

Impact of Healthcare Algorithms on Racial and Ethnic Disparities in Health and Healthcare

March 2, 2023 10:30 a.m.- 3:40 p.m. ET

Welcome

Prashila Dullabh, MD NORC

Racial Bias and Healthcare Algorithms March 2, 2023 10:30–10:35 a.m. ET

Zoom Housekeeping

Please use the Q&A feature to send comments or questions to the panelists.

Today's webinar is being recorded for notetaking purposes.

Live captions are available. Click the "more" icon on your screen and click "show subtitle".

Update your Zoom name with your first & last name and organization (e.g., Jane Smith – NORC).

If you experience issues with Zoom, please contact <u>Andrew</u> <u>Chiao</u> OR <u>Tyler Taylor</u> from NORC, via the chat or email for assistance: <u>chiao-andrew@norc.org</u>, <u>taylor-tyler@norc.org</u>

Disclaimer

- Presentations do not necessarily represent the views of AHRQ or the U.S. Department of Health and Human Services (DHHS); therefore, please do not interpret any statement in this presentation as an official position of AHRQ or of DHHS.
- Additionally, presentations and presenters were selected to include diverse perspectives and do not necessarily represent the views of the consensus panel.

Welcome

Craig Umscheid, MD AHRQ

Racial Bias and Healthcare Algorithms March 2, 2023 10:30–10:35 a.m. ET

Welcome Remarks

Dr. Robert Otto Valdez, PhD, MHSA was appointed Director of AHRQ in February 2022. He was previously the Robert Wood Johnson Foundation (RWJF) Professor Emeritus of Family & Community Medicine and Economics at the University of New Mexico (UNM).

Dr. Eliseo Perez-Stable, MD is Director of the National Institute on Minority Health and Health Disparities (NIMHD) at the National Institutes of Health (NIH). He oversees NIMHD's annual budget to advance the science of minority health and health disparities research.

Dr. RDML Felicia Collins, MD, MPH, FAAP is the Deputy Assistant Secretary for Minority Health. As the Director of the Office of Minority Health (OMH), she leads the office in its mission to improve the health of racial and ethnic minority populations through the development of health policies and programs that help eliminate health disparities.

National Institute on Minority Health and Health Disparities

AHRQ Remarks

Robert Otto Valdez, PhD, MHSA Director, Agency for Healthcare Research and Quality

Racial Bias and Healthcare Algorithms March 2, 2023 10:35–10:40 a.m. ET

NIMHD and ScHARe

Eliseo J. Pérez-Stable, M.D.

Director, National Institute on Minority Health and Health Disparities

eliseo.perez-stable@nih.gov

Racial Bias and Healthcare Algorithms March 2, 2023 10:40 – 10:45 A.M. ET

Populations with Health Disparities

- Racial and ethnic minority populations in census
- Less privileged socio-economic status
- Underserved rural residents
- Sexual and gender minorities
- Social disadvantage that results in part from being subject to discrimination or racism, and being underserved in health care
- A health outcome that is worse in these populations compared to a reference population group defines a health disparity

NIMHD Research Framework

National Institute on Minority Health and Health Disparities **Research Framework**

		Levels of Influence*			
		Individual	Interpersonal	Community	Societal
Domains of Influence (Over the Lifecourse)	Biological	Biological Vulnerability and Mechanisms	Caregiver–Child Interaction Family Microbiome	Community Illness Exposure Herd Immunity	Sanitation Immunization Pathogen Exposure
	Behavioral	Health Behaviors Coping Strategies	Family Functioning School/Work Functioning	Community Functioning	Policies and Laws
	Physical/Built Environment	Personal Environment	Household Environment School/Work Environment	Community Environment Community Resources	Societal Structure
	Sociocultural Environment	Sociodemographics Limited English Cultural Identity Response to Discrimination	Social Networks Family/Peer Norms Interpersonal Discrimination	Community Norms Local Structural Discrimination	Social Norms Societal Structural Discrimination
	Health Care System	Insurance Coverage Health Literacy Treatment Preferences	Patient–Clinician Relationship Medical Decision-Making	Availability of Services Safety Net Services	Quality of Care Health Care Policies
Health Outcomes		A Individual Health	Family/ Organizational Health	合 Community 合合 Health	Health

National Institute on Minority Health and Health Disparities, 2018

*Health Disparity Populations: Race/Ethnicity, Low SES, Rural, Sexual/Gender Minority Other Fundamental Characteristics: Sex/Gender, Disability, Geographic Region

AI/Algorithm Applications

"For the first time in history, we have technology (AI) that is Opening our eyes to <u>who we are</u>, is changing us as we speak, and could allow us to play a conscious role in who we want to become." IBM Director for AI Transformation AI professor at the University of Texas Who We Are: Human Biases

exist in Al/Algorithm Applications

Look Deeper with More Eyes

National Institute on Minority Health and Health Disparities

Ethical Al/Algorithms

"For the first time in history, we have technology (AI) that is Opening our eyes to who we are, is changing us as we speak, and could allow us to play a conscious role in <u>who we want to</u> <u>become.</u>"

Jennifer Aue

IBM Director for AI Transformation AI professor at the University of Texas

Who We Want to Become: Ethical AI/Algorithms

Use Models in Context

- https://jamanetwork.com/journals/jamainternalmedicine/article-abstract/2781313-
- The Problem
 - An Epic EHR system developer trained a machine learning model to predict sepsis using a certain population's data
 - When the model was reused with a new population, the performance was substantially worse than the original results suggested

Models in Context – Know Populations

National Institute on Minority Health and Health Disparities

Ensure R's in Al/Algorithms

- Repeatability same result with same data
- Replicability someone else achieves same result with same data
- Reproducibility same result with different data (generalizable)

Develop AI/Algorithms with Health Equity to Prevent Health Disparities

Look Deeper with More Eyes

NIMHD Goals in Data Science and Cloud Computing

- Increase workforce of underrepresented women and populations with health disparities in data science and cloud computing
- Utilize social determinants of health and population science <u>big</u> <u>data</u> in research to understand and improve health outcomes and reduce disparities
- Develop <u>ethical Al</u> utilizing bias mitigation strategies across the continuum of design, data selection, algorithm development and training, and implementation to ensure health equity

ScHARe

Cloud-based **social determinants of health and population science data** platform designed to accelerate research in health disparities and health outcomes, and to develop AI bias mitigation strategies

Register for ScHAe: <u>https://www.nimhd.nih.gov/resources/schare/</u>

National Institute on Minority Health and Health Disparities

Social Determinants of Health Measures

- PhenX Toolkit on SDOH measures: <u>https://www.phenxtoolkit.org/collections/view/6</u>
- Demographics including family background
- Urban or rural residence or geographic region
- Cultural identity, religiosity, spirituality
- Language proficiency, Literacy, numeracy
- Structural determinants: housing, green space, broadband, economic opportunity, transportation, schools, healthy food access, public safety, political

Connect With NIMHD

Visit us online <u>www.nimhd.nih.gov</u>

Connect with us on Facebook www.facebook.com/NIMHD

Follow us on Twitter @NIMHD

Linked in. Join us on linkedin.com/company/nimhd-nih/

Sign up for news

https://public.govdelivery.com/accounts/US-NIHNIMHD/subscriber/new

National Institute on Minority Health and Health Disparities

HHS-OMH Remarks

RDML Felicia Collins, MD, MPH, FAAP

Deputy Assistant Secretary for Minority Health Director, Office of Minority Health U.S. Department of Health and Human Services

> Racial Bias and Healthcare Algorithms March 2, 2023 10:45–10:50 a.m. ET

Introduction and Purpose of the Meeting

Anjali Jain, MD AHRQ

Racial Bias and Healthcare Algorithms March 2, 2023 10:50 a.m.- 11:10 a.m. ET

66 Of all the forms of inequality, injustice in healthcare is the most shocking and inhumane. 🤧

DR. MARTIN LUTHER KING, JR.

