 
accurate assessments of the research question of interest.

On the “support” A research objective is described as being on the “support” of a 
research database if the patient population of interest is included in 
the database. 

Instrumental Variable (IV) A variable that strongly predicts exposure but is neither directly nor 
indirectly related to the outcome. Instrumental variable analyses 
estimate local average treatment effects (LATE).   

Risk Adjustment (RA) methods Methods such as regression-based methods and propensity score–
based approaches that produce estimates interpreted as the average 
treatment effect for the treated (ATT).  

Estimator A rule for calculating a statistic that estimates a population 
parameter of interest.    

Average Treatment Effect across all patients 
(ATE)

An estimate of the average treatment effect for all patients within a 
study population.  

Average Treatment effect in Treated patients 
(ATT)

An estimate of the treatment effectiveness for the distinct subset of 
patients in a study population who were exposed to the treatment 
under study. Risk adjustment (RA) methods produce these 
estimates. 

Average Treatment effect in Untreated 
patients (ATU)

An estimate of the treatment effectiveness for the distinct subset 
of patients in a study population who were not exposed to the 
treatment under study. 

Local Average Treatment Effect (LATE) An estimate of the average treatment effect for those patients 
within a study population whose treatment choices were affected 
by a set of instrumental variables. 

Local Average Treatment Effect for patients 
whose treatment choices were affected by a 
Policy change (LATE-P)

An estimate of the average treatment effect for those patients 
within a study population whose treatment choices were affected 
by a specific policy change. 

Properties of the Study 
Population

At the very foundation of identification, the 
CER objectives that can be identified using a 
given research design will be limited by the 
characteristics of the patients whose data are 
available for the research. If a CER objective 
is defined for a patient population with specific 
characteristics, the objective is described as being 
on the “support” of the research database if these 
patients are included in the research database.3 
For example, a research database containing only 

those patients with fee-for-service insurance 
limits the ability of researchers to identify average 
treatment effects for the entire population, patients 
without insurance, or patients in managed care 
programs. Likewise, randomized trial designs 
have limited ability to identify average treatment 
effects for those patients not studied (i.e., patients 
not meeting trial inclusion criteria or refusing to 
participate). If data are retrospectively collected, 
changes in treatments over time may limit the 
ability to identify the effectiveness of current 
treatment choices. This issue is especially relevant 
when assessing the effectiveness of treatments 
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whose benefits take many years to observe. For 
example, 10 years of followup may be necessary to 
demonstrate survival differences between surgery 
and radiation treatments for early-stage prostate 
cancer. However, at the end of the study it may 
be unclear as to whether the study identified the 
comparative effectiveness of current surgical and 
radiation technologies.

In the study by McClellan and colleagues cited 
above, the authors estimated the effectiveness of 
surgical treatments for AMI for fee-for-service 
Medicare beneficiaries. It is unclear whether this 
study identified the effectiveness of surgery for 
younger AMI patients or those with insurance 
coverage distinct from Medicare.  In a followup 
IV study using data for younger AMI patients 
from Washington State, Brooks et al. showed that 
surgery effectiveness estimates from AMI patients 
with more generous insurance coverage would 
understate the effectiveness of surgery for AMI 
patients with less generous coverage.14

Relationship of Estimation 
Methods to Patient Subsets

Once a research database is specified and the 
study population is defined by inclusion criteria, 
the researcher must then make the case that the 
parameter estimates produced the estimators 
chosen are sufficient to identify the CER objective. 
It has been shown that the estimators available to 
estimate treatment effectiveness produce average 
estimates for distinct subsets of patients in the 
study population. Risk adjustment (RA) methods, 
including regression-based methods and propensity 
score-based approaches,15-17 produce estimates that 
are properly interpreted as the average treatment 
effect for the treated patients in a population 
(ATT).18-22 In contrast, IV estimators yield 
estimates of an average treatment effect for those 
patients whose treatment choices were affected by 
a set of instrumental variables or “instruments.”7, 

14, 23-25 Because of this limitation, IV estimates are 
described as estimates of local average treatment 
effects (LATE).25

If the CER objective is to assess treatment 
effectiveness for the subset of patients who were 
treated (objective 2), a risk-adjusted estimate of 

ATT may be suitable to address this objective. 
As will be discussed further below, identification 
would also require the researcher to justify the RA 
estimator assumptions that are necessary to avoid 
bias. If the CER objective is to assess average 
treatment effectiveness for the subset of patients 
whose treatment choices were modifiable by an 
instrument (the LATE for that instrument), an 
IV estimator is appropriate. A LATE estimate is 
potentially suitable for evaluating objective 5 if 
the instrument chosen is related to the specified 
behavioral or policy intervention being evaluated. 
For example, suppose a CER objective is to 
estimate the outcome change that will result from 
a policy of subsidizing treatment T relative to 
treatment A. An instrument is a measured factor 
related to treatment choice, but assumed not 
to have a direct relationship with outcomes or 
other unmeasured factors related to outcomes. 
A researcher could use observed variation in 
relative copayment rates for T and A for patients 
across distinct insurance plans as the basis for an 
instrument. The IV estimates produced using this 
instrument would be the average treatment effects 
for the subset of patients whose treatment choices 
are mutable with respect to financial incentives and 
may be suitable to identify the policy objective. 
In addition, as with RA estimators, identification 
with IV estimators requires the researcher to justify 
the IV assumption set that the instrument does not 
have a direct relationship with outcomes or other 
unmeasured factors related to outcomes.   

The McClellan AMI study produced both RA 
estimates using analysis of variance (ANOVA) 
estimators, and IV estimates using measures of 
patient geographic access to key providers as 
instruments. McClellan’s RA estimates of ATT 
showed statistically significant reductions in 
mortality associated with surgery for Medicare 
beneficiaries with AMI, whereas their IV LATE 
estimates showed no mortality reduction from 
surgery. Conditional on the validity of assumptions 
underlying each estimator, the RA estimates 
directly identified a parameter suitable to assess 
the effects of surgery for those that had surgery 
(objective 2), whereas the IV LATE estimate 
identified a parameter potentially suitable to assess 
objective 5 for a policy related to modification of 
provider access (e.g., providing greater geographic 
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dispersion of catheterization labs). This estimate 
combination suggests that, for the most part, 
the surgery rates for AMI Medicare patients in 
the late 1980s through the early 1990s reflected 
proper sorting of surgery across patients—that 
the patients who received treatment benefited, but 
that expanding treatment rates would yield little 
additional benefit. These estimates do not directly 
identify any other CER objectives without further 
assumptions.  

Assumptions Required To 
Yield Unbiased Estimates

For RA estimators to yield unbiased estimates 
of ATT, it must be assumed that unmeasured 
factors affecting treatment choice are unrelated to 
outcomes (or are “ignorable”) after conditioning 
on measured factors.16, 26 Similarly, for IV 
estimators to yield a consistent estimate of LATE, 
an instrument must not be directly or indirectly 
related to outcomes. In the McClellan study, 
unbiased estimates of ATT from their ANOVA 
RA estimator rested on the assumption that all 
unmeasured factors affecting surgery choice had 
no direct or indirect relationship with mortality. 
Likewise, for the McClellan study to have 
produced consistent estimates of LATE, it must be 
assumed that the instruments used in the study had 
no direct relationship with mortality and were also 
unrelated to any remaining unmeasured factors 
related to both surgery choice and mortality.

