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Using Inverse Probability-Weighted Estimators in
Comparative Effectiveness Analyses With Observational
Databases
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Abstract: Inverse probability-weighted estimation is a powerful
tool for use with observational data. In this article, we describe how
this propensity score-based method can be used to compare the
effectiveness of 2 or more treatments. First, we discuss the inherent
problems in using observational data to assess comparative effec-
tiveness. Next, we provide a conceptual explanation of inverse
probability-weighted estimation and point readers to sources that
address the method in more formal, technical terms. Finally, we
offer detailed guidance about how to implement the estimators in
comparative effectiveness analyses.
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n clinical and epidemiological studies, researchers often ask

whether 1 treatment is better than another at improving
survival or preventing disease relapse. For example, in a
study of 2 treatments that are randomly assigned—as in a
randomized controlled trial—the average causal treatment
effect can be defined as the difference between the average
response of individuals receiving one of the treatments and
the average response of individuals receiving the other treat-
ment (X, X,). When the treatments are not randomly
assigned—as in an observational study—individuals who
receive 1 treatment may not be comparable to those receiving
the other treatment. To the extent that 1 group is different
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from the other group in ways that affect the study outcomes
(eg, they are sicker, older, poorer, less adherent), any ob-
served difference in outcomes between the 2 groups may
simply reflect underlying differences between the groups
rather than effects that are caused by the treatments.

Researchers are often most interested in estimating a
difference that they cannot observe—what they would have
observed had the same individual been exposed to both
treatments. The “potential outcomes framework™'~* is useful
for understanding this unobservable difference. The set of
potential outcomes describes the responses and treatments
that would have been observed had an individual been sub-
jected to both treatments. For any particular individual, we
observe only 1 treatment; the remaining, hypothetical quan-
tity is referred to as the “counterfactual.” The average causal
treatment effect is defined as:

w = E{RV} — E{R?) (1)

where E{R""} and E{R”} are the average responses for the
entire population if every individual received treatment 1 and
treatment 2, respectively.

To make inferences about the distribution of counter-
factual responses from the observed data, we must assume
that treatment assignment depends only on observed covari-
ates. Stated more formally, this assumption requires that
treatment assignment is independent of the counterfactual
responses and conditional on observed covariates. In addi-
tion, the assumption guarantees that every individual has a
positive probability of receiving each treatment.

In comparative effectiveness studies with observational
databases, analysts commonly use the so-called propensity
score to estimate the average causal treatment effect.” The
propensity score is the probability of exposure to treatment
conditional on observed covariates, and it can be used to
balance covariates across treatment groups. Typically, ana-
lysts estimate propensity scores from a parametric model
such as a logistic regression model, and they compare indi-
viduals with similar estimated propensity scores by either
stratification or matching. Matching by propensity score con-
trols for many observed covariates simultaneously by match-
ing subjects in 1 treatment group with subjects in another
treatment group on the basis of individual propensity
scores.>® The difference in average treatment effects between
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the 2 groups is calculated as the difference in outcomes
between the matched groups. With stratification by propen-
sity score, average effect is calculated within each stratum,
and the causal difference is estimated as the average of the
within-stratum effects. Although the number of strata is left
to the discretion of the analyst, stratifying on quintiles is a
common practice.>’

Both matching and stratification for the construction of
comparison groups have limitations that may constrain their
practical application. Matching algorithms frequently omit a
significant proportion of the population when comparison
groups are being constructed, thus limiting the ability to
generalize from the results. Moreover, although stratification
will produce treatment groups with similar probabilities for
receiving treatment | and treatment 2, the individuals in these
strata may be indistinguishable to clinicians. Researchers
need alternative methods that make more parsimonious use of
observational data and that produce analyses that can be
applied in clinical decision making.

As an alternative to matching or stratification, Cassel
et al®; Rosenbaum’; and Hirano and Imbens'® have recom-
mended applying inverse propensity score estimators or inverse
probability-weighted estimators to adjust for confounding. Com-
pared with matching and stratification, semiparametric inverse
probability-weighted estimators require fewer distributional as-
sumptions about the underlying data, and they avoid the poten-
tial residual confounding that arises from stratification on a fixed
number of strata.” In addition, inverse probability-weighted
estimators can incorporate time-dependent covariates and deal
with censored data.

