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Adjustments for Unmeasured Confounders in
Pharmacoepidemiologic Database Studies Using External

Information
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Background: Nonexperimental studies of drug effects in large
automated databases can provide timely assessment of real-life drug
use, but are prone to confounding by variables that are not contained
in these databases and thus cannot be controlled.
Objectives: To describe how information on additional confounders
from validation studies can help address the problem of unmeasured
confounding in the main study.
Research Design: Review types of validation studies that allow
adjustment for unmeasured confounding and illustrate these with an
example.
Subjects: Main study: New Jersey residents age 65 years or older
hospitalized between 1995 and 1997, who filled prescriptions within
Medicaid or a pharmaceutical assistance program. Validation study:
representative sample of Medicare beneficiaries.
Measures: Association between nonsteroidal antiinflammatory
drugs (NSAIDs) and mortality.
Results: Validation studies are categorized as internal (ie, additional
information is collected on participants of the main study) or
external. Availability of information on disease outcome will affect
choice of analytic strategies. Using an external validation study
without data on disease outcome to adjust for unmeasured confound-
ing, propensity score calibration (PSC) leads to a plausible estimate
of the association between NSAIDs and mortality in the elderly, if
the biases caused by measured and unmeasured confounders go in
the same direction.
Conclusions: Estimates of drug effects can be adjusted for con-
founders that are not available in the main, but can be measured in

a validation study. PSC uses validation data without information on
disease outcome under a strong assumption. The collection and
integration of validation data in pharmacoepidemiology should be
encouraged.
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Randomized controlled trials are often regarded as the most
accurate method to assess treatment effects. Random

assignment of a large number of subjects into treatment
groups usually leads to a good balance of observed and
unobserved risk factors in all groups. Nevertheless, random-
ized controlled trials have major limitations when they are
used to assess the role of medications in the etiology and
management of chronic diseases. The main limitations stem
from selection of participants into trials who are healthier and
want to pursue a more healthful life style, the long time
required from trial design to completion, the relatively short
duration of exposure, and high cost. In addition, frail elderly
patients, who use the most drugs and have the highest adverse
event rates, are often underrepresented in trials. Generaliza-
tion from trials can be erroneous because effect sizes, base-
line risks, and comorbidity have been shown to differ be-
tween trial populations and the broader population that is not
represented in trials.1

In observational studies, it is possible to include a wide
variety of participants and assess long-term exposures, in-
cluding medications, in a timely manner. Without treatment
allocation by chance, however, bias due to different baseline
risks for disease in users and nonusers of drugs cannot be
ruled out completely. With respect to prescribed medications,
this bias is called confounding by indication.2 It stems from
risk factors for disease that influence the treatment choices of
physicians and patients, including the decision to start or stay
on a drug. Some of these factors, such as attitudes toward
health,3 prevention,4 and frailty,5,6 are subtle and hard to
measure. The potential for confounding is probably larger in
observational studies assessing medications than in studies
assessing lifestyle factors. There is increasing evidence7 that
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confounding by indication may not have been completely
controlled for in observational studies on pharmacopreven-
tion of chronic diseases.8

The problem can be more pronounced in pharmacoepi-
demiologic studies based on large health care utilization
databases, because these data are collected for reasons unre-
lated to the research hypothesis and thus rarely contain
sufficient information on all important confounders. These
databases are, however, often the best source of information
on the association between drugs and diseases, because they
allow timely assessment of infrequently used drugs and rare
outcomes in large, representative populations under usual
care conditions.

To address unmeasured confounding in pharmacoepi-
demiologic database studies, several approaches have been
proposed.9 They can be classified according to whether they
use additional data not contained in the original administra-
tive data set or not. Examples of methods that do not rely on
additional data collection include instrumental variable anal-
yses,10,11 methods that calculate bounds for causal effects
under increasingly restrictive assumptions about the unmea-
sured confounder and the effect of the exposure,12–14 as well
as case-crossover studies.15 Here, we will focus on analytic
methods that control for bias due to confounding that is
measured not in the main study, but in an outside body of data
that can serve as a validation study.

The aims of this article are to describe the use of
external data to adjust for unmeasured confounding, propose
a framework to categorize different uses of outside data,
present an application to adjust for unmeasured confounding
based on a method developed by our group, and advocate the
use of and research into external information in pharmaco-
epidemiologic studies.

