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Heterogeneity and the Interpretation of Treatment Effect
Estimates From Risk Adjustment and Instrumental

Variable Methods

John M. Brooks, PhD,* and Elizabeth A. Chrischilles, PhD†

Objectives: To contrast the interpretations of treatment effect esti-
mates using risk adjustment and instrumental variable (IV) estima-
tion methods using observational data when the effects of treatment
are heterogeneous across patients. We demonstrate these contrasts
by examining the effect of breast conserving surgery plus irradiation
(BCSI) relative to mastectomy on early stage breast cancer (ESBC)
survival.
Methods: We estimated discrete time survival models for 6185
ESBC patients in the 1989–1994 Iowa Cancer Registry via IV
estimation using 2 distinct instruments (distance of the patient’s
residence from the nearest radiation center, and local area BCSI rate)
and controlling for cancer stage, grade, and location; age; comor-
bidity; hospital access; payer; diagnosis year; and area poverty level.
We then estimated comparable risk adjustment survival models
using linear probability methods with robust standard errors.
Results: Risk adjustment models yielded average survival estimates
similar to trial results. With favorable BCSI selection, these esti-
mates represent an upper bound of the true effect for patients
receiving BCSI. IV estimates showed a BCSI survival risk for
patients whose surgery choices were affected by the instruments and
these estimates varied with the instrument specification.
Conclusions: When treatment benefits are heterogeneous across
patients, treatment effect estimates from observational data can still
be useful to policymakers, but they must be interpreted correctly.
Risk adjustment methods yield estimates that can assess whether the
patients who received treatment benefited from the treatment, but the
direction of bias must be considered. In contrast, IV estimates can
assess the effect of treatment rate changes, but characteristics of
patients whose choices were affected by the instruments must be
considered when making such inferences.
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With the advent of Medicare Part D, medical care treat-
ments will be increasingly used by patients differing

from those patients in the clinical studies that demonstrated
the treatment efficacy. Patients underrepresented in random-
ized controlled trials (RCTs) include the elderly, minorities,
and patients with different comorbidities.1–4 Given the lack
of efficacy data for many patients, commentators have specu-
lated about the extent that treatment effects vary or are hetero-
geneous across patients and the implications that heterogeneity
has for treatment guideline development and evidence-based
medicine.4–9 Sources of treatment effect heterogeneity can be
genetic, demographic, the severity of the underlying condi-
tion, the existence of a comorbid condition, the use of other
treatments, and patient frame of mind. If treatment benefits
are heterogeneous across patients, the relevant question for
policymakers is often not whether a treatment should be used
at all, but whether a treatment is over- or underused in
practice. Wennberg correctly posed this question as “Which
Rate is Right?”10 To address this question health services
research must find ways to assess the distribution of treatment
effectiveness across the patient population.

If treatment effects are heterogeneous, it is impractical
and probably impossible to generate sufficient RCT evidence
for all patients.11 As a result, the treatment variation in
observational databases may be the only source to estimate
treatment effectiveness for clinically distinct patient groups.
It is well known, however, that unmeasured confounding
variables can lead to incorrect casual inferences with obser-
vational data.12–15 Risk adjustment and instrumental variable
(IV) analysis methods have the potential to alleviate con-
founding problems.16–19 However, if treatment effects are
heterogeneous, the elimination of confounding is not the only
inferential problem to be considered when using these meth-
ods. In general, estimation approaches can only identify
relationships for the subset of patients generating the treat-
ment variation,20 and risk adjustment and IV approaches use
different subsets of patients in estimation. As a result, when
treatment effects are heterogeneous, these approaches yield
estimates for distinct patient groups, and researchers need to
understand how these estimates relate to specific policy
questions. Heckman and colleagues21,22 show that risk ad-
justment approaches yield average treatment effect estimates
for the subset of patients that were treated. Angrist and
colleagues23,24 show that IV methods yield estimates of the
average treatment effect for those patients whose treatment
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choices were affected by an instrumental variable or “instru-
ment”. To address questions of treatment effectiveness and
whether existing treatment rates are optimal, researchers can
gain insight by using both risk adjustment and IV estimation
approaches and placing the estimates from both approaches in
correct context. Both confounding risks and the extent that
the estimates can be generalized across the patient population
must be considered.