Identification of Research 
Objectives Other Than ATT or 
LATE

If the CER objective requires estimation of a 
treatment effect for a patient population not 
represented in the research database, or if it 
requires a parameter distinct from ATT or LATE, 
identification requires the researcher to assess the 
validity of extrapolating estimates to their CER 
objective. Extrapolation will require assumptions 
that should be directly stated and thoughtfully 
defended based on clinical plausibility and 
treatment choice theory.  

However, if the CER objective is to estimate a 
treatment effect parameter distinct from ATT or 
LATE, identification requires that the researcher 
explicitly provide the assumptions that are 
necessary for estimates of ATT or LATE to be 
validly applied to the set of patients described 
by the research objective. Examples of other 
treatment effect parameters that may be needed 
across CER objectives include the average 
treatment effect on the untreated (ATU) for 
objective 3, the average treatment effect across 
all patients in the population (ATE) for objective 
1, or the average treatment effect for the subset 
of patients whose treatment choices would be 
affected by a specific policy change (LATE-P) for 
objective 5. Key assumptions to stipulate before 
extrapolating ATT or LATE estimates to other 
CER objectives are related to:

•	 the	heterogeneity	or	homogeneity	of	treatment	
effects across patients; and

•	 the	reasons	why	treated	and	untreated	patients	
were observed to make different treatment 
choices.

For example, to assume that an unbiased estimate 
of ATT is a valid estimate of ATU, a researcher 
would need to provide a compelling theory as 
to why the untreated patients did not chose a 
given treatment for reasons other than expected 
differences in treatment effectiveness.  An 
unbiased estimate of ATT would provide sufficient 
information to identify ATU if the researcher can 
make the case that either: (1) treatment effects 
are homogeneous across patients and factors 
unrelated to treatment effectiveness are the cause 
of disparate treatment choices in the population 
or (2) treatment effects are heterogeneous across 
a population but that providers do not react to 
the treatment effect heterogeneity when making 
treatment choices. Condition 2 is the notion of 
“nonessential heterogeneity.”20, 27 Under either of 
these conditions, it could also be argued that an 
estimate of ATT identifies the ATE in a population 
and the average treatment effects that would result 
from a policy intervention affecting treatment 
choice (LATE-P). In contrast, if treatment choice 
was based on expected treatment effectiveness 
and the patients who were expected to gain most 
from treatment received treatment (essential 
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heterogeneity),27-28 ATT estimates would likely 
overstate and not identify the true ATE, ATU, and 
LATE-P in a population. Similar assumptions 
are required for LATE estimates from a given 
instrument set to be used to identify ATT, ATU, 
ATE, and LATE-P. To make the case for the validity 
of these assumptions, researchers have to provide a 
theory to suggest why the patients whose treatment 
choices varied with the value of their instrument are 
indistinct from the set of patients underlying these 
parameters.

In the study by McClellan and colleagues, the 
authors implied that providers considered the 
effectiveness of surgery for each AMI patient when 
making surgery recommendations and that the AMI 
patients most likely to benefit from surgery were 
those that received surgery. As such, the authors 
cautioned against assuming their IV estimates could 
be used to identify ATE, ATU, or ATT. However, 
the authors suggested that their IV estimates using 
instruments based on provider access provide more 
suitable answers to address the question of whether 

surgery rates from AMI patients should increase 
(objective 4) in comparison to existing randomized 
controlled trial (RCT) evidence. Essentially, the 
authors argued that their IV estimates identified 
the treatment effect parameter required to assess 
objective 4.

The Appendix to this supplement contains a general 
model of treatment choice and outcomes that can 
be used to clarify the model assumptions required 
to identify CER objectives using estimates of ATT 
from RA estimators or estimates of LATE from IV 
estimators. The general model contains a series of 
factors related to treatment effectiveness, treatment 
choice, and outcomes directly. Twelve hypothetical 
empirical scenarios are derived by assumptions that 
relate to the existence of these factors. Scenarios 
differ by whether treatment effects are assumed 
to be homogeneous or heterogeneous, whether 
treatment decisions are based on treatment effect 
heterogeneity, and which of the model factors are 
measured.

Checklist: Guidance and key considerations for identifying a research objective 
in an observational CER protocol

Guidance Key Considerations Check

Describe the characteristics of the patient sample 
used in the research relative to the objective.

Is extrapolation required, and what assumptions 
are needed to support this? o

Describe how the estimates from the proposed 
estimation methods (i.e., RA or IV methods) 
address the CER objective.

Does the researcher acknowledge to whom the 
estimates for the method directly apply? o

Describe the assumptions required to ensure that 
the research design produces unbiased average 
treatment effect estimates for this patient sample.

Does the researcher acknowledge the 
assumptions required from each estimator to 
yield unbiased or consistent estimates?

o

Describe the assumptions required so that the 
treatment effect estimates produced will provide 
a valid assessment of the researcher’s CER 
objective.

Does the researcher state whether the clinical 
and behavioral assumptions necessary for their 
estimates identify their CER objective? o
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Outcome
Expectations

Treatment Valuation 
and Choice

Actual 
Outcome Y

Treatment 
(T)

Treatment 
Value 
(T*)

P(Y) Y
Treatment 
Choice 

(T)

X1X1

X2 X2
X3, X5

X3, X4

X3, X5

Appendix: Treatment Choice/
Outcome Model Specifications, 
Estimators, and Identification

If a researcher is to make inferences on the 
effects of treatment (T) on outcome (Y) using 
observational data:

 E(Y|T+t) - E(Y|T),

a researcher must make assumptions based on the 
data-generating process for both treatment choice 
and outcomes, relative to the factors that affect 
either treatment choice or outcomes. The section 
below contains a general model that is used to 
describe the alterative scenarios of CER objective 
identification. Figure S.1.1 depicts this model. The 
general model is defined in terms of factors (Xs) 
with differential relationships between treatment 
choice (T) and outcome (Y):

1. Y = g(T(X
1
,X

2
), X

2
, X

3
, X

5
)

2. T = f(X
1
,X

2
,X

3
,X

4
) where:

X
1 
 = factors related to treatment effectiveness, 

have no direct effects on outcome, and may affect 
treatment choice (perhaps through their effects on 
treatment effectiveness); 

X
2
 = factors related to treatment effectiveness, have 

direct effects on outcome, and may affect treatment 
choice (perhaps through their effects on treatment 
effectiveness); 

X
3
 = factors unrelated to treatment effectiveness, 

but have direct effects on outcome, and direct 
effects on treatment valuation;

X
4
 = factors having no direct effects on outcome, 

but have direct effects on treatment valuation; and

X
5
 = factors having direct effects on outcome, but 

do not affect treatment valuation.

Figure S1.1.  Model of Treatment Choice and Outcome (adapted from Brooks 
and Fang28)*

*This figure is copyrighted by Elsevier Inc. and reprinted with permission.
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In a given empirical scenario, the ability to identify 
and estimate various possible average effects of 
T on Y (average treatment effect [ATE]; average 
treatment effect on the treated [ATT]; average 
treatment effect on the untreated [ATU]; local 
average treatment effect for a specific instrument 
[LATE]) is a function of: (1) the assumed 
relationships between treatment choice and 
outcomes; (2) which of the factors are measured 
and unmeasured; and (3) the extent of variation 
in observed factors. The discussion below details 
the characteristics required for identification of 
CER concepts using risk adjustment (RA) and 
instrumental variable (IV) estimators across 
variants of this general model.  For each factor 
“X

i
”, distinctions are made for measured (X

iM
) and 

unmeasured (X
iU
) factors.