Library of Congress Prints and Photographs Division Washington, D.C. 20540 USA h

vw.loc.gov/item/2003688129/

- AHRQ received a request from Congress to review the evidence on the potential of algorithms to contribute to disparities in health care for racial and ethnic minorities
- In response, AHRQ:
 - o issued a request for information (RFI) in the federal register
 - commissioned an evidence review with the aim of informing guidance to mitigate bias in healthcare algorithms

AHRQ Request for Information (RFI) on Algorithms with Potential to Introduce Racial/Ethnic Bias

- RFI questions were intended to:
 - Identify algorithms in use with potential for racial/ethnic bias
 - Discover existing approaches to identifying or mitigating bias in algorithms
 - Characterize awareness of algorithms and bias among patients, providers, and others
 - Identify standards for algorithm development, validation, and updating

Responses to the RFI

• 42 respondents

- -485 pages of responses
- Respondents included
 - 18 clinical and professional associations
 - 9 groups focused on health technology, including algorithm developers
 - -7 universities
 - -4 federal and state agencies (non-AHRQ)
 - -1 payer
 - -4 individuals

Insights from the RFI

- Responses analyzed using qualitative analysis
- Respondents named 18 algorithms with potential for bias
- Major themes from responses included:
 - Addressing racial bias in healthcare algorithms is urgent and important
 - Algorithms are in widespread use and have a potentially large impact
 - Bias and disparities can result from algorithms whether or not they explicitly include race
 - Great heterogeneity and lack of standardization in how race and social determinants of health data are collected and defined
 - Bias can be introduced at all stages of algorithm development and implementation
 - Organizations making efforts to assess bias related to algorithms and improve inequities
 - Clinicians and patients often unaware of algorithm use and potential for bias
 - Algorithms should be discussed as part of shared decision making between patient and provider

Evidence Review: Impact of Healthcare Algorithms on Racial and Ethnic Disparities in Health and Healthcare

Agency for Healthca Research and Qualit

- Evidence review awarded to ECRI/Penn May 2021
- Review conducted since May 2021, includes input from experts and stakeholders as key informants & technical experts
- Draft report posted for public comment, February 9, 2023
 - Comments on the report can be submitted until 11:59 p.m. ET on March 9, 2023 at the link below

https://effectivehealthcare.ahrq.gov/products/form/racial-disparities-healthhealthcare-draft-comments

Evidence Review: Impact of Healthcare Algorithms on Racial and Ethnic Disparities in Health and Healthcare

- 2 Key questions and 4 contextual questions
 - *Key Question 1.* What is the effect of healthcare algorithms on racial and ethnic differences in access to care, quality of care, and health outcomes?
 - Key Question 2. What is the effect of interventions or approaches to mitigate racial and ethnic bias in the development, validation, dissemination, and implementation of healthcare algorithms?

Impact of Healthcare Algorithms on Racial and Ethnic Disparities in Health and Healthcare

- 4 contextual questions to explore practical aspects of algorithmic use and bias, addressed through supplemental literature reviews and conversations with experts and key stakeholders
 - **CQ 1** examines the problem's scope within healthcare.
 - CQ 2 describes recently emerging standards and guidance on how racial and ethnic bias can be prevented or mitigated during algorithm development and deployment.
 - CQ 3 explores stakeholder awareness and perspectives about the interaction of algorithms and racial and ethnic disparities in health and healthcare.
 - CQ 4 involved an in-depth analysis of a sample of six algorithms to better understand how their design and implementation might contribute to disparities

"Not everything that is faced can be changed, but nothing can be changed until it is faced." ~James Baldwin

Allan warren, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons

Introduction of Keynote Speaker

Arlene Bierman, MD, MS AHRQ

Racial Bias and Healthcare Algorithms March 2, 2023 11:10 a.m.- 11:15 a.m. ET

AGENCY FOR HEALTHCARE RESEARCH AND QUALITY

Dissecting Racial Bias

Ziad Obermeyer, MD

UC Berkeley Blue Cross of California Distinguished Associate Professor of Health Policy and Management

> **Racial Bias and Healthcare Algorithms** March 2, 2023 11:15 a.m.- 11:45 a.m. ET

Algorithms in health care

- Many great uses of algorithms in health
 - Risk prediction: What will happen

. . .

Diagnosis: Likelihood that patient has a disease

Many worries about disparities in these algorithms

depression, or opioid misuse; and warfarin dosing. We found evidence that algorithms can: a) reduce disparities (i.e., revised Kidney Allocation System, prostate cancer screening tools), b) perpetuate or exacerbate disparities (e.g., estimated glomerular filtration rate [eGFR] for kidney function measurement, cardiovascular disease risk assessments), and/or c) have no effect on racial or ethnic disparities (e.g., HEART Pathway). Further algorithms that perpetuated or

• What makes the difference?

Biased vs. unbiased algorithms

- A common concern: Race as a predictor
 - a big problem if "hard-coded," e.g., assumptions about Black lung capacity
- Today: A different concern—and a way to debias algorithms

Figure 2. Conceptual Model for Understanding Racial and Ethnic Biases Introduced During Algorithm/Clinical Decision-Making Tool Development, Translation, Dissemination, and Implementation

(a) Algorithm Development Phase

Example 1: Targeting extra help for complex patients

- Complex, chronically ill patients have high costs, poor care
 - Innovation: 'high-risk care management'
 - But expensive so targeting critical
- Algorithms are used everywhere for this
 - Specific software we study: 70 million patients/year (US)
 - Market estimates: 150-200 million patients/year (US)
- Common goal: Find patients who are going to get sick
 - As measured by future health care costs
 - So we can target help now

We studied 'racial bias'

- Principle: Same score
 → Treated the same
 Should have same needs
 - Should have same needs
- Color of their skin should not matter
- But it does
 - Black patients have worse realized health
 - At every algorithm score

Dissecting the bias

- We'd like to understand where the algorithm is going wrong
- One clue: where it is going right
- Algorithm predicts total health costs well for Black and White patients

Obermeyer, Powers, Vogeli, Mullainathan, Science 2019

Biased for health, unbiased for cost

- Algorithm is accurately predicting cost
- Black patients have lower costs at the same health status
 - 1. White patients have better access to health care
 - 2. The health system treats Black patients differently
- Result: biased health prediction
 - ► With or without race adjustment
 - ► In this case: No race adjustment

Finding better targets for prediction

- Insight: We have other proxy variables besides cost
 - Total cost vs. avoidable cost vs. health outcomes
- We worked with developer to re-train algorithm on health
 - ► Huge benefits for equity: 84% less bias
 - Better fit with business purpose
- Suggests finding better proxies is a high-value activity
 - Practical: Same dataset, same pipeline, different label
Our 'playbook'—inspired by work over past 2 years

- Bad news: We found bias almost everywhere we looked
 - Population health resource allocation
 - Clinical disease prediction
 - Operational decisions
- Good news: Almost all fixable
 - By retraining on less biased label

DOWNLOAD THE PLAYBOOK

Example 2: Pain is concentrated in most disadvantaged

- But story isn't as simple as it looks
- Typical exercise in literature, e.g., for knee osteoarthritis:
 - ► Two patients, similar x-rays
 - Compare pain scores
- Black, lower-income, lowereducation: <u>still</u> have more pain
 - At every level of x-ray graded disease severity

Some explanations from the literature

- If it's not in their knees...
- Maybe it's in their heads?
 - Stress makes similar stimuli more painful
 - Psychosomatic factors
 - Coping skills
- Or in the medical system
 - Access to therapies

Concrete clinical scenario

- Implication of literature
 - Black patients' pain not reflected in disease severity
- Leads to allocation of non knee-based treatments
- But what do we mean by 'disease severity'?
 - ► How do we measure it?

Current SOTA

Measuring osteoarthritis severity

- Objective grading scales, based on x-ray appearance
- Most common: Kellgren-Lawrence, 1957 (KLG)

- Original studies on coal miners in Lancashire, England
 - No mention of subjects' race, sex

A good job for an algorithm?