FRAMEWORK
There is no uniform framework for the use of external

information to adjust for unmeasured confounding. So far,
most research has focused on the validation of exposures16

and disease outcomes17 to reduce bias due to misclassifica-
tion or measurement error. Although many of these issues
apply to external information on confounders, the problem is
distinct. Apart from misclassification and measurement error
of the confounder leading to residual confounding, confound-
ing is defined by the joint distribution of the confounder(s)
with both exposure and outcome. Therefore, both associa-
tions need to be considered when deciding on the use of
external information. Here we will focus on the assessment of
confounding. In any setting, researchers may want to make
optimal use of the additionally collected data by combining
external information on confounding with validation of ex-
posures and outcomes to quantify more than 1 source of
bias.18,19

AGGREGATED DATA: SENSITIVITY ANALYSES
OF INDIVIDUAL CONFOUNDERS

Simple sensitivity analyses can be performed without
use of additional data (eg, by making structural assumptions
and selecting parameters for a single confounder that would

explain the observed study finding under an alternative,
usually null, hypothesis).12,20 They can be extended to use
parameter values from published studies or outside data
sources (aggregated or individual data) to adjust observed
estimates based on the distribution of specific confounders
(eg, smoking) in the population and their association with
exposure and with disease outcomes.21 Such analyses are
advantageous because they can be easily performed based on
information from the literature or expert opinion on the
distribution of a specific unmeasured confounder and its
associations with exposure and disease outcome. No addi-
tional data need be collected, and these analyses provide
bounds for possible confounding by individual factors. Their
main disadvantage is that they do not address joint confound-
ing by several unmeasured covariates.

To address confounding by multiple confounders, an
extension of these simple sensitivity analyses has been
applied.22 The approach is based on separate estimates of
the prevalence of external dichotomous confounders, their
association with the exposure of interest, and their asso-
ciation with disease outcome. Using a weighted average of
the expected confounding effect of several covariates, this
ad hoc method allows researchers to approximate the
magnitude and direction of confounding by several covari-
ates. The method treats the unobserved confounders as
separate covariates without taking into account their joint
distributions with the exposure and the disease outcome.

Using data from a cross-sectional validation study,
Schneeweiss et al22 could show that selective COX2 inhibitor
users were less likely to be smokers (8% vs. 10%) than
nonselective nonsteroidal antiinflammatory drug (NSAID)
users, whereas the prevalence of obesity (24% vs. 24%) was
comparable. Failure to adjust for 5 potential confounders not
measured in the administrative claims data (smoking, obesity,
aspirin use, education, and income) would lead to only a
small underestimation of the association between selective
COX2 inhibitors and myocardial infarction, and is thus un-
likely to introduce substantial bias in the study based on
claims data.

Although this approach is a significant improvement
over analyses based on a single confounder, it does not allow
researchers to address possible joint confounding by these
variables. The method can still be applied based on distribu-
tions and associations taken from the literature. If it is based
on information contained in outside study data on individuals,
however, it does not make optimal use of the joint distribu-
tion of the covariates contained in the validation study.

INDIVIDUAL-LEVEL DATA: EXTERNAL
ADJUSTMENTS ADDRESSING THE JOINT

DISTRIBUTION OF SEVERAL CONFOUNDERS
To address joint confounding by multiple covariates,

data on the joint distribution of these covariates are neces-
sary. This procedure requires individual-level data from val-
idation studies. Such studies can be categorized as external or
internal depending on whether data are collected from indi-
viduals outside or within the main study population.
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Internal Validation Studies
Internal validation studies can be defined as studies

based on additional data obtained for a subset of participants
in the main study population. This subsample can then be
conceptualized as “complete subjects,” in contrast to the
other participants, who are regarded as incomplete subjects
because they have missing values for all confounders as-
sessed only in the validation study. The main study partici-
pants on whom additional data are collected in the validation
study can be a random subsample of the baseline cohort. In
that case, a method such as multiple imputation23 can be used
to fill in the missing values of the confounder(s) in the main
data set to control for unmeasured confounding.