In this article, we describe how researchers can use in-
verse probability-weighted estimators with observational data-
bases to analyze comparative effectiveness. We begin with a
conceptual explanation of the estimators and point readers to
sources that address the method in more formal, technical terms.
Next, we discuss how to use inverse probability-weighted esti-
mators for comparative effectiveness analyses. Finally, we iden-
tify priorities and topics for future research.

Inverse Probability-Weighted Estimators

Imagine a sample of data from # patients with treatment
indicators (4,), response variables (R,), and individual covari-
ates (X;) assumed to be independent and identically distrib-
uted, i = 1, ..., n. The propensity score typically is un-
known and must be estimated based on the observed
covariates and treatment assignments. Denote the estimated
propensity score as ,(X;,7) and /(®) as the treatment indi-
cator function, taking the value 1 if the condition holds and 0
otherwise. The inverse probability-weighted estimate of treat-
ment-specific effect, w,, is given by the solution to the
following estimating equation:

" 14, = R — )
7,(X,,7)

= 0,a={1,2} 2)

i=

To estimate the causal effect of treatment 1, for exam-
ple, the analyst includes an observed response (R;) in the
numerator if the individual received treatment 1. (Observed
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responses for individuals who received treatment 2 are in-
cluded only in the numerator of the estimate of the causal
effect of treatment 2.) The response variable can be general-
ized in a variety of ways. For example, response may be an
estimate of the population mean on the basis of observed
covariates or an estimate of the cumulative distribution func-
tion (which is useful for estimating cumulative incidence
rates in the presence of competing risks).'! The denominator
of the estimating equation is the probability of receiving a
given treatment—the propensity score. In cases in which only
2 treatments are possible, only 1 propensity model needs to
be fit: an individual’s probability of receiving treatment 2 is
simply 1 minus the probability of receiving treatment 1.
Individuals with a high predicted probability of a given
treatment receive a lower weight, compared with individuals
with a low predicted probability of a given treatment. Thus,
an individual with a low predicted probability of receiving
treatment 1, who actually received treatment 1, will represent
a larger group of individuals who did not receive treatment 1.
(See Robins and Rotnitzky'? and Robins et al'® for a detailed
exposition of this approach.)

In addition to the relative advantages described earlier,
inverse probability-weighted estimators allow researchers to
deal with another issue common in observational data—
censoring. In observational studies, the response (eg, sur-
vival, lifetime medical costs, cumulative hospital admissions)
is often observed after some period that may vary by indi-
vidual. Because of this time lag and the limited follow-up in
many studies, some response data will be censored. Although
the random timing of an individual’s entry into a study (eg,
index hospitalization) accounts for much of the variability in
time lag, individuals may become censored for other reasons,
including changes in health insurance coverage, treatment
crossover, and loss to follow-up.

In the equations that follow, we introduce notation for
the ascertainment time (7'), the potential censoring time (C),
and the treatment-specific censoring distribution {K,(f)}. Be-
cause the true censoring distributions typically are unknown, we
must estimate them on the basis of observed data. If we assume
that censoring is unrelated to covariates or potential outcomes,
we can estimate the censoring distributions using Kaplan—Meier
estimates stratified by treatment. Extending the inverse proba-
bility-weighted estimate to account for censoring has been
described previously in numerous technical publications.'* ¢
Briefly, Eq. (2) is expanded to the following:

" KT, < C)(4, = )R — w,)
R (U)m,(X,9)

= 0,a={172}.

3)

where the treatment-specific censoring distribution K,(¢) typ-
ically is estimated using Kaplan—Meier estimates of the
censoring distribution. To the numerator the analyst adds an
indicator variable to restrict the sample to uncensored indi-
viduals—those for whom the study end point was reached
before the observation was censored [/(7; < C,)]. The analyst
expands the denominator to include a term reflecting the
probability of not being censored.
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In more general settings, however, censoring may de-
pend on baseline- and time-dependent variables that, in turn,
relate to the individual’s response to treatment. A more
conservative approach is to assume that the censoring process
is conditional on covariate information. Under this assump-
tion, the analyst can estimate the censoring distribution using
treatment-specific Cox proportional hazards models.