PLOS ONE

Received: 21 July 201

RESEARCH ARTICLE

A preliminary examination of the diagnostic value of deep learning in hip osteoarthritis

Yanping Xue¹, Rongguo Zhang², Yufeng Deng²*, Kuan Chen², Tao Jiang¹*

1 Department of Radiology, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China, 2 Infervision, Beijing, China

SCIENTIFIC REPORTS

OPEN Automatic Knee Osteoarthritis Diagnosis from Plain Radiographs: A Deep Learning-Based Approach Aleksei Tiulpin[®], Jérôme Thevenot¹, Esa Rahtu², Petri Lehenkari² & Simo Saarakkala^{1,4}

natureresearch

Deep Learning Predicts Total Knee Replacement from Magnetic Resonance Images

Aniket A. Tolpadi^{1,2}, Jinhee J. Lee², Valentina Pedoia² & Sharmila Majumdar^{2*}

- Human radiologists may overlook causes of pain in disadvantaged groups
- We'd like an algorithm to help—but...
 - Typical approach: train to match human performance
- Exactly what we don't want to do!

Finding a better target for prediction

Learn from the radiologist

Listen to the patient

Finding the data: Not straightforward

- Easy to find: x-rays + radiologist interpretation
 Sitting on every hospital's PACS system
- Much harder to find: x-rays + patient pain experience
- But once we have data: a very straightforward ML problem

- ► If pain is predictable from knee image
 - ... Pain is in the knee (not in the head, coping, ...)

Algorithm closes nearly half the pain gap

- Adjusting for standard severity measure: –9%
- Adjusting for algorithmic severity measure: –43%
 - 4.7x more than standard measure
 - 95% CI: 3.2-11.8
- Similar results for
 - Income: 2.0x
 - Education: 3.6x

The stakes are high

Agency for Healthca Research and Qualit

- Take patients with severe pain
- Simulate swapping in algorithm severity, not radiologist
- Double fraction of Black knees eligible for surgery

Summary

- Algorithmic bias is often decided early
 - How we ask the question for algorithms to answer
 - Not how the algorithm answers the question
- Suggests problem formulation is a critical area
 - This is understudied
 - ► Because it's difficult: What are we trying to do?

AGENCY FOR HEALTHCARE RESEARCH AND QUALITY

Consensus Panel Co-Chair Comments

Marshall Chin, MD, MPH University of Chicago

Racial Bias and Healthcare Algorithms March 2, 2023 11:45 a.m.- 11:50 a.m. ET

Consensus Panel for Racial Bias and Healthcare Algorithms

- Consensus Panel Composition:
 - ► 2 co-chairs
 - 7 panelists
 - Diverse perspectives represented
- Consensus Panel Role: Identify and formulate:
 - Guiding principles for racial/ethnic bias prevention, identification, and mitigation
 - Potential solutions, approaches and resources to address such bias
 - Actionable next steps for stakeholders
- Panel will present findings at a virtual public meeting on May 15, 2023

Impact of Healthcare Algorithms on Racial and Ethnic Disparities in Health and Healthcare

Break

March 2, 2023 11:50 a.m.– 12:00 p.m. ET *Please take ten minutes for a break*

National Institute on Minority Health and Health Disparities

AGENCY FOR HEALTHCARE RESEARCH AND QUALITY

Evidence Review

Methods, Key Question 1, and Contextual Question 1

Kelley Tipton, MPH

ECRI

Shazia M. Siddique, MD, MSHP

University of Pennsylvania School of Medicine

Racial Bias and Healthcare Algorithms March 2, 2023 12:00-12:20 p.m. ET

Use of Race and Ethnicity in Healthcare Algorithms

The NEW ENGLAND JOURNAL of MEDICINE

MEDICINE AND SOCIETY

Debra Malina, Ph.D., Editor

Hidden in Plain Sight — Reconsidering the Use of Race Correction in Clinical Algorithms

Darshali A. Vyas, M.D., Leo G. Eisenstein, M.D., and David S. Jones, M.D., Ph.D.

Table 1. Examples of Race Correction in Clinical Me	edicine.º		
Tool and Clinical Utility	Input Variables	Use of Race	Equity Concern
Cardiology			
The American Heart Association's Get with the Guidelines-Heart Failure! (https://www .mdcalc.com/gwtg.heart.failure-risks.core) Pred at in-hospital most alluly in patients with oute heart failure. Clinicians are adviced to use this sisk atrafication to guide decisions reparding initia in greatical therapy.	Systolic blood pressure Blood urea nitrogen Sodium Age Heart rate History of COPD Race: black or nonblack	Adds 3 points to the risk score if the patient is identified as nonblack. This addition increases the estimated probability of death (higher scores predict higher mortality).	The original study envisioned using this score to "increase the use of recommended medical therapy in high risk patients and reduce resource utilization in those at low risk." The race correction regards black patients as lower risk and may raise the threshold for using clinical resources for black patients.
Cardiac surgery			
The Society of Thorac: Surgeons Short Term Rick Calculated, Phttp://riskcalc.sts.org/ stswebriskcalc/calculate) Calculates a postend stake of complications and dush with the most common cardia cur- greise. Considers 50 valiables some of which are listed here.	Operation type Age and sex Race: black/African American, Asian, American Indian/Alaskan Native, Native Hawaiian/Pacific Islander, or "Hispanic, Latino or Spanish ethnic- iy"; white race is the default setting, BMI	The risk score for operative mortality and major complications increases (in score cases, by 20%) if a patient is identified as black (domification as another non- white race or ethnicity does not increase the risk score for major compli- cations such as renal failure, stroke, and prolonged ventilation.	When used preoperatively to assess a parient's risk, there calculations could sheer minority patients, deemed higher risk, away from these procedures.
Nephrology			
stimated giomerular filtration rate (eGFR) MDRD and COLE Pequations ² (https:// ukidney.com/nephrology-resources/egfr -acliculator) Estimates giomerular filtration rate on the basis of a measurement of serum areatinine.	Serum creathine Age and soc Race: black vs. white or other	The MDBD equation reports a higher 6GTR (by a factor of 2.10) if the painter is identified as black. This adjustment is similar in magnitude to the correction for so (0.742 if female). The CK03-FH equation (which included a larger number of black patients in the study population), proposes a more modest race correction (by a factor of 1.159) if the patients is identified as black. This correction is larger than the correction for sur (1.018 if female).	Both equations report higher eGFR values (given the same creatinine measurement)) for patients identified as black, suggesting better kidney function. These higher eGFR values may delay referral to specialist care or listing for kidney transplantation.
Drgan Procurement and Transplantation Network Kidney Donor Risk Inder (KDRI) ² (https:// opin.transplanta.taga/resources/allocation calculators/kdpi-calculator/) Estimates predicted risk of donor kidney graft failure wichts and to predid viability of poten- sial kidney donor.†	Age Hypertension, diabetes Serum creatinine lavel Cause of death (e.g., cerebrovascular accident) Donation after cardiac death Height and weight H.A. matching Cold ischemia En bloc transplantation Double kidney transplantation Bare African American	Increases the predicted risk of kidney graft failure II the potential doors is identified as African Anexican (coefficiento, 0.179), a risk adjustment intermediate between those for hypertension (0.126) and diabetes (0.130) and that for elevated creatinine (0.209–0.220).	Use of this tool may reduce the pool of African- American kidney donors in the United States. Since AfricanAmerican autents are more likely to receive kidneys from African- American donors, by reducing the pool of available kidneys, the KDRI could exacer- bate this racial inequily in access to kidneys for transplantation.