In this article, we discuss the concepts of Heckman and
Angrist using the effect of surgery choice �breast conserving
surgery plus irradiation (BCSI) vs. mastectomy� on survival
for patients with early stage breast cancer (ESBC) as an
example. We use data from an earlier IV article that focused
on stage II ESBC patients in Iowa, that suggested that higher
BCSI rates in these patients would have resulted in survival
loss.25,26 In this example, we broaden our sample to include
both stage I and II ESBC patients. To contrast the ideas of
Heckman and Angrist, we modify a theoretical framework
developed by Winship and Morgan27 to yield models of
ESBC survival and surgery choice and derive the expected
value of both the risk adjustment and IV estimates. We then
estimate risk adjustment and IV survival models and contrast
our findings in terms of these theoretical findings.

METHODS

Background and Theoretical Framework
Patients with ESBC have a choice of mastectomy or

BCSI for local tumor control. ESBC patients with localized
tumors less than 2 cm and no lymph node involvement are
classified as stage I. If patients have either a localized tumor
less than 2 cm with positive lymph node metastasis on the
same side, or a tumor between 2 and 5 cm with no lymph
node involvement, they are classified as stage IIa. Stage IIb
patients have either a localized tumor between 2 and 5 cm
with positive lymph node metastasis on the same side, or a
tumor greater than 5 cm with no lymph node involvement.
Several RCTs demonstrated the survival equivalence of BCSI
and mastectomy for the average ESBC patient in these
trials.28–32 Based on these results, the National Institutes of
Health (NIH) issued a guideline recommending BCSI over
mastectomy for most ESBC patients and stated that patients
should be educated and make a surgery choice based on their
preferences.33 However, the validity of generalizing the RCT
results to ESBC patients across disease stages is unclear. Two
of the RCTs included only stage I patients and showed no
survival benefit of mastectomy over BCSI.28,32 The remain-
ing studies contained stage I and II patients but each esti-
mated a single treatment effect.29–31 No study contained only
stage II patients, and in the study with the most stage II
patients, tumor size and nodal involvement increased the risk
of local recurrence for BCSI patients but not for patients
receiving mastectomy.34 After release of the NIH guideline,
BCSI rates for ESBC patients increased, but not as much as
expected, and BCSI rates varied regionally and were af-
fected by nonclinical factors.35–38 Several commentators
attributed the slow and varied rate of BCSI diffusion in the
United States to lack of provider knowledge of the evi-
dence, and educational interventions were suggested to

increase BCSI rates.39 – 41 An alternative explanation for
the slow diffusion by BCSI may be that many providers
believed the relative benefits of BCSI and mastectomy are
heterogeneous across ESBC patients and that RCT evi-
dence cannot be generalized to many ESBC patients with
severe disease. The results of the earlier IV article rein-
forced this notion of heterogeneity by showing higher
BCSI survival risk relative to mastectomy for stage II
ESBC patients.26

In this article, we adapted the equation-based frame-
work used by Winship and Morgan27 for this scenario to
illustrate the parameter interpretations of Heckman and An-
grist.21,23 The survival risk of BCSI relative to mastectomy is
modeled as heterogeneous across the ESBC population. Both
procedures are assumed to have equal survival benefit at
lower severity levels, but the survival benefit associated with
BCSI relative to mastectomy decreases as severity increases.
In addition, patients with more severe disease are assumed to
have lower survival odds regardless of treatment. Given these
circumstances, the survival equation is written:

Y � b0 � �b1L� � S � b2L � e, (1)

where Y � 1 if patient survived a given time period after
diagnosis, 0 otherwise; S � 1 if the patient received BCSI, 0
if mastectomy; L is a measure of disease severity that in-
creases with severity level; e is the error term; (b1L) repre-
sents the effect of BCSI relative to mastectomy on survival
that depends on disease severity; and b2 represents the direct
effect of L on Y. To fit our heterogeneity assumption, we
envision b1 as an infinitesimally small negative number, so
that when disease severity is low the survival difference
between BCSI and mastectomy is negligible, and as L in-
creases BCSI poses a survival risk relative to mastectomy. In
addition, we expect b2 � 0, the probability of surviving
decreases with severity regardless of treatment. If patients in
concert with their providers believe that the survival risk of
BCSI relative to mastectomy increases with disease severity,
this leads to the following surgery choice model as a function
of disease severity:

S � c0 � c1L � c2W � v, (2)

where S and L are defined as above; W represents factors other
than disease severity that affected surgery choice; v is the error
term; and c1 is the effect of severity on surgery choice. One
would expect the signs associated with b1 from Eq. (1) and c1 to
be the same. If the survival risk of BCSI is thought to increase
with L (b1 � 0), the patients with higher disease severity will be
less likely to choose BCSI (c1 � 0).

Given this framework, suppose a researcher has data on
treatment choice and survival for a sample of breast cancer
patients but no information on disease severity and estimates
the following model:

Y � a0 � a1S � z (3)

where z contains the previous error term and the variation in
surgery effectiveness associated with L. If ESBC patients
choose treatments based on Eq. (2), standard estimation of
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Eq. (3) yields an estimate of a1 with the following expected
value:

E�ã1� � b1E�L|S � 1� � c1b2. (4)

This estimate is the average effect of BCSI relative to
mastectomy on survival for the patients who received BCSI,
but will be biased high as c1 � 0 and b2 � 0. This result
follows Heckman’s insight that, when treatment effects are
heterogeneous, the estimated treatment effect will reflect the
characteristics of the patients who received the treatment. The
term E�L|S � 1� is the expected severity level for the patients
who received BCSI (S � 1), and therefore b1E�L|S � 1�
equals the average treatment effect of BCSI relative to mas-
tectomy for the patients who received BCSI. Now, because
patients in our framework choose surgery based on treatment
effectiveness, our estimate for the patients who chose BCSI
will be biased high (c1b2 � 0) because of favorable treatment
selection. ESBC patients receiving BCSI have lower unmea-
sured disease severity than the ESBC patients receiving
mastectomy, leading to higher survival probabilities regard-
less of treatment. Therefore, the estimate of ã1 in Eq. (4)
should be interpreted as an upper-bound estimate of the
average survival effect of BCSI relative to mastectomy for
the ESBC patients who received BCSI.

In contrast, the IV approach estimates a1 by exploiting
the surgery variation from measured factors within W in Eq.
(2) that are assumed to be uncorrelated with unmeasured
confounders such as disease severity and affect survival only
through their effects on surgery choice. If Z (an instrumental
variable or “instrument”) represents a measured factor within
W that is assumed to have this characteristic and X the factors
within W that do not, Eqs. (1) and (2) can be rewritten in
terms of measured variables:

S � c0 � c2X � c2Z � t, (5)

Y � a0 � a1S � a2X � r, (6)

where t and r contain the original error terms plus terms
related to severity. A 2-stage approach is used to estimate IV
models. In the first stage, Eq. (5) is estimated and a Chow
F-test42 can be used to assess whether the instrument (Z)
describes a significant portion of the variation in choice of
surgery. In the second stage, Eq. (6) is estimated using the
predicted BCSI propensity for each patient from Eq. (5)—Ŝ .
Using this process, only the variation in S that stems from
changes in Z is used to estimate a1. As Z is assumed to be
unrelated to L, it essentially provides a natural experiment in
S,43 and the IV estimate of a1—â1IV —is a consistent estimate
of the survival effects of BCSI relative to mastectomy.
However, if the survival effect of BCSI relative to mastec-
tomy is heterogeneous across patients, following Angrist and
colleagues, the resulting estimate is a local average treatment
effect that can be strictly generalized only to the patients
whose surgery choices were affected by the instrument23,24:

E�â1IV� � b1E�L|S�Z��, (7)

where E�L|S(Z)� is the expected severity level of the subset of
patients whose treatment choices were affected Z. Note that

the expected severity level in Eq. (7) differs from the ex-
pected severity level in Eq. (4), and so even without the
confounding bias in Eq. (4), the estimates yielded by both
approaches would differ because information from a different
set of patients was used in their respective estimation.

The result in Eq. (7) also means that IV estimates of a1
may vary with the instrument or set of instruments specified
in the model as individual instruments may affect the treat-
ment choices of different patient subsets. In our analysis, we
demonstrate the effect of instrument choice on IV estimates
using 2 distinct instruments. Our first instrument was devel-
oped using the notions of regional treatment “signatures” or
“philosophies.”44–46 We theorized that regional differences
in BCSI rates may stem from region-specific provider extrap-
olations of the RCT evidence to the ESBC patients unlike
those in the trials. Figure 1 illustrates this idea. Suppose that
the population of ESBC patients is distributed across the
x-axis based on disease severity and disease severity in-
creases (eg, larger vs. smaller tumor size) as we move to the
right on the axis, and that that the BCSI treatment rate in this
population is U. The y-axis is the expected survival risk of
BCSI relative to mastectomy associated with a unit increase
in the BCSI rate. Further assume that patients live in either of
2 geographic areas and that the distribution of disease sever-
ity across patients is the same in both geographic areas.
Providers in both areas are assumed to have consistent beliefs
on the relative effectiveness of BCSI and mastectomy for
patients like those in the RCTs, but they differ across areas in
how they extrapolate the RCT evidence to patients with more
severe disease. The solid curve represents provider beliefs in
an area with a pessimistic extrapolation of the survival effects
of BCSI relative to mastectomy. These providers believe that
BCSI and mastectomy have equal survival benefit for the first
UP percent of patients, but for patients beyond UP, they
believe BCSI has survival risk relative to mastectomy. The
dotted curve represents the average provider beliefs in an area
with an optimistic extrapolation of the survival effects of
BCSI relative to mastectomy. In this area, providers believe

RCT Population

                                    Disease Severity    
          lower                                                          higher

100%

U

pessimistic BCSI relative survival risk curve.

0
UO

optimistic BCSI relative survival risk curve.

UP

Percentage of Early Stage
Breast Cancer Patients
Receiving BCSI

FIGURE 1. Hypothetical relationship between breast conserv-
ing surgery plus irradiation (BCSI) survival beliefs relative to
mastectomy and BCSI treatment rates. Up � BSCI rate in an
area pessimistic about BCSI; Uo � BCSI rate in an area opti-
mistic about BCSI; U � overall BCSI rate.
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that BCSI and mastectomy have equal survival effects for the
first UO percent of patients, with survival risk for patients
beyond UO who receive BCSI.

If providers recommend BCSI only to those patients
they believe have no survival risk relative to mastectomy, the
area with optimistic beliefs will have a higher treatment rate
(UO) than the area with pessimistic beliefs (UP). In this case,
ESBC patients with the lowest disease severity and those with
the highest disease severity would receive consistent surgery
recommendations across areas, whereas patients represented
by the severity levels between UP and UO in Figure 1 would
have received different recommendations from providers
leading to different surgery choices. The use of area treatment
rates as an instrument will yield the average survival effect of
BCSI relative to mastectomy for these patients.

