Results of Topic Selection Process & Next Steps

The nominator, the American College of Chest Physicians (CHEST), is interested in a new evidence review on diagnosing and staging lung cancer to inform the update of their 2013 guidelines. Due to limited program resources, the program is unable to develop a review at this time. No further activity on this nomination will be undertaken by the Effective Health Care (EHC) Program.

Topic Brief

Topic Name: Diagnosing and Staging Lung Cancer

Nomination Date: 2/21/2018

Topic Brief Date: 05/15/2018

Authors
Stephanie Veazie
Mark Helfand
Kara Winchell
Rose Relevo

Conflict of Interest: None of the investigators have any affiliations or financial involvement that conflicts with the material presented in this report.

Summary
- This nomination meets all selection criteria.
- Forty-three completed studies and one in-process study were identified on this topic. Over half of these studies examined either performance characteristics or patient outcomes associated with one particular staging modality (EBUS-TBNA).
Table of Contents

Background .. 1

Methods ... 3
 Appropriateness and Importance .. 4
 Desirability of New Review/Duplication ... 4
 Impact of a New Evidence Review ... 4
 Feasibility of New Evidence Review .. 4
 Value ... 4
 Compilation of Findings ... 4

Results .. 4
 Appropriateness and Importance .. 4
 Desirability of New Review/Duplication ... 5
 Impact of a New Evidence Review ... 5
 Feasibility of a New Evidence Review .. 5
 Value ... 7

Summary of Findings ... 7

References ... 8

Appendix A. Selection Criteria Summary ... A-1
Appendix B. Search for Evidence Reviews (Duplication) .. B-1
Appendix C. Search Strategy & Results (Feasibility) .. C-1
Background

Lung cancer is the second most common type of cancer and the leading cause of cancer death in the United States.1 A variety of tools are used to diagnosis and stage lung cancer. Patients with suspected lung cancer first receive a PET or CT, which confirms the location and size of a mass. A bronchoscopy (conventional, flexible, electromagnetic navigation-guided, or radial endobronchial ultrasound-guided) may then be used to provide images of the mass and to collect samples for histological testing. Other surgical tools may be used to collect samples in the lungs or pleural cavity without imaging (i.e., transthoracic needle aspiration biopsy, pleural biopsy). Staging of lung cancer assesses the extent to which the cancer has spread beyond the primary tumor. Staging is completed at the same time as diagnosis, and involves using similar tools (PET, CT, endobronchial ultrasound-guided needle aspiration; endoscopic ultrasound-guided needle aspiration, video-assisted thoracoscopic surgery) to look beyond the lungs-especially the mediastinum-to determine where cancer has spread.

Although many tools are available to diagnosis and stage lung cancer, the optimal combination and sequence of tools is unclear. A review on the performance characteristics and effects of each of these tools, used alone or in combination, on the need for subsequent testing, prognosis, under- or over-treatment, and patient outcomes would better inform clinical decision-making and facilitate the appropriate use of tools.

Nominator and Stakeholder Engagement: CHEST originally nominated one topic on diagnosing lung cancer and one topic on staging non-small cell lung cancer. After consultation with a local topic expert as well as a discussion with the nominator, the diagnosis and staging topics were combined into a single nomination. This is because the same tools are used for diagnosis and screening, the process of diagnosis and staging are completed at the same time, and there is considerable overlap in the literature. In addition, the key questions and PICOs for this topic were re-scoped to better reflect clinical decision-making.

The key questions for this nomination are:

1. Among adults with suspected lung cancer, what are the performance characteristics and effects of each diagnosis/staging tool on the need for subsequent testing, prognosis, treatment, and patient outcomes?
 a. CT scan
 b. PET scan
 c. Pleural biopsy (closed image guided or thoracoscopic)
 d. Flexible bronchoscopy
 e. R-EBUS bronchoscopy
 f. EMN bronchoscopy
 g. TTNA of lung airways or mediastinum
 h. Cervical and extended cervical mediastinoscopy
 i. EUS-NA of the mediastinum
 j. EBUS-NA of the mediastinum
 k. VATS of the mediastinum
 l. TBNA of the mediastinum

2. Among adults with suspected lung cancer, what are the performance characteristics and effects of a) dual-modality or b) tri-modality compared to single-modality staging on the need for subsequent testing, prognosis, treatment, and patient outcomes?