ginal Birth after Cesarean (VBAC) Risk Calculato ^(3,1) (https://mfmunetwork.bsc.gwu zedu?bubicBSC/MFMU/VGBirthCalc/vagbirth .html) Estimates the probability of successful vaginal bith dgm poin cesarean section. Clinicians con uus the estimate to coursel people who have to decide whether to attempt and (glabor rather than undergo a respect cesarean section.	Age BMI Prior vaginal delivery Prior VBAC Recurring indication for cesarean African American race Hispanic ethnicity	The African American and Hispanic correc- tion factors subtract from the estimated success rate for any person identified as black or Hispanic. The decrement for black (10671) or Hispanic (10680) is almost as large as the benefit from prior vaginal delivery (10.888) or prior VBAC (1.003).	The VBAC score predicts a lower chance of success if the person is identified as bla or Hispanic. These lower estimates may dissuade clinicans from offering trials o labor to people of color.
ology			
ONE Score ^{13,16}	Sex	Produces a score on a 13-point scale, with	By systematically reporting lower risk for bla
Predicts the risk of a ure eral stone in patients who present with flank pain	Acute onset of pain Race: black or nonblack Nausea or vomiting Hematuria	a higher score indicating a higher risk of a ureteral stone; 3 points are added for nonblack race. This adjustment is the same magnitude as for hematuria.	patients than for all nonblack patients, t calculator may steer clinicians away fron aggressive evaluations of black patients.
inary tract infection (UTI) calculator ¹⁷ (https:// uticalc.pitt.edu/)	Age <12 months Maximum temperature >39°C Race: Describes self as black (fully or	Assigns a lower likelihood of UTI if the child is black (i.e., reports a roughly 2.5-times increased risk in patients who do not	By systematically reporting lower risk for bla children than for all nonblack children, th calculator may deter clinicians from pur-
Estimates the risk of UTI in children 2–23 mo of age to guide decisions about when to pursue urine testing for definitive diagnosis	partially) Female or uncircumcised male Other fever source	describe themselves as black).	ing definitive diagnostic testing for black children presenting with symptoms of U
cology			
ctal Cancer Survival Calculator ¹⁸ (http:// www3.mdanderson.org/app/medcalc/index .cfm?pagename-rectumcancer)	Age and sex Race: white, black, other Grade Stage	White patients are assigned a regression coefficient of 1, with higher coefficients (depending on stage) assigned to black natient; (118-172).	The calculator predicts that black patients w have shorter cancer-specific survival fror rectal cancer than white patients. Clinicia might be more or less likely to offer inter
Estimates conditional survival 1–5 yr after diag- nosis with rectal cancer	Surgical history	()	ventions to patients with lower predicted survival rates.
tional Cancer Institute Breast Cancer Risk Assessment Tool (https://bcrisktool.cancer .gov/calculator.html)	Current age, age at menarche, and age at first live birth First-degree relatives with breast cancer Prior begin biggries, atmical biggries	The calculator returns lower risk estimates for women who are African American, Hispanic/Latina, or Asian American (e.g., Chingen)	Though the model is intended to help conce tualize risk and guide screening decision it may inappropriately discourage more a grantike screening more screening.
Estimates 5 yr and lifetime risk of developing breast cancer, for women without prior history of breast cancer, DOS, or LOS.	Race/ethnicity: white, African American, Hispanic/Latina, Asian American, American Indian/Alaska Native,	feißs ennest.	nonwhite women.

Tool and Clinical Utility	Input Variables	Use of Race	Equity Concern
Breast Cancer Surveillance Consortium Risk Calculator ¹¹ (https://tools.bcsc.scc.org/ BCSyearRisk/calculator.htm) Estimates 5 and 10 yr risk of developing breast concer in women with no provious diagnosis of breast cancer, DQS prior breast augmentation, or prior masteclomy	Age Race/ethnicity: white, black, Asian, Native American, other/multiple naces, unknown BIRADS breast density score First-degree relative with breast cancer Pathology results from prior biopsies	The coefficients rank the race/ethnicity categories in the following descending order of risks white, American Indian, black, Hispanic, Asian.	Returns lower risk estimates for all nonw race/ethnicity categories, potentially ing the likelihood of close surveilland these patients.
Endocrinology			
Osteoporosis Risk SCORE (Simple Calculated Osteoporosis Risk Estimation) ²⁶ (https://www .mdapp.co/osteoporosis-risk-score-calculator 316/) Determines whether a woman is at low, moder- tate, or high risk for low bone density in order to guide decisions about screening with DIA scan	Rheumatoid arthritis History of fracture Age Estrogen use Weight Race: black or not black	Assigns 5 additional points (maximum score of 50, indicating highest risk) if the patient is identified as nonblack	By systematically lowering the estimated of osteoporosis in black patients, SCI may discourage clinicians from purs- further evaluation (e.g., DKA scan) in patients, potentially delaying diagnos intervention.
Fracture Risk Assessment Tool (FRAV) ¹¹ (https:// www.sheffield.ac.uk/FRAV(tool.aspx) Estimates 10.yr risk of a hip fradure or other major as eoperaic fradure on the basis of pakent demographics and isk-fador profile. Calculators are country-specific.3	Age and sex Weight and height Previous fracture Parent who had a hip fracture Current smoking Glucocorticoid use Rheumatoid arthritis Secondary osteoporosis Alcholu es, a 3 dimiks per day Femoral neck bone mineral density	The U.S. calculator returns a lower fracture risk fa female patient i identified as black (by a factor of 0.43), Asian (0.50), or Hispani (0.53). Estimates are not provided for Native American patients or for multiracial patients.	The calculator reports 10yr risk of major portoit fracture for black women as Is than half that for white women with it tical risk factors. For Asian and Hapa women, risk is estimated at abouth for white women. This lower risk repo for norwhite women may delay interv with osteoporosis therapy.
Pulmonology			
Pulmonary-function tests ²² Uses spirometry to measure lung volume and the rate offlow through ainways in order to desence and monitor mulmorary disease	Age and sex Height Race/ethnicity	In the U.S., spirometers use correction factors for persons labeled as black (10–15%) or Asian (4–6%).	Inaccurate estimates of lung function ma result in the misclassification of dises severity and impairment for racial/ett minorities (e.g., in asthma and COPE

Obstetrics

Key Questions (KQs)

- KQ 1: What is the effect of healthcare algorithms on racial and ethnic differences in access to care, quality of care, and health outcomes?
- KQ 2: What is the effect of interventions, models of interventions, or other approaches to mitigate racial and ethnic bias in the development, validation, dissemination, and implementation of healthcare algorithms?

Contextual Questions (CQs)

- CQ 1: How widespread is the inclusion of input variables based on race and ethnicity in healthcare algorithms?
- CQ 2: What are existing and emerging national or international standards or guidance for how algorithms should be developed, validated, implemented, and updated to avoid introducing bias that could lead to health and healthcare disparities?
- CQ 3: To what extent are patients, providers (e.g., clinicians, hospitals, health systems), payers (e.g., insurers, employers), and policymakers (e.g., healthcare and insurance regulators, state Medicaid directors) aware of the inclusion of input variables based on race and ethnicity in healthcare algorithms?
- CQ 4: Select a sample of approximately 5-10 healthcare algorithms that have the potential to impact racial and ethnic disparities in access to care, quality of care, or health outcomes and are not included in KQs 1 or 2. For each algorithm, describe the type of algorithm, its purpose (e.g., screening, risk prediction, diagnosis, etc.), its developer and intended end-users, affected patient population, clinical condition or process of care, healthcare setting, and information on outcomes, if available.

National Institute on Minority Health and Health Disparities Conceptual Model for Understanding Racial and Ethnic Biases Introduced During Algorithm/Clinical Decision-Making Tool Development, Translation, Dissemination, and Implementation

External Context & Drivers: Policy / Payers / Vendors

Figure informed by Sittig DF, Singh H. A new socio-technical model for studying health information technology in complex adaptive healthcare systems. In: Patel V, Kannampallil T, Kaufman D, eds. Cognitive Informatics for Biomedicine Health Informatics. Springer International Publishing; 2015:59-80; **and** Rajkomar A, Hardt M, Howell MD, et al. Ensuring fairness in machine learning to advance health equity. Ann Intern Med. 2018 Dec;169(12):866-72.