For the second instrument, we used the distance from a
patient’s residence at the time of diagnosis to the nearest
radiation treatment center. A longer distance from the patient
to the nearest radiation treatment center increases the cost of
BCSI treatment to ESBC patients. We envisioned that higher
treatment access costs affects the surgery choices of all ESBC
patients regardless of severity including many patients like
those in RCTs. As a result, the subset of ESBC patients
whose treatment choices were affected by the distance to
radiation facilities would have lower average disease severity
than the subset of patients whose surgery choices were
affected by area treatment rates. If this theory is correct, from
Eq. (7), we expect that IV estimates using area treatment rates
as an instrument will be larger in absolute value (larger
E�L|S(Z)�) than IV estimates using distance to the nearest
radiation treatment center.

Sample and Variable Definitions
The data used in this study are more fully described

elsewhere.25,26 Our sample includes all patients with a diag-
nosis of first-primary ESBC listed in the Iowa Cancer Reg-
istry from 1989 to 1994. Registry data were merged with
Iowa Hospital Association inpatient discharge abstract files,
providing a sample of 6185 patients in either stage I (N �
3280) or II (N � 2905). We created binary variables defining
surgery choice, survival (alive 1, 2, 3, and 4 years after
diagnosis), cancer stage, grade and tumor location, age,
payer, comorbidities, patients distance to nearest hospital,
and the poverty percentage in the patient’s zip code. We
calculated the BCSI percentage of ESBC surgeries for all
other ESBC patients living in a 50-mile radius around each
patient’s residence in their diagnosis year. We calculated the
distance from each patient to the nearest radiation treatment
center in the diagnosis year based on the zip code centroids.

Analytic Approach
For IV estimation, we used a nonparametric 2-stage

least squares (2SLS) approach that has been used previously
in healthcare research.26,45–50 In the first estimation stage of
2SLS, the probability of BCSI was estimated using ordinary
least squares as a function of measured confounding variables
(cancer stage, grade and location, age, comorbidity, hospital
access, payer, diagnosis year, area poverty level) and a series
of binary variables that grouped patients based on their

instrument values. Binary variables for the instruments were
constructed based on percentiles across the sample. In sepa-
rate analyses, we varied the number of patient groups (2, 4, 8,
and 12 groups) constructed for each instrument to assess the
robustness of our findings. In the second stage of 2SLS, we
estimated survival models using 4 different survival measures
(1, 2, 3, and 4 years). Each survival model specified the set of
measured confounders and the predicted BCSI probability
from the first stage regression. To provide a direct compari-
son to the IV estimates, we then estimated comparable risk
adjustment survival models using linear probability models.49

Estimation was performed using STATA software (IVREG
and REG) with robust standard errors.

RESULTS
Table 1 compares the ESBC patients in our sample by

surgical choice, the BCSI percentage in the area around their
residence, and the distance from the patient’s residence to the
nearest radiation treatment center. The patients who received
BCSI were younger with lower staged disease, lower tumor
grades, and had fewer comorbidities. Both instruments were
related to whether a patient received BCSI and provided a
more balanced distribution of measured confounders between
groups than grouping patients by surgery. Differences re-
mained in the distributions of age and tumor grade across
patients grouped by the instruments. Iowa Cancer Registry
officials suggested that grade distribution differences re-
flected different reporting practices across Iowa and were not
related to disease severity, and the differences in the age
distributions reflected pockets of rural elderly in Iowa. We
controlled directly for these variables in our IV analysis.

Table 2 contains the Chow F-statistics for the instru-
ments across several specifications of the first-stage BCSI
choice model. The Chow F-statistics enable us to test whether
the specified instrument described a statistically significant
portion of the variation in BCSI choice after controlling for
the other measured confounders. We report the F-statistics
for specifications differentiated by the instruments specified
in the model, the number of patient groups delineated by the
instruments, and cancer stage. We present the F-statistics by
cancer stage to help assess the average disease severity of the
patients whose treatment choices were affected by each
instrument. Both instruments described a statistically signif-
icant portion of the variation in BCSI choice across the entire
ESBC sample. When we focus on the estimates by cancer
stage, however, we find that distance from the radiation
center affected the surgery choices for both stage I and stage
II patients, whereas the local area BCSI rate affected only the
surgery choices for stage II patients and did not affect the
surgery choices for stage I patients.