Model Scenarios

1. Treatment effect is homogeneous (no X
1
 and X

2
 

factors exist), and no factors affecting treatment 
choice (T) have a direct effect on outcome (Y).  

Y = g(T,X
5M

,X
5U

)

T = f(X
4M

,X
4U

)

a. Direct RA estimation of Y equation statistically 
controlling for X

5M
:

i. Sufficient variation in X
4
 so that different 

treatment choices are observed in the data.

ii. An assumption of no correlation between 
X

4
 and factors in X

5U
 will yield an unbiased 

estimate of ATT. ATE and ATU are 
“identified” by this ATT estimate through 
the assumed homogeneity of treatment 
effect.

b. IV estimation statistically controlling for X
5M

 
and using X

4M
 as an instrument:

i. Sufficient variation in X
4M

 so that different 
treatment choices are observed in the data 
for patients stratified by X

4M
.

ii. An assumption of no correlation between 
X

4M
 and factors in X

5U
 will yield a 

consistent estimate of LATE specific to 
the patients whose treatment choices were 
affected by the factors within X

4M
. ATE 

and ATU are “identified” by this LATE 

estimate through the assumed homogeneity 
of treatment effect.

2. Treatment effect is homogeneous (no X
1
 and 

X
2
 factors exist). Certain factors affecting 

treatment choice have direct effects on outcome 
(X

3
).

 Y = g(T,X
3M

,X
3U

,X
5M

,X
5U

)

 T = f(X
3M

,X
3U

,X
4M

,X
4U

)

a.  Direct RA estimation of Y equation statistically 
controlling for X

3M
 and X

5M
:

i. Sufficient variation in X
4
 so that different 

treatment choices are observed in the data 
after controlling for X

3M
 when estimating 

the outcome equation.

ii. Assumptions that no X
3U

 variables exist and 
that there are no correlations between X

4
 

and factors in X
5U

 will yield an unbiased 
estimate of ATT. ATE and ATU are 
“identified” by the ATT estimate through 
assumed homogeneity of treatment effect.

b. IV estimation statistically controlling for 
X

3M
 and X

5M
 and using measured X

4M
 as an 

instrument:

i. Sufficient variation in X
4M

 so that different 
treatment choices are observed in the data 
across X

4M
 strata after controlling for X

3M
.

ii. Assumptions of no correlation between 
X

4M
 and factors in X

3U
 and X

5U
 will yield 

a consistent estimate of LATE specific to 
the set of patients whose T choices were 
affected by X

4M
 after controlling for X

3M
 

and X
5M

. ATE and ATU are “identified” by 
this LATE estimate through the assumed 
homogeneity of treatment effect.

3. Treatment effect is heterogeneous, and the 
factors affecting treatment effectiveness 
have no direct effect on Y (X

1
 exists; no X

2
 

factors exist). Moreover, heterogeneity is 
nonessential: Decisionmakers do not have 
sufficient knowledge of the X

1
 factors affecting 

heterogeneity to affect treatment choice, and X
1
 

factors are unmeasured by the researcher. 

 Y = g(T(X
1U

),X
5M

,X
5U

)

 T = f(X
4M

,X
4U

)
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a. Direct RA estimation of Y equation statistically 
controlling for X

5M
:

i. Sufficient variation in X
4
 so that different 

treatment choices are observed in the data.

ii. Assumption of no correlations between 
X

4
 and X

5U
 will yield an unbiased estimate 

of ATT. ATE and ATU are “identified” by 
estimating ATT through the assumption 
that providers do not have knowledge of 
how X

1U
 relates to treatment effectiveness. 

However, if X
4
 was somehow correlated 

with X
1U

, average X
1U

 would vary between 
treated and untreated patients and the RA 
estimate of ATT would not be biased; 
however, it would not be possible to 
identify either ATE or ATU.

b. IV estimation statistically controlling for X
5M

 
and using X

4M
 as an instrument:

i. Sufficient variation in X
4M

 so different 
treatment choices are observed in the data 
across X

4M
 strata.

ii. Assumption of no correlation between 
X

4M
 and factors in X

5U
 yields a consistent 

estimate of LATE specific to the set of 
patients whose T choices were affected 
by factors within X

4M
. ATE and ATU 

are “identified” by this LATE estimate 
through the assumption that providers do 
not have knowledge of how X

1U
 relates to 

treatment effectiveness.  However, if X
4M

 
factors are somehow correlated with X

1U
, 

then the patients whose treatment choices 
vary with X

4M
 will differ from the rest of 

the patient population with regard to X
1U

.  
In this case, the IV LATE estimate would 
not identify either ATE or ATU.

4. Treatment effect is heterogeneous, and 
factors affecting treatment effectiveness 
have no direct effect on Y (X

1
 exists; no X

2
 

factors exist). Moreover, heterogeneity is 
nonessential: Decisionmakers do not have 
sufficient knowledge of the X

1
 factors affecting 

heterogeneity to affect treatment choice. 
However, certain suspected X

1M
 factors are 

measured by the researcher. 

 Y = g(T(X
1M

,X
1U

),X
5M

,X
5U

)

 T = f(X
4M

,X
4U

)

a. Direct RA estimation of Y equation statistically 
controlling for X

5M
 for patient groups stratified 

by X
1M

:

i. Sufficient variation in X
4
 exists so that 

different treatment choices are observed in 
the data within each stratum of X

1M
.

ii. Assumption of no correlation between X
4
 

and X
5U

 in each X
1M

 stratum will yield an 
unbiased estimate of ATT within each X

1M
 

stratum.  ATE and ATU are “identified” by 
estimating ATT through the assumption 
that providers do not have knowledge of 
how X

1U
 relates to treatment effectiveness 

within each X
1M

 stratum.

b. IV estimation for patient groups stratified by 
X

1M
 and statistically controlling for X

5M
 and 

using X
4M

 as an instrument:

i. Sufficient variation in X
4M

 exists so that 
different treatment choices are observed in 
the data across X

4M
 strata within each X

1M
 

stratum.

ii. Assumption of no correlation between 
X

4M
 and X

5U
 in each X

1M
 stratum will yield 

a consistent estimate of LATE specific to 
the set of patient whose T choices were 
affected by measured factors within X

4M
. 

ATE and ATU are “identified” by this 
LATE estimate through the assumption 
that providers do not have knowledge of 
how X

1U
 relates to treatment effectiveness 

within each X
1M

 stratum.

5. Treatment effect is heterogeneous, and all 
factors affecting treatment effectiveness have 
no direct effect on Y (X

1
 exists; no X

2
 factors 

exist). Moreover, heterogeneity is essential: 
Decisionmakers have knowledge of certain X

1
 

factors affecting treatment effectiveness that is 
sufficient to affect treatment choice, but these 
factors are unmeasured by the researcher.