Garshick et al24 recently used multiple imputation in a
retrospective cohort study on lung cancer in railroad workers
exposed to diesel exhaust without information on smoking.
Without adjustment for smoking, the relative risk of lung
cancer in those exposed to diesel exhaust was 1.35. Smoking
history was obtained using data from a companion case–
control study. Smoking histories of 5 random persons in the
validation study with the same job category (the exposure of
interest), age, birth cohort, and outcome of interest (whether
the person died of lung cancer or not) were imputed for each
person of the main study. The resulting 5 different data sets
were then analyzed separately and results combined to obtain
mean estimates and their standard errors. This multiple im-
putation led to an estimate of the relative risk for lung cancer
and exposure to diesel exhausts of 1.22. Based on data for
smoking from the validation study, the authors conclude that
small differences in smoking behavior between diesel ex-
posed and unexposed workers do explain some but not all of
the elevated risk.24 Although the companion study is not an
internal validation study in the strict sense of the term, the
study clearly contains enough detail on the exposure of
interest, measured confounders, and the outcome of interest
(a prerequisite for multiple imputation to be applicable)25 to
be used as an example of an internal validation study.

Instead of imputing actual values from random draws
of persons from the validation study, multiple imputation is
often based on fitting a linear model in the validation study
with the covariate that is missing in the main study included
as the dependent variable. Imputations are then based on
multiple draws from the posterior distribution of the param-
eter estimates of this regression model plus an additional
random error term.

To increase efficiency, selection into the validation
study can be based on available information about exposure
or disease outcome of interest or both (ie, nonrandom selec-
tion). This approach is referred to as anamorphic design26 or
2-stage design.27,28 The data can then be analyzed using a
method that takes into account the sampling for the internal
validation study. Examples of such a method are maximum
likelihood, the method developed by Breslow and Cain,27 and
estimating equations.29

The main advantages of internal validation studies over
external validation studies are: (1) better representativeness
of the main study and (2) possible efficiency gains based on
over-sampling on exposure or disease outcome of interest.

Most published work on efficiency gains by different non-
random sampling strategies (eg, counter-matching,30 flexible
matching31) is based on estimation of main exposure effects
and interactions. The general principles of nonrandom selec-
tion to increase efficiency also hold when considering con-
founding.32

Examples of 2-stage designs include an early cohort
study on vasectomy and nonfatal myocardial infarction33 and
a nested case–control study on NSAIDs and breast cancer.34

Both use claims data to define the study population, the drug
exposure of interest, and the outcome. In the study by Walker
et al,33 information on additional confounders for matched
sets of exposed and unexposed was collected for sets that
included at least 1 outcome (myocardial infarction). Chart
review of these sets allowed the authors to efficiently validate
both exposure and outcome and abstract information on
additional potential confounders including obesity, hyperten-
sion, diabetes, and smoking history. Because the relative risk
for vasectomy and myocardial infarction was essentially the
same before and after control for these additional covariates
in the stage 2 sample (1.25 vs. 1.22), the authors concluded
that there was little evidence for confounding by these factors
and reported the stage 1 estimate as their primary finding
�relative risk (RR) � 1.0�.33

Similarly, Sharpe et al34 report the stage 2 estimate
based on information on additional confounders obtained by
telephone interview in selected cases and controls separately
from the stage 1 estimate (not adjusting for these potential
confounders). Based on the similarity of these 2 estimates the
authors conclude that the protective effect (of NSAIDs on
breast cancer) could not be attributed to confounding by other
determinants.34

Possibly because of the absence of joint confounding
by the additional covariates, both studies use the information
from stage 2 qualitatively. If confounding by the additional
covariates is detected in stage 2, however, the estimates from
stages 1 and 2 can be quantitatively combined into an ad-
justed overall estimate.35

The main disadvantage of an internal validation study
based on nonrandom sampling is that it is specific to a certain
exposure–outcome association, and therefore less efficient
for addressing unmeasured confounding for other associa-
tions. Internal validation studies depend on the feasibility of
collecting additional data from study participants. Contacting
individuals whose data are routinely collected for adminis-
trative purposes may not be possible because of privacy
concerns or laws. Temporality and (differential) recall-bias
are further concerns that need to be considered.