Table 3 contains the risk adjusted linear probability
model and the IV survival models. For both methods, the
parameter estimates are interpreted as the change in the X-year
survival rate for a 1 percentage point increase in the BCSI rate
for the respective population subsets discussed earlier. After the
discussion above, the linear probability model specifications
yield estimates of the average BCSI survival effects for the
patients treated with BCSI. These estimates will be biased to the
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extent that unmeasured confounders affect both surgery choice
and survival. The first row contains the unadjusted linear prob-
ability model estimates which clearly reflect the favorable se-
lection of patients into BCSI, because these estimates suggest
that, for patients receiving BCSI, BCSI has a survival advantage
over mastectomy. The second row contains the linear probability
model estimates adjusted for the measured confounders. These
estimates reveal no survival difference between BCSI and mas-
tectomy for the patients receiving BCSI. Relative to Figure 1,
this estimate of â1 can be interpreted as an upper-bound estimate
of the average survival effect of BCSI relative to mastectomy for
the ESBC patients receiving BCSI from the origin to U. If
unmeasured confounders remain that are favorable toward
BCSI, however, these estimates represent an upper bound on the
survival effects of BCSI relative to mastectomy.

The IV estimates show a negative effect of BCSI on
survival relative to mastectomy that is consistent across
specifications. The magnitude of these estimates and the level
of statistical significance, however, varied with the instru-
ment specification. The use of local BCSI rate as an instru-
ment produced the largest estimated survival impacts of BCSI
and the specifications with distance from the radiation center

the smallest. Including both instruments in the specification
yielded estimates between the estimates found with the in-
struments specified individually. Relative to the earlier pub-
lished survival estimates for stage II patients alone, both the
unadjusted linear probability model and the IV estimates
using combined stage I and stage II patients are consistently
smaller.26

DISCUSSION
Our objective was to demonstrate how treatment effect

heterogeneity affects the interpretation of the treatment effect
estimates using risk adjustment and IV methods on observa-
tional data. Risk adjustment estimation approaches yield
average estimates for the set of patients who received a given
treatment, whereas IV methods yield average estimates for
patients whose treatment choices were affected by instrumen-
tal variables.18,24,43,51 If treatment effects are heterogeneous
across a population, these estimates will vary with the pa-
tients whose treatment choices were used to estimate the
treatment effects. In our example, we theorize that patients
receiving BCSI will be favorably selected with respect to

TABLE 1. Comparison of Patient Characteristics of ESBC Patients in Iowa Grouped by Treatment and Instruments,
1989–1994

Full
Sample

Treatment
Area BCSI
Percentage*

Distance From
Radiation
Center†

Mastectomy BCSI Lower Greater Far Near

BCSI (%) 9.7 0 100 11.1 16.8‡ 10.9 17.2‡

Age (%)

�65 47.1 44.3 64.1‡ 44.5 49.5‡ 42.6 51.5‡

65–74 27.3 27.5 26.0 28.1 26.5 28.0 26.6

75� 25.7 28.2 9.9‡ 27.4 24.1‡ 29.5 22.0‡

Tumor size (%)

T1 (�2 cm) 66.4 64.1 80.3‡ 65.9 67.0 66.2 66.6

T2 (2–5 cm) 32.3 34.4 19.4‡ 32.8 31.8 32.6 31.9

T3 (�5 cm) 1.3 1.5 0.2‡ 1.4 1.3 1.2 1.4

Positive nodes (%) 27.8 29.2 19.5‡ 28.7 27.1 28.0 27.7

Stage (%)

I 53.0 50.7 67.5‡ 51.7 54.3§ 52.6 53.4

IIa 31.2 32.1 25.6‡ 32.5 30.0§ 31.7 30.7

IIb 15.8 17.2 6.9‡ 15.9 15.7 15.6 15.9

Grade (%)