Definitions of Key Terms

Term	Definition
Algorithm	A mathematical formula or model that combines different input variables or factors to inform a calculation or an estimate, such as an estimate of disease or risk of a particular health outcome.
Algorithmic bias	Differential performance of an algorithm in different groups (such as racial or ethnic groups) due to intrinsic attributes of the algorithm.
Risk of bias (ROB)	The likelihood that a study's reported results are misleading due to methodologic issues in study design.

Analytic Framework/PICOTS for KQs

National Institute on Minority Health and Health Disparities <u>Hospital</u>: Inpatient, emergency department, observation unit <u>Ambulatory</u>: Post-acute care, primary, specialty, rehabilitation care sites, long-term care <u>Non-clinical site</u>: Home care (telemedicine, self-care)

Overview of Project Methods

- Systematic literature search of Embase, MEDLINE, PubMed, Cochrane Library, and grey literature (1/1/2011 to 1/12/2022)
 - Updated search performed through 2/7/2023
- Used predefined criteria and dual review to screen all records for KQ 1 and KQ 2; selected eligible full-length research studies published in English for one or both KQs
- Assessed studies' methodologic ROB using ROBINS-I and piloted an appraisal supplement to assess racial and ethnic equity-related ROB
- Completed a narrative synthesis, catalogued study characteristics and outcome data
- CQs addressed through supplemental searches, review of RFI responses, and discussions with SMEs, TEP, and KIs
- External peer review completed; report posted for public comment on 2/9/2023

Study Flow Diagram

AHRQ

Classification of Studies by Key Question

- KQ 1: included studies evaluated an algorithm's effect on health or healthcare outcomes stratified by racial and ethnic groups
- KQ 2: included studies intended to develop an intervention or strategy to mitigate
 - racial and ethnic algorithmic bias OR
 - ► a known racial and ethnic disparity associated with an algorithm
- Studies included in **both KQ 1 and 2** described
 - ► a racial and ethnic disparity associated with an algorithm, **AND**
 - ► an intervention on the algorithm to mitigate the disparity

KQ 1 Results: Overview

- 12 included studies
 - Algorithms reduce disparities (n=4 studies)
 - Algorithm with no effect on disparities (n=1 study)
 - Algorithms that perpetuate or exacerbate disparities (n=7 studies)
- KQ 2 with further evidence of algorithms that perpetuate or exacerbate disparities, thereby warranting mitigation strategies
- Studies were appraised at moderate-to-high risk of bias

KQ 1: Algorithms Shown to Reduce Disparities

Clinical Assessment	Number of Studies	Algorithm(s)	Comparator	Includes race or ethnicity? (Y/N)	Primary outcome
Kidney Transplant Suitability	1 [Zhang 2018]	Kidney Allocation System (KAS)	Pre-implementation of KAS	Y	Waitlisting rate
Lung Transplant Suitability	1 [Wille 2013]	Lung Allocation Score (LAS)	Pre-implementation of LAS	Ν	Death while on waitlist or ineligibility due to morbidity while on waitlist
Prostate Cancer Risk	2 [Presti 2021] [Carbanaru 2019]	KPPC RC PCPT	Compared KPPC RC models PBCG	Y	Biopsies avoided and clinically significant prostate cancers missed

KPPC RC=Kaiser Permanente prostate cancer risk calculator; N=no; PCPT=Prostate Cancer Prevention Trial algorithm; PBCG=Prostate Biopsy Collaborative Group algorithm; Y=yes

National Institute on Minority Health and Health Disparities <u>**Takeaway:</u>** Existing disparities were identified prior to algorithm development and implementation. These algorithms were implemented as part of an intentional effort to tackle disparities</u>

KQ 1: Algorithms with No Effect on Disparities

Clinical Assessment	Number of Studies	Algorithm	Comparator	Includes race or ethnicity? (Y/N)	Primary outcome
Emergency Department Triage	1 [Snavely 2021]	HEART Pathway	Pre- implementation of HEART Pathway	Ν	30-day death or myocardial infarction

Takeaway: The HEART Pathway did not significantly impact death or MI rates for BIPOC individuals. However, non-white patients and women were more likely to be classified as low risk and discharged early. Longer term implications have not been assessed.

Of note, non-adherence to the pathway was higher for women, but nonsignificant for non-White individuals, providing insight on pragmatic challenges of algorithm implementation.

National Institute on Minority Health and Health Disparities

KQ 1: Algorithms Shown to Perpetuate Disparities

Clinical Assessment	Number of Studies	Algorithm	Comparator	Includes race or ethnicity? (Y/N)	Primary Outcome
Severity of Illness Scores Applied to Crisis Standards of Care	3 [Ashana 2021] [Sarkar 2021] [Miller 2021]	SOFA and LAPS2 SOFA, OASIS, APACHE IVa SOFA tiering systems	Compared models/tierin g systems	N	In-hospital mortality

APACHE IVa=Acute physiology and chronic health evaluation; LAPS2=Laboratory-based Acute Physiology Score version 2; N=no; NR=not reported; OASIS=Oxford Acute Severity of Illness Score; SOFA=Sequential Organ Failure Assessment

National Institute on Minority Health and Health Disparities <u>**Takeaway:</u>** Applying severity of illness scores outside of its original intended application (e.g. Crisis Standards of Care for the COVID-19 pandemic) results in less resources for BIPOC (Black and Hispanic) individuals, thereby leading to disparities.</u>

KQ 1: Algorithms Shown to Perpetuate Disparities

Clinical Assessment	Number of Studies	Algorithm	Comparator	Includes race or ethnicity? (Y/N)	Primary Outcome
Severity of	3				
Illness Scores	[Ashana 2021]	SOFA and LAPS2	Compared	Ν	In-hospital mortality
Applied to	[Sarkar 2021]	SOFA OASIS APACHE IVa	models/tierin		
Crisis			g systems		
Standards of	[Miller 2021]	SOFA tiering systems			
Care					
Lung Cancer	2	USPSTF-2013	PLCOm2012	Ν	Lung cancer screening
Risk	[Pasquenelli 2021]			(Y for	eligibility
				comparator)	

National Institute on Minority Health and Health Disparities **Takeaway:** Both studies found that USPSTF-2013 resulted in higher proportions of Black patients being ineligible for lung cancer screening. However, this is not a pre-post study. Downsides of potential over-screening were not assessed.

KQ 1: Algorithms Shown to Perpetuate Disparities

Clinical Assessment	Number of Studies	Algorithm Comparator Inclusion or et (Y/N)		Includes race or ethnicity? (Y/N)	Primary Outcome	
Severity of	3				In-hospital mortality	
Illness Scores Applied to Crisis	[Ashana 2021]	Takeaway: Algorithms that do not in	clude race ca	n lead to		
Standards of	[Sarkar 2021] [Miller 2021]	disparities: Obermeyer studied an al	gorithm which	predicted		
		flawed because the association betw	d health			
Lung Cancer Risk	2 [Pasquenelli 202	iffers across racial and ethnic groups.			Lung cancer screening eligibility	
	[Han 2020]			comparator)	,	
Opioid Misuse Risk	1 [Thompson 2021]	Natural language processing classifier	Natural language processing classifierNoneNR			
High-Risk Care Management	1 [Obermeyer 2019	Commercial risk prediction calculator	None	N	Eligibility for a care management program	