3. Among adults who undergo diagnosis and staging for suspected lung cancer, does the sequence of invasive testing affect the total number of tests, their complications, or their
4. Among adults who undergo diagnosis and staging for suspected lung cancer, do performance characteristics and outcomes vary by patient characteristics, including:
 a. Age/comorbidities
 b. Suspected stage of cancer (especially early vs. advanced)
 c. Willingness and ability to complete treatment

To define the inclusion criteria for the key questions we specify the population, interventions, comparators, and outcomes (PICOs) of interest (Table 1).
Table 1. Key Questions and PICOs

<table>
<thead>
<tr>
<th>Key Question</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Outcome</th>
</tr>
</thead>
</table>
| 1. Among adults with suspected lung cancer, what are the performance characteristics and effects of each diagnosis/staging tool on the need for subsequent testing, prognosis, treatment, and patient outcomes? | Adults who are initially suspected of having lung cancer | a. CT scan
b. PET scan
c. Pleural biopsy (closed image guided or thoroscopic)
d. Flexible bronchoscopy
e. R-EBUS bronchoscopy
f. EMN bronchoscopy
g. TTNA of lung airways or mediastinum
h. Cervical and extended cervical mediastinoscopy
i. EUS-NA of the mediastinum
j. EBUS-NA of the mediastinum
k. VATS of the mediastinum
l. TBNA of the mediastinum | Other diagnostic/staging tool or reference standard (surgical biopsy) | • Negative/positive predictive value
• Need for subsequent testing
• Prognosis
• Under or over-treatment
• Patient outcomes (adverse events from procedure, quality of life, mortality) |
| 2. Among adults with suspected lung cancer, what are the performance characteristics and effects of a) dual-modality or b) tri-modality compared to single-modality staging on the need for subsequent testing, prognosis, treatment, and patient outcomes? | Adults who are initially suspected of having lung cancer | a. Dual-modality staging (CT plus PET scans, or CT scan plus invasive staging [mediastinoscopy or R-EBUS, EUS-NA, VATS, TTNA, TBNA of the mediastinum])
b. Tri-modality staging (CT, PET, and invasive staging [mediastinoscopy or R-EBUS, EUS-NA, VATS, TTNA, TBNA of the mediastinum]) | Use of 1 staging tool alone | • Negative/positive predictive value
• Need for subsequent testing
• Prognosis
• Under or over-treatment
• Patient outcomes (adverse events from procedure, quality of life, mortality) |
| 3. Among adults who undergo diagnosis and staging for suspected lung cancer, does the sequence of invasive testing affect the total number of tests, their complications, or their performance characteristics? | Adults who are initially suspected of having lung cancer who undergo diagnosis and staging | 2 or more diagnostic/staging tools from KQ1 | Alternative sequence of the same diagnostic/staging tools | • Negative/positive predictive value
• Need for subsequent testing
• Prognosis
• Under or over-treatment
• Patient outcomes (adverse events from procedure, quality of life, mortality) |
| 4. Among adults who undergo diagnosis and staging for suspected lung cancer, do performance characteristics and outcomes vary by patient characteristics, including: | Adults who are initially suspected of having lung cancer who undergo diagnosis and staging | 1 or more diagnostic/staging tools from KQ1 | Other diagnostic/staging tool or reference standard (surgical biopsy) | • Negative/positive predictive value
• Need for subsequent testing
• Prognosis
• Under or over-treatment
• Patient outcomes (adverse events from procedure, quality of life, mortality) |

Abbreviations: CT=Computerized tomography; EBUS-NA= Endobronchial ultrasound-guided needle aspiration; EUS-NA= Endoscopic ultrasound-guided needle aspiration; NSCLC= non-small cell lung cancer; PET= Positron emission tomography; R-EBUS= radial endobronchial ultrasound; TBNA= Transbronchial needle aspiration cytology; TTNA= Transthoracic needle aspiration; VATS=Video-assisted thoracoscopic surgery
Methods

We assessed nomination 0767/0768 Diagnosing and Staging Lung Cancer for priority for a systematic review or other AHRQ EHC report with a hierarchical process using established selection criteria (Appendix A). Assessment of each criteria determined the need for evaluation of the next one.