 Y = g(T(X
1U

),X
5M

,X
5U

)

 T = f(X
1U

,X
4M

,X
4U

)

a. Direct RA estimation of Y equation statistically 
controlling for X

5M
:

i. Sufficient variation in X
4
 so that different 

treatment choices are observed in the data.
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ii. Assumption of no correlation between 
X

4
 and X

5U
 yields an unbiased estimate 

of ATT. Because X
1U

 is used in treatment 
choice, the distribution of X

1U
 will differ 

between the treated patients and untreated 
patients.  Therefore, the ATE and ATU are 
unidentified by the ATT estimate.  

b. IV estimation statistically controlling for X
5M

 
and using X

4M
 as an instrument:

i. Sufficient variation in X
4M

 so different 
treatment choices are observed in the data 
across X

4M
 strata.

ii. Assumption of no correlation between X
4M

 
and X

5M
 yields a consistent estimate of 

LATE specific to the set of patient whose 
T choices were affected by X

4M
.  Because 

the value of X
1U

 will define the subset of 
patients for whom X

4M
 factors affect their 

treatment choices (e.g., X
4M

 will less likely 
affect the treatment choices for patients 
with extreme X

1U
 values), the distributions 

of X
1U

 will differ among treated, untreated, 
and those patient used to estimate LATE. 
Therefore, the LATE estimate would not 
identify ATT, ATU, or ATE.

6. Treatment effect is heterogeneous, and factors 
affecting treatment effectiveness have no 
direct effect on Y(X

1
 exists; no X

2
 factors 

exist). Moreover, heterogeneity is essential: 
Decisionmakers have knowledge of the X

1
 

factors affecting heterogeneity sufficient to 
affect treatment choice, and all X

1
 factors are 

measured by the researcher.

 Y = g(T(X
1M

) ,X
5M

,X
5U

)

 T = f(X
1M

,X
4M

,X
4U

)

a. Direct RA estimation of Y equation statistically 
controlling for X

5M
 within each X

1M
 stratum:

i. Sufficient variation in X
4
 exists within 

each X
1M

 stratum so that different 
treatment choices are observed within each 
X

1M
 stratum.

ii. Assumed no correlation between X
4
 and 

X
5U

 in each X
1M

 stratum yields an unbiased 
estimate of ATT within each X

1M
 stratum. 

Within each X
1M

 stratum, the ATE and 
ATU are “identified” by estimating ATT 
through the assumed homogeneity of 

treatment effect within the X
1M

 stratum. 

b. Estimation for patient groups stratified by X
1M

 
and statistically controlling for X

5M
 and using 

X
4M

 as an instrument:

i. Sufficient variation in X
4M

 so that different 
treatment choices are observed in the data 
across X

4M
 strata within each X

1M
 stratum.

ii. Assumed no correlation between X
4M

 and 
X

5U
 in each X

1M
 stratum yields a consistent 

estimate of LATE specific to the set of 
patient whose T choices were affected by 
X

4M
. ATE and ATU are “identified” within 

each X
1M

 stratum by estimating this LATE 
through the assumed homogeneity of 
treatment effect within each X

1M
 stratum. 

Moreover, with X
1M

 measured it would 
be possible to identify population-level 
values of ATT, ATE, and ATU, using LATE 
estimates based on X

4M
.27, 29, 30

7. Treatment effect is heterogeneous, and factors 
affecting treatment effectiveness have no 
direct effect on Y (X

1
 exists; no X

2
 factors 

exist). Moreover, heterogeneity is essential: 
Decisionmakers have knowledge of the X

1
 

factors affecting heterogeneity sufficient to 
affect treatment choice. Only certain X

1
 factors 

are measured by the researcher.

 Y = g(T(X
1M

,X
1U

) ,X
5M

,X
5U

)

 T = f(X
1M

,X
1U

,X
4M

,X
4U

)

a. Direct RA estimation of Y equation statistically 
controlling for X

5M
 within each X

1M
 stratum:

i. Sufficient variation in X
4
 or X

1U
 exists 

within each X
1M

 stratum so that different 
treatment choices are observed within each 
X

1M
 stratum.

ii. Assumed no correlation between X
4
 

andX
1U

 and X
5U

 in each X
1M

 stratum yields 
unbiased estimates of ATT in each X

1M
 

stratum. However, within each X
1M

 stratum, 
ATE and ATU that are not identified as X

1U
 

will be distributed differently for treated 
and untreated patients within each X

1M
 

stratum.

b. IV estimation for patient groups stratified by 
X

1M
 and statistically controlling for X

5M
 and 

using X
4M

 as an instrument:
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i. Sufficient variation in X
4M

 so that different 
treatment choices are observed in the data 
across X

4M
 strata within each X

1M
 stratum.

ii. Assumed no correlation between X
4M

 and 
X

5U
 in each X

1M
 stratum yields consistent 

estimates of LATE in each X
1M

 stratum 
that are specific to the set of patient whose 
T choices were affected by X

4M
. ATE and 

ATU are not “identified” within each X
1M

 
stratum, as the distribution of X

1U
 will vary 

between treated and untreated patients 
within each X

1M
 stratum.

8. Treatment effect is heterogeneous, and the 
factors affecting treatment effectiveness have 
direct effects on Y (no X

1
 factors exist; X

2
 

factors exist). Moreover, heterogeneity is 
nonessential: Decisionmakers do not have 
sufficient knowledge of the X

2
 factors affecting 

heterogeneity to affect treatment choice and X
2
 

factors are unmeasured by the researcher. 

 Y = g(T(X
2U

), X
2U

,X
5M

,X
5U

)

 T = f(X
4M

,X
4U

)

a. Direct RA estimation of Y equation statistically 
controlling for X

5M
:

i. Sufficient variation in X
4
 so that different 

treatment choices are observed in the data.

ii. Assumed no correlations between X
4
 and 

X
2U

 and X
5M

 yields an unbiased estimate 
of ATT. ATE and ATU are “identified” by 
estimating ATT through the assumption 
that X

4
 and X

2U
 are uncorrelated. If X

4
 was 

correlated with X
2U

, average X
2U

 would vary 
between treated and untreated patients, and 
the RA estimate of ATT would be biased 
(which is distinct from scenario 3).

b. IV estimation statistically controlling for X
5M

 
and using X

4M
 as an instrument:

i. Sufficient variation in X
4M

 so different 
treatment choices are observed in the data 
across X

4M
 strata.

ii. Assumed no correlation between X
4M

 and 
X

2U
 and X

5U
 yields a consistent estimate 

of LATE specific to the set of patient 
whose T choices were affected by factors 
within X

4M
. ATE and ATU are “identified” 

by estimating this LATE through the 

assumption that X
4M

 and X
2U

 factors are 
uncorrelated. If X

4M
 factors are correlated 

with X
2U

, then the IV LATE estimate would 
be inconsistent.

9. Treatment effect is heterogeneous, and 
factors affecting treatment effectiveness have 
direct effect on Y (no X

1
 factors exists; X

2
 

factors exist). Moreover, heterogeneity is 
nonessential: Decisionmakers do not have 
sufficient knowledge of the X

2
 factors affecting 

heterogeneity to affect treatment choice. 
However, certain suspected X

2M
 factors are 

measured by the researcher. 