Further evidence from KQ 2: Algorithms Perpetuate Disparities

Clinical Category	Algorithm	Key Question	Study	Study Design ^a	Disparities in Health outcome ^b	Disparities in Access ^b	Disparities in Quality ^b
	eGFR⁰	KQ 2	Ahmed 2021 ²¹	Modelling ^d	*	t	*
	eGFR⁰	KQ 2	Inker 2021 ²³	Modelling ^d	*	*	t
	eGFR⁰	KQ 2	Casal 202161	Modelling ^d	*	Ť	t
	eGFR⁰	KQ 2	Duggal 202162	Modelling ^d	t	*	t t
	eGFR⁰	KQ 2	Hoenig 2022 ⁶⁴	Modelling ^d	*	*	t t
	eGFR⁰	KQ 2	Inker 202165	Modelling ^d	*	*	t
idney function	eGFR⁰	KQ 2	Mahmud 202267	Modelling ^d	t	*	*
neasurement	eGFR⁰	KQ 2	Miller 2021a ⁶⁸	Modelling ^d	*	*	t
	eGFR⁰	KQ 2	Panchal 202269	Modelling ^d	t	t	*
	eGFR⁰	KQ 2	Shi 202171	Modelling ^d	t	*	*
	eGFR⁰	KQ 2	Tsai 2021 ⁷²	Modelling ^d	t	*	*
	eGFR⁰	KQ 2	Yap 2021 ⁷⁴	Modelling ^d	*	*	t
	eGFR⁰	KQ 2	Zelnick 202175	Modelling ^d	t	*	t
	eGFR⁰	KQ 2	Coresh 2019 ⁷⁸	Modelling ^d	*	*	t
idney transplant	Kidney Donor Index	KQ 2	Julian 2017 ⁸¹	Modelling ^d	*	*	t
llocation	Revised KAS ^c	KQ 1	Zhang 201858	Pre-post	*	Ļ	*
	SOFA	KQ 1	Miller 2021b ⁵¹	Modelling ^d	*	t	*
Severity of illness scores for Crisis Standards of Care	SOFA, LAPS2	KQ 1 and 2	Ashana 2021 ⁸⁸	Modelling ^d	t	t	*
	APACHE Iva, OASIS, SOFA	KQ 1	Sarkar 202154	Modelling ^d	Ť	*	*
Prostate Conser Disk	PCPT°	KQ 1	Carbanaru 201957	Modelling ^d	*	*	↓
Tostate Cancer RISK	KPCC RC°	KQ 1	Presti 202153	Modelling ^d	*	*	Ļ

Summary Evidence Map

National Institute on Minority Health

and Health Disparities

Further evidence from KQ 2: Algorithms Perpetuate Disparities

Clinical Category	Algorithm	Key Question	Study	Study Design ^a	Disparities in Health outcome ^b	Disparities in Access ^b	Disparities in Quality ^b
Liver transplantation	Donor Risk Index	KQ 2	Shores 2013 ⁸⁶	Modelling ^d	*	*	t
	ASCVD℃	KQ 2	Weale 202173	Modelling ^d	*	*	1
	Modified ASCVD ^c	KQ 2	Topel 2018 ⁷⁹	Modelling ^d	Ť	*	*
	ASCVD ^e	KQ 2	Fairman 2020 ⁷⁶	Modelling ^d	Ť	t	*
Cardiovascular risk	Pooled cohort equations ^c	KQ 2	Yadlowsky 2018 ⁸⁰	Pre-post	*	*	t
	Framingham risk score ^c	KQ 2	Fox 2016 ⁸²	Modelling ^d	*	t	*
	Framingham risk score ^c	KQ 2	Drawz 201287	Modelling ^d	*	*	t
	USPSTF-2013	KQ 1	Pasquinelli 2021 ⁵²	Modelling ^d	*	t	*
Lung Cancer Screening	USPSTF-2013	KQ 1	Han 202056	Modelling ^e	*	*	t
	USPSTF-2020	KQ 1	Landy 202166	Modelling ^d	t	t	*
Lung Transplant Allocation	Lung Allocation System	KQ 1	Wille 2013 ⁵⁹	Pre-post	*	Ļ	*
	GLI Spirometry Equation	KQ 2	Baugh 2022 ⁶⁰	Modelling ^d	*	*	t
Lung Function	GLI Spirometry Equation	KQ 2	Elmaleh-Sachs 2021 ⁶³	Modelling ^d	t	*	*
	Warfarin dosing algorithms ^c	KQ 2	Kimmel 2013 ⁸⁵	RCT	t	*	*
Anticoagulation	Warfarin dosing algorithms ^c	KQ 2	Limdi 2015 ⁸⁴	Prospective cohort	t	*	*
	CHA ₂ DS ₂ -VASc	KQ 2	Kabra 2016 ⁸³	Modelling ^d	*		t
Emergency Department Triage	HEART Pathway	KQ 1	Snavely 202155	Pre-post	↔	*	† ^f
Other	Novel algorithm for high-risk care management	KQ 1 and 2	Obermeyer 2019 ⁵	Modelling ^d	*	t	*
Ouler	Natural language processing algorithm	KQ 1 and 2	Thompson2021 ⁸⁹	Modelling ^d	*	*	t

Evidence Map (Continued)

National Institute on Minority Health and Health Disparities

KQ 1 Summary

- The effect of algorithms is complex, and some have been shown to perpetuate or exacerbate disparities, some reduce disparities, and others have no effect
- Additionally, an algorithm may exacerbate disparities for one outcome, but reduce disparities for another outcome
- Many algorithms in clinical use perpetuate or exacerbate racial and ethnic disparities (e.g. eGFR, ASCVD)
- Disparities can be reduced, regardless of whether race and ethnicity are utilized in the algorithm, when disparities are outlined and used to inform algorithm development (e.g. KAS, prostate CA screening)
- Most of the evidence focused on non-AI algorithms

Contextual Question 1: Extent of inclusion of input variables based on race and ethnicity in algorithms?

- We examined 45 algorithms
 - ► 17 include race and ethnicity
 - 5 include measures that may serve as proxies for race and ethnicity (e.g., SDOH, healthcare costs)
 - Clinical category, setting, and purpose varied
 - Developers included clinical research teams, organizations setting healthcare policy, health plans, EHR vendors
- We examined additional resources (e.g., websites)
 - MDCalc 14 of 700+ algorithms include race and ethnicity

Contextual Question 1: Extent of inclusion of input variables based on race and ethnicity in algorithms?

- Excluded >800 studies due to study design and outcome reporting
 - Many included similar algorithms included in our review
 - Some conducted in specialties not included in our review
- Algorithms likely affect every medical specialty, healthcare setting, and patient population
- Tip of the iceberg review was limited in scope and may not fully represent larger environment

Creating Fair, Reliable and Useful Models

Nigam H. Shah, MBBS, PhD

Professor of Medicine and Biomedical Data Science Chief Data Scientist, Stanford Healthcare Associate Dean for Research, Stanford School of Medicine

Racial Bias and Healthcare Algorithms

March 2, 2023 12:20-12:28 p.m. ET

National Institute on Minority Health and Health Disparities

Stanford Medicine Program for AI in Healthcare

AGENCY FOR HEALTHCARE RESEARCH AND QUALITY

Supporting Algorithmic Equity in a Public Healthcare System: a Case Study in Opioid Safety

Suzanne Tamang, PhD Veterans Affairs

Racial Bias and Healthcare Algorithms March 2, 2023 12:36-12:44 p.m. ET

STORM: Family of Decision Support Tools to Support Safe Care of Patients Exposed to Opioids

Includes: Predictive analytics for risk stratification, flexible population management, summary information on risk mitigation implementation for targeting QI and education, recommendation and tracking of risk mitigation, and patient level care review.