1. Determine the appropriateness of the nominated topic for inclusion in the EHC program.
2. Establish the overall importance of a potential topic as representing a health or healthcare issue in the United States.
3. Determine the desirability of new evidence review by examining whether a new systematic review or other AHRQ product would be duplicative.
4. Assess the potential impact a new systematic review or other AHRQ product.
5. Assess whether the current state of the evidence allows for a systematic review or other AHRQ product (feasibility).
6. Determine the potential value of a new systematic review or other AHRQ product.

Appropriateness and Importance
We assessed the nomination for appropriateness and importance.

Desirability of New Review/Duplication
We searched for high-quality, completed or in-process evidence reviews published in the last three years on the key questions of the nomination. See Appendix B for sources searched.

Impact of a New Evidence Review
The impact of a new evidence review was qualitatively assessed by analyzing the current standard of care, the existence of potential knowledge gaps, and practice variation. We considered whether it was possible for this review to influence the current state of practice through various dissemination pathways (practice recommendation, clinical guidelines, etc.).

Feasibility of New Evidence Review
We conducted a literature search in PubMed from April 2013 to April 2018.

We reviewed all (n=241) identified titles and abstracts for inclusion and classified identified studies by study design, to assess the size and scope of a potential evidence review.

See Appendix C for the PubMed search strategy and links to the ClinicalTrials.gov search.

Value
We assessed the nomination for value. We considered whether or not the clinical, consumer, or policymaking context had the potential to respond with evidence-based change; and if a partner organization would use this evidence review to influence practice.

Compilation of Findings
We constructed a table with the selection criteria and our assessments (Appendix A).

Results

Appropriateness and Importance
This is an appropriate and important topic. Approximately six percent of people will be diagnosed with lung and bronchus cancer in their lifetime, making it the second most common type of cancer. Lung cancer is also the leading cause of cancer death in the United States. There are many tests for diagnosing and staging lung cancer, and the selection of the right tests and sequence has a major impact on how accurately and efficiently a patient’s true diagnosis
and stage are reached. In addition, there are a wide variety of treatment options based on a patient’s diagnosis and stage. Basing treatment decisions on an inaccurate diagnosis or stage may lead to poor health outcomes as well as increased health care costs.

Desirability of New Review/Duplication

A new evidence review on diagnosing and staging lung cancer would not be duplicative of an existing product. We identified 2 completed\(^2\)\(^-\)\(^3\) and 1 in-process\(^4\) systematic reviews (SRs) that partially addressed the key questions of interest.

One 2016 SR and meta-analysis examined the prognostic value of combined PET/CT staging for patients with surgical non-small cell lung cancer (KQ1a, KQ1b).\(^2\) Another 2016 SR and meta-analysis examined the diagnostic accuracy (including negative predictive value) of EBUS-NA, EUS-NA or a combined approach for patients with non-small cell lung cancer (KQ1i, KQ1j) and assessed whether the accuracy varied by the sequence in which EBUS-NA and EUS-NA were delivered (KQ3).\(^3\) One in-process review will look at the use of ultrasound characteristics from staging EBUS to predict malignancy (KQ1j).\(^4\) None of these reviews covered all outcomes of interest for a particular sub-question (i.e., positive and negative predictive values, need for subsequent testing, prognosis, under or over-treatment, adverse events from procedure, quality of life, and mortality).

See Table 2, Duplication column.

Impact of a New Evidence Review

A new systematic review on diagnosing and staging lung cancer may have high impact. CHEST last released guidelines on the diagnosis of lung cancer\(^5\) in 2013 (last search 2011) and staging of non-small lung cancer\(^6\) in 2013 (last search 2012). All recommendations for diagnosis and staging were based on moderate or low-quality evidence. This indicates that a new systematic review summarizing new evidence on this topic has the potential to inform guidance.

There is also practice variation in the diagnosis and staging of lung cancer, indicating there is an implementation gap in addition to an information gap. According to the SEER registry, only 30% of lung cancer patients receive bi-modality staging and 5% receive tri-modality staging, despite recommendations that at least two staging modalities be used.\(^7\)

Feasibility of a New Evidence Review

A new evidence review on diagnosing and staging lung cancer is feasible. We identified a total of 43 completed and one in-process studies addressing this topic. An evidence review would likely be medium-sized. Although fewer than 50 studies were identified, further refinement of the key questions and PICOs are needed, which would likely result in the inclusion of additional studies.