 Y = g(T(X
2M

,X
2U

), X
2M

,X
2U

,X
5M

,X
5U

)

 T = f(X
4M

,X
4U

)

a. Direct RA estimation of Y equation statistically 
controlling for X

5M
 for patient groups stratified 

by X
2M

:

i. Sufficient variation in X
4
 exists so that 

different treatment choices are observed in 
the data within each stratum of X

2M
.

ii. Assumed no correlation between X
4
 and 

X
2U

 and X
5U

 in each X
2M

 stratum yields 
unbiased estimates of ATT within each 
X

2M
 stratum. Within each X

2M
 stratum, 

the ATE and ATU are “identified” by the 
ATT estimate through the assumed lack 
of provider knowledge of treatment effect 
heterogeneity related to X

2U
 when making 

treatment choices within each X
2M

 stratum.

b. IV estimation for patient groups stratified by X
2M

 
and statistically controlling for X

5M
 and using 

X
4M

 as an instrument:

i. Sufficient variation in X
4M

 exists so that 
different treatment choices are observed in 
the data across X

4M
 strata within each X

2M
 

stratum.

ii. Assumed no correlation between X
4M

 and 
X

2U
 and X

5U
 in each X

2M
 stratum yields 

consistent estimates of LATE, specific 
in each X

2M
 stratum for the set of patient 

whose treatment choices were affected 
by factors within X

4M
. ATE and ATU are 

“identified” by LATE within each X
2M

 
stratum through the assumed lack of 
provider knowledge of treatment effect 
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heterogeneity related to X
2U

 when making 
treatment choices within each X

2M
 stratum.

10. Treatment effect is heterogeneous, and all 
factors affecting treatment effectiveness have 
no direct effect on Y (no X

1
 factors exists; 

X
2
 factors exist). Moreover, heterogeneity is 

essential: Decisionmakers have knowledge 
of certain X

2
 factors affecting treatment 

effectiveness that is sufficient to affect treatment 
choice, but these factors are unmeasured by the 
researcher.

 Y = g(T(X
2U

),X
2U

,X
5M

,X
5U

)

 T = f(X
2U

,X
4M

,X
4U

)

a. Direct RA estimation of Y equation statistically 
controlling for X

5M
:

i. Sufficient variation in X
4
 so that different 

treatment choices are observed in the data.

ii. Because X
2U

 is unmeasured and is related 
to both Y and T, the RA estimator will be a 
biased estimate of ATT. Accordingly, ATE 
and ATU will be unidentified by the biased 
ATT estimate.

b. IV estimation statistically controlling for X
5M

 
and using X

4M
 as an instrument:

i. Sufficient variation in X
4M

 so that different 
treatment choices are observed in the data 
across X

4M
 strata.

ii. Assumed no correlation between X
4M

 and 
X

2U
 and X

5U
 yields consistent estimates 

of LATE specific to the patients whose 
treatment choices were affected by X

4M
. 

Because the value of X
2U

 will define the 
subset of patients for whom X

4M
 factors 

affect their treatment choices (e.g., X
4M

 
will less likely affect the treatment choices 
for patients with extreme X

2U
 values), 

the distributions of X
2U

 will differ among 
treated, untreated, and those patients used 
to estimate LATE. Therefore, LATE, while 
consistent, would not identify ATT, ATU, or 
ATE.

11. Treatment effect is heterogeneous, and factors 
affecting treatment effectiveness have no direct 
effect on Y (no X

1
 factors exists; X

2
 factors 

exist). Moreover, heterogeneity is essential: 
Decisionmakers have knowledge of the X

2
 

factors affecting heterogeneity sufficient to 

affect treatment choice, and all X
2
 factors are 

measured by the researcher.

Y = g(T(X
2M

) ,X
2M

,X
5M

,X
5U

)

T = f(X
2M

,X
4M

,X
4U

)

a. Direct RA estimation of Y equation statistically 
controlling for X

5M
 within each X

2M
 stratum:

i. Sufficient variation in X
4
 exists within 

each X
2M

 stratum so that different treatment 
choices are observed within each X

2M
 

stratum.

ii. Assumed no correlation between X
4
 and 

X
5U

 in each X
2M

 stratum yields unbiased 
estimate of ATT within each X

2M
 stratum. 

Within each X
2M

 stratum, the ATE and ATU 
are “identified” by estimating ATT through 
assumed homogeneity of treatment effect 
within each X

2M
 stratum.

b. IV estimation for patient groups stratified by 
X

2M
 and statistically controlling for X

5M
 and 

using X
4M

 as an instrument:

i. Sufficient variation in X
4M

 so that different 
treatment choices are observed in the data 
across X

4M
 strata within each X

2M
 stratum.

ii. Assumed no correlation between X
4M

 and 
X

5U
 in each X

2M
 stratum yields consistent 

estimates of LATE in each X
2M

 stratum 
specific to the patients whose treatment 
choices were affected by X

4M
. ATE and 

ATU are “identified” within each X
2M

 
stratum by this LATE estimate through 
assumed homogeneity of treatment effect 
within each X

2M
 stratum.

12. Treatment effect is heterogeneous, and factors 
affecting treatment effectiveness have no direct 
effect on Y (no X

1
 factors exists; X

2
 factors 

exist). Moreover, heterogeneity is essential: 
Decisionmakers have knowledge of the X

2
 

factors affecting heterogeneity sufficient to 
affect treatment choice. Only certain X

2
 factors 

are measured by the researcher.

 Y = g(T(X
2M

,X
2U

),X
2M

,X
2U

,X
5M

,X
5U

)

 T = f(X
2M

,X
2U

,X
4M

,X
4U

)

a. Direct RA estimation of Y equation statistically 
controlling for X

5M
 within each X

2M
 stratum:

i. Sufficient variation in X
4
 or X

2U
 exists 

within each X
2M

 stratum so that different 
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treatment choices are observed within each 
X

1M
 stratum.

ii. Because X
2U

 is related to both Y and T and 
is unmeasured, the RA estimator yields a 
biased estimate of ATT within each X

2M
 

stratum. Accordingly, ATE and ATU will 
be unidentified by the biased ATT estimate 
within each X

2M
 stratum.

b. IV estimation for patient groups stratified by 
X

2M
 and statistically controlling for X

5M
 and 

using X
4M

 as an instrument:

i. Sufficient variation in X
4M

 so that different 
treatment choices are observed in the data 
across X

4M
 strata within each X

2M
 stratum.

ii. Assumed no correlation between X
4M

 and 
X

2U
 and X

5U
 in each X

2M
 stratum yields 

consistent estimates of LATE in each X
2M

 
stratum specific to the patients whose 
treatment choices were affected by X

4M
. 

ATE and ATU are not “identified” within 
each X

2M
 stratum as the distribution of X

2U
 

will vary between treated and untreated 
patients within each X

2M
 stratum. 
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Abstract

This supplement describes how counterfactual theory is used to define causal effects and the conditions 
in which observed data can be used to estimate counterfactual-based causal effects. Basic definitions 
and language used in causal graph theory are then presented. The graphical separation rules linking the 
causal assumptions encoded in a diagram to the statistical relations implied by the causal diagrams are 
then presented. The supplement concludes with a description of how Directed Acyclic Graphs (DAGs) 
can be used to select covariates for statistical adjustment, identify sources of bias, and support causal 
interpretation in comparative effectiveness studies.
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Introduction

Under the rubric of structural equation modeling, 
causal diagrams were historically used to illustrate 
qualitative assumptions in linear equation systems. 
Judea Pearl extended the interpretation of causal 
diagrams to probability models, a development that 
has enabled the use of graph theory in probabilistic 
and counterfactual inference.1 Epidemiologists 
then recognized that these diagrams could be used 
to illustrate sources of bias in epidemiological 
research,2 and for this reason have recommended the 
use of causal graphs to illustrate sources of bias and 
to determine if the effect of interest can be identified 
from available data.3-6 

This supplement begins with a brief overview of 
how counterfactual theory is used to define causal 
effects and of the conditions under which observed 
data can be used to estimate counterfactual-based 
causal effects. We then present the basic definitions 
and language used in causal graph theory. Next we 
describe the construction of causal diagrams and 
the graphical separation rules linking the causal 
assumptions encoded in a diagram to the statistical 
relations implied by the diagram. The supplement 
concludes with a description of how Directed Acyclic 
Graphs (DAGs) can be used to select covariates 
for statistical adjustment, identify sources of bias, 
and support causal interpretation in comparative 
effectiveness studies.