Home About Definitions User Guide Contact Us Quick View Report SSN Look-Up Save/Share Current View

Link to user guides for all STORM reports

Total Patients:	5
-----------------	---

	What factors con	How to better manage my patient's risk			How can I follow-up with this patient?			
Patient Information	Relevant Diagnoses	Relevant Medications	Risk Mitigation S	trategies	Non-pharmacological Pain Tx	Care Providers	Recent Appts	Upcoming Appts
ZZTESTPATIENT, BATMAN MACK Last Four: 2179 Age: 29 Gender: M Risk: Suicide or Overdose (1 yr)* Very High - Active Opioid Rx 6% PRF - High Risk for Suicide: No RIOSORD: Score: 43 Risk Class: 5 Active Station(s) • (600) Long Beach, CA Chart Review Note	Mental Health Major Depressive Disorder Other MH Disorder Medical Chronic Pulmonary Dis Diabetes, Uncomplicated Hypertension Lymphoma Neurological disorders - Other Paralysis Peripheral Vascular Disease Sleep Apnea Adverse Event Related to falls	Non-VA MARIUUANA • Dr Zivago Opioid MORPHINE Months in Treatment: 1 • Dr Zivago ACETAMINOPHEN/HYDROCODONE Months in Treatment: 6 • Dr Zivago Pain Medications (Sedating) DULOXETINE • Dr Zivago PREGABALIN • Dr Zivago TOPIRAMATE • Dr Zivago Opioid Prescription History	Bowel Regimen Data-based Opioid Risk Review MEDD <= 90** Naloxone Kit PDMP State PDMP List Psychosocial Assessment Psychosocial Tx Suicide Safety Plan Timely Follow-up (90 Days) Timely UDS (1 Year)	 ✓ ✓	Active Therapies ☑ 1/23/18 ClH Therapies ☑ 1/23/15 Chiropractic Care □ Occupational Therapy ☑ 1/23/17 Pain Clinic ☑ 9/4/15 Physical Therapy ☑ 1/23/18 Specialty Therapy ☑ 1/23/18 Other Therapy ☑ 1/23/18		Primary Care Appointment • 4/16/2017 Primary Care/Medicine OtherRecent • 1/27/2018 Telephone Case Management Specialty Pain • 9/4/2017 Pain Clinic MH Appointment None	Primary Care Appointment None OtherRecent • 1/30/2017 Spinal Cord Injury Specialty Pain None MH Appointment None
Patient Information Risk of Suicide/Ove	and erdose	Contributing Risk Factors		Risk Mitiga and Non-p pain t	ation Strategies harmacological treatments		Care team 8	k Follow-up

STORM-DeID (2019)

- In 2019, PERC worked with Data Science for Social Good and the FDA's Office of Minority Health & Health Equity to develop a performance evaluation framework on deidentified data (2014-15)
- Using a diverse set of stakeholders, and visually driven model "diagnostics", we quantified differences in performance, by gender, age, race/ethnicity
 - ► AUROC
 - PR Curves
 - Calibration
 - False-negative and false-positive parity rates
- We found evidence of algorithmic bias, but also salient challenges interpreting results of under-represented minority groups (e.g., American Indian/Alaskan Native, Asian) and "interactions" (e.g., female and >65, female and Black or African-American).

Example #1 of Racial & Ethnic Bias: Calibration

- Calibration is defined as the following property:
 - "If we assign some group a risk of x, the actual outcome incidence rate should also be x"
- For example, if we assign a group of people a risk of 40%, the actual overdose/suicide-related incidence rate should also be 40%.

STORM-2 (2021)

- In 2021, PERC applied the framework to STORM-2 (2014-1015)
- STORM-2 is three models:
 - ► No opioids in the observation window
 - Discontinued during the observation window
 - Actively on opioids on the index date
- Extended PERC framework to include:
 - Per true-positive plot: for each true positive, how many false-negatives and false-positives are detected?
 - False Omission Rate: Given a *negative* prediction, the FOR tells you the probability that the true value is *positive*.

Example #2 of Racial & Ethnic Bias: FOR

False
 Omission
 Rate for
 ActiveRx

Esther Meerwijk PhD, Data Scientist, Ci2i, Palo Alto VA

Where Are We in 2023?

- Fostering and engaging a VA Community of Practice for modeling and monitoring
 - STORM, REACH VET, CAN, Rockies NLP
 - NAII Datasheets and Model Cards
- Next steps for suicide and overdose prediction models
 - Apply framework to more recent data (2016-2020) and new subgroups
 - Comparing methods for mitigating bias (Duncan McElfresh PhD, HSR&D Fellow)
 - <u>Regression calibration</u> apply a subgroup specific transformation
 - <u>Subgroup-specific models</u> fit separate models
 - <u>Subgroup-specific cut points</u> define different high-risk cutoffs
 - Develop dashboard to monitor performance over time
 - Empirically inform recalibration of model, predictors to include in STORM and alternative prediction algorithms

Acknowledgements

PERC Team

- Esther Meerwijk, PhD
- Duncan McElfresh, PhD
- Jodie Trafton, PhD
- Susana Martins, MD
- Amy Robinson, PharmD
- Elizabeth Oliva, PhD

Partners

- Craig Kreisler, PhD
- Joseph Erdos, MD
- Michael Jonathan Stringer
- Christine Lee PharmD
- John Scott, MD
- Jonathan Nebeker, MD

- OMHSP
- PERC
- PERC Platform Support
- HDAP
- BISL
- OIT

Stanford

Center for Population Health Sciences

Impact of Healthcare Algorithms on Racial and Ethnic Disparities in Health and Healthcare

Consensus Panel Discussion/Q & A March 2, 2023 12:45– 1:30 p.m. ET

Discussion Questions

- What's missing, in terms of other experience and insights from the audience or related topics that were not covered in this session?
- What guidance is needed to mitigate bias/what are the next steps, for different parts of AI lifecycle, implementation perspective?
 - When/what/where/how to use algorithms?
 - Addressing bias in <u>existing</u> algorithms?

Impact of Healthcare Algorithms on Racial and Ethnic Disparities in Health and Healthcare

Break

March 2, 2023 1:30 – 2:00 p.m. ET *Please take thirty minutes for lunch*

AGENCY FOR HEALTHCARE RESEARCH AND QUALITY

Evidence Review Contextual Question 3

Brian Leas, MS, MA

University of Pennsylvania School of Medicine

Racial Bias and Healthcare Algorithms

March 2, 2023

2:00-2:20 p.m. ET

Contextual Question 3

To what extent are patients, providers (e.g., clinicians, hospitals, health systems), payers (e.g., insurers, employers), and policymakers (e.g., healthcare and insurance regulators, state Medicaid directors) aware of the inclusion of variables based on race and ethnicity in healthcare algorithms?

CQ 3: Methodology

- Primary literature searches
- AHRQ's Request for Information
- Technical Expert Panel and Key Informants
- Feedback from peer reviewers

CQ 3: Key Informants and Technical Expert Panel

12 Key Informants (KIs) 10-member Technical Expert Panel (TEP)

- Experts in research and practice
 - Healthcare algorithm development, use, and auditing
 - ► Health and healthcare disparities; health equity; race and ethnicity in healthcare

Healthcare providers

- Clinicians, health systems, academic medical centers, public and community health, specialty societies
- Patient advocates
- Payers (commercial and government)
- Vendors of health IT systems and healthcare algorithms
- Federal agencies

CQ 3: Patient Perspectives

Challenges

- Limited awareness and understanding
 - How algorithms are used in healthcare
 - How race and ethnicity interacts with health and healthcare
- Literacy (health, science, tech)
- Views shaped by personal/family experiences

National Institute on Minority Health and Health Disparities

Opportunities

- Patient-centered care and shared decisionmaking
- Personalized medicine and genetics

CQ 3: Provider Perspectives

Individual Clinicians

- Limited understanding
 - Know how and when to use algorithms
 - Don't understand development, implementation, sources of bias
- Deference and trust
 - Regulators, societies, health systems, EHRs

Hospitals and health systems

- Focused on implementation, not potential sources of bias
- Adapt EHR products to patient population, incentives, priorities ("off-label" use)
- Minimal transparency

CQ 3: What About the Curriculum?