A total of 40 completed studies addressed Key Question 1.\(^8\)\(^-\)\(^47\) Most of these studies examined the use of EBUS-TBNA in mediastinal staging (KQ1j, KQ1l). Of the remaining studies, most examined a combination of tools, such as PET/CT. One additional in-process study\(^48\) will examine the positive predictive value of high-definition video bronchoscopy for detecting malignancies.

One study addressed Key Question 2.\(^49\) This study examined PET/CT with EBUS-TBNA versus PET/CT alone to evaluate patients with non-small cell lung cancer prior to stereotactic ablative body radiotherapy.

Two retrospective studies addressed Key Question 3.\(^27\),\(^50\) One study examined whether mediastinal lymph node sampling was conducted as the first invasive procedure in patients with suspected lung cancer and whether this impacted the number of invasive tests performed as
well as complications. A second study examined the number of procedures conducted and time to diagnose lung cancer in a cohort of lung cancer patients.

Two studies addressed Key Question 4. Both studies were conducted in elderly populations, one examined performance characteristics and complications and one only examined complications of EBUS-TBNA.

See Table 2, Feasibility column.

Table 2. Key questions and Results for Duplication and Feasibility

<table>
<thead>
<tr>
<th>Key Question</th>
<th>Duplication (03/2015-03/2018)</th>
<th>Feasibility (04/2013-04/2018)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KQ 1: Performance characteristics and effects of each diagnostic tool, including:</td>
<td>Total number of identified systematic reviews: 3</td>
<td></td>
</tr>
<tr>
<td>a) CT scan</td>
<td>a) 1 SR²</td>
<td>Size/scope of review</td>
</tr>
<tr>
<td>b) PET scan</td>
<td>b) 1 SR²</td>
<td>Relevant Studies Identified: 40</td>
</tr>
<tr>
<td>c) Pleural biopsy (closed image guided or thoracoscopic)</td>
<td>c) None</td>
<td>a) 2 prospective cohort⁵, ⁴⁷ and 3 retrospective cohort⁹-¹¹</td>
</tr>
<tr>
<td>d) Flexible bronchoscopy</td>
<td>d) None</td>
<td>b) 3 prospective cohort⁶, ¹², ⁴⁷ and 3 retrospective cohort⁹, ¹⁰, ¹³</td>
</tr>
<tr>
<td>e) R-EBUS bronchoscopy</td>
<td>e) None</td>
<td>c) None</td>
</tr>
<tr>
<td>f) EMN bronchoscopy</td>
<td>f) None</td>
<td>d) 1 retrospective cohort¹⁴</td>
</tr>
<tr>
<td>g) TTNA of lung airways or mediastinum</td>
<td>g) None</td>
<td>e) 2 prospective cohort¹⁵, ¹⁶</td>
</tr>
<tr>
<td>h) Cervical and extended cervical mediastinoscopy</td>
<td>h) None</td>
<td>f) None</td>
</tr>
<tr>
<td>i) EUS-NA of the mediastinum</td>
<td>i) 2 SR¹-⁴</td>
<td>g) None</td>
</tr>
<tr>
<td>j) EBUS-NA of the mediastinum</td>
<td>j) 1 SR¹</td>
<td>h) 1 prospective cohort¹⁷</td>
</tr>
<tr>
<td>k) VATS of the mediastinum</td>
<td>k) None</td>
<td>i) 2 prospective cohort¹², ¹⁸</td>
</tr>
<tr>
<td>l) TBNA of the mediastinum</td>
<td>l) None</td>
<td>j) 1 RCT,¹⁹ 9 prospective cohort, ⁸, ¹⁷, ²⁰-²⁶, ⁴⁵ 18 retrospective cohort, ¹¹-¹³, ₁₈, ₂⁷-₄¹ 2 surveys²², ₄₃</td>
</tr>
</tbody>
</table>

Clinicaltrials.gov
- Recruiting: None
- Active: 1⁸⁶
- Complete: None

KQ 2: Among adults with suspected lung cancer, what are the performance characteristics and effects of a) dual-modality or b) tri-modality compared to single-modality staging on the need for subsequent testing, prognosis, treatment, and patient outcomes?