Estimating Causal Effects 

The primary goal of nonexperimental comparative 
effectiveness research is to compare the effect of 
study treatments on the risk of specific outcomes in 
a target population. To determine if a treatment had 
a causal effect on an outcome of interest, we would 
like to compare individual-level outcomes under 
each treatment level. Unfortunately, an individual’s 
outcome can only be observed under one treatment 
condition, which is often referred to as the factual 
outcome. Outcomes under treatment conditions not 
actually observed are referred to as counterfactual or 
potential outcomes.7-8 Using counterfactual theory, 
we would say that a treatment had a causal effect on 
an individual’s outcome if the outcome experienced 
would have been different under an alternative 
treatment level. For example, we would conclude 
that treatment A had a causal effect on the outcome 
Y if, say, an individual died 5 days after taking the 
drug (a=1), but would have remained alive on day 5 
if he had not taken the medication (a=0). Due to the 
missing counterfactual data, causal effect measures 
cannot be directly computed for individual people 
without very strong assumptions. Nevertheless, 
average causal effects can be consistently estimated 
in randomized experiments and nonexperimental 
studies under certain assumptions.7-8
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Assuming that we can simultaneously estimate 
the outcome risk for the entire population under 
different treatment conditions, then an average 
causal effect occurs when the outcome risk is 
not equal across levels of treatment. Using a 
dichotomous treatment (A) and outcome (Y) as 
the example, the causal effect in a population 
is the probability of the outcome occurring 
when the entire population is treated Pr[Ya=1=1] 
minus the probability of the outcome occurring 
when the entire population is untreated 
Pr[Ya=0=1].  Populations, like individuals, 
cannot simultaneously receive different levels 
of treatment. We can, however, use observed 
data to draw inferences about the probability 
distributions or expectations over a population 
of counterfactual variables. One of the important 
assumptions required for using only observed data 
(factual data) to estimate average causal effects is 
exchangeability.  

In an ideal randomized experiment, treatment 
assignment is independent of the counterfactual 
outcomes, and therefore the two groups are 
exchangeable.7, 9 This means that the risk of 
experiencing the outcome in the two groups at the 
time of treatment assignment is equal to the risk 
in the full population. The equivalency to the full 
population allows us to use the observed data from 
the treated group to estimate what the treatment 
effect would have been if the entire population was 
treated, and it also allows us to use the observed 
data from the untreated group to estimate the 
effect of no treatment in the full population. 
In addition, because the outcome risks in the 
subpopulations are equivalent at the time treatment 
is assigned, the observed risk difference between 
the treatment groups can be attributed to treatment 
effects.10 In an ideal randomized trial, the outcome 
experience had the entire population been treated 
(Pr[Ya=1=1]) is equal to the probability of the 
outcome occurring in the subset of the population 
who received treatment (Pr[Y=1|A=1]), and the 
same holds for the untreated group. Using the risk 
difference scale, this means that the conditional 
risk difference can be used to estimate the 
marginal causal risk difference (Pr[Y=1|A=1] - 
Pr[Y=1|A=0]) = (Pr[Ya=1=1]- (Pr[Ya=0=1]).

In nonexperimental studies, marginal 
exchangeability can rarely be assumed, since 
patients and providers typically select treatments 
based on their belief about the risk of specific 
outcomes. In this case marginal exchangeability 
does not hold, but exchangeability may hold within 
levels of risk factors pertaining to the outcome. 
Causal inference from nonexperimental data is 
based on the critical assumption that within levels 
of important risk factors, treatment assignment 
is effectively randomized. This assumption is 
also referred to as “conditional exchangeability,” 
“conditional unconfoundedness,” or the 
assumption of “conditionally ignorable treatment 
assignment.”8, 10 When we assume that treatment 
was randomly assigned conditional on a set of 
covariates, causal inference for nonexperimental 
comparative effectiveness studies requires some 
form of covariate adjustment.

The question then concerns the adjustments that 
must be made in order to generate conditional 
exchangeability and avoid bias. DAGs have been 
found to be particularly helpful in diagnosing 
sources of bias and helping investigators select 
a set of covariates that allow the estimation of 
causal effects from observed data. Using DAG 
theory, confounding bias can be characterized as 
an unblocked “backdoor” path from the treatment 
to the outcome. The next section presents 
terminology for DAGs and their utility in selecting 
covariates for statistical adjustment. 

DAG Terminology

DAGs are used to encode researchers’ a priori 
assumptions about the relationships between 
and among variables in causal structures. DAGs 
contain directed edges (arrows), linking nodes 
(variables), and their paths. A path is an unbroken 
sequence of distinct nodes connected by edges; a 
directed path is a path that follows the edges in the 
direction indicated by the arrows, such as the path 
from A to C (A→B→C). An undirected path does 
not follow the direction of the arrows, such as the 
following A to C path (A→B→C). Kinship terms 
are often used to represent relationships within a 
path. If there exists a directed path from A to C, 
then A is an ancestor of C and C is a descendent of 
A. Using the directed path example of A→B→C, 
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A is a direct cause or parent of B, and B is a child 
of A and parent of C, while A is considered an 
indirect cause or ancestor of C. The node B lies 
on the causal pathway between A and C and is 
considered an intermediate or mediator variable on 
the directed path.  DAGs are acyclic since no node 
can have an arrow pointing to itself, and all edges 
must be directed (contain arrows).2 In other words, 
no directed path from any node to itself is allowed. 
These rules enforce the understanding that causes 
must precede their effects. Mutual causation is 
handled in DAGs by including a time component, 
which allows A to cause B at time (t) and B to 
cause A at some later time (t+1).

The first step in creating a causal DAG is to 
diagram the investigators’ understanding of the 
relationships and dependencies among variables. 
Construction of DAGs should not be limited to 
measured variables from available data; they 
must be constructed independent of available 
data and of background knowledge of the causal 
network linking treatment to the outcome. The 
most important aspect of constructing a causal 
DAG is to include on the DAG any common 
cause of any other two variables on the DAG. 
Variables that only causally influence one other 
variable (exogenous variables) may be included 
or omitted from the DAG, but common causes 
must be included for the DAG to be considered 
causal. The absence of any path between two 
nodes in a DAG indicates that the variables are 
not causally related (i.e., that manipulation of one 
variable does not cause a change in the value of 
the other variable). Investigators may not agree 
on a single DAG to represent a complex clinical 
question; when this occurs, multiple DAGs may be 
constructed and statistical associations observed 
from available data may be used to evaluate the 
consistency of observed probability distributions 
with the proposed DAGs. Statistical analyses may 
be undertaken as informed by different DAGs, and 
the results can be compared.

Figure S2.1 is a modified DAG illustrating a highly 
simplified hypothetical study, described in chapter 
7, to compare rates of acute liver failure between 
new users of calcium channel blockers (CCBs) and 
diuretics.  