External Validation Studies
External validation studies are usually cross-sectional

because of cost and time constraints in collecting information
on infrequent disease outcomes. Their main advantages are
that data are often already collected and can be reused for
several main studies addressing multiple hypotheses. The
main disadvantage of external validation studies is that
they often do not contain exactly the same measures used
in the main study, that they are not perfectly representative
of the main study, and that they usually lack information
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about the disease outcome of interest. All of these chal-
lenge the assessment of the joint distribution of the unmeasured
confounders with the disease outcome of interest.

Because external validation studies are not specific
to a certain hypothesis, many such studies are available,
including public domain data or data that can be purchased
for a small fee. Their use in pharmacoepidemiology is
often limited, however, because data on medication use
from external sources are often cross-sectional (eg, current
use is assessed based on self-administered questionnaires
or interviews) with varying potential for misclassification
and a limited number of incident users. To provide enough
information on rarely used drugs, including newly mar-
keted ones, validation studies need to be large and current.
We present a detailed example of an external validation
study in a following section.

In Table 1 we summarize advantages and limitations of
internal and external validation studies, and list possible
analytic techniques to use data from these studies to adjust for
confounding unmeasured in the main study.

APPLICATION EXAMPLE
In the following sections we illustrate how external

validation data without information on the disease outcome of
interest can be used to adjust estimates of an exposure–
outcome association based on published work. This applica-
tion example has been previously described in detail36 and is
only summarized here.

There is no known biologic reason to expect that
NSAIDs would cause a reduction in the risk of death (indeed,
there is some evidence for the contrary). Glynn et al6 ob-
served that NSAIDs were associated with a strong reduction
in risk for short-term mortality (RR � 0.74) in elderly
hospitalized patients, even after a wide variety of health
indicators available in claims data were controlled for. This

association is likely to be due to selection bias leading to
strong unmeasured confounding. Physicians are less likely to
prescribe NSAIDs (eg, compared with narcotics) in frail older
adults as well as in patients with advanced cancer and a
variety of other comorbidities, including renal disease, that
are associated with a high mortality. Some of these, however,
are measured in claims data and a single unobserved con-
founder would need to be strongly associated with avoidance
of NSAIDs and mortality as well as be prevalent to explain
the strong inverse association between NSAIDs and mortal-
ity. Although a single confounder explaining the strong
inverse association might be implausible, joint confounding
by a variety of confounders, each of which is only moderately
associated with NSAID use and mortality and not very
prevalent, but all acting in the same direction, might never-
theless be plausible.

To incorporate information on joint confounding by
unmeasured covariates using data from a cross-sectional
external validation study, we combined propensity scores
(PS)37 and regression calibration38 into propensity score cal-
ibration (PSC).36

The PS is defined as the conditional probability of
exposure (to a drug) given observed covariates. It is usually
estimated from the data at hand using multivariable logistic
regression. Individuals with the same estimated PS are then
thought to have the same chance of being exposed. As a
group, treated and untreated subjects paired on the same PS
will have similar distributions of and thus comparisons will
be unconfounded by observed covariates.37

Regression calibration is a method to correct effect
estimates for measurement error.38 In the context of generally
sparse use of methods to correct for measurement error in
epidemiology, regression calibration is the most widely used
approach. It is based on data from a validation study that
includes the “error-prone” measure of the variable used in the

TABLE 1. Classification of Validation Studies for External Adjustment of
Confounding Unmeasured in the Main Study and General Notions About Their
Availability, Possible Use of Different Analytic Strategies, and Possible Use for
Multiple Associations

Validation Study

Internal External

Information on disease outcome Yes Yes No

Availability Rare* Rare Frequent

Analytic methods

Multiple imputation Yes† Yes† No

2-stage sampling Yes No No

Propensity score calibration Yes Yes Yes

Validation study can be used to adjust multiple
associations

Yes (if random sample) Yes Yes

Transportability of parameters‡ Yes — —

*Availability does not equal feasibility—internal validation studies might be rarely available but easily feasible in
specific settings.

†Internal validation studies contain information on disease outcome of interest by design. Any particular validation
study might not have sufficient information on the disease outcome of interest due to small size and/or low incidence,
however, for multiple imputation to be applied.

