MED Scope Statement

Topic Cell-Free DNA Blood Tests for Cancer Screening

Date: Spring 2023

Background

Small fragments of circulating tumor DNA in the blood (i.e., cell-free DNA) may offer opportunities for prognosis, monitoring, treatment selection, tumor burden, and screening for cancers.^{1,2} Distinct from identifying tumor DNA to guide cancer treatment decisions or monitor response, cell-free DNA screening tests could be used to look for cancer in asymptomatic, average, or high-risk individuals.^{2,3} Several factors are anticipated to limit the widespread use of cell-free DNA for screening including insufficient amounts of circulating DNA from small tumors or the misidentification of noncancerous DNA changes in white blood cells.²⁻⁴ Taking lessons from the use of fetal cell-free DNA testing (also known as noninvasive perinatal testing [NIPT]), there is a risk of misuse or misinterpretation of these screening tests as diagnostic.⁵ Screening tests warrant additional confirmatory diagnostic testing.

A preliminary search of Common Procedural and Testing (CPT) codes reveals relevant items^{6,7}:

- 86152: Cell enumeration using immunologic selection and identification in fluid specimen (e.g., circulating tumor cells in blood)
- 86153: Cell enumeration using immunologic selection and identification in fluid specimen (e.g., circulating tumor cells in blood); physician interpretation and report, when required
- 0091U: Oncology (colorectal) screening, cell enumeration of circulating tumor cells, utilizing whole blood, algorithm, for the presence of adenoma or cancer, reported as positive or negative result
- 0333U: Oncology (liver), surveillance for hepatocellular carcinoma (HCC) in high-risk patients, analysis of methylation patterns on circulating cell-free DNA pls measurement of serum of AFP/AFP-L3 and oncoprotein des-gamma-carboxy-prothrombin, algorithm reported as normal or abnormal result

A 2022 review identified more than a thousand registered clinical trials, most for non-screening indications, on the use of cell-free DNA in cancer, reflecting the growing interest in this technology, with most studies addressing the most common cancer types (e.g., breast, colorectal, lung) or late-stage diagnoses (e.g., pancreas).⁸ Other examples of cell-free DNA testing include individuals at high-risk for more rare cancers (e.g., gastric, liver).^{9,10} Through the detection of cancer at an earlier stage, proponents of cell-free DNA screening predict it may improve survival.²

This report will summarize the available evidence on tumor cell-free DNA for cancer screening in asymptomatic average- or high-risk individuals and identify current coverage policies for these tests. This is distinct from the use of cell-free DNA for diagnosis and treatment planning (e.g.,

MED Scope Statement

liquid biopsy) in individuals with cancer in locations challenging to biopsy or advanced stages (e.g., stage 4 lung cancer).³

PICO (for KQ1)

Population: Individuals at average or high risk for cancer

Intervention: Circulating tumor cell-free DNA blood tests for cancer screening

Comparator: Routine cancer screening care, laboratory tests, imaging (e.g., ultrasounds, mammogram) or procedures (e.g., colonoscopy)

Outcome: Overall mortality, cancer specific mortality, harms (e.g, false positives, additional testing, emotional distress), costs

Key Questions

- KQ1. What is the efficacy and safety of circulating tumor cell-free DNA compared to alternative screening approaches?
- KQ2. What are current coverage policies for circulating tumor cell-free DNA testing for cancer screening?

Proposed Approach

We will conduct a rapid review of relevant resources for up to 10 individual screening tests; we will search Center evidence sources (e.g., Ovid MEDLINE, Cochrane Library, other relevant databases) for systematic reviews of randomized controlled trials or individual randomized controlled trials of cell-free DNA compared to alternative methods for cancer screening. We will search databases for registered clinical trials (e.g., clinical trials.gov, ISRCTN). We will also analyze coverage polices from 5 private insurers, 10 state Medicaid agencies, and Medicare. Finally, we will interview 2 to 3 subject matter experts in this field to inform state considerations and future directions in this topic.

Related Center Resources

Godlewski B, King V. Noninvasive prenatal testing for trisomies 21, 18, and 13 and common sex aneuploidies: Medicaid and commercial payer policies. Portland, OR: Center for Evidence-based Policy, Oregon Health & Science University;

2020.https://www.medclearinghouse.org/topicfiles/pregnancy_childbirth_and_family_planning/ prenatal_cellfree_dna_screening/

References

 National Human Genome Research Institute. Cell-free DNA testing. 2022; <u>https://www.genome.gov/genetics-glossary/Cell-Free-DNA-Testing</u>. Accessed August 5, 2022.

- 2. Fiala C, Diamandis EP. Utility of circulating tumor DNA in cancer diagnostics with emphasis on early detection. *BMC Med.* 2018;16(1):166. doi: 10.1186/s12916-018-1157-9.
- 3. Krebs MG, Malapelle U, André F, et al. Practical considerations for the use of circulating tumor DNA in the treatment of patients with cancer: A narrative review. *JAMA Oncol.* 2022;8(12):1830-1839. doi: 10.1001/jamaoncol.2022.4457.
- 4. Fiala C, Diamandis EP. New approaches for detecting cancer with circulating cell-free DNA. *BMC Med.* 2019;17(1):159. doi: 10.1186/s12916-019-1400-z.
- 5. US Food & Drug Administration. FDA warns of risk associated with non-invasive prenatal screening tests 2022; <u>https://www.fda.gov/news-events/press-announcements/fda-warns-risks-associated-non-invasive-prenatal-screening-tests</u>. Accessed August 8, 2022.
- 6. Providence Health Plan. Circulating tumor cell and DNA assays for cancer management. 2021; <u>https://s3-us-west-2.amazonaws.com/images.provhealth.org/Providence-</u> <u>Images/PHP_Circulating_Tumor_Cell_Assays_For_Cancer_Management.pdf</u>. Accessed August 11, 2022.
- Optum. October 2022 code addendum. 2022; <u>https://www.optumcoding.com/upload/docs/CPT_October_2022_Code_Addendum.pdf</u>. Accessed March 2, 2023.
- 8. Cisneros-Villanueva M, Hidalgo-Pérez L, Rios-Romero M, et al. Cell-free DNA analysis in current cancer clinical trials: a review. *Br J Cancer*. 2022;126(3):391-400. doi: 10.1038/s41416-021-01696-0.
- 9. Huang ZB, Zhang HT, Yu B, Yu DH. Cell-free DNA as a liquid biopsy for early detection of gastric cancer. *Oncol Lett.* 2021;21(1):3. doi: 10.3892/ol.2020.12264.
- 10. Xu RH, Wei W, Krawczyk M, et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. *Nat Mater.* 2017;16(11):1155-1161. doi: 10.1038/nmat4997.