1 6.6 6.0 10.2‡ 4.3 8.8‡ 5.5 7.7‡

2 22.9 26.7 22.2‡ 19.3 26.2‡ 24.7 21.1‡

3 26.6 27.0 24.3 27.0 26.2 26.8 26.4

4 5.1 5.4 3.1‡ 7.1 3.3‡ 7.1 3.2‡

9 (unknown) 38.9 39.4 35.8‡ 42.4 35.6‡ 35.9 41.7‡

Charlson comorbidity index �0 (%)� 19.6 21.1 10.9‡ 19.6 19.7 20.3 19.0

High poverty zip code 35.0 35.2 34.3 35.2 34.9 32.9 37.1

No. patients in group 6185 5315 870 2972 3213 3051 3134

*Patient in “lower” group if less than 20% of all ESBC surgeries (stage I and II) in the 50-mile radius around the patient’s residence in the year of diagnosis were BCSI.
†Patient in Anear@group if distance to radiation treatment center in year of diagnosis is less than 19 miles.
‡§Statistically different rate across groups at 0.99 and 0.95 confidence levels, respectively.
�Modified Charlson comorbidity indices developed by mapping Clinical Classifications Software (CCS) diagnosis and procedure groups available on each HCUP discharge

abstract into Charlson index groups.
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survival and that providers believe that the survival benefit of
BCSI relative to mastectomy is similar for ESBC patients
with less severe disease, but that the survival benefit of BCSI
relative to mastectomy diminishes as severity increases.

Based on Heckman’s insights, our linear probability
models yield estimates of the average survival estimate of

BCSI relative to mastectomy for the patients who received
BCSI. The unadjusted linear probability model estimates in
Table 3 clearly reflect the effects of favorable selection, as
they suggest that BCSI has a protective survival effect rela-
tive to mastectomy. Risk adjusting for measured confounders
seems to eliminate the favorable selection bias because the

TABLE 2. Chow42 F-Statistics Testing Whether Instruments Affected the BCSI Choice for
ESBC Patients in Iowa 1989–1994*

Instruments Specified
No. Patient Groups

Per Instrument

ESBC Patients

All
(N � 6185)

Stage I
(N � 3280)

Stage II
(N � 2905)

Local area BCSI rate 2 11.87† 3.74 8.57†

4 4.95† 1.26 5.19†

8 2.98† 0.69 3.43†

12 2.41† 1.31 3.00†

Distance from the radiation center 2 27.73† 9.79† 21.79†

4 9.39† 3.58‡ 7.52†

8 5.51† 3.36† 3.30†

12 5.03† 3.30† 2.94†

Local area BCSI rate and distance
from the radiation center

2 16.62† 5.61† 13.08†

4 5.54† 1.90 4.99†

8 3.44‡ 1.77‡ 2.76†

12 3.37† 2.20† 2.74†

*Models also specified binary variables for age groups (�50, 50–64, 65–69, 70–74, 75–79, 80–84, 85�), tumor sizes (�2,
2–5, and 5� cm), positive lymph node involvement, tumor grade groups (1, 2, 3, 4, 9-unknown), tumor location groups (nipple,
central portion, upper-inner quad, lower-inner quad, upper-outer quad, lower-outer quad, axillary tail, overlapping lesion,
not-stated), Charlson comorbidity index (0, 1, 2, 3�), residence zip code poverty percentage (#7, 7–10, 10–13, 13–20, �20),
distance from residence to nearest hospital (#2.83, 2.83–9, 9–15, �15), payer (Medicaid, Medicare, Blue Cross/Blue Shield,
other private, other government, self-pay), and year of diagnosis (1989, 1990, 1991, 1992, 1993, 1994).

†‡Statistically significant at 0.99 and 0.95 confidence level, respectively.