The response of an uncensored individual to a given
treatment, therefore, is inversely weighted by the product of
2 probabilities: the probability of assignment to a given
treatment and the probability of being uncensored (eg, the
probability of having complete data). Individuals who are less
likely to be observed in a given treatment group with com-
plete data (ie, those with low propensity scores who are more
likely to be censored) are weighted most heavily.

A drawback of these simple weighted estimators is that
only uncensored (“complete”) cases are included in the nu-
merator. Suppose we are interested in estimating 3-year
medical costs, and an individual is lost to follow-up at 2 years
and 11 months. The simple inverse probability-weighted
estimators require complete data and would exclude those 2
years and 11 months of cost data. In many studies, including
studies involving surgery and expensive one-time therapies,
the majority of cost information is obtained in the time period
immediately after the initial treatment. It seems reasonable
that the information collected from partial observations could
be used to construct more efficient estimators. Partitioned
estimators, similar to those described by Bang and Tsiatis'®
for randomized studies, allow greater efficiency by incorpo-
rating data from these partial observations up to the point of
censoring.

The general idea is to divide the follow-up period into
nonoverlapping partitions and estimate the average causal
treatment effect within each partition. As a result of parti-
tioning the follow-up interval, individuals considered to be
censored for the simple weighted estimators may contribute
their medical costs for one or more partitions. In general,
partitioned estimators will have smaller asymptotic variance
than the simple weighted estimators.'?

The censoring distribution within each partition can be
modeled using a Kaplan—Meier estimator, but a more robust
partitioned estimator can be constructed with Cox models. As
with simple weighted estimators, the Cox version of the
partitioned estimator is at least as efficient as the Kaplan—
Meier version of the partitioned estimator based on the
general theory of inverse probability-weighted estimators.'?

Inverse Probability-Weighted Estimators in
Comparative Effectiveness Analyses

Developing the Propensity Model

The first step in developing the propensity model is to
understand and identify clearly the treatment selection pro-
cess in the context of the clinical questions at hand. First, is
it possible that an individual who receives treatment 1 could
have received treatment 2? To answer this, we rely on clinical
judgment, paying careful attention to contraindications to the
treatments of interest. If the potential for receiving either
treatment does not exist, then inverse probability-weighted
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estimation is not appropriate. Second, are there known sub-
groups that might have different response characteristics? If,
for example, individuals with prior exposure to a given
treatment are likely to respond differently to the treatments of
interest, then the analyst should stratify the sample into
clearly defined subgroups before constructing the inverse
probability-weighted estimates. If the appropriate subgroups
for stratification are not known in advance, the analyst may
use Cox proportional hazards models or other regression
strategies to identify patient characteristics that are associated
with treatment modality. Although these characteristics can
then be used to define strata for subsequent analyses, analysts
should take care to assure that the resulting strata are clini-
cally meaningful."”

Consider, for example, a question concerning the com-
parative effectiveness of evidence-based [-blockers versus
nonevidence-based B-blockers for the treatment of heart fail-
ure. Randomized controlled trials have demonstrated that 3
B-blockers improve survival in individuals with heart failure.
Although randomized controlled trials have shown several
older 3-blockers to have a survival benefit for patients with a
myocardial infarction, no data exist on whether they confer a
survival benefit for patients with heart failure. Physicians are
frequently confronted with patients who are taking older
B-blockers for the treatment of hypertension and who subse-
quently develop heart failure. The clinical dilemma is whether
all of these patients should be switched to newer (and likely
more expensive) [3-blockers that have clinical trial evidence of a
survival benefit in heart failure, or whether the patients can be
maintained on the older 3-blockers using the rationale that the
beneficial effect of B-blockers in heart failure is a “class effect.”