Total number of identified systematic reviews: None
- a) None
- b) None

Size/scope of review
- Relevant Studies Identified: 1
- a) 1 retrospective cohort¹⁹
- b) None

Clinicaltrials.gov
- Recruiting: None
- Active: None
- Complete: None

KQ 3. Among adults who undergo diagnosis and staging for suspected lung cancer, does the sequence of invasive testing affect the total number of tests, their complications, or their performance characteristics?

Total number of identified systematic reviews: 1
- 1 SR¹

Size/scope of review
- Relevant Studies Identified: 2
 - 2 retrospective cohort²⁷, ⁵⁰

Clinicaltrials.gov
- Recruiting: None
- Active: None
- Complete: None
Key Question | Duplication (03/2015-03/2018) | Feasibility (04/2013-04/2018)
--- | --- | ---
KQ 4: Among adults who undergo diagnosis and staging for suspected lung cancer, do performance characteristics and outcomes vary by patient characteristics, including:
 a) Age/comorbidities
 b) Suspected stage of cancer (especially early vs. advanced)
 c) Willingness and ability to complete treatment | Total number of identified systematic reviews: None
 a) None
 b) None
 c) None | Size/scope of review
 Relevant Studies Identified: 2
 1 prospective cohort and 1 retrospective cohort
 Clinicaltrials.gov
 • Recruiting: None
 • Active: None
 • Complete: None

Abbreviations: AHRQ=Agency for Healthcare Research and Quality; CT=Computerized tomography; EBUS-NA=Endobronchial ultrasound-guided needle aspiration; EUS-NA=Endoscopic ultrasound-guided needle aspiration; KQ=Key Question; NSCLC=non-small cell lung cancer; PET=Positron emission tomography; R-EBUS=radial endobronchial ultrasound; TBNA=Transbronchial needle aspiration cytology; TTNA=Transthoracic needle aspiration; VATS=Video-assisted thoracoscopic surgery

Value
The potential for value of a new systematic review is high, as this topic exists within a clinical context that is amenable to evidence-based change and CHEST plans to use an evidence review to inform the update of their 2013 guidelines.

Summary of Findings

- **Appropriateness and importance:** The topic is both appropriate and important.
- **Duplication:** A new review would not be duplicative of an existing product. We identified 2 completed and 1 in-process systematic reviews that partially addressed the key questions of interest. However, none of these reviews covered all outcomes of interest for a particular sub-question.
- **Impact:** A new systematic review has high impact potential. CHEST last released guidelines on the diagnosis of lung cancer in 2013 (last search 2011) and staging of non-small lung cancer in 2013 (last search 2012). All recommendations were based on low or moderate-quality evidence, indicating there is an information gap that could be informed by a new systematic review.
- **Feasibility:** A new review is feasible. Forty-three completed studies and one in-process study were identified, indicating the evidence base is medium-sized.
 - **KQ1:** Forty completed studies and one in-process study addressed KQ1. The majority of studies examined performance characteristics and outcomes associated with EBUS-TBNA for mediastinal staging (KQ1i, KQ2i).
 - **KQ2:** One study addressed KQ2. This study examined PET/CT with EBUS-TBNA versus PET/CT alone to evaluate patients with non-small cell lung cancer prior to stereotactic ablative body radiotherapy.
 - **KQ3:** Two studies addressed KQ3. One study examined the impact of mediastinal lymph node sampling as the first invasive staging procedure, and a second study assessed the number of procedures conducted and time to diagnose lung cancer.
 - **KQ4:** Two studies addressed KQ4, both of which examined complications associated with EBUS-TBNA in older people.
- **Value:** The potential for value is high, as CHEST plans to use a new evidence review to inform their 2013 guidelines on establishing the diagnosis of lung cancer and staging non-small cell lung cancer.
References

11. Marchand C, Medford ARL. Relationship between endobronchial ultrasound-guided (EBUS)-transbronchial needle aspiration utility and computed tomography staging, node size at EBUS, and positron emission tomography scan node standard uptake values: A retrospective