‡Models and their relevant parameters from the validation study can be applied to the main study—this is usually
given in internal validation studies but needs to be assumed (ie, is questionable) in external validation studies.
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main study and an additional “gold-standard” measure of the
same variable. Within the validation study, one estimates a
linear measurement error model with the “true” or gold-
standard variable as dependent variable and the error-prone
variable and variables measured without error as independent
covariates. Under the main assumption that the error-prone
variable contains no information on the outcome beyond the
gold-standard variable (surrogacy),39 regression calibration
then uses the regression estimates from this measurement
error model to correct the naive regression estimates obtained
from error-prone variable in the main study.36 Regression
calibration is used mainly to correct associations between
continuous exposures (eg, blood pressure, nutrients) and
outcomes for measurement error in the exposure of interest.

To apply regression calibration to adjust for the joint
confounding of multiple confounders unobserved in the main
study, we first combine all confounders into a single score,
the PS, and assume that the PS estimated in the main study
based on a subset of important confounders is measured with
error. This error can be estimated in an external validation
study using data on additional confounders. One can then
adjust for unmeasured confounding due to that measurement
error using regression calibration.

To implement PSC, we first controlled for measured
confounding in the main cohort using the error-prone PS
estimated in the main study. We then estimated 2 additional
PSs in the external validation study: the error-prone PS based
on information available in the main cohort, and the gold-
standard PS that included covariates available only in the
validation study (Table 2). Based on these 2 PSs in the
validation study, we applied regression calibration to correct
regression coefficients in the main cohort.36

Main Study
To test this approach, we identified a main study popula-

tion assembled for an analysis of pain medication use in elderly
patients.40 It comprised all community-dwelling New Jersey
residents who were age 65 years or older, filled prescriptions
within Medicaid or the Pharmaceutical Assistance to the Aged

and Disabled program, and were hospitalized between January
1, 1995 and December 31, 1997. Eligible individuals were those
who filled a prescription for any drug within 120 days before
hospitalization and another prescription more than 365 days
before hospitalization. Covariates were assessed during the 365
days before hospitalization.

For all 103,133 eligible subjects we extracted the fol-
lowing variables: age, sex, race, all prescriptions filled within
120 days before the date of hospital admission, all diagnoses
assigned, number of hospitalizations, and number of physi-
cian visits within 365 days before that date. The time until
death or 365 days of follow-up (whichever came first) was
assessed starting from the date of hospital admission, based
on linkage to Medicare files.41

External Validation Study
The Medicare Current Beneficiary Survey (MCBS) is

conducted on a sample of beneficiaries selected each year to
be representative of the current Medicare population, includ-
ing both aged and disabled beneficiaries living in the com-
munity or in institutions. Data, including medication use over
the last 4 months, verified by inspection of medication con-
tainers, are obtained from face-to-face interviews and linked
to Medicare claims data. The survey has a high response rate
(between 85% and 95%) and very high data completeness.42

The MCBS data used for the validation study in this
analysis were drawn from a list of all persons enrolled in
Medicare on January 1, 1999. As in our main study, the
validation study population was restricted to persons age 65
years or older living in the community (10,446 persons). To
make the validation study population more comparable with
the main study, we randomly selected MCBS individuals
according to the age (3 categories) and sex distribution in the
main cohort (frequency matching). This resulted in 5108
MCBS subjects used for all subsequent analyses.

TABLE 2. Concept of Propensity Score Calibration

Study
Propensity Score
Variables

Main Study
Error-Prone
Claims Data

Validation Study

Error-Prone
Claims Data

Gold-Standard
Claims and

Survey

Exposure X X X

Demographics X X X

Diagnoses X X X

Procedures X X X

Prescriptions X X X

Visits X X X

Smoking — — X

Aspirin — — X

Body mass index — — X

Education — — X

Activities of daily
living

— — X

TABLE 3. Association Between Nonsteroidal Antiinflammatory
Drug Use and 1-yr Mortality in a Population-Based Cohort of
103,133 Elderly—Propensity Score Calibration Adjustment
Based on Data From 5108 Participants of the Medicare Current
Beneficiary Survey as External Cross-Sectional Validation Study

Hazard Ratio* 95% CI*

Unadjusted model 0.68 0.66–0.71

Conventional multivariate outcome model

Age and gender adjusted 0.74 0.71–0.77

Fully adjusted† 0.80 0.77–0.83

Propensity score (main study) adjusted† 0.81 0.78–0.84

Propensity score calibration adjusted 1.06 1.00–1.12

*Hazard ratios and their 95% confidence intervals estimated using Cox proportional
hazards regression; propensity score calibration adjusted models include uncertainty due
to the estimation of the error model.