The first question is whether patients who received
nonevidence-based B-blockers could have received evidence-
based B-blockers. Contraindications are uniform across all
B-blockers (evidence-based and nonevidence-based), so this
basic assumption is likely met. Next, we consider whether we
should define subgroups before constructing inverse proba-
bility-weighted estimators. If the outcome of interest is sur-
vival after an index hospital admission for heart failure, we
may want to stratify the analysis on the basis of B-blocker use
before admission, because such prior use is likely to be highly
predictive of B-blocker use after discharge. We would then
analyze patients taking no [-blockers separately from pa-
tients taking B-blockers before the index admission for heart
failure. Without stratification by subgroup, the inverse prob-
ability-weighted estimators will generate a single answer for
the entire population.

The next step is to build a multivariable propensity
model that balances the treatment groups with respect to
observed baseline confounders. Variable selection for pro-
pensity models has received relatively little formal atten-
tion, although Rubin and Thomas,'® Hirano and Imbens,'°
Brookhart et al,' and Petersen et al>® have proposed various
strategies. In general, candidate variables for the models
should include all baseline covariates that might confound the
relationship between treatment and outcome.'® In the heart
failure example, candidate variables might include age, race/
ethnicity, and prior comorbidities (eg, ischemic heart disease,
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hypertension, cardiovascular disease, chronic obstructive pul-
monary disease, diabetes mellitus). In general, parsimony is
not a priority unless the exposure of interest is rare and,
consequently, the propensity model would have relatively
few events per variable.?! As in any model building exercise,
the analyst should explore interactions and the appropriate
functional form of continuous variables. In certain situations,
limited variable selection may be necessary to stabilize esti-
mates in small data sets.

Assessing the extent to which the model balances the
treatment groups is critical. A straightforward approach is to
stratify by deciles of predicted probability of treatment (pro-
pensity score) and compare baseline characteristics across
treatment groups within deciles. Assessing balance is some-
what subjective, but the distribution of baseline covariates
between the treatment groups should be similar. If balance is
not observed within propensity score strata, then the propen-
sity score model needs to be refined further. In addition,
examining the distribution of predicted probabilities (propen-
sity scores) by treatment group is useful. Graphically, the
distributions should overlap. Nonoverlapping distributions
suggest that one or more baseline covariates are strongly
predictive of treatment selection, and analysts should con-
sider performing a stratified analysis in such cases.

As noted in the earlier example, a stratified analysis is
appropriate if we expect that defined subgroups will have
different response characteristics. In addition, stratification is
appropriate if a strong predictor of the propensity to receive
treatment exists. Consider the effect of era in the use of
drug-eluting stents for the treatment of coronary artery ste-
nosis. Drug-eluting stents prevent restenosis by delivering
drugs locally to inhibit scar formation. Randomized con-
trolled trials suggest that, compared with bare metal stents,
drug-eluting stents result in 70—80% fewer repeat revascu-
larization procedures. Despite little evidence regarding the
long-term effectiveness of drug-eluting stents compared with
bare metal stents, drug-eluting stents have become the pri-
mary mode of coronary revascularization in the United
States. Given the rapid uptake of drug-eluting stents, calendar
year would be highly predictive of the propensity to receive
a drug-eluting stent. Rather than include year in the model, a
better strategy is to define meaningful time periods and
estimate comparative effectiveness within those periods. This
requires the analyst to make some assumptions about the
comparability of individuals over time.

Propensity model development is an iterative process.
Researchers should take special care to examine the tails of
the distribution of propensity scores and trim extreme weights
so that they do not exert undue influence. Researchers should
also use sensitivity analyses to explore the robustness of the
model to the inclusion or exclusion of covariates and alternate
specifications.

Modeling the Censoring Distribution

The first step in modeling the censoring distribution is
to understand the source of the censoring. Is it administrative
in nature, reflecting random entry times and a calendar-based
study end, or is the censoring related to baseline- and time-
dependent covariates that may be related to an individual’s
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response to treatment? If the censoring is unrelated to an
individual’s covariates, treatment-specific Kaplan—-Meier es-
timates of the censoring distributions will suffice. If, by
contrast, censoring is related to an individual’s covariates, a
Cox proportional hazards model should be used. Again,
modeling the censoring distribution with a Cox model serves
primarily to reduce bias. In theory, even if the Kaplan—Meier
estimate is sufficient, a Cox model would improve statistical
efficiency (eg, smaller variances).'* Based on our experience,
however, unless the Cox model is extended to include post-
baseline information, the gains in statistical efficiency are
minimal.