Figure S2.1 Hypothetical DAG illustrating causal 
relationships among formulary policy (C

1
) and treatment 

with a CCB (A) and treatment for eretile dysfunction 
(C

4
). Alcohiol abuse (C

2
) influences impotence (C

3
), 

which influences treatment of erectile dsyfuncuction 
(C

4
) and is a cause of acute liver disease (Y). In this 

example there is no effect of antihypertensive treatment, 
that is, treatment with a CCB (A), on liver disease.

Causal diagrams like Figure S2.1 can be used 
to express causal assumptions and the statistical 
implications of these assumptions.11-12  

Independence Relationships

DAGs can be used to infer dependence and 
conditional independence relationships if the 
causal structure represented by the graph is 
correct. The rules linking the structure of the 
graph to statistical independence are called the 
d-separation criteria and are stated in terms of 
blocked and unblocked paths.2 To discuss blocked 
and unblocked paths, we need one more graphical 
concept, that of a collider. A node is said to be a 
collider on a specific path if it is a common effect 
of two variables on that path (i.e., when both the 
preceding and subsequent nodes have directed 
edges going into the collider node). In Figure S2.1, 
C

4
 is a collider on the path A←C

1
→C

4
 ←C

3
←C

2
→Y. 

Note, however, that whether a variable is a collider 
or not is relative to the path. C

4
 is not a collider on 

the path C
4
←C

3
←C

2
→Y. 

We can now define blocked paths. A path from a 
node A to a node Y is unconditionally blocked if 
there is a collider on the path from A to Y (e.g., 
Figure S2.2). A path from a node A to a node 
Y is said to be blocked conditional (e.g., when 
adjusting) on a set of variables Z if either there 
is a variable in Z on the path that is not a collider 
or if there is a collider on a path such that neither 
the collider nor any of its descendants are in Z. 
Otherwise, the path is said to be unblocked or 
open. Two paths between A and Y exist in Figure 
S2.2. The path A←C

1
→C

4
→C

5
→Y is an open path, 
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while the A←C
1
→C

4
←C

3
←C

2
→Y path is closed 

due to the collider C
4
. Adjustment for C

4
 or C

5
 

will close the A←C
1
→C

4
→C

5
 →Y path but open 

a backdoor path on the A←C
1
→C

4
←C

3
←C

2
→Y 

pathway by inducing an association between C
1
 

and C
2
. Adjustment for C

1
 alone will close the 

open A←C
1
→C

4
→C

5
→Y path and not alter the 

A←C
1
→C

4
←C

3
←C

2
→Y path, which is closed due to 

the collider.

Figure S2.2 Hypothetical DAG used to illustate the 
open backdoor path rule. Adjustment for C

4
 or C

5
 will 

open the A←C
1
→C

4
←C

3
←C

2
→Y path. Adjustment for 

C1 will close the open A←C
1
→C

4
→C

5
→Y path.

Blocked paths correspond to independence; 
unblocked paths to association. More formally, 
we say that a node A and a node Y are d-separated 
conditional on Z if all paths from A to Y are 
blocked conditional on Z. If a DAG correctly 
describes the causal structures, then it follows that 
if A and Y are d-separated conditional on Z, then 
A and Y are conditionally independent given Z. 
This is sometimes referred to as the d-separation 
criterion. On the other hand, variables that are 
marginally independent but have a common effect 
become conditionally dependent when statistically 
adjusting the common effect. Adjusting for 
such colliders is said to open up backdoor paths 
and induce conditional associations. A stylized 
example used to illustrate this concept describes 
two ways in which the pavement (X

3
) can be 

wet—the sprinkler system (X
1
) is on or it is raining 

outside (X
2
).11 One assumes that the owners of 

the sprinkler system watered their lawn based 
on a preprogrammed schedule, making use of 
sprinklers unassociated with rain. Suppose you had 
a data table with data on X

1
, X

2
 and X

3
 during the 

past year. If you were to evaluate the association 
between X

1
 and X

2
, you would find that X

1
 does 

not predict X
2
 and X

2
 does not predict X

1
. Now 

suppose you only use data where the concrete is 

wet and reevaluate the association between X
1
 and 

X
2
. By conditioning on the concrete being wet 

(X
3
 =1), dependence is established between the 

sprinklers being on and rain that did not previously 
exist. For example, if we know the concrete is 
wet and we also know the sprinklers are not 
on, then we can predict that it must be raining.  
Conditioning on a collider by either statistical 
adjustment or selection into the study can generate 
unintended consequences and bias the effect 
estimate.

Using DAGs To Select 
Covariates and Diagnose Bias

In a nonexperimental setting, the goal of 
covariate selection is to remove confounding by 
covariate selection. As described in chapter 7, 
intermediate, collider, and instrumental variables 
may behave statistically like confounders. For 
this reason, background knowledge is required to 
distinguish confounders for statistical adjustment. 
The most important result relating conditional 
exchangeability to causal diagrams is Pearl’s 
backdoor path adjustment theorem, which 
provides a simple graphical test that investigators 
can use to determine whether the effect of A on 
Y is confounded. A set of variables, Z, satisfies 
the backdoor criterion relative to the treatment 
A and outcome Y in a DAG if no node in Z is a 
descendant of A and Z blocks every path between 
A and Y that begins with an arrow into A. The 
backdoor path adjustment theorem states that 
if Z satisfies the backdoor path criterion with 
respect to A and Y then the treatment groups are 
exchangeable conditional on Z.1

Using the backdoor path adjustment theorem, we 
can see the close connection between backdoor 
paths and common causes. Figure S2.3 indicates 
that treatment (A) and outcome (Y) have a 
common cause (C

4
). The backdoor path from A 

to Y is open and confounding is present unless 
C

4
 is statistically adjusted. We will represent 

conditioning on a variable by placing a square 
around the node, as illustrated in Figure S2.3.  
Unfortunately, adjustment for C

4
 opens a backdoor 

path from A to Y through C
1
, C

4
, C

3
, and C

2
, 

resulting in bias, unless additional adjustment is 
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made for C
1
, C

2
, or C

3
, or any combination of these. 

The key to ensuring conditional exchangeability 
is to measure and condition on variables needed 
to block all backdoor paths between the treatment 
and outcome (i.e., to condition on a sufficient set 
of confounders). When the effect of A on Y is 
unconfounded given a set of variables Z, we can 
then estimate the average causal effect described 
above using observed conditional probabilities 
(Pr[Y=1|A=1, Z=z] - Pr[Y=1|A=0, Z=z]) = 
(Pr[Ya=1=1|Z=z]- Pr[Ya=0=1|Z=z]).

Figure S2.3 DAG illustrating causal relationships 
among formulary policy (C

1
) and treatment with 

a CCB (A) and treatment for erectile dysfunction 
(C

4
). Alcohol abuse (C

2
) influences impotence (C

3
), 

which influences treatment of erectile dysfunction 
(C

4
) and is a cause of acute liver disease (Y). In 

this example C
4
 is a confounder and collider. 

Adjustment of C
4
 is additional to adjustment for at 

least one other variable on the open C
1-3

 pathways.