Appendix A. Selection Criteria Summary

<table>
<thead>
<tr>
<th>Selection Criteria</th>
<th>Assessment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Appropriate</td>
<td>Yes, the nomination represents diagnostic and staging modalities that are available in the United States.</td>
<td></td>
</tr>
<tr>
<td>1a. Does the nomination represent a health care drug, intervention, device, technology, or health care system/setting available (or soon to be available) in the U.S.?</td>
<td>Yes, this is a request for a systematic review.</td>
<td></td>
</tr>
<tr>
<td>1b. Is the nomination a request for a systematic review?</td>
<td>Yes, the focus is on the performance characteristics and other outcomes associated with the use of each of these modalities, compared to each other or a reference standard.</td>
<td></td>
</tr>
<tr>
<td>1c. Is the focus on effectiveness or comparative effectiveness?</td>
<td>Yes, the nomination is consistent with what is known about the topic.</td>
<td></td>
</tr>
<tr>
<td>1d. Is the nomination focus supported by a logic model or biologic plausibility? Is it consistent or coherent with what is known about the topic?</td>
<td>Yes, lung cancer is the second most common type of cancer and the leading cause of cancer death in the United States.</td>
<td></td>
</tr>
<tr>
<td>2. Importance</td>
<td>Yes, due to the large prevalence and low survival rate, this topic is of high public interest.</td>
<td></td>
</tr>
<tr>
<td>2a. Represents a significant disease burden; large proportion of the population</td>
<td>Yes, this nomination represents important uncertainty for decision-makers. There are many tests for diagnosis and staging, and the selection of the right tests and sequence has a major impact on how accurately and efficiently a patient’s true diagnosis and stage are reached. In addition, there are a wide variety of treatment options based on a patient’s diagnosis and stage. Basing treatment decisions on an inaccurate diagnosis or stage may lead to poor outcomes.</td>
<td></td>
</tr>
<tr>
<td>2b. Is of high public interest; affects health care decision making, outcomes, or costs for a large proportion of the US population or for a vulnerable population</td>
<td>Yes, both benefits and harms of diagnosis and staging are incorporated into this nomination.</td>
<td></td>
</tr>
</tbody>
</table>
| 2c. Represents important uncertainty for decision makers | Yes, this nomination represents high costs. In Spain, the average cost of diagnosing and treating lung cancer is at least $16,000, depending on the stage. Costs could potentially be reduced through the reduction of unnecessary tests.

One 2016 SR and meta-analysis examined the prognostic value of combined PET/CT staging for patients with surgical non-small cell lung cancer (KQ1a, KQ1b). Another 2016 SR and meta-analysis examined the diagnostic accuracy (including negative predictive value) | |
| 2d. Incorporates issues around both clinical benefits and potential clinical harms | |
| 2e. Represents high costs due to common use, high unit costs, or high associated costs to consumers, to patients, to health care systems, or to payers | |
| 3. Desirability of a New Evidence Review/Duplication | A new evidence review would not be duplicative of an existing product. We identified 2 completed and 1 in-process systematic reviews that partially addressed the key questions of interest.

One 2016 SR and meta-analysis examined the prognostic value of combined PET/CT staging for patients with surgical non-small cell lung cancer (KQ1a, KQ1b). Another 2016 SR and meta-analysis examined the diagnostic accuracy (including negative predictive value) | |
A new evidence review is feasible. We identified a total of 43 completed and 1 in-process studies addressing this topic. An evidence review would likely be medium-sized. Although fewer than 50 studies were identified, further refinement of the key questions and PICO(s) are needed, which would likely result in the inclusion of additional studies.

A total of 40 completed studies addressed Key Question 1. The majority of these studies examined the use of EBUS-TBNA in mediastinal staging (KQ1j, KQ1l). Of the remaining studies, most examined a combination of tools, such as PET/CT.

One study directly addressed Key Question 2. This study examined PET/CT with EBUS-TBNA versus PET/CT alone to evaluate patients with non-small cell lung cancer prior to stereotactic ablative body radiotherapy.

Two retrospective studies directly addressed Key Question 3. One study examined whether mediastinal lymph node sampling was conducted as the first invasive procedure in patients with suspected lung cancer and whether this impacted the number of invasive
tests performed as well as complications. A second study examined the number of procedures conducted and time to diagnose lung cancer in a cohort of lung cancer patients.