The next step in the modeling exercise is to assess the
extent of censoring. As noted previously, a partitioned esti-
mator will be more efficient in most cases. The key decision
with a partitioned estimator is where to set the partitions. In
general, setting the partitions where the analyst expects to
collect the most information is best. If the outcomes of
interest occur at the beginning of follow-up, for example,
setting partitions early in the follow-up phase to capture
important data is the best strategy.

Consider, for example, the source and extent of cen-
soring in an analysis of Medicare claims data. Index events
occur at random times throughout the study period so that
individuals with index events in later years have shorter
follow-up. This censoring is administrative in nature and is
unrelated to individual covariates. Another form of censoring
arises when Medicare beneficiaries switch their coverage
from fee-for-service to Medicare managed care. The data are
censored during periods of managed care eligibility but,
unlike the previous example, the censoring is related to
individual covariates (eg, younger age, fewer chronic dis-
eases, and lower expenses in the year before enrollment)
(S.V. Rao, et al, unpublished data, 2005). In such situations,
a partitioned inverse probability-weighted estimator—in
which the censoring distribution is estimated using a Cox
model that includes baseline covariates—may be most appro-
priate. Again, the placement and length of the partitions will
depend on the specific clinical question and when the out-
comes of interest are most likely to occur.

Other issues arise when modeling the censoring distri-
bution. First, individuals can be lost to follow-up, at least
temporarily. This happens, for example, when interviewers
are unable to locate individuals for a regularly scheduled
follow-up, but reestablish contact at a later date. Similarly,
individuals may switch in and out of health plans and, as a
result, be missing in a given health plan’s data set during the
switches out. (This is particularly an issue with Medicare
beneficiaries who are allowed to switch between fee-for-
service and Medicare managed care on a monthly basis.)
Although one can account for this noncontinuous follow-up,
in most cases it is reasonable to consider individuals censored
when the first censoring event occurs.

In addition, observational data sets are compiled from
multiple sources, including billing data, medical claims, and
direct individual follow-up. Data from electronic sources (eg,
billing data, electronic medical records) can be added to the
data set on a weekly (or even daily) basis, whereas individ-
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ual-reported data may be collected only once or twice a year.
Therefore, hospital-based outcomes are likely to be reflected
in the data set soon after they occur. Outcomes or events that
occur outside of the hospital (death or rehospitalization at
another hospital) will not be reflected in the data set until after
the individual reports them. If data are collected from indi-
viduals (eg, at 6 and 12 months), then data in a given interval
can be considered complete only after the individual-level
data collection for that period is finished.*?

Modeling the censoring distribution is an iterative pro-
cess. As with propensity model development, it is important
to check the distribution of the weights that result from the
model. A good general practice with partitioned models is to
sum the weights at the end of each partition and verify that
the sum of the weights is approximately equal to the initial
sample size. If that is not the case, then the analyst should
consider trimming extreme weights. Ultimately, the analyst
must verify that the final results (ie, the estimated differences
in response) are robust to different specifications of these
weights.

Calculating Standard Errors

In addition to using analytical formulas, researchers can
use 2 methods to calculate standard errors of inverse proba-
bility-weighted estimates. The first is to use the robust stan-
dard errors generated by the weighted analytic model, but
further empirical work is needed to better understand the
behavior of these standard error estimates. The second option
is to estimate standard errors using the nonparametric boot-
strap method,” as suggested by Hernan et al.>* Although
intuitively appealing, the bootstrap method is computation-
ally intensive even for moderately sized data sets because, in
practice, hundreds of iterations are advisable.

Priorities and Topics for Further Research

Inverse probability-weighted estimation is a powerful
tool for use with observational data. Currently a major draw-
back is the lack of statistical software for implementing these
methods. Therefore, the behavior of these estimators will
need to be evaluated carefully on a case-by-case basis. Given
the flexibility of these methods, however, we expect to see
increasing use of inverse probability-weighted estimators in
the medical and epidemiology literature.
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