†Adjusted for age (continuous), sex, race (white, black, other), myocardial infarc-
tion, congestive heart failure, diabetes, cancer, arthritis (RA or OA), number of
physician visits (0–5, 6–11, 12�), number of hospitalizations (0, 1, 2�), and use of
thiazides, steroids, and anticoagulants.

Modified from Stürmer T, Schneeweiss S, Avorn J, et al. Adjusting effect estimates
for unmeasured confounding with validation data using propensity score calibration.
Am J Epidemiol. 2005;162:279–289.36
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Control for Observed Confounding
During a follow-up period of 1 year, 21,928 (21.3%) of

the main study population died during or after hospitalization.
Without any control for confounding, NSAID use seemed to
be associated with a 32% �95% confidence interval (CI):
29–36%� mortality risk reduction (Table 3). This observed
association is likely to be due to selection bias (ie, the fact
that physicians are less likely to treat pain with NSAIDs in
frail older adults). Controlling for just age and gender in the
conventional outcome model, we observed a smaller estimate
of decreased risk (26%; 95% CI: 23–29%) compared with the
unadjusted result. Controlling for a wide variety of health
indicators available in claims data (for a list, see Table 3

footnote) in the outcome model, we observed a risk reduction
of 20% (95% CI: 17–23%). We observed essentially the same
amount of risk reduction (19%; 95% CI: 16–22%) when we
controlled for confounding using a PS that was estimated
based on the same claims data covariates that were used in the
outcome model and modeling mortality as a function of the
estimated PS together with the exposure.

Control for Unobserved Confounding With
Propensity Score Calibration

We implemented the PSC approach by using regression
calibration to correct for measurement error in the PS of the
main study. Regression calibration was based on the estima-

TABLE 4. Propensity of Non-Steroidal Anti-Inflammatory Drug Use in the Main Study
Population and the External Validation Study

Main Study Validation Study

“Error-Prone”
Propensity Score

“Error-Prone”
Propensity Score

“Gold-Standard”
Propensity Score

OR* 95% CI* OR* 95% CI* OR* 95% CI*

Age (1 yr) 0.98 0.98–0.99 0.98 0.97–1.00 0.98 0.97–1.00

Female 1.2 1.2–1.3 1.2 1.0–1.5 1.1 0.9–1.4
Race

Black 1.6 1.5–1.7 1.4 1.1–1.9 1.2 0.9–1.7
Other 2.0 1.9–2.2 1.5 1.0–2.2 1.6 1.1–2.5

Diagnoses based on claims data
Myocardial infarction 0.9 0.8–0.9 1.1 0.8–1.5 1.1 0.7–1.5
Congestive heart failure 0.9 0.9–1.0 0.9 0.6–1.3 0.8 0.6–1.3
Diabetes 1.0 1.0–1.0 0.9 0.6–1.3 0.7 0.5–1.0
Cancer 0.8 0.8–0.8 0.6 0.4–0.9 0.6 0.4–1.0
Arthritis (RA or OA) 2.1 2.0–2.2 2.4 1.7–3.4 1.8 1.3–2.5

Diagnoses based on self report
Arthritis (RA or OA) — — — — 4.1 3.1–5.5

Health care system use
No. physician visits† 1.3 1.3–1.3 1.1 1.0–1.4 1.1 0.9–1.3
No. hospitalizations† 0.9 0.9–0.9 1.1 0.9–1.3 1.0 0.9–1.2
Medications

Thiazides 1.3 1.2–1.3 1.6 0.9–2.5 1.5 0.9–2.5
Steroids 1.0 0.9–1.0 1.5 1.2–2.0 1.3 1.0–1.8
Anticoagulants 0.5 0.5–0.6 0.5 0.3–0.8 0.5 0.3–0.7

Body Mass Index (1 kg/m2) — — — — 1.05 1.03–1.06
Education‡ — — — — 1.0 0.8–1.1
Income§ — — — — 1.1 1.0–1.2
Smoking

Current — — — — 1.0 0.7–1.4
Past — — — — 1.1 0.9–1.3

Activities of daily living
Difficulties with¶ — — — — 1.2 1.1–1.3
Unable to perform¶ — — — — 1.2 1.0–1.3

AUC 0.63 0.60 0.66

*Odds ratios and their 95% confidence intervals from 3 separate multivariable logistic regression models including all
variables with presented values.