Medical education is an opportunity to address many concerns

- Critical thinking about algorithms
- Use of clinical practice guidelines and EHR tools
- Human genetics
- Race, ethnicity, biology
- Disparities and equity
- Population health

CQ 3: Payers

- Not highly focused on disparities
- Just following the data
- Minimal transparency
- Decentralized operations, disjointed regulations

CQ 3: Policymakers

- All sectors anticipating federal guidance
- Substantial activity in last 3 years

Challenges

- Multiple agencies with overlapping stakes
- Who should guidance/regulation address?
 - ► EHR vendors, algorithm and AI developers, auditors, payers, providers
- How to address proprietary data and systems?
- Limited evidence!

Addressing Racial Bias in Healthcare Algorithms: Steps You Can Take Today

Crystal Grant, PhD

Technology Fellow, Speech, Privacy, and Technology Project, American Civil Liberties Union

Racial Bias and Healthcare Algorithms

March 2, 2023

2:20-2:30 p.m. ET

Assume the Healthcare Algorithm is Biased.

- Garbage in, Garbage out. Bias in, bias out.
- The data on which algorithms are trained reflects all sociocultural and environmental realties of racism in America's present and past and its effects on people's biology.
 - There is no genetic basis of race. Race is a social construct with real-world effects.
- While techniques exist that attempt to mitigate these biases in the training data, they too present limitations.

National Institute on Minority Health and Health Disparities The richest Black women have **infant mortality rates** at about the same level as the poorest white women.

Infant deaths per 100,000 for mothers who are ...

Assume the Algorithm is Incorrect.

 Algorithm developers are not subject matter experts in patient care. Yet, in creating a healthcare tool, they are making what amount to clinical and medical decisions.

Assume the Algorithm Has not Had Adequate Oversight or Regulation.

- Many healthcare algorithms undergo <u>no</u> oversight and do not require FDA approval.
- Among tools regulated by FDA, in obtaining approval/clearance:
 - Assessments of performance bias across racial or ethnic groups are not required
 - ► If provided, this data isn't made accessible to the public or researchers
 - Overuse of the 510(k) clearance process claiming substantial similarity may lead to less rigorous testing than is ideal for influential health algorithms
- After approval or clearance, degradation in the performance of an algorithm when deployed in RWD can occur, yet the FDA doesn't penalize those who fail to conduct post-market studies.

Conclusion: Steps You Can Take Today

- If we assume the healthcare algorithm we plan to use is biased, incorrect, and under-regulated:
 - Administrators: Demand more transparency from vendors on how a tool was built, results from bias testing, interrogate why certain outputs result given certain inputs. Partner with researchers to conduct ongoing reviews.
 - Clinicians: Question an algorithm that uses patients' race to assume biological information about them; stay alert for "anecdotal" bias in tools.
 - Researchers: Push federal regulatory bodies to make data from algorithm developers available. Assess whether performance of a tool at approval/clearance holds up in use with RWD, and if any biases emerge.

National Institute on Minority Health and Health Disparities

Email: cgrant@aclu.org, <u>Twitter</u>: @itscrystalgrant ACLU WHITE PAPER: AI IN HEALTH CARE MAY WORSEN MEDICAL RACISM

Strategies to Address Algorithmic Bias in Medicine

Helen Burstin, MD, MPH, MACP

CEO, Council of Medical Specialty Societies

Racial Bias and Healthcare Algorithms March 2, 2023 2:30-2:40 p.m. ET

CMSS Member Societies

Agency for Healthca Research and Quality

Widespread Issue in Clinical Algorithms*

- Cardiology
- Nephrology
- Hematology/Oncology
- Neurology
- Hepatology
- Endocrinology
- Infectious diseases

- Obstetrics
- Pulmonary medicine
- Transplant medicine
- Urology
- Addiction medicine
- Surgery
- Mental health

Draft Recommendations: Specialty Societies

- Promote stakeholder awareness (including patients) of potential algorithmic risk
- Work with policymakers to review clinical algorithms, and address those that result in racial and ethnic inequities
- Ensure that algorithms included in clinical guidelines and recommendations statements are assessed from a health equity lens and that methods are adequately reported
- Invest in further research to assess the effect of algorithms on racial and ethnic disparities before widespread implementation

Nephrology: Comprehensive Approach

Establishing a Task Force to Reassess the Inclusion of Race in Diagnosing Kidney Diseases *A joint statement from the National Kidney Foundation and the American Society of Nephrology*

July 2, 2020

- Recognize that any change in eGFR reporting must consider the multiple social and clinical implications, be based on rigorous science, and be part of a national conversation about uniform reporting of eGFR across health care systems
- Attempt to incorporating concerns of patients and the public, especially in marginalized and disadvantaged communities, while rigorously assessing the underlying scientific and ethical issues embedded in current practice
- Working towards an unbiased approach to assessment of kidney function so that laboratories, clinicians, patients, and public health officials can make informed decisions to ensure equity and personalized care for patients with kidney diseases
- ► Keep laboratories, clinicians, and other kidney health professionals apprised
- ► Identify any potential **long-term implications of removing race** from the eGFR formula

Pediatrics: Broad Based Approach

PEDIATRICS

OFFICIAL JOURNAL OF THE AMERICAN ACADEMY OF PEDIATRICS

Eliminating Race-Based Medicine

Joseph L. Wright, MD, MPH, FAAP, Wendy S. Davis, MD, FAAP, Madeline M. Joseph, MD, FAAP, Angela M. Ellison, MD, MSc, FAAP, Nia J. Heard-Garris, MD, MSc, FAAP, Tiffani L. Johnson, MD, MSc, FAAP, and the AAP Board Committee on Equity "Race-based medicine has been pervasively interwoven into the fabric of health care delivery in the United States for more than 400 years. **Race is a historically derived social construct that has no place as a biologic proxy.**

In addition to valid measures of social determinants of health, the effects of racism require consideration in clinical decision-making tools in ways that are evidence informed and not inappropriately conflated with the limiting phenotype of race categorization.

This policy statement addresses the elimination of race-based medicine part of a broader commitment to dismantle the structural as and systemic inequities that lead to racial health disparities."

Obstetrics: Implementation Approach

- Vaginal Birth after C-section (VBAC) Calculator
 - ► VBAC Calculator revised
 - MFM Network, May 2021
 - Analysis with and without race and ethnicity
 - Am J Ob Gyn, Dec 2021
 - Updated VBAC online calculator from MFM does not include race/ethnicity; added new variable related to treatment for chronic hypertension
 - Further clinician and patient education and dissemination

Potential Next Steps (1)

- Develop standards regarding inclusion of race in clinical research that support development of clinical guidelines and algorithms
- Support research that assesses the impact of race in clinical algorithms, recognizing importance of context, intentionality, and outcomes
- Support research that assesses the impact of other drivers, including SDOH and structural racism
- Effectively communicate and educate patients and clinicians on the potential impact of race in clinical algorithms

Potential Next Steps (2)

- Cross-specialty learning to develop best approaches to assess/remove race in clinical algorithms, assess long-term implications, and effective dissemination/implementation strategies
- Cross-disciplinary partnerships to develop AI/ML data sets that could support prospective assessment of race in clinical algorithms
- Broad stakeholder engagement that leads to changes in clinical research standards and clinical practice

Impact of Healthcare Algorithms on Racial and Ethnic Disparities in Health and Healthcare

Consensus Panel Discussion/Q & A March 2, 2023 2:40– 3:25 p.m. ET

Discussion Questions

- What works, what's missing in terms of related topics, experience, and insights, including trust issues related to algorithmic biases?
- What guidance is needed to mitigate bias/what are the next steps, for different parts of AI lifecycle?
 - Approaches to increasing awareness and building trust among health professionals and communities, especially vulnerable groups and minorities?
 - Approaches to involving patients and clinicians more fully in these efforts?

Impact of Healthcare Algorithms on Racial and Ethnic Disparities in Health and Healthcare Closing Remarks

Craig Umscheid, MD, MS

Senior Science Advisor and Director, EPC Division, AHRQ

Racial Bias and Healthcare Algorithms

March 2, 2023

3:25-3:40 p.m. ET

Thank you!

