Slide 1: Use of handheld devices for point of care decision support
Mark H. Ebell MD, MS
Associate Professor, Dept of Epidemiology and Biostatistics
College of Public Health
The University of Georgia

Slide 2: The Context
- Medical knowledge base has exploded
- Complexity of decision-making much greater than before

Slide 3: The Context
- Clinical questions are common
- Questions are central to adult learning
- But questions often go unanswered

Slide 4: The Context
- Increasing number of clinical decision support tools
- Many have potential to improve shared decision-making
- But often too complex for easy point of care use

Slide 5: What are Handheld Decision Support Tools (HDST)?
- Subset of decision support tools designed for handheld computers (e.g. PDAs and smartphones)
- Includes algorithms, scoring systems, multivariate models, and formulas

Slide 6: What are advantages of HDST?
- They facilitate complex calculations as well as simpler point scoring systems, algorithms, and flowcharts.
- Readily updated
- Uniform access to information in multiple locations
- A single compact device can hold hundreds or thousands of HDST

Slide 7: Research
First reports in literature:
- Edward, 1986: critical care calculations on programmable calculator
- Ebell, 1994: pen-based system for Bayesian diagnosis
- Acuff, 1994: fluid calculator for burn patients on Palm

Slide 8: Research

- Widely used by trainees (Kho, 2006; Tempelhof, 2009)
- Improved adherence to respiratory tract infection guideline in study of 99 PCPs (Rubin, 2006)
- Improved prescribing of NSAIDs in an RCT (Berner, 2006)
- RCT of handheld computer versus paper aids showed improved learning and practice of EBM (Leung, 2003)

Slide 9: How are HDSTs developed?

- Expert opinion
- Simple calculators
- Multivariate scores
- Point scores
- Classification and Regression Trees

Slide 10: Developing HDST: Expert opinion and calculators

- Expert opinion:
 - Apgar score for neonatal assessment (Apgar, 1953)
 - Mini-Mental State test for diagnosis of dementia (Folstein, 1975)
 - APACHE score for assessment of severity of illness in critical care (Knaus, 1981)
- Calculators
 - Bayesian calculators
 - BMI, creatinine clearance, etc

Slide 11: Developing HDST: Multivariate scores

Predicting outcome of near drowning (Graf, 1995)

\[X = 6.38 - (4.23 \times X_{\text{Reflex}}) - (0.01 \times X_{\text{Glucose}}) - (2.3 \times X_{\text{Male}}) \]

\[p = \frac{1}{1 + e^x} \]

Slide 12: Developing HDST: Point scores

- Begin with multivariate model
- Create additive point score based on:
 - Counting (i.e. 1 point per clinical finding or risk factor). Example: Strep Score
 - Assign points based on beta or exp(beta), i.e. the odds ratio. Example: Score to predict rheumatoid arthritis at one year in patients with joint pain

Slide 13: Developing HDST: Point scores

A chart of demographic variables and points for each.

Slide 14: Developing HDST: Point Scores

- Good balance between accuracy/validity and simplicity/practicality
- Lend themselves well to developing risk categories
- Work well on handhelds

Slide 15: Developing HDST: Classification and Regression Trees

- Series of multivariate analyses are used to identify best single value to partition patients into those with and without disease
- Creates treelike algorithm
- Good face validity
- Challenging on handheld device, though

Slide 16: Factors to Consider when Evaluating HDSTs

- Usefulness
- Clinical context
- Other factors

Slide 17: Factors to Consider when Evaluating HDST

- Usefulness = (Relevance x Validity) / Work
- Is it relevant?
 - Is it a common or important clinical problem? Or is dataset availability driving study?
 - Has it been shown to improve patient oriented outcomes?
 - Example: Ottawa Ankle Rules have been shown to reduce ER length of stay and save money

Slide 18: Factors to Consider when Evaluating HDST

- Usefulness = (Relevance x Validity) / Work
- Is it valid?

Slide 19: Factors to Consider when Evaluating HDST

- Usefulness = (Relevance x Validity) / Work
- Has work been minimized?
- Dropdown lists, not text:

• Automatically fill in data from patient record, automatically recalculate values
• Choose simpler variables, i.e. CURB-65 (5 variables) rather than Pneumonia Severity Index (20 variables)

Slide 20: Factors to Consider when Evaluating HDST

• Clinical context
• Too often cutoff is chosen based on statistical considerations

(Image to the right is a ROC curve for RA data)

Slide 21: Slide 21: Factors to Consider when Evaluating HDST

• Clinical context
• Remember threshold model for decision-making

Slide 22: Factors to Consider when Evaluating HDST

Clinical context: Option 1
Table of probabilities for RA at 1 year and clinical choices:

• Reassess: 0-3 points
• Monitor: 4-7 points
• Treat: > 7 points

Slide 23: Factors to Consider when Evaluating HDST

Table of probabilities for RA at 1 year and clinical choices:

• Reassure: - = 3 points
• Monitor every 4 months: 4-6 points
• Monitor every 2 months: 7-8 points
• Treat: > 8 points

Slide 24 Clinical context: Option 2

Factors to Consider when Evaluating HDST

• Clinical context
• How many patients benefit? 232 vs 183?

Slide 25: Factors to Consider when Evaluating HDST

• Other factors:
• Financial (dis)incentives

• Mistrust of "black-boxes"
• Rule seen as overly simplistic
• Apprehension about using HDST in front of patients
• Using rule deprives physician of opportunity to reason independently

Slide 26: Final thoughts

• HDST were developed to bring computing power to the point of care
• What is the impact of increased use of EHRs on the need for HDST?
• Is there a role for HDST in a future that puts a terminal or laptop at every bedside?

Slide 27: Final thoughts

• Create HDST for new form factors: netbooks and beyond
• Build on unique features of smartphones such as integrated GPS, camera: for example, an automated system to diagnose skin lesions using smartphone camera and neural network
• Design applications to address specific needs of mobile healthcare professionals: home health care, ED physicians, hospitalists, students/residents, nursing home visits, military

Slide 28: Thank you!