†1 unit increase in category of number of physician visits (0–5, 6–11, 12�) and hospitalizations (0, 1, 2�).
‡1 unit increase in category of education (up to 12th grade, high school, associate degree or more).
§1 unit increase in category of income per year (up to 10,000, 10,000–20,000, 20,000–40,000, more than 40,000 US$).
¶Number of activities of daily living that were reported to be difficult and impossible to perform, respectively.
OR indicates odd ratio; CI, confidence interval; AUC, area under the receiver operating characteristic curve (c-statistic).
Modified from Stürmer T, Schneeweiss S, Avorn J, et al. Adjusting effect estimates for unmeasured confounding with

validation data using propensity score calibration. Am J Epidemiol. 2005;162:279–289.36
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tion of the 2 PSs (error-prone and gold-standard) in the
external validation study (Table 4). Better prediction of
exposure by inclusion of the survey information in the gold-
standard PS resulted in an increased c-statistic or area under
the receiver operating characteristic curve (AUC) of 0.66,
compared with 0.60 in the error-prone PS. None of the
additional variables entered in the gold-standard PS are
strongly related to exposure to NSAIDs. Nevertheless, the
prediction of NSAID exposure is substantially improved as
quantified by the c-statistic, giving plausibility to our hypoth-
esis that the strong unmeasured confounding in the main
study is not due to a single dominant confounder but rather
due to the joint effect or combination of multiple modest
confounders. In general, however, the c-statistic of the PS has
only limited value when assessing its performance to control
for confounding.43

We implemented regression calibration using a linear
measurement error model. The gold-standard PS that pre-
dicted NSAID exposure based on claims data combined with
interview data was the dependent variable; the error-prone PS
that predicted NSAID exposure based on claims data only
was 1 independent variable, and NSAID exposure served as
the second independent variable. As noted above, the analysis
of the exposure-outcome association controlling for the error-
prone PS in the main study indicated a 19% risk reduction.
When we adjusted this estimate for the measurement error in
the error-prone PS (as estimated by comparison with the
gold-standard PS in the validation study), we found NSAID
use to be associated with a very small 6% (95% CI: 0%–11%)
increased mortality risk after PSC (Table 3). Thus, adding
information on additional confounders using PSC resulted in
a more plausible estimate for the association between NSAID
use and all-cause short-term mortality in the elderly.36

Similar to regression calibration, PSC is dependent on
the surrogacy assumption that the error-prone PS does not
contain any information on the disease outcome given the
gold-standard PS and exposure.39,44 In simulations over a
wide range of parameters, we found that PSC is valid if
surrogacy holds, but that it can increase rather than decrease
bias in situations where surrogacy is violated.45 Surrogacy
holds when the directions of confounding by the measured
and the unmeasured covariates are the same. In the NSAID
example, it is plausible that the underlying frailty leading
both to a lower propensity for NSAID use and to higher
mortality is only partly captured in the main study and is
better captured when additional information from the valida-
tion study (eg, data on activities of daily living) is added.
Thus, surrogacy might be assumed in this setting. The gold-
standard PS also performs as an approximate instrument
under assumptions similar to surrogacy because it is hoped
that it better approaches the true, but unknown, propensity of
treatment than the error-prone one.39,46

CONCLUSIONS
The advantages of health care utilization data for the

assessment of intended and unintended drug effects have a
price: the relatively narrow set of variables available to
characterize patients. This limitation makes the data from

such analyses vulnerable to confounding bias, such as con-
founding by indication. Of the possible sources of additional
data to adjust for unmeasured confounding, cross-sectional
external validation studies are most widely available. Internal
validation studies offer specific advantages because they are
more representative and allow application of methods that do
not require assumptions about the direction of confounding.
Such validation studies should therefore be considered when-
ever feasible. Using PSC to incorporate information on con-
founders not available in health care utilization data from
external validation studies can help researchers to adjust for
unmeasured confounding, albeit under a strong surrogacy
assumption.
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