Two studies directly addressed Key Question 4. Both were conducted in elderly populations, one examined performance characteristics and complications and one only examined complications of EBUS-TBNA. ClinicalTrials.gov. One in-process study will examine the positive predictive value of high-definition video bronchoscopy for detecting malignancies.

<table>
<thead>
<tr>
<th>6. Value</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6a. The proposed topic exists within a clinical, consumer, or policy-making context that is amenable to evidence-based change</td>
<td>Yes, this topic exists within a clinical context that is amenable to evidence-based change.</td>
</tr>
<tr>
<td>6b. Identified partner who will use the systematic review to influence practice (such as a guideline or recommendation)</td>
<td>Yes, CHEST plans to use an evidence review to inform the update of their 2013 guidelines on lung cancer diagnosis and staging.</td>
</tr>
</tbody>
</table>

Abbreviations: AHRQ=Agency for Healthcare Research and Quality; CHEST= American College of Chest Physicians; CT=Computerized tomography; KQ=Key Question; EBUS-NA= Endobronchial ultrasound-guided needle aspiration; EUS-NA= Endoscopic ultrasound-guided needle aspiration; NSCLC= non-small cell lung cancer; PET= Positron emission tomography; SEER= Surveillance, Epidemiology and Results Program of National Cancer Institute; TBNA= Transbronchial needle aspiration cytology
Appendix B. Search for Evidence Reviews (Duplication)
Listed are the sources searched.

<table>
<thead>
<tr>
<th>Search date: March 2015 to March 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHRQ: Evidence reports and technology assessments, USPSTF recommendations</td>
</tr>
<tr>
<td>VA Products: PBM, and HSR&D (ESP) publications, and VA/DoD EBCPG Program</td>
</tr>
<tr>
<td>PubMed</td>
</tr>
<tr>
<td>HTA (CRD database): Health Technology Assessments http://www.crd.york.ac.uk/crdweb/</td>
</tr>
<tr>
<td>PROSPERO Database (international prospective register of systematic reviews and protocols) http://www.crd.york.ac.uk/prospero/</td>
</tr>
<tr>
<td>CADTH (Canadian Agency for Drugs and Technologies in Health) https://www.cadth.ca/</td>
</tr>
<tr>
<td>ECRI institute https://www.ecri.org/Pages/default.aspx</td>
</tr>
<tr>
<td>PsycINFO (Ovid)</td>
</tr>
<tr>
<td>Concept</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Diagnosis</td>
</tr>
<tr>
<td>Staging</td>
</tr>
<tr>
<td>PET Scan</td>
</tr>
<tr>
<td>Pleural Biopsy</td>
</tr>
<tr>
<td>Flexible bronchoscopy</td>
</tr>
<tr>
<td>R-EBUS bronchoscopy</td>
</tr>
<tr>
<td>Procedure</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>EMN bronchoscopy</td>
</tr>
<tr>
<td>TTNA of lung airways or mediastinum</td>
</tr>
<tr>
<td>Cervical and extended mediastinoscopy</td>
</tr>
<tr>
<td>EUS-NA of the mediastinum</td>
</tr>
<tr>
<td>EBUS-NA of the mediastinum</td>
</tr>
<tr>
<td>VATS of the mediastinum</td>
</tr>
<tr>
<td>TBNA of the mediastinum</td>
</tr>
<tr>
<td>NOT Editorials, etc.</td>
</tr>
<tr>
<td>Limit to last 5 years ; human ; English ; Adult</td>
</tr>
<tr>
<td>N=241</td>
</tr>
<tr>
<td>Systematic Reviews N=3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Randomized Controlled Trials N=37</th>
<th>Cochrane Sensitive Search Strategy for RTCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link</td>
<td></td>
</tr>
</tbody>
</table>

Other N=201

ClinicalTrials.gov searched on March 4th, 2018
76 Studies found for: diagnosis OR staging | Completed Studies | Lung Neoplasms | Adult, Senior | Start date from 01/01/2013 to 12/31/2018

54 Studies found for: diagnosis OR staging | Active, not recruiting Studies | Lung Neoplasms | Adult, Senior | Start date from 01/01/2013 to 12/31/2018