Using DAGs To Diagnose 
Selection Bias

The previous section described the use of DAGs 
to remove confounding, thereby enabling the 
estimation of average causal effects using observed 
patient responses to treatment. This section 
describes the use of DAGs to diagnose bias that 
results from selection into a study. Selection 
bias results when the estimated causal effect is 
different in the subset of the population being 
evaluated, when the goal is to make an inference 
to the full population. Selection bias occurs when 
the risk for the outcome in the population being 
studied is different from the risk in the target 
population, a situation that can happen when study 
participants are not representative of the target 
population. Various causes of selection bias have 
been described as healthy-worker bias, volunteer 
bias, selection of controls into case-control studies, 
differential loss-to-followup, and nonresponse.  

In the previous section, we described a type of 
selection bias that occurs when conditioning on a 
collider variable. We called this situation collider 
stratification bias. This bias occurs from estimating 
the average causal effect within “selected” stratum, 
then averaging across strata. It turns out that 
the basic structure of selection bias is the same 
as collider stratification bias, which has been 
described as conditioning on a common effect 
of two other variables.6 In the following section, 
we provide an example of how conditioning on 
a common effect can result from differential loss 
to followup. Please review the paper by Hernán 
and colleagues titled “A Structural Approach to 
Selection Bias” for a more complete discussion of 
other forms of selection bias.6  

Selection bias is a result of conditioning on a 
common effect of two variables. To simplify, 
consider a randomized trial of antihypertensive 
treatments (CCB or other) and the outcome of 
acute liver disease (Y). The DAG in Figure S2.4 
indicates that A is not causally associated with 
Y, but we would expect an association between A 
and Y conditional on S (selection) even though A 
does not cause Y. Assume that patients initiated on 
CCB have a higher rate of experiencing adverse 
drug effects and are more likely to drop out of the 
study (S=1) as represented from the arrow from 
A to S. Further assume that patients who abuse 
alcohol (C=1) are more likely to drop out as well. 
The square around S indicates that the analysis is 
restricted to individuals who did not drop out of the 
study.

Due to the random assignment of A, the variables 
A and C are marginally independent, but become 
conditionally dependent when selecting only 
subjects who remained in the study (i.e., those who 
did not drop out). Knowing that a study subject 
was an alcohol abuser but remained in the study 
suggests that she did not experience adverse effects 
of therapy. Restricting this analysis to subjects who 
did not drop out will result in patients treated with 
CCB having a lower proportion of alcohol abuse, 
thus making CCBs appear to be protective against 
acute liver failure when no causal association 
exists. This conditional dependence opens a 
pathway from A to Y through C thus biasing the 
observed risk difference from the counterfactual 
risk difference and resulting in selection bias.
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Figure S2.4. DAG illustrating selection bias. Treatment 
(A) is randomized. Subjects randomized to CCBs 
(A=1) are more likely to drop out due to adverse 
drug effects. Subjects with alcohol abuse (C=1) are 
more likely to drop out of the study and they are also 
more likely to experience acute liver failure (Y=1). 
Conditioning on selection (retention in study) (S=1) 
induces as association between A and C, which results 
in an open biasing pathway between A and Y.

There are situations where the causal risk 
estimate can be recovered from a design 
affected by selection bias. A technique called 
inverse probability weighting that generates a 
pseudopopulation where all subjects remained 
in the study can, under certain assumptions, 
be used to estimate the average causal effect in 
the entire target population. Inverse probability 
weighting is based on assigning a weight to 
each selected subject so that she accounts in the 
analysis not only for herself but also for those 
with similar characteristics (i.e., those with the 
same values of C and A) in subjects who were 
not selected.6 The effect measure based on the 
pseudopopulation, in contrast to that based on the 
selected population, is unaffected by selection 
bias provided that the outcome of the uncensored 
subjects truly represents the unobserved outcomes 
of the censored subjects. This provision will 
be satisfied if the probability of selection is 
calculated conditional on A and all other factors 
that independently predict both selection and 
the outcome. However, this is an untestable 
assumption and one must carefully consider 
influences of discontinuation and the outcome 
when attempting to statistically address selection 
bias.

Conclusion

This supplement described the use of DAGs 
to identify sources of bias in nonexperimental 
comparative effectiveness research. The goal 
of covariate selection is to generate conditional 
exchangeability, thereby allowing unbiased 

causal effect estimates within strata of covariates 
that are then pooled in some manner to generate 
unbiased average causal effects. The challenge 
of nonexperimental research is choosing a set of 
covariates that removes confounding bias and does 
not inadvertently generate other sources of bias. 
A confounder is typically considered a common 
cause of treatment and outcome, and DAG theory 
conceptualizes confounding as an open pathway 
between treatment and outcome. Confounders, 
unfortunately, cannot be selected based on 
statistical associations alone because some types 
of bias-inducing variables behave statistically like 
confounders. A common effect of two variables 
on a backdoor pathway is considered a collider. 
Colliders behave statistically like confounders, 
but pathways that include colliders are considered 
closed and do not bias the targeted effect estimate.  
Adjustment for colliders opens up additional 
pathways that can generate bias if necessary 
variables on the newly opened pathway are not 
appropriately adjusted.

Conditioning on the common effect of two 
variables (i.e., colliders) turns out to be the 
structural explanation for all types of selection 
bias. Selection bias occurs when participation in 
the study though volunteerism, design, adherence 
to treatment, or followup is influenced by the 
treatment and either the outcome or risk factors 
for the outcome. Some forms of selection bias, 
such as differential loss to followup, can be 
corrected by statistical techniques that analyze a 
pseudopopulation based on the subpopulation that 
was not lost to followup.  

The use of DAGs can help researchers clarify 
and discuss their beliefs about the underlying 
data generating process, which can in turn aid 
the interpretation of the statistical associations 
observed in the data. Developing DAGs is not 
always easy and may require a heuristic approach, 
where assumptions are tested by observed 
statistical association and revised. A disciplined 
approach to developing DAGs may be useful for 
communicating findings and providing rationale 
for covariate selection. As discussed in chapter 
7, there are often situations where a complete 
understanding of the causal network linking 
treatment to outcome is unknown. Empirical 
variable selection techniques may be employed to 
identify potential confounders for consideration. 
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In addition, we described methods for selecting 
covariates based on incomplete knowledge of the 
causal structure. In this case, simplifying rules, 
such as selecting all direct causes of treatment and/
or outcome may, in certain circumstances, be a 
good technique for removing confounding when 
the full causal structure is unknown.13 Familiarity 

with DAG theory will improve the investigators’ 
understanding of the logic and principles behind 
covariate selection for nonexperimental CER. 
Furthermore, use of DAGs standardizes the 
language for covariate selection, thus improving 
communication and clarity within the field and 
among investigators.

Checklist: Guidance and key considerations for DAG development and use in 
CER protocols

Guidance Key Considerations Check

Develop a simplified DAG to illustrate 
concerns about bias.

 – Use a DAG to illustrate and communicate known 
sources of bias, such as important well known 
confounders and causes of selection bias.

o

Develop complete DAG(s) to identify a 
minimal set of covariates.

 – Construction of DAGs should not be limited to 
measured variables from available data; they must 
be constructed independent of available data.

 – The most important aspect of constructing 
a causal DAG is to include on the DAG any 
common cause of any other two variables on the 
DAG.

 – Variables that only causally influence one other 
variable (exogenous variables) may be included or 
omitted from the DAG, but common causes must 
be included for the DAG to be considered causal.

 – Identify a minimal set of covariates that blocks all 
backdoor paths and does not inadvertently open 
closed pathways by conditioning on colliders or 
descendants.

o
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