TABLE 3. Instrumental Variable and Risk-Adjusted Linear Probability Model (LPM) Estimates of the Effectiveness of BCSI on
Survival Relative to Mastectomy for ESBC Patients in Iowa, 1989-1994

Row Analysis Method Instruments Specified
No. Groups

Per Instrument
Instrument
F-Statistic

After Diagnosis, Effect of BCSI on
Patient Survival

1 yr 2 yr 3 yr 4 yr

1 Unadjusted LPM None NA NA 0.012* 0.025† 0.053† 0.070†

2 Adjusted LPM‡ None NA NA 	0.001 	0.003 0.003 0.002

3 Instrumental variable
estimates‡

BCSI rate 2 11.87† 	0.20 	0.34 	0.35 	0.20

4 4 4.95† 	0.24 	0.38* 	0.30 	0.28

5 8 2.98† 	0.23* 	0.36* 	0.29 	0.26

6 12 2.41† 	0.18* 	0.30* 	0.25 	0.10

7 Radiation distance 2 27.73† 	0.12 	0.03 	0.07 	0.13

8 4 9.39† 	0.12 	0.10 	0.18 	0.31

9 8 5.51† 	0.12 	0.07 	0.09 	0.12

10 12 5.03† 	0.06 	0.06 	0.15 	0.25

11 BCSI rate and radiation
distance

2 16.62† 	0.14* 	0.11 	0.14 	0.14

12 4 5.54
†

	0.16* 	0.16 	0.20 	0.29

13 8 3.44* 	0.16† 	0.15 	0.09 	0.09

14 12 3.37† 	0.09* 	0.12 	0.11 	0.15

*†Statistically significant at 0.95 and 0.99 confidence level, respectively.
‡Models also specified binary variables for age groups (�50, 50–64, 65–69, 70–74, 75–79, 80–84, 85�), tumor sizes (�2, 2–5, and 5� cm), positive lymph node involvement,

tumor grade groups (1, 2, 3, 4, 9-unknown), tumor location groups (nipple, central portion, upper-inner quad, lower-inner quad, upper-outer quad, lower-outer quad, axillary tail,
overlapping lesion, not-stated), Charlson comorbidity index (0, 1, 2, 3�), residence zip code poverty percentage (#7, 7–10, 10–13, 13–20, �20), distance from residence to nearest
hospital (#2.83, 2.83–9, 9–15, �15), payer (Medicaid, Medicare, Blue Cross/Blue Shield, other private, other government, self-pay), and year of diagnosis (1989, 1990, 1991, 1992,
1993, 1994).
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adjusted linear probability model results are comparable to
the RCT findings of no survival difference between BCSI and
mastectomy for patients with less serious disease. In contrast,
the IV estimates show a consistently negative survival risk of
BCSI relative to mastectomy, which, following Angrist’s
ideas, can only be generalized to the patients whose surgery
choices were affected by the instrument specified. The mag-
nitude of the effect was greatest when the area BCSI rate was
the instrument and the smallest when distance from the
radiation center was specified. This result is consistent with
our theoretical framework and the findings in Table 2,
which showed that distance from the radiation center
affected the BCSI choice of patients in both stages I and II,
whereas the area BCSI rate only affected BCSI choice for
stage II patients.

In this study, we showed how inferences of treatment
effectiveness can be made by applying risk adjustment and IV
models to retrospective data when the treatment effect is
thought to be heterogeneous across patients. Theoretical
models of treatment choice and outcome coupled with as-
sumptions of the relationship between unmeasured confound-
ers, treatment choice, and outcomes can be used to bound
estimates of the treatment effect for treated patients who
come from risk adjustment models. IV estimates provide
information on the effectiveness of treatment for those pa-
tients whose treatment choices would be likely affected by a
change in treatment rates. However, in the application of IV
estimates, policymakers must consider whether the patients
whose treatment choices were affected by individual instru-
ments are similar to those patients whose treatment choices
are apt to change as the result of a policy under